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Abstract

An important source of high clustering coeffi-
cient in real-world networks is transitivity. How-
ever, existing algorithms which model transitiv-
ity suffer from at least one of the following prob-
lems: i) they produce graphs of a specific class
like bipartite graphs, ii) they do not give an an-
alytical argument for the high clustering coeffi-
cient of the model, and iii) their clustering coef-
ficient is still significantly lower than real-world
networks. In this paper, we propose a new model
for complex networks which is based on adding
transitivity to scale-free models. We theoretically
analyze the model and provide analytical argu-
ments for its different properties. In particular,
we calculate a lower bound on the clustering co-
efficient of the model which is independent of
the network size, as seen in real-world networks.
More than theoretical analysis, the main proper-
ties of the model are evaluated empirically and
it is shown that the model can precisely simulate
real-world networks from different domains with
and different specifications.

1 Introduction

Most of real-world networks such as World Wide Web,
social networks, Internet and biological networks exhibit
structural properties which are not in either entirely reg-
ular or purely random graphs. For example, graphs pro-
duced by the model of Paul Erdős and Alfréd Rényi (the
ER model) [10], do not have the two important properties
observed in many real-world networks. The first property
is related to the degree distribution. In a network, the de-
gree distribution is defined as the probability distribution
of the degrees of vertices over the whole network. In many
real-world networks a power-law distribution is observed.
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More formally, the probability that the degree of a vertex is
k is proportional to k−γ . Networks with this property are
called scale-free networks. However, the degree distribu-
tion of the graphs produced by the ER model converges to
a Poisson distribution.

The second property is related to the clustering coefficient.
Clustering coefficient is used to measure how well vertices
in a network tend to be clustered together. In most of real-
world networks, vertices tend to create tight groups charac-
terized by dense ties [28]. However, in the ER model, every
two vertices are connected with a constant and independent
probability and therefore, the model generates graphs with
a low clustering coefficient.

The β model (the Watts-Strogatz model), proposed by
Watts and Strogatz [28], produces graphs with the small-
world property and high clustering coefficient. In small-
world networks, the distance between each pair of vertices
is proportional to the logarithm of the number of vertices
in the network. However, the β model produces an unreal-
istic degree distribution. The Barabási-Albert (BA) model,
proposed by Albert-László Barabási and Réka Albert pro-
duces scale-free graphs [3]. The model is based on two
important concepts: growth and preferential attachment.
Growth means that the number of vertices in the network
increases over time. Preferential attachment means that
vertices with higher degree are more likely to receive new
edges. The degree distribution of a graph resulting from
the BA model is a power-law in the form of Pr[k] ∼ k−3.
However, the clustering coefficient of the graphs produced
by the BA model is significantly lower than the clustering
coefficient of real-world networks. Takemoto and Oosawa
[25] propose a model for evolving networks by merging
complete graphs (cliques) as building blocks. The model
shows power-law degree distribution, power-law clustering
spectra and high average clustering coefficients indepen-
dent of the size of network. However, in most cases, real-
world networks are evolved in a different way: they usually
grow during the time by obtaining new vertices, rather than
by merging complete graphs.

An important source of high clustering coefficient in net-



works is transitivity. Transitivity means if u is connected
to v and v is connected to w, the probability of having a
connection between u and w is higher than any other pair
of vertices in the network. Most of edges in real-world net-
works are local and they are drawn between vertices which
have a common neighbor [18]. The model of [22] incor-
porates transitivity and generates graphs with high clus-
tering coefficient. However, it produces bipartite networks
which are limited to situations like company directors and
movie actors. Clustering coefficient in the graphs produced
by the model of [19] is still significantly lower than clus-
tering coefficient of real-world networks. Leskovec et.al.
[18] propose several mechanisms for modeling transitivity
in complex networks. However, they do not provide any
theoretical argument for the clustering coefficient of the
mechanisms. The importance of such a theoretical anal-
ysis is that it guarantees that the model will reflect impor-
tant properties of real-world networks, since a high cluster-
ing coefficient, independent of the network size, is seen in
many real-world networks. On the other hand, for most of
network models, it is not easy to theoretically analyze the
clustering coefficient. For example, up to now, clustering
coefficient of BA networks has only been determined by
numerical simulations1, and it is known to be very difficult
to theoretically analyze it. Therefore, it is interesting to
develop a model for transitivity in complex networks such
that its clustering coefficient can be verified by theoretical
arguments.

In this paper, we present the η model for modeling transi-
tivity in complex networks. At every time interval t, the
network obtains a new vertex and the new vertex is con-
nected to some existing vertices. This step is similar to the
BA model. Then, each vertex is selected with a probabil-
ity proportional to its degree . If it is selected, then a pair
of its neighbors are chosen randomly and an edge is drawn
between them. The model has two adjustment parameter η
and m. We theoretically analyze the model and prove that
it produces networks with power-law degree distribution,
high clustering coefficient and the small-world property.
Compared to the clustering coefficient of random graphs
or graphs produced by existing scale-free models, the clus-
tering coefficient of the η model is significantly higher. In
particular, by theoretical arguments, we prove that it is in-
dependent of the network size and depends solely on pa-
rameters like η and m. We also empirically evaluate the
model and show that it can precisely simulate networks
from different domains (biology, technology, social and in-
formation networks) with different characteristics.

The rest of this paper is organized as follows. In Second 2
we present the model and theoretically analyze its impor-
tant properties. In Section 3 we empirically evaluate the
model and show that it produces graphs very close to real-

1Numerical simulations show that clustering coefficient of a
BA network with n vertices is n−0.75.

Table 1: Symbols and their definitions.
Symbol Definition
γ The power-law exponent of the degree distri-

bution in a scale-free network
η A parameter of the proposed model (η > 0)
G A network produced by the η model
VG The set of vertices of G
VG(t) The set of vertices of G at time t
G0 The initial graph
dv The degree of a vertex v
dv(t) The degree of a vertex v at time t
tv The time of adding v to the network
Nv The set of neighbors of v
Nv(t) The set of neighbors of v at time t
n The number of vertices of the network
e The number of edges of the network
e(t) The number of edges of the network at time t
m The number of edges drawn between a new

vertex and the existing vertices of the network
〈CC〉 The clustering coefficient
α 2η+m

2(η+m)

K 2η
2η+m

world networks. An overview of related work is given in
Section 4, and finally the paper is concluded in Section 5.

2 The η model

In this section, we first present the η model and then we
theoretically analyze its important properties like power-
law degree distribution, high clustering coefficient and the
small-world property. Before that, in Table 1 we summa-
rize symbols and notations that we will use in the paper.

Algorithm 1 describes the high level pseudo code of the η
model proposed for modeling transitivity in complex net-
works. First a small graph G0 is produced. We refer
to it as the initial graph. Then, at every time interval
t ∈ {1, . . . ,T}, the following steps are performed:
I. growth. A new vertex v is added to the network G. We
denote by tv the time of adding v to G.
II. preferential attachment. The vertex v is connected to
m existing vertices. Existing vertices are chosen based on
their degree. While every model which produces scale-free
networks can be used, for the sake of simplicity, we here
use the basic BA model. Therefore, for m times, a vertex
w with probability

dw(t)

2e(t)
(1)

is chosen and connected to v. We denote by dw(t) the de-
gree of w at time interval t and by e(t) the number of edges
of the graph at time interval t.
III. transitivity. At this step each vertex w of the graph is



selected with probability

ηdw(t)

2e(t)
(2)

where η is a non-negative real number. Then, if w is se-
lected, among the neighbors of w, two vertices are chosen
uniformly at random and are connected to each other.

Algorithm 1 High level pseudo code of the η model.
GRAPHGENERATOR

Require: A non-negative real number η, a non-negative
integer T, a non-negative integer m.

Ensure: A graph G generated by the η model.
1: initialize G by a small graph
2: for t = 1 to T do
3: {growth:}
4: add a new vertex v to G
5: {preferential attachment:}
6: connect v to m existing vertices {every existing ver-

tex is selected proportional to its degree}
7: {transitivity:}
8: for every vertex w ∈ VG do
9: select w with probability ηdw(t)

2e(t)

10: if w is selected then
11: select two neighbors x and y of w uniformly at

random
12: draw an edge between x and y
13: end if
14: end for
15: end for
16: return G

The authors of [18] investigated different cases of produc-
ing triangles in complex networks. In their scenario, a
source vertex u decides to connect to some vertex w whose
distance with u is two. u first selects a neighbor v and then
v selects a neighbor w 6= u. u and v might use different
policies to select v and w, e.g. uniform selection or select-
ing based on degree. Here we first select v proportional to
its degree and then, u and w are selected uniformly at ran-
dom. The main contribution of this work compared to [18]
is that we precisely formulate the procedure, which gives us
a possibility to analytically study the model. Particularly,
we provide a lower bound on the clustering coefficient in-
dependent of the network size.

2.1 Expected number of edges

In this section, we calculate the expected number of edges
of the network at every time interval t.

The number of edges at time interval t, i.e. e(t), satisfies

the following dynamical equation:

∂e(t)

∂t
= m︸︷︷︸

preferential attachment

+
∑

w∈VG(t)

ηdw(t)

2e(t)︸ ︷︷ ︸
transitivity

= m+ η

where VG(t) denotes vertices of G at time interval t. After
solving this equation, we obtain

e(t) = (m+ η)t+ e(G0) (3)

where e(G0) denotes the number of edges in the initial
graph. For large enough t, we sometimes discard e(G0)
and consider e(t) as (m+ η)t.

2.2 Power-law degree distribution

In this section, we show that in a graph produced by the η
model, vertices (except those added at the very early time
intervals) have a power-law degree distribution.

At every time interval t ∈ {1, . . . ,T}, every vertex v in the
network satisfies the following dynamical equation:

∂dv(t)

∂t

(a)
≈

∑
u∈Nv(t)

(
ηdu(t)

2e(t)
× 2

du(t)

)
︸ ︷︷ ︸

transitivity

+
mdv(t)

2e(t)︸ ︷︷ ︸
preferential attachment

=
∑

u∈Nv(t)

(
η

e(t)

)
+
mdv(t)

2e(t)

=
ηdv(t)

e(t)
+
mdv(t)

2e(t)
(4)

where Nv(t) refers to neighbors of vertex v at time interval
t.

The approximation (a) is employed to make the computa-
tion of the dynamical equation ∂dv(t)

∂t feasible, since, oth-
erwise it would require taking the expectation of a func-
tion with a random variable at the denominator (i.e. the
number of edges), which is computationally intractable.
In principle, one could use the polynomial normal forms
of such functions to eliminate the denominator. How-
ever, this transformation yields an exponential order in the
number of conjunctions. Therefore, in mean-field theory,
it is proposed to approximate the expectation via replac-
ing the random denominator by its expectation, i.e. by
E[f/g] ≈ f/E[g], where f is nonrandom [12, 13]. This
approximation is exact in the thermodynamic limit, i.e. for
large enough t, for example when t > 20. One can ob-
tain higher order improvements of the approximation e.g.
by a Taylor expansion around the expectation. The quality
of such an approximation has been investigated in the con-
text of mean-field theory by Markov Chain Monte Carlo
(MCMC) simulations. Based on extensive experimental
evidences, for example in [13, 23], the first-order approxi-
mation competes with more refined techniques such as the



TAP method [9]. Moreover, for large enough t, as men-
tioned earlier, the approximation becomes almost exact and
the higher order approximation terms diminish. 2

By replacing e(t) with the value obtained in Equation 3, for
large enough t, Equation 4 amounts to

∂dv(t)

∂t
=

2η +m

2(η +m)
× dv(t)

t
=
αdv(t)

t
(5)

where α = 2η+m
2(η+m) .

To solve Equation 5, we need to find the initial degree of
vertex v, i.e. the number of edges v finds when it is added to
the network at tv . At time interval tv , v finds m edges due
to preferential attachment, and it expects to find ηm

e(tv)
edges

due to transitivity. Therefore, its expected initial degree
will be m+ ηm

(m+η)tv
.

Then, using the continuum theory [2], we obtain

dv(t) =

(
m+

ηm

(m+ η)tv

)(
t

tv

)α
(6)

particularly

dv(T) =

(
m+

ηm

(m+ η)tv

)(
T

tv

)α
(7)

If v is added to the network at a large enough time interval
(i.e., tv is larger than a lower bound L), Equations 6 and 7
can be written as

dv(t) = m

(
t

tv

)α
(8)

and

dv(T) = m

(
T

tv

)α
(9)

The probability that at time interval T a vertex v has a de-
gree dv(T) smaller than k is

Pr[dv(T) < k] = Pr[m

(
T

tv

)α
< k] = Pr[tv >

T×m 1
α

k
1
α

]

(10)

and

Pr[dv(T) < k] = 1− Pr[tv ≤
T×m 1

α

k
1
α

] (11)

We suppose that the vertices are added to the network at
equal time intervals Pr[tv] =

1
T . Putting it into Equation

11, we get

Pr[dv(T) < k] = 1− T×m 1
α

T× k 1
α

= 1−
(m
k

) 1
α

(12)

2In our MCMC simulations with 1, 000 runs, the approxima-
tion is unbiased, i.e. the difference between the mean of the em-
pirical distribution and the approximated quantity is only 0.061
times the standard deviation.

Then, the degree distribution Pr[k] can be computed as

Pr[k] =
∂ Pr[dv(T) < k]

∂k
=
m

1
α

α
× k−(1+ 1

α ) (13)

which means Pr[k] ∼ k−(1+
1
α ). Therefore, we have a

power law degree distribution Pr[k] ∼ k−γ , where

γ = 1 +
1

α
=

4η + 3m

2η +m
= 2 +

m

2η +m
(14)

2.3 The small world property

Reuven Cohen and Shlomo Havlin [8] showed that scale-
free networks have a small diameter. In particular, they
proved that the scale-free networks with 2 < γ < 3 have a
very small diameter which is proportional to lnlnn. They
also showed that for γ = 3 the diameter is proportional to
lnn

lnlnn , and for γ > 3 it is proportional to lnn. In all cases
the scale-free network satisfies the small-world property.
We note that here the diameter is the mean distance be-
tween vertices. As Equation 14 indicates, for the η model
we have: 2 ≤ γ ≤ 3. Particularly, for non-zero values
of η and m, we have 2 < γ < 3. This means that the
η model satisfies the required conditions, i.e. it produces
graphs with the small-world property where the diameter is
proportional to lnn.

2.4 Clustering coefficient

In this section, we provide a lower bound on the clustering
coefficient of the networks produced by the η model, which
is independent of the network size and depends only on the
η and m parameters.

Watts and Strogatz [28] defined the clustering coefficient
of a network as3

〈CC〉 = 1

n

∑
v∈VG

〈CCv〉 (15)

where n is the number of vertices of the network and

〈CCv〉 =
Cv(
dv
2

) (16)

where Cv is the number of edges among the neighbors of
v. 〈CCv〉 is called the local clustering coefficient of v.

For a network produced by the η model, Cv can be written
as

Cv =

T∑
t=tv

(〈Cv〉T (t) + 〈Cv〉P (t)) (17)

where
3An alternative definition of the clustering coefficient which

is also widely used, was introduced by Barrat and Weigt [4]:
3×number of triangles in the network
number of connected triples of vertices .



• 〈Cv〉P (t) is the number of edges between neighbors
of v which are added to G during the preferential at-
tachment step at time interval t, and

• 〈Cv〉T is the number of edges between neighbors of
v which are added to G during the transitivity step at
time interval t.

Then, for a vertex v, at every time interval t ≥ tv , we define
τv(t) as

τv(t) =

t∑
t′=tv

〈Cv〉T (t′) (18)

We have

Cv ≥ τv(T) (19)

Therefore

〈CCv〉 ≥
τv(T)(
dv(T)

2

) (20)

Suppose that v is added to the network at a time interval
greater than a lower bound L (i.e. tv ≥ L) such that we
can use Equation 8 to describe its degree. In the following,
we compute τv(T).

For t ≥ tv , τv satisfies the dynamical equation

∂τv(t)

∂t
=
ηdv(t)

2e(t)
=

ηmtα−1

2(η +m)tv
α (21)

Then, at time interval T, we will have:

τv(T)− τv(tv) =
∫ T

tv

ηm

2(m+ η)tv
α × t

α−1∂t (22)

To solve this dynamical equation, we need to find τv(tv).
Since at time interval tv vertex v finds m+ ηm

(m+η)tv
edges,

τv(tv) will be:

τv(tv) =
η ×

(
m+ η+m

(m+η)tv

)
2(m+ η)tv

≥ ηm

2(m+ η)tv
(23)

Therefore after solving the integral of Equation 22, we will
have

τv(T) ≥ mK ×
(

Tα

2tv
α −

1

2

)
+

ηm

2(m+ η)tv
(24)

≥ mKTα

2tv
α − mK

2
(25)

where K = η
α×(m+η) =

2η
2η+m .

Now, we use Equation 20 to find a lower bound for 〈CCv〉:

〈CCv〉 ≥
τv(T)(
dv(T)

2

) ≥ 2τv(T)

dv(T)2
≥ Ktv

α

mTα
− Ktv

2α

mT2α
(26)

Let v be a vertex such that L ≤ tv ≤ T. Up to now, we
have computed a lower bound for 〈CCv〉. Now, we want
to compute a lower bound for the clustering coefficient of
the network induced by the vertices added to the network
at time intervals tL, tL+1, . . . , tT. We refer to this quantity
as 〈CC〉 since it is almost the clustering coefficient of the
whole network (compared to T, L is very small and only
for few vertices we cannot use Equation 8 to express the
degree).

Using Equations 15 and 26, we obtain

〈CC〉 ≥ 1

T− L+ 1

T∑
tv=L

(
Ktv

α

mTα
− Ktv

2α

mT2α

)
(27)

A simple form of the Riemann sum [26] says

b∑
x=a

xr ≥
∫ b

a−1
xr∂x

where r, a, b > 0.

This inequality and Equation 27 yield

〈CC〉 ≥ 1

T− L+ 1

∫ T

L−1

(
Ktv

α

mTα
− Ktv

2α

mT2α

)
∂tv (28)

After solving the integral, we obtain

〈CC〉 ≥ K

m(α+ 1)
− K

m(2α+ 1)
(29)

=
2η(η +m)

m(4η + 3m)(3η + 2m)
(30)

Therefore, a lower bound is provided for the clustering co-
efficient of a η network, which is independent of the net-
work size and depends on the η and m parameters. We
refer to Equation 30 as B.

3 Simulating real-world networks

In this section, we consider several real-world networks,
with different specifications and from different domains in-
cluding biology, technology, social and information net-
works, and aim to simulate them using the η model. Table 2
summarizes the characteristics of different real-world net-
works and the networks simulating them. Note that we only
describe one way of simulating the real-world networks by
the η model which is not unique and the only existing way.
In all simulated networks, the initial graph simply consists
of two vertices connected by an edge.



Table 2: Real-world networks and the equivalent networks produced by the η model. C and Cη are clustering coefficient
of the real-world networks and clustering coefficient of the networks produced by the η model, respectively. CBA is the
clustering coefficient of the simulated network if transitivity is not used.

Real-world networks Simulated networks
Network # vertices # edges C m η # edges Cη CBA
electronic circuits 24, 097 53, 248 0.03 2 0.23 53, 121 0.034 0.009
email address books 16, 881 57, 029 0.13 3 0.5 58, 041 0.11 0.0047
marine food web 135 598 0.23 4 0.54 599 0.24 0.148
neural network 307 2, 359 0.28 5 2.8 2, 341 0.29 0.098
Roget’s thesaurus 1, 022 5, 103 0.15 4 1.4 5, 389 0.14 0.038

The first real-world network studied here is the electronic
circuits network. In this network vertices are electronic
components e.g., logic gates in digital circuits and resis-
tors, capacitors and diodes in analogic circuits, and edges
are the wires [5]. It has 24, 097 vertices and 53, 248 edges
and its clustering coefficient is 0.030. In order to simulate
this network, we produce an η graph with these parameters:
m = 2 and η = 0.23 and it has the same number of vertices
as the electronic circuits network. The graph produced by
the η model has 53, 121 edges, its clustering coefficient is
0.034 and its degree distribution is depicted in Figure 1(a).

The second real-world network is the network of email ad-
dress books [21]. In this network, vertices represent com-
puter users and an edge is drawn from user A to user B if
B’s email address appears in A’s address book. This net-
work has 16, 881 vertices and 57, 029 edges and its cluster-
ing coefficient is 0.13. We simulate this network by the η
model using the following parameters: m = 3 and η = 0.5
and the number of vertices in the produced graph is 16, 881.
The clustering coefficient of the simulated network is 0.11.
However, if we remove transitivity from the network (and
produce a BA network), its clustering coefficient will be
only 0.0047. Figure 1(b) presents degree distribution of
the simulated network.

The next two real-world networks are biological networks.
In the marine food web network, vertices represent species
in an ecosystem and an edge from vertex A to vertex B
indicates that A preys on B [14] and [7]. This network has
135 vertices and 598 edges and its clustering coefficient is
0.23. The following parameters are used by the η model to
simulate this network: m = 4, η = 0.54, and number of
vertices is 135. The produced graph has 599 edges and its
clustering coefficient is 0.24. Figure 1(c) presents degree
distribution of the networks simulated by the η model.

The other important class of biological networks are neu-
ral networks. The neural network of the nematode C. El-
egans reconstructed by White et al. [29] has 307 vertices
and 2, 359 edges and its clustering coefficient is 0.28. We
simulate it by a η network with m = 5 and η = 2.8. The
clustering coefficient of the produced graph is 0.29. Degree
distribution of the simulated network is shown in Figure

1(d).

The last real-world network investigated in this paper is the
Roget’s thesaurus network [17]. Each vertex of the graph
corresponds to one of the 1, 022 categories in the 1, 879
edition of Peter Mark Roget’s Thesaurus of English Words
and Phrases. An edge is drawn between two categories if
Roget gave a reference to the latter among the words and
phrases of the former, or if the two categories were related
to each other by their positions in Roget’s book. This net-
work has 5, 103 edges and its clustering coefficient is 0.15.
We simulate it by a η network with m = 4 and η = 1.4.
The produced graph has 5, 389 edges and its clustering co-
efficient is 0.14. Figure 1(e) presents degree distribution of
the simulated network.

Note that when the graph is dense, since m is large, the
preferential attachment step has a significant effect on the
clustering coefficient. However, the boundB does not con-
sider the clustering coefficient resulted by preferential at-
tachment and as a result, for dense graphs (e.g., the neu-
ral network graph) it is not tight. In summary, the bound
B is always tight for the clustering coefficient resulted by
transitivity, and it is tight for the clustering coefficient of a
network that is not very dense.

3.1 Empirical evaluation of the η model

In this section, we empirically evaluate the different prop-
erties of the η model. In order to investigate the impact
of η, we fix m to 2 and n to 10, 000, and produce networks
with different η: 0.4, 0.8, 1.2, 1.6, 2. Figure 2 illustrates the
degree distributions of the produced networks. If η is set to
0, a BA network is obtained. As we see in the figure, the
degree distributions follow a power-law. Furthermore, by
increasing η, the exponent γ slowly increases which is con-
sistent with Equation 14. Figure 3(a) compares the cluster-
ing coefficient of the networks and the boundB obtained in
Equation 30. In the produced networks,m is 2, n is 10, 000
and η varies between 0.4 and 2. It shows that by increas-
ing the clustering coefficient, B increases as well. Table 3
summarizes the characteristics of the simulated networks.
In the produced networks, by increasing η, the clustering
coefficient, average degree increase and the diameter de-



(a) Electronic circuits (b) Email address books (c) marine food web

(d) nematode C. Elegans. (e) Roget’s thesaurus

Figure 1: Degree distributions of the η networks produced for the different real-world networks.

Table 3: Diameter, clustering coefficient, and average de-
gree of networks produced by the η model for different val-
ues of η. n is set to 10, 000 and m is set to 2.
η diameter clustering coefficient Avg. degree
0 5.28 0.0045 4
0.4 4.91 0.108 4.701
0.8 4.72 0.171 5.432
1.2 4.21 0.204 6.149
1.6 3.67 0.244 6.900
2 3.25 0.27 7.679

creases.

As depicted in Equations 6, 14 and 30, another parameter
affecting the η networks is m. In order to evaluate the in-
fluence of m, we fix η to 1 and n to 10, 000, and produce
networks with different values for m: 2, 3, 4 and 5. Fig-
ure 3 shows degree distributions of the produced networks.
As depicted in the figure, the degree distributions follow
a power-law. Similar to η, increasing m slightly increases
the exponent γ, which is consistent with Equation 14. Fig-
ure 3(b) compares the clustering coefficient of the networks
and the bound B obtained in Equation 30. In the produced
networks, n is 10, 000 and η is 1 andm varies between 2 to
5. It shows that by decreasing B, the clustering coefficient
decreases as well and as Equation 30 says, increasing m,
reduces B. In Table 4, we describe the specifications of the
networks. By increasing m, both the clustering coefficient
and the diameter decrease but the average degree increases.

Table 4: Diameter, clustering coefficient, and average de-
gree of networks produced by the η model for different val-
ues of m. n is set to 10000 and η is set to 1.
m diameter clustering coefficient Avg. degree
2 4.34 0.19 5.826
3 3.88 0.09 7.804
4 3.32 0.0638 9.91
5 3.47 0.05 11.928

4 Related work

In [1], a power-law model P (α, β) is proposed as follows:
let y be the number of vertices with degree x. P (α, β)
assigns uniform probability to all graphs with y = eα/xβ .
The authors study the giant component and the evolution of
random graphs in this model. The authors of [27] present a
model to explain social network searchability. Their model
defines a class of searchable networks and a method for
searching them.

Chung and Lu [6] consider a family of random graphs with
a given expected degree sequence. In this model each edge
is selected independently with probability proportional to
the product of the expected degrees of its endpoints. Eu-
bank et al. [11] show that many basic characteristics of the
social network of the city of Portland, Oregon, USA, are
well-modeled by the random graph model of Chung and
Lu. They also present approximation algorithms for com-
puting basic structural properties such as clustering coeffi-
cients and shortest paths distribution.



(a) BA network with m = 2 (b) An η network with m = 2 and η = 0.4 (c) η model, m = 2, η = 0.8

(d) An η network with m = 2 and η = 1.2 (e) η model, m = 2, η = 1.6 (f) η model, m = 2, η = 2

Figure 2: Comparison of degree distributions of a BA network and five η networks having different values of η.

In [20], the authors formulate models of the time evolu-
tion of the networks that obtain and lose vertices over time.
They show that the model generates networks with power-
law degree distributions. In their models new vertices ob-
tain edges by preferential attachment, but the number of
added vertices is equal to the number of deleted vertices. In
[32] and [33], the authors study and analyze different prop-
erties such as degree distribution, clustering coefficient, av-
erage path length and phase transition of an evolving email
network model.

Takemoto and Oosawa [25] propose a model for evolving
networks by merging complete graphs (cliques) as building
blocks. The model shows power-law degree distribution,
power-law clustering spectra and high average clustering
coefficients independent of the size of network. However,
most real-world networks are formed in a different way:
they grow over time by obtaining new vertices, rather than
by merging cliques.

Serrano, Krioukov and Boguna [24] show that a class of
hidden variable models with underlying metric spaces are
able to reproduce specific properties (such as topology)
in real-world networks. Li and Maini [19] propose an
evolving network model that produces community struc-
tures. The model is based on two mechanisms: the inner-
community preferential attachment and inter-community
preferential attachment. However, while their theoretical
and numerical simulations show that this network model
has community structure, they do not provide a theoretical
analysis for the clustering coefficient of the model. Further-

more, their numerical simulations show that the clustering
coefficient of their model is still significantly lower than the
clustering coefficient of real-world networks.

Yang and Leskovec [30] model the global influence of a
vertex on the rate of diffusion through the network. The
same authors in [31] investigate several large scale social,
collaboration and information networks and find out that
the community overlaps are more densely connected than
the non-overlapping parts. Kin and Leskovec [16] propose
the Multiplicative Attribute Graphs (MAG) model that em-
ploys interactions between the vertex attributes and the net-
work structure. In this model, the probability of having an
edge between two vertices is proportional to the attribute
link formation affinities. The same authors in [15] present
a parameter estimation method for the MAG model which
is based on variational expectation maximization.

5 Conclusions

In this paper, we proposed a new model, called the η model,
for describing transitivity relations in complex networks.
We theoretically analyzed the model and calculated a lower
bound on the clustering coefficient of the model which is
independent of the network size and depends only on the
model’s parameters (η and m). We proved that the model
satisfies important properties such as power-law degree dis-
tribution and the small-world property. We also evaluated
the model empirically and showed that it can precisely sim-
ulate real-world networks from different domains with dif-



(a) m = 2, η = 1 (b) m = 3, η = 1

(c) m = 4, η = 1 (d) m = 5, η = 1

Figure 4: Comparison of degree distributions of four η networks having different values of m.

ferent specifications.
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