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Abstract

An iterative procedure introduced in MacKay’s
evidence framework is often used for estimating
the hyper-parameter in empirical Bayes. Despite
its effectiveness, the procedure has stayed pri-
marily as a heuristic to date. This paper formally
investigates the mathematical nature of this pro-
cedure and justifies it as a well-principled algo-
rithm framework. This framework, which we call
the MacKay algorithm, is shown to be closely re-
lated to the EM algorithm under certain Gaussian
assumption.

1 INTRODUCTION

As a bridge between full Bayesian models and com-
pletely frequentist models, the empirical Bayesian
method (also known as empirical Bayes in short,
or type-II maximum likelihood) has been applied to
many learning, inference or prediction applications
(see. e.g. [Schäfer and Strimmer, 2005, Efron, 2012,
Heskes, 2000, Yang et al., 2004, Frost and Savarino, 1986,
DuMouchel and Pregibon, 2001]). The generic setup
of empirical Bayes consists the observed data D, the
model parameter z that parametrizes the data likelihood
function p(D|z), and the prior distribution p(z) of the
model parameter. In the parametric version of empirical
Bayes (Figure 1), the prior distribution is parameterized
by certain hyper-parameter α, namely, as p(z|α), and
the philosophy of empirical Bayes is to estimate the
hyper-parameter α from the observed data D.

As empirical Bayes treats the model parameter z as
a latent random variable, the estimation of the hyper-
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Figure 1: The generic model of empirical Bayesian method

parameter α naturally fits in the framework of the EM
algorithm [Dempster et al., 1977, Carlin and Louis, 1997],
and the EM-based solutions have been developed to
solve this problem in various application domains (see,
e.g., [Inoue and Tanaka, 2001, Clyde and George, 2000]).
Among other approaches to this problem, a tech-
nique introduced by MacKay is also widely adopted in
practice[Bishop, 1999, Tipping, 2001, Tipping et al., 2003,
Wipf and Nagarajan, 2008, Tan and Févotte, 2009].

In his “evidence framework” [MacKay, 1992b,
MacKay and Neal, 1994, MacKay, 1995], MacKay
considers a hierarchical Bayesian model similar to that in
Figure 1 but with one distinction: an additional hyper-prior
p(α|H), which depends on the choice H of model, is
placed on the hyper-parameter α. In this setting, the
evidence framework addresses three levels of inference
problems: 1) given the hyper-parameter α, inferring z, 2)
given the model H, inferring α, and 3) evaluating model
H. MacKay shows [MacKay, 1995] that the three levels
of inference may be combined for prediction and for auto-
matic shrinkage of parameter spaces (namely, Automatic
Relevance Determination, or ARD) for neural network
regression models. The second-level inference in the
evidence framework is closely related to empirical Bayes.
In particular, when a flat hyper-prior p(α|H) is placed on
α, the objective of the second-level inference coincides
with the objective of empirical Bayes. For the second-level
inference, MacKay introduces a procedure that alternates
between inferring z given α (first-level inference) and
inferring α given z. This procedure, although well appre-
ciated in some classical papers (e.g., [Bishop, 1999])
and highly cited in ARD related literature (e.g.,
[Bishop, 1999, Tipping, 2001, Tan and Févotte, 2009]), is
called the MacKay algorithm in this paper.



Since its birth, the MacKay algorithm has been applied
to various empirical Bayes models and its performance
is often compared with the EM algorithm. For example,
the MacKay algorithm is applied to the Bayesian PCA
model [Bishop, 1999] and a non-negative matrix factoriza-
tion model [Tan and Févotte, 2009] for automated shrink-
age of the latent-space dimensions. In [Tipping, 2001], the
MacKay algorithm is applied to SVM regression models
for promoting sparsity, and it is shown to converge faster
than the EM algorithm.

Despite its effectiveness, the mathematical principle and
optimization objective of the MacKay algorithm are how-
ever not well characterized in the literature to date. In
MacKay’s original exposition [MacKay and Neal, 1994,
MacKay, 1995], the second-level inference task is clearly
stated, but the justification of the iterative procedure (i.e.,
the MacKay algorithm) is mainly heuristic. In addi-
tion, since the MacKay’s algorithm is often implemented
with a particular update procedure, known as the fixed-
point iteration [Solomon, 2015, Hyvärinen, 1999], or the
“MacKay update”, the boundary between the framework
of the MacKay algorithm and MacKay’s fixed-point up-
date rule is often blurred in the literature. This makes the
MacKay algorithm often understood in a narrow sense as
this specific fixed-point update rule, rather than as an algo-
rithm framework.

In this paper, under a generic formulation of the empirical
Bayes model (Figure 1), we re-formulate the MacKay algo-
rithm as a coordinate-ascent procedure for solving a well-
defined optimization problem. This optimization problem
shares some similarity with the optimization problem un-
derlying the EM algorithm: its objective function is a lower
bound of the true objective function defining the optimiza-
tion objective of empirical Bayes. Also similar to the EM
algorithm, this lower bound is not “far” from the true ob-
jective function and one of the two update steps in the
coordinate-ascent procedure guarantees to make the lower
bound meet the true objective function. This understand-
ing justifies the MacKay algorithm (whether or not imple-
mented with the MacKay update) as a well-principled al-
gorithm framework, juxtaposed on equal footing with the
EM framework.

Under a specific linear regression model, it has been ob-
served that the MacKay update and the EM algorithm are
closely reated [Murphy, 2012]. It is then curious to investi-
gate the relationship between the two algorithms in a more
general setting. To that end, we show that as long as the the
posterior distribution p(z|D,α) is a Gaussian distribution,
the objective function for the MacKay algorithm is sim-
ply a restriction of the EM objective function where two
of the three variables are restricted on a curve. Under this
Gaussian condition, we show that the MacKay optimiza-
tion problem is a relaxation of the original optimization
problem in empirical Bayes, and that the EM optimization

problem is a relaxation of the MacKay optimization prob-
lem. In addition, the three problems attain their optimum
at the same configuration of the hyper-parameter α. These
understandings then help to explain why the MacKay algo-
rithm converge faster than the EM algorithm.

The objective of this paper is to rigorously formulate the
MacKay algorithm and to investigate its connection to the
EM algorithm. We have made an effort to be pedagogical
in our presentation. In particular, we use a linear regression
model and the Bayesian PCA model as running examples
throughout the paper.

2 SETUP

The generic model for empirical Bayes is given in Figure 1,
where D is the observed data, z is the model parameter, and
α is the hyper-parameter. We note that both z and α can
be a scalar, a vector, a matrix or of an arbitrary form. The
model is specified by the likelihood function p(D|z) and
the prior distribution p(z|α). The objective of empirical
Bayes is then to estimate the hyper-parameter α from the
data D.

Let

l(α) := log p(D|α) = log

∫
p(D|z)p(z|α)dz (1)

be the log-marginal likelihood or the “log-evidence”
[MacKay, 1992b] of the hyper-parameter α . Then the es-
timation of α can be naturally formulated as solving the
following optimization problem.

Opt-I
Find α that maximizes l(α).

We now use the examples of linear regression and Bayesian
PCA[Bishop, 1999] to illustrate this. Throughout the pa-
per, we will use N (x;µ,Λ) to denote the Gaussian density
function with variable x, mean µ and covariance matrix Λ,
and we will use Id to denote the d×d identity matrix, Tr(·)
to denote the trace operator, Det(·) to denote the determi-
nant operator, ∥·∥ to denote L2 norm, and Eq [·] to denote
expectation under distribution q.

Linear Regression Example–1 Let D := {(x(i), y(i)) :
i = 1, 2, . . . , n} be the observed data, where each x(i) is
a vector in Rd, and each y(i) is a scalar in R. The depen-
dency of y(i) on x(i) is modelled as

y(i) = zTx(i) + ϵ(i).

Here ϵ(i) is a zero-mean Gaussian noise with variance σ2,
and z is the model parameter, which is modelled as a d-
dimensional spherical Gaussian variable with zero mean
and variance 1/α. For simplicity, we assume that the pa-
rameter σ2 is known and the objective of empirical Bayes



is to estimate the hyper-parameter α. Then the objective
function in Opt-I is:

l(α)=log

∫
N (z;0,

1

α
Id)

n∏
i=1

N (y(i); z
Tx(i),σ

2)dz

Bayesian PCA Example–1 Following [Bishop, 1999],
let D := {t(i) : i = 1, 2, . . . , n} be the observed data,
where each t(i) is a vector in Rm. Each observed vector
t(i) depends on a latent variable x(i) ∈ Rd via

t(i) = zx(i) + ϵ(i).

Here x(i) is a zero-mean Gaussian variable with covari-
ance Id, ϵ(i) is a spherical Gaussian noise with zero mean
and known variance σ2, and parameter z ∈ Rm×d (d <
m) is modelled as a random matrix whose kth column
zk is drawn from a spherical Gaussian distribution with
zero mean and variance 1/αk. Let α := {αk : k =
1, 2, . . . , d}. Then α is the hyper-parameter on z and Opt-I
has the following objective function:

l(α) = log

(∫ d∏
k=1

N (zk; 0,
1

αk
Im)

n∏
i=1

∫
N (x(i); 0, Id)N (t(i); zx(i),σ

2Im)dx(i)

)
dz

The optimization problem Opt-I can sometimes be solved
easily, for instance, in the above linear regression set-
ting. In practice, however, this problem is usually diffi-
cult and requires special algorithmic techniques. The above
Bayesian PCA setting is one such example.

The EM approach to Opt-I is well-known. In the remain-
der of this paper, we develop the MacKay algorithm for this
problem. To compare and relate to EM, we also present the
EM algorithm in parallel. The above linear regression and
Bayesian PCA settings will be carried along our develop-
ment as illustrative examples.

3 THE TWO ALGORITHMS

In this section, we will show that both the EM algorithm
and the MacKay algorithm can be formulated as optimizing
a lower bound of the objective function l(α) via coordinate
ascent. While this is well known for the EM algorithm, it
has been quite obscure for the MacKay algorithm.

3.1 THE EM ALGORITHM

The Expectation-Maximization (EM) algorithm
[Dempster et al., 1977] is a classical method for max-
imizing the log-likelihood function or log-posterior density

function in which certain latent variables have been
integrated over. When applied to the optimization problem
Opt-I, the EM algorithm implicitly constructs a lower
bound FEM of the objective function l(α).

FEM(q,α) := Eq

[
log

p(D|z)p(z|α)

q(z)

]
=

∫
q(z) log

p(D|z)p(z|α)

q(z)
dz

(2)

where q(·) is an arbitrary probability distribution on the
space of z. By the Jensen’s Inequality[Jensen, 1906], the
follow result is well-known in the literature of the EM al-
gorithm [Dempster et al., 1977].

Lemma 1. FEM(q,α) ≤ l(α), where the equality is
achieved if and only if q(z) is the posterior distribution
p(z|D,α).

Instead of optimizing the original objective function l(α),
we now define an alternative optimization problem.

OptEM

Find α and a distribution q that maximize FEM(q,α).

The EM algorithm is then the coordinate ascent solver for
OptEM. More precisely, the update rule at the tth iteration
of the coordinate ascent is given below.

EM Algorithm

E-Step:

q(t) := argmaxq FEM(q,α(t))
= p(z|D,α(t))

M-Step:

α(t+1) := argmaxα FEM(q(t),α)
= argmaxα Eq(t) [log p(z|α)]

We note that by Lemma 1, at the end of E-Step,

FEM(q(t),α(t)) = l(α(t)). (3)

This gives rise to the following lemma
[Dempster et al., 1977].

Lemma 2. The iteration of the EM algorithm continuously
increases the log-evidence function l(α) and therefore is
guaranteed to converge.

Linear Regression Example–2 For the linear regres-
sion model, let [x(1), x(2), . . . , x(n)] be denoted by a matrix
X ∈ Rd×n and [y(1), y(2), . . . , y(n)]

T denoted by a vector



Y ∈ Rn. The objective function (2) is

FEM(q,α) =
1

σ2

n∑
i=1

y(i)x
T
(i)Eq[z]

− 1

2σ2
Eq

[
zT

(
n∑

i=1

x(i)x
T
(i) +ασ2Id

)
z

]

− Eq [log q(z)] +
n+ d

2
log 2π +

n

2
log σ2

+
d

2
logα− 1

2σ2

n∑
i=1

y2(i)

It is easy to verify that the posterior distribution of z is also
Gaussian and the E-Step update becomes

q(t)(z) = N
(
z;µLR(α

(t)),KLR(α
(t))
)

(4)

where

µLR(α) :=
1

σ2

(
1

σ2
XXT +αId

)−1

XY, (5)

and

KLR(α) :=

(
1

σ2
XXT +αId

)−1

. (6)

For the M-Step update, noting that

FEM(q(t),α) = −α

2

∥∥∥µLR(α
(t))
∥∥∥2

− α

2
Tr
(
KLR(α

(t))
)
+

d

2
logα+ const,

it is possible to express the maximizing α for this function
directly in terms of α(t) as:

α(t+1)=
d∥∥µLR(α(t))

∥∥2+Tr
(
KLR(α(t))

) (7)

That is, the updates in E-Step and M-Step can be combined
into the single update equation (7).

Bayesian PCA Example–2 For the BPCA model, the
objective function (2) is

FEM(q,α) = −n

2
Eq

[
logDet(zzT + σ2Im)

]
− 1

2

n∑
i=1

Eq

[
tT(i)(zz

T + σ2Im)−1t(i)

]
− 1

2

d∑
k=1

αkEq

[
∥zk∥2

]
− Eq [log q(z)]

+
d∑

k=1

m

2
logαk − dn+ dm

2
log 2π.

The M-Step update is then

α
(t+1)
k =

m

Eq(t)

[
∥zk∥2

] . (8)

However, the E-Step update of q(t) can not be expressed in
explicit forms and one usually relies on various approx-
imation techniques. For example, a sampling approach
[Neal, 1993] may be used for this purpose. Later in this
paper, we will discuss the approach that approximates the
posterior as a Gaussian.

3.2 MACKAY ALGORITHM

In [MacKay, 1992a, MacKay, 1992c, MacKay, 1992b,
MacKay, 1995], MacKay presented the influential evi-
dence framework that addresses inference as three lev-
els. A heuristic iterative procedure is introduced for the
second-level inference, namely, for inferring the hyper-
parameter. Here, we re-formulate the this procedure as
a well-principled algorithm framework, and call it the
MacKay algorithm.

To begin, note that the objective function l(α) can be ex-
pressed as

l(α) = log p(D, z|α)− log p(z|D,α),

for any z (with p(z|D,α) non-zero). Define

FMacKay(z,α) :=log p(D, z|α)−max
z′

log p(z′|D,α). (9)

The following lemma is easy to verify.

Lemma 3. FMacKay(z,α) ≤ l(α), where the equality is
achieved if and only if z = argmaxz log p(D, z|α).

We now introduce another optimization problem.

OptMacKay

Find α and z that maximize FMacKay(z,α).

The MacKay algorithm is then defined as the following co-
ordinate ascent procedure for optimizing FMacKay.

MacKay Algorithm

z-Step:

z(t) := argmax
z

FMacKay(z,α
(t))

= argmax
z

log p(D, z|α(t))

α-Step:

α(t+1) := argmax
α

FMacKay(z
(t),α).

At the end of z-Step, by Lemma 3,

FMacKay(z
(t),α(t)) = l(α(t)). (10)

This property clearly parallels Equation (3) of the EM algo-
rithm. That is, although the MacKay algorithm maximizes



the lower bound FMacKay of the true objective function
l(α), the lower bound FMacKay is in fact “not far” below
l(α) and at the end of each z-Step update, the lower-bound
meets l(α). Then by the coordinate-ascent nature of the
MacKay algorithm, we have the following lemma, parallel
to Lemma 2 of the EM algorithm.

Lemma 4. The iteration of the MacKay algorithm contin-
uously increases the log-evidence function l(α) and there-
fore is guaranteed to converge.

In the MacKay algorithm, it is worth noting that the up-
date in the α-Step is usually performed with a “fixed-point
iteration” procedure [Solomon, 2015, MacKay, 1992a,
Bishop, 1999, Murphy, 2012], which we describe next for
self-containedness.

Fixed-Point Iteration Suppose that the equation

∂FMacKay(z,α)/∂α = 0

can be reduced to the form α = h(α, z). The fixed-point
iteration approach for the α-Step update in the MacKay al-
gorithm is the following update rule.

α(t+1) = h(α(t), z(t)).

Linear Regression Example–3 In the linear regression
model, the lower bound FMacKay is

FMacKay(z,α) =
1

σ2

n∑
i=1

y(i)x
T
(i)z−

1

2σ2

n∑
i=1

y2(i)

− 1

2σ2
zT

(
n∑

i=1

x(i)x
T
(i) +ασ2Id

)
z

+
n+ d

2
log 2π +

n

2
log σ2 +

d

2
logα

+
1

2
logDet (2πKLR(α))

(11)

The z-Step turns out to be

z(t) = µLR(α
(t)).

Note

∂FMacKay(z,α)

∂α
=

d

2α
− 1

2
∥z∥2 − 1

2
Tr (KLR(α)) .

When setting ∂FMacKay(z,α)
∂α = 0, we obtain

α =
d−αTr (KLR(α))

∥z∥2

This gives rise to the fixed-point iteration of the α-Step:

α(t+1) =
d−α(t)Tr

(
KLR(α

(t))
)∥∥z(t)∥∥2 .

Bayesian PCA Example–3 For the BPCA model, the
objective function FMacKay is

FMacKay(z,α) = −n

2
logDet

(
zzT + σ2Im

)
− 1

2

n∑
i=1

tT(i)(zz
T + σ2Im)−1t(i)

− 1

2

d∑
k=1

αk ∥zk∥2 −max
z′

p(z′|D,α)

+

d∑
k=1

m

2
logαk − dn+ dm

2
log 2π

The z-Step and α-Step updates then become

z(t) =argmax
z

p(z|D,α(t))

α(t+1) =argmax
α

[
−1

2

d∑
k=1

αk

∥∥∥z(t)k

∥∥∥2
−max

z′
p(z′|D,α) +

d∑
k=1

m

2
logαk

]

Since in general there does not exist closed-form solution
for the z-Step update, the two update equations can not be
further expressed. In practice, a Gaussian approximation
is applied to the posterior function p(z|D,α(t)) in order to
derive these update equations (see next section).

It is perhaps worth noting that the z-step update of the
MacKay algorithm resembles the E-step update of an ap-
proximate version of the EM algorithm, known as “Hard
EM” (or “Viterbi-EM” in the context of Hidden Markov
Models)[Allahverdyan and Galstyan, 2011]. However, the
M-step of Hard EM/Viterbi-EM is different from the α-
step of the MacKay algorithm, due to the fact the OptEM
and OptMacKay have different objective functions. It is
not clear whether there is a more direct connection between
Hard EM and the MacKay algorithm bypassing the generic
EM algorithm, although we suspect that the answer is “no”.

4 GAUSSIAN APPROXIMATION

As seen above, in both the EM algorithm and the MacKay
algorithm, it is desirable to compute the posterior distribu-
tion of model parameter, namely, p(z|D,α). In the case
of EM, this is for updating q in the E-Step and in the case
of MacKay, this is for updating z in the z-Step. For some
models, such Bayesian PCA, it is difficult to carry out ex-
plicit computation of the posterior. A commonly used tech-
nique is to approximate the posterior as a Gaussian density
function, namely,

p(z|D,α) ≈ N (z;µ,K), for some µ, K. (12)



Clearly, the mean vector µ and the covariance matrix K of
the Gaussian density depend on the hyper-parameter α and
will be denoted by µ(α) and K(α) respectively.

When p(z|D,α) is a continuous function of z, a common
technique for obtain such an approximation (12) is the fol-
lowing [MacKay, 1995].

Let ẑ maximizes p(z|D,α). By Taylor-expanding
log p(z|D,α) at z = ẑ, up to the second-order terms, it
is easy to see that

log p(z|D,α) ≈ log p (ẑ|D,α)+
1

2
(z− ẑ)

T
H(α) (z− ẑ)

where H(α) denotes the Hessian matrix of function
log p(z|D,α) at z = ẑ. This gives the customary approxi-
mation of p(z|D,α) as [MacKay, 1995]

p(z|D,α) ≈ N
(
z; ẑ,−H(α)−1

)
Then µ(α) and K(α) in the Gaussian approximation (12)
can be taken as

µ(α) = ẑ, K(α) = −H(α)−1. (13)

We note that in (12), the approximation is sometimes accu-
rate, namely, that the strict equality is satisfied. In such
cases, the Gaussian approximation as stated in (12) and
(13) in fact holds precisely.

Linear Regression Example–4 As seen in (4), (5) and
(6), the posterior distribution p(z|D,α) is indeed a Gaus-
sian density function. That is, the Gaussian approxima-
tion (12) holds with equality, where µ(α) = µLR(α) and
K(α) = KLR(α) (defined in (5) and (6) respectively).

Bayesian PCA Example–4 Let Z be the vector rep-
resentation of matrix z, namely, Z is a length-md vec-
tor obtained by stacking columns of the matrix z. That
is, Z := (zT1 , z

T
2 , . . . , z

T
d )

T . Let Ẑ denote the maximiz-
ing configuration for function p(Z|D,α), and similarly let
H(α) denote the Hessian of log p(Z|D,α) at Z = Ẑ. The
Gaussian approximation (12) then becomes

p(Z|D,α)≈N (Z;µBPCA(α),KBPCA(α)) (14)

where

µBPCA(α) := Ẑ, KBPCA(α) := −H(α)−1.

We note that in this case, (12) is only an approximation.
In addition, since Ẑ and H(α)−1 are difficult to compute
analytically, numerical solutions are usually sought.

In the remainder of this section, we assume that (12) holds
with equality and further investigate the optimization prob-
lems in the EM and MacKay algorithms.

4.1 EM

Recall that with the EM algorithm, the objective function
in the optimization problem is FEM in (2). Since the op-
timizing distribution q for any given α is the posterior
p(z|D,α), this, under the Gaussian assumption (12) of
the posterior, allows us to restrict q to the form N (z;u, S)
parametrized by mean vector u and covariance S. The the
objective function FEM(q,α) can then be re-expressed as
FEM(u, S,α). That is,

FEM(u, S,α) = EN (z;u,S)

[
log

p(D|z)p(z|α)

N (z;u, S)

]
= EN (z;u,S) [log p(D|z)p(z|α)]

+
J

2
log 2π +

1

2
logDet(S) +

J

2

(15)

where J is the length of the vector z. The following lemma
is established by noting the following two-way factoriza-
tion of p(D, z|α).

p(D, z|α) = p(D|z)p(z|α) = p(D|α)p(z|D,α) (16)

Lemma 5. When the Gaussian approximation (12) holds
with equality, the function FEM can be re-expressed as

FEM(u,S,α) = logN (u;µ(α),K(α))− 1

2
Tr(K−1(α)S)

+log p(D|α) +
J

2
log 2π +

1

2
logDet(S) +

J

2

To derive the update rule for the EM algorithm under the
Gaussian approximation (12), we prove the following re-
sults.

Lemma 6. For any given S and α,

argmax
u

FEM(u, S,α) = µ(α).

Proof: Based on Lemma 5, we express FEM(u, S,α) fur-
ther.

FEM(u,S,α) = −J

2
log 2π − 1

2
logDet(K(α))

− 1

2
(u− µ(α))

T
K−1(α)(u− µ(α))

− 1

2
Tr
(
K−1(α)S

)
+log p(D|α)

+
J

2
log 2π +

1

2
logDet(S) +

J

2
.

∂FEM

∂u
= −1

2

(
K−1(α) + (K−1(α))T

)
(u− µ(α))

By setting ∂FEM

∂u to zero, we prove the result. □
Lemma 7. For any u and α,

argmax
S

FEM(u, S,α) = K(α).



Proof: By the expression of FEM(u, S,α) in Lemma 5,

∂FEM

∂S
= −1

2

∂

∂S
Tr(K−1(α)S) +

1

2

∂

∂S
logDet(S).

By Tr(AB) =
∑

i

∑
j AijBji, we have

Tr(K−1(α)S) =
∑
i

∑
j

(K−1(α))ijSji;

∂

∂Sij
Tr(K−1(α)S) = (K−1(α))ji

∂

∂S
Tr(K−1(α)S) = (K−1(α))T .

On the other hand, since ∂Det(S)
∂Sij

= Det(S)(S−1)ji, we
have

∂

∂Sij
logDet(S) = (S−1)ji

∂

∂S
logDet(S) = (S−1)T .

Then

∂FEM

∂S
= −1

2
(K−1(α))T +

1

2
(S−1)T .

The lemma is then proved by setting this derivative to zero.

□
As a corollary of Lemma 6, Lemma 7 and (15), the update
rule of the EM algorithm can be established.

Lemma 8. When the Gaussian approximation (12) holds
with equality, the EM algorithm becomes the following
EM-Gauss Procedure.

EM-Gauss Procedure:

E-Step:

u(t) := µ(α(t))

S(t) := K(α(t))

M-Step:

α(t+1) := argmax
α

EN (z;u(t),S(t)) [log p(z|α)]

Linear Regression Example–5 In the linear regression
model, the Gaussian assumption (12) holds true. The E-
Step then reduces to (4), which can be integrated into the
M-Step. The EM update can then be expressed as a single
update equation (7), the same as that in Linear Regression
Example-2.

Bayesian PCA Example–5 Note that µBPCA(α) is a
vector of length md and KBPCA(α) is an md×md matrix.
Let µBPCA,k(α) denote the component of µBPCA(α) cor-
responding to zk component of Ẑ, and KBPCA,k(α) denote
the sub-matrix of KBPCA(α) that serves as the covariance

matrix of zk. With the Gassian approximation (14) holds
with equality, the update (8) of α becomes

α
(t+1)
k =

m∥∥µBPCA,k(α(t))
∥∥2+Tr (KBPCA,k(α(t))

) .

4.2 MACKAY

Lemma 9. When the Gaussian approximation (12) holds
with equality, the function FMacKay in (9) becomes

FMacKay(z,α) = log p(D, z|α) +
1

2
logDet(2πK(α)).

Proof: This lemma follows from maxz′ log p(z′|D,α) =
−1

2 logDet(2πK(α)). □
Lemma 10. When the Gaussian approximation (12) holds
with equality, for any α,

argmax
z

log p(D, z|α) = µ(α).

The proof of this lemma follows the same line as that of
Lemma 6. The MacKay algorithm under the Gaussian ap-
proximation (12) can then be established from Lemma 10
and Lemma 9.

Lemma 11. When the Gaussian approximation (12) holds
with equality, the MacKay algorithm becomes the following
MacKay-Gauss Procedure.

MacKay-Gauss Procedure:

z-Step:
z(t) := µ(α(t))

α-Step:

α(t+1) :=argmax
α

[
log p(z(t)|α) +

1

2
logDet(K(α))

]

Linear Regression Example–6 Since the Gaussian as-
sumption (12) holds true in linear regression, the updates
of the MacKay algorithm are those in Linear Regression
Example–3.

Bayesian PCA Example–6 Assuming that the Gassian
approximation (12) holds with equality, the z-Step and α-
Step updates become

Z(t) = µBPCA(α
(t))

α(t+1) = argmax
α

[
−1

2

d∑
k=1

αk

∥∥∥z(t)k

∥∥∥2
+
1

2
logDet (KBPCA(α))+

d∑
k=1

m

2
logαk

]



When setting ∂FMacKay(z,α)
∂αk

= 0, we can obtain

αk = h(αk, z) =
m−αkTr (KBPCA,k(α))

∥zk∥2
.

This gives rise to the fixed-point iteration of the α-Step

α
(t+1)
k =

m−α
(t)
k Tr

(
KBPCA,k(α

(t))
)∥∥∥z(t)k

∥∥∥2
4.3 THE RELATIONSHIP BETWEEN MAKCAY

AND EM

As is shown earlier, the MacKay and EM algorithms cor-
respond to solving two different optimization problems.
However, we will show next that when the Gaussian ap-
proximation (12) holds exactly, the two algorithms are
closely related.

First note that FEM is a trivariate function whereas
FMacKay is a bivariate function. The theorem below sug-
gests that if the Gaussian approximation of the posterior
distribution p(z|D,α) is exact, then by setting its covari-
ance variable S of FEM to the covariance matrix of the
posterior, the function FEM reduces FMacKay.
Theorem 1. When the Gaussian approximation (12) holds
with equality, FEM(u,K(α),α) = FMacKay(u,α), where
K(α) is defined in (13).

Proof: Suppose that the Gaussian approximation (12) holds
with equality. Invoking (16), we have

FMacKay(z,α) = log p(D, z|α) +
1

2
logDet(2πK(α))

= logN (z;µ(α),K(α)) + log p(D|α)

+
1

2
logDet(2πK(α))

But by Lemma 5, we have

FEM(z,K(α),α) = logN (z;µ(α),K(α))

− 1

2
Tr
(
K−1(α)K(α)

)
+ log p(D|α)

+
J

2
log 2π +

1

2
logDet(K(α)) +

J

2
= logN (z;µ(α),K(α)) + log p(D|α)

+
1

2
logDet(2πK(α))

=FMacKay(z,α)

This proves the theorem. □
Theorem 1 suggests that the function FMacKay is a restric-
tion of function FEM. Denote by C the set of all (S,α)
configurations with S = K(α). That is, C is the curve on
the (S,α) plane specified by S = K(α). Under this no-
tation, FMacKay is the function FEM with variables (S,α)
restricted on the curve C.

Theorem 2. When the Gaussian approximation (12) holds
with equality,

FMacKay(u,α) = max
S

FEM(u, S,α), (17)

l(α) = max
u

FMacKay(u,α). (18)

Proof: Denote S∗ := argmaxS FEM(u, S,α) = K(α).
Thus

max
S

FEM(u, S,α)=FEM(u, S∗,α)=FEM(u,K(α),α).

Then the equation (17) holds by Theorem 1, On the other
hand, by Lemma 3, FMacKay(z,α) ≤ l(α) and the equal-
ity can be achieved. We thus obtain the equation (18). □.

The following result follows immediately from Theorem 2.

Corollary 1. The optimizing configurations for Opt-I,
OptEM and OptMacKay are identical in α.

Theorem 2 and Corollary 1 essentially suggest that Opt-
MacKay is a relaxation of Opt-I, that OptEM is a relax-
ation of OptMacKay, and that such successive relaxations
do not alter the solution of the original problem Opt-I.

Lemma 12. The EM-Gauss Procedure is identical to the
3-way coordinate ascent on FEM, namely, iterating over
the following three steps.

u(t) : = argmax
u

FEM(u, S(t−1),α(t))

S(t) : = argmax
S

FEM(u(t), S,α(t))

α(t+1) : = argmax
α

FEM(u(t), S(t),α)

Proof: This follows from the fact that in the EM-Gauss Pro-
cedure, the update of u is independent of S and the update
of S is independent of u. □
Since OptEM is a relaxation of OptMacKay, it has higher
degrees of freedom during optimization. This extra degree
of freedom is fully explored in the three-way coordinate
descent of EM-Gauss, making its convergence slower than
that of MacKay-Gauss. This slower convergence of EM-
Gauss can also be understood from another perspective, in
which MacKay-Gauss and EM-Gauss are both considered
as optimizing the function FEM.

Lemma 13. The MacKay-Gauss Procedure is equivalent
to the following two-way coordinate-ascent on FEM.

u(t) : = argmax
u

FEM(u, S(t−1),α(t−1))(
S(t),α(t)

)
: = arg max

(S,α)∈C
FEM(u(t), S,α).

Following directly from the Lemma 11 and Theorem 1, this
lemma suggests that MacKay-Gauss can be viewed as op-
timizing the same objective function FEM as EM-Gauss,



but taking a particular coordinate-ascent path, namely, al-
ternating between maximization over u and maximization
over (S,α) along the curve C. This allows MacKay-Gauss
to take a “shorter-cut” than EM-Gauss.
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Figure 2: The convergence of both the EM algorithm
and the MacKay algorithm from the initial configuration
α = 1 to the final configuration α ≈ 0.1. (a) The (α, u)-
trajectories of the EM and MacKay algorithms, where an
arbitrary component (in this case, the second component
u(2)) of vector u is taken as a representative for u. (b) the
function FEM evaluated along the EM trajectory and the
function FMacKay evaluated along the MacKay trajectory,
and the log-evidence function l(α) plotted using its closed-
form expression.

4.4 Experiments

Experiments are performed to study the dynamics of the
MacKay algorithm and the EM algorithm. We generate
a simulated dataset D for a linear regression model ac-
cording to the setup in Linear Regression Example–1 with
n = 300, d = 200, σ2 = 10,α = 0.1 where each each x(i)

is drawn uniformly at random from the open interval (0, 1).
Both the EM algorithm (in Linear Regression Example-2)

and the MacKay algorithm (in Linear Regression Example-
3) are used to estimate α from D. For both algorithms, α
is initialized to 1 and σ2 is treated as known.

The optimization trajectories of the two algorithms in Fig-
ure 2 (a) show that the MacKay algorithm converges faster
towards the fixed point (top right corner) than the EM algo-
rithm. In Figure 2 (b), we see that both the MacKay algo-
rithm and the EM algorithm increase their respective objec-
tive functions along their optimization paths, but MacKay
achieves higher value of the log-evidence function l(α)
than EM at every iteration step.

5 Concluding Remarks

In his influential evidence framework, MacKay presented
practical Bayesian methods for inference at the parameter
level, at the hyper-parameter level and at the model level.
For inference at the hyper-parameter level, MacKay intro-
duced a heuristic procedure that iterates between estimat-
ing the parameter for a given hyper-parameter setting and
estimating the hyper-parameter for the previous parameter
setting. Although this procedure is widely adopted in em-
pirical Bayesian methods, its mathematical principle had
not been carefully explored prior to this work. In this pa-
per, we formulate this procedure as a well-principled algo-
rithmic framework, and call it the MacKay algorithm.

We show that the MacKay algorithm, like the EM algo-
rithm, can be understood as a coordinate-ascent solution to
optimizing a lower bound of the objective function in em-
pirical Bayes. Although this lower bound is different from
the lower bound that is optimized by the EM algorithm, we
show that as long as the posterior distribution of the param-
eter is a Gaussian density function, the two algorithms are
closely related. In particular, the EM optimization prob-
lem, the MacKay optimization problem, and the original
empirical Bayes optimization problem all have the same
solution. In addition, the MacKay problem is a relaxation
of the original problem, and the EM problem is a relaxation
of the MacKay problem. This understanding provides and
intuitive explanation as to why the MacKay algorithm con-
verges faster than the EM algorithm.

We believe that the close relationship between the MacKay
algorithm and the EM algorithm revealed in this paper
strongly depends on the Gaussian condition. Although
this paper does not show the necessity of this condition,
we believe that, in case of non-Gaussian posterior or non-
Gaussian models, this relationship will break down, and
the MacKay algorithm will diverge from the EM algorithm
towards its own optimization objective and along its own
optimization path. This makes the MacKay algorithm a
framework in its own right. We hope that this paper inspire
more applications of the MacKay algorithm to more gen-
eral models, a territory appearing completely unexplored.
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[Schäfer and Strimmer, 2005] Schäfer, J. and Strimmer,
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