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Abstract

In this paper, we explore degrees of freedom in
deep sigmoidal neural networks. We show that
the degrees of freedom in these models are re-
lated to the expected optimism, which is the ex-
pected difference between test error and train-
ing error. We provide an efficient Monte-Carlo
method to estimate the degrees of freedom for
multi-class classification methods. We show that
the degrees of freedom is less than the parame-
ter count in a simple XOR network. We extend
these results to neural nets trained on synthetic
and real data and investigate the impact of net-
work’s architecture and different regularization
choices. The degrees of freedom in deep net-
works is dramatically less than the number of pa-
rameters. In some real datasets, the number of
parameters is several orders of magnitude larger
than the degrees of freedom. Further, we observe
that for fixed number of parameters, deeper net-
works have less degrees of freedom exhibiting a
regularization-by-depth. Finally, we show that
the degrees of freedom of deep neural networks
can be used in a model selection criterion. This
criterion has comparable performance to cross-
validation with lower computational cost.

1 INTRODUCTION

Model selection is one of the key tasks in machine learn-
ing, as method’s performance on training data is an opti-
mistic estimate of its general performance. Efron [2004]
provided an estimate of optimism, difference of error on
test and training data, and related it to a measure of model’s
complexity deemed effective degrees of freedom. This re-
sult reflects Occam’s razor since models with higher de-
grees of freedom tends to have higher optimism. Degrees
of freedom, defined as parameter counts, have been fre-
quently used in model selection. However, even in linear

models, the number of parameters are not a good indicator
of model’s complexity. Straightforward examples of this
behavior are models fit using sparsity penalties. In that
context, degrees of freedom are related to the number of
non-zero parameters instead of total parameter count.

Ye [1998] introduced the concept of Generalized Degrees
of freedom (GDF) for complex modeling procedures with
Gaussian distributed outputs. GDF is defined based on the
sensitivity of the fitted values to the perturbations in ob-
served values. Efron [2004] provided a framework for es-
timating degrees of freedom for modeling procedures with
output in exponential family distribution. In order to esti-
mate degrees of freedom in deep neural networks for clas-
sification problems, where the outputs can be regarded as
a categorical distribution, we extend Efron’s results to the
context of multinomial logistic regression. Similar to Ye’s
GDF, the computation of the degrees of freedom involves
assessing network’s changes in output as a result of per-
turbation of the training data. The more sensitive the net-
work’s output to the perturbation, the more degrees of free-
dom it has.

We provide a straightforward algorithm for evaluating the
degrees of freedom for any modeling procedure with out-
puts in categorical distribution form. This algorithm re-
quires an additional run of the modeling procedure on the
perturbed data. In the worst case, this amounts to doubling
the running time of the procedure. Using this algorithm we
first analyze the complexity of XOR network. This sim-
ple example highlights the fact that the degrees of freedom
in a neural net is not simply equal to the total number of
parameters in the network.

In our experiments, we aim to answer following questions:

1. How does the network’s complexity (DoF) vary with
its architecture? Specifically, how do the degrees of
freedom grow with the depth of a neural network?

2. How does regularization affect network’s complexity?
Specifically, what is the impact of dropout, weight de-
cay, adding noise on the degrees of freedom?



We answer these questions in the context of feed-forward
sigmoidal networks employed on classification tasks on
both synthetic and real datasets.

The prior work on the model complexity is rich, and we
briefly review some key contributions. Bayesian Informa-
tion Criterion (BIC) [Schwarz et al., 1978] and Akaike In-
formation Criterions (AIC) [Akaike, 1974] are most com-
monly used techniques for model selection. Both aim to
construct an estimate of the test log-likelihood by correct-
ing the training set log likelihood with terms dependent on
the number of parameters in the model in order to pro-
duce a score that is a less biased estimate of test log-
likelihood. The weighting of the parameter count is dif-
ferent, BIC depends on the sample size, and AIC uses a
constant. BIC applied to the family of models that con-
tain the true model is consistent in the limit of the data.
AIC, with some mild constraints, guarantees the selec-
tion of model with least square error, among models that
do not include the true model. Crucial to the practical
application of these methods is the correct count of pa-
rameters. Bayesian model selection elegantly avoids the
need to specify the complexity of the network by evaluat-
ing evidence, a marginal probability of the data given the
model. This approach marginalizes over all of the parame-
ters, making models of different parameterizations compa-
rable. The size of the parameter space directly impacts the
evidence through this integration, as the prior on parame-
ters gets spread thinly across high dimensional spaces. Un-
fortunately, the cost of computing such integrals is often
prohibitive, but the models selected using these techniques
have been shown to be very competitive. [MacKay, 2003,
Neal, 1996, Guyon et al., 2004]. Kolmogorov-Chaitin com-
plexity [Kolmogorov, 1965] describes dataset complexity
in terms of a program that recapitulates the data. Genera-
tion of task-specific neural networks using algorithmically
simple programs was explored by Schmidhuber [1997].
Networks whose parameters could not be captured by a
simple program were avoided. A related method of Mini-
mal Description Length reflects the desire for compact rep-
resentation of the data. Its application [Hinton and Zemel,
1994] shows how the trade-off between the data and pa-
rameter compression can lead to an objective for training
auto-encoders. Degrees of freedom of linear models fit
with Lasso-type penalties have been analyzed, e.g. Lasso
[Zou et al., 2007], Fused Lasso [Tibshirani et al., 2005] and
Group Lasso [Vaiter et al., 2012]. The number of predictors
and the number of degrees of freedom greatly differ due
to the imposed sparsity and weight tying. Recent results
on degrees of freedom for non-continuous procedures such
as best subset regression and forward stagewise regression
[Janson et al., 2015] highlight challenges in determining
the complexity of these procedures as the estimators can
be discontinuous. Research on Stein’s Unbiased Risk Esti-
mate has yielded model selection techniques [Stein, 1981]
as well as algorithms for their estimation [Ye, 1998, Ra-

mani et al., 2008]. Generalization of SURE to exponential
families has been proposed by Eldar [2009]. However, its
focus is on estimating parameter risk instead of prediction
error. In linear models, the two neatly coincide. But this
does not carry over to logistic regression and more broadly
sigmoidal neural networks.

2 DEGREES OF FREEDOM FOR
CATEGORICAL DISTRIBUTION

In this section, we derive the definition of degrees of free-
dom for categorical distribution from the optimism accord-
ing to Efron [2004]. Then, we introduce an efficient Monte-
Carlo sampling based method [Ramani et al., 2008] to esti-
mate degrees of freedom.

2.1 DEFINITIONS

We focus on models aimed at multi-class classification
task. The data is assumed to be composed of features
X ∈ Rn×p, and output labels y range over k categories.
We will denote categorical distribution with C(·). Cate-
gorical distribution over k categories can be parameterized
using a vector of non-negative values with a sum of 1.
We treat sample label yi as realization of categorical ran-
dom variables for a specific parameter vector µi. Hence
yi ∼ C(µi), where µi = [µi1, µi2, . . . , µik] is the true
probability of sample yi being in each class. µic ∈ [0, 1]

and
∑k
c=1 µic = 1. Members of exponential family follow

form:

f(pi|µi) = r(pi) exp{θ(µi)
Tpi −A(µi)}

where pi is the vector of sufficient statistics for sample i,
θ(µi) is the vector of natural parameters, r(pi) is the base
measure, A(µi) is the log-partition function.

For categorical distribution with parameter µi, we have
pi = h(yi) = [δ(yi−1), . . . , δ(yi−k−1)]T , where δ(·) is
the Kronecker delta function, δ(a) = 1 if a = 0, δ(a) = 0
if a 6= 0. In other words, pi is a vector of the observations
of sample i being in each class. Base measure is r(pi) = 1;
natural parameters are θc(µi) = lnµic−ln(1−

∑k−1
l=1 µil),

and log partition function A(µi) = ln(1 +
∑k−1
c=1 e

θc(µi)).
Note that both µi and pi are of dimension k − 1. Let
P = [p1, . . . ,pn]T be the matrix of observations for all
sample labels y1, . . . , yn.

2.2 OPTIMISM IN MODELS WITH
CATEGORICAL DISTRIBUTION

Optimism is the difference between expected test log de-
viance error and training log deviance error for a model fit-
ting procedure. It is related to the complexity of the model
and degrees of freedom is derived from optimism. If the
optimism for a modeling procedure can be estimated, we



can use it for model selection. Efron [2004] provides the
derivations of expected optimism for the single parameter
exponential family. We follow Efron’s approach to derive
the definition of degrees of freedom for modeling proce-
dure with output in categorical distribution form.

Given sample input xi, we assume that the output label
yi ∼ C(µi). Let µ̂i = L(pi) be the estimated proba-
bility for sample i from observations pi. The log deviance
error for µ̂i and pi is:

erri = −2 log f(pi|µ̂Ti )

= −2[θ(µ̂i)
Tpi −A(µ̂i)]

Suppose we have another sample y0i drawn from the same
distribution as yi, y0i ∼ C(µi). Let qi = h(y0i ) be the
vector of its observations. The expected log deviance error
of qi using µ̂i is:

Erri = Ey0i {−2 log f(qi|µ̂i)}

= −2[θ(µ̂i)
Tµi +A(µ̂i)]

The definition of optimism is:

Oi = Erri − erri
= 2θ(µ̂i)

T (pi − µi)

Hence, optimism is the difference between log deviance er-
ror on the training set and expected log deviance error with
respect to the true distribution.

The expected optimism over yi ∼ C(µi) for the estimated
probability µ̂i and true probability µi is:

Ωi = 2Eyi{θ(µ̂i)
T (pi − µi).}

As we do not know the true probability µi, we cannot com-
pute the expected optimism. However, we can get an ap-
proximate measurement using Taylor series expansion. We
can approximate θ(µ̂i) by taking the Taylor series expan-
sion at pi = µi to obtain:

θ(µ̂i) ≈ θ(L(µi)) + D(i)(pi − µi).

D(i) is the first derivative matrix where each entry D(i)
jc =

∂θj(L(v))
∂vc

|v=µi
.

Therefore, we can approximate expected optimism as:

Ω̃i = 2Eyi{[θ(L(µi)) + D(i)(pi − µi)]
T (pi − µi)}

= 2Eyi{
k−1∑
j=1

k−1∑
l=1

(pij − µij)(pil − µil)D(i)
jl }

= 2

k−1∑
j=1

k−1∑
l=1

cov(pij , pil)
∂θj(L(v))

∂vl
|v=µi

We can estimate the expected optimism by assuming pi ∼
C(µ̂i), so:

Ω̂i = 2

k−1∑
j=1

k−1∑
l=1

cov(pij , pil)
∂θj(L(v))

∂vl
|v=µ̂i

. (1)

In categorical distribution, cov(pij , pil) = −µ̂ij µ̂il, if i 6=
j. var(pij) = µ̂ij(1− µ̂ij). Therefore, Equation (1) can be
reduced to:

Ω̂i = 2

k−1∑
j=1

∂Lj(v)

∂vj
|v=µ̂i

. (2)

The proof is given in the supplementary material.

Equation (2) for k = 2 is exactly the result for Bernoulli
distribution derived in [Efron, 2004]. Efron also showed
that Eqn (2) gives the correct degrees of freedom for maxi-
mum likelihood estimation [Efron, 1975]. In a p-parameter
curved exponential family, we have:

n∑
i=1

∂L(v)

∂vi
|v=µ̂i

= p.

Here, we define the degrees of freedom for a classification
model estimator µ̂i = Li(P) on all the data samples P to
be:

df =

n∑
i=1

k−1∑
c=1

∂Lic(P)

∂pic
. (3)

This definition tells that the degrees of freedom is the sum
of each sample’s sensitivity of its estimated probability to
the perturbations in its observation for all categories.

2.3 DEGREES OF FREEDOM FOR MODEL
SELECTION

As degrees of freedom is related to the expected optimism,
we can use degrees of freedom for model selection. Ac-
cording to Equation (2) and (3), the relationship between
expected test and training log deviance errors is:

n∑
i=1

Eyi{Erri} =

n∑
i=1

Eyi{erri}+ 2df. (4)

Euqation (4) is very similar to Akaike Information Criteri-
ons (AIC) Akaike [1974]:

AIC =

n∑
i=1

erri + 2k, (5)

where k is the number of parameters. We refer to 2df in
Equation (4) and 2k in Equation (5) as “complexity cor-
rection” for training log deviance error. In simple linear



regression models, df = k, and the complexity corrections
are the same. However, in complex models such as deep
neural networks, simply counting number of parameters
can result in overestimate of the expected test log deviance
error. Therefore, we introduce DoFAIC for model selec-
tion:

DoFAIC =

n∑
i=1

erri + 2df. (6)

DoFAIC uses degrees of freedom instead of the number
of parameters for complexity correction. We assume that
DoFAIC can produce a better criterion for model selection
than Naı̈ve AIC.

2.4 MONTE-CARLO ESTIMATE FOR DEGREES
OF FREEDOM

For most practical estimators of the model’s predictions
with respect to the data derivatives, ∂Lic(P)

∂pic
are not avail-

able in closed form. For example, fitting multinomial logis-
tic regression using stochastic gradient descent with adap-
tive learning rates requires a fairly sophisticated deriva-
tion which accounts for changes in step-sizes as a result of
data perturbation. For deep neural networks, this difficulty
grows due to the use of back-propagation. In this paper, we
used a sampling based method to efficiently estimate

Monte-Carlo estimation A theoretical result for a
stochastic estimate of the degrees of freedom of nonlinear
estimators has been proposed by Ramani et al. [2008]. We
restate the key result from that paper here.

Theorem 1. Let b be a zero mean i.i.d. random vector (that
is independent of y) with unit variance and bounded higher
moments. Then∑

i

∂f(y)

∂yi
= lim
ε→0

Eb

[
bT
(
f(y + εb)− f(y)

ε

)]
provided that f admits a well-defined second-order Taylor
expansion.

We sketch out a proof that the prediction in a neural net
via forward pass is a smooth function of the observations
of training labels. We will abbreviate “differentiable with
respect to observations” as d.w.r.t.o. Sigmoid and soft-max
are smooth functions of their inputs. The cross-entropy loss
is a multivariate function that depends on data and weights,
and all of its partial derivatives exist. For simplicity, we
assume that the network is trained using gradient descent.
Each update of the network’s parameters is a linear combi-
nation of previous weights and a gradient of the loss. As-
suming that the initial weights d.w.r.t.o. and loss is smooth
then the update yields weights that are d.w.r.t.o. Random
initialization and pre-training both yield initializations that
are independent of observations, hence the partial deriva-
tives of the initial weights with respect to observations are

Algorithm 1 Monte Carlo algorithm for computing degrees
of freedom of a multi-class classifier
Input: training data X ∈ Rn×p, y ∈ {1, 2, .., k}n

1: Compute observations matrix P = h(y)
2: Train model on X and P
3: Compute estimated probabilities for each sampleL(P)

4: Sample entries of B(t) ∈ Rp×k from zero-mean, unit
variance normal distribution

5: Train model on X and P(t) = P + εB(t)

6: Using trained model compute estimated probabilities
for each sample L(P(t));

7: Repeat 4-6 for T times;
8: Calculate df from Equation (7)

0. By induction, gradient descent, at any iteration, yields
weights that are d.w.r.t.o. Forward pass through sigmoidal
network yields estimated probabilities which are smooth
with respect to observations. Thus, the Taylor expansion
required by the above theorem exists.

Using this theorem, we can evaluate the derivative of a
function ∂f(x)

∂x by perturbing the inputs. We applied a mod-
ified version of the method [Ramani et al., 2008] for cate-
gorical distribution. We applied random perturbation to the
observations to estimate the degrees of freedom:

df =
∑n
i=1

∑k−1
c=1

∂Lic(P)
∂pic

= limε→0

{
EB

[∑
i

∑
c bic

(
Lic(P+εB)−Lic(P)

ε

)]}
,

where B is a zero-mean i.i.d. random matrix with unit vari-
ance and bounded higher order moments. Therefore, we
can approximate df with T independent samplings of B(t):

df ≈ 1

T

T∑
t=1

n∑
i=1

k−1∑
c=1

b
(t)
ic

(
Lic(P + εB(t))− Lic(P)

ε

)
,

(7)
where ε is a small value. In our experiments, we choose
ε = 10−5. To better estimate the sensitivity, we can use
the average of multiple runs as the final estimation. The
algorithm for estimating degrees of freedom is summarized
in Algorithm 1.

Note that training on original and perturbed observations
matrix can be performed in parallel. Finally, we also de-
rived analytical derivatives for stochastic gradient descent
learning which yields the same degrees of freedom as the
algorithm presented above. However, this method requires
maintenance of partial derivatives of each parameter with
respect to each sample’s observations. Such storage re-
quirements make this method impractical for real world ap-
plications.

Variance reduction For deep neural networks, training
takes a considerable amount of time. In order to estimate



degrees of freedom in a reasonable computational time,
we used a variance reduction technique – common random
numbers – during Monte-Carlo sampling. When compar-
ing the degrees of freedom on a specific data, fixed P, for
several different fitting procedures, we used the same per-
turbation matrix B for all the models. We used the same
random seed for all models throughout the training. For
example, in deep neural network training, we use the same
random seed to initialize weights and bias; during pre-
training with denoising-autoencoders, we use the same ran-
dom seed for drop-out and input corruptions. For stochas-
tic gradient descent methods, we use the same mini-batches
splittings during training. In our experiment, we found that
we can estimate degrees of freedom well enough using just
one perturbed copy of the data when using these variance
reduction techniques.

2.5 DEGREES OF FREEDOM IN MULTINOMIAL
LOGISTIC REGRESSION

In order to validate the above algorithm in a setting with
known degrees of freedom, we perform an empirical anal-
ysis of the degrees of freedom in different multinomial lo-
gistic regression models.

We generate an i.i.d. zero mean unit variance random de-
sign matrix X with n = 100 samples and p = 20 features.
We represent each sample with xi = [xi1, xi2, . . . , xip].
With k = 4 class, we generated a random weight matrix
W ∈ Rp×k, where each entry wic ∼ N (0, 1). We gener-
ate each label from yi = argmaxj µij , where µi = exiW.

We fit 5 models using multinomial logistic regression. In
ith model, we only use first 2i features in X to fit. There-
fore, ith model only contains 2(i + 1)(k − 1) parameters
and the degrees of freedom are equal to the number of pa-
rameters. We perform 5 Monte-Carlo degrees of freedom
estimates for each model.

We plot degrees of freedom in Figure 1(a). We observed
that degrees of freedom are very close to the number of
parameters we used in the model. The standard error for
Monte-Carlo estimate is small.

We also randomly generated 1000 samples for testing. Op-
timism is calculated by the difference between average test-
ing log deviance error and training log deviance error. We
plot the degrees of freedom and optimisms for all 5 mod-
els in Figure 1(b). It shows that the optimism has a linear
relationship with degrees of freedom, as expected.

2.6 DEGREES OF FREEDOM OF A XOR
NETWORK

We generated a small synthetic example using exclusive-
or (XOR) operator, where XOR(a, b) = 0 if a = b, and
XOR(a, b) = 1 if a 6= b. Given an input x1, x2 ∈ {0, 1},
the output y = XOR(x1, x2), we hope to learn a model of
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Figure 1: (a) Comparison between degrees of freedom esti-
mates in multinomial logsitic regression and the true num-
ber of parameters used in the model. (a) Comparison be-
tween degrees of freedom estimates in multinomial logsitic
regression and the optimism in log deviance error. In each
plot, blue line is the mean of the five Monte-Carlo esti-
mates. Error bar represents the standard error.

XOR operator. In general, we can build a neural network
with two hidden nodes as shown in Figure 2 and weights in
Table 1 to learn a perfect XOR classifier.

x1

x2

h1

h2

o

Figure 2: A Neural Network with 2 Hidden Nodes

Table 1: An XOR Network
x1 0 1 0 1
x2 0 0 1 1
h1 = σ(F (−0.5 + x1 − x2)) 0 1 0 0
h2 = σ(F (−0.5− x1 + x2)) 0 0 1 0
y = σ(K(−0.5 + h1 + h2)) 0 1 1 0

A network that trained properly should have weight matrix
with form in Table 1. If x contains no noise, F , a multi-
plier, can be infinitely large to achieve perfect estimation.
Therefore, we set y to be 0.9 instead of 1.

We train networks with different structures on XOR data
using back-propagation and estimate their degrees of free-
dom using Monte-Carlo method. Even though there are 9
parameters in the network, we found that the degrees of
freedom for all learned models is 4. We note that the sym-
metry in weights of the inputs to the two hidden nodes,
eliminates degrees of freedom, as does implicit tying of the
weights of inputs to the output node. To give an intuition



why this tying occurs, we note that the predominantly cor-
rectly labeled data drives the network to keep the weights
close to each other. Hence, a small perturbation in the la-
bels can affect multiple weights simultaneously, but does
not disturb their balance. This observation encourages us
to investigate deeper models.

3 DEGREES OF FREEDOM IN DEEP
NEURAL NETWORKS

In this section, we investigate degrees of freedom in deep
neural network models. From the XOR example, we know
that the degrees of freedom in a network is not equal the
number of parameters in the model. The structure of the
network and different regularization techniques will impact
degrees of freedom.

3.1 TERMINOLOGIES AND SETTINGS

In the following experiments, we explore deep networks
trained to solve larger classification problems. Each of the
networks takes real value vector xi ∈ Rp×1 as input and
outputs the probability µ̂i for this sample being in one of k
categories. We use sigmoid activation function for all the
hidden nodes and a soft-max in the last layer. The number
of hidden layers is called “depth” of the network. We only
consider networks with an equal number of units in each
hidden layer, and we call this number “width” of the net-
work. Next, we investigate degrees of freedom in networks
with different width and depth.

Stacked-Auto-Encoder (SdA) pre-training We used
SdA [Vincent et al., 2010] to pre-train the neural network
with input dataset, as unsupervised pre-training helps the
network to achieve a better generalization from the train-
ing data on supervised tasks [Erhan et al., 2010]. In de-
noising auto-encoder, corruption is used in layer-wised
pre-training. The corruption is introduced by zeroing out
input to the auto-encoder with a certain probability. The
chosen probability of corruption is called corruption rate.
Dropout [Srivastava et al., 2014] is also used during the
pre-training of SdA, where output of hidden units are ran-
domly zeroed with probability, which is called dropout
rate. We assume that increasing in corruption rate or
dropout rate will reduce degrees of freedom as they pro-
vide more regularization to the network.

Weight-decay We used a weight decay penalty on the
sum of the squares of all the weights in the network dur-
ing both pre-training and fine-tuning stage. Adding this
penalty prevents the network from over-fitting. We refer to
the multiplier associated with the sum of squares as weight
decay rate. We expect to see that the degrees of freedom
drops with increasing weight decay rate.

Implementation All our code are based on Theano
[Bastien et al., 2012, Bergstra et al., 2010] and we ran
experiments on a cluster of machines with NVIDIA Tesla
compute cards.

3.2 DATA SETS

We prepared a synthetic dataset and two real datasets
MNIST and CIFAR-10 to estimate degrees of freedom.

Synthetic We build a synthetic dataset from a randomly
generated network with 30 input nodes, 2 hidden layers
with 30 hidden nodes in each, and 4 output nodes. We gen-
erated n = 5000 random zero-mean unit variance inputs
with 30 dimensions. Each layer was fully connected to the
previous layer, and we generated weights w ∼ N (0, 5).
We used sigmoid activation function for each layer and a
soft-max on top of the network. The output sample labels
y are then sampled according to the probabilities from the
soft-max layer. To get the optimism, we also generated an-
other 5000 samples for test.

MNIST 1 [LeCun et al., 1998] is a benchmark dataset
that contains handwritten digit images. Each sample is a
28 × 28 image from 10 classes. We used 50000 samples
for training.

CIFAR-10 2 [Krizhevsky and Hinton, 2009] is a dataset
contains 32 × 32 tiny color images from 10 classes. Each
sample has 3072 features. We used 50000 samples for
training.

3.3 DEGREES OF FREEDOM AND THE
STRUCTURE OF THE NETWORK

To investigate the degrees of freedom for networks with
different structures, we estimated the degrees of freedom
for networks with width [10, 20, . . . , 100] and depth with
1,2,3 and 4, where all the hidden layers have equal widths.
We used SdA to pre-train with 0.1 dropout rate and 0.1 cor-
ruption rate. We use weight decay penalty 1e − 5 for both
pre-training and fine-tuning. The estimated degrees of free-
dom is shown in Figure 3.

From the results, we found that networks with more width
have more degrees of freedom. This is reasonable as in-
creasing width leads to more independence between pa-
rameters. However, the degrees of freedom in deep net-
works is generally much less than the number of parameters
it used. We see that the ratio of the parameters to degrees
of freedom is on the order of 102. Loosely, one degree of
freedom is acquired for 100 parameters. Among the models
with the same number of parameters, deeper networks have

1http://yann.lecun.com/expdb/mnist/
2https://www.cs.toronto.edu/˜kriz/cifar.

html

http://yann.lecun.com/expdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 3: Degrees of freedom estimates for different mod-
els trained on synthetic data. Left: degrees of freedom vs
network width. Right: degrees of freedom vs number of
parameters in the network, which is linearly related to the
network depth and quadratically related to the number of
width. The line represent the degrees of freedom estimate
from 1 Monte-Carlo run, and the color of each indicates the
depth of the models.

less degrees of freedom. This observation indicates that the
depth of the network has regularization on the complexity.

To further validate our assumption that deeper networks
have less degrees of freedom, we also estimated degrees
of freedom on MNIST and CIFAR-10 dataset. We tested
networks with width [100, 300, 500, 700], all other settings
are the same as in the above synthetic experiment. The re-
sults are shown in Figure 4.

We observe that we can make the same conclusions hold
for MNIST and CIFAR-10 as we did for synthetic data.
The only difference is increasing depth results in more de-
grees of freedom than models trained with synthetic data.
We attribute this to the differences of input data size and
complexity between the real datasets, MNIST and CIFAR-
10, and the much simpler synthetic datasets.

3.4 DEGREES OF FREEDOM AND
REGULARIZATION TECHNIQUES

When training a deep neural network, many practical meth-
ods can be used for regularization. We investigate how the
different techniques affect the degrees of freedom in the
model.

We train networks using the same settings as in Section 3.3.
In this experiment, we separately trained networks with dif-
ferent settings of penalty rates: corruption rate, dropout
rate, and weight decay rate. We changed one rate at a time
while keeping rest fixed.

tested the corruption rate, dropout rate, and weight decay
penalty by keeping all others fixed and only changing one
at a time.

For all three datasets, we trained network using corrup-
tion rate and dropout rate from [0, 0.1, 0.2, . . . , 0.9], and
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Figure 4: Degrees of freedom estimates for different mod-
els trained on MNIST and CIFAR-10. Left: degrees of
freedom vs network width. Right: degrees of freedom vs
the number of parameters in the network, which is linearly
related to the network depth and quadratically related to
the number of widths. The lines represent the degrees of
freedom estimate from single Monte-Carlo sample and the
color of each indicates the depth of that model.

weight decay rate from 10−6 to 10−3. For each setting
of regularization parameters, we trained a 3 layer net-
work [30, 30, 30] for synthetic data and [300, 300, 300] on
MNIST and CIFAR-10 data. We used one Monte Carlo
sample to estimate degrees of freedom in each model. The
result is shown in Figure 5.

We found that neither corruption rate nor dropout rate af-
fected degrees of freedom drastically for synthetic data.
This is because the input of the synthetic data is generated
randomly. Hence, pre-training cannot learn higher level
features for synthetic data. For MNIST and CIFAR-10, we
found that both corruption rate and dropout rate have an
impact on degrees of freedom . In CIFAR-10, the regular-
ization effect is much larger. These results suggest that the
regularization strength from dropout and corruption can be
data-specific.

Weight decay penalty has a very strong effect on the de-
grees of freedom for all three datasets. Further, the weight
decay exhibited a highly non-linear impact on the degrees
of freedom, in dramatic contrast to its effect in ridge regres-
sion.3

3Ridge regression degrees of freedom scale with 1
1+λ

which
is non-linear but much tamer multiplier than in neural networks
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Figure 5: Degrees of freedom estimates for models trained
on Synthetic data, MNIST and CIFAR-10 under different
regularizations. The lines represent the degrees of freedom
estimate.

3.5 MODEL SELECTION USING DEGREES OF
FREEDOM

To validate that DoFAIC is a useful criterion for model se-
lection, we compare it against model selection based on
error estimates using cross validation. For brevity, we refer
to the cross validation estimate of error as cross validation
error. We performed a 5-fold cross-validation experiment
for Synthetic, MNIST and CIFAR data on models with dif-
ferent network structures learned in Section 3.3. We calcu-
lated DoFAICs for all the models we trained using Equa-
tion (6) with the estimated degrees of freedom. We also
calculated Naı̈ve AIC using Equation (5) with the number
of parameters in the network. We compared these estimates
against cross-validation errors. The result is shown in Fig-
ure 6.

Further, we calculate the Spearman rank correlation
between cross-validation log deviance errors and Do-
FAIC/Naı̈ve AIC estimates for each dataset. The result is
shown in Table 2.

We find that DoFAIC is very consistent with cross-
validation error. Naı̈ve AIC, on the other hand, exhibits
negative correlation with cross validation error due to
highly non-linear behavior. This is because Naı̈ve AIC
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Figure 6: Comparison between DoFAIC (first row) / Naı̈ve
AIC (second row) and 5-fold cross validation. Each cir-
cle in the plot represents a model with a specific structure.
The x-axis is the mean cross-validation log deviance error
across 5 folds.

Table 2: Spearman Rank Correlation between Cross-
validation error and DoFAIC/Naı̈ve AIC

Dataset DoFAIC ρ Naı̈ve AIC ρ
Synthetic 0.9865 -0.6711
MNIST 0.9853 -0.9471
CIFAR-10 0.9941 -0.7824

overestimates the complexity of the model by using the
large number of parameters in the network. The actual
complexity in deeper and larger networks are much less
than the number of parameters.

For all three datasets, both DoFAIC and cross-validation
chose the same model. This indicates that DoFAIC can
be used for model selection. We note that k-fold cross-
validation, which needs at most k rounds of training, while
DoFAIC only requires at most 2 rounds of training. This
makes DoFAIC an efficient model selection criterion.

4 DISCUSSION

In this paper, we investigated the degrees of freedom for
classification models and presented an efficient method to
estimate their degrees of freedom. We showed that for sim-
ple classification models, degrees of freedom is equal to the
number of parameters in the model. In deep networks, the



degrees of freedom is generally much less than the num-
ber of parameters in the model, and deeper networks tend
to have less degrees of freedom. We also theoretically and
empirically showed we can use DoFAIC as an efficient cri-
terion for model selection, which has comparable perfor-
mance to cross-validation.

Future work It would be interesting to investigate de-
grees of freedom in other deep architectures, such as Con-
volution Neural Network (CNN), Recurrent Neural Net-
works (RNN), denoising auto-encoders and contractive
auto-encoders.
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