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Abstract

We consider the problem of budget (or other resource)
allocation in sequential decision problems involving a
large number of concurrently running sub-processes,
whose only interaction is through their consumption
of budget. Our first contribution is the introduction of
budgeted MDPs (BMDPs), an MDP model in which
policies/values are a function of available budget, (c.f.
constrained MDPs which are solved given a fixed bud-
get). BMDPs allow one to explicitly trade off allo-
cated budget and expected value. We show that op-
timal value functions are concave, non-decreasing in
budget, and piecewise-linear in the finite horizon case,
and can be computed by dynamic programming (and
support ready approximation). Our second contribu-
tion is a method that exploits BMDP solutions to allo-
cate budget to a large number of independent BMDPs,
coupled only by their common budget pool. The prob-
lem can be cast as a multiple-choice knapsack problem,
which admits an efficient, optimal greedy algorithm.
Empirical results in an online advertising domain con-
firm the efficacy of our methods.

1 INTRODUCTION

Markov decision processes (MDPs) [25, 7] are used widely
throughout AI; but in many domains, actions consume lim-
ited resources and policies are subject to resource con-
straints, a problem often formulated using constrained
MDPs (CMDPs) [2]. MDPs and CMDPs are even more
complex when multiple independent MDPs, drawing from
the same resources, must be controlled jointly, since the
state and action spaces are formed by the cross-product of
the individual subprocesses [23]. Online advertising is a
domain with such properties: Archak et al. [4] propose a
constrained MDP model for the optimal allocation of ad-
vertiser budget over an extended horizon that captures the
sequential effect of multiple ads on a user’s behavior.

Archak et al. [4] assume a fixed, predetermined budget for
each user, and focus on optimally advertising to a user sub-
ject to this budget constraint. This formulation, however,
does not determine a suitable budget, nor does it allow for
making budget tradeoffs across different users, user types,

or campaigns (e.g., different MDPs or different states of
the same MDP). With this as motivation, we address these
challenges by: (a) introducing budgeted MDPs (BMDPs),
which are solved as a function of the (expected) budget
available; and (b) addressing budget tradeoffs across users
using a weakly coupled MDP formulation [23] and opti-
mally solving the allocation problem with a greedy algo-
rithm that exploits local user BMDP solutions.

Our first contribution lies in the formulation and solution
of BMDPs. The usual approach to resource constraints is
CMDPs [2, 13]. While valuable models, CMDPs require
a priori specification of fixed “budget” (e.g., a daily per-
customer cap on ad spend). By contrast, BMDPs compute
optimal policies and value functions (VFs) as a function of
the budget made available. Effectively, we solve a CMDP
for all possible budget levels, allowing one to explore the
tradeoff between (optimal) expected value and allocated
budget. Treating the budget b as a parameter, we show that,
for any fixed state s of the BMDP, the optimal VF V (s, b) is
concave, non-decreasing in b; and for any finite horizon the
VF is piecewise-linear and concave (PWLC), defined by a
finite set of useful resource levels. We derive a dynamic
programming (DP) algorithm to compute this PWLC rep-
resentation that supports approximation.

Our second contribution is a method for piecing together
BMDP solutions to determine a joint policy over a set of
BMDPs (e.g., for different users), subject to a global re-
source/budget constraint. Since the MDP is weakly cou-
pled [23]—specifically, the individual customer BMDPs
evolve independently, linked only through the consumption
of shared budget—our aim is to determine an allocation of
budget to each customer, which is turn dictates the optimal
policy for that customer. We show that the budget allo-
cation problem can be formulated as a (multi-item variant
of a) multiple-choice knapsack problem (MCKP) [29], for
which a straightforward greedy method can be used to con-
struct the optimal budget allocation. We also discuss cir-
cumstances in which the dynamic, online reallocation of
budget may be valuable, an approach rendered viable by
the real-time nature of our method.



2 MDPS FOR BUDGET ALLOCATION

We describe an MDP model for engagement with users
from a large, heterogeneous population. We use online
advertising as our main motivation, though our techniques
apply to the control of any large, distributed set of fully ob-
servable MDPs where actions consume limited resources.
We abstract away a number of factors that arise in realistic
ad domains to focus on budget allocation itself (e.g., partial
observability and hidden state, control lag, incentives).

2.1 A WEAKLY COUPLED FORMULATION

We assume an advertiser has a fixed budget to spend on ad-
vertising actions for a target user population. Each action
has a cost and is targeted to a specific user (e.g., a search,
in-app or web page ad). Users respond stochastically in a
way that may depend on their features (e.g., demograph-
ics), past actions (e.g., ad exposures) and past responses
(e.g., click/purchase behavior).

Following Archak et al. [4], we model this as an MDP. We
have a finite set of users i ≤ M , who may be segmented
into types reflecting static, observable characteristics that
influence their responses. For ease of exposition, we as-
sume all users have the same type; but the extension to mul-
tiple types is straightforward. We have a finite set S of user
states j ≤ N . At any time, user i is some state s[i] ∈ S.
Let S = SM be the joint state space, with the joint state
denoted s = 〈s[1], . . . , s[M ]〉 ∈ S. A user’s state cap-
tures all relevant characteristics and history that influence
her behavior. S may be small, or quite large in some con-
texts (e.g., the most recent search keyword on which the
advertiser bid, or sufficient statistics summarizing histori-
cal interactions and user responses). A finite set A of ad-
vertising actions is available. At each stage, the advertiser
selects an action a[i] to apply to user i. Letting A = AM ,
a joint action is a = 〈a[1], . . . , a[M ]〉 ∈ A.

Stochastic user response is captured by a transition model
P : S×A→ ∆(S), where P (i, a, j) = paij is the probabil-
ity that a user in state imoves to j when subjected to action
a. Reward R(i, a) = rai reflects costs/payoffs when action
a is applied to a user in state i. We decompose reward as
rai = U(i) − C(i, a) = ui − cai : cost C reflects action
costs (e.g., cost of placing an ad, potential annoyance, etc.)
and utility function U reflects benefits/payoffs (e.g., sales
revenue, value of brand exposure, etc.).

The advertiser has a maximum (global) budget B that can
be spent over the planning horizon. This global budget
may be a hard limit in some settings; but we will require
only that policies meet this constraint in expectation. We
assume that the set of users is known, but our model eas-
ily handles new users who enter the system according to a
known distribution over initial states. Different users will
occupy many distinct states at any stage.
The optimal policy is defined w.r.t. the joint constrained

MDP, with state space S = SM , action set A = AM , and
a transition model, and cost, utility and reward functions
defined as follows:

P (s,a, t) =
∏
i≤M

P (s[i], a[i], t[i]); U(s) =
∑
i≤M

U(s[i]);

C(s,a) =
∑
i≤M

C(s[i], a[i]); R(s,a) = U(s)− C(s,a).

Joint transitions reflect the natural independence of user
transitions. Costs and utilities are additive across users.

Our aim is to find a policy that maximizes expected dis-
counted reward subject to the budget constraint: in expecta-
tion, the policy should spend no more than B. The optimal
solution to this joint CMDP can be found by linear pro-
gramming (LP) or DP. However, the exponential size of the
state and action spaces (e.g., O(NM ) states, or

(
M+N−1
N−1

)
states if we use the “user count” for each state) makes this
intractable. Fortunately, the MDP is weakly coupled [23]:
users transitions are independent, with the local MDPs only
coupled by their reliance on a single global budget. We take
advantage of this below, solving the local MDPs such that
their solutions can be effectively “pieced together” to form
an approximate solution to the joint problem.

2.2 RELATED WORK

Budget Optimization. Allocation of advertising budgets
is well-studied in marketing [19] with customer behavior
and responses often modeled as a discrete or continuous
Markov process [8, 24, 15]. Constrained budget optimiza-
tion is of course critical to maximizing ROI in keyword
auctions as well. [6, 16, 17, 12, 20].

Relatively little work has considered online budget opti-
mization based on sequential user behavior. Markov mod-
els of web browsing and user response to online ads have
been studied [10, 21]. Archak et al. [4] also assume Marko-
vian user behavior in sponsored search—this is the behav-
ioral model we adopt above. They propose a constrained
MDP model and simple greedy algorithm that determines
the optimal ad policy for a given user, assuming a fixed
budget for that user. The same authors [5] demonstrate that
user web search exhibits a “general to specific” behavior
that is approximately Markovian. Other sequential work in-
cludes: budget optimization with advertiser response learn-
ing [3]; and reinforcement learning for optimal online ad
strategies [27, 31] without budgets.

Constrained MDPs. We can extend the standard MDP
model using constrained MDPs (CMDPs) [2, 13]: ac-
tions consume one or more resources (e.g., budget, en-
ergy) and policies must use no more than some set level
of each resource in expectation. We outline a basic (one-
dimensional) CMDP model.
Assume an underlying (local, not joint) MDP with states,
actions, transitions, utilities and costs as above. Assuming
a discounted infinite-horizon problem with discount factor



0 ≤ γ < 1, our aim is to find an optimal (stationary, de-
terministic) policy that maximizes the expected sum of dis-
counted rewards. The (unique) optimal value function (VF)
V ∗ : S → R satisfies the Bellman equation for all i ∈ S:

V ∗(i) = max
a∈A

rai + γ
∑
j∈S

paijV
∗(j),

while the optimal policy π∗(i) selects the argmax of this
expression. We will often use Q-functions, Q(i, a) =
rai + γ

∑
j∈S p

a
ijV
∗(j). The optimal VF and policy can

be computed using DP algorithms (e.g., value/policy itera-
tion) or LP methods [25, 7].
CMDPs extend this model by introducing constraints on
the resources used by a policy [2]. We explicate the model
using budgets (but it applies to any resource). A budget
constraint B limits the cost of allowable policies, where
the expected discounted cost of policy π at state i is:

Cπ(i) = c
π(i)
i + γ

∑
j∈S

p
π(i)
ij Cπ(j).

An initial state (or distribution) is required for the con-
straint to be well-posed in general. The optimal solution
(policy, VF) can be computed in poly-time using an LP [2].
There is always an optimal stationary policy for a CMDP,
but unlike unconstrained MDPs, it may be stochastic.

Satisfying the budget constraint in expectation is suitable
when a policy is executed many times, perhaps under dif-
ferent conditions, and budget is fungible over these in-
stances, as in our ad domain. In other settings, the budget
constraint may be strict—our model below easily accom-
modates strict budgets as well. We also allow costs in the
budget constraint to be undiscounted (see below).

Weakly Coupled MDPs. The decomposition of MDPs
into independent or semi-independent processes can often
be used to mitigate the curse of dimensionality. Challenges
lie in discovering a suitable decomposition structure and in
determining how best to use the sub-process solutions to
construct a (generally approximate) global solution. Many
approaches have this flavor, in both standard MDPs and de-
centralized (DEC) MDPs and POMDPs [28, 1, 30, 22, 14].
The approach most related to ours is the decomposition
method for weakly-coupled MDPs of [23]. There a joint
MDP is comprised of a set of independent subprocesses,
each itself a “local” MDP. Each local MDP reflects the task
or objective of a specific agent, but the local policies require
resources, both consumable and non-consumable. Their
method: solves the local MDPs independently to produce
local VFs parameterized by the resources available; uses
the local VFs to assign resources to each local MDP; and
reassigns unconsumed resources at each stage given the ob-
served joint state. Our approach to budget decomposition
is similar, but we use of the more standard expected bud-
get constraint, and guarantee optimal composition. Our
dynamic budget reallocation scheme is based on the real-
location mechanism of [23].

3 BUDGETED MDPS

We introduce budgeted MDPs, a variant of CMDPs in
which budgets, or other resources, are (implicitly) treated
as a part of the state, so that VFs/policies can vary with
both the state and available budget. This allows budget-
value tradeoffs to made quickly and easily.

3.1 THE BUDGETED MDP MODEL

A (finite, one-dimensional) budgeted Markov decision pro-
cess (BMDP) M = 〈S,A, P, U,C,Bmax, γ〉 has the same
components as a CMDP, but without a budget constraint.
We allow an optional constant Bmax that sets a plausible
upper bound on useful or available budgets at any stage.
We write U(i) = ui for the terminal utility at i if no action
is taken (e.g., end of the planning horizon). We assume
that, for each i, there is an a s.t. cai = 0 (so a proper policy
exists even with no budget).

We seek an optimal policy which maximizes expected re-
ward over some horizon, but which consumes no more than
some budget b ≤ Bmax in expectation. Unlike CMDPs,
however, the policy should be a function of b.

3.2 DETERMINISTIC POLICIES

We begin by analyzing deterministic policies for finite-
horizon problems, which develops useful intuitions. Define
the optimal deterministic t-stage-to-go VF as follows. For
all i ∈ S, b ≤ Bmax, let V 0

D(i, b) = ui, and define:

V tD(i, b) = max
a∈A
b∈Rn

+

rai + γ
∑
j≤n

paijV
t−1
D (j, bj) (1)

subj. to cai + γ
∑
j≤n

paijbj ≤ b (2)

The optimal policy πtD(i, b) is obtained by taking the
argmax. The VF reflects that doing a at i consumes cai of
the budget b, while optimal consumption at each reachable
next state must be such that the expected budget used is no
more than the remaining b− cai . We discount the expected
spend as is standard in CMDPs, but removing γ from Eq. 2
is also possible (we use undiscounted constraints below).

It is easy to see that V tD(i, b) is monotone non-decreasing in
b. While the optimal VF involves a continuous dimension
b, it has a concise finite representation. For a fixed stage-
to-go t and state i, define budget 0 ≤ b ≤ Bmax to be
(deterministically) useful iff V tD(i, b) > V tD(i, b− ε) for all
ε > 0, and useless otherwise. We observe that:
Proposition 1. For any finite t and state i, V tD(i, ·) has a
finite number of deterministically useful budget levels.

We describe an algorithm to compute useful budgets (from
which the proof of Prop. 1 follows).1 Let bi,t0 = 0 < bi,t1 <

. . . < bi,tM be the useful budget levels for (i, t). Prop. 1

1All proofs, and more detailed exposition, are available in a
longer version of the paper, available at each author’s web page.
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Fig. 1: An example VF VD(i, b). Useful budget levels are shown
(the points (b, v)) along with: (a) the induced piecewise constant
VF VD(i, b) (dashed line); and (b) the PWLC VF (solid line) for a
randomized policy. Randomizing among b0, b1 for any expected
spend b ∈ (b0, b1) dominates deterministic spend b0; and ran-
domizing among b1 and b3 with expected spend b2 dominates de-
terministic spend b2 (dashed-dotted lines).

implies that V tD(i, ·) is piecewise constant and monotone,
with V tD(i, b) = V tD(i, bi,tk ) for all b ∈ [bi,tk , b

i,t
k+1), for each

k < M . We write [〈bi,t0 , vi,t0 〉, . . . , 〈b
i,t
M , v

i,t
M 〉] to denote this

piecewise constant function (see Fig. 1).

Let the reachable set for state-action pair i, a be Sai = {j ∈
S|paij > 0} and the maximum out-degree of an MDP be
d = maxi∈S,a∈A |Sai |. We compute the useful budgets for
each state-stage pair—hence the optimal VF and policy—
using a simple DP algorithm. Assume a piecewise con-
stant representation of V t−1D (for V 0

D this is trivial); and for
ease of exposition, assume each i has M + 1 useful levels
bi,t−10 , . . . , bi,t−1M . We compute V tD(i, b) as follows:

• Let σ : Sai → [M ] be an assignment of each reachable
state j ∈ Sai to a useful budget level bj,t−1σ(j) , σ(j) ≤ M ,
with t − 1 stages-to-go. Let Σ be the set of such map-
pings. We view bj,t−1σ (j) as the budget to be consumed
if we reach j after doing a; implicitly, σ dictates the
t − 1-stage-to-go policy by selecting a budget level at
each next state.

• Let the potentially useful budget levels for (i, t, a) be:

B̃i,ta = {cai +
∑
j∈Sa

i

paijb
j,t−1
σ(j) | σ ∈ Σ} ∩ {b ≤ Bmax}.

Each bi,tk ∈ B̃i,ta is determined by some σ. The corre-
sponding expected value is vi,tk = rai + γ

∑
j p

a
ijv

j,t−1
σ(j) .

• Assume a reindexing of the entries in B̃i,ta so that the
budget levels are ascending (ties broken arbitrarily). The
useful budget levels for (i, t, a) are:

Bi,ta = {bi,tk ∈ B̃
i,t
a : 6 ∃k′ < k s.t. vi,tk′ ≥ v

i,t
k }.

That is, any potentially useful budget that is weakly
dominated by a smaller budget is discarded. The useful
budgets and corresponding values give us Qt(i, a, b).

• Let the potentially useful budget levels for (i, t) be B̃i,t =

∪a∈ABi,ta , and let Bi,t be the useful budget levels, ob-
tained by pruning B̃i,t as above. The useful budget lev-
els and corresponding values give the VF V t(i, b).

While finite, the number of useful budget levels can grow
exponentially in the horizon:
Proposition 2. For any finite t and state i, V tD(i, ·) has at
most O((|A|d)t) useful budget levels, where d is the maxi-
mum out-degree of the underlying MDP.

This motivates approximating this set, as we discuss below
in the context of stochastic policies.

3.3 STOCHASTIC POLICIES

Stochastic policies can offer greater value than determinis-
tic policies due to their inherent flexibility, and thus have a
rather different structure. Suppose at state-stage pair (i, t)
the available budget b lies strictly between two determinis-
tically useful levels, bi,tk < b < bi,tk+1. A stochastic policy
that spends bi,tk+1 (and takes the corresponding action) with

probability p =
b−bi,t

k

b
i,t
k+1
−bi,t

k

, and bi,tk with 1 − p, provides

greater expected value for (expected) spend b than the PW
constant value offered by the optimal deterministic policy
(see Fig. 1).

The optimal VF for such “single-stage randomized” poli-
cies is given by the convex hull of the useful budgets for
(i, t) (see Fig. 1). Given useful budget set Bi,t = {0 =
bi,t0 < bi,t1 < . . . < bi,tM}, we say bi,tk is dominated
if there are two budgets bi,tk− , b

i,t
k+ (k− < k < k+) s.t.

(1 − p)vi,t
k−

+ pvi,t
k+

> vi,tk . The convex hull is piecewise
linear and concave (PWLC) and monotone, comprising the
PWL function formed by the non-dominated points.

This PWLC structure is preserved by Bellman backups, and
can be computed effectively in two stages: first, a simple
greedy algorithm assigns budget incrementally to reach-
able next states, giving a PWLC representation of the Q-
functions for each a; second, we compute the backed up VF
by taking the convex hull of the union of these Q-functions.
Computing Q-functions. Assume V t−1(j, ·) is PWLC for
all j ∈ S, with points [〈bj,t−1

0 , vj,t−1
0 〉, . . . , 〈bj,t−1

M , vj,t−1
M 〉],

where each bj,t−1k is non-dominated (for ease of exposi-
tion, assume each j has M + 1 non-dominated levels). Let
B(Sia) = ∪j∈Si

a
Bj,t−1, and re-index B(Sia) in decreasing

order of bang-per-buck ratio (BpB):

BpB(bj,t−1
k ) =

vj,t−1
k − vj,t−1

k−1

bj,t−1
k − bj,t−1

k−1

=
∆vj,t−1

k

∆bj,t−1
k

.

(For k = 0, we leave BpB undefined, since bj,t−10 = 0 for
all j.) This BpB expresses the (per-unit budget) increase in
value when increasing budget at (j, t − 1) from bj,t−1k−1 to
bj,t−1k . Let j(m), k(m),∆b(m),∆v(m) denote, resp., the
state j, the useful budget index for j, the budget increment,
and the value increment associated with themth element of
(sorted) B(Sia). Let M∗i = |Sia|M .

We define Q-functions as follows:
Definition 1. Let V t−1 be a VF such that, for all j ∈ S,
V t−1(j, b) is bounded, monotone and PWLC in b with a



finite number of budget points. Define:

• the 0th useful budget for a at i to be bi,ta,0 = cai , which
gives value vi,ta,0 = rai + γ

∑
j∈Sa

i
paijv

j,t−1
0 ;

• the mth useful budget, for 0 < m ≤ M∗i , to be
bi,ta,m =

∑
`≤m p

a
i,j(`)∆b(`) which gives value vi,ta,m =

rai + γ
∑
`≤m p

a
i,j(`)∆v(`).

For any 0 < m ≤ M∗i , and b s.t. bi,ta,m−1 < b < bi,ta,m, let

pi,t,ab =
b−bi,ta,m−1

bi,ta,m−bi,ta,m−1

. Define the Q-function for action a at

stage t as follows:

Q
t
(i, a, b)=


undefined if b < bi,ta,0

vi,ta,m if b = bi,ta,m

pi,t,ab vi,ta,m+(1−pi,t,ab )vi,ta,m−1 if bi,ta,m−1<b<b
i,t
a,m

vi,t
a,M∗

i
if b > bi,t

a,M∗
i

.

This Q-function is optimal:
Theorem 3. Qt(i, a, b) in Defn. 1 is the maximum expected
value achievable when taking action a at state iwith budget
b with future value given by V t−1.

Q-functions can thus be computed with a simple greedy
algorithm that allocates budget to “next states” in BpB-
order (i.e., using a simple sorted merge of the linear seg-
ments of all reachable-state VFs, with each segment scaled
by its transition probability; see Fig. 2 for an illustration).
The intuitions are straightforward: once taking a at i, cost
cai is incurred, and the remaining budget b′ = b − cai
must be “allocated” to states in Sai . The first units of b′

are most effectively used by state j(1)—i.e., the first in
B(Sia)—since it has the greatest initial BpB. Budget up
to ∆b(1) = b

j(1),t−1
k(1) to j(1) gives an expected (future)

value improvement of ∆v(1) = ∆v
j(1),t−1
k(1) with proba-

bility pai,j(1), and has an expected spend of pai,j(1)∆b(1).
This is the greatest expected (future) value attainable at
i for any b′ ≤ paijb

j(1),t−1
k(1) . Similarly, the next ∆b(2)

units of b′ should be allocated to j(2), giving a return
of BpB(b

j(2),t−1
k(2) ) per unit, with expected spend and re-

turn occurring with probability pai,j(2). This continues until
all useful budgets from states in Sai have been allocated
(reaching the max useful budget for (i, t)).

Computing Value Functions. Given the PWLC represen-
tation of the Q-functions, we can construct a similar PWLC
representation of V t(i, b) = maxaQ

t(i, a, b). We simply
take the union of the points that determine each Q-function,
and remove any dominated points (analogous to the move
from deterministic to stochastic policies). More precisely,
assuming a fixed state-stage (i, t), let Qa be the set of
budget-value points in a’s Q-function, and let Q∗ = ∪aQa
be the union of of these points—we annotate each point
with the action from which it was derived, so each has the
form (b, v, a). We say (b, v, a) is dominated in Q∗ if there
are two (different) points (b1, v1, a1), (b2, v2, a2) ∈ Q∗

such that b1 ≤ b ≤ b2 and (1 − α)v1 + αv2 > v, where
α = b−b1

b2−b1 . Removing all dominated points fromQ∗ leaves
the set of points that form the useful budget levels in the
PWLC representation of V t(i, ·). In other words, we form
the convex hull of Q∗. Clearly no dominated point (b, v, a)
is useful in a stochastic policy, since a greater value can be
attained, using the same expected budget, by α-mixing be-
tween actions a1 and a2 (and the corresponding budgets).

The construction above shows:
Theorem 4. For any finite t and state i, V t(i, b) is piece-
wise linear, concave and monotone in b.

The PWLC representation of V t(i, ·) can be constructed
using any convex hull method. A basic Graham scan [18]
is appropriate here, since Q-budget points are maintained
in sorted order, and has complexity O(|Q∗| log |Q∗|).

Again, the number of useful levels grows exponentially, but
is no greater than the number of deterministically useful
levels, i.e., V t(i, ·) has size at mostO((|A|d)t). For infinite
horizon problems, we may not have finitely many useful
budgets, but the VF remains concave:
Theorem 5. For any state i, the optimal infinite-horizon
VF V (i, b) is concave and monotone in b.

Standard bounds apply when using the finite-horizon V t

to approximate the infinite-horizon VF: if Bellman error of
V t is ε, ||V ∗ − V t|| ≤ ε

1−γ .

Approximation. The complexity of VF computation de-
pends on the number of useful budget points. The VF can
be approximated by removing non-dominated points that
are “close” to lying strictly inside the convex hull. For in-
stance, in Fig. 2(c), deletion of the second and third points
results in a simpler Q-function, with a single segment from
(pb0 + p′b′0, pv0 + p′v′0) to (pb2 + p′b′1, pv2 + p′v′1) replac-
ing three true segments. It closely approximates the true
Q-function since the slopes (BpBs) of all deleted segments
are nearly identical.

Several simple pruning criteria can be added to the inser-
tion step of the Graham scan (i.e., when transforming Q-
functions to VFs). When inserting (bnew , vnew ) with BpB
βnew , we can delete the previously inserted point, (bk, vk)
with BpB βk, if βnew ≥ βk − ε, for some tolerance ε. This
introduces a max-norm error of at most ε(bk − bk−1). Re-
cursively applying this rule gives additive accumulation: s
consecutive pruning steps gives error at most sε(bk−bk−s).
Since error also depends on the length of the segments be-
ing pruned, we can use both slope pruning and length prun-
ing, or pruning dictated by their product, i.e., terminated
when this product bound reaches some threshold τ . Stan-
dard MDP approximation bounds can be derived.

Policy Execution. Given the optimal VF V ∗, we can read-
ily determine the ideal level of (expected) spend b0 given
initial state i0 (see our discussion of sweet spots below).
While one could then solve the corresponding CMDP with
budget b0, the BMDP solution, in fact, embeds an optimal
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Fig. 2: (a) VF for state j; (b) VF for j′; (c) Q-function (future component) for a reaching j with prob. p and j′ with p′ = 1− p.

Begin s1 s5s2 s3 s4

s6s9 s8 s7

s10s13 s12 s11

End

Search: s1: unint; s2: general int; s3: search1, s4: search2, s5:search3
Advertiser: s6: interest1; s7: interest2; s8: interest3, s9: conversion
Compt'r: s10: interest1; s11: interest2; s12: interest3, s13: conversion

Fig. 3: A synthetic ad MDP. “Begin” reflects the beginning of a
customer search (transitions from it encode a prior over interest
states). From an advertiser’s perspective, the MDP for a specific
customer can begin at any state of the process.

(non-stationary) CMDP solution for any budget level. The
execution of the BMDP policy π∗ is somewhat subtle, but
straightforward. The optimization in Eqns. 1 and 2 gener-
ally assigns some future states a greater budget than what
remains, b0−cai0 , and some future states less—it is only ex-
pected spend that must not exceed the remaining budget. If
state j’s “assigned budget” bj differs from b0−cai0 , whether
greater or less, then we must execute action π∗(j, bj) to en-
sure we achieve expected value V ∗(i0, b0). This requires
that we record the optimal budget mapping σ at the final
Bellman backup (assuming an infinite horizon problem) for
each useful budget point at each state. When we reach any
next state j, we “pass forward” its assigned budget bσ(j),
at which point we take action π∗(j, bσ(j)).

As in CMDPs, there can be substantial variance in ac-
tual spend when implementing the BMDP policy π∗(i, b)
(variance can be computed exactly during DP). We discuss
strategies for mitigating the impact of variance below. A
simple DP algorithm can be used to compute VFs with
strict budgets [23], but allowing some variance in spend
can improve expected value significantly.

3.4 EMPIRICAL EVALUATION

We evaluate the effectiveness of our DP method on several
BMDPs, and measure the impact of approximation.

Synthetic Ad MDP. We begin with a small synthetic MDP
that reflects the influence of ads on product search behavior.
Its small size allows detailed examination of its optimal VF
structure. The MDP (see Fig. 3) has 15 states reflecting var-
ious levels of customer interest in an advertiser’s (or com-
petitors’) product, and five actions for different levels of ad
intensity. Transitions for “nominal” (stochastic) progress
through the search funnel are shown, with others omitted

for clarity. More intense ad actions are more costly, but in-
crease the odds of progressing in the funnel, and lower the
odds of abandoning purchase intent.
We solve the BMDP (γ = 0.975, horizon 50) with four dif-
ferent degrees of approximation: exact (no pruning); mild
pruning (slope/length pruning set to 0.01); aggressive prun-
ing (both set to 0.05); and hybrid (mild pruning for 45 iter-
ations, then exact computation for five). The following ta-
ble shows the average (and min–max) number of segments
in the PWLC VF over the 15 MDP states—the number of
segments determines the complexity of the VFs—and com-
putation time for each regime. For approximation schemes,
we show the maximum absolute and relative errors (and the
optimal value at which this error occurs).

No prun. Mild Aggr. Mild+No
Segments 3066 (0–5075) 18.3 (0–47) 10.4 (0–26) 480.8 (0–877)

Max Err — 4.84 (26.61) 4.84 (26.61) 0.21 (58.77)
Max RelErr — 40.9% (4.24) 48.7% (1.54) 2.3% (0.55)

CPU (s.) 1055.4 17.54 10.36 28.67

The optimal VF has a large number of segments per state
but can be approximated quite well with very few seg-
ments. With mild/aggressive pruning, the VF is very com-
pact, but has large maximum error (4.84, which is 18%
rel. error at the point at which it occurs); the relative er-
ror is also significant, though it occurs at points with low
value (hence gives small abs. error). The hybrid scheme
works very well—by exploiting the contraction properties
of the MDP, error associated with initial pruning is almost
entirely overcome. It reduces the number of VF segments
by an order of magnitude, and computation time by nearly
two orders of magnitude, but gives very small max abso-
lute (0.21, or 0.36%) and relative error (2.3%, or 0.0013).2

Determining suitable pruning thresholds and schedules in
general is an interesting open question.

Advertiser MDP. We next study two larger MDPs de-
rived from the contact data of a large advertiser. The data
consists of sequences of cross-channel touch points with
users—each touch is labeled with a contact event (e.g., dis-
play ad, email, paid search ad, direct navigation to web site)
or type of activity on the advertiser’s web site (including
transactions or “conversions”). There are 28 event types,
and 3.6M trajectories comprising 10M events.

From this data, we learn (using MLE) several variable-
order Markov chain (VOMC) models [9, 11] that predict

2CPU time using a simple Python prototype, on a 3.5GHz
CPU with 32Gb of RAM.



transitions induced by the advertiser’s policy. Predictions
are based on a small sufficient history involving up to 10
preceding events. The histories comprising each VOMC
form the state space of a Markov chain. From these we
derive action-conditional transition models by substituting
history end points with one of a small number of “control-
lable” events and using the VOMC model for these altered
histories for transition predictions. We consider four ac-
tions (no-op, email, paid search, display ad), and two dif-
ferent models: the first is a VOMC model with a maxi-
mum state-order of 10 and an average state-order of five,
giving an MDP with 451,582 states. The second is a two-
component mixture of smaller VOMC models (maximum
order of 3); we use the first component, with 1469 states.

We solve the BMDPs for both models (horizon 50, dis-
count 0.975 as above). The table below shows pruning
level, number of segments, and computation time for the
1469-state MDP using the same strategies as above.3

No prun. Mild Aggr. Mild+No
Segments 251.5 (74–359) 234.2 (77–342) 25.6 (5–39) 76.8 (18–321)

Max Err — 5.13 (171.6) 28.9 (169.3) 3.9 (167.6)
Max RelErr — 3.0% (171.6) 12.3% (169.3) 2.4% (167.6)

CPU (s.) 19918.9 10672.5 1451.8 2390.0

The 452K-state BMDP was solved only with aggressive
pruning (slope 2.0, length 0.1), and averaged about 11.67
segments per state and 1168s. per DP iteration.

4 BUDGET ALLOCATED ACROSS MDPS

We now consider the problem facing an advertiser with
a fixed maximum budget and a specific set of target cus-
tomers, each of whom occupies the state of some underly-
ing MDP. To solve the joint MDP above, we use the weakly
coupled decomposition of [23], but merge the local solu-
tions (and analyze this merge) in a different manner.

Offline Decomposition Our approach to decomposition
is straightforward. We first solve each single-user sub-
MDP as a BMDP with a some natural per-user maximum
budgetBu. For ease of exposition, we assume just one user
type, hence only one user MDP to solve (i.e., each user has
the same dynamics). Users are distinguished only by their
MDP state. The BMDP solution gives an optimal single-
user policy π and VF V spanning all s ∈ S, b ≤ Bu, indi-
cating action choice and value as a function of the budget
available to be spent (in expectation) on that user alone.
We exploit this below. Indeed, this is why we do uses
CMDPs, which do not indicate the value of allocating vary-
ing budgets to a user.

The Budget Allocation Problem Given initial (or cur-
rent) joint state with M customers is s = 〈s[1], · · · s[M ]〉,

3The “no pruning” optimal benchmark uses slope/length prun-
ing of 0.001/0.0001 for 20 iterations and 0.01/0.001 for 30. Ag-
gressive is slope/length = 0.2/0.01; mild is 0.02/0.001.

and budget B, a natural way to exploit the BMDP so-
lution is to allocate some portion b[i] of B to each cus-
tomer i ≤M s.t. we maximize the sum of expected values
v[i] assuming optimal engagement with i with budget b[i].
Specifically, the budget allocation problem (BAP) is :

max
b[i]:i≤M

∑
i≤M

V (s[i], b[i]) subj. to
∑
i≤M

b[i] ≤ B, (3)

where V is the optimal VF for the underlying BMDP.

BAP determines an allocation b∗ = 〈b∗[1], . . . , b∗[M ]〉
that maximizes the expected value of committing a specific
(expected) budget b∗[i] to customer i. By simple linearity
of expectation, we have:
Observation 6. Let V be the optimal VF and π the opti-
mal policy for the user MDP. Let b be the optimal solu-
tion to the budget allocation problem. Then the joint (non-
stationary) policy π(s) =

∏
i π(s[i], b[i]) has expected

value
∑
i V (s[i], b[i]) and expected spend

∑
i≤M b[i] ≤ B.

We cannot guarantee this policy is truly optimal for the
joint MDP, since this decomposed policy does not admit
recourse in the execution of one user’s MDP that depends
on the realized outcome of some other user’s MDP. How-
ever, we expect it to work well in practice (see below). For
MDPs with large numbers of customers, or where the spend
variance of the local BMDP policy is low, this form of sub-
optimality will be small. However, as we discuss below,
repeated online reallocation of budget can sometimes over-
come even this potential suboptimality in practice.

BAP (Eq. 3) can be viewed as a (multi-item variant of a)
multiple-choice knapsack problem (MCKP) [29]. In the
classic MCKP, we are given M classes of items, with each
class i containing ni items. To explain, we first begin with
a restricted version of BAP, the useful-budget assignment
problem (UBAP). In UBAP, we require each user i be as-
signed a useful budget level from the discrete set Bs[i].
UBAP is exactly an MCKP: each user i is as an item class
for whom exactly one budget must be chosen from the set
of items Bs[i] in that class. The weight of item b ∈ Bs[i] is
b (i.e., the amount of the budget it consumes); and the profit
of assigning b to i is V (s[i], b). The capacity is the global
budget B, so total weight (budget assigned) cannot exceed
B. We can view this as a multi-item variant of MCKP with
multiple “copies” of the same class (namely, all users in a
state j have the same items, weights and profits).
It is useful to consider an integer programming (IP) model
of MCKP (where binary variable xik indicates that i is al-
located the kth useful budget βik = b

s[i]
k ):

max
xik

∑
i≤M

∑
k∈Bs[i]

V (s[i], βik)xik (4)

subject to
∑
i≤M

∑
k∈Bs[i]

βikxik ≤ B (5)

∑
k∈Bs[i]

xik = 1, ∀i ≤M (6)

xik ∈ {0, 1} (7)



We can collapse users in the same class using a counting
(integer) variable as well.

Consider the LP relaxation of the IP Eq. 4—its optimal so-
lution gives a (generally) fractional assignment of useful
budget to any user i in state s[i] = j. Using a minor adap-
tation of the analysis of Sinha and Zoltners [29], we can
show that the optimal allocation to any i is either integral
(i.e., assigns a useful budget level to i), or is a mixture of
two consecutive useful levels, in which case the expected
budget b∗[i] and induced expected value v∗[i] in the LP cor-
responds to a point on the convex hull of the useful points.
In other words, it lies on the PWLC VF V (i, ·):
Proposition 7. The optimal solution of the LP relaxation
of UBAP IP Eq. 4 is such that, for each i: (a) xik = 1
for one value of k; or (b) there is some k such that only
xik, xi,k+1 > 0 (i.e., only two budget levels are allocated,
and they must be consecutive).

We immediately obtain:
Corollary 8. The optimal solution to the LP relaxation of
UBAP is an optimal solution to BAP.
The structure of the LP relaxation of MCKP is very valu-
able. Sinha and Zoltners [29] show that a simple greedy
algorithm can be used to solve the relaxation. We adopt
the same method, greedy budget allocation (GBA), to solve
BAP. For each state j, and each 1 ≤ k ≤ L, define the
bang-for-buck ratio as before:

BpBjk =
V (j, βjk)− V (j, βjk−1)

βjk − βjk−1
.

GBA assigns budget incrementally to each user in the order
given by the BpB ratio. Initially each user i in state s[i] = j
is assigned a budget of βj0 = 0, and the unallocated budget
is set to B (our budget constraint). At any stage of GBA,
let b denote the unallocated budget, let βj,ki be i’s current
allocation and i’s current ratio to be BpB [i] = BpB jki+1.
Let i be any best user, with maximum ratio BpB [i]. If suffi-
cient budget remains, we increase i’s allocation from βj,ki
to βj,ki+1, then update i’s ratio and the unallocated bud-
get. We continue until the unallocated budget is less than
βj,ki+1−βj,ki ; then we allocate the remaining budget frac-
tionally to the best i (βj,ki with probability p and βj,ki+1

with 1− p, for p =
(βj,ki+1−βj,ki

)−b
(βj,ki+1−βj,ki

)
).

We can show that GBA finds the optimal solution to our
BAP (see [29]). GBA can be modified to aggregate all users
that lie in the same state, and to account for the stochastic
arrival of customers of various types, or at various states.

Dynamic Budget Reallocation The variance in the
spend of an optimal policy π(i, b) means there is some
risk over overspending the global budget. This risk is, of
course, greater with small numbers of users than with large
numbers. One way to alleviate this risk dynamic budget
reallocation (DBRA). Rather than committing to the opti-
mal policy for each user given their initial allocation, we
reallocate any remaining budget at each stage. More pre-
cisely, given the current joint state s = 〈s[1], . . . , s[M ]〉

and remaining budget B, we: (a) use GBA to determine
allocation b[i], i ≤ M given (s, B); (b) execute action
π(s[i], b[i]) for each i, incurring the cost cai ; and (c) ob-
serve the next state s′ and remaining B′ and repeat. This
approach (virtually) guarantees that the global budget B
will not be overspent (if the BMDP policy randomizes, a
small chance of a small violation may exist). It also of-
fers a form of recourse; e.g., if the budget for some user is
no longer useful (e.g., transition to an unprofitable state), it
budget can be reallocated to a more profitable user.

Empirical Evaluation We test the effectiveness of GBA
on the BMDPs described in Sec. 3.4. We study expected
spend and value of the “implied” joint policies, as well as
spend variance.

We consider several ways of implementing the joint poli-
cies induced by the GBA solution of BAP. The first is the
BMDP policy, where once GBA allocates b[i] to each user
i, we implement the corresponding BMDP policy starting
at state s[i]. This ensures that expected spend does not ex-
ceed b[i], but doesn’t guarantee budget satisfaction for any
specific user. The second is the static user budget policy
(SUB): given the GBA allocation b[i], we implement the
first action a = π(s[i], b[i]) in the BMDP policy at s[i] for
each i; but when reaching next state, we take the action as
if we only had that user’s remaining budget b[i]− cas[i], ig-
noring the next state budget mapping from the BMDP pol-
icy. SUB thus recalibrates the actual spend to minimize the
odds of overspending b[i] on a per-user basis. We also use
the reallocation scheme DBRA, which reduces the over-
spending risk collectively (not per-user).

Solving BMDPs and using GBA to allocate budget al-
lows one to assess budget tradeoffs across different users
in different states. Without a BMDP model or our budget-
dependent VF, these tradeoffs must be made heuristically.
In this case, we can use uniform budget allocation (UBA),
which apportions budget equally across all users, and then
solves the induced CMDPs (one per occupied state).
Synthetic Ad MDP. In the synthetic MDP, our initial setup
has 1000 customers starting in s0. The following table
shows the expected value obtained by 3 different policies
for 4 different global budgets:

Total Bud. BMDP Val. DBRA Val. SUB Val.
1000 8210 8579 (830.5) 4106 (707)
2000 10,905 11,019 (964) 4429 (825)
5000 15,692 15,658 (1239) 5270 (830.5)

10,000 18,110 17,942 (—) 6329 (1159)

BMDP value is the true expected value of the optimal
BMDP policy. SUB and DBRA values are averaged over
100 trials, which execute the relevant policies for all 1000
users (sample std. dev. also shown). The optimal BMDP
policy has a considerable advantage over a static policy
that forbids the per-user budget to be exceeded, yielding
2-3 times the return.4 BMDP values also show a clear pat-

4Values are discounted, net of budget spent.
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budget for Synthetic and 452K-state MDPs (1000 users). The flat
tails show that the maximal useful budget has been reached.

tern of diminishing return with increasing budget. Indeed,
our MCKP-based GBA method allows one to rapidly as-
sess the value of optimally using different global budgets
to find the “sweet spot” in spend. Fig. 4 illustrates this
sweet spot curve) for the joint MDP over 16 budget points.5

The sweet spot curve is effectively the Pareto frontier ex-
pressing the tradeoff between two competing objectives,
spend and expected return (for an in-depth survey of gen-
eral multi-objective MDPs, please see [26]).

The optimal BMDP policy has considerable spend vari-
ance. In one run of 1000 customers (initial allocation
10 each), the sample average 10.012 is close to expected
spend; but the sample std. dev. is 15.24. The empirical
odds that a user exceeds the budget of 10 is 32.7%, and
the odds of exceeding it by at least 50% is 28.7%. This
alone explains the poor performance of the SUB allocation
policy. Even with a large user base, overspending is possi-
ble: simulating the BMDP policy (1000 users) for 30 trials
users, the global budget is exceeded in 13 of 30 trials, in 5
instances by over 3% (the largest overspend is by 11.7%).
DBRA alleviates this risk—in all 100 trials the budget con-
straint is satisfied—while its average return matches or ex-
ceeds that of BMDP. With the very constrained budget
(1000), DBRA also appears to offer the advantage of re-
allocating budget to more promising customers over time.
We also compare GBA to UBA on the same MDP, but
with 1000 customers uniformly spread among the 12 non-
terminal states (GBA and UBA are identical if all users start
in the same state). The table below shows (exact) expected
value of GBA and UBA for several global budgets.

Total Bud. GBA Val. UBA Val.
1000 39818.6 36997.2
2000 44559.5 40311.8
5000 53177.7 47142.4

10,000 58356.8 53773.8

The optimal BMDP solution allows GBA to make bud-
get tradeoffs among customers in different states, giving
greater value than a uniform scheme.

5The greedy algorithm averages 1.47ms. to compute the opti-
mal allocation at each budget point.

Advertiser MDPs. We apply the same four methods to
the advertiser-based MDPs. We first use GBA to derive
“sweet spot” curves for the large MDP (results are simi-
lar for the 1469-state MDP). We assume 1000 customers,
with 20 customers each entering the process in the 50 states
with the largest “value spans” (i.e., difference in expected
value given the minimal and maximal useful budget). Fig. 4
shows the budget-value tradeoff.
These MDPs model behavior that is quite random (i.e., not
influenced very strongly by the actions). As a consequence,
once the GBA algorithm is run, there is not a great differ-
ence between the BMDP and SUB policies. The table be-
low shows results for the 452K-state BMDP for two fairly
constrained budget levels (DBRA, SUB are averaged over
50 trials, BMDP and UBA values are exact).

Budg. BMDP Val. DBRA Val. SUB Val. UBA Val.
15 113358 99236 (3060) 112879 (1451) 106373
25 157228 142047 (3060) 157442 (2589) 149175

Neither BMDP nor SUB exhibit much variance in spend
and both have similar expected values. SUB rarely over-
spends (e.g., maximum overspend for SUB with B = 25
is 0.16%). Variance tends to be greater when budgets are
tighter. Among the 50 BMDP trials, 14 instances exceed
the global budget, though only four instances exceed it by
more than 4.0% (and one does so by 8.6%). DBRA elim-
inates the risk of overspending, but in this problem has a
negative impact on expected value. GBA offers greater ex-
pected value than UBA (which is the only viable option if
the BMDP has not been solved). GBA exceeds UBA by up
to 6.5% over a range of constrained budgets.

5 CONCLUDING REMARKS

We have addressed the problem of budget (or other re-
source) allocation in MDPs so that budget-value tradeoffs
can be addressed effectively. Our budgeted MDP model of-
fers an alternative view of CMDPs that allows value to be
derived as a function of available budget. We characterized
the structure of optimal VFs and developed a DP algorithm
that exploits the PWLC form of these VFs. Our second
contribution was a method for exploiting BMDP solutions
to allocate budget across independently operating BMDPs.
We cast the problem as multi-item MCKP for which a sim-
ple greedy algorithm rapidly allocates budget optimally in
a “committed” fashion. We also investigated dynamic real-
location of budget over time.

The extension of our methods to account for dynamic user
populations is straightforward, but warrants empirical in-
vestigation. Future work includes the further study of and
experimentation with our algorithms on richer models of
user behavior. We are also interested in extending our mod-
els to partially observable settings (e.g., where user type
estimation based on behavioral observations is needed).
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