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Abstract

Collective matrix factorization (CMF) is a pop-
ular technique to improve the overall factoriza-
tion quality of multiple matrices presuming they
share the same latent factor. However, it suf-
fers from performance degeneration when this
assumption fails, an effect called negative trans-
fer (n.t.). Although the effect is widely admitted,
its theoretical nature remains a mystery to date.

This paper presents a first theoretical understand-
ing of n.t. in theory. Under the statistical mini-
max framework, we derive lower bounds for the
CMF estimator and gain two insights. First, the
n.t. effect can be explained as the rise of a bias
term in the standard lower bound, which depends
only on the structure of factor space but neither
the estimator nor samples. Second, the n.t. ef-
fect can be explained as the rise of an d;-root
function on the learning rate, where d is the di-
mension of a Grassmannian containing the sub-
spaces spanned by latent factors. These discover-
ies are also supported in simulation, and suggest
n.t. may be more effectively addressed via model
construction other than model selection.

1 INTRODUCTION

Collective matrix factorization (CMF) is a popular tech-
nique to factorize multiple matrices in hope of improving
their overall factorization quality (e.g. [7, 23, 17, 11, 16,
2, 12, 3, 21, 26]). The key assumption of CMF is that all
matrices share the same low-rank factor, under which its es-
timator proves to be consistent [S]. However, when this as-
sumption fails, CMF is known to suffer from performance
degeneration — an effect called negative transfer. Several
algorithmic solutions have been proposed, which alterna-
tively assume different matrix factors are drawn from the
same distribution [24, 1] or partially shared [10].
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Although negative transfer has been long accused for caus-
ing the performance degeneration, the theoretical under-
standing on its nature appears surprisingly scarce, i.e. no
study was done to justify its existence or how it may hurt
CMFE. What can we say about negative transfer in theory?
This is the question we aim to address in the paper.

Our investigation is performed under the mini-max frame-
work in statistical decision theory. We first cast CMF into
this framework and design a collective hypothesis testing
problem that captures the negative transfer effect. By re-
ducing the CMF estimation problem to this testing prob-
lem, we manage to derive a lower bound of the CMF es-
timator, through which a new bias term is discovered that
worsens the standard bound. In particular, the bias only
depends on the structure of the factor space, but neither
the choice of estimator nor training samples. This suggests
negative transfer is an intrinsic difficulty of learning, which
may only be resolved at the model construction phase but
neither model selection nor data collection. This is also
supported from another observation that negative transfer
down-weights the contribution of estimation accuracy in
the lower bound.

For better interpretability, we further refine the lower bound
by capturing more problem characteristics. In particular,
we derive a learning rate of (1/|w|7), where @ is the in-
dex set of all matrix observations and d is the dimension of
a Grassmannian containing the subspaces spanned by latent
factors. Pessimistically, this rate is d;;,-root slower than the
standard rate {2(1/|w|) where negative transfer does not ex-
ist. This discovery is also supported in our simulation.

The rest of this paper is organized as follows: the notations
are introduced in section two; our primary lower bound is
presented in section three, and the refined bound is pre-
sented in section four; proofs and remarks are given in sec-
tion five, followed by simulation in section six and conclu-
sions in section seven.



2 PRELIMINARIES

In this section we introduce the major notations, concepts
and assumptions used in analysis. For the ease of presen-
tation, we focus on two matrix factorization, but all discus-
sions are readily generalizable.

Matrix Notations. For a matrix M, let M;; be its entry at
row ¢ and column j, let [M] be its column space, ||M|| be
its Frobenius norm ! and M7 be its transpose. Given two
matrices M, M’ of the same column size, let M = [M, M’]
be their column concatenation. Let I be an identify matrix
properly sized by the context.

Sets. Let M} be a set of rank-k matrices with row dimen-
sion n and arbitrary column dimension, and M;"* C M}
be its subset with column dimension p. Let G be the
Grassmannian defined as the set of k-dimensional sub-
spaces in R™ (a metric will be equipped later). Note each
element in G} is a subspace. Let S} be the set of orthonor-
mal matrices in RF*".

Metrics. Let d be the metric on M, such that
d(M,M') = ||M — M'|], (1)

for all M, M’ € M. Tt will be used for any choice of p.
Let p be the metric on G} such that for any G, G’ € G7,

p(gag/):HPg_Pg/H7 (2)

where Pg is the orthogonal projection matrix onto G. It is
defined as Pg = DDT for any basis D € S} of G. See [4,
Section 2.5] for more explanations.

Factorization Model. We focus on full-rank matrix factor-
ization, which is typically assumed in CMF (e.g. [17, 5]).
The factorization model is generally denoted as M = DA,
where D is called the factor and A is called the loading.
For the ease of presentation, we assume D € S} but all
discussions are generalizable. (See Remark 11 for a jus-
tification.) In general the loading will not be specified in
analysis, as long as it is a properly sized full rank matrix.
All matrices are assumed bounded.

The Shared-Factor Assumption of CMF. The CMF as-
sumption can be stated as: any input M, M’ € M} ad-
mit factorization M = DA and M' = D'A’ such that
[D] = [D’]. Note although CMF assumes D = D’, in
essence it only requires [D] = [D']. Also note [D] € G}..

Probability Notations. We mainly use two styles of prob-
ability notations with different focuses: 1) notation Pr{-}
focuses on the uncertainty over random samples, e.g. in
section 3 where we prove the mini-max bound randomized
over samples; 2) notation PP focuses on treating the prob-
ability as a subject of interest, e.g. in section 4 where we

!This notation should not cause confusion since we only con-
sider Frobenius norm in this paper.

pick a finite set of probabilities for testing which one gen-
erates the random sample.

Sampling Model. In many applications M is not fully ob-
served (e.g. matrix completion [17]). Let w be the index set
of observed entries and M, be the input matrix. Assume w
is randomly sampled. Given a concatenated matrix M, we
use & to denote its index set of observations (induced from
the observations of each matrix).

Generative Model. The matrix generative model is needed
for refining the mini-max bound, but not for modeling neg-
ative transfer. In our analysis, only one generative model
needs to be defined on the concatenated matrix M.

Suppose M e MZ’ﬁ . Let P be a set of probabilities defined

on MZ’ﬁ such that each P € P is a matrix-variate normal
distribution (e.g. [6, Chapter 2]),

P (M) = N (M, 01,01, (3)

with mean matrix M and covariance matrices oI (among
rows) and 021’ (among columns). It follows

Py (M) =[], B (M), “
where IP’M(J\;LJ) = N(M;;,0?) is a univariate normal dis-
tribution and the product is taken over all indices of M.
We note in passing Py; is similar to the probabilistic matrix
factorization model assumed in [15, Equation 1]. Define

Py (Mz) = H(i,j)eQPM(Miﬂ')' (5)

Mapping. Since each M admits a unique [D] in factoriza-
tion M=DA (Remark 12), we have a mapping 6 : M}" —
G} such that (M) = [D]. This is the mapping from a
rank-%k matrix with n rows to its column space in R™. Note
6 applies to any column dimension.

CMF Estimator. Recall J\Z/;) is the random observation of
two matrices. Define CMF estimator as 0 : {Mz} — G7.
Note it realizes the shared-factor assumption by mapping
two matrix observations into a single subspace. Write ég
for O(Mz). The quality of § is evaluated by

O 1 R R
E010) = 3 [pl0,6(00)) + p(0,6(M")] . (6)

Define the maximum risk of any CMF estimator as
M() = sup Bl (0] M), (7)

where expectation £, is taken over the randomness of M.

It was noted when the shared-factor assumption is satisfied,
CMF is equivalent to factorizing on a single matrix M [10].

Packing. This notion is used to define the following hy-
pothesis testing problem and widely used in proof. For any



set X' equipped with a metric px, let {z,},cy be an arbi-
trary subset of A" indexed by a set V. For any § > 0, we
say this subset is a d-packing of X with respect to py if
px(xy, ) > § whenever v # v'.

Collective Hypothesis Testing. To lower bound 21(6), we
employ the classic estimation-to-testing reduction method
(e.g. [22]). To capture the negative transfer effect, we ad-
ditionally design a collective hypothesis testing problem.

Let {G, },ev be a 2§-packing of G} indexed by a finite set
V, and V, V' be two random variables taking values v, v’ €
V respectively. Our testing problem is stated as follows:

Step 1: choose V, V' (with replacement) from V indepen-
dently and uniformly at random.

Step 2: conditioned on (V = v, V' = '), randomly choose
(D, D') € S x S}, satisfving (D], [D']) = (Gu» Gur).

Step 3: generate (M, M') = (DA, D' A") with some ran-
dom A, A’; then generate observation Mz from M.

Step 4: apply a collective testing function V {]\7[@} -V
defined as >

A — A~

V(Mg) := arg minvevp(H(Z\ZfQ),gv). (8)

To our knowledge, the collective hypothesis testing prob-
lem, albeit simple, is the first attempt to theoretically model
the negative transfer effect in CMF. It also allows incorpo-
ration of richer information such as prior distribution, and
can be applied to other problems besides CMF, as will be
exemplified in later discussions.

3 A PRIMARY LOWER BOUND

The following proposition presents a primary lower bound,
which reveals our main idea and insights.

Proposition 1. Suppose G} admits a 2-packing indexed
by a finite set V, and V' is a uniform random variable on V.
Then, any CMF estimator 0 satisfies

A0 1 .
mo) > 3 (C& + WPT{V(MQ) + V}) , O
where Cs = 1 — |V|~! and the probability is defined over
the random choice of V and J\ng 3,

Our main idea of proving the proposition is to first reduce
the estimation problem into the collective hypothesis test-
ing problem. Then, if two matrices are generated from dif-
ferent subspaces (i.e. O(M) # 0(M')), V is guaranteed to
make mistake on at least one matrix by a geometrical ar-
gument in Figure 1. This inevitable mistake gives rise to
bias Cs in the lower bound, which does not depend on the

Note Mg depends on v, v’ in Steps 3 and 4.
*Both V and V(M) are random variables on V.

\ m\‘ E‘ \ :E
6(M;) H »

Figure 1: When two matrices are generated from different
subspaces, no CMF estimator # can simultaneously fall into
the two §-balls centered at §(M2) and 6(Mz) respectively.

As a result, the testing function V' is guaranteed to make a
mistake on at least one matrix.

choice of estimator nor observations. On the other hand,
the testing error Pr{V (M) # V'} is obtained by standard
arguments, conditioned on the case when two matrices are
indeed generated from the same subspace.

Next, we discuss the implications of Proposition 1. For
comparison, consider the case when negative transfer does
not exist (i.e. V' = V). In this case, by Remark 13 we have

M(0) > 6 Pr{V (M) # V}. (10)

Comparing the lower bounds in (9) and (10), we see neg-
ative transfer has caused two changes: 1) introduce a bias
term Cy; 2) down-weight the testing error by 1/(2|V]). In
particular, the bias term depends merely on the structure of
G}, pessimistically suggesting that CMF may never suc-
ceed in a mini-max sense, disregarding the choice of es-
timator @ or observation Mg. Combining both aspects, it
seems finding a good factor space may be more important
than finding a good estimator or sample for mitigating the
negative transfer effect.

When negative transfer does not exist, we may obtain an-
other indirect implication by comparing CMF with inde-
pendent matrix factorization (IMF) . To elaborate the lat-
ter, let , : {M,} — G} be an IMF estimator and define
its maximum risk as

M, (0,) = sup, E p(0,(M,), 0(M)), an

where the expectation is taken over the randomness of w.
Let V, : {M,} — V be any testing function on a single
matrix, which possibly induces V. By standard mini-max
arguments it is easy to verify that

M, (0) > 6 - Pr{Vy(M,) # V}. (12)

A comparison between the lower bounds in (10) and (12)
suggests CMF estimator performs no worse than IMF esti-
mator on at least one matrix. The reason is V (Mg) # V
implies inclusively either Vi (M) # V or Vo(M!,) # V.

“This is the technique that separately factorizes each matrix
based on its own observations.



(Otherwise, V would not make the mistakeAif, say, it is sim-
ply defined as the random choice of one V;.) Taking M,
for instance, we thus have

Pr{V(Mz) # V} < Pe{Vi(M,) AV}  (13)

Further detailing (13) is beyond the scope of this paper.
Nevertheless, it is not difficult to conjecture the inequality
holds typically when M has insufficient observation (thus
CMF improves over IMF on at least one matrix) and the
equality holds otherwise. It should be noted even without
negative transfer, our lower bound does not suggest CMF
always improves over IMF. We note this is neither con-
cluded from the upper bound analysis of CMF assuming
no negative transfer [5].

Next we present two extensions of the proposition.

3.1 A BOUND WITH PRIOR

In [16], authors assumed a prior distribution over the fac-
tor space. A natural question for us is how such intrinsic
prior may affect the negative transfer effect. For simplicity
assume all sets are measurable.

Let v be a probability measure defined on the factor space
Si, as assumed in [16]. It naturally induces a probability
measure y over G such that for any G € G,

w(G) = /[D]—g 1dv(D). (14)

Define ji := p/N as anormalized probability measure with
proper choice of N. We can replace Step [ in the collective
hypothesis testing problem with

Step 1*: choose both V, V' (with replacement) by ji(Gy ).

By the same arguments for Proposition 1, and now

Pe{V =V} =2 (G, (15)

it is easy to verify the following result.

Corollary 2. Suppose G} admits a 26-packing indexed by
a finite set V. Let V be a uniform random variable on V.
Replace Step 1 in collective hypothesis testing with Step 1*.
Then, any CMF estimator 6 satisfies

m(d) > - (G5 + Kepr(V(0a) £ V). ()

where Ns = Zvevfﬂ(gv), Cs = 1 — Ny, and the proba-
bility is defined over the random choice of ]\2@ andV.

The implication of Corollary 2 is clear: since Nj reaches
its minimum when [i(Gy ) is the same for all choices of
V' (by Chebyshev’s sum inequality), resulting in the max-
imum bias Cj5, we see CMF suffers most negative transfer
when nature chooses V' uniformly.

Figure 2: A packing of three points, each indexing a gray
square in the figure with its prior y; := u(G;), i = 1,2,3.
The total area of three squares equals to Ns. Clearly, this
area reaches its maximum value 1 when p; = 1 for any <.

This corresponds to the most concentrated prior .

On the other hand, a simple geometric argument in Figure
2 shows the more concentrated /i nature uses, the less neg-
ative transfer CMF suffers.

3.2 A BOUND FOR MATRIX RECOVERY

A major use of CMF is for recovering the missing values
of incomplete matrices (e.g. [17]). This section presents
a technique to extend Proposition 1 for the recovery task
under mild conditions. The main strategy is to convert the
recovery error back to p(C;, G) using the following variant
of [18, Theorem 2.3].

Lemma 3. Let G, G’ respectively be the column spaces of
any M, M' € M,"". Let si(M) be the smallest non-zero
singular value of M. Then

p(G,G") < V2||M — M'||/s(M). (17)

For simplicity, we focus on a set MZ' C M} whose ma-
trices have their smallest non-zero singular values bounded
away from zero. A similar assumption was made for matrix
recovery in [9, Theorem 1.2.].

Let @Z C G} be the set induced from MZ such that for
every G € G} there is an M € M} satisfying (M) = G.
For a matrix M and a factor D estimated from its observa-
tion M,,, define the recovery error as

era (D) = miny||M — DA% (18)

This is similar to the reconstructive error in [13, page 1].
Define the recovery loss as

L (OIT) = = [erni (6(

3 2) + era (B(Vz))], 19)

and the maximum risk of any CMF estimator as

mr(é) = SupMGMn-XME-]E(Egt\@(é|M)' (20)

Our recovery bound is stated as follows.



Corollary 4. Given a M} and its induced G} that admits
a 2-packing indexed by a finite set V. Let V be a uniform
random variable on V. Then, there is a ¢ > 0 (depend-
ing on M}: ) bounded away from zero such that every CMF

estimator 0 satisfies

M. (0) >

~—

1 -
Cs + —Pr{V(Mg) # V}) , @D
Z\f ( VI
where Cs = 1 — |V|~! and the probability is defined over
the random choice of Mgz andV.

Corollary 4 shows a recovery error bound that maintains
the same order as the estimation error bound.

4 A FINER LOWER BOUND

In this section, we first introduce a few more machinery
used to refine the lower bound in Proposition 1, and then
present the refined bound.

Generalized Fano Method for CMF. The first piece of in-
formation is related to the generalized Fano method in [22,
Lemma 3], which will be the starting point of our proof.

Let I(;) denote the mutual information between two vari-
ables. The following lemma is our extension of the gener-
alized Fano method for the CMF problem.

Lemma 5. Let {M, € M} },cp C P be a collection of
matrices indexed by V such that for any v # ',

p(0(M,),0(M,)) > 26. (22)
Further, suppose
1(V; Mg) < B, (23)

where V' is a uniform random variable on V. Then
max Eo - (d(é, O(M,)) + d(d, Q(Mv/)))

v,v’' €V
>§ 1_,3+10g2 .
T2 [V|log [V

(24)

Comparing (24) with the standard bound [22, Lemma 3] °

) B8+ log2
2(1 og V| ) *)

our generalization introduces an additional |V| in the de-
nominator, which significantly speeds up the growth of the
lower bound as |V| increases. This coincides with with our
discovery in Proposition 1, and provides a finer implication

>While [22] focused on probability set, we focus on matrix set
to facilitate later application. Nevertheless, our extension is also
applicable on probability set and will give result similar to (24).

of the negative transfer effect. In result we retain the mu-
tual information (instead of relaxing it to KL divergence)
to facilitate later application.

A few things should be clarified about the lemma. First,
it does not require M,’s to have the same column dimen-
sion. Second, I(V; M) is derived from Pr{d(Mg) # V}
in Proposition 1 and thus inherits the condition that two
matrices share the same latent factor.

Packing Number. The second piece of information is re-
lated to the packing number on Grassmannian G}, which
will be used to bound |V| in Lemma 5.

Let M (G}, p, 0) be the packing number on G} with respect
to metric p and radius §. It is the largest size of V that
indexes an admitted d-packing on G}. Let 7(G}) and d
be the diameter and dimension of G}, respectively. The
following result is a variant of [19, Proposition 8].

Lemma 6. There exist universal constants ¢y, co > 0 such
that for any § € (0,7(G})],

(e17(GR)/8)" < M(GR,p,6) < (e (GR)/8)". (26)
Mutual Information. The third piece of information is
related to the mutual information I(V; M) appeared in
Lemma 5, which will be used for deriving its upper bound.

Let Dy, denote KL divergence. Recall the probability no-
tation I introduced in section 2. A classic approach (e.g.
[22, page 428]) to bound I(V' M) is by

I(V; Mg) < |V|2 > Die(Py|[Pyy) 27)

v,v’

However, this does not directly apply to our setting since
P, is not easy to specify. The following technique is from
[8, Equation 110], which addresses the problem.

Lemma 7. Let T(Mg) be any side information. Then

I(V; M) < I(V; Mg |T(Mg)). (28)
Write T for T'(Mg). We notice
Lo ,EDye (P (-| TPy (-|T
Lt < S EDu LD CT)

V[? ’
where expectation E is taken over the randomness of T.

KL Divergence. The last piece of information is related to
KL divergence, which is used to specify the bound in (29).

Recall the generative model introduced in section 2. For a
matrix M and its observation index o, let W, be a matrix
of the same size as M such that Wijis = 1if (i,j) € J and
Wijis = 0 otherwise. Let o denote the Hadamard product
between matrices. We remark the following result.

Lemma 8. Forany M, M’ € Mn’ﬁ and &,

DiaPro|Prpia) = 5.1Wa o (3 = ). (30



4.1 THE FINER BOUND

Recall the factorization model M = DA and A is ran-
domly generated. Let ¥4 = E||A[|?. Our finer bound is
based on the setting of Proposition 1 and stated as follows.

Theorem 9. Every CMF estimator 0 satisfies
M(O) > c- (G U|BI8a /)T, B

where ¢ > 0 depends on the nature of G}} and absorbs
lower order terms.

The new lower bound can be interpreted as follows.

e || : larger observation number || leads to smaller
lower bound. This makes sense, as more observations
improve the accuracy of testing. However, we see its
impact is significantly restricted by d, resulting in a
learning rate Q(|5|~'/?). Based on (25) and our argu-
ments for the theorem, one can easily derive a learning
rate without negative transfer as (|| ~1). Thus we
see negative transfer significantly slows down learn-
ing. This shall not be too surprising, however, since
in Lemma 5 the lower bound has already become lin-
early dependent on |V| (instead of logarithmically)
due to the negative transfer effect.

e d: for simplicity, assume 7(G7)|&|X 4 /o* > 1. Then,
larger d leads to larger lower bound. In particular, a
very large d significantly weakens the impact of other
parameters (except 7(G})) on the lower bound. This
coincides with our discovery in Proposition 1, where
the impact of estimation quality (and now its related
parameters) is down-weighted.

We notice the dimension d = k(n — k) is quadratic to
matrix rank k and reaches its maximum at k = n/2
(and thus the worst bound). It is unclear how to ex-
plain such role of k, but we have another consistent
observation based mainly on combinatoric arguments:
Assume M} is defined on a finite field of order ¢
(which is common in problems such as recommenda-
tion system). Then the number of its column spaces
(thus factor spaces) is the g-binomial coefficient (Z)q
based on [14]. Clearly, the more subspaces M} in-
duces, the more difficult estimation/testing will be.

n

In particular, we notice ( k)q is also a quadratic-style
function of k and reaches its maximum at k& = n/2.

o 7(G}) : larger diameter of G} leads to larger lower
bound. This makes sense, since a larger hypothesis
set admits a larger packing (see Lemma 6), resulting
in a more challenging testing problem. In addition,
we see the impact of diameter is slightly restricted by
the dimension d of G}}. Specifically, a large diameter
hurts more when the dimension is high.

e >4 and o: we are not particularly interested in these
two terms, but note in passing that larger ¥4 or
smaller o leads to smaller lower bound.

e ¢ : this coefficient arises from the universal constants
in Lemma 6 that depend on the nature of G.. Then it
absorbs lower order terms through derivation, but this
shall not affect the order of interested parameters.

S PROOFS AND REMARKS

Proof of Proposition 1.

Write 6 for §(Mg), V for (V, V') and ¥ for (v,v’). Let no-
tation V denote the logical disjunction. Following standard
mini-max arguments, we first have

6.6(M")) > 6}

sup, g [p(0,0(00) + p(8,0M"))|
> sup i E [0 1{p(0,6(M)) = 6V p(

— 5 sup g Pr{p(6,6(M)) = 5V p(6,0(M")) > 6},
(32)

where the inequality is based on the fact that total distance
is greater than ¢ if any one distance is greater than §.

Reducing the above estimation problem into the collective
hypothesis testing problem (with a 26-packing {0, },ecv),
we have

supMPr{p(é,G(M)) > 6 Vp(é,G(M’)) > 5}
1 ) ) ¥4 —
> W %:Pr{ﬂ(@,@v) > 6V p(0,0,)>6|V =70},
(33)

where the coefficient is based on the uniform sampling as-
sumption on V so that Pr{V = @} = 1/|V|2.

Now we introduce the negative transfer effect. Consider
two cases v = v’ and v # v’. Clearly the second one cap-
tures the violation of the shared-factor assumption. Then

V =7}
P

=1-Pr{o#£0 |V =0}
+Pr{p(0.0,) > 6V p
Pr{v=1"|V =7},

>
)
<
—
\Y
(=%
<
Il
<
<
Il
<
=

(34)

where the second equality is based on the geometric argu-
ment illustrated in Figure 1, i.e. if v # v/, then no € can be



simultaneously 6-clo§e to both 0, and 6,
Pr{p(eae’u) >0 \/p(97ev’) 2 6} =1

which implies

Putting all above arguments together and in addition: 1)
(9 0,,) > 6 as implied by V (M) # v, (by the definition
of V); 2) average over all possible ¥, we have

sup g [p(6.6(01) + p(6.6(01"))]

5 <Pr{V LV e[V (W) £ VIV = V’}) .

VI
(35)
It remains to simplify the above lower bound. First,
by uniform sampling Pr{V #V’}=1 — |[V|~!. Second,

Pr{V#£V|V=V'}=Pr{i # V}, where the left side prob-
ability is over the randomness of both V,V’, while the
right side probability is merely over the randomness of V.
Putting all together proves the proposition.

Proof of Corollary 4.

Recall si(M) is the smallest non-zero singular value of
matrix M. By our assumption ¢ = infMeM;:, sp(M) is
positive and bounded away from zero. Combining with
Lemma 3, this implies any M, M’ € M} satisfy

p(G.G') < V2IM - M'||/c. (36)

Writing 6 := 6(M,,), this further implies

erni(0) > c- p(0,0(M))/ V2. (37)
Hence over all M € MZ X MZ, we have
sup ;; Eg [erM(é) + erAy/(é)]

¢ . (38)
> ssupiEs [p(0,000) + p(0, 0(M")

Applying Proposition 1 yields the corollary.
Proof of Lemma 5.

The proof is similar to [22, Lemma 3], with the main dif-
ference that we study a joint estimation problem (instead of
a single one) and apply our own reduction technique.

By assumption {¢(P,)}vey is a 2-packing on G}. Ap-
plying the arguments in Proposition 1 gives a lower bound

’ (Ca + ﬁPr{V( 1z) # V}) SNER)

where C,, =1 — [V|7L

Further, following the same arguments in the generalized
Fano method [22, Lemma 3] (in particular, the Fano’s in-
equality and data processing inequality), we have

I(V; Mz) +log 2

Pr{V
" log V|

I5)#V}>1-

(40)

Combining both with I(V; ]\7[;)) < [ proves the lemma.
Proof of Lemma 6.

Let N(G}, p, ¢) be the covering number of G} with respect

to metric p and covering radius 4. It is defined as
min{|V| : Gi; admits a d-cover indexed by V},  (41)

where a §-cover is a set of points in G}! such that the union
of their d-balls contains G}. It is stated [19, Proposition 8]
there are universal constants s, so > 0 such that

(s1-Dy/8)* < N(GJ.p.0) < (s2- Dy/0)".  (42)
In addition, it is well-known that (e.g. [25, Equation 1.5]).

N(GE,p,6) < M(GE, p,6) < N(Gf, p,6/2).  (43)
Putting two together we have

(51-Dy/8)* < M(G},p,8) < (252 D, /8) . (44)
Setting ¢; = s and ¢y = 255 proves the lemma.
Proof of Lemma 8.

Recall the generative model in section 2, where P = {P}
is a set of probabilities defined on MI;"*. For clarity we first

derivg the case when M is complete, and its generalization
for Mz naturally follows. Remark the following result.

Remark 10. For any M, M’ € Mzﬁ,

1 Y 7
Do (Pyz (M)[[Pyp (M) = 53 |IM — M 12 @5)

Proof. By the definition of KL divergence,
Dye(Pyr||Pyp) = Epy, log (Pyz/Przr) . (46)

where expectation Ep _ is taken over Py;. Further, by the
definition of matrix-variate normal distribution (e.g. [6]),

Py () = exp (—[|(8 = M|[*/20* ) //@x)>. @7)
This implies
Pz

log — = —

1 o o
o 53 (1M = M|]> = [[M = M'|]). (48)
M

In addition,
Ep,, [|M — M||* — |[M — M'||?
=E Z (My; — Myy)® — (M; — M))?

=E ZQM”
7Z2Mw
Z 35)? = ||M' —

Putting all together completes the proof. O

Mij) + M5 — (Mj;)*
(49)

Mi;) + M — (Mj;)?

M2



The arguments for Lemma 8 is almost the same as those for
Remark 10, except now we have

PM\@(M) = H(i j)eQPM(Mz‘j% (50)

which admits a matrix form (can be easily verified)

exp (—gke W o (0 — D)) s

(2m)l<]

Keeping W through the derivation proves the lemma.
Proof of Theorem 9.

The first step is to apply the extended generalized Fano
method (Lemma 5) to derive a lower bound. To do so, we
need to fulfill its two conditions (22) and (23) respectively.

Let {M, € M;P }vGV be a set inducing a 26-packing on
G}, ie. p(0(M,),0(M,)) > 26 for any v # v'. This
set fulfills (22). Note we have chosen all matrices from
My 7 which does not weaken the analysis since this set
can induce the entire G}} through 6.

It takes more effort to fulfill (23). Recall I(V; ]\2;,) is based
on the condition that input matrices share the same factor.
Then our problem is equivalent to testing V" using a single
matrix M randomly drawn from MZ’ﬁ . This allows us to

apply the generative model on Mzﬁ in section 2.

For any M € M}, let A € R¥*? be a loading in its
factorization and W € R™*¥ be its mask such that Wi =1
if M;; is observed and W;; = 0 otherwise. We have

I(V; Mg)
< I(V; Mj|A)
1 -
SEimym D Dre(Po(M|A)|[Py (3] 4))
|V‘ v,v’' €V
1 R -
< WZEDMMM )| (M| 4))

4||WO Dg, — Dg,,)A||? (52)

|V|2 25

HWII2 7
MQZ 1Dg, — Dg,, || - El| Al

5]
S |V|QZT g’uzgv)

1 = n
< ﬁw 7(Gy) - X3,
where the first inequality is based on Lemma 7 where we
condition both probabilities on a loading A; the second in-
equality is based on (29); the third inequality is due to the
convexity of | 7; the first equality is based on Lemma 8;

the fourth inequality is based on simple algebra argument
(see Remark 14), and the fifth inequality is based on an ex-
tended argument of [20, Lemma A.1.2.] (see Remark 15);
the last inequality is by the fact that p(G,, G,/) < 7(G}).

Till now we have fulfilled both conditions in the general-
ized Fano method described in Lemma 5. Together with
Lemma 6 that bounds ||, this implies a lower bound

5(1 |<D\T(GZ)E;/2J4+10g2 ) 3
2 (1(G})e/8) log (1(G})e/d)

As a standard strategy, it remains to choose a proper § so
that the ‘big’ fraction in (53) is upper bounded by 1/2.

We are mainly interested in the order of parameters. First
relax the lower order term log (7(G})c/0) > log(2c)
since 7(G}') > 20 and the constant log 2>log 1=0. Re-
arranging terms, we wish to choose a ¢ satisfying

5> c?-d-log2c-7(GP)?. 20" 1/d (54)
B 287 (G)Xa '

Further, since d = k(n—k) is a positive integer, it is easy to
verify d'/¢ < 1.45 and (log(2¢))*/? < log(2c). Plugging
both in the above lower bound and merging constants and
terms depending on ¢ into ¢/, we have

~1/d

§>c - r(GYHY (@S a/0?) (55)

Plugging this back to the lower bound (53) and merging
constants again proves the theorem.

5.1 REMARKS

Remark 11. Any M, M’ € M} admit a joint full-rank
factorization M = QA and M' = QA’ for some Q €
R™ % if and only if they admit a joint factorization M =
DB and M' = DB’ for some D € S}.

Proof. A well known fact is that that every subspace of R™
admits an orthonormal basis (by Gram-Schmidt process).
Thus for one direction, any () induces a subspace span(Q),
which admits an orthonormal basis D € Sj}. This means
@ = DL for some expressive coefficient matrix L and thus
M = QA = D(LA). The other direction is trivial. O

Remark 12. Every M € M admits exactly one S € G}
such that S = [D)| for any D € S} satisfying M = DA.

Proof. Given any two factorizations M = DA = D' A’
with D, D’ € S?, to justify the remark it suffices to show
span(D) C span(D’) and span(D) 2 span(D’).

For the first direction, it suffices to find a W € R¥** such
that D'W = D. This is easy as (D)7 D’ is invertible since
D’ € Sy. (In fact, we only need D’ to have full column
rank.) Thus one can set W = (D) D")~1(D")T D. Sim-
ilar arguments apply for the other direction. O



Remark 13. In Proposition 1, if one always has 0(M)
(M), then M(0) > 6 - Pr{V (Mz) # V}.

Proof. Condition (M) = §(M’) implies we can fix V =
V' while designing the collective hypothesis testing prob-
lem. This means Pr{V # V'} = 0and Pr{V =V'} = 1.
Plugging both into the proof of Proposition 1 (last inequal-
ity) justifies the remark. O

Remark 14. For any same sized matrices A and B, we
have ||A o B|[* < [|A]]* - || B|*.

Proof. For all sums taken over all matrix indices, it fol-
lows [[A o B|]* = 3(A4;;B;;)* = 3(Ay)*(By)* <
Z(Aij)Q Z(Bilj/)z = ||AH2||B||2, where the inequality
is by the fact that (B;;)? < > (By;)? forany (i,5). O

Remark 15. Forany D, D’ € S,

1D = D'|]* < ||[DD" = D' (D). (56)

Proof. This remark is a matrix extension of [20, Lemma
A.1.2]. Let D.; denote the column j of D. We have

IDDT — D"(D")T||?

= > Ip,;D% - D(D)"|)?
J (57
<> D, = Dy||* = ||ID - D'||%,

J

where the inequality is based on [20, Lemma A.1.2] and
the fact that || D.; — D/}|| < v/2 since D, D’ € S}. O

6 SIMULATION

In this section we empirically evaluate the learning rate of
CMF under two settings, one without negative transfer and
the other with negative transfer (NT):

NT-Free: in this case, we randomly generate a factor
D € SP and two loadings A € R™*? and A’ € R
to construct matrices M = DA and M’ = D'A’. By this
means, M, M’ are guaranteed to share the same factor and
negative transfer does not exist.

NT-Likely: in this case, we randomly and independently
generate two factors D, D’ € S} and two loadings A, A’
same sized as in the NT-Free case. The two matrices are
constructed by M = DA and M’ = D’ A’. By this means,
it is likely [D] # [D’] and thus negative transfer exists.

In evaluation we simply set n, p, p’ to 50 and set % to 10.
To examine the learning rate, the ratio of observations, de-
noted by 7, is varied from 0.1, 0.3, 0.5, 0.7 to 0.9. At each
choice of r, we randomly select 7 - np number of entries in
each matrix to form the observation M};. The CMF algo-
rithm in [17] is implemented with no use of prediction link

1 NT-Free
—NT-Likely

Loss ﬂ(6)

0.1 0.3 0.5 0.7 0.9
Ratin of Observations

Figure 3: Performance simulation.

function. After performing CMF on M, the loss function
in the proposition is evaluated. Rewrite its notation as
. 1 . .
Loss,(0) = 5 |p(0.0(0) + p(0.6(M")| . (58)
In addition, fpr each r we repeat the random choice of ]\Z@
for 10 times and report the averaged loss in Figure 3.

From Figure 3 it is clear that CMF converges much slower
when negative transfer exists, as compared with the case
when negative transfer does not exist. The bias is also quite
obvious. These coincide with our theoretical discoveries.

7 CONCLUSION AND DISCUSSION

This paper presents a first theoretical explanation of nega-
tive transfer in collective matrix factorization. We present
a min-max lower bound of the CMF estimator and show
negative transfer gives rise to an additional bias term that
depends only on the structure of the factor space. We fur-
ther present a finer lower bound and show negative trans-
fer slows the learning rate from Q(|&|~1) to Q(|&|~1/4),
where d is the dimension of Grassmannian containing the
subspaces spanned by matrix factors.

A limitation of this study is we assumed full-rank factor-
ization. As suggested by the theory, increasing k£ may mit-
igate negative transfer, but clearly at the cost of increas-
ing estimation variance. How these two aspects trade with
each other remains unclear, even though our analysis may
be naively extended for a larger &’ (by simply basing ev-
erything on G7,). In addition, in reality two matrices may
have different ranks and their induced subspaces may partly
overlap [10]. This partial overlapping is merely implic-
itly captured in our analysis (thorough the choice of §) and
stronger results may be obtained by explicitly modeling it.
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