
Large-scale Submodular Greedy Exemplar Selection
with Structured Similarity Matrices

Dmitry Malioutov
IBM Research

Yorktown Heights, NY

Abhishek Kumar
IBM Research

Yorktown Heights, NY

Ian E.H. Yen
Computer Science Department
University of Texas at Austin

Abstract

Exemplar clustering attempts to find a subset of
data-points that summarizes the entire data-set
in the sense of minimizing the sum of distances
from each point to its closest exemplar. It has
many important applications in machine learning
including document and video summarization,
data compression, scalability of kernel methods
and Gaussian processes, active learning and fea-
ture selection. A key challenge in the adoption
of exemplar clustering to large-scale applications
has been the availability of accurate and scal-
able algorithms. We propose an approach that
combines structured similarity matrix representa-
tions with submodular greedy maximization that
can dramatically increase the scalability of ex-
emplar clustering and still enjoys good approx-
imation guarantees. Exploiting structured sim-
ilarity matrices within the context of submodu-
lar greedy algorithms is by no means trivial, as
naive approaches still require computing all the
entries of the matrix. We propose a random-
ized approach based on sampling sign-patterns
of columns of the similarity matrix and estab-
lish accuracy guarantees. We demonstrate signif-
icant computational speed-ups while still achiev-
ing highly accurate solutions, and solve problems
with up-to millions of data-points in around a
minute or less on a single commodity computer.

1 Introduction

With the prevalence of large-scale datasets coming from
social media, computational biology, finance and engineer-
ing it has been difficult to apply some of the more compu-
tationally intensive machine learning approaches such as
probabilistic Graphical models, kernel methods and Gaus-
sian processes. Simple tools like logistic regression trained
via stochastic gradient descent are instead prevalent in web

companies that need to deal with hundreds of millions and
more samples [16]. Exemplar clustering suggests a path to
extend some of the powerful ML methods to such domains
by finding small representative subsets of data to summa-
rize the large dataset, and apply the method on the sum-
mary. Other uses of exemplar clustering include summa-
rizing data for humans (document and video summariza-
tion [14]), facility location in OR, and active learning [7] to
prioritize the annotation in large unlabeled datasets where
annotating the entire dataset is out of the question.

An integer programming formulation for exemplar cluster-
ing is itself intractable, being an NP-hard problem [21].
Hence, a variety of approximate schemes have been de-
veloped including LP relaxations [3, 27], message-passing
algorithms [8, 13], and heuristic algorithms such as Parti-
tioning around Medoids (PAM) [11]. The most successful
methods balancing scalability and good accuracy guaran-
tees1 have been based on the theory of submodular max-
imization [12]. Exemplar clustering (with some mild as-
sumptions) can be shown to be submodular, i.e. to satisfy
diminishing marginal gains. Thus, invoking the celebrated
result of [21], the greedy approach that adds exemplars in
order of their marginal gains has an 1 − 1/e approxima-
tion guarantee. A lazy evaluation approach called “Lazy
Greedy” further exploits the diminishing marginal gains
property to accelerate the solution [18].

Nevertheless, for very large scale data-sets even greedy al-
gorithms become computationally infeasible, as the exem-
plar clustering cost-function is non-local, and evaluating
the marginal gains for each exemplar candidate requires
evaluating the distance to each other point in the dataset.
A number of directions have been considered to speed up
basic greedy (and lazy greedy) methods. Simple surro-
gate functions (such as modular bounds) approximating the
submodular function have been proposed in [26]. The pa-
per also introduced a nearest neighbors pruning approach

1There is a rich theory on LP relaxations for exemplar clus-
tering, but the methods are less scalable, having to solve linear
programs with O(n2) variables, where n is the number of data-
points.

to reduce the set of candidates to consider. This idea has
been further explored in [15]. A distributed algorithm that
randomly splits the data among several machines, selects
exemplars from each subset, and then combines them was
proposed in [20]. This however requires further approxi-
mation by a factor of 1/min(k,m) where k is the number
of exemplars, andm is the number of machines. A stochas-
tic sub-sampling idea called ”Lazier than lazy greedy” was
proposed in [19] which takes a small random subset of po-
tential exemplars into consideration at each stage. By tak-
ing the sample size proportional to n/k log(1/ε) the run-
ning time of the algorithm executed for k iterations be-
comes independent of k, and is still able to achieve an
1−1/e− ε approximation guarantee (in expectation). This
result was also applied in the streaming setting [2].

We pursue a different approach where we assume that the
similarity matrices are either exactly represented as cer-
tain structured matrices (such as low-rank, sparse plus low-
rank, product of sparse matrices, Toeplitz, e.t.c), or can
be approximated by such. For example, using the popu-
lar word2vec representation for words and sentences [17]
along with cosine similarity gives rise to an explicit low-
rank similarity matrix. Squared Euclidean distance matri-
ces (and corresponding similarity matrices) are also exactly
low-rank for low-dimensional feature spaces. While sim-
ply using the structured matrix for the greedy algorithm re-
duces its memory footprint, it still requires quadratic com-
putation in number of samples n. We show that the bot-
tleneck of the problem involves a low-rank positive col-
umn sum problem. We develop a randomized approxima-
tion technique based on sampling column sign-patterns and
establish theoretical guarantees which can reduce the com-
putation to linear in n. The proposed approach is guaran-
teed to generate a better solution than the stochastic sam-
pling approach [19] at the cost of a very modest increase in
computation. We consider numerical studies on a number
of large-scale machine learning problems and demonstrate
dramatic increase in speed compared to plain greedy and
lazy-greedy methods with only a minor corresponding loss
in objective values.

The outline of the paper is as follows. We first overview
submodular maximization, and prior work on exact and
approximate greedy algorithms in Section 2. We discuss
structured approximation matrices and our approach for ap-
proximate greedy optimization in Section 3. We present
theoretical guarantees in Section 4 and experimental results
in Section 5.

2 Background: submodular optimization

In this paper we consider an approach for exemplar clus-
tering based on submodular maximization. We start by re-
viewing the notions of submodularity, greedy algorithms
and their guarantees, and the recent extensions.

Let V be a set of size n. A set function f : 2V → R
is called submodular if it satisfies a diminishing marginal
gains property: if A ⊆ B, and a ∈ V then

f(A ∪ a)− f(A) ≥ f(B ∪ a)− f(B)

Intuitively, there is more benefit (higher marginal gain) to
add a new element a to the smaller setA than to its superset
B. If for all A ⊆ B it holds that f(A) ≤ f(B) then the
function is called monotone submodular. If f(∅) = 0 then
the function is called homogeneous. A celebrated result
by Neumhauser et. al establishes that a simple greedy al-
gorithm achieves an 1 − 1

e approximation to the optimal
objective to non-negative cardinality constrained mono-
tone submodular maximization [21]. The greedy algorithm
starts with an empty set, and at each stage adds the ele-
ment which has the maximum marginal gain ∆f(a|A) =
f(A ∪ a)− f(A) to the current selected set A.

The exemplar clustering problem that we consider in the
paper has the following form. We have a collection V of
data-points,2 and a similarity function s : V × V → R+.
We would like to faithfully summarize the entire data-set
(maximize the pairwise similarity between each point and
its exemplar) using at most k exemplars:

max
A⊂V

∑
i∈V

max
j∈A

s(i, j) where |S| ≤ k (1)

One can verify that the exemplar clustering problem above
corresponds to nonnegative monotone submodular maxi-
mization with a cardinality constraint, and hence the greedy
algorithm can be applied with the corresponding approx-
imation guarantee. The greedy algorithm can be sped
up further using the same diminishing returns property of
marginal gains [18] by lazy evaluation, by keeping the ele-
ments in a priority queue sorted according to marginal gain.

Unfortunately, the evaluation of the marginal gain for a sin-
gle candidate exemplar requires O(n) computation, and
we consider O(n) candidates at each stage. Hence the
greedy algorithm still does not scale to very large data-sets
beyond a few hundred thousand data points. Improving
the scalability of the greedy algorithm for exemplar clus-
tering has been an active research area and a number of
approximation strategies have been proposed at the cost
of worse approximation guarantees. The existing propos-
als include stochastic greedy, distributed algorithms and
nearest-neighbor graph approximations that we have de-
scribed in the introduction. Next we describe how we can
exploit structured similarity matrices and a randomized ap-

2All our results also extend to the non-symmetric version of
the problem where the data-points come from set V1 and exem-
plars have to be selected from V2, for example the facility lo-
cation problem in Operations Research. Also, allowing rewards
hi ≥ 0 for making data-point i an exemplar, still keeps the prob-
lem monotone and submodular.

proach based on sampling sign-patterns of columns to pro-
pose an elegant scalable solution for exemplar clustering
with good approximation guarantees.

3 Greedy exemplar selection with low-rank
similarity matrices

We consider the greedy approach for exemplar clustering.
As inputs we have the similarity matrix S and a budget
k. At each stage t we have the current active set At of
exemplars chosen at the previous iteration. We would like
to evaluate the marginal gain of new elements a ∈ V \ At.

Suppose that at step t we have computed the optimal as-
signment ĵt(i) = arg maxj∈At s(i, j) for each datapoint i.
We will refer to the attained objective as zi = s(i, ĵt(i)).
At iteration t + 1, we compute the marginal gain for each
a ∈ V \ At. The closest element to i in At ∪ a either re-
mains the same as in the previous step, or it becomes a.
Hence the marginal gain ∆f(a|A) of adding a to At is∑

i

max
(
s(i, a), s(i, ĵt(i))

)
− s(i, ĵt(i)) (2)

Define [X]+ = max(X, 0). Then the computational bot-
tleneck is computing the vector of marginal gains, i.e. the
maximum positive column sum of the matrixR = S−z1T :

max
j

∑
i

[Rij]+ = max
j

∑
i

[Sij − zi]+ (3)

Naive implementation requires computing all the elements
of this matrix3. We show that if the matrix S has a struc-
tured representation and allows fast matrix action (mutlit-
plication of the matrix by a vector) – then we can exploit a
randomized algorithm with good guarantees.

We first analyze the case of low-rank matrices, S = Ũ Ṽ T ,
where Ũ and Ṽ are n×d. We show that we can use a num-
ber of other structured matrices in Section 3.4. Now, if S is
low-rank with rank d then R is also low-rank with rank at
most d+ 1. Let U = [Ũ , − z] and V = [Ṽ , 1]. Then R =
UV T = S − z1T . Note that computing the plain column
sum for low-rank matrices is trivial: 1TR = (1TU)V T

thus reducing the computational complexity from O(n2)
to O(nd). However, the positive sign in 1T [R]+ makes it
considerably more difficult to exploit the low-rank factor-
ization. We study this problem next.

3.1 Maximum positive column sum problem

We would like to efficiently compute the maximum positive
column sum for a low-rank matrix R = UV T :

max
j

∑
i

[Rij]+ = max
j

∑
i

(
[UV T]+

)
ij

(4)

3Lazy greedy algorithms avoid computing some elements but
still evaluate a large number of columns of this matrix.

Algorithm 1 Approximate max-positive column sum
1. Uniformly at random sample r columns from the matrix R
and compute their sign patterns qi.
2. Aggregate sign-patterns into matrix Q = [q1, ...qr].
3. Let Y = (QTU)V and let y = maxi Yij .
4. Find ĵ = argmaxj yj .

Suppose we knew the binary ({0, 1}) sign-pattern q̂ of the
column achieving the maximum in (4), i.e. qi = 1{Riĵ>0}

where ĵ is the column achieving the arg max in (4). Then
we could compute

max
j

∑
i

[Rij]+ = max
j

∑
i

(
[UV T]+

)
ij

= max
j

[(q̂TU)V T]j

(5)

Also note, that for an arbitrary sign-pattern q, we have

max
j

[(q̂TU)V T]j ≥ max
j

[(qTU)V T]j (6)

We suggest to take a collection of r random sign-patterns
{q1, ...,qr} and evaluate the maximum value of the r.h.s.
in (6) over all of them. We take the sign-patterns from a
subset of columns of R sampled uniformly at random (an-
other choice can be i.i.d. binary vectors). Surprisingly,
such a simple scheme can be shown to satisfy good approx-
imation guarantees, which we describe in Section 4, and
also to give very accurate numerical results. In particular,
it is guaranteed to produce better results than the stochastic
greedy approach [19] with the same subset of columns.

The procedure is described in Algorithm 1. It produces a
lower bound

∑
iRiĵ on the maximum positive column sum

of R:

ĵ := arg max
j

max
j̃∈{j(1),...,j(r)}

qT
j̃
R:,j . (7)

3.2 Scalable submodular greedy algorithm

Now, to use this algorithm for efficient greedy submodular
optimization, we have to repeat it for k rounds of greedy
to generate k exemplars. At each round we simply recom-
pute the vector z and R = [Ũ , − z][Ṽ , 1]> and invoke
Algorithm 1. At the initial stage the vector z is zero, and
the initial marginal gains are simply the column-sums of S.
We summarize the steps in Algoritm 2.

The greedy algorithm is recovered if we find the exact col-
umn maximizing marginal gains: arg maxj

∑
i([R]+)ij .

This however would require O(n2) computation. By us-
ing the approach from Section 3.1 with r random signs, it
can be reduced toO(nr) by allowing approximate answers.

3.3 Further speed-ups

The approach proposed in the previous section can dramat-
ically reduce the computation of the greedy method from

Algorithm 2 Low Rank GReedy (LRGR)
Input: S = Ũ Ṽ T

Initialize: ĵ1 = argmaxj

∑
i[Ũ Ṽ T]ij . Set A1 = {ĵ1}.

Evaluate zi = s(i, ĵ1). Set t = 1.
for i = 1 . . . r do

i. Advance t→ t+ 1
ii. Let R = Ũ Ṽ T − z1T .
iii. Use (7) to approximately find

ĵt ≈ argmaxj

∑
i([R]+)ij .

iv. At = At−1 ∪ ĵt

v. Update zt: zt+1
i = maxj∈At s(i, j)

end for

O(n2) to O(nr) per each round of the greedy method. Yet,
we can improve the running time and accuracy further.

In the previous section the matrix Q of sign-patterns was
recomputed from scratch at each greedy iteration. Note
that if we store this matrix from the previous iteration, then
we only need to update QT z , while QT Ũ remains the
same. While reusing the same matrix Q on all iterations
may significantly impact accuracy, we can keep generating
new sign patterns but also keep re-using the computation-
ally inexpensive pre-computed old-sign patterns.

We also note that we can compute the complement sign-
patterns very inexpensively. Let q̄ = 1 − q. Then
(q̄TU)V T = (1TU)V T − (qTU)V T . Thus we can add
another r complement sign-patterns at the cost of comput-
ing the column sum of R = UV T .

Finally, the algorithm proposed in the previous section aims
to speed up the computation of the plain greedy algorithm.
In [19] an extension of stochastic greedy was proposed to
also accelerate the lazy-greedy approach by caching previ-
ously computed marginal gains and storing them in a prior-
ity queue. The same ideas can be used with our randomized
sign-pattern approach to develop its lazy-greedy variant.

3.4 Low-rank and other structured similarity
matrices

In Sections 3.1 and 3.2 we assumed that the similar-
ity matrix S is low-rank, which can happen if we use
inner-product similarity measure in a low-dimensional vec-
tor space (e.g word2vec). Note that the matrix of pair-
wise squared Euclidean distances is also low-rank for low-
dimensional feature spaces, and this also holds for matrices
based on arbitrary Bregman divergences, and hence for the
corresponding similarity matrices.

In addition to the low-rank assumption, we can also use a
variety of other structured matrix factorizations in exactly
the same way, as long as they allow fast-matrix action. Sup-
pose S = Ũ Ṽ T , then to apply the approach in Section
3.1 we simply need to be able to quickly compute QŨ and
(QŨ)Ṽ T . For example if Ũ and Ṽ have high-dimensional
but very sparse rows (e.g. the sparse one-hot bag-of-words

representation for text), then the matrix-vector products de-
pend on the number of non-zero entries in Ũ and Ṽ .

Other factorizations allowing fast matrix action include
sparse plus low-rank matrices, Fourier matrices, circulant
and convolution matrices, and even more advanced matrix
approximations including block-diagonal low-rank matri-
ces [24] and matrices with low displacement operators [25].

4 Theoretical analysis

In this section we show that LRGR achieves an approx-
imately optimal solution in expectation when sufficiently
many sign patterns are sampled. In the first part we show
approximation bounds that do not assume any structure on
the similarity matrix S. Subsequently, we try to provide
intuition behind how the low-rank structure on S can help
in achieving better solution by analyzing the case of rank-
2 similarity matrix. Finally, we analyze the case of data
distributed across tight clusters.

4.1 Structure-oblivious approximation guarantees

The results in this section do not exploit the structure on the
similarity matrix. The proof proceeds along similar lines
as [19]. We prove the result for the symmetric case when
the candidate exemplars belong to the set of points. LetA∗
be the optimal solution of problem (1) with |A∗| = k (if
the algorithm terminates with |A∗| < k, it will return the
optimal solution [21]), and At be the solution of LRGR
at step t. Let V denote the full index set of all the points
(V = {1, 2, . . . , n}). Let f(At) be the objective value for
set At and ∆(a|At) := f(At ∪ a)− f(At).

Using submodularity, we have

f(A∗)− f(At) ≤
∑

a∈A∗\At

∆(a|At) (8)

The following Lemma bounds the expected potential gain
of LRGR after step t.

Lemma 4.1. Given a current solution At, the ex-
pected gain of LRGR in the next step is at least
1−e−kr/n

k

∑
a∈A∗\At ∆(a|At) when signs from r randomly

picked columns are used.

Proof. Let R be the set of randomly picked columns with
|R| = r. The probability that one of the columns from
A∗ \ At is picked, is given by

P [R∩ (A∗ \ At) 6= φ] = 1− P [R ∩ (A∗ \ At) = φ]

= 1−
(

1− |A
∗ \ At|
|V \ At|

)r

≥ 1− e−
r|A∗\At|
|V\At| ≥ 1− e−

r|A∗\At|
n

Since 0 ≤ |A∗ \ At| ≤ k, using Jensen’s inequality we
have

1− e−
r|A∗\At|

n ≥
(

1− e− rk
n

) |A∗ \ At|
k

If LRGR picks one of the columns fromA∗ \At, the score
for that column will be evaluated exactly. Scores for the
columns whose sign pattern matches that of the picked col-
umn will also be evaluated exactly. The scores for all other
columns will be underestimated. As LRGR takes a maxi-
mum over all the scores, it will add a column to At which
will give a gain equal to at least that of the picked column
from A∗ \ At. As any of the columns from A∗ \ At is
equally likely to be picked, the exemplar at+1 added by
LRGR will yield

E[∆(at+1|At)] ≥ P [R∩ (A∗ \ At) 6= φ]

∑
a∈A∗\At ∆(a|A)

|A∗ \ At|

≥ 1− e−kr/n

k

∑
a∈A∗\At

∆(a|At).

Combining Lemma 4.1 with Eq. 8 we get

f(A∗)− f(At) ≤ k

1− e−kr/n
E[f(At+1)− f(At)] (9)

Taking expectation over At, we have

E[f(At+1)− f(At)] ≥ 1− e−kr/n

k
E[f(A∗)− f(At)]

(10)

Unrolling the above by induction, we get

E[f(Ak)] ≥

(
1−

(
1− 1− e−kr/n

k

)k
)
f(A∗)

≥
(

1− e−(1−e
−kr/n)

)
f(A∗)

≥
(

1− e−1(1 + e−kr/n)
)
f(A∗)

= (1− 1/e− e−kr/n)f(A∗).

Note that the above bound turns vacuous for r ≤
n
k ln 1

1−1/e ≈ 0.459n
k . When the similarity matrix is al-

lowed to have negative entries, the submodular objective
function may lose nonnegativity but it still remains mono-
tonic. In this case, one can obtain a guarantee of the form:

f(A∗)−E[f(Ak)] ≤ (e
1−k
k + e

−kr
n)(f(A∗)−E[f(A1)]).

4.2 Approximation guarantee under low-rank
assumption

The analysis in the previous section did not use the low-
rank assumption on the matrix R. We show that this as-
sumption is helpful not only to improve the computational

complexity of the proposed algorithm, but also to improve
the approximation compared to the stochastic greedy ap-
proach. To build some intuition of why the low-rank as-
sumption is helpful, consider the maximum possible num-
ber of distinct sign-patterns of columns of the matrix R. If
the matrix is full-dimensional, then any sign-pattern is pos-
sible, and there are 2n such sign patterns out of which n are
chosen. However, if R = UV T , and U and V are n × d,
then for a fixed U , the number of possible sign-patterns of
columns of R is reduced. In particular, as we show below,
for the 2-dimensional case, the number of possible sign-
patterns is 2n (instead of 2n): U has two columns, and
the sign patterns of any linear combinations of these two
columns generate only a small subset of possible sign pat-
terns.

More generally, if U is d-dimensional, then using the re-
sults in [10] for number of regions created by n hyperplanes
(in general position) in d dimensions, we have that the num-
ber of possible sign-patterns of R for a fixed U is given by:

2

d∑
i=1

(
n− 1
i− 1

)
(11)

For the 2-dimensional case, this number is 2n. If we as-
sumed that the column sign-patterns in our matrix R are
sampled uniformly at random with replacement from the
2n possible choices, then the expected number of unique
sign-patterns is

∑n−1
i=0 (2n−1

2n)i = 2n(1−(1−1/(2n))n) ≈
0.787n. So we expect some number of columns with re-
peated sign-patterns in the low-dimensional case. This
makes it easier for us to get a sign-pattern from our r sam-
pled columns of R that matches the sign-pattern of one of
the exemplars.

Let A∗ be the index set of optimal k exemplars. For the 2-
dimensional case, we consider the probability that at least
one of the r randomly sampled columns, indexed by set
R, will completely agree in signs with at least one of the
exemplars. The worst case for this probability is when all
the exemplars have exactly the same sign pattern since we
reduce our set of candidate signs that the sampled columns
can match to. This worst case probability is given as:

P (R∩A∗ 6= φ) + P (R∩A∗ = φ)(1− ((2n− 1)/2n)r)

= 1− (1− k/n)r + (1− k/n)r(1− ((2n− 1)/2n)r)

≥ 1− e−kr/ne−r/(2n).

The first term in the first line corresponds to the probability
of selecting one of the r sampled columns to be one of the
exemplars, and the second term corresponds to picking a
column that misses the set of exemplars, but whose sign-
pattern agrees with the sign pattern of one of the exemplars.
This probability of at least one agreement in sign patterns
is also a lower bound on the probability of Algorithm 1
recovering a column whose score is at least that of one of
the exemplars. For the best case when all the exemplars

differ with each other in at least one place in sign patterns,
the lower bound on the recovery probability increases to
(1 − e−kr/ne−kr/(2n)). If we ignore the structure on R,
the lower bound loosens to (1 − e−kr/n) which was used
in Section 4.1.

We should also note that this bound, although better than
stochastic greedy [19], is based on several worst-case sce-
narios and is still highly pessimistic for practical settings.
The uniform sampling assumption of sign patterns im-
plies that all regions created by the n hyperplanes [10] are
equally likely to contribute to the sign patterns, whereas
in practice the data is often non-uniformly distributed and
even occurs in clusters.

Furthermore, the analysis does not consider inexact
matches, where the sampled columns differ in sign patterns
with the exemplars only at a few places. This disagreement
in a small number of places will result in underestimating
the positive sum of the exemplar column to some extent.
However, if the score of the exemplar is mainly contributed
by a few data points (i.e., a few rows) and the gap between
exemplar score and the best non-exemplar score is suffi-
cient, the algorithm may still have a good chance in pick-
ing the exemplar column in next iteration. If this gap is
low, we do not lose much in terms of objective value by
picking one of the runner-up columns. Indeed, we empir-
ically observe a considerable performance gain (in terms
of objective value) over stochastic greedy on several real
datasets in Section 5.

4.3 Approximation guarantees under cluster
assumption

Here we consider another simplified scenario for better un-
derstanding of the sampling approach (7). We assume data
points form K disjoint clusters C1, C2, ..., CK satisfying
0 < m ≤ |Ck| ≤M ≤ n and

(a) Sij ≥ κ, ∀i, j ∈ Ck for some constant κ > 4
4+m/M .

(b) Sij ∈ [c− ε/2, c+ ε/2] for i, j not in the same cluster,
where c, ε are constants satisfying c < (κ− ε)/2 and
ε < m

4nκ.

The cluster assumption ensures that points in the same clus-
ter Ck have similarity at least κ, while points of differ-
ent clusters has similarity of bounded variance (in range
[c − ε/2, c + ε/2]). Note the low-variance condition for
points of different clusters is often satisfied in problem
of higher dimension due to the curse of dimensionality,
where uncorrelated points can have maximum distance in-
discernible to the minimum distance [4]. For example, in
document categorization, the semantically-unrelated doc-
uments have only stop words in common, which causes
unrelated documents to have almost the same similarity
to each others. Under the cluster assumptions (a)-(b), we

show that the sampling estimator (7) has approximation er-
ror bounded by 2nε as follows. A related clustering as-
sumption was used to analyze convex relaxations for ex-
emplar clustering in [6].

Theorem 4.1. Let j∗ and ĵ denote the greedy column se-
lected by exact criteria (3) and sampling criteria (7) with
r samples respectively. For data satisfying clustering as-
sumption (a)-(b), we have

n∑
i=1

[Riĵ]+ ≥
n∑

i=1

[Rij∗]+ − 2nε (12)

holds for each iteration t ≤ K with probability at least
1− δ if

r ≥ n

|C(j∗)|
ln(

1

δ
). (13)

where |C(j∗)| is the size of the cluster that contains j∗.

Proof. For t = 1, (12) holds directly since R = S and
no sampling is used (so ĵ = j∗). For t > 1, C(j∗) must
be a cluster that does not contain any exemplar chosen in
previous iterations. Otherwise, suppose C(j∗) contains an
exemplar j′ selected in previous iterate. We have

n∑
i=1

[Rij∗]+ ≤
∑

i∈C(j∗)

[Sij∗ − Sij′]+ +
∑
i/∈C

[Rij∗]+

≤ |C(j∗)|(1− κ) + nε

<
mκ

4
+
mκ

4
= mκ/2.

by assumption (a)-(b). However, picking any point j from
a cluster C that does not contain exemplar from previous
iterates gives

n∑
i=1

[Rij]+ ≥
∑

i∈C(j∗)

[Sij∗ − (c+
ε

2
)]+

≥
∑

i∈C(j∗)

[κ− κ/2]+ ≥ mκ/2,

which leads to contradiction.

Given that C(j∗) is a cluster not containing exemplar se-
lected from previous iterates, consider ĵ selected by the
sampling estimator (7). With number of samples r satis-
fying (13), we have at least 1−δ probability that one of the
sign-pattern vectors qj̃ is produced by a point j̃ ∈ C(j∗),
which has

qij̃ := 1[Siĵ − zi] = 1 , ∀i ∈ C(j∗) (14)

Figure 1: Average recovery rates vs. number of sampled columns (log-scale) for Algorithm 1 over 100 random trials. Data
is generated from uniform distribution on the unit sphere (left two plots) and standard Cauchy distribution (right two plots).

since zi = Sij for some j /∈ C(j∗). Therefore, we have

n∑
i=1

[Riĵ]+ ≥ max
j∈{j(1),..,j(r)}

n∑
i=1

qijRiĵ

≥ max
j∈{j(1),..,j(r)}

n∑
i=1

qijRij∗ ≥
n∑

i=1

qij̃Rij∗

≥
∑

i∈C(j∗)

qij̃Rij∗ +
∑

i/∈C(j∗)

qij̃Rij∗

≥
∑

i∈C(j∗)

[Rij∗]+ − nε,

(15)
where the last inequality is due to (14), assumption (b) and
Rij∗ := Sij∗ − Sij > 0 for some j /∈ C(j∗). On the other
hand,

n∑
i=1

[Rij∗]+ =
∑

i∈C(j∗)

[Rij∗]+ +
∑

i/∈C(j∗)

[Rij∗]+

≤
∑

i∈C(j∗)

[Rij∗]+ + nε.

(16)

Combining (15) and (16) leads to the conclusion (12).

5 Experimental results

We now study the performance of the proposed approach
on numerical experiments. We first consider the low-rank
maximum positive column sum problem from Section 3.1
corresponding to one stage of the greedy algorithm, and
then the low-rank greedy algorithm from Section 3.2.

5.1 Synthetic experiments

In this section we perform numerical simulations to study
the behavior of the proposed sign sampling approach in
Section 3.1 in recovering the top scoring columns. In
the first experiment, we independently sample rows of
U ∈ Rn×d and V ∈ Rn×d from a uniform distribution
on the unit sphere Sd−1, and take the similarity matrix to
be S = UV >. We conduct 100 random trials of gener-
ating pairs of U and V . For every sampled pair U and
V , we randomly sample 100 different sets of sign patterns

and use Algorithm 1 to estimate the highest scoring col-
umn using each set. We report the fraction of times the
estimated column is among the top scoring 0.5% columns
over all these random trials. Figure 1 shows the recovery
rate versus the number of sign patterns for n = 1K, 10K
and d = 2, 25 which clearly increases with the number of
sampled columns.

We repeat the same experiment with U and V generated ac-
cording to the heavy-tailed Cauchy distribution, and we re-
port the much more stringent recovery rate of the top scor-
ing column this time. We observe that Algorithm 1 per-
forms exceptionally well in recovering the top scoring col-
umn for both d = 2 and 25. Intuitively, this happens due to
the heavy tailed nature of Cauchy distribution, where only
a small subset of rows of S will contain the maximums
and minimums for each column. Hence, getting the correct
sign-pattern for these few rows will greatly increase the
probability of recovering the top column by Algorithm 1.
This example highlights the fact that the proposed LRGR is
capable of taking advantage of the underlying distribution
whereas stochastic greedy approach [19] remains oblivious
to the distribution of entries of S since it computes the max-
imum only over the sampled subset of columns. In the
Cauchy example, stochastic greedy will have a recovery
probability of ∼ 0.01 for n = 10K, r = 100 irrespective
of d, whereas Algorithm 1 empirically shows a recovery
rate of ∼ 0.96 for d = 25.

5.2 Experiments on Machine learning datasets

We compare hte proposed randomized low-rank greedy ap-
proach (LRGR) to several other competing methods for ap-
proximate exemplar clustering, focusing on alternative ap-
proximate greedy methods. We have not considered integer
programming and message passing based methods as they
do not scale to the dataset sizes we consider in the experi-
ments. We describe the contestants first4. We consider both
data-sets with low-dimensional feature representations, and
data-sets with high-dimensional but sparse feature repre-
sentation. For simplicity we focus on the inner-product
similarity measure here. The experiments are run on a sin-

4All the algorithms are written in python relying on numpy
and scipy packages for dense and sparse linear algebra.

gle commodity computer with 16 Gb of RAM.

Plain and lazy greedy As a baseline we used the stan-
dard greedy and lazy greedy algorithms, which do use
the low-rank structure to reduce the memory footprint, but
which compute all the required entries of the similarity ma-
trix. We also use the efficient update for the t-th step of the
greedy method, where we do not recompute the optimal
assignment of points to exemplars from scratch, but we re-
use the previous assignment at the t− 1-st step – and only
compare its best assignment to the new added exemplar.
Lazy greedy achieves the same objective value as plain
greedy. In our experiments with small number of exem-
plars the running time of lazy-greedy was similar or slower
than plain greedy, so the time is not reported. Lazy-greedy
can become significantly faster than plain greedy when the
number of exemplars is much higher, and it typically accel-
erates (benefits more from lazy evaluation) at later stages.

Random subset As a very simple baseline we obtain a
random subset of points as exemplars, and compute the cost
of optimal assignments of points to these exemplars.

K-means with cluster medoids (KmeansCTR). K-
means algorithm produces cluster centers that are not data-
points but their convex combinations. We use a heuris-
tic that ignores k-means cluster centers, and instead com-
putes the centroid (1-medoid) for each of the k-clusters in-
dependently. Initialization is done using k-means++ [1].
Note that for similarity matrices other than cosine similar-
ity comparison with k-means will not be meaningful, as
k-means assumes Euclidean distance between data-points.

Stochastic greedy (StochGr) The approach [19] selects
at each step a small subset of columns of the similarity ma-
trix, and only searches for exemplars among this set. We
use the same subset-size 100 as for the proposed algorithm.

KNN-greedy (KnnGr) A K-nearest neighbor graph for
the data is used to create a sparse approximation to the sim-
ilarity matrix which is non-zero for the K nearest neigh-
bors only [15, 26]. We use 100 nearest neighbors to give
the same number of parameters as stochastic greedy and
the proposed algorithm. We report two times for this al-
gorithm: total time taken including the construction of the
KNN-graph (pre-processing step needed to run the algo-
rithm), and just the time for exemplar clustering starting
with the sparse KNN graph already provided.

LR-greedy (LRGR) This is our proposed algorithm
which uses sign-patterns of 100 random columns selected
at each iteration from the similarity matrix.

Datasets. We use a collection of standard machine learn-
ing datasets from the UCI archive [5] of various sizes and

numbers of features (both dense and sparse), and report the
time and approximation quality in the table below. The
data-sets with label (RF) use a Random-Feature Kernel
Approximation method [23] to perform exemplar cluster-
ing with (RBF-Laplacian) Kernelized features, namely the
Random Binning Features.

The final data-set is the World TSP data set which contains
the latitude and longitude of 1,904,711 cities in the world5.
We use geographical distance (computed via polar coordi-
nate flat-Earth formula) between pairs of cities. To obtain a
low-rank approximation to the distance matrix D, we sam-
pled 100n pairs of distances and use low-rank matrix com-
pletion6 to find UV T ≈ D. Using rank d = 20, we obtain a
decomposition UV T with testing RMSE < 10−2. We use
the corresponding similarity matrix S = Dmax − UV T ,
where Dmax is the maximum element of D. Note that due
to the non-Euclidean nature of the similarity matrix, com-
parison with Kmeans-CTR is not meaningful.

Results We report the objective values in table 1 and the
timing numbers in table 2. The number of exemplars is
kept small in these experiments as all the contesting meth-
ods scale linearly with the number of exemplars. To reduce
this linear scaling one could either use the algorithms in a
distributed setting proposed in [20] or combine with lazy-
evaluation using a priority queue for marginal gains. For
methods involving stochasticity (e.g. random subset se-
lection in stochastic greedy, the proposed LRGR method,
and k-means initialization) we report an average objective
value and run-time over 10 trials.

We can see that the proposed low-rank greedy approach
with random projections provides a very close approxima-
tion to the exact greedy objective values at an orders of
magnitude faster time. We also see that among all the ap-
proximate algorithms the proposed method typically pro-
vides the best objective value (excluding the exact greedy
method), and always within the top two results. The time
is also competitive with other algorithms. K-means fol-
lowed by finding cluster centroids is quite a good con-
tender on small-dimensional data-sets, but its approxima-
tion quality can be poor on high-dimensional sparse data-
sets. Furthermore, K-means assumes a Euclidean distance
between data-points and does not apply to more general
distance matrices.7. For KNN-greedy the time is domi-
nated by the construction of the sparse nearest neighbors
graph. Once the graph is constructed the algorithm is fast,
and provides solutions which are quite reasonable although
not as good as the proposed approach. The construction
of the KNN graph can be accelerated using approximate

5Data is at http://www.math.uwaterloo.ca/tsp/world/.
6We use the low-rank matrix completion solver provided by

the authors of [28].
7For example, k-means can not be used with spherical

geodesic, transportation or string-edit distances, while there are
no such constraints for exemplar clustering.

Table 1: Objective values achieved by greedy submodular algorithms with inner product similarity metric and 10 exemplars.
Here davg is the average number of features per sample. Number of exemplars is 10. The best solution (after exact plain
greedy which we aim to approximate) is marked with one star, and second-best with two stars. The proposed approach
(LRGR) is typically most accurate, and is within the top 2 in all of our experiments.

Data N (M) d davg RND KmeansCtr StochGR KnnGR LRGR Greedy
Satimage 4435 36 36 3587.77 3997.6∗ 3969.38 3977.13 3983.4∗∗ 3976.42

Sector 6412 55197 163 381.5 667.01 717.96 777.23∗∗ 779.24∗ 787.53
Pendigits 7494 16 16 6925.22 7171.33∗ 7122.27 7024.70 7146.24∗∗ 7147.87

Pendigit-RF 7494 12891 100 2194.15 2962.44 2901.8 2994.0∗∗ 3004.27∗ 3015.23
RCV1 20242 47236 74 1217.67 1946.44 2003.26 2175.85∗∗ 2193.92∗ 2239.40

CodRNA 59535 8 8 53256.81 56442.23∗ 55845.54 55411.42 56133.72∗∗ 56146.50
CodRNA-RF 59535 7611 50 22290.93 26353.32∗∗ 25909.36 n/a (mem) 26533.53∗ 26746.18

Covtype 581012 54 11.9 490120.3 521045.25 521188∗∗ n/a (mem) 523629.12∗ n/a
Covtype-RF 581012 54509 50 86973.72 136830.64∗∗ 136357.15 n/a (mem) 146731.86∗ n/a
World-Scale 1904711 20 20 6974224.6 n/a 7309125.1∗∗ n/a (mem) 7408043.0∗ n/a

Table 2: Timing results of greedy submodular algorithms with inner product similarity metric. We allowed up-to 1 hour
for all the competing approaches.

Data N (M) d davg KmeansCtr StochGR KnnGR KnnGR-Ttl LRGR Greedy
Satimage 4435 36 36 0.085s 0.114s 0.178 1.36 0.15s 2.056s

Sector 6412 55197 163 2.613s 1.227s 0.366 7.49 4.82s 68.682s
Pendigits 7494 16 16 0.115s 0.232s 0.356 1.73 0.229s 5.430s

Pendigit-RF 7494 12891 100 2.240s 0.909s 0.313 6.46 3.24s 59.515s
RCV1 20242 47236 74 5.561s 2.106s 1.304 40.83 7.52s 375.067s

CodRNA 59535 8 8 0.637s 1.550s 3.974 19.77 1.82s 593.721s
CodRNA-RF 59535 7611 50 15.981s 5.818s n/a n/a 15.17s 2995.639s

Covtype 581012 54 11.94 9.107s 17.302s n/a n/a 24.17s n/a
Covtype-RF 581012 54509 50 102.257s 37.214s n/a n/a 140.96s n/a
World-Scale 1904711 20 20 n/a 53.4s n/a n/a 67.5s n/a

Figure 2: Av. objective values for LRGR and StochGR vs.
num. sampled columns on Satimage data. 25 trials.

nearest neighbors (ANN) techniques, for example based
on locality-sensitive-hashing (LSH) [9, 22], but that would
also affect the quality of the results. Finally, it is quite clear
that selecting random subsets is a rather poor (albeit very
fast) data-summarization approach and any other method
can provide a significant improvement.

The proposed low-rank greedy method achieved a slightly
better objective than the exact greedy method that it tries to
approximate in one experiment. This is not a contradiction
as selecting a suboptimal exemplar in the current step may
possibly improve the objective in further steps.

Dependence on the number of sampled columns. In
Figure 2 we plot the average objective value achieved via

Stochastic greedy and the proposed LRGR method vs. the
number of sampled columns. The values are averages over
25 trials. We see that LRGR achieves better values by mak-
ing better use of the samples, especially for smaller num-
bers of sampled columns.

6 Concluding Remarks

We developed a new approach for large-scale exemplar
clustering based on submodular greedy maximization with
structured similarity matrices. We propose a randomized
sign-pattern sampling approach to approximate the bottle-
neck computation of finding the element with the maximal
marginal gain. We establish accuracy guarantees, and eval-
uate the approach on large scale exemplar clustering prob-
lems on machine learning data-sets including up-to mil-
lions of data-points. Our current approach is serial and uses
a single processor, but it can also be used as a sub-routine
in previously proposed distributed approaches to extend ex-
emplar clustering to problems of much larger scale.

We thank Baruch Schieber and Robert Hildebrand for help-
ful discussions.

References

[1] D. Arthur and S. Vassilvitskii. k-means++: The ad-
vantages of careful seeding. In Proc. 18th ACM-SIAM
symposium on Discrete algorithms, 2007.

[2] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and
A. Krause. Streaming submodular maximization:
Massive data summarization on the fly. In Proc. Int.
conf. Knowledge discovery and data mining, 2014.

[3] F. Barahona and F. Chudak. Near-optimal solutions to
large-scale facility location problems. Discrete Opti-
mization, 2(1):35–50, 2005.

[4] K. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When is nearest neighbor meaningful? In
Database theory - ICDT99. Springer, 1999.

[5] C. Blake and C. J. Merz. UCI repository of machine
learning databases. 1998.

[6] E. Elhamifar, G. Sapiro, and R. Vidal. Finding exem-
plars from pairwise dissimilarities via simultaneous
sparse recovery. In Proc. NIPS, 2012.

[7] E. Elhamifar, G. Sapiro, A. Yang, and S. S. Sasrty.
A convex optimization framework for active learning.
In IEEE Int. Conf. on Computer Vision, 2013.

[8] B. J. Frey and D. Dueck. Clustering by passing mes-
sages between data points. Science, 315(5814):972–
976, 2007.

[9] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In VLDB, vol-
ume 99, pages 518–529, 1999.

[10] C. Ho and S. Zimmerman. On the number of regions
in an m-dimensional space cut by n hyperplanes. Aus-
tralian Math. Society Gazette, 33(4), Sep. 2006.

[11] L. Kaufman and P. Rousseeuw. Clustering by means
of medoids. North-Holland, 1987.

[12] A. Krause and D. Golovin. Submodular function
maximization. Tractability: Practical Approaches to
Hard Problems, 3:19, 2012.

[13] N. Lazic, B. J. Frey, and P. Aarabi. Solving the un-
capacitated facility location problem using message
passing algorithms. In AISTATS, 2010.

[14] H. Lin and J. Bilmes. A class of submodular functions
for document summarization. In Proc. ACL, 2011.

[15] E. M. Lindgren, S. Wu, and A. G. Dimakis. Sparse
and greedy: Sparsifying submodular facility location
problems. In NIPS Systems Workshop, 2015.

[16] H. B. McMahan, G. Holt, D. Sculley, M. Young, Diet-
mar Ebner, Julian Grady, L. Nie, T. Phillips, E. Davy-
dov, and D. Golovin. Ad click prediction: a view from
the trenches. In Proc. 19th ACM SIGKDD Int. Conf.
on Knowledge discovery and Data mining, 2013.

[17] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in
Neural Information Processing Systems, 2013.

[18] Michel Minoux. Accelerated greedy algorithms for
maximizing submodular set functions. In Optimiza-
tion Techniques, pages 234–243. Springer, 1978.

[19] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi,
J. Vondrak, and A. Krause. Lazier than lazy greedy.
arXiv preprint arXiv:1409.7938, 2014.

[20] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and
A. Krause. Distributed submodular maximization:
Identifying representative elements in massive data.
In Adv. Neural Information Proc. Systems, 2013.

[21] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher.
An analysis of approximations for maximizing sub-
modular set functions i. Mathematical Programming,
14(1):265–294, 1978.

[22] B. Neyshabur and N. Srebro. On symmetric and
asymmetric LSH for inner product search. In Inter-
national Conference on Machine learning, 2015.

[23] A. Rahimi and B. Recht. Random features for large-
scale kernel machines. In Advances in neural infor-
mation processing systems, pages 1177–1184, 2007.

[24] S. Si, C.J Hsieh, and I. Dhillon. Memory efficient
kernel approximation. In Proc. of the 31st Int. Conf.
on Machine Learning, 2014.

[25] V. Sindhwani, T. Sainath, and S. Kumar. Structured
transforms for small-footprint deep learning. In Ad-
vances in Neural Information Processing Systems,
pages 3070–3078, 2015.

[26] K. Wei, R. Iyer, and J. Bilmes. Fast multi-stage sub-
modular maximization. In Proc. of Int. Conf. on Ma-
chine Learning (ICML), 2014.

[27] I. E.H. Yen, D. Malioutov, and A. Kumar. Scal-
able exemplar clustering and facility location via aug-
mented block coordinate descent with column gener-
ation. In Proc. AISTATS, 2016.

[28] H.F. Yu, Hsieh C.J., S. Si, and I.S. Dhillon. Scal-
able coordinate descent approaches to parallel matrix
factorization for recommender systems. In IEEE In-
ternational Conference of Data Mining, 2012.

