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Abstract

Inferring the direction of causal dependence from
observational data is a fundamental problem in
many scientific fields. Significant progress has
been made in inferring causal direction from data
that are independent and identically distributed
(i.i.d.), but little is understood about this prob-
lem in the more general relational setting with
multiple types of interacting entities. This work
examines the task of inferring the causal direc-
tion of peer dependence in relational data. We
show that, in contrast to the i.i.d. setting, the di-
rection of peer dependence can be inferred us-
ing simple procedures, regardless of the form of
the underlying distribution, and we provide a the-
oretical characterization on the identifiability of
direction. We then examine the conditions un-
der which the presence of confounding can be
detected. Finally, we demonstrate the efficacy
of the proposed methods with synthetic exper-
iments, and we provide an application on real-
world data.1

1 INTRODUCTION

Inferring the direction of causal dependence between two
random variables from observational data is a fundamen-
tal problem in statistical reasoning. There have been many
advances in this area for data sets that are independent and
identically distributed (i.i.d.) [Janzing et al., 2012, Stegle
et al., 2010, Lopez-Paz et al., 2015]. For relational data,
recent work has studied the problem of inferring the ef-
fects of peers via experimentation [Muchnik et al., 2013,
Bakshy et al., 2012, Toulis and Kao, 2013]. However, the
problem of identifying causal direction from observational
relational data has yet to receive the same focus. In this

1A full version of this paper including supplementary material
can be found at http://kdl.cs.umass.edu/papers/
arbour-et-al-uai2016.pdf

work, we study the problem of inferring the causal direc-
tion of peer dependence from observational relational data.
We provide theoretical and experimental results to show
that the causal direction of peer dependence can be robustly
inferred from observational data by comparing the magni-
tude of two similarity measures (one for each candidate di-
rection).

For example, consider a study on the causes of personal
debt. Data consist of the net worth and the average monthly
discretionary spending of a large set of individuals, along
with the position of each individual within a social network.
One reasonable question is whether a person’s friends in-
fluence his or her spending habits. If a person’s spending
and wealth are correlated with the wealth and spending of
their friends, what can be inferred about the causal depen-
dence among these quantities? A person’s spending could
be caused by their friends’ wealth or vice versa (direct de-
pendence), or both quantities could be caused by an unob-
served variable (confounding).

This paper examines when and how it is possible to differ-
entiate among these scenarios. Specifically, we:

1. Identify a set of conditions under which the causal di-
rection of relational dependence can be consistently
inferred.

2. Investigate the effect of unobserved confounding on
this approach to causal inference, and provide a simple
test of relational confounding.

3. Provide an extension of our method to the case of non-
linear dependence via kernel embeddings.

4. Show that the proposed measures are robust to both
the magnitude of the noise and the functional form of
the true dependence, through a set of simulations un-
der a variety of graph structures and functional forms.

The rest of the paper is structured as follows. Section 2
describes the problem setting. Section 3 presents a test
of causal direction under deterministic linear dependence.

http://kdl.cs.umass.edu/papers/arbour-et-al-uai2016.pdf
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Section 4 considers a relaxation of the assumptions by al-
lowing for latent confounding and discusses the conditions
under which latent confounding can be identified. Section 5
generalizes these results to the case where the similarity
is measured by embedding the data in a reproducing ker-
nel Hilbert space (RKHS). Section 6 presents experimental
evaluation of these results using synthetic data and a va-
riety of marginal and conditional distributions, as well as
networks generated from the Erdős-Rényi, Watts-Strogatz,
and Barabási-Albert models. Section 7 presents a demon-
stration of our method on Stack Overflow, a large online
community where users ask and answer computer science
related questions.

2 PROBLEM SETTING

Relational domains consist of multiple types of entities that
interact with each other through multiple types of relation-
ships. Consider, for example, the domain of academic pub-
lishing: authors write papers, papers cite other papers and
so on. In this work, for clarity of exposition and without
loss of generality, we focus on networks, a specific type of
relational domains with a single type of entity (e.g., people)
and a single type of relationship (e.g., friendship)2.

An instantiation of a network consists of a set of people
and a set of friendships among these people. This can be
represented with an undirected graph G = 〈V,E〉 with n
vertices. Nodes correspond to people and an edge denotes
friendship between the nodes it connects. Every node of the
graph vi ∈ V is associated with a pair of random variables,
Xi and Yi. These correspond to attributes of a person, for
example wealth and spending habits. For every node, we
can define a new random variable as a function of the ran-
dom variables of its neighboring nodes. Specifically, in this
section, we define a new random variableXi

′ as the sum of
Xj over vi’s neighbors:

Xi
′ =

∑
{vj |〈vi,vj〉∈E}

Xj

Similarly,
Yi
′ =

∑
{vj |〈vi,vj〉∈E}

Yj .

For the remainder of the paper, we refer to functions of ran-
dom variables of neighboring nodes, such as Xi

′ and Yi′,
as relational variables and to random variables of the node,
such as Xi and Yi, as propositional variables. To avoid am-
biguity, we refer to dependence between a relational vari-
able and a propositional variable as relational dependence.

A very common assumption in relational domains is that of
templating, i.e., random variables in different nodes follow

2The extension to the more general multi-entity/multi-
relationship case is straightforward. We provide the necessary
details for this extension in the supplement.

the same distribution [Koller, 1999]. In our case, this would
imply that the distribution of Xi is the same for all i (and
the same for Yi, Xi

′, and Yi′). This allows us to reason
about four random variables on a model level: X , Y , X ′,
and Y ′. The task under consideration is determining the
causal direction of relational dependence. Put in another
way, we wish to determine whether X ′ → Y or Y ′ → X
is the true generative process.

Since we are reasoning over random variables across all
nodes of the network, it is convenient to represent them
as vectors. Let x = 〈X1, . . . , Xn〉 be a vector with the
random variables Xi for every node and, similarly, x′ =
〈X1

′, . . . , Xn
′〉. Let A denote the adjacency matrix of the

graph defined as:

Aij =

{
1, if (vi, vj) ∈ E.
0, otherwise.

We note that A is a symmetric matrix since G is an undi-
rected graph. We can write the vector of the sum of
the friends (i.e., the vector x′) as x′ = Ax. Similarly,
y′ = Ay.

We use D to denote the degree matrix of the graph:

Dij =

{
di, if i = j.

0, otherwise.

2.1 UNDERLYING ASSUMPTIONS

Throughout the paper, we make the following assumptions:

A1. G is an undirected graph.

A2. Each node v ∈ V has degree of at least 1.

A3. The distribution ofXi and Yi is the same for all vi ∈ V
(templating).

A4. There are no feedback cycles, i.e. Y → X ⇒ X 6→ Y
for any two (relational or propositional) variables.

Further, we initially assume (and later relax that assump-
tion) that:

A5. There are no confounding variables, i.e., unobserved
variables that are common causes of the observed at-
tributes.

Section 4 is devoted to examining under which conditions
this assumption can be loosened, while maintaining the
ability to identify causal direction. Moreover, assumptions
A4 and A5 mirror those found in the literature on deter-
mining causal direction between two propositional vari-
ables [Stegle et al., 2010, Janzing et al., 2012, Lopez-Paz
et al., 2015].



3 DIRECTION UNDER LINEAR
DEPENDENCE

In this section we show that, under the assumptions of lin-
earity and a small amount of noise, peer dependence is
asymmetric and the true causal direction can be consis-
tently inferred. This is an inherent property of relational
domains. The extension to non-linear dependencies is pro-
vided in Section 5.

To measure dependence between variables, we consider
the square of Pearson’s correlation, a common and widely
employed measure of linear correlation between variables.
Pearson’s correlation between two variables X and Y can
be computed from a sample x, y as follows:

ρ(x,y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

where x̄ and ȳ are the means of x and y respectively. We
consider the square of the correlation to restrict the range
of the metric to [0,1], rather than [-1,1].

Given a measure of dependence, a reasonable question is
whether the measure is symmetric for relational data. Sur-
prisingly, it is not. Given this, another reasonable question
is what can be inferred by examining the dependence val-
ues in both directions. Surprisingly, the causal direction of
dependence can be inferred from the resulting asymmetry.

We begin by handling a simplified case: Y is a determinis-
tic function of the X values of related nodes. Specifically,
we assume that Yi is the scaled mean of theXj variables of
the related instances:

Yi =
β

di

di∑
i=1

Xj

Or, in matrix notation: y = βD−1Ax.

Under certain assumptions about the structure of the graph
and the form of the dependence, the squared correlation in
the causal direction will be greater that the squared corre-
lation in the opposite direction.

Proposition 1. Assume that G is a d-regular graph3, the
true generative process is y = βD−1Ax for some con-
stant β, and assumptions A1-A5 hold. Then, ρ2(x′,y) >
ρ2(y′,x).

Proof. The left-hand-side of the inequality, given that by
definition x′ = Ax, can be written as:

ρ2(x′,y) = ρ2(Ax, βD−1Ax)

= ρ2(Ax,
β

d
Ax) = 1

3A graph is d-regular if every vertex has degree d.

It remains to show that 1 > ρ2(y′,x) which holds, unless
ρ2(y′,x) = 1. Equality holds only when y′ = βAD−1Ax
is a linear combination of x, or in words, when the values
of a node’s friends of friends are a linear combination of
that node’s value. For random values of X , that happens
for a degenerate network structure where every node has
one friend of a friend and is the exact same starting node.
This would happen, for example, in the case of a regular
graph with degree 1 (pairs of nodes).

In the case where Y is a noisy function of X , a similar
inequality holds.

Proposition 2. Assume that the true generative process is
y = βD−1Ax+ ε for some constant β, where ε is a vector
with the noise terms. Moreover, assume that assumptions
A1-A5 hold and X and Y are scaled to mean 0. Then the
following holds:

ρ2(x′,y) > ρ2(y′,x)⇔
Var(AD−1Ax) + Var(Aε)

Var(D−1Ax) + Var(ε)
>

Var(Ax)

Var(x)
.

A full derivation can be found in the supplement. The im-
plication of proposition 2 is that the causal direction can be
accurately inferred, as long as the relative influence of the
noise distribution is small in comparison to the relationship
between AD−1x and y. As we show during our experi-
mental evaluation in Section 6, the method is quite robust
to the effect of noise in practice.

4 REASONING ABOUT CONFOUNDING

Throughout Section 2 we assumed the absence of con-
founding influences (assumption A5). However, in many
real-world settings, this proves to be an unrealistic assump-
tion. Within the relational setting, there are two distinct
ways in which the relationship between variables can be
confounded:

1. x and y may share a common relational cause, Az,
i.e., Az→ x and Az→ y.

2. There is a variable z that is a non-relational cause of x
and a relational cause of y, i.e., z→ x and Az→ y.

In what follows, we show that the first scenario is identifi-
able from data, while the second one is not.

Proposition 3. If Cov(Ax, Ay) ≥ Cov(Ax,y) and
Cov(Ax, Ay) ≥ Cov(Ax,y), then there exists a rela-
tional variable which is a common cause of x and y.

The proof is deferred to the supplement. Proposition 3 im-
plies a very simple procedure for ruling out the presence
of mutual relational confounding between two variables.



First, the relative dependence is measured between Ax,y
and Ay,x respectively. Then, these two values are com-
pared against the measured dependence between Ay, Ax.
If neither are larger than the between-relational variable de-
pendence no determination of direction is made, since ob-
served dependence is likely due to confounding.

We now turn to scenario two, which yields the following
negative result:

Corollary 1. Under confounding scenario 2, in the ab-
sence of noise, a false conclusion of dependence Ax → y
will be made.

Proof. Assume the generative structure is given by:

x ∼ z

y ∼ D−1Az

It can be immediately seen that the form of this depen-
dence is identical to the form of proposition 1, where we
substituted z for the x. It follows that, in the no-noise set-
ting, an incorrect determination of direct causation will be
made.

Note that this also applies in the case of a small amount of
noise, as implied by proposition 2. This result shows that
without the assumption of no-confounding a determination
of non-causation can be reliably implied, but the converse
is not necessarily true.

5 AN EXTENSION TO NON-LINEAR
DEPENDENCE

In the previous section, we showcased the applicability of
our method for detecting linear dependence in relational
data using correlation. An extension to more complex vari-
ables and non-linear dependence functions can be achieved
by applying the kernel trick.

Some background on kernel embeddings is useful. Let X
be a non-empty set, (X ,A) be a measurable space whereA
is a σ-algebra on X , and let P be the set of all probability
measures, P , on X . H is the RKHS of the functions f :
X → R with the reproducing kernel k : X × X → R. The
mean map is a function µ : P → H that defines a kernel
embedding of a distribution intoH:

µP = µ(P ) =

∫
X
k(x, ·)dP (x)

If a characteristic kernel is used, then this mapping is
unique, i.e., there is an injective function between a distri-
bution and its kernel mean value. In this work, the purpose
of kernel mean is twofold. For propositional variables, it
is used to represent the underlying distribution and, as we
shall see, can be used directly in a test for dependence. For

relational variables, the mean embedding serves as an ag-
gregation function for observations. The advantage of us-
ing the kernel mean embedding is that, under the assump-
tion that the underlying distribution belongs to the expo-
nential family, the underlying distributions are represented
completely.

To reason over the distance between distributions, we de-
fine a second kernel,K, over the kernel means. Christmann
and Steinwart [2010] showed that if the kernel inducing µ
(k) is characteristic and K is the Gaussian kernel, then K
is universal and thus, characteristic. This kernel is defined
as:

K(µx, µ
′
x) = e

‖µx−µ′x‖
2
F

2θ (1)

where
√
θ is the bandwidth of the kernel.

In addition to this measure of similarity between relational
instances, we define a dependence measure. The centered
kernel target alignment (KTA) is a normalized measure of
dependence introduced by Cortes et al. [2012] within the
context of multiple kernel learning. The measure is defined
as:

KTA(x,y) =
〈Kc

x,K
c
y〉F

‖Kc
x‖F‖Kc

y‖F
(2)

Where ‖ · ‖F is the Frobenius norm, 〈Kc
x,K

c
y〉F is the

Frobenius norm of the inner product between Kc
x and Kc

y

which is calculated by taking the trace of the inner product.
Kc

x is a centered kernel matrix, defined as:

Kc
x =

[
I− 1

m
11T

]
Kx

[
I− 1

m
11T

]
where I is the identity matrix and 1 is a column vector of
ones with length m. If a linear kernel is used, KTA reduces
to squared Pearson’s correlation, which has been our mea-
sure of focus thus far. Using this connection, the following
corollary provides for consistent estimation of causal direc-
tion under the deterministic case with arbitrary functional
dependence.

Corollary 2. Under assumptions A1, A2, A3, A4, A5, and
further assuming that the generative structure is given by
y = D−1Aφ(x)β, then KTA(Ax,y) ≥ KTA(Ay,x).

This follows as a straightforward extension of propo-
sition 1. Because we are given by assumption that
KTA(Ax,y) = 1 and KTA is bounded from above by
one, the inequality holds. Equality occurs only when the
values of each node’s friends of friends can be expressed as
a sum of (feature-space embedded) values. For random val-
ues of X, this is reduced to the degenerate case of a graph
of degree 1, as in proposition 1.

In practice, we note that the KTA based comparison re-
lies on a number of hyper-parameters. The difficulty in



choosing these parameters can result in poorer empirical
performance. This problem has also been observed for
other kernel-based approaches for causal inference [Zhang
et al., 2011]. We leave the investigation of hyper-parameter
selection as future work.

6 EXPERIMENTS

Our theoretical results focus on regular graphs, linear de-
pendence, and absence of noise. In this section, we ex-
amine the effect that the network structure, the functional
form of the dependence, and the presence of noise have on
the efficacy of the linear and kernel based methods. 4

6.1 REGULAR NETWORKS

We first considered regular graphs with linear
dependence—a setting that matches our theoretical
analysis—and we examined the effect of noise. We con-
sidered networks with the total number of nodes ranging
from 100 to 500 and varied the degree between 2 and 22 by
increments of 5. For every graph structure, we generated
data as follows:

x ∼ N (0, 1)

ε ∼ N (0, 1)

y ∼ D−1Ax + βε

where β is the coefficient of the noise and was varied be-
tween 0 and 2.

Figure 1 shows the relationship between D−1Ax and y
for varying values of β. In the noiseless case (Figure 1a),
D−1Ax and y are perfectly linearly correlated, as expected
from the generating process. However, as the noise in-
creases, the correlation betweenD−1Ax and y decays very
quickly, approaching an adversarial case by the time the
noise coefficient is β = 1.0.

We then measured dependence in each direction (x andAy,
y andAx). The direction that produced the higher value for
dependence was recorded as the inferred causal direction.
To measure dependence, we used (i) the square of Pear-
son’s correlation, and (ii) KTA using RBF kernels with a
fixed bandwidth of 1.0 for all kernel calculations. Figure 2c
shows the accuracy of both methods for a graph with 500
nodes and degree 7, while varying β. As expected from the
our earlier theoretical results, both methods perform per-
fectly in the noise-less case, and continue to do so through
β = 0.5. The linear method is significantly more robust to
noise, remaining nearly perfect until β = 1.0.

We also examined the interplay between the graph structure
(degree and number of nodes) and and the performance of

4Code is available at https://github.com/darbour/
RelationalCausalDirection.git.

each method. Figure 2a shows the performance for the case
of a 500-node graph with noise coefficient of 1.0 with the
degree varied between 2 and 22. Both methods become
systematically worse as the degree (and thus the density of
the network) increases. This is expected behaviour since
an increase in the degree results in a lower effective sam-
ple size [Jensen and Neville, 2002], which will reduce the
expected efficacy of both methods. The converse of this
effect can be seen in Figure 2b, where the accuracy of the
linear based approach improves significantly as the size of
the network increases while the degree is kept constant (and
thus the density of the network decreases).

6.2 NON-REGULAR NETWORKS

We next compared the performance of both methods to a
departure from the assumption of network regularity. We
considered the three most common generative models of
graphs. The Erdős-Rényi model creates networks where
two nodes are connected with a given probability. Through-
out the experiments, we considered a fixed connection
probability equal to 0.2. The Watts-Strogatz model gener-
ates “small-world networks”. It begins with a lattice with a
given neighborhood size and randomly rewires edges ac-
cording to a fixed probability. For our experiments, we
used neighborhood size 5 and rewiring probability equal
to 0.2. The final generative model we considered was the
Barabási-Albert model. This model generates graphs that
display preferential attachment. For our experiments the
power of preferential attachment was set to 1.0. For each
network we considered sizes between 100 and 1000, by in-
crements of 100, with 20 graphs being drawn for each size.

We then considered the following data generation scenarios
for all graph types:

x ∼ N (0, 1)

ε ∼ N (0, 1)

y ∼ f(D−1Ax) + βε

where f(·) is a function of D−1Ax. We considered three
functional forms:

• f(·) is a simple linear function (linear)

• f(D−1Ax) = tan(D−1Ax) (nonlinear)

• f(D−1Ax) =
(
D−1Ax

)4
(quad)

For each setting, β was varied between 0 and 2 by incre-
ments of 0.25.

The performance of both the linear and KTA method for
fixed network size of 1000 nodes with the magnitude of
noise varied is shown in Figure 4. For the Barabási model
under linear dependence, both the linear and kernel meth-
ods appear to be very robust up until a noise coefficient of

https://github.com/darbour/RelationalCausalDirection.git
https://github.com/darbour/RelationalCausalDirection.git


(a) cε = 0 (b) cε = 0.25 (c) cε = 0.5 (d) cε = 1 (e) cε = 2

Figure 1: Scatterplots for the sum of X values of related nodes (x-axis) vs. the sum of X values of related nodes with
additive Gaussian noise (y-axis). The noise coefficient (cε) varies from 0 to 2. The underlying network structure is a regular
network of degree 10 with 500 nodes.
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Figure 2: Orientation accuracy for regular graphs for varying degree (2a), size of network (2b), and noise coefficient (2c).

2.0. The KTA based method generally outperforms the lin-
ear dependence method for non-linear dependencies. This
is to be expected, as Pearson’s correlation is a measure of
linear dependence.

The performance in the case where β is held to 0.5 and
the size of the network is varied from 100 to 1000 can
be seen in Figure 3. Here we can see that in both the
Barabási-Albert and Watts-Strogatz graph models, Pear-
son’s correlation and KTA achieve better performance un-
der linear dependence as the size of the network increases.
However, for in the case of the Erdős-Rényi models both
methods perform poorly consistently as the size of the net-
work increases. This is due to the nature of the graph-
generation process. Both the Barabási-Albert and Watts-
Strogatz models become increasingly sparse as the size of
the network is increased. However, in the case of Erdős-
Rényi, the probability connection is constant. As a result,
the effective sample size remains low when the number of
nodes increases. This likely accounts for the poor perfor-
mance of the linear estimator. The opposite effect is seen in
the case of the Barabási-Albert model. In nearly all cases
the performance of the estimators is highest in the case of
the Barabási-Albert networks.

6.3 A COMPARISON TO RELATIONAL
BIVARIATE EDGE ORIENTATION

We also compared our results to the relational bivariate
edge orientation (RBO) [Maier et al., 2013], the only other
known method for testing causal direction in relational
data. Maier et al. [2013] introduced the relational bivariate
edge orientation (RBO) as an edge-orientation procedure
within the context of learning causal models of relational
domains. RBO is defined with respect to conditional in-
dependence properties of relational models. Specifically,
rephrasing the definition of Maier et al. [2013] for single-
entity/single-relationship networks, for a relational depen-
dence between Y ′ and X , RBO checks if Y ′ is in the sepa-
rating set of X and X ′. If not, then Y ′ is effectively a “re-
lational” collider and is oriented as such: Y ′ ← X . Other-
wise, the only alternative model is Y ′ → X , given that de-
pendencies that induce feedback cycles (such as X → X ′)
are excluded by assumption. The correctness of RBO is
defined with respect to a conditional dependence oracle. In
practice, Maier et al. [2013] follow the following procedure
to infer causal direction between two relational variables:

1. Learn a linear model x ∼ D−1Ax + D−1Ay to de-
termine if x |= D−1Ax | D−1Ay

2. If x 6⊥⊥ D−1Ax | D−1Ay, then return D−1Ax → y,



Figure 3: Orientation accuracy for various network types and functional forms, as the size of the graph increases. The
noise coefficient is set to 0.5.

otherwise return D−1Ay→ x

We applied this procedure to the linear data-generating sce-
narios used in the previous two subsections, with one mod-
ification. Rather than testing a single perspective, we ex-
plicitly tested the conditional independence facts from the
perspective of both x and y. We found that between all
scenarios, RBO failed to induce dependence in 80-90% of
cases. This has important ramifications for the RCD algo-
rithm of Maier et al. [2013]. As currently implemented,
the RBO rule would have produced approximately %50 er-
ror rate, since it does not explicitly check both directions.
Using our more conservative method, RBO would fire less
frequently. In contrast, by incorporating the findings of the
more direct marginal comparison presented here, vast num-
bers of edges would be accurately oriented. We plan on ex-
amining further integration of our findings into joint causal
structure learning algorithms in future work.

7 REAL WORLD DEMONSTRATION

In contrast to the propositional setting, where there is a
number of labeled ground-truth data-sets for testing novel
methods of causal inference (e.g. [Lichman, 2013]), to our
knowledge, there are no known publicly available datasets
which contain ground-truth relational causal relationships.
In the absence of the ability to verify the relative efficacy
of our findings on real-world datasets, we provide a demon-
stration of our method on a real-world dataset. Specifically,
we considered Stack Overflow, an online community where

users pose and answer questions regarding software devel-
opment. A user can post a question, which can be answered
by anyone else within the community. Other users can then
up/down vote questions and the given answers. These votes
are tracked and the accrual of achieved points is displayed
as the “reputation” of a user on the site. Moreover, users
can comment on a question. Comments receive votes as
well, but do not affect the reputation of a user. The dataset
consists of all users, questions, answers, comments, and
votes from the inception of the site to 2014.

We tested three questions about user behavior on Stack
Overflow. For every question we consider 100 sub-samples
of 1000 data points. We computed KTA and Pearson’s cor-
relation in each direction. Significance of dependence was
determined by performing permutation tests with 1000 per-
mutations. For all tests we set the significance threshold to
be 0.01. When dependence was determined to be statisti-
cally significant, we also recorded how many times each
direction was chosen by comparing test statistics in both
directions.

The first question was: “Is there a relationship between the
quality of a question and the quality of its subsequent an-
swers?” To answer this, we used the scores of the ques-
tions and answers as proxies for their quality. All methods
determined significance in both directions across all trials.
However, the normalized statistics consistently determined
the direction of dependence to be Question Quality →
Answer Quality, while both of the un-normalized statistics
consistently determined the direction of dependence to be



Figure 4: Orientation accuracy for various network types and functional forms, as the coefficient of the noise increases.
The network size was kept constant at 1000 nodes.

Question Quality ← Answer Quality. Clearly, the former
conclusion matches intuition and temporal ordering far bet-
ter than the latter.

The second question we considered was whether users with
high reputation receive higher quality answers. This was
quantified by using the reputation of a user and the score
of the answers as a proxy for quality. In this case, we
found that KTA and Pearson both detected significance
for both directions. For direction, we found that both
KTA and Pearson determined direction to be Reputation→
Answer Quality for over 90% of the cases. This indicates
that there may be bias in the Stack Overflow community
towards questions asked by high reputation users. We cau-
tion that this does not take into account the possible latent
confounder of question quality, i.e., higher reputation users
may simply ask higher quality questions.

Finally, we looked at the efficacy of comments as a qual-
ity improvement mechanism, i.e., whether allowing users
to comment on a question causes the poster to improve or
clarify her post. We constructed this test with the comments
posted for a question and whether revisions were subse-
quently made to the question. In this case we found that
all of the methods inferred that there was not a significant
relationship between the score of the comments and sub-
sequent revisions to posts. This negative result indicates
that the commenting system provided by Stack Overflow
is not an effective mechanism for improving the quality of
questions on the site.

8 RELATED WORK

Relevant work to our investigation of methods for deter-
mining peer dependence in relational data falls into four
basic categories. The most closely related work examines
versions of this specific task with alternative methods. For
example, Maier et al. [2013], Rattigan [2012], and Poole
and Crowley [2013] provide scenarios in which an asym-
metry may arise similar to that observed in our tests for
direction. However, in contrast to prior work, we study the
phenomenon of asymmetric dependence directly and pro-
vide a formal examination which provides guarantees to the
circumstances under which this asymmetry can be reliably
leveraged. Further, we provide extensive simulation exper-
iments that further show conditions under which direction
can be found by considering the difference in dependence
in both directions.

A second category of related work focuses on measuring
causal dependence in non-relational (i.i.d.) data. For ex-
ample, Peters et al. [2014] examine the problem of deter-
mining the direction of dependence with i.i.d. data by ei-
ther assuming non-Gaussian noise and linear dependence
or non-linear dependence and Gaussian noise. The prob-
lem of identifying causal direction in the case of determin-
istic, i.e., non-noisy data, was studied by Daniusis et al.
[2010]. The setting considered was propositional data, and
the proposed solution leverages properties of information
geometry in order to find asymmetries between the condi-
tional distributions of the two variables. In contrast, the
relational setting considered provides a much more direct



mechanism for determining direction.

A third thread of related work aims to detect non-causal
dependence in relational data. This task has attracted atten-
tion in both statistical relational learning (SRL) community
and in multiple areas of the social sciences. In SRL, Jensen
and Neville [2002] use a χ2 test to detect auto-correlation
in relational data and show its effect for feature selection.
Angin and Neville [2008] introduce a shrinkage estimator
for auto-correlation in the presence of varying dependence
strength. However, both of these rely on empirical evalu-
ation as evidence of correctness. Dhurandhar and Dobra
[2012] and London et al. [2013] provide theoretical analy-
sis for the inductive error of classification and regression in
the relational setting.

In the social sciences, relational dependence has been ex-
amined under the monikers of peer influence, spillover,
and interference. In the experimental setting, Eckles et al.
[2014] characterize the threat to validity arising from the
bias induced by relational dependence and provide exper-
imental designs to reduce these effects. Manski [2013],
VanderWeele [2008], and Aronow and Samii [2013] ex-
amine methods for removing the bias associated with rela-
tional dependence, assuming discrete or linearly dependent
data. Toulis and Kao [2013] provide conditions for experi-
mental design with binary treatments to identify peer influ-
ence. Ogburn and VanderWeele [2014] characterize rela-
tional dependence in terms of graphical models, but do not
present an explicit testing procedure. Work studying ho-
mophily and contagion (e.g., Christakis and Fowler [2009],
La Fond and Neville [2010]) is related but distinct in the
task setup, as we do not assume the availability of temporal
information.

Finally, our work is strongly connected and can serve as
a complement to existing work on causal learning of re-
lational domains. Maier et al. [2013] and Marazopoulou
et al. [2015] present constraint-based algorithms to learn
the structure of relational models from data. However, for
their experiments they either rely on a d-separation oracle
(without actual data), or use linear regression with mean-
aggregation on synthetically generated data. As we showed
in our synthetic experiments, these choices can lead to a
large number of type II errors. This is especially trou-
blesome for constraint-based structure learning algorithms
where type II errors can lead to large deviations from the
true causal model [Cornia and Mooij, 2014]. Such algo-
rithms could leverage our test in order to improve results
reported on data. Additionally, the directionality results
presented in this paper have implications for future work in
constraint-based structure learning algorithms, since they
imply a smaller Markov-equivalence class than what is
commonly assumed.

9 CONCLUSIONS AND FUTURE WORK

Inferring relational dependence is a task of general inter-
est in a wide number of fields, from statistical relational
learning to the social sciences. In this work, we have stud-
ied the problem of inferring causal direction in relational
data. We have shown that, in contrast to the propositional
setting, causal direction can be accurately inferred in rela-
tional data under the simplest functional forms such as lin-
ear deterministic dependence, without additional assump-
tions on the distribution of the underlying data. We then
studied the problem of identifying confounding, showing
the conditions when the presence of a relational confound-
ing variable can be identified. Our experimental evaluation
shows that these measures are robust, providing accurate
inference under model and network mis-specification.

There are several promising avenues for future research.
For causal learning, the ability to detect the direction of de-
pendence in relational data implies that a different Markov
equivalence class [Spirtes et al., 2000] holds for the rela-
tional setting than what is commonly assumed. Integration
of the findings of this work into a causal learning algorithm
could substantially improve the efficacy of existing meth-
ods such as RCD [Maier et al., 2013]. Further analysis of
the interaction between the network structure and inference
may further strengthen the robustness of the methods dis-
cussed here. Finally, the asymmetries shown to be inherent
to relational data here may result in significant bias of con-
ditional independence testing procedures. Incorporating
this additional information is a first step in developing ro-
bust measures of conditional dependence in relational data
to help determine causation, a problem which has broad ap-
plication in both the statistical learning and social science
communities.
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