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Abstract

Accounting for different feature types across
datasets is a relatively under-studied problem in
domain adaptation. We address this heteroge-
neous adaptation setting using principles from
parallel transport and hierarchical sparse coding.
By learning generative subspaces from each do-
main, we first perform label-independent cross-
domain feature mapping using parallel transport,
and obtain a collection of paths (bridges) that
could compensate domain shifts. We encode the
information contained in these bridges into an
expanded prior, and then integrate the prior into
a hierarchical sparse coding framework to learn
a selective subset of codes representing holistic
data properties that are robust to domain change
and feature type variations. We then utilize la-
bel information on the sparse codes to perform
classification, or in the absence of labels perform
clustering, and obtain improved results on sev-
eral previously studied heterogeneous adaptation
datasets. We highlight the flexibility of our ap-
proach by accounting for multiple heterogeneous
domains in training as well as in testing, and by
considering the zero-shot domain transfer sce-
nario where there are data categories in testing
which are not seen during training. In that pro-
cess we also empirically show how existing het-
erogeneous adaptation solutions can benefit from
the findings of our study.

1 INTRODUCTION

Domain adaptation, which addresses the problem of change
in data characteristics across training (source domain) and
testing (target domain) datasets, has received substantial
attention over the last few years [Daume III and Marcu,
2006, Gopalan et al., 2015]. Its utility for visual recognition
problems has been adequately demonstrated by several ef-

forts that have utilized principles from distance transforms
[Saenko et al., 2010], max-margin methods [Duan et al.,
2009], manifolds [Gong et al., 2012], dictionary learning
[Qiu et al., 2012] among others. Many of these approaches
have addressed settings where the source domain is labeled
and the target domain is unlabeled (unsupervised adapta-
tion), when the target domain also has partial labels (semi-
supervised adaptation) and when there is more than one
domain in the source and/or target (multiple domain adap-
tation). However they assume that data, across domains,
is represented by same type of features with same dimen-
sions. This is not always possible in practice, given the
prevalence of multi-modal sensors, and there have been rel-
atively few efforts in the literature addressing the heteroge-
neous domain adaptation (HDA) setting which allows dif-
ferent feature types across domains.

One of the earliest efforts is by [Dai et al., 2008] that
proposed a translated learning framework using risk min-
imization principles to bridge data across different fea-
ture types. [Prettenhofer and Stein, 2010] utilized struc-
tural correspondence learning by identifying pivot features
that share similarities across domains. While such mod-
els have restrictions on the type of applications where they
can be deployed, [Shi et al., 2010] proposed a more generic
heterogeneous spectral mapping framework that learns an
embedding to obtain a common domain-invariant feature
subspace that optimally represents data from each domain.
Along similar lines, [Wang and Mahadevan, 2011] pro-
posed a manifold alignment approach that bridges source
and target domain manifolds through a latent space that in
addition to preserving topology of each domain, maximizes
the intra-class similarities and inter-class dis-similarities
across domains. [Kulis et al., 2011] approached this prob-
lem by learning asymmetric kernel transformations that
perform cross-domain data mapping using semantic sim-
ilarity. More recently, [Li et al., 2014] proposed a fea-
ture augmentation strategy coupled with max-margin clas-
sifiers, whose formulation resembles multiple kernel learn-
ing that in turn guarantees global optimal solution, and
[Yeh et al., 2014] studied the utility of canonical correlation
subspaces to this problem. Most of these methods either



address the HDA problem by learning projections for each
domain onto a common latent space where certain proper-
ties are satisfied, or by learning feature mapping from one
domain onto another directly.

We take a rather different approach which, instead of learn-
ing a few complex transformations to map domains, learns
several simpler transformations that explain how data from
different domains can be bridged. In learning such trans-
formations we bring the domains to a common dimension
using simpler generative information, instead of more com-
plex objectives tied to the domain structure and data simi-
larities. What we gain by doing so is a richer ‘expanded’ set
of prior information which could be harnessed by hierar-
chical learning methodologies to perform inference. More
specifically, givenN domains, with each domain represent-
ing the data with different feature type (thus having differ-
ent dimension), we group the data from each domain into
k clusters based on their feature similarity and obtain gen-
erative subspaces corresponding to each cluster by doing
principal component analysis (PCA). We fix all subspaces
to have the same dimension p using a heuristic tied to the
amount of energy preserved in doing the dimensionality
reduction. We then perform parallel transport [Edelman
et al., 1998] between subspaces in every domain pair and
obtain several intermediate representations that describe
how data across domains can be bridged. We subsequently
project the data from each domain onto all these interme-
diate representations to obtain an expanded prior, and in-
tegrate it with hierarchical sparse coding [Jenatton et al.,
2011] to obtain compact codes on which we use label in-
formation, if any, to perform cross-domain inference. More
details are provided in Section 2. The construction of our
approach has the following benefits.

Accommodating Unlabeled Data: In many practical situ-
ations, with the widespread availability of multi-modal data
on the web, we have very few (or at times no) labeled data
and lots of unlabeled data. Our approach can readily utilize
such big unlabeled data as we rely on generative modeling
in addressing the heterogeneous domain shift. By doing so,
when the source and target domains contain the same cate-
gories/classes, our final inference can range from the clas-
sification scenario where we have labels for all categories
in source domain and the target domain may or may not
have partial labels, to the clustering scenario where both the
source and target domains are unlabeled. The label infor-
mation is utilized while training a discriminative classifier
such as support vector machines (SVM) on the learnt sparse
codes, and if no labels are available we perform clustering
on the sparse codes using methods such as k-means.

Zero-Shot Domain Transfer: We can also address the
zero-shot scenario in which there are categories in the tar-
get domain that are not present in the source domain. This
is somewhat different from the scenarios discussed above
where we at least had unlabeled data in source domain for

all target categories to support inference models. We could
handle such a zero-shot scenario as our model is generative
and therefore the learned domain shift would have pertinent
information for reasoning out new categories.

Multiple Heterogeneous Domains: Finally we can eas-
ily accommodate multiple heterogeneous domains in the
source as well as in target since we obtain the expanded
prior by doing parallel transport between each domain pair.
This does not pose a computational bottleneck as we are
eventually learning sparse codes in a hierarchical learning
setting that could handle big data.

To the best of our knowledge, our proposed approach is the
first to handle these varied aspects of the HDA problem,
and while some existing methods could handle a subset of
these in principle, we make explicit discussions on these
practically relevant requirements. We tested our approach
on existing heterogeneous adaptation datasets and obtained
good performance improvement over previous results for
diverse tasks such as object recognition, event classifica-
tion, text categorization and sentiment analysis. Detailed
experimental analysis is provided in Section 3, and con-
cluding remarks are given in Section 4.

2 APPROACH

Problem Setting: We assume there are N heteroge-
neous domains D = {Di}Ni=1, where each domain
Di = {xj

i , y
j
i }

ni
j=1 contains ni data samples with xj

i ∈ Rdi

denoting the feature vector of dimension di and yj
i denot-

ing the corresponding label information (if any) belonging
to one of M different categories. These domains could be
partitioned into source and target domains depending on
the problem situation. With this information, the goal of
this work is to account for heterogeneous domain shift in
inferring the labels of the unlabeled target domain data.

2.1 PRELIMINARIES

Before we proceed, we will first review relevant details
about the tools we use in our approach.

Parallel Transport: We will be working on subspaces de-
rived from the data, and we will generally have multiple
subspaces extracted from each domain. In domain adap-
tation literature, the notion of geodesic on the Grassmann
manifold has been used as a bridge to connect a pair of
subspaces [Gopalan et al., 2011]. When we need to bridge
two ‘sets’ of subspaces instead, parallel transport [Edel-
man et al., 1998] provides a way by learning multiple paths
by which subspace sets can be bridged. More specifically,
let S1 = {Si

1}i and S2 = {Si
2}i denote two sets of p-

dimensional subspaces in Rd corresponding to domainsD1

and D2 respectively, where each subspace say S1
1 is a point



on the Grassmannian Gd,p. Let gA(t) denote the geodesic
with the initial direction A ∈ R(d−p)×p connecting the
means of S1 and S2, and S̄1

1 denote the tangent space rep-
resentation of S1

1 obtained using inverse exponential map-
ping computed at the mean of S1. The parallel transport of
S̄1

1 is then given as

γS̄1
1(t) = QS1

1
exp

(
t

[
0 AT

−A 0

])[
0
B

]
(1)

where exp is the matrix exponential, QS1
1
∈ SO(d) is the

orthogonal completion of S1
1 , and B ∈ R(d−p)×p is the ini-

tial direction to reach from S1
1 to the exponential map of

S̄1
1 . Similar directions can be obtained for all subspaces

in the sets S1 and S2 using the above tangent space ap-
proximation. Please refer to [Edelman et al., 1998] for
more details. We will discuss how to utilize these direc-
tions (bridges) for HDA in Section 2.2.

Hierarchical Sparse Coding: In sparse coding [Yang
et al., 2009] the goal is to represent each input vector
x ∈ Rp as a sparse linear combination of basis vectors.
Given a stacked input data matrix X ∈ Rp×n, where n is
the number of data, it seeks to minimize:

arg min
Z∈Z,C

||X − ZC||22 + λΩ(C) (2)

where Z ∈ Rp×r is the dictionary of basis vectors, Z is
the set of matrices whose columns have small `2 norm and
C ∈ Rr×n is the code matrix, λ is a regularization hyper-
parameter, and Ω is the regularizer. In hierarchical sparse
coding, such a scheme is extended in a layered fashion us-
ing a combination of coding and pooling steps and we pur-
sue the schema presented in [Jenatton et al., 2011]. Our
modification comes in the way in which the dictionary is
initialized and we present the details in Section 2.2.

While there has been an attempt in using parallel transport
for unsupervised homogeneous domain adaptation [Shri-
vastava et al., 2014], our construction vastly differs from
that work as we handle multiple heterogeneous domains
without using label information to bridge the domain shift.
Moreover, ours is the first approach to integrate parallel
transport information with hierarchical sparse coding for
adaptation problems.

2.2 PROPOSED HETEROGENEOUS
ADAPTATION ALGORITHM

Step 1: We first bring data from all N domains, D =
{Di}Ni=1, onto a common dimension d by performing PCA
on each Di and choosing the resultant subspace dimension
as the largest dimension required among all N subspaces
such that 90% of the signal energy is preserved for that de-
composition. Then we project data from each domain onto
its corresponding subspace. We now have d-dimensional
data across all domains, say X̄ = {x̄j

i}i,j , where i ranges
from 1 to N and j ranges from 1 to ni.

Step 2: From each domain Di, we then derive k generative
subspaces by partitioning {x̄j

i}
ni
j=1 into k clusters using the

k-means algorithm based on the similarity of the d dimen-
sional features, and performing PCA on each cluster. We
ensure all the subspaces are of dimension p, by choosing p
as the largest dimension required for a subspace, amongst
all subspaces obtained by doing k-means in each of the N
domains, such that 90% of the signal energy is preserved
by that decomposition1. Thus from every domain Di we
have a set of p-dimensional subspaces in Rd denoted by
Si = {Sj

i }kj=1. Each subspace in this set is a point on the

Grassmann manifold, Gd,p. Let X ∈ Rp×n, n =
N∑

i=1

ni

denote the matrix containing the projections of each data in
X̄ onto its appropriate subspace in S = {Si}Ni=1. This is
our input data matrix for sparse coding.

Step 3: We then perform parallel transport between Si’s
using the method described in Section 2.1, and obtain a col-
lection of directions between each pair of (Si, Sj), i=1,..N -
1, j = i+1,..,N . We uniformly sample points along these
directions using exponential mapping, which results in new
subspaces that have information on how domain shift infor-
mation flows between domains. We project each data in X̄
onto these subspaces to get the expanded prior P ∈ Rp×r,
which we in turn use to initialize the dictionary Z.

Step 4: Finally we perform hierarchical sparse coding [Je-
natton et al., 2011] with the input data matrix X from Step
2 and the initial dictionary Z obtained from Step 3. At the
output of each layer of hierarchical sparse coding, we apply
Steps 2 and 3 obtain another set of expanded prior which
is then used to complement the dictionary of the following
layer. Let the final output (from the last layer) of hierar-
chical sparse coding corresponding to the original data X
be denoted by X̂ = {x̂j

i}i,j , and their corresponding label
information (if any) is denoted as before by Y = {yj

i }i,j .
Note that we have not used any label information thus far.

2.3 INFERENCE

We now perform cross-domain inference using the infor-
mation contained in W = (X̂, Y ). Note that W contains
data from both source and target domains, and depending
on the dataset we may have one or more domains in the
source and target.

Classification: For the classification scenarios widely
studied in HDA, source domain contains labeled data for
all M categories, and the target domain may or may not
have partial labels, and both the source and target domains

1While this is a simple heuristic in addressing variations in
feature dimensions, we show that it works well empirically. As
stated in the introduction, our main proposal for HDA is by gen-
erating an expanded prior on how these domains interact, rather
than addressing domain shift ‘during’ the process of bringing do-
mains to a common dimension as done by most existing methods.



have the same M categories. So we consider labeled data
present in W to train a multi-class SVM [Crammer and
Singer, 2002] with default parameters for linear kernel, and
then use the SVM similarity score to classify the unlabeled
target domain data into one of M categories. Classification
accuracy is computed as the percentage of unlabeled target
data that were correctly assigned their category label (us-
ing ground truth). Note that while we could have used the
label information in any of the previous stages, be it during
parallel transport or in sparse coding, we did not because
we would like the learned cross-domain representations X̂
to be generic to support other inference scenarios discussed
next. Nevertheless, we make some observations regarding
this later in Section 3.6.

Clustering: We also address the clustering scenario where
both source and target domain data are unlabeled, and they
have the same M categories. In this case we cluster all
the data in X̂ into M groups using k-means, and compute
the clustering accuracy using a standard method of labeling
each of the resulting clusters with the majority class label
according to the ground truth, and measuring the number
of mis-classifications made by each cluster grouping.

Zero-shot Learning: We finally account for the zero-shot
learning scenario where the target domain has some cat-
egories that are not a part of the M source domain cate-
gories. For this case, we use labels for M categories in
the source domain and (if available) in the target domain to
train the SVM as discussed for the classification scenario.
We then threshold the SVM similiarity score for the unla-
beled target data, with the hope that if such data comes out-
side of the M source categories, the similarity score will
be less. We then cluster such data using k-means to obtain
groupings, with the number of clusters set to the number of
new target categories known apriori, and evaluate the accu-
racy as discussed above for the clustering scenario. If we
do not even know the number of new target categories, then
it becomes difficult to quantify clustering accuracy.

3 EXPERIMENTS

We first discuss the classification scenario and experiment
with the setup used by [Li et al., 2014] for the problems of
heterogeneous object recognition, text categorization and
sentiment analysis. These experiments have only one do-
main each in the source and target. We then consider the
event classification experiment designed by [Chen et al.,
2013] which consists of multiple source domains and a sin-
gle target domain. We then provide a detailed analysis of
the findings from our study.

3.1 OBJECT RECOGNITION

We work with the Office dataset [Saenko et al., 2010] that
contains a total of 4106 images from 31 categories col-
lected from three sources: amazon (object images down-

Methods Source Domain
amazon webcam

[Shi et al., 2010] 42.8±2.4 42.2±2.6
[Wang and Mahadevan, 2011] 53.3±2.3 53.2±3.2
[Kulis et al., 2011] 53.1±2.4 53.0±3.2
[Li et al., 2014] 55.4±2.9 54.3±3.6
Ours 62.1±1.7 61.5±2.1

Table 1: Mean and std. deviation of classification accuracy
(%) on Object Recognition Dataset with target domain dslr.

loaded from Amazon), dslr (high-resolution images taken
from a digital SLR camera) and webcam (low-resolution
images taken from a web camera). SURF features are ex-
tracted for all the images. The images from amazon and
webcam are clustered into 800 visual words by using k-
means. After vector quantization, each image is repre-
sented as a 800 dimensional histogram feature. Similarly,
we represent each image from dslr as a 600-dimensional
histogram feature. In the experiments, dslr is used as the
target domain, while amazon and webcam are considered
as two individual source domains. For training the SVM,
we randomly select 20 labeled images per category for the
source domain amazon, and 8 labeled images per category
for webcam as source domain. For the target domain dslr, 3
labeled images are randomly selected from each category.
The remaining target domain data is used for testing. We
present results of our HDA approach in Table 1 along with
other methods studied in [Li et al., 2014].

3.2 TEXT CATEGORIZATION

We use the Reuters multilingual dataset [Amini et al., 2009]
which contains about 11K newswire articles from 6 cate-
gories in 5 languages namely, English, French, German,
Italian and Spanish. All documents are represented by us-
ing the TF-IDF feature. We perform PCA based on the
TF-IDF features from each domain with 60% energy pre-
served and thus the features for each language have the fol-
lowing dimensions respectively, 1131, 1230, 1417, 1041
and 807. We consider Spanish as the target domain in the
experiments and use each of the other four languages as in-
dividual source domains. For each category, we randomly
sample 100 labeled documents from the source domain and
either 10 or 20 labeled documents from the target domain
to train the SVM. The remaining documents in the target
domain are used as the test data. We report classification
results of our HDA approach in Table 2 along with the re-
sults of the other approaches discussed in [Li et al., 2014].

3.3 SENTIMENT ANALYSIS

We use the Cross-Lingual Sentiment (CLS) dataset [Pret-
tenhofer and Stein, 2010], which is an extended version of
the Multi-Domain Sentiment Dataset [Blitzer et al., 2007]
widely used for domain adaptation. It is collected from



Methods Source Domain
10 labels per target class 20 labels per target class

English French German Italian English French German Italian
[Shi et al., 2010] 54.7±7.4 55.0±9.4 58.0±7.9 59.4±3.7 65.7±3.1 64.2±4.2 64.6±3.6 65.8±2.3
[Wang and Mahadevan, 2011] 65.0±2.9 66.9±2.1 67.5±2.1 68.5±2.8 72.4±2.4 72.8±2.0 72.9±2.3 73.3±2.1
[Kulis et al., 2011] 65.7±2.7 66.9±1.7 68.7±2.9 67.9±2.8 72.9±2.0 73.5±1.8 74.7±1.6 74.0±2.0
[Li et al., 2014] 68.6±2.3 69.5±1.9 69.8±2.7 69.8±2.5 75.3±1.7 75.7±1.6 76.1±1.5 75.8±1.8
Ours 73.2±1.6 73.8±1.9 74.1±2.3 74.0±1.7 83.5±2.4 84.1±1.9 83.8±2.1 84.2±1.5

Table 2: Mean and std. deviation of classification accuracy (%) on Reuters Multilingual Dataset with target domain Spanish

Methods Target Domain
German French Japanese

[Shi et al., 2010] 50.4±0.6 49.8±0.6 51.3±1.0
[Wang and Mahadevan, 2011] 64.6±1.9 65.7±1.8 64.4±1.8
[Kulis et al., 2011] 58.3±3.0 59.4±4.3 57.5±1.9
[Li et al., 2014] 66.5±2.2 66.9±2.1 64.2±2.5
Ours 71.2±2.1 71.5±1.8 70.9±1.5

Table 3: Mean and std. deviation of classification accu-
racy (%) on Cross-lingual Sentiment Dataset with source
domain English.

Amazon and contains about 800,000 reviews of three prod-
uct categories: Books, DVDs and Music, and written in
four languages: English, German, French, and Japanese.
The English reviews were sampled from the Multi-Domain
Sentiment Dataset and reviews in other languages are
crawled from Amazon. For each category and each lan-
guage, the dataset is partitioned into a training set, a test set
consisting of 2,000 reviews each. We take English as the
source domain and each of the other three languages as an
individual target domain in the experiment. We randomly
sample 500 reviews from the training set of the source do-
main and 100 reviews from the training set of the target
domain as the labeled data to train the SVM. The test set
is the official test set for each category and each language.
As with text categorization experiment, we extracted the
TF-IDF features and performed PCA with 60% energy pre-
served to result in dimensions 715, 929, 964 and 874 re-
spectively for the four languages discussed above. Results
on this dataset are presented in Table 3.

3.4 EVENT CLASSIFICATION

We then worked on the event classification dataset of
[Chen et al., 2013] that accounts for multiple heteroge-
neous source domains and a single target domain. The
events pertain to six classes namely, birthday, picnic, pa-
rade, show, sports and wedding. Three source domains
correspond to Google and Bing image search, and Youtube
video search corresponding to these events. Kodak and
CCV dataset serve as the individual target domain. The
Google and Bing domains are represented by a 4000 di-
mensional bag-of-words codebooks learnt on SIFT fea-
tures, while YouTube, Kodak and CCV datasets are repre-
sented by 6000 dimensional spatio-temporal features cor-
responding to histogram of oriented gradient, histogram of
optical flow and motion boundary histogram. By consid-

Methods Target Domain
Kodak CCV

[Bruzzone and Marconcini, 2010] 43.49 41.55
[Duan et al., 2012b] 44.21 38.56
[Duan et al., 2012a] 46.21 43.44
[Chen et al., 2013] 49.61 44.52
Ours 54.56 51.24

Table 4: Mean average precision (%) on the Event clas-
sification dataset with multiple heterogeneous source do-
mains from Google image search, Bing image search and
YouTube video search.

ering the source domains to be labeled and target domain
completely unlabeled we trained the SVM on the source
domain samples to perform separate inference on CCV and
Kodak datasets as the target domain. The cross-domain
event classification results are presented in Table 4.

3.5 DISCUSSION

Clustering and Zero-shot Learning: We see that our
HDA approach outperforms existing methods on diverse
heterogeneous classification tasks. We also performed
these experiments for the clustering scenario by not consid-
ering any labeled data from the source and target domains
using the approach discussed in Section 2.3. The perfor-
mance decreased by around 15% on average from the clas-
sification results. While this is reasonable since label infor-
mation always helps in performing class-specific inference,
it also shows that our generative heterogeneous model out-
puts X̂ contain information agnostic to domain and feature
variations and thus is relevant in grouping data categories.
We verified this by performing a baseline using k-means
after Step 1 (i.e. without the adaptation procedure) and the
results dropped further by around 18% on average.

We then considered the zero-shot learning scenario, by
considering the classification experiments and holding out
10%, 20% and 30% of the categories as being exclusive to
the target which the source domain has not seen. As per
the discussion in Section 2.3, we first thresholded the SVM
similarity scores for data from these new categories. With
the similarity score ranging from 0 (low) to 1(high), we
tried three thresholds namely 0.3, 0.2 and 0.1. Ideally these
new categories should have lower similarities since they
are not part of the trained model. On average we obtained
a 95% filtering accuracy with these thresholds, across all



datasets discussed before, and then we grouped the filtered
data to get an accuracy of 85% on average. Note that these
results are only for the new data categories, which are much
less in number than those considered for classification sce-
nario and hence can not be compared with those results. As
a sanity check we tested the unlabeled data from the tar-
get categories that are present in the source, and observed
that their SVM similarity scores were always greater than
0.3 for all datasets. These results convey that our model
outputs are quite useful in reasoning out never seen before
categories, which is very important in practice.

Parameter Tuning: For all the results discussed thus far,
we used k = 10 clusters within each domain, and uni-
formly sampled 10 points on the parallel transport direc-
tions. We tried other values 8 and 12 for both clusters and
sampling on directions, and PCA energy of 80% and 85%
in learning the generative subspaces from the domains, and
found the results decreased at the most by 2%. We used
default parameters for other tools we have employed in the
approach. This sheds light on the robustness of our ap-
proach. It takes about 5 to 10 seconds on a single 2GHz
machine to perform inference over the range of scenarios
discussed here.

Design Choice Analysis: We now analyze the rationale
behind some choices we made in the approach. Firstly,
we tested whether hierarchical sparse coding is necessary,
or will a single layer sparse coding be sufficient. We also
tested how many layers are necessary by experimenting up
to five layers. The results reported in the paper are with
three layers, and when we used four and five layers, the re-
sults reduced by 2.5% and 3% on average, using two layers
saw average performance reduction of around 8% and us-
ing one layer saw a reduction of 17%. This suggests that
hierarchical feature learning is useful, and the results reach
a plateau around three layers for our experiments.

Then we inspect whether learning multiple bridges across
domains using parallel transport is necessary, or just a sin-
gle bridge using the geodesic will suffice. Results using
only the geodesic was inferior by around 21% which high-
lights the utility of parallel transport to the HDA problem.
We also test whether we need to do parallel transport to ob-
tain expanded prior on the outputs of each layer of hierar-
chical sparse coding, by just initializing the first layer with
the prior and doing hierarchical feature learning on it. That
resulted in a performance drop of about 12% on average.

Multiple Source and Multiple Target Domains: Our ex-
periments so far contained single source and single target
domain, or multiple source domains and single target do-
main. We now pursue multiple source domains and multi-
ple target domains on these datasets, where possible. Given
N domains, we try all possible combinations across source
and target domains. For example, if we have four domains,
we consider 1 to 3 source domains that are accompanied

by 3 to 1 target domains respectively. Our results for such
a setting improves the results discussed in Sec 3.1 to 3.4 by
at least 3% and up to 12%. This explains the utility of our
method for HDA with increasing availability of domains.

3.6 EXTENSIONS

In this section we discuss some extensions of our approach,
by relaxing certain assumptions that were made to facilitate
its generalizability to different adaptation settings.

Using Label Information In Modeling Stage: Till now
the labels were used only in the classification stage (Sec
2.3) and not in the modeling stage (Sec 2.2) as we wanted
the model to handle classification, clustering and zero-shot
learning. But in cases where say, the goal is just classifi-
cation and there are labels available for training the model,
it makes sense to use them in the model building stage it-
self. To support such a scenario, we modify our approach
(in Step 4) by performing discriminative hierarchical sparse
coding. We use the method of [Ji et al., 2011] and feed it
with data labels contained in Y . Thus, we obtain the sparse
codes output X̂ which in addition to minimizing the recon-
struction error of the data samples, also separates samples
belonging to one class from other classes. Let us call this
Case A. With this modification, the performance for clas-
sification experiments reported in Section 3.1 to 3.4 im-
proved by at least 3% and up to 15% on average.

Another way to utilize label information is in forming the
clusters within each domain (Step 2). Instead of using the
similarity of the d dimensional features to group the data
into k clusters, we group the data using their labels into M
clusters and then perform the remaining steps as outlined in
Section 2.2. So in this case the parallel transport informa-
tion will have a notion of class discrimination in traversing
the domain shift. Let us call this Case B. This resulted in an
average performance improvement of at least 1.8% and up
to 9% for the classification experiments reported in Section
3.1 to 3.4. We then used Case A and Case B together, and
this improved the results by at least 5% and up to 20% on
average.

Integrating With Other Heterogeneous Adaptation
Strategies: As mentioned in the introduction, one of the
goals of our study was to see how a large number of simple
transformations would fare against few complex transfor-
mations to handle heterogeneous domain shift, which was
the reason to map all domains to a common dimension us-
ing simpler generative information (Step 1). This strategy
was shown to be successful through detailed experiments.
Now we study how to get the best of both approaches. For
this, instead of Step 1, we use outputs from existing hetero-
geneous adaptation techniques which map different dimen-
sions onto a common one using more involved objectives
related to domain structure. We tried two such techniques,
one based on spectral mapping [Shi et al., 2010] and the



Domain Classification accuracy (in %), mean±std. deviation
Source Target No labeled target data Few labeled target data

[Mahsa et al., 2014] [Long et al., 2014] Ours [Ni et al., 2013] [Mahsa et al., 2013] Ours
Caltech Amazon 52.3±1.1 46.76 56.3±1.1 49.5±2.6 61.8±2.5 65.3±1.2
Caltech Dslr 53.0±2.3 44.59 55.2±1.8 76.7±3.9 65.8±3.5 79.8±1.2
Amazon Caltech 44.4±1.4 39.45 49.2±1.3 27.4±2.4 47.8±1.5 51.1±0.3
Amazon Webcam 48.5±2.6 42.03 51.6±2.1 72.0±4.8 72.5±3.1 75.5±1.1
Webcam Caltech 39.3±0.5 30.19 42.8±1.8 29.7±1.9 43.6±1.2 45.5±2.8
Webcam Amazon 44.3±0.9 29.96 45.2±2.5 49.4±2.1 53.4±1.9 55.5±1.7
Dslr Amazon 39.4±1.1 32.78 44.3±1.2 48.9±3.8 56.9±1.6 57.5±1.5
Dslr Webcam 88.8±1.0 85.42 91.2±1.7 72.6±2.1 89.1±1.6 92.3±2.6

Table 5: Comparison with homogeneous adaptation methods on the Office-Caltech dataset with 10 object categories.

other based on manifold alignment [Wang and Mahadevan,
2011]. The mapped output of these techniques, where the
data from all domains {Di}Ni=1 will have the transformed
to the same dimension d, signifies X̄ which is then fed into
Step 2, and the remaining steps from Sec 2.2 and 2.3 are
followed. This resulted in a performance improvement of
at least 5% and up to 18%, and at least 4.2% and up to
16.5% while using [Shi et al., 2010] and [Wang and Ma-
hadevan, 2011] respectively, for classification, clustering,
and zero-shot learning experiments reported in Section 3.1
to 3.5. These results hold promise on the utility of our ap-
proach to existing adaptation solutions.

Heterogeneous View Of Homogeneous Adaptation: En-
couraged by these observations, we considered homoge-
neous adaptation problems that have been extensively stud-
ied in the literature [Saenko et al., 2010], which assumes
the data is represented by same features (same dimensions)
in both source and target domains. The goal of our study
here is to represent such data with many different features,
with each feature forming a separate domain, and empiri-
cally investigate whether multiple features can make adap-
tation problems easier to handle. We experiment with dif-
ferent combinations of heterogeneous features in the source
and target and at the same time making sure that the same
feature type is not used for both source and target. The re-
sults presented below are averaged over such combinations.

We first consider the Office-Caltech dataset [Gong et al.,
2012] for adaptive object recognition that contains 10 ob-
jects with four domains namely, amazon, dslr, webcam, and
Caltech. The data is represented by bag-of-words code-
books learnt from SURF features. We additionally ex-
tracted histogram of oriented gradients, local binary pat-
terns, local phase quantization, and GIST descriptors. Thus
we have five domains each in the source and target domain.
We then followed the adaptation protocol of [Gong et al.,
2012] that first considered labeled data from source domain
and no labels from target domain, and then allows few la-
beled samples from target as well. Our results are provided
in Table 5.

We then worked on adaptive face recognition and consid-
ered the following facial features, image intensities in RGB

Method Mean classification accuracy (%)
Target domain pose

15◦ 30◦ 45◦ 60◦ 75◦

[Sharma and Jacobs, 2011] 92.1 89.7 88.0 86.1 83.0
[Sharma et al., 2012] 99.7 99.2 98.6 94.9 95.4
[Yang et al., 2011] 96.8 90.6 94.4 91.4 90.5
[Shekhar et al., 2013] 98.4 98.2 98.9 99.1 98.8
Ours 99.5 99.3 99.1 99.4 98.9

Table 6: Comparison with homogeneous adaptation meth-
ods on CMU Multi-PIE dataset for face recognition across
pose and lighting variations with few labeled target data.

and HSV color spaces, edge magnitudes and gradient direc-
tion, multi-scale block LBP, self-quotient image and Ga-
bor wavelets. We first followed the protocol of [Shekhar
et al., 2013] that used the Multi-PIE dataset [Gross et al.,
2010] with images of 129 subjects in frontal pose as the
source domain, and five other off-frontal poses as the target
domain. Images under five illumination conditions across
source and target domains were used for training with
which images from remaining 15 illumination conditions
in the target domain were recognized. Face recognition ac-
curacy for this experiment is given in Table 6. We also per-
formed an experiment on the PIE dataset [Sim et al., 2002]
using the protocol of [Ni et al., 2013], where the domain
change is caused by illumination and blur. Frontal pose
faces of 34 subjects under 11 different illumination condi-
tions formed the source domain, while the unlabeled target
domain consisted of frontal images of the same subjects
under 10 other lighting conditions that were also blurred
using four kernels, a Gaussian with standard deviation of 3
and 4 and motion blur with length 9, angle 135◦ and length
11, angle 45◦. The results are provided in Table 7.

Finally we performed adaptation experiments for ac-
tion recognition on the IXMAS multi-view action dataset
[Weinland et al., 2007] that contains eleven action cate-
gories including walk, kick and throw. Each action was
performed three times by twelve actors taken from five
different views, which include four side views and one
top view. From each action video we extracted the fol-
lowing features, histograms of oriented gradients and opti-
cal flow (HOG/HOF), 3DHOG that is based on 3D gradi-



Method Mean classification accuracy (%)
σ = 3 σ = 4 len = 9 len = 11

[Ahonen et al., 2008] 66.5 32.9 73.8 62.1
[Gopalan et al., 2011] 70.9 60.3 72.4 67.9
[Gong et al., 2012] 78.5 77.7 82.4 77.7
[Ni et al., 2013] 80.3 77.9 85.9 81.2
Ours 86.3 85.2 87.9 87.2

Table 7: Comparing homogeneous adaptation methods on
CMU PIE dataset for face recognition across blur and light-
ing variations with no labeled target data. σ: std. deviation
of the Gaussian blur, and len: length of linear motion blur.

ent orientations, and extended SURF descriptor for videos.
The experiment was to recognize actions with the source
and target domain pertaining to different views, thereby
making 20 source-target combinations. The average cross-
view recognition accuracy results for all these view combi-
nations are given in Table 8. The correspondence mode
contains matched instances across source and target do-
mains, partial labels mode having fewer target labels and
the non-discriminative virtual views (NDVV) comprising
of partially-labeled and unlabeled target data, as studied in
[Li and Zickler, 2012].

All these results show our method outperforming other
homogeneous adaptation approaches, which suggests that
such approaches could, in some form, benefit by expanding
the type of features used to represent the data. The features
we have used are only somewhat representative of the vast
literature and more of them can be used with our approach.

4 CONCLUSION

We have approached the problem of bridging heteroge-
neous domains by learning a large set of intermediate repre-
sentations, born out of simpler generative information, and
integrated them with hierarchical feature learning mech-
anisms to perform inference pertaining to classification,
clustering and zero-shot learning. We demonstrated supe-
rior empirical performance over existing methods on a wide
range of problems involving different data modalities such
as images, videos and natural language. We also discussed
the utility of our design choices, and the robustness of the
approach in dealing with multiple domains, feature types,
unlabeled data and new unseen data categories. While our
approach offers an alternative to many existing heteroge-
neous solutions that address domain shift through a latent
space modeling, it also opens up opportunities for har-
nessing the benefits of the two strategies, which we high-
lighted through some initial studies. Such a mechanism
could eventually pave way for establishing error bounds on
the nature of heterogeneous shifts an approach can handle,
within a reasonable set of domain shift assumptions reflect-
ing practical data acquisition constraints.
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