
Subspace Clustering with a Twist

David Wipf and Yue Dong
Microsoft Research, Beijing

{davidwip,yuedong}@microsoft.com

Bo Xin
Peking University
boxin@pku.edu.cn

Abstract

Subspace segmentation or clustering can be de-
fined as the process of assigning subspace labels
to a set of data points assumed to lie on the union
of multiple low-dimensional, linear subspaces.
Given that each point can be efficiently expressed
using a linear combination of other points from
the same subspace, a variety of segmentation
algorithms built upon `1, nuclear norm, and
other convex penalties have recently shown state-
of-the-art robustness on multiple benchmarks.
However, what if instead of observing the orig-
inal data points, we instead only have access
to transformed, or ‘twisted’ so to speak, mea-
surements? Here we consider underdetermined
affine transformations that may arise in com-
puter vision applications such as bidirectional re-
flectance distribution function (BRDF) estima-
tion. Unfortunately most existing approaches,
convex or otherwise, do not address this highly
useful generalization. To fill this void, we pro-
ceed by deriving a probabilistic model that si-
multaneously estimates the latent data points and
subspace memberships using simple EM update
rules. Moreover, in certain restricted settings this
approach is guaranteed to produce the correct
clustering. Finally a wide range of corroborat-
ing empirical evidence, including a BRDF esti-
mation task, speaks to the practical efficacy of
this algorithm.

1 Introduction

As a data reduction or analysis tool, principal component
analysis (PCA) is readily applicable whenever observable
points lie on or near a low-dimensional linear subspace.
Richer structures however may not conform to this model,
and often we must consider ways of introducing additional
complexity. For example, a natural extension of PCA is to
consider that our data lie on a union of low-dimensional

subspaces. In this expanded regime we may then consider
the joint problem of estimating these subspaces and assign-
ing each point to the closest one, a process commonly re-
ferred to as either subspace clustering or segmentation. Al-
though unlike classical PCA a closed-form solution via the
SVD is no longer possible, tractable approximations that
succeed with high probability form a core component of
numerous practical application domains. Examples include
the analysis of social graphs (Jalali et al., 2011), network
topology inference (Eriksson et al., 2012), user identifica-
tion in movie rating systems Zhang et al. (2012), and a host
of computer vision tasks such as image representation and
compression, motion segmentation, and face clustering (El-
hamifar & Vidal, 2013; Feng et al., 2014; Liu et al., 2013;
Lu et al., 2012; Rao et al., 2010).

1.1 Problem Description

We define this problem more formally as follows. Let
{Sk}mk=1 denote a collection of m linear subspaces in Rd,
where dim[Sk] = dk < d ∀k = 1, . . . ,m. More-
over, suppose we have drawn nk points from each subspace
forming data matrices Xk ∈ Rd×nk . We then concatenate
the points from each subspace, and the full arrangement of
n =

∑m
k=1 nk points is reordered using an unknown per-

mutation matrix P ∈ Rn×n. Consequently, the entire data
can be expressed as

X , [x1, . . . ,xn] = [X1, . . . ,Xm]P ∈ Rd×n. (1)

Subspace clustering can then be described as the process
of estimating a basis for each Sk as well as the subspace
membership of each point xj .

One of the most robust approaches to obtaining such
accurate data segmentations exploits the so-called self-
expressiveness property of X (Elhamifar & Vidal, 2013),
namely that any xj can be represented as a linear combi-
nation of other data points inX within the same subspace.
Moreover, if we can find such a representation using only
points from the same subspace, then we have extracted vi-
tal information pertaining to the true latent segmentation.



One way to favor such cluster-aligned decompositions is
by solving

min
Z
‖Z‖0 s.t.X = XZ, diag[Z] = 0, (2)

where ‖Z‖0 is the matrix `0 norm, or a count of the number
of nonzero elements in Z, a penalty function that strongly
favors zero-valued elements or a canonically sparseZ. The
diagonal constraint is required to prevent each point from
using itself in the representation (e.g., the degenerate solu-
tionZ∗ = I), enforcing that we must rely only on others in
the same subspace. If we assume that each individual sub-
space satisfies dk < d for all k, and that sampled points are
sufficiently dense in general position, then the solution to
(2) will be block diagonal and aligned with the true clusters
up to the permutation matrix P , revealing subspace mem-
berships. A final spectral clustering, post-processing step
can further solidify the labels and is adopted by most recent
methods (Elhamifar & Vidal, 2013). Of course solving (2)
is non-convex, discontinuous, and NP-hard, so following
the typical compressive sensing recipe it is desirable to re-
place the troublesome ‖Z‖0 penalty with the convex relax-
ation ‖Z‖1. This substitution is supported by rigorous the-
oretical arguments detailing conditions whereby subspace-
aligned block-diagonal structure is guaranteed when we
minimize ‖Z‖1 over the constraint set (Soltanolkotabi &
Candès, 2012).

Proceeding further, suppose that we are unable to observe
X directly, but instead are only granted access to a mea-
surement matrix Y = [y1, . . . ,yn], where each column yj
is generated via the underdetermined system

yj = Ajxj , ∀j = 1, . . . , n. (3)

Here {Aj}, with Aj ∈ Rpj×d, pj ≤ d indicates a set
of known, possibly overcomplete matrices with problem-
dependent structure that can warp or twist each data
point independently while mapping it onto the lower-
dimensional observation space.1 As described in depth
later, such a situation commonly arises in computer vi-
sion applications such as bidirectional reflectance distribu-
tion function (BRDF) estimation, where each Aj is deter-
mined by lighting conditions and the surface geometry of
an object with unknown BRDF we would like to obtain.
Other possible scenarios include face clustering in subject-
varying transform domains, or motion segmentation using
approximations for perspective cameras. Additionally, if
each Aj can be described as a matrix of zeroes with a sin-
gle one in each row, then the resulting estimation problem
is tantamount to subspace clustering with missing entries
(Candès et al., 2014; Eriksson et al., 2012; Gruber & Weiss,
2004; Yang et al., 2015).

1We frequently use {M j} to abbreviate a set of matrices
{M j : j ∈ J }, where the index set J should be clear from
the context.

1.2 Naive Solutions

Clearly we can no longer directly rely on the original self-
expressiveness property, because once we insert {Aj} into
the pipeline, it no longer follows that each corresponding
yj can be compactly represented using only other points
generated from the same subspace.2 To compensate, sev-
eral strategies immediately come to mind.

For example, suppose we somehow knew the number of
clusters m. Then let the set {Ωk}, with each Ωk ⊂
{1, . . . , n}, denote a partitioning such that

⋃m
k=1 Ωk =

{1, . . . , n} and Ωk ∩ Ωk′ = ∅ for all pairs {k, k′}. Also
let XΩk

represent the columns of matrix X indexed by
Ωk. Now consider the joint optimization over all possible
segmentations and latent points

min
X ,{Ωk}

m∑
k=1

|Ωk|rank(XΩk
) s.t. yj = Ajxj , ∀j = 1, . . . , n.

(4)
Then assuming the true latent X is composed of sufficient
samples per subspace in general position, and thatAj con-
tains a sufficient number of non-degenerate measurements,
the solution to (4) will be such that {Ωk} reflects the cor-
rect segmentation and X will be recovered. Unfortunately
however, minimizing (4) requires an infeasible, combina-
torial search over every possible clustering pattern.

Perhaps the most natural way to circumvent this problem
is to invoke a two-stage procedure inspired by traditional
matrix completion (Candès & Recht, 2008). The basic idea
is to first obtain an estimate of the latentX by solving

min
X

rank[X], s.t. yj = Ajxj , ∀j = 1, . . . , n, (5)

which excludes any combinatorial search over labels. This
represents an affine rank minimization problem that can be
approximately solved by replacing the non-convex rank[X]
penalty with the convex nuclear norm relaxation ‖X‖∗, or
the sum of the singular values of X . Once this solution is
in hand, we may deploy any traditional subspace clustering
algorithm on the resulting X̂ .

The difficulty with this strategy is two-fold. First, un-
like the data from individual subspaces Xk, the matrix X
may be full rank given that it is quite common to have∑
k dk ≥ d. So in this situation we have no chance of

obtaining a meaningful segmentation. However, even if the
global solution to (5) does produce the correct X , the nu-
clear norm relaxation required by a tractable implementa-
tion will be highly sensitive to both the correlation structure
and relative column norm scaling of {Aj}.

2An exception to this occurs when Aj is equal to some fixed
A across all j, in which case the self-expressiveness property
still holds and natural adaptations already exist (Patel et al., 2013;
Wang et al., 2015a).



In fact existing theoretical guarantees for rank-nuclear
norm equivalence place extremely strong conditions on the
structure of the measurement process, which are unlikely to
hold in practice here since in the problem instances we con-
sider, each Aj is determined by physical properties of the
experimental design. Moreover, unlike typical compres-
sive sensing designs, we cannot even normalize columns of
{Aj}, because if we were to do so then a low-rank solution
will no longer satisfy the constraint set in (5). Therefore
we are left with a challenging NP-hard rank minimization
problem as a required preprocessing step, a clearly unde-
sirable starting point.

As an alternative to the above two-stage procedure, we
could append an additional data fitting constraints to the
canonical sparse subspace clustering objective from above
and solve

min
X ,Z

‖Z‖1 s.t.X = XZ, diag[Z] = 0,yj = Ajxj ∀j.

(6)
Although the penalty is convex inZ and the constraints are
individually convex in X and Z, the overall problem re-
mains highly non-convex and difficult to optimize. More-
over it is unclear whether the global solution, even if some-
how attainable, would guarantee that the correct cluster-
ing could be found. Additionally, in practical environments
with noisy data, relaxing the additional equality constraints
would require the inclusion of an additional trade-off pa-
rameter and application-specific tuning.

1.3 Overview of Contributions

To address the conceptual limitations of naive adaptations
of existing subspace clustering approaches, in Section 2
we derive an alternative Bayesian approach specifically tai-
lored to the proposed latent variable setting and loosely mo-
tivate its effectiveness. Next Section 3 derives expectation
maximization (EM) udpdate rules that accommodate prac-
tical deployment. We then proceed to theoretical analysis
of the underlying objective function in Section 4, followed
by empirical validation in Section 5, practical deployment
in Section 6, and final contextualization in Section 7. Over-
all, our contributions can be summarized as follows:

• We delineate an important generalization of subspace
clustering to accommodate an underdetermined affine
measurement process and derive a Bayesian algorithm
that explicitly circumvents limitations of natural alter-
natives. Unlike existing state-of-the-art segmentation
pipelines, our algorithm does not require a final spec-
tral clustering step.

• We thoroughly unpack the proposed objective func-
tion and its customized mechanism for favoring the
true subspace labels. This includes the exposition
of specific conditions, albeit somewhat idealized,

whereby a unique minimizing solution (global or lo-
cal) will produce the correct segmentation.

• Although not our original intention, we demonstrate
that our model can achieve state-of-the-art perfor-
mance in more specialized domains whenAj displays
certain additional structure. This includes traditional
subspace clustering when each Aj = I for all j, or
subspace clustering with missing entries when each
Aj is an all-zero matrix with a single one in each row.

• We provide strong empirical validation on a practical
BRDF estimation problem that requires the full gen-
erality of the proposed affine observation model.

2 Model Description

We begin by decomposing the latent unobserved data as

X =

m∑
i=1

X̃
(i)
, (7)

where each X̃
(i)
∈ Rd×n can be interpreted as our esti-

mate of the overall signal generated from the i-th subspace.
Although we will eventually arrive at an objective function
that is independent of this decomposition, it nonetheless
serves as a useful tool for constructing hidden data for the
EM algorithm described in Section 3. We next adopt the
Gaussian likelihood function

p

(
Y |{X̃

(i)
};λ
)
∝ exp

−∑
j

1
2λ‖yj −Aj

∑
i

x̃
(i)
j ‖

2
2

 ,
(8)

where λ is a noise parameter.3 Additionally, in the limit
as λ → 0 this will enforce the same constraint set as in
(3). Next we define an independent, zero-mean Gaussian

prior distribution for each column of X̃
(i)

, parameterized

as p

(
{X̃

(i)
}; {Γi},W

)
=

∏
i,j

p(x̃
(i)
j ; Γi, wij) =

∏
i,j

N
(
x̃

(i)
j ; 0, wijΓi

)
, (9)

where each Γi represents a symmetric, positive semi-
definite covariance basis matrix and the scalar coefficients
wij constitute non-negative weighting factors that collec-
tively form a parameter matrix W .4 Strictly speaking

3We could allow for a separate λj for each point which would
ultimately allow us to learn outlier locations, but for space con-
siderations we do not further pursue this direction here.

4Note that (Tipping & Bishop, 1999; Wang et al., 2015b) de-
scribe alternative probabilistic mixture models that can be applied
to clustering; however, the parameterizations and underlying in-
ference algorithms are completely different from ours, do not ap-
ply to the latent affine model we consider, and do not lead to any
of the desired properties discussed herein.



we should require that each wijΓi factor be positive def-
inite such that the implied matrix inverse included with
this distribution is well-defined. However, we can ad-
just for the semi-definite case with a more refined def-
inition of the prior. First, if some wij = 0, then we
simply define that x̃(i)

j = 0 with probability one. For
the wij > 0 case, without loss of generality assume
that Γi = RiR

>
i for some matrix Rj . We then stipu-

late that p
(
x̃

(i)
j ; Γi, wij

)
= 0 if x̃(i)

j /∈ span[Rj ], and

p
(
x̃

(i)
j ; Γi, wij

)
∝ exp

[
− 1

2 (x̃
(i)
j )>(R>j )†R†jx̃

(i)
j

]
oth-

erwise. These refinements are tacitly assumed in many re-
lated Bayesian models, and can be viewed as a natural lim-
iting case whereby a degenerate covariance enforces that
all probability mass reside in a low-dimensional subspace
of the full ambient space.

Given that both the likelihood function and prior distribu-
tion are Gaussians, the posterior distribution is also a Gaus-
sian with closed-form moments. While expressing these
moments in full is slightly cumbersome from a notational
standpoint, the marginalized posterior of each x̃(i)

j is given
by

p
(
x̃

(i)
j |yj ; Γi, wij , λ

)
=
∏
j

N
(
x

(i)
j ;µ

(i)
j ,Σ

(i)
j

)
(10)

with means and covariances defined by

µ
(i)
j = wijΓiA

>
j

(
λI +AjΨjA

>
j

)−1

yj , (11)

Σ
(i)
j = wijΓi − w2

ijΓiA
>
j

(
λI +AjΨjA

>
j

)−1

AjΓi,

where
Ψj =

∑
i

wijΓi, ∀j = 1, . . . , n, (12)

Although it is easily shown that each x̃(i)
j is independent

across data points j, they may be highly correlated across
the basis index i. However, for purposes of the EM algo-
rithm derived in Section 3, only the moments from (11) will
be required.

The rationale for the chosen parameterization of the prior

p

(
{X̃

(i)
}; {Γi},W

)
becomes partially evident upon in-

spection of the posterior mean expression from (11). Sup-
pose each Γi spans the k-th unknown subspace we would
like to recover. And moreover, suppose each wj (the j-th
column ofW ) is a vector of zeros with a single nonzero in
the position corresponding with the true subspace member-
ship of xj . Then by virtue of the left multiplication in (11),
xj will have a posterior mean constrained to the correct
subspace, with zero covariance (or posterior mass) leaking
into other, errant subspaces. Hence under the stated con-
ditions a posterior mean estimator will produce minimal
reconstruction error.

Of course all of this is predicated on our ability to actu-
ally obtain a basis set {Γi} and weight matrix W fulfill-
ing the stringent subspace-aware criterion described above.
Hence we have merely shifted our original goal of esti-
mating X and clustering its columns, to the task of learn-
ing subspace-aware covariances {Γi} and a column-sparse
weight matrix W with support aligned with the true sub-
spaces. While certainly not immediately obvious, the re-
mainder of this paper will demonstrate that a standard
marginalization strategy is quite effective for this purpose.

If we treat {Γi} and W as the key parameters of interest

and {X̃
(i)
} as nuisance latent variables, then a common

Bayesian inference strategy is to marginalize over {X̃
(i)
}

and then maximize the resulting likelihood function with
respect to remaining unknown parameters (Tipping, 2001;
Wipf et al., 2011; Xin & Wipf, 2015). This involves solving

max
Γi∈H+∀i,W≥0

∫
p(Y |X;λ)p(X; {Ψj})dX, (13)

where H+ denotes the set of positive semi-definite and
symmetric d × d matrices. After a −2 log transformation
and application of a standard convolution-of-Gaussians in-
tegration (Tipping, 2001), solving (13) is equivalent to min-
imizing the cost function

L({Γi},W ) =
∑
j

y>j Σ−1
yj yj + log

∣∣Σyj

∣∣ , (14)

where
Σyj =

∑
i

wijAjΓiA
>
j + λI. (15)

The latter represents the covariance of yj conditioned on
{Γi} and wj .

3 Algorithm Derivation

To optimize L({Γi},W ) we may treat {X̃
(i)
} as hidden

data and execute a straightforward EM procedure (Demp-
ster et al., 1977) similar to that proposed in (Tipping, 2001).
For the E-step we need only compute the posterior mo-
ments given by (11). For the M-step we must solve

min
{Γi},W

E
[
− log p

(
{X̃

(i)
},Y ; {Γi},W , λ

)]
, (16)

where the expectation is with respect to

p

(
{X̃

(i)
}|Y ; {Γ′i},W

′, λ

)
, which represents the

posterior distribution obtained using moments parameter-
ized with fixed values {Ψ′j} and W ′ computed from the
previous iteration. After a few algebraic manipulations,
this is equivalent to solving

min
{Γi},W

∑
i,j

tr
[
E
[
x̃

(i)
j (x̃

(i)
j )>

]
(wijΓi)

−1
]
+log |wijΓi| ,

(17)



where E
[
x̃

(i)
j (x̃

(i)
j )>

]
= µ

(i)
j

(
µ

(i)
j

)>
+ Σ

(i)
j . Unfortu-

nately (17) has no closed-form solution. However, we can
first optimize over {Γi} with W fixed, and then optimize
over W with {Γi} fixed, both of which have closed-form
solutions. Although these updates could be iterated until
convergence, the EM algorithm does not actually require
full completion of both E and M steps. In fact partial min-
imization, or incremental variants, are adequate to ensure
cost function descent (Neal & Hinton, 1999).5

For the {Γi} update, we can solve for each Γi indepen-
dently via

Γ∗i = arg min
Γi

tr
[
ΘiΓ

−1
i

]
+ n log |Γi| = 1

nΘi (18)

where

Θi =
∑
j

1
wij

tr
[(
µ

(i)
j

(
µ

(i)
j

)>
+ Σ

(i)
j

)]
. (19)

Likewise for W we can solve independently for each ele-
ment using

w∗ij = arg min
Γi

βijw
−1
ij + d logwij = 1

dβij , (20)

where

βij = tr
[(
µ

(i)
j

(
µ

(i)
j

)>
+ Σ

(i)
j

)
Γ−1
i

]
. (21)

To summarize then, we need only iterate (11), (18), and
(20) to descend the objective function (14). With some at-
tention to details, this can be accomplished with updates
that are linear in n andm, the number of points and clusters
respectively), and cubic in d (ambient space dimension).

A final point worth addressing is initialization. Assuming
complete agnosticism regarding subspaces and labels, the
selection Γi = I and wij = 1 for all i and j seems like
the most natural choice. However, we require some small
degree of symmetry breaking randomness to initiate a non-
degenerate descent. We simply use wij ∼ 1 + U

[
0, 10−3

]
for all initializations, although results are not sensitive to
this choice.

4 Cost Function Analysis

While perhaps counterintuitive, the proposed objective
function (14) has a number of desirable attributes that jus-
tify its usage for latent subspace clustering. As motivation

5While technically these updates are guaranteed to reduce
or leave-unchanged the objective function until a fixed point is
reached, to formally guarantee convergence of the EM algorithm
to a local minima requires additional effort, such as the demon-
stration that the conditions of Zangwill’s Global Convergence
Theorem have been satisfied (Zangwill, 1969). We do not pursue
a detailed theoretical investigation to this effect here, although it
is possible to do so.

for this claim, it is helpful to map the arguments of (14) to
a criterion of subspace optimality. More formally, we say
that {{Γ∗i },W

∗} is a subspace optimal solution iff

1. For all i = 1, . . . ,m, span[Γ∗i ] equals some true Sk,
and no two Γ∗i span the same subspace.

2. For all j = 1, . . . , n, ‖w∗j‖0 = 1, with nonzero ele-
ment aligned with the correct subspace.

Such a solution guarantees that an accurate estimate of X
can be obtained via (11), and that the correct subspace la-
bels will be recovered. The remainder of this section will
quantify how such solutions relate to minima of (14).

To begin, using duality arguments from (Wipf et al., 2011),
there is a close association between global minima of (4)
and (14) in terms of the recovered subspaces and labels.
However, none of this is suggestive of why we might prefer
dealing with the latter over say, brute force combinatorial
optimization of the former. For this purpose we need to
actually describe conditions whereby (14) is more likely to
produce subspace optimal solutions without getting stuck
at local optimal. While it is quite challenging to address
this situation in sweeping terms for such a coupled, non-
convex probabilistic model, we will nonetheless describe
at least one scenario where bad local optimal can be fully
eradicated, followed by more general conditions whereby
optimal non-increasing solution paths exist.

For convenience, let {Ω∗k} denote the true partitioning of
X , aligned with the presumed generative subspace labels.
We then have the following:
Theorem 1. Suppose that we have a data matrixX which
follows the model from (1), we observe the affine measure-
ments yj = Ajxj for all j, and that the true latent X is
such that dk = 1 for all subspaces. Furthermore assume
that {Aj} satisfies pj > 1 for all j and ∩j∈Ω∗k

null[Aj ] = ∅
for all k. Then any local or global minimizer {{Γ∗i },W

∗}
of (14) in the limit λ→ 0 is subspace optimal.

At least in low-noise/stylized conditions, this result speci-
fies a relatively broad regime whereby no suboptimal min-
ima exist, meaning any minimizer (local or global) will al-
ways return the correct clustering as well as a unique basis
spanning each true subspace.6 And this result is emblem-
atic of a wider range of operating circumstances whereby
subspace optimal solutions are closely aligned with min-
ima of (14). Certainly our empirical evidence provided in
Sections 5 and 6 suggests this to be the case.

Interestingly though, neither of the naive approaches dis-
cussed in Section 1 can satisfy something similar. In fact,

6In the context of affine rank minimization and a single sub-
space, i.e., m = 1, it has been shown that under similar condi-
tions no bad local minima will exist with a probabilistic PCA-like
model (Xin & Wipf, 2015); however, this is a much simpler prob-
lem and the same analysis/proof techniques do not apply.



under the stated conditions of Theorem 1, (4) can have nu-
merous suboptimal local minima, while (6) can have both
suboptimal local and global minima, both of which can re-
turn incorrect labels and cluster bases.

Likewise, if we replace the rank function with the nuclear
norm in (5), then even with all other theorem specifications
in place, it is still possible that we recover the wrong esti-
mate for X such that no correct clustering is possible via
any secondary step. As an example, it is a simple matter to
design adversarial conditions onAj via simple transforma-
tions such as Aj → AjD, where D is a diagonal scaling
matrix to which the nuclear norm solution will be highly
sensitive. And as stated previously, we cannot negate the
impact ofD via normalization without destroying the low-
rank assumption with which estimatingX is predicated on
to begin with. Moreover, it is also possible to have a full
rank X consistent with the setting of Theorem 1 such that
it is formally unidentifiable even with (5) unaltered.

Moving forward, it is considerably more difficult to guar-
antee that no bad local minima exist under broader condi-
tions, e.g., when dk > 1. However, we can still analyze
non-increasing paths between a family of initializations (or
intermediate points in some optimization trajectory) and
subspace optimal solutions. This simplified analysis cri-
teria yields the following:

Theorem 2. Suppose
∑
i wijΓi = αjUU

> for all
j, where U represents any orthonormal basis spanning⊕m

k=1 Sk and each αj > 0 is a scalar weighting factor.
Then in the limit λ → 0, if each αj is suitably large there
exists a non-increasing path from this point to some sub-
space optimal solution {{Γ∗i },W

∗}.

Corollary 1. In the simplified scenario when Aj = I for
all j (i.e., canonical subspace clustering where the latent
X = Y are now fully observable), Theorem 2 holds with-
out any size restrictions on each αj > 0.

Because we can always choose to initialize with Γi = I for
all i, or more generally Γi equal to some suitable UU>,
then a byproduct of Theorem 2 is the insurance that a path
exists from a computable point to the correct clustering that
is devoid of local minima even whenW is initialized arbi-
trarily. And this result can be generalized with additional
effort to quantify a broader class of locations such that such
paths to optimal solutions exist. Of course obviously a re-
sult of this type is still quite limited in that it does not guar-
antee that such a path can be found, or rule out the existence
of saddle points along the way. But it is nonetheless an-
other indicator of the appropriateness of (14) in addressing
even basic subspace clustering problems for which it was
not initially designed. And similar to previous arguments,
neither of the naive approaches, i.e., solving either (4) or
(6), can satisfy something similar.

5 Simulation Experiments

We now present illustrative synthetic experiments tailored
to showcase generic abilities, with designs and dimensions
inspired by (Soltanolkotabi & Candès, 2012; Yang et al.,
2015).

5.1 Fully Observable Model

We begin by investigating the original subspace cluster-
ing problem where Y = X . In particular, we examine
challenging conditions where there exists a significant de-
gree of subspace overlap similar to an experimental design
from (Soltanolkotabi & Candès, 2012). Data are generated
as follows. Three subspaces of dimension d1 = d2 =
d3 = 20 are embedded in R25, each containing 50 data
points. This is accomplished for each subspace by generat-
ing Xk = UkV

>
k , where Uk ∈ R25×20 and V ∈ R50×20

have iidN (0, 1) elements. With probability one the result-
ing X will be full rank with significantly overlapping sub-
space magisteria. We then normalize each column to have
unit `2 norm, and apply the state-of-the-art `1-norm based
subspace clustering mentioned in Section 1, denoted `1-
SSC, to sort out subspace labels. This algorithm involves
solving (2) with ‖Z‖1 replacing ‖Z‖0, forming the sym-

metric affinity matrix |Ẑ| + |Ẑ
>
| using the estimated Ẑ,

followed by a separate spectral clustering step with knowl-
edge of the true number of clusters m (Elhamifar & Vidal,
2013). For our algorithm we assign cluster labels based on
the index of the largest value of each estimated wj (typi-
cally though there is only a single entry significantly larger
than zero when the clustering is successful); no spectral
clustering heuristic is required.

We note however that by drawing the data using such iid
Gaussian isotropic sources (as is typically done for ex-
perimental purposes), the data within each subspace will
lack any significant structure or correlation, to which the
`1 norm solution can be highly sensitive. Hence to de-
viate from the relatively easier, isotropic situation, we
gradually experiment with increasing the degree of intra-
subspace correlation by adding a rank-one component
α‖UkV

>
k ‖2akb

>
k to each subspace, where vectors ak ∈

R25×1 and bk ∈ R50×1 are also iid N(0, 1) and α is a non-
negative scalar that weights the contribution.

Figure 1 displays the clustering errors (percentage of mis-
labeled points) for both `1-SSC and our method averaged
over 10 trials. We observe that when the correlation param-
eter α = 0, both methods perform well, but as soon as α
begins increasing, the quality of `1-SSC solutions degrades
significantly, unlike our algorithm which is stable across all
values. Hence even when no latent affine structure or the
twist is present (the fully observable case with Aj = I),
minimizing (14) represents a principled objective function
for subspace clustering.
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Figure 1: Comparisons using a fully-observable model as
the within-subspace correlation is increased.

5.2 Missing Entries

Next we address the case were we have observed some X
with a certain proportion of missing entries. As discussed
in Section 1, this is equivalent to assuming that each Aj

is a matrix of zeros with a single one per row. For this
particular special case, (Yang et al., 2015) has proposed a
modification of `1-SSC whereby missing entries are set to
zero but partially compensated for using a special projec-
tion step.7 Although this method cannot be extended to
general {Aj}, we can nonetheless evaluate our approach
against this missing entry specialization. For this purpose,
we select the most difficult clustering test from (Yang et al.,
2015), whereby the latentX is full rank and the number of
missing entries grows large.

Following (Yang et al., 2015), we generate m = 5 sub-
spaces, each of dimension 5, embedded in d = 25 dimen-
sional space. Next 50 points are drawn from each sub-
space using the same Gaussian factorization from above
(and α = 0). The fraction of missing entries is then gradu-
ally increased to test performance. Figure 2 displays the
results, including a common baseline nuclear norm esti-
mate ofX followed by `1-SSC subspace clustering. Again
we observe that, even without any spectral clustering step
as used by others, our algorithm outperforms state-of-the-
art existing approaches, including all variety of algorithms
from (Yang et al., 2015) that were specifically designed for
this problem.

5.3 General Affine Model

Finally, we consider our original motivating scenario where
{Aj} can be arbitrary. To this end, we repeat the ex-
periment from above, but with the binary sampling ma-
trices replaced with elements of each Aj drawn iid from
N (0, 1). We also fix the number of measurements per point
to pj = 15 for each j; other dimensions remain unchanged.

7Actually (Yang et al., 2015) presents multiple approaches for
handling missing entries, including another method from (Candès
et al., 2014); however, we compare against the best performing
variant among all of these.
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Figure 2: Comparisons using a partially-observable model
as the number of missing entries is increased.

Figure 3 explores the ability to recover the true latent X
compared to the minimum nuclear norm solution, which
represents the most viable existing alternative. We also
tried minimizing (6); however, the results where quite poor
(much worse than the nuclear norm solution) because of
unavoidable convergence to local minima.

While the true number of clusters is m = 5, we vary
the number of clusters assumed by our algorithm from
m̂ = 1, . . . , 20 and record the normalized MSE given by
〈‖X−X̂‖2F/‖X‖2F 〉 averaged over 10 trials. Moreover, if
we successfully recover X with m̂ 6= m, it is trivial to ei-
ther fuse redundant clusters or split merged clusters using
simple existing subspace clustering approaches to obtain
labels if required.

Note that it is possible to exactly recover X with m̂ 6= m,
provided m̂ is sufficiently large such thatX is identifiable.
More specifically, to even have a chance of recovery for any
possible algorithm, it must be the case that for all clusters k,
the number of degrees-of-freedom in each associated low
rank Xk (the points within cluster k) is less than the num-
ber of measurements of Xk. For example, in the present
case each Xk ∈ R25×50 has 5 × (25 + 50) − 52 = 350
degrees-of-freedom, and we have

∑
j∈Ωk

pj = 15 × 50 =
750 measurements per subspace to work with (more than
double the d.o.f.), which should be sufficient if m̂ = 5.
However, when m̂ < 5, then two or more subspaces must
be merged for estimation purposes leading to at least one
5 + 5 = 10 dimensional subspace with 50 + 50 = 100
points, and 10 × (25 + 100) − 102 = 1150 degrees-of-
freedom, but only 15×100 = 1500 measurements. Even if
we knew the true subspace labels, recoveringX would still
then be extremely challenging given how close the number
of measurements are to the degrees-of-freedom.

But of course we still need to learn the labels as well, com-
pounding the difficulty dramatically such that success by
any possible algorithm is suspect. Therefore we should ex-
pect failure with m̂ < 5 on theoretical grounds, and indeed,
from Figure 3 the error increases monotonically as m̂ is de-
creased below 5. In contrast, for m̂ > 5, we observe that
over-segmentation has minimal effect in disrupting the es-



timation of X , and our algorithm has dramatically lower
MSE than the nuclear norm solution; it only actually be-
gins to rise appreciably for m̂ > 17. At this point presum-
ably the large degree of superfluous over-segmentation may
increase the risk of local minima as the parameter space be-
comes unnecessarily large.
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Figure 3: Comparisons using the general affine model as
the number of assumed clusters is varied. Minimizing (6)
led to a normalized MSE above 1.0 for all cases and initial-
izations we tried (not shown).

6 Application Example: BRDF Estimation

One interesting application of the proposed method is sur-
face reflectance reconstruction. Here surface reflectance
simply refers to how a given surface reflects light. More-
over, if we have access to an accurate estimate, then we can
compute exactly how a given object and material will ap-
pear under any lighting condition and viewing direction,
which is extremely useful in many computer vision and
graphics domains. From a technical standpoint, surface
reflectance properties can be quantified by a spatially vary-
ing bi-directional reflectance distribution function (BRDF),
which encodes the ratio between the incoming radiance
from lighting direction θin and the outgoing radiance to
the viewing direction θout, at each surface point j on some
object or scene of interest. Although the BRDF represents
an inherent property of the underlying materials, it is quite
difficult to acquire since what we actually perceive from an
object is jointly dependent on lighting conditions, viewing
direction, and the BRDF itself.

More concretely, the observed outgoing radiance yj(θout)
at direction θout can be expressed as the product of the sur-
face BRDF ρj(θout, θin) at point j and the incoming radi-
ance r(θin) from direction θin integrated over all lighting
directions D, giving

yj(θout) =

∫
D
ρj(θout, θin)r(θin)dθin. (22)

Moreover, the surface reflectance of each surface pixel can
be expressed, to close approximation, as a linear combina-
tion of basis functions via

ρj(θout, θin) =

21∑
i=1

xijρi(θout, θin), (23)

where xj = [x1j , . . . , x21j ]
> are weights and each

ρi(θout, θin) represents a Cook-Torrance BRDF basis func-
tion for i ∈ {1, . . . , 20} and a Lambertian reflectance func-
tion for i = 21 (Lawrence et al., 2006; Dong et al., 2010;
Chen et al., 2014). Combining with (22) this yields

yj(θout) =

21∑
i=1

xij

∫
D
ρi(θout, θin)r(θin)dθin. (24)

With known lighting conditions and incoming radiance
r(θin), and the fixed known basis ρi(θout, θin), the inte-
gral components of (24) can be pre-computed. Addition-
ally, measurements from multiple viewing directions can
be packed into the vector yj = [yj(θout1), . . . , yj(θoutp)]>

for each point j, and the corresponding integrals of the ba-
sis function can also be packed similarly in to a matrix Aj

with (Aj)ti =
∫
D ρi(θoutt , θin)r(θin)dθin, producing the

affine model yj = Ajxj , which is of course equivalent
to (3). Note that both the viewing and lighting directions
are defined in local coordinates of the surface point j, and
therefore the transformation Aj will necessarily change
with pixel position.

The estimation goal is to recover each latent weight vec-
tor xj for all j, from which we can compute the BRDF
using (23). Here we make the reasonable assumption that
at any given location, the number of unknown materials
is limited to a small number, consistent with many real-
world objects (in fact, it is quite common that only a single
material may be present in many object regions). More-
over, given that the BRDF of each unknown base mate-
rial can be closely approximated using (23) with a fixed
weight vector for each material, it follows that the corre-
sponding unknown weights xj will each lie in a union of
low-dimensional subspaces, conforming with the proposed
subspace clustering model (Lawrence et al., 2006; Dong
et al., 2010; Chen et al., 2014).

We test our algorithm as follows. Data acquisition is ac-
complished using physically-based path-tracing (Wenzel,
2010; Pharr & Humphreys, 2010), which accurately re-
produces the physical capturing process. Importantly, this
gains us access to the ground-truth such that quantitative
comparisons are possible. We prepare two datasets to
evaluate the performance of the proposed algorithm, one
checker dataset, which consists of four different materi-
als positioned in a checker-board pattern, and one blend
dataset, that has four representative materials and each sur-
face point represents a blending between two of the four
possible materials. In both cases we mapped the materials
onto a sphere with known geometry comprised of a total
of n = 104074 points. The lighting was produced using
the Grace Cathedral environment map (Debevec & Ma-
lik, 1997). Finally, we capture images of the object under
5 different view directions, resulting in 5 observations per
visible surface point for a total of 5×n = 520370 measure-
ments. We compare our algorithm against a similar frame-
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Figure 4: Spatially-varying BRDF reconstruction results. Left column: Ground truth reference under novel environmental
lighting. Middle column: Rendering using our model. Right column: Rendering using the nuclear norm. Normalized MSE
and difference maps are also included as an insert for both algorithms. Rendering errors best viewed by zooming.

work built upon the nuclear norm (Chen et al., 2014).

Figure 4 compares the renderings based on the recon-
structed BRDFs under novel environmental lighting con-
ditions (not those used to actually learn the BRDFs). We
observe that with only 5 measurements per surface point,
we can accurately reconstruct the BRDF without produc-
ing any visual artifacts. On the contrary, when using the
nuclear norm Chen et al. (2014), the limited measurements
cannot produce an accurate reconstruction and visual arti-
facts are clearly evident (zoom in for better viewing). The
problem is compounded by the fact that the measurement
matrices {Aj} are highly ill-conditioned as indicated by
Figure 5, which displays the singular values of each Aj

averaged across all j as compared to those from ideal ma-
trices sampled iid fromN (0, 1). The nuclear norm is quite
sensitive to this distinction which likely accounts, at least
in part, for its poor performance. Note that accurate recon-
struction from few measurements is a crucial ingredient of
practical, inexpensive systems because it implies that fewer
cameras are needed and/or a shorter acquisition time.

7 Conclusions

In this paper we have introduced a practically-relevant,
affine twist into the standard subspace clustering pipeline.
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Figure 5: Singular values averaged across all Aj used in
the BRDF estimation experiments. Ideal Gaussian data of
equivalent dimensions is included for comparison. A fast
singular value decay can be highly disruptive to nuclear-
norm-based recovery algorithms.

We then derived a new, Bayesian-inspired algorithm that
accounts for this added confound when necessary, while
still defaulting to a principled state-of-the-art approach
when deployed on existing segmentation problems with
fully observable data, or when missing entries are present.
Our framework, which does not require the typical spectral
clustering post-processing step, is supported both by theo-
retical arguments and a large-scale, real-world application
involving BRDF estimation and subsequent rendering.
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