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Abstract

Microclustering refers to clustering models that
produce small clusters or, equivalently, to mod-
els where the size of the clusters grows sublin-
early with the number of samples. We formulate
probabilistic microclustering models by assign-
ing a prior distribution on the size of the clus-
ters, and in particular consider microclustering
models with explicit bounds on the size of the
clusters. The combinatorial constraints make full
Bayesian inference complicated, but we manage
to develop a Gibbs sampling algorithm that can
efficiently sample from the joint cluster alloca-
tion of all data points. We empirically demon-
strate the computational efficiency of the algo-
rithm for problem instances of varying difficulty.

1 INTRODUCTION

Clustering is classically identified as the task of group-
ing similar objects into a number of clusters. Typical
probabilistic formulations are based on mixture models
[McLachlan and Peel, 2004], following the intuitive idea
that each data point independently chooses a cluster by con-
sidering the product of some mixture weights and the like-
lihood of that cluster producing the data point. Because of
these independent decisions, these models have very lim-
ited means for controlling the sizes of the clusters. Para-
metric mixture models are effectively agnostic of the clus-
ter size; they can be tuned to a degree with the prior dis-
tribution of the weights, but in the end the likelihood over-
rides even the strongest priors for large sample sizes. Non-
parametric mixture models such as Dirichlet process (DP)
mixtures [Antoniak, 1974], Pitman-Yor mixtures [Dubey
et al., 2014], and uniform process mixtures [Wallach et al.,
2010] in turn induce some characteristic behavior for the
size distribution. For example, DP mixtures assume that
the number of clusters for a sample size of N grows pro-
portionally to log(N) and the biggest clusters hold a large

proportion of the data points due to the rich-get-richer prop-
erty, which is not always consistent with reasonable cluster-
ing assumptions [Miller and Harrison, 2013]. The uniform
process by Wallach et al. [2010] eliminates the rich-get-
richer property, but in expectation produces clusters of all
sizes with equal probability, resulting in total number of
clusters proportional to

√
N .

Both being agnostic about the sizes of the clusters and ex-
plicitly assuming the rich-get-richer property are reason-
able assumptions for a wide range of clustering tasks, as
clearly demonstrated by the wide-spread usage of mixture
models. For some clustering tasks, however, it would be
useful to have finer control over the possible sizes of the
clusters. For example, if the clustering model is used for
creating teams of similar individuals [Kim et al., 2015] we
would want to find clusters that are approximately of the
same size, even as small as two to create working pairs.
Another practical example is to use clustering to split a col-
lection of items for further processing for distributed set of
workers with limited capacity. We can expect the worker
to perform the task more accurately and faster if the items
are similar, and the clusters should contain at most a certain
pre-given number of instances.

In this work, we consider probabilistic clustering models
with explicit constraints on the sizes to address the illus-
trative scenarios above. Our model that assumes constant
maximum size is a specific instance of the more general
concept of microclustering, defined as clustering models
for which the size of the clusters grows sublinearly with
respect to the sample size [Miller et al., 2015] – here the
size is explicitly forced to be constant, to guarantee small
clusters even for extremely large data collections. Our mi-
croclustering model builds on standard parametric mixture
models, but replaces the independent cluster assignments
of individual data points with a joint assignment of all
points that needs to satisfy the constraints.

Specifying the model for size-constrained microclustering
is straightforward, requiring only a simple change in the
prior distribution, and in fact similar models have ear-
lier been discussed outside the probabilistic framework.



Banerjee [2006] considered distance-based clustering mod-
els that produce clusters of approximatively the same size,
and Zhu et al. [2010] added explicit constraints to K-means
to utilize prior knowledge on the cluster sizes. Their solu-
tions correspond effectively to maximum likelihood esti-
mation, which is easy given access to standard constrained
optimization tools, whereas the core challenge in our case
is in conducting full Bayesian inference over the model.

In this work we discuss the challenge of jointly sampling
the cluster assignments of all data points in our micro-
clustering model and present two alternative algorithms for
that purpose, a dynamic programming algorithm based on
depth-first branch-and-bound, and a simple rejection sam-
pler. We empirically demonstrate that these two alterna-
tives dominate in different conditions, the former being ef-
ficient for highly constrained cases and the latter being op-
timal for loose constraints. We then construct a final sam-
pling algorithm that utilizes both parts to produce a Gibbs
sampler that is a direct generalization of the correspond-
ing algorithm for regular mixture models: In the absence
of constraints it draws the samples independently with no
computational overhead, whereas with increasingly tight
constraints it starts using the dynamic programming algo-
rithm for improved efficiency.

Besides introducing the size-constrained clustering model,
the main message of this article is to highlight that full
Bayesian inference is also feasible for models with com-
binatorial constraints, encouraging people to explore the
opportunities outside independent samples. Even though
probabilistic reasoning under combinatorial constraints is
generally hard [Roth, 1996], many practical probabilistic
models result in sufficiently small problem instances that
can today be solved efficiently. Explicit constraints can
hence be effective in constraining the model and often the
computational overhead needed for finding the solution is
small compared to the gain in overall performance. We are
currently aware of only limited existing literature in this
direction; Chen et al. [2005] and Dobra et al. [2006] pre-
sented MCMC algorithms for sampling contingency tables
with constrained marginals, Klami [2012, 2013] consid-
ered posterior inference over permutations to solve cross-
domain object matching problems, and Wang et al. [2015]
presented an MCMC algorithm for combinatorial problems
related to phylogenetic trees.

2 MICROCLUSTERING

Miller et al. [2015] define microclustering as any clustering
model where the size of the clusters grow sublinearly with
the total number of data points. Even though their formu-
lation considers non-parametric models, the concept itself
is useful also for parametric models where the number or
size of the clusters is chosen via other means during the
modeling process.

The core requirement for building probabilistic microclus-
tering models is to have control over the sizes of the clus-
ters. Regular mixture models have no control over the size
distribution besides the prior weights (that can be dom-
inated by the likelihood) because their independent data
point assignment prior

p({zn}Nn=1|θ) =

N∏
n=1

p(zn|θ) (1)

implies that the conditional posterior p(zn|{zn}−n, θ) =
p(zn|θ) is independent of the other assignments. Hence
the sizes of the clusters cannot influence the decision of
the individual sample. Marginalizing the parameters θ out
introduces such a dependency, but its nature is completely
determined by the prior used on θ and cannot be controlled
easily. See Wallach et al. [2010] for both theoretical and
empirical analysis of the resulting cluster size distributions
for various non-parametric prior processes.

Explicit control over the cluster sizes is conceptually easy
to obtain, by replacing the prior in (1) with one that factor-
izes over the clusters and not the samples:

p({zn}Nn=1|θ) =

K∏
k=1

p(sk|θ),

where sk is the number of data points assigned to the
kth cluster. It is linked to the assignments as sk =∑N

n=1 I(zn = k) where I(·) evaluates to one if its argu-
ment is true and otherwise to zero. In other words, we as-
sume that all joint assignments that result in cluster sizes
{sk}Kk=1 are equally probable, and their number does not
directly influence the probability.

This general formulation leaves open the specific prior
given for the sizes. Miller et al. [2015] introduced a non-
parametric microclustering model that assumes the clus-
ter sizes follow a negative binomial distribution, whereas
we will be using constant priors over a set of legal cluster
sizes. One might also imagine other practical choices, such
as constant probability for some favoured cluster size with
exponential decay for violations from that size. In general,
this choice will be application-specific and hence the priors
should be subjective, rather unconventionally for mixture
modeling in general.

2.1 SIZE-CONSTRAINED MICROCLUSTERING

In this work, we consider microclustering models with ex-
plicit hard constraints on the cluster sizes, applicable for
scenarios where the (typically maximum) size of a clusters
is determined by external channel constraints. These clus-
tering models clearly belong to the family of microcluster-
ing models, since the size of the clusters is constant with
respect to the total number of data points and hence sub-
linear. The explicit constraints are easy to formulate but
require constrained optimization techniques for inference.



Our model that restricts the sizes between L and U is

p({xn}|φ, {zn}) =

N∏
n=1

p(xn|φ, zn) =

N∏
n=1

g(xn, φzn),

p({zn}) =

K∏
k=1

p(sk), (2)

p(sk) =
1

U − L+ 1
δ(L ≤ sk ≤ U),

where g(xn, φzn) is some likelihood function and the
model is coupled with a suitable prior p(φ) on its param-
eters. In our experiments, we will use the Gaussian like-
lihood log g(xn, φk) = C − 1

2 (xn − µk)T τ(xn − µk)
with diagonal precision τ and priors µ ∼ N(µ0,Σ0) and
τd ∼ Gamma(α0, β0), but the core inference algorithms
for {z} works identically for any likelihood that factorizes
over the samples. Here the constraintsU andL are constant
over the clusters, but all of the inference details apply also
for cluster-specific constraints if such prior information is
available.

3 INFERENCE

We now discuss the full Bayesian inference for the pro-
posed model. The practical algorithmic details are given
for a Gibbs sampler that samples the parameters φ of the
clusters given the assignments and the assignments {zn}
given the cluster parameters. The sampling equations for
the cluster parameters are exactly as in any standard mix-
ture model, and are not discussed here in any more detail.

The challenging part is sampling the assignments, which
needs to be done jointly for all data points due to the prior
distribution and constraints (2) defined for the whole col-
lection instead of individual points. We will first briefly ex-
plain how the maximum likelihood solution is easy to find,
and then proceed to present two alternatives algorithms for
producing samples from the posterior distribution.

As a side remark, the microclustering model of Miller et al.
[2015] sidesteps the issue of joint sampling by sampling
the allocations of individual samples conditional on all oth-
ers allocations, from p(zn|z−n). This is feasible in their
model that does not have hard constraints, but results in
long auto-correlation time due to aggressive conditioning.
For our model such a sampler would be catastrophic if the
constraints are tight; in the extreme case where the cluster
sizes are forced to exact values it could never change the
allocation since all clusters except the one where this data
point was previously allocated at would be full.

3.1 THE MOST LIKELY ASSIGNMENT(S)

An important initial observation is that we can efficiently
find the most likely assignment by solving the integer pro-

gramming problem

max

N∑
n=1

K∑
k=1

log g(xn, zk)πk,n, (3)

sk =
∑
n

πk,n ≥ L ∀k,

sk =
∑
n

πk,n ≤ U ∀k,∑
k

πk,n = 1 ∀n,

where π is a binary matrix whose element πk,n indicates
whether the nth sample is assigned to the kth cluster. Any
off-the-shelf linear programming solver will find the op-
timal solution in reasonable time for problems of practi-
cal size. By alternating between assignments obtained by
solving (3) and maximum a posteriori choice for the cluster
parameters φk, we would get a probabilistic variant of the
size-constrained K-means model by Zhu et al. [2010].

Typical branch-and-bound algorithms used for solving (3)
retain a list of solution candidates that are pruned away
by comparing upper bounds for their value against a lower
bound for the best candidate. They can be easily modified
to retain a list of all possible solutions that are close enough
to the optimal, to explicitly enumerate all solutions that are
sufficiently likely. Given such a list of solutions {πi} and
their associated log-probabilities {ci}we could easily sam-
ple a solution from p(π = πi) = exp(ci)∑

i exp(c
i) .

Unfortunately, explicitly enumerating all of the good so-
lutions is infeasible for all but the smallest problems be-
cause their number becomes inordinately large. In the un-
constrained case there are NK possible allocations, all of
which would need to be enumerated if the probabilities fall
off of too slowly. We do not discuss this approach further
since the cases for which it would be efficient are easy to
solve by other means as well, but the optimization problem
(3) is still important; we will use it for quickly creating an
upper bound in our actual sampler, as well as for initializ-
ing the sampling chain.

3.2 CLUSTER SIZE ASSIGNMENT SAMPLER

3.2.1 Motivation

A more practical solution to the problem is a dynamic pro-
gramming algorithm that operates in the space of possible
cluster sizes, enumerating only the possible cluster size al-
location vectors r ∈ [L,U ]K instead of the sample alloca-
tion vectors z ∈ [1,K]N . Even in the unconstrained case
the maximum number of solutions to be enumerated in the
end goes down from NK to

(
N+K−1
K−1

)
, and for the con-

strained case with uniform maximum size U we have at
most

∑min(K,bN/(U+1)c)
q=0 (−1)q

(
K
q

)(
N−q∗(U+1)+K−1

K−1
)

so-
lutions. As a case in point, already for N = 20, K = 8 and



U = 4 these three numbers would be 2.6 × 1010, 888.030
and 23.940. With minimum size L = 2 the number of
possible solutions would further decrease to just 266. Enu-
merating 2.6 × 1010 solutions would be clearly infeasible,
whereas the result set of at most 266 solutions would cause
no trouble.

Operating in the space of cluster size allocations does come
with a drawback as well, in the form of more difficult
bounding of the solution candidates. Furthermore, the
number of solution candidates in the intermediate stages is
typically considerably higher than the size of the final set,
but still orders of magnitude smaller than the number of
individual solutions. We will next show how a reasonably
efficient dynamic programming algorithm operating in the
space of the cluster sizes can be designed.

3.2.2 Basic Concept

The algorithm operates on solution sets Aa = (Ra, qa),
where each set contains a collection of solution candi-
dates Ra = {ria, pia} and the total probability of the set
qa =

∑
i p

i
a. Each solution i is characterized by a vector

of cluster sizes ria ∈ NK and the associated probability pia
of that particular solution. Throughout the description of
the algorithm, subscripts refer to the sets and superscripts
to the individual solution candidates within the set, so that
pia means the probability of the ith solution candidate in set
Aa.1

We build a forward-backward sampling algorithm based on
dynamic programming reminiscent of the algorithm used
for sampling the state sequence of Bayesian hidden Markov
models [Scott, 2002]. Similar to that algorithm we make a
forward pass to accumulate total probabilities of solutions
and a backward pass to sample given the accumulated prob-
abilities after each sample. For HMMs this algorithm can
cover all possibilities since it only needs to keep track ofK
probabilities at each stage, but since we are keeping track
of all possible cluster size allocations we also need to prune
out solution candidates that will have negligible probability
in the final set.

The overall algorithm is illustrated in Figure 1, which
also demonstrates how the practical computations are per-
formed.

3.2.3 Forward Pass

The forward pass starts by constructing N initial sets An,
each storing theK possible cluster allocations for one sam-
ple. The probability of each solution is given by pkn =
g(xn, zk), and the total probability is qn =

∑
k p

k
n.

1In practice we naturally store the values in the logarithmic
domain for numerical stability, but the presentation below uses
actual probabilities to avoid needing to write log

∑
exp(·) for all

cases where we sum up probabilities.

The first iteration of the forward pass picks two of these
sets (denoted by i and j) and joins them to create a solu-
tion set Ai,j , containing all possible allocations of the two
samples, stored still as the possible cluster size allocation
vectors rii,j and their probabilities pii,j . This join is per-
formed by a collection of four basic operations described
soon and illustrated in Figure 1.

After joining the two sets we proceed to join the resulting
set with another of the initial N sets, denoted by l, this
time producing the setAi,j,l that stores the joint allocations
of all three samples. The process continues this way for
N − 1 iterations, until all samples have been joined to the
final set A1:N . It stores the probabilities of all possible
cluster size allocations that satisfy the constraints. Together
with all of the intermediate sets it enables drawing a sample
from the posterior using the backward pass described in
Section 3.2.5.

3.2.4 Set operations

For manipulating the sets the algorithm requires four basic
operations:

1. MERGE(Aa,Ab): Takes as input two sets and com-
bines them, to produce a new set that contains all pos-
sible combinations of the solutions in the two sets:
each solution in Aa is paired with each solution in
Ab, so that the cluster size vectors are summed up and
the probabilities are multiplied together. Note that this
typically results in duplicate solution candidates, since
the same sum ria+rjb can be reached in multiple ways.

2. COLLAPSE(Aa): Takes as input a solution setAa with
possible duplicates for the cluster size vectors ria and
returns the set so that each unique vector is repre-
sented only once. The probability of that set is ob-
tained by summing over the probabilities associated
with each duplicate: pia =

∑
j p

j
a ∀rja = ria.

3. CHECKCONSTRAINTS(Aa, Ua, La): Takes as input
a solution set and returns a set that excludes all so-
lutions that violate the constraints. That is, we keep
only solutions for which La ≤ ria ≤ Ua holds for all
K elements.

4. BOUND(Aa, b): Takes as input a solution set and re-
turns a set that excludes all solutions for which the
probability is below the bound, pia < b.

A single iteration of the forward pass is simply a concate-
nation of all of the above operations: The initial sets are
passed to MERGE, the result of that to COLLAPSE, and
then to CHECKCONSTRAINTS and BOUND in either order.
Without bounding or checking for the constraints the al-
gorithm would simply proceed to enumerate all possible
cluster size allocations, so the efficiency of the algorithm
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Figure 1: Top: Schematic overview of the dynamic programming algorithm. The forward pass computes the probabilities
of possible cluster size allocation vectors by joining one sample at a time to the current overall solution set marked in
yellow, producing the next overall solution set marked in orange. The backwards step then draws a sample by considering
the probabilities in the intermediate sets created during the forward pass. Bottom: Example of an individual join. Each
set stores all possible cluster size vectors ri for the samples in that set with the associated probabilities pi, as well as the
total probability q that is their sum. The MERGE operation produces all possible combinations of the cluster size vectors
of the two sets, here ordered so that the solutions above the dashed line correspond to r12 , and multiplies the probabilities.
The COLLAPSE operation then sums up the probabilities for each unique solution, and CHECKCONSTRAINTS cuts out
solutions that exceed the constraints; here solutions with cluster sizes above U = 2 were pruned out. Note that the total
probability in the intermediate stage is simply the product of the probabilities for the incoming sets, but the probability
of the final result is often considerably smaller. This allows pruning the other sets again since their upper bounds have
decreased, here by 0.56− 0.3 = 0.26, resulting in A5 now having only two valid solutions instead of three.

depends on how well we can cut out solution candidates
based on the constraints and the bound on probabilities.

To efficiently bound the solutions in Aa we need to know
an upper bound for the probability of still unprocessed sam-
ples, denoted by βi

a, and a global lower bound for the
probability of the most likely final solution, denoted by
G = maxi p

i
1:N . We can then prune out all solution candi-

dates i in set Aa for which

pia + βi
a ≤ G/∆,

where ∆ is a threshold chosen sufficiently large; we use
∆ = exp(12) in our experiment, to indicate that we only
prune out solutions that are guaranteed to be at least five

orders of magnitude less likely than the optimal one. The
bound βi

a is obtained by inspecting the other sets Am.
Since we store with each set the total probability of all
possible allocations as qm, we obtain the bound βi

a =∑
m 6=a qm that is independent of the solution candidate it-

self. Note that the quantityG is in general unknown but we
can use any lower bound for that instead and retain the va-
lidity (at the expense of longer computation time); we will
return to the choice of G in Section 3.2.6.

The constraints used for CHECKCONSTRAINTS are not
the original constraints, but instead we need to here look
at what the remaining feasible solutions for this set are.
For each set we can compute the minimum and maxi-



mum sizes of the clusters, denoted by rla = mini r
i
a and

rua = maxi r
i
a, where the minimum and maximum are

taken separately for each dimension. Then the constraints
for the set Aa are given by

Ua = U −
∑
m6=a

rlm,

La = max

L−∑
m6=a

rum, 0

 .

In other words, we can subtract from the global bound all
the counts that we know for sure will be allocated in some
future set, and we need to allocate in this set the counts that
cannot be anymore allocated in the future sets.

3.2.5 Backward pass

The actual sample is produced by traversing the partial so-
lution sets backwards, starting from the final set A1:N . We
normalize the probabilities of the possible solutions in that
set and randomly sample one of those, denoting it by rl1:N .
We then find all possible combinations of the last joined set
m and its counterpart A−m, that stores the solutions for all
other samples, for which

rim + rj−m = rl1:N .

That is, we find the possible solutions in each set that could
have been paired up to create the final solution. For each
of these we compute the probability pim × p

j
−m and draw

a categorical sample to indicate the cluster assignment for
sample m. We then proceed backwards in the table repeat-
ing this same procedure, now using rj−m for the chosen
allocation as the target vector, until at the very end we sim-
ply pick the only possible allocation for the first sample.
This is guaranteed to produce a valid sample, the only er-
ror source coming from partial solution sets pruned away
because of the upper bound being smaller than G/∆.

3.2.6 Implementation Remarks

The efficiency of the algorithm depends on the order of the
samples being merged into the final set. We use a simple
heuristic that attempts to keep the size of the intermediate
sets minimal, which proved efficient in our preliminary ex-
periments: we keep track of the expected cluster size vector
(obtained by summing simple matrix products for all re-
maining sets), and always join the sample that is expected
to violate the maximum constraints most. If no such sam-
ples exist, we merge with the set having the smallest num-
ber of remaining solutions.

Another key element is keeping the total probabilities qa
associated with the unprocessed sets updated. Right af-
ter the initialization, we can typically exclude considerable
number of solution candidates in the singleton sets because

already that single assignment would make the full solution
too unlikely. Since the bounding is based on the sum over
all other sets, including the one that has already accumu-
lated more samples, we should apply BOUND and CHECK-
CONSTRAINTS again for all sets after each join.

Finally, we stated earlier that for bounding the candidates
we need to know the probability G of the best final so-
lution, so that we can prune out solutions for which the
bounded probability is sufficiently smaller than that. Since
we are operating in a depth-first manner we do not obtain
such a bound with the algorithm itself. Instead, we find a
lower bound for it by the following procedure: we first find
the most likely individual solution by solving (3) and com-
pute the cluster sizes r̂ of that solution. We then solve the
forward pass with constraints Lk = Uk = r̂k and global
bound G0 corresponding to the total probability of all pos-
sible assignments without any constraints. This either pro-
duces a lower bound for the probability of the solution can-
didate corresponding to cluster sizes r̂ or, ifG0 is too large,
fails by producing an empty set. If the process failed we
repeat the procedure using smaller G0, until a valid lower
bound is obtained. While this procedure is somewhat in-
efficient it generally still takes only a fraction of the total
computation time, especially for hard instances. In our ex-
periments, the resulting lower bound for G was also typ-
ically very close to the actual true maximum probability
(seen after running the full forward pass).

Finally, for well-separated clusters it is typically not nec-
essary to solve the whole problem in one go. Instead, we
can partition the data set into disjoint subsets of data points
that do not compete for the same clusters, using a simple
greedy procedure. Then we can apply the algorithm for
each subset separately, while still guaranteeing to produce
an independent sample. In the empirical experiments we
skip this step to keep the results as clear as possible (how
often the problem splits into disjoint sets depends heavily
on the data), but in practice it should be done since finding
the disjoint sets is very light operation.

3.3 REJECTION SAMPLER

A considerably simpler algorithm for solving the same
problem can be obtained by a rejection principle. Despite
the simplicity, the rejection sampler presented next will still
be a practical solution for some problem instances.

Given N samples to be allocated to K clusters, the rejec-
tion sampler simply allocates all samples independently,
drawing the assignment for each from the normalized like-
lihoods p(zn = k) = g(xn,zk)

Z , where Z sums over the
probabilities for the different clusters k. Afterwards, the
sampler checks whether the constraints on the cluster sizes
are violated. If there are no violations we keep the sample.
Otherwise we create another sample and check for the con-
straints again, continuing until a valid sample is produced.



This sampler is obviously inefficient for cases where the
constraints rule out the most likely solutions, but for cases
with loose constraints it is a practical tool. Often the very
first sample will be accepted and the sampler is so fast that
we can typically afford to re-sample quite many times.

4 EVALUATING THE ASSIGNMENT
SAMPLERS

In the following we demonstrate the samplers on artificial
problems. At this stage we do not consider the sampler
as part of a full clustering model, but instead merely look
at the process of sampling the cluster assignments given
some log-probabilities for the individual assignments. In
other words, we simply consider the constrained optimiza-
tion task of finding all possible solutions to the maximiza-
tion problem (3) that exceed a certain threshold and draw-
ing a sample from that set.

4.1 PROBLEM INSTANCES

The difficulty of a problem instance can be described
crudely along two axes: the optimality gap indicating how
close the best individual solution is to the unconstrained op-
timal allocation, and how quickly the probabilities decay
when forced to pick sub-optimal allocations. The former
is tightly connected with the tightness of the constraints,
whereas the latter related to the tightness and separation of
the clusters.

Intuitively, the instances with small (or zero) optimality gap
are good for the rejection sampler: Almost all samples pro-
duced are within the constraints and hence the sampler is
almost as efficient as an unconstrained sampler would be.
For the dynamic programming algorithm these instances
are the worst possible ones, especially if the probabilities
decay slowly; we need to enumerate an excessively large
set of solutions. The other extreme of problems with tight
constraints and large optimality gap is difficult for the re-
jection sampler, but easy for the dynamic programming
variant as long as the probabilities decay quickly enough.

To study the behavior of the samplers under these charac-
teristics we create random problem instances by sampling
the log-probabilities from standard distributions and by
controlling the tightness of the constraints. We do this in-
stead of considering actual cluster assignment setups since
it allows finer control over the characteristics; for real clus-
tering instances the optimality gap and rate of decay are
often correlated in a complicated manner. We return to ac-
tual clustering problems in Section 6.

4.2 RESULTS

We created random solution instances with K ∈ [6, 15]
and N ∈ [36, 225], drawing the entries from normal distri-

bution with zero mean and standard deviation σ ∈ [4, 40].
We then solved the problems with varying degree of con-
straints, so that each cluster size was allowed to differ from
the mean by [0, 3] samples. For each problem, we ran both
of the above algorithms and stored the running time until
a valid solution was found, terminating the samplers if it
took more than 20 seconds.

We summarize the results in Figure 2, where we present
the computation times as a function of the problem instance
characteristics discussed above. The optimality gap is de-
termined by simply comparing the solution of (3) to the
unconstrained optimum, and for measuring the probability
decay we use a simple proxy: we count for each sample the
number of cluster assignments that have probability above
1/∆ of the highest probability, excluding the top candidate
itself, and sum them up. This approximates the number
of free variables to be considered outside the best alloca-
tion, but need not correlate with the original problem size.
For producing these plots we always grouped all problem
instances satisfying specific conditions into one pool, re-
porting the quantiles of the computation time for that pool.
For studying the effect of the optimality gap we only used
instances for which the number of free variables is below
50, and for studying the effect of the free variables we con-
sidered cases with logarithmic optimality gap below 7.

The experiment confirms the intuitive expectations of the
previous section: for small optimality gap the rejection
sampler is optimal but it quickly becomes infeasible when
the gap grows. The rejection sampler, meanwhile, is effi-
cient for fast enough probability decay (or, equivalently,
small enough effective problem size), but becomes ex-
tremely slow if the probabilities do not decay quickly
enough. A notable observation is that the running time
curves of both algorithms have a sharp curve with respect to
one of the measures: The running time is reasonably con-
stant and always manageable until some threshold in gap or
probability decay, and after that the running time becomes
quickly excessive. In other words, the instances with large
optimality gap and small decay of probabilities are prob-
lematic for both samplers.

5 HYBRID SAMPLER

In light of the above experiments, we propose as the final
sampling solution a hybrid algorithm that uses both the re-
jection sampler and the dynamic programming algorithm
while avoiding the cases that are too slow for both of them.

For a given task of assigning N samples, we first try out
with the rejection sampler for some number of tries; if we
produce a valid sample we keep it and the process termi-
nates. If we fail to produce a valid sample we proceed to
evaluate the difficulty of the problem. If the problem is con-
sidered easy enough, we apply the dynamic programming
algorithm to produce the sample.
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Figure 2: Comparison of running times of the two alterna-
tive sampling algorithms in producing a sample from pos-
terior distributions p({zn}|{xn}, φ) of varying difficulty.
For both figures the dark shaded area indicates times be-
tween the 35% and 65% quantiles and the light shaded
area between the 20% and 80% quantiles, and the times
refer to single-core implementations. Top: The rejection
sampler breaks down for logarithmic optimality gaps of
roughly 7, meaning that the optimal allocation is roughly
1000 times more likely than the best feasible solution, but
before that has effectively constant running time. The dy-
namic programming algorithm is largely insensitive to the
optimality gap, but slightly slows down for the harder prob-
lems and occasionally takes longer time. Bottom: The dy-
namic programming sampler breaks down when the prob-
abilities decay off too slowly. Here the horizontal axis de-
notes the count of non-optimal sample allocations with log-
probabilities within 6 points of the most likely allocation
for that sampler, and we see the algorithm becomes exces-
sively slow around count 60.

If the problem is considered too challenging for the dy-
namic programming algorithm we split the problem into
smaller chunks. We randomly divide the data point into
two sets of N/2 instances each, and draw the assignments
for each half conditional on the current assignments for the
other half. For each half we again first try the rejection sam-
pler and then consider the dynamic programming sampler
or proceed to further subdivide the problem recursively.
Assigning only a subset of the data points at a time nat-
urally introduces auto-correlation in the overall sampling
chain, but the time saved in not attempting to solve an

overly difficult instance at once allows repeating the pro-
cess enough times to produce an independent sample.

The exact criteria for when to split the problem into two
halves should depend on the cost of sampling the cluster
parameters φ given the assignments. For models where
this stage is efficient, like our Gaussian likelihoods, the in-
creased auto-correlation in sampling the assignments is not
an issue and we can sample fairly small sets at once. In the
other extreme, such as mixture models where approxima-
tive Bayesian computation [Csillery et al., 2010] is needed
for sampling the cluster parameters, it pays off to solve the
whole problem at once even if it takes a long time.

A full-blown analysis stage should inspect the rate of de-
cline for the probabilities, the optimality gap, the number of
solutions within the constraints, and possibly other statis-
tics. In practice, however, we resort to a simpler heuris-
tic to avoid the computation needed for the analysis (find-
ing the optimality gap requires solving (3)); we simply use
the same measure of effective problem size used in Sec-
tion 4.2 and use the dynamic programming algorithm for
cases where this number is small enough.

6 EVALUATING THE
MICROCLUSTERING MODEL

Next we evaluate the final hybrid algorithm as part of a
whole microclustering model to illustrate the balance be-
tween the two alternative solutions. As explained above,
the algorithm has two parameters: The number of times
the rejection sampler is tried before giving up, and the
maximum complexity of the problem instance solved with
the dynamic programming solver. Both parameters control
how many samples can be jointly allocated; bigger values
make it more likely that the sampler can allocate large num-
ber of data points at once, but at the same time increases the
computational time per posterior sample. The relative ratio
of these two parameters, in turn, controls how often each of
the algorithms is in practice used; high number of tries and
small complexity threshold imply that the rejection sampler
allocates most samples, and vice versa.

Figure 3 illustrates the effect of the two parameters for an
example clustering problem where the input data is uni-
formly distributed in a two-dimensional rectangle; the data
has no natural cluster structure and hence the constraints
are crucial in guaranteeing balanced cluster sizes. We show
results for both 64 data points being clustered into K = 8
clusters and 256 data points being clustered into K = 16
clusters, constraining the clusters to be exactly identical in
size. For both cases the results are similar: The rejection
sampler takes care of the assignments of majority of the
samples unless the maximum number of trials is very low,
but using the dynamic sampler to solve harder problem in-
stances helps assign more data points at a time. Both indi-
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Figure 3: Illustration of the hybrid algorithm on two clus-
tering problems. The top row corresponds to clustering
N = 64 data points into K = 8 clusters and bottom row
to clustering N = 256 samples into K = 16 clusters.
For both cases the data points are uniformly distributed
on a two-dimensional space, the clusters are forced to be
of equal size, and the results are averaged over five ran-
domly created data sets. The left plots show how many
data points are on average assigned by the rejection sam-
pler; the ratio naturally goes up if we try several times be-
fore giving up and down if we solve harder problems us-
ing the dynamic programming algorithm. The colored lines
corresponding to different maximum difficulty scores, cor-
responding to the number of free variables in the problem
instance as defined in Section 4.2. The right plots char-
acterize the overall efficiency of the algorithm, plotting the
average number of data points assigned jointly (by either
algorithm) versus the computational time required for pro-
ducing the whole posterior sample. Points closer to the top
left corner are here the best, quickly allocating several data
points at once, and we see that comparable results are ob-
tained with several combinations for the two parameters as
long as the extreme values are avoided. The color-codes in
the right plot match the left one; for example, the red line
shows how the behavior of the sampler evolves for maxi-
mum problem difficulty of 16 when the number of allowed
rejections grows from 2 to 512.

vidual algorithms are hence useful for the overall solution.
Importantly, a wide range of parameter values gives satis-
factory results, suggesting that the overall algorithm is not
very sensitive to the choice of the thresholds.

7 DISCUSSION

In this work we introduced a new microclustering model
[Miller et al., 2015] for solving clustering tasks with pre-
defined constraints on the sizes of the clusters, motivated
by scenarios where the clusters are used, for example, in
creating teams of fixed sizes [Kim et al., 2015] or for al-
locating items for further processing of (manual or auto-
mated) workers with limited capacity. To control the sizes
we introduced a cluster assignment prior that does not fac-
torize over the samples but instead over the clusters; this
formulation is more general and can be used also for mod-
els without hard constraints. One straightforward extension
would consider priors where the log-probability of the clus-
ter decays linearly when moving away from some preferred
size; for such a prior we can still find the most likely assign-
ment easily and hence can generalize the whole sampler.

The model requires the cluster assignments to be drawn
jointly for all data points, which increases the computa-
tional cost compared to standard mixture models. We dis-
cussed two alternative samplers and showed that each is
efficient for a subclass of problems, and then proceeded
to present a practical algorithm that can draw samples
also for large data collections with the possible expense
of increased auto-correlation for overly complex problem
instances. The algorithm attempts to assign all samples
jointly, but in case the problem instance is too difficult it
recursively splits the problem into two parts and assigns
the samples conditional on the assignments for the other
part. Probabilistic treatment of clustering is most useful for
fairly small cluster sizes that necessitate explicitly treating
the full posterior, and we showed that for such setups we
can draw posterior samples in a fraction of a second.

Finally, we want to encourage Bayesian practitioners to
consider combinatorial constraints in their models. Even
though the problem of finding all solutions that exceed a
certain threshold is considerably harder than finding the
best one, it is still feasible for problems of moderate size.
Sampling-based probabilistic inference also comes with
natural solution for splitting the problem into easier and
smaller sub-problems, in form of conditioning based on a
subset of the assignments. Consequently, we believe that
several types of combinatorial constraints can be incorpo-
rated into typical latent-variable models and other proba-
bilistic models with fairly low additional overhead. The
auto-correlation of the sampling chain increases and the in-
dividual sampler steps typically take longer time, but one
should not shy away from introducing the constraints if
they are important for the model itself.
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