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Abstract

A major goal in personalized medicine is the
ability to provide individualized predictions
about the future trajectory of a disease. More-
over, for many complex chronic diseases, pa-
tients simultaneously have additional comorbid
conditions. Accurate determination of the risk
of developing serious complications associated
with a disease or its comorbidities may be more
clinically useful than prediction of future disease
trajectory in such cases. We propose a novel
probabilistic generative model that can provide
individualized predictions of future disease pro-
gression while jointly modeling the pattern of re-
lated recurrent adverse events. We fit our model
using a scalable variational inference algorithm
and apply our method to a large dataset of lon-
gitudinal electronic patient health records. Our
model gives superior performance in terms of
both prediction of future disease trajectories and
of future serious events when compared to non-
joint models. Our predictions are currently being
utilized by our local accountable care organiza-
tion during chart reviews of high risk patients.

1 INTRODUCTION

With the dawn of precision medicine and accountable care,
it will become increasingly important for healthcare orga-
nizations to make accurate predictions about individual pa-
tients’ future health risks to improve quality and contain
costs. Accountable care organizations (ACOs) are organi-
zations that bear financial responsibility for the quality and
total cost of healthcare services provided to a defined pop-
ulation of patients. In order to deliver the right care at the
right time in the right setting, ACOs need personalized pre-
diction tools that identify individual patients in their pop-
ulations at greatest risk of having poor clinical outcomes
[Parikh et al., 2016, Bates et al., 2014]. Most ACOs cur-

rently lack these capabilities.1 With the widespread adop-
tion of electronic health records (EHRs), much of the data
necessary to build such tools are already being collected
during the course of routine medical care. In order to be
clinically useful, such tools should be flexible enough (1) to
accommodate the limitations inherent to operational EHR
data [Hersh et al., 2014]; (2) to update predictions dynam-
ically as new information becomes available; and (3) to
scale to the massive size of modern health records.

We collaborated with Duke Connected Care, the ACO affil-
iated with the Duke University Health System, to develop
predictive tools for chronic kidney disease (CKD). CKD
is characterized by a gradual and generally symptomless
loss of kidney function over time. CKD and its complica-
tions cause poor health, premature death, increased health
service utilization, and excess economic costs. CKD is de-
fined and staged by the degree to which a person’s esti-
mated glomerular filtration rate (eGFR) is impaired. eGFR
is an approximation of overall kidney function and is cal-
culated using a routinely obtained clinical laboratory test
(serum creatinine) and demographic information (age, sex
and race) [Levey et al., 2009; KDIGO, 2013]. Most clinical
laboratories report eGFR automatically with every serum
creatinine measurement.

Healthcare providers struggle at many levels to provide
optimal care for patients with CKD. First, the majority
of healthcare providers fail to recognize the presence of
CKD, despite the fact that CKD can be readily identified
using simple, eGFR-based laboratory criteria [Szcech et
al., 2013; Tuot et al., 2011; Allen et al., 2011]. Second,
among those patients with recognized CKD, both primary
care providers and kidney specialists struggle to predict
which patients will progress to kidney failure (requiring
dialysis or kidney transplantation to survive) or suffer from
other complications caused by CKD, such as early death
from heart attack or stroke [Mendehlsson et al., 2011].
Third, providers often fail to prescribe appropriate preven-
tive treatment to slow disease progression or address com-

1http://www.healthcare-informatics.com/article/survey-acos-
still-cite-lack-interoperability-biggest-barrier



Figure 1: 15-year clinical course of an example patient who experienced both a rapid progression of CKD and a number
of other serious health events. Y-axis indicates estimated glomerular filtration rate (eGFR), an estimate of overall kidney
function (60-100 is normal, <60 indicates clinically significant kidney disease). X-axis indicates patient age in years.
Markers indicate health service use and adverse events. Our model allows us to jointly model progression of CKD, as well
as the association between the disease progression and risk for adverse events.

plications [Smart et al., 2014]. Medications such as RAAS
drugs can slow progression of CKD if used early enough,
while patient counseling and advanced planning can reduce
the physical and psychological trauma when kidney failure
is imminent.

From a population health management perspective, these
characteristics make CKD an ideal condition to model and
to develop high-impact care management programs. The
challenges surrounding CKD care are best articulated with
a representative clinical case, illustrated in Figure 1. A 47
year-old man makes first contact with our health system
for emergency treatment of a stroke. His kidney function at
this point is normal, although he possesses several risk fac-
tors for future CKD. Over the next 5 years, he receives suf-
ficient medical care to detect that his kidney function is de-
teriorating rapidly (the normal annual rate of kidney func-
tion loss at his age is only about 1-2%). His kidney disease
goes unnoticed by his healthcare providers, and he does not
receive any treatment aimed at slowing progression to total
kidney failure. At age 52, he is eventually referred to a kid-
ney specialist, more than a year after his kidney function
has fallen below the recommended threshold for such a re-
ferral. By this point, kidney failure is inevitable and there
is too little time to make advanced preparations for kidney
failure, such as pre-emptive kidney transplantation or at-
home dialysis. Within 90 days of that first kidney specialist
appointment, he develops symptoms of kidney failure and
requires hospitalization for emergency dialysis initiation,
which is both extremely traumatic and makes him among
the most expensive type of patient to treat [Johnson et al.,

2015]. He survives on dialysis for about a decade, suffering
multiple cardiovascular complications from kidney failure,
and ultimately dies at age 63. This patient’s story is one
of missed opportunities–opportunities that could have been
acted upon with accurate predictions using machine learn-
ing methods and care management programs.

Our goal is to develop statistical methods that model both
the risks of future loss of kidney function and the risks of
future complications or adverse health events. The predic-
tions from these models can then be used by healthcare or-
ganizations to connect high-risk patients to appropriately
targeted interventions. Since the broad aim is to predict
which patients will worsen in the near future, we need to
model associations between CKD and the multitude of var-
ious health outcomes that could occur. CKD frequently co-
exists with and contributes to cardiovascular disease. In
fact, most patients with advanced CKD pass away from car-
diovascular complications before the onset of kidney fail-
ure. In this article, we choose to focus on two common
types of adverse cardiovascular events: heart attacks (acute
myocardial infarctions [AMIs]) and strokes (cerebrovascu-
lar accidents [CVAs]).

To this end, we develop a joint model that flexibly captures
the eGFR trajectory of CKD progression, while simulta-
neously learning the association between disease trajectory
and cardiovascular events. We formulate our approach as
a hierarchical latent variable model. Each patient is repre-
sented by a set of latent variables characterizing both their
disease trajectory and risk of having events. This approach



captures dependencies between the disease trajectory and
event risk.

Using our model, we study a large cohort of patients with
CKD from the Duke University Health System and make
predictions about the trajectory of their disease, as well as
their risk of cardiovascular events. Our inference algorithm
scales well to the large dataset, and makes accurate predic-
tions that outperform several baselines.

2 PROPOSED JOINT MODEL FOR
ELECTRONIC HEALTH RECORDS

In this section, we first describe the structure of electronic
health records before introducing our proposed joint model
for longitudinal and point process data.

Electronic Health Records

The Duke University Health System’s electronic health
record (Epic Systems, Madison, WI) stores nearly all avail-
able information captured about patients during their en-
counters within the health system. The EHR contains a
large quantity of longitudinal patient data. The vast major-
ity of the data are unstructured, contained within free-text
notes and reports. Structured data include demographics,
diagnosis and procedural codes, orders, laboratory results,
and objective clinical observations (such as vital signs and
various nursing assessments). Of particular interest to our
work in modeling CKD patients are structured diagnosis
codes and laboratory results.

The EHR stores granular information about medical di-
agnoses using structured, hierarchical codes conforming
to ICD-9 (International Classification of Disease, 9th re-
vision), a standardized taxonomy that is used principally
for medical billing. For each medical encounter (such as a
clinic or emergency department visit), a set of codes is as-
signed to document the primary problems or diseases that
were addressed. In total, there are about 9,000 unique ICD-
9 codes. Each clinical diagnosis may have multiple corre-
sponding ICD-9 diagnosis codes. The Agency for Health-
care Research and Quality publishes the Clinical Classifi-
cations Software2, a categorization tool that collapses the
thousands of original codes into a few hundred clinically
meaningful concepts. We use this mechanism to identify
and aggregate codes for CVAs and AMIs, where we use the
mean date among all relevant codes within monthly bins to
account for multiple codes in a short time period that refer
to the same clinical event.

In contrast to diagnosis codes, which capture clinicians’
subjective diagnostic impressions, laboratory tests provide
objective clinical data. A single medical encounter may in-
clude dozens, hundreds or (in the case of hospitalizations)

2http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

thousands of discrete laboratory test results. Identifying
and grouping relevant laboratory test results can be diffi-
cult due to lack of standardization and changing conven-
tions over time. For example, serum creatinine, which is
a lab test used to calculate eGFR, has more than 18 differ-
ent names in our EHR that refer to the same value (e.g.
“CREA”, “Creatinine”, “DUAP CREA”). Harmonizing
and grouping these lab results required an exhaustive re-
view of laboratory metadata by a subject matter expert.

There are numerous ongoing efforts to develop improved
algorithms to identify chronic medical conditions and in-
cident clinical events using a wide assortment of clinical
data. Our model is agnostic to the particular algorithm used
to identify clinical events. After cleaning and transforming
the raw EHR data, we obtained a longitudinal set of eGFRs
for each patient, and dates of CVA and AMI diagnoses.

Proposed Model

Our proposed hierarchical latent variable model jointly
models longitudinal and point process data by creating dif-
ferent submodels for each type of data, with shared latent
variables for each patient inducing dependencies between
their two data types. Assume there are N patients, let
~yi = {yij}Nij=1 denote the Ni observed readings of eGFR
for patient i at times ~ti = {tij}Nij=1, and let ~ui = {uik}Kik=1

denote the Ki cardiac events patient i experiences (note
that Ki may be 0). Let T−i be the time patient i is first
seen in our sample of their health record, and T+

i the fi-
nal time they are observed. Let zi, bi, fi and vi be a set
of shared hierarchical latent variables for each patient i, to
be defined subsequently. Conditioned on these latent vari-
ables, to be learned during inference, we make a common
conditional independence assumption that the conditional
likelihood for patient i factorizes:

p(~yi, ~ui|zi, bi, fi, vi;xi) = p(~yi|zi, bi, fi;xi)
p(~ui|zi, bi, fi, vi;xi).

(1)

Longitudinal Submodel

We use a recently proposed model for disease trajecto-
ries for our longitudinal submodel [Schulam and Saria,
2015], that was shown to be extremely flexible and accu-
rate at modeling continuous functions of disease progres-
sion. Given the set of latent variables for patient i, the
longitudinal variables are conditionally independent, i.e.
p(~yi|zi, bi, fi) =

∏Ni
j=1 p(yij |zi, bi, fi). The model as-

sumes each observed longitudinal value is a normally dis-
tributed random variable containing a population compo-
nent, a subpopulation component, an individual compo-
nent, and a structured noise component:

yi(t) = mi(t) + εi(t), εi(t)
iid∼ N(0, σ2

ε ) (2)

mi(t) = Φp(t)
>Λxip + Φz(t)

>βzi + Φl(t)
>bi + fi(t).

(3)



The first term in (3) is the population component, where
Φp(t) ∈ Rdp is a fixed basis expansion of time, Λ ∈
Rdp×qp is a coefficient matrix, and xip ∈ Rqp is a vector of
baseline covariates.

The second term in (3) is the subpopulation component,
where it is assumed person i belongs to latent subpopu-
lation zi ∈ {1, . . . , G}. Each subpopulation is associ-
ated with a unique disease trajectory represented using B-
splines, in particular, Φz(t) ∈ Rdz is a fixed B-spline basis
expansion of time with βg ∈ Rdz the coefficient vector
for group g. We assign zi a multinomial logistic regres-
sion prior that depends on baseline covariates xiz ∈ Rqz :
p(zi = g) ∝ exp{w>g xiz}, where {wg}Gg=1 are regression
coefficients with w1 ≡ 0 for identifiability.

The third term is the individual component, allowing for
individual-specific long-term deviations in trajectory that
are learned dynamically as more data is available. Φl(t) ∈
Rdl is a fixed basis expansion of time, and bi ∈ Rdl is a
random effect for patient i, with prior bi ∼ N(0,Σb).

Finally, fi(t) is the structured noise process that captures
transient trends in disease trajectory. This is modeled using
a zero-mean Gaussian process with Ornstein-Uhlenbeck
covariance function KOU (t1, t2) = σ2

f exp{− |t1−t2|l }.
This kernel is well-suited for this task, as it is mean-
reverting and has no long-range dependence between de-
viations [Schulam and Saria, 2015].

Point Process Submodel

We choose to model the times ~ui = {uik}Kik=1 that a per-
son has an adverse event as a Poisson process. A common
choice for the rate function from related literature in sur-
vival analysis corresponds to the hazard function from the
Cox proportional hazards model. We make this choice in
this work, for reasons both of simplicity and also computa-
tional efficiency as we discuss later. The conditional like-
lihood for the Poisson process for patient i on the interval
[T−i , T

+
i ], with events at times {uik}Kik=1, is given by:

p(~ui|zi, bi, fi, vi) =

Ki∏
k=1

ri(uik) exp{−
∫ T+

i

T−i

ri(t)dt},

(4)
where we specify the rate function for patient i as:

ri(t) = r0(t) exp{γ>xir + αmi(t) + δm′i(t) + vi}. (5)

We assume that r0(t) is a piecewise constant function with
jumps at fixed quantiles of the event times, and heights
{al}Nrl=1. The parameter γ ∈ Rqr specifies the associa-
tion between baseline covariates xir ∈ Rqr and the risk
for an event, while parameters α and δ specify the as-
sociation between the risk for an event and the expected
mean and expected slope of the longitudinal variable at

that time, respectively.3 Finally, the latent variable vi, with
prior vi ∼ N(0, σ2

v), represents an additional random ef-
fect (called a frailty term in survival analysis), multiplica-
tively adjusting an individual’s overall risk for events. In
order to compute the likelihood, we must compute the def-
inite integral in (4) numerically. We find that the trapezoid
rule works fine, although other options such as Gaussian
quadrature are also possible.

3 RELATED WORK

There is a rich literature, mostly from biostatistics, on
joint models typically for longitudinal data and time-to-
event data with right censoring. See [Rizopoulos, 2012]
for a thorough introduction to these types of joint models.
A slightly different flavor of joint models is presented in
[Proust-Lima et al., 2014]. These models differ in that
instead of the longitudinal value directly influencing the
event rate, they consider latent subpopulations of individu-
als within which it is assumed there is a different average
profile of both the longitudinal value and risk of the event.

Most directly relevant to our work are several methods for
modeling longitudinal data and recurrent event data [Liu
and Huang, 2009; Kim et al., 2012; Han et al., 2007].
However, these methods share several notable weaknesses.
First, the form for their longitudinal models are simplistic,
all being mixed effects models. Such models are inflex-
ible and will fail to capture the types of trajectories that
our model can, through its mixture model and both long
and short-term individual-specific deviations. In addition,
these works as well as most of the literature on joint models
rely on computationally expensive inference algorithms,
thereby limiting their use to small datasets. Typically EM
or gradient methods are employed for Maximum Likeli-
hood Estimation, or MCMC in Bayesian settings. It is ex-
tremely uncommon to find a published joint model applied
to a dataset of over 1000 individuals. However, our scalable
variational inference algorithm, developed in the next sec-
tion, is much more efficient, facilitating use in large-scale
applications where there can be tens or even hundreds of
thousands of patients.

Within the medical literature, there have been numerous
studies on predicting adverse events such as kidney failure,
death, or cardiac events in patients with CKD; for instance,
[Tangri et al., 2011] is a common reference. In almost ev-
ery case, the models developed are Cox proportional haz-
ards models for time-to-event data, or logistic regression
models for occurrence of an event in a specified time win-
dow. As such, these models are all static and use only a
single snapshot of patient data to make predictions, which
precludes the ability to generate dynamic predictions.

3Since fi(t) with an OU kernel is not differentiable, we let
m′
i(t) be the sum of the slopes of the first three terms in (3).



In recent years there has been much interest in machine
learning in modeling electronic health records and other
forms of healthcare data. For instance, [Lian et al., 2015]
use hierarchical point processes to predict hospital admis-
sions, and [Ranganath et al., 2015] develop a dynamic fac-
tor model to learn relationships between diseases and pre-
dict future diagnosis codes. Closest to our work in the ap-
plication is [Perotte et al., 2015], who explore using time-
series models to predict a time-to-event (progression from
CKD stage 3 to stage 4) in CKD patients.

4 INFERENCE

As with most complex probabilistic generative models, the
computational problem associated with fitting the model is
estimation of the posterior distribution of latent variables
and model parameters given the observed data. Exact com-
putation of the posterior is intractable, and requires approx-
imation to compute. To this end, we develop a mean field
variational inference [Jordan et al., 1999] algorithm to ap-
proximate the posterior distribution of interest.

Variational methods transform the task of posterior infer-
ence into an optimization problem. The optimization prob-
lem posed by variational inference is to find a distribution q
in some approximating family of distributions that is close
in KL divergence to the true posterior. Equivalently, the
problem can be viewed as maximizing what is known as
the evidence lower bound (ELBO) [Bishop, 2006]:

L(q) = Eq[log p(y, u, z, b, f, v,Θ)− log q(z, b, f, v,Θ)],
(6)

which forms a lower bound on the marginal likelihood
p(y, u) of our model.

Variational Approximation

Recall for our model that the model parameters are Θ =
{Λ,W, β, a, γ, α, δ}, and the local latent variables specific
to each person are their subpopulation assignment zi, ran-
dom effects bi and vi, and structured noise function fi. The
joint distribution for our model can be expressed as:

p(y, u, z, b, f, v,Θ) = p(Θ)

N∏
i=1

Ni∏
j=i

p(yij |zi, bi, fi(tij),Θ)

p(~ui|zi, bi, fi, vi,Θ)p(zi)p(bi)p(fi)p(vi)

(7)

We make the mean field assumption for the variational dis-
tribution, which assumes that in the approximate posterior
q, all the latent variables are independent. This implies that
q(z, b, f, v,Θ) = q(Θ)

∏N
i=1 qi(zi, bi, fi, vi), where:

qi(zi, bi, fi, vi) = qi(zi|νzi)qi(bi|µbi ,Σbi)
qi(vi|µvi , σ2

vi)qi(fi).
(8)

The assumed variational distributions for zi, bi, and vi are
the same family as their prior distribution, i.e. multino-
mial, multivariate normal, and univariate normal. For the
variational form for fi, we adapt ideas from the variational
learning for sparse GPs literature [Lloyd et al., 2014; Tit-
sias, 2009] to approximate the true posterior over fi. In
order to evaluate the ELBO in (6), we will need to evaluate
Eqi [fi] at times ~ti for the longitudinal likelihood, as well
as at ~ui and at a grid of times tgrid

i for the point process
likelihood (the grid is for the numerical integration). We
choose to treat the observed observation times ~ti as pseudo-
inputs; this helps reduce overfitting and reduces the number
of variational parameters to learn. In particular:

qi(fi(~ti), fi(~ui), fi(t
grid
i )) = p(fi(~ui), fi(t

grid
i )|fi(~ti))

q(fi(~ti)|µfi ,Σfi).
(9)

We allow a free-form multivariate Gaussian distribution for
fi at the longitudinal observation times, and use a so-called
conditional Gaussian process for the distribution at ~ui, t

grid
i ,

i.e. the true conditional distribution of the joint multivariate
normal, fi|fi(~ti) ∼ GP(µ(t),Σ(t, t′)):

µ(t) = Kt,~ti
K−1
~ti,~ti

fi(~ti) (10)

Σ(t, t′) = Kt,t′ −Kt,~ti
K−1
~ti,~ti

K~ti,t′
(11)

whereKt,~ti
,K~ti,~ti

,Kt,t′ are matrices evaluated at t, t′, and
~ti using the OU covariance kernel from Section 2.

Although priors on the model parameters Θ may be im-
posed, i.e. log-normal on a and normal on the rest, in our
work we learn their maximum likelihood estimate (MLE)
instead, and let q(Θ) be a delta function. Thus, the goal of
our variational algorithm is to learn optimal variational pa-
rameters λi = {νzi , µbi ,Σbi , µvi , σ2

vi , µfi ,Σfi} for each
individual i, as well as a point estimate Θ̂ for the model
parameters. In practice, we optimize the Cholesky decom-
positions Lbi , Lfi for the covariance matrices Σbi ,Σfi .

Solving the Optimization Problem

In traditional settings for variational inference, the objec-
tive function is iteratively optimized by maximizing the
variational parameters associated with each latent variable
or parameter, holding the rest fixed. In models where the
log complete conditional distributions (log of the condi-
tional distribution of each latent variable given everything
else) have analytic expectations with respect to the vari-
ational approximation, closed form EM-style updates are
available for the variational parameters. This convenient
property is typically observed in conditionally conjugate
models, where each log complete conditional will be in the
exponential family [Ghahramani and Beal, 2001].

Recently there has been much interest in applying varia-
tional methods to more complex models that do not ex-



hibit conjugacy. In many cases, it is intractable to even
evaluate the ELBO analytically, since one or both of the
expectations in (6) have no closed form. In these cases,
variational algorithms have been developed that rely on
sampling from the variational approximation [Ranganath
et al.,2014; Rezende et al., 2014]. However, because of the
form we chose for ri, it is possible to calculate a closed
form approximation to the ELBO for our model (approxi-
mate due to the numerical integration; see Appendix for de-
tails). As such, we use the automatic differentiation pack-
age autograd 4 in Python to compute analytic gradients in
order to optimize the bound. At each iteration of the al-
gorithm, we optimize the local variational parameters in
parallel using exact gradients. To optimize the global pa-
rameters, we turn to stochastic optimization.

Stochastic optimization has become a commonly used tool
in variational inference. Rather than using every single ob-
servation to compute the gradient of the ELBO with re-
spect to Θ, we can compute a noisy gradient based on a
sampled batch of observations [Hoffman et al., 2013]. As
long as the noisy gradient is unbiased and the learning rate
ρt at each iteration satisfies the Robbins Monro conditions
(
∑∞
t=1 ρt = ∞,

∑∞
t=1 ρ

2
t < ∞), the stochastic optimiza-

tion procedure will converge to a local maximum. To set
the learning rate we use the AdaGrad algorithm, which
adaptively allows for a different learning rate for each pa-
rameter. The learning rate for each parameter is scaled by
the square root of a running sum of the squares of historical
gradients [Duchi et al., 2011].

Algorithm

Algorithm 1 summarizes the procedure to learn an approx-
imate posterior for the local latent variables and a point es-
timate for the model parameters.

Data: data y, u; hyperparameters.
Result: point estimate Θ̂, approximate posteriors qi.
Initialize global parameters Θ.
repeat

Randomly sample data for S patients, {ys, us}Ss=1.
for s = 1:S in parallel do

Optimize local variational parameters for qs via
gradient ascent.

end
Compute the noisy gradient for Θ.
Update Θ using AdaGrad.

until convergence of the ELBO;
Algorithm 1: Stochastic Variational Inference algorithm
for our Joint Model.

4https://github.com/HIPS/autograd

5 EMPIRICAL STUDY

In this section we describe our experimental setup and re-
sults on our real dataset.

Dataset

Our dataset comprises longitudinal and cardiac event data
from 23,450 patients with stage 3 CKD or higher within our
university health system. IRB approval (#Pro00066690)
was obtained for this work. We first created an initial cohort
of roughly 600,000 patients that had at least one encounter
in the health system in the year prior to Feb. 1, 2015. This
includes all types of encounters within the health system,
including inpatient, outpatient, and emergency department
visits. From this, we filtered to patients who had at least ten
recorded values for serum creatinine, the laboratory value
required to calculate eGFR. We next filtered to patients that
had Stage 3 CKD or higher, indicative of moderate to se-
vere kidney damage, defined as two eGFR measurements
less than 60 mL/min separated by at least 90 days. Finally,
since the recorded eGFR values are extremely noisy and
eGFR is only a valid estimate of kidney function at steady
state, we take the mean of eGFR readings in monthly time
bins for each patient. Rapid fluctuations in acute illness
are related to long term risk, but we have not yet explicitly
incorporated this into our modeling.

After this preprocessing, on average each patient has 22.9
eGFR readings (std dev 13.6; median 19.0). In order to
align the patients on a common time axis, for each patient
we fix t = 0 to be their first recorded eGFR reading be-
low 60 mL/min. The adverse events of interest in our ex-
periments are AMIs and CVAs, and these were identified
using ICD-9 codes as detailed in Section 2. 13.4% of pa-
tients had at least one code for AMI (among those with at
least one: mean 4.1, std dev 7.1, median 2.0), and likewise
17.4% of patients had at least one code for CVA (mean 6.4,
std dev 13.3, median 3.0). We use the same set of baseline
covariates for xip, xiz, xir: baseline age, race and gender,
and indicator variables for hypertension and diabetes. Note
that xip, xiz include an intercept while xir does not.

For the experiments, we used ten fold cross validation with
training sets of 21,105 patient records and test sets of 2,345
records. We fit separate joint models for CVA events and
AMI events.

Evaluation Metrics

After learning a point estimate for the global model param-
eters during training, they are held fixed. Then, an approx-
imate posterior is fit to each patient in the test set, where
we allow the learning algorithm to see the first 60% of a
patient’s eGFR trajectory (and any events before then) and
hold out the remaining 40% (and future events). Predic-
tions about future disease trajectory and adverse events are



made by drawing samples from the approximate posterior
predictive distribution.

We evaluate our model on two tasks to asses predictive
performance of each submodel. For the longitudinal sub-
model, we compute the mean squared error (MSE) and
mean absolute error (MAE) for predictions about held-out
eGFR values. For the point process submodel, we view
the problem of predicting whether any event will occur in
a given future time window (in our experiments, 1-5 years)
as a binary classification problem. We report the area un-
der the ROC curve (AUROC) and area under the precision-
recall curve (AUPR) as evaluation metrics for each binary
classification task. Calculating the probability of an event
in a future time window [Ti, Ti + c] for person i is easily
computed as 1− exp{−

∫ Ti+c
Ti

ri(t)dt}.

Baselines

For the longitudinal submodel, we compare against the
model in [Schulam and Saria, 2015], since we use their
model as our longitudinal submodel. However, because
our model was trained jointly with the point process sub-
model we do not in general learn the same model param-
eters, since the parameters for the learned trajectories are
also influenced by the event data.

For the point process submodel, we compare against two
standard baselines. The first is a simple Cox propor-
tional hazards model from survival analysis, where we
use the same set of time independent covariates xir as in
our model. The likelihood is the same as (4), but now
ri(t) = r0(t) exp{γ>xir}. We also compare against a
Cox model with time-dependent covariates, where ri(t) =
r0(t) exp{γ>xir + αyi(t)}, with yi(t) a step function de-
noting the most recent observed eGFR up until time t.
Due to the lack of scalable inference algorithms for related
works from the joint modeling literature, we were unable
to compare against them on our large patient cohort.

Hyperparameters

We learn point estimates for hyperparameters
σε,Σb, σv, σf , l by maximizing the ELBO with re-
spect to them. Additional hyperparameters include G,
Nr, and the choice of basis expansions Φp,Φz,Φl in the
longitudinal submodels. We let Φp and Φl be linear basis
functions of time, thus allowing for population covariates
and individual heterogeneity to shift the intercept and slope
of eGFR trajectory. We let Φz be a B-spline expansion of
time with degree two and twelve knots at equally spaced
quantiles of eGFR observation times. We fix G = 15
and Nr = 9. Finally, we set the global scale parameter
for AdaGrad to 0.1, and subsample 250 observations at a
time. We experimented with other values for these fixed
hyperparameters without major changes in performance.

Results

Figure 2: Mean MSE and MAE from longitudinal submod-
els. Error bars are one standard error.

Figure 2 highlights the results from the longitudinal sub-
model, where we present the mean MSEs and MAEs across
the test sets. The longitudinal submodel from our joint
model performs slightly better than the method of [Schu-
lam and Saria, 2015] fit independently to the eGFR values.
Figure 3 highlight the results from the point process sub-
model. Our proposed joint model performs substantially
better than the two baselines at predicting future events, in
terms of both AUROC and AUPR.

Figure 3: Mean AUROC and AUPR for CVA and AMI
events. Blue is proposed Joint Model, red is Cox, green
is time-varying Cox. Error bars are one standard error.

In addition, in this dataset it appears that prediction of CVA
events is slightly easier than prediction of AMIs. For the
CVA joint model, we estimate that α = −0.063 and δ =
−0.061 while for the AMI joint model, α = −0.158 and
δ = −0.069 (standard errors for all four estimates < 0.01,
from the cross validation). The signs of these parameters
agree with clinical intuition that patients with lower overall
eGFR values and more rapid eGFR declines should be at
higher risk for adverse events. It appears there is a slightly
stronger association between eGFR trajectory and risk for
AMIs compared to CVAs.



Figure 4: Dynamic predictions from our joint model. In each row, the parameters for this individual are refit as more data
is made available (information to the left of the light blue lines is used to refit parameters). Blue circles and x’s correspond
to observed eGFR readings and CVA events, while green correspond to yet-unseen data.

Figure 4 shows an example of dynamic predictions over
time for a test patient. In the three rows of the figure, we
make predictions about the test patient after observing the
first 25%, 50% and 75% of their disease trajectory and ad-
verse events (in this example, CVAs). For each row we re-
learn the patient’s parameters using information to the left
of the vertical light blue line. As we observe more data, the
longitudinal model updates its prediction about future dis-
ease trajectory and provides a reasonable forecast for the
steady decline of this patient’s eGFR. In the second row,
as the model sees that the patient’s trajectory is decreas-
ing faster than in the first row, it correspondingly increases
the probability of a future event. In the third row, after the
model sees the patient’s first CVA event, it further increases
the probability of a future event.

6 DISCUSSION

In this paper, we have proposed a new joint model for lon-
gitudinal and point process data, and applied it to disease
trajectory modeling and prediction of adverse events in pa-
tients with chronic kidney disease. We developed the first
variational inference algorithm for this class of models, al-
lowing us to fit our model to a large set of longitudinal
patient data that is over an order of magnitude the size of
datasets used by related methods. We find that our model
yields good performance on the tasks of predicting future
kidney function and predicting cardiovascular events.

Although our work is a promising first step for develop-
ing predictive models from EHR data and applying them
to real clinical tasks, there are numerous inherent limita-

tions to EHR data [Hersh et al., 2014]. Data quality is of-
ten poor, complicated by inaccurate, inconsistent or miss-
ing information. The EHR at a single organization may fail
to capture the full patient story and all relevant outcomes of
interest, as is the case when patients receive care from mul-
tiple, non-interoperable healthcare systems over time. Rel-
evant patient reported outcomes, such as perceived quality
of life, are rarely captured by EHRs. Events such as death
may not be registered, particularly when patients die out-
side of the hospital. Data may be biased; certain laboratory
tests may be performed only when a clinician suspects an
abnormality. Furthermore, many clinical data are collected
for billing purposes rather than patient care or research, dis-
torting the relative importance of certain elements.

There are many directions in which we plan to extend this
work. Future models will be multivariate in both longitudi-
nal markers and in event processes. Inclusion of additional
longitudinal variables such as blood pressure, albuminuria,
and hemoglobin A1c will be important, since these are
well known to be clinically important for monitoring car-
diovascular and kidney health. Jointly modeling multiple
event processes will allow us to learn correlations between
different types of events. More flexible models, particu-
larly for the event processes, should improve model per-
formance, for instance using Gaussian Process modulated
Poisson processes or Hawkes processes instead of employ-
ing the proportional hazards assumption as we do in this
work. By further refining and deploying a flexible, scalable
model such as ours, ACOs around the country can inter-
vene on high-risk patients and realize the potential benefits
of precision medicine.
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7 APPENDIX

We present the full derivation of the ELBO for our model.
We can rewrite the expression for the ELBO in (6) as:

L(q) =

N∑
i=1

L(qi), (12)

L(qi) = Eqi [log p(~yi|zi, bi, fi,Θ) + log p(~ui|zi, bi, fi, vi,Θ)]

−KL(qi(bi)||p(bi))−KL(qi(vi)||p(vi))
−KL(qi(zi)||p(zi))−KL(qi(fi(~ti))||p(fi(~ti))).

(13)

Computation of the KL divergence terms are standard. We
focus our attention on the first two terms in (13).

The first term in (13) is the variational expectation of the
log likelihood for the longitudinal submodel. To compute
this, we need to calculateEqi [(~yi−mi(~ti))

>(~yi−mi(~ti))].
It is straightforward to expand this product and calculate
the expectation of each term. The relevant expectations are:

Eqi(zi)[βzi ] =

G∑
g=1

νzi,gβg (14)

Eqi(bi)[bi] = µbi (15)

Eqi(fi)[fi(~ti)] = µfi (16)

Eqi(zi)[(Φz(~ti)βzi)
>(Φz(~ti)βzi)] =

G∑
g=1

νzi,g(Φz(~ti)βg)
>(Φz(~ti)βg) (17)

Eqi(bi)[(Φl(~ti)bi)
>(Φl(~ti)bi)] =

Tr(Φl(~ti)ΣbiΦl(~ti)
>) + µ>biΦl(

~ti)
>Φl(~ti)µbi (18)

Eqi(fi(~ti))[fi(
~ti)
>fi(~ti)] = Tr(Σfi) + µ>fiµfi (19)

The second term in (13) is the variational expectation of the
log likelihood for the point process submodel:

Eqi [log p(~ui|zi, bi, fi, vi,Θ)] =

Eqi [

K∑
k=1

log ri(uik)−
∫ T+

i

T−i

ri(t)dt].
(20)

Each term in the summation in (20) is given by:

Eqi [log ri(uik)] = log r0(uik) + γ>xir + αEqi [mi(uik)]

+ δEqi [m
′
i(uik)] + Eqi [vi],

(21)

where Eqi [vi] = µvi and Eqi [mi(uik)], Eqi [m
′
i(uik)] are

simple to compute using (14) and (15), where we use the
time derivatives of the bases Φ′p,Φ

′
z,Φ

′
l in place of the

actual bases for the latter. The only nontrivial term in
Eqi [mi(uik)] is Eqi [fi(uik)]. However, due to conjugacy,
we have that for arbitrary t:

qi(fi(t)) =

∫
p(fi(t)|fi(~ti))qi(fi(~ti))

≡ GP(fi;µ(t),Σ(t, t′))

(22)

µ(t) = Kt,~ti
K−1
~ti,~ti

µfi (23)

Σ(t, t′) = Kt,t′ −Kt,~ti
K−1
~ti,~ti

K~ti,t′

+Kt,~ti
K−1
~ti,~ti

ΣfiK
−1
~ti,~ti

K~ti,t′
,

(24)

so we can use (23) to computeEqi [fi(uik)]; theK matrices
are the OU kernel evaluated at the relevant times.

The final term to compute is the integral in (20). Since we
approximate it numerically, we need to evaluate Eqi [ri(t)]
for arbitrary times t:

Eqi [ri(t)] = r0(t)eγ
>xirEqi [e

αmi(t)+δm
′
i(t)+vi ]. (25)

Using the mean field assumption, this expectation of prod-
ucts factorizes into products of expectations. There are no
local latent variables corresponding to the population term
in mi(t), so that term can be brought outside the expecta-
tion. Since qi(vi) ∼ N(µvi , σ

2
vi) we have that evi is log-

normal, hence Eqi [e
vi ] = eµvi+

σ2
vi
2 . Expanding mi(t) and

m′i(t) in (25) leads to three final expectations to compute.
The first is:

Eqi(zi)[e
(αΦz(t)+δΦ′z(t))>βzi ] =

G∑
g=1

νzi,ge
(αΦz(t)+δΦ′z(t))>βg

(26)
The last two areEqi [e

(αΦl(t)
>+δΦ′l(t)

>)bi ] andEqi [e
αfi(t)].

Since the variational distributions for bi and fi(t) are multi-
variate normal (from (8) and (22)-(24)), the exponential of
an affine transformation of them will be multivariate log-
normal. We can use this with the fact that if X ∼ N(µ,Σ)
is multivariate normal, then Y = eX is multivariate log-
normal with mean E[Y ]i = eµi+

Σii
2 to compute the de-

sired variational expectations.

To compute noisy gradients of the ELBO with respect
to Θ, we randomly sample S observations {ys, us}Ss=1

at each iteration, and compute the gradient of L̂(q) ≡
N
S

∑S
s=1 L(qs), which equals L(q) in expectation.
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