
Adaptive Algorithms and Data-Dependent Guarantees
for Bandit Convex Optimization

Mehryar Mohri
Courant Institute and Google

251 Mercer Street
New York, NY 10012
mohri@cims.nyu.edu

Scott Yang
Courant Institute
251 Mercer Street

New York, NY 10012
yangs@cims.nyu.edu

Abstract

We present adaptive algorithms with strong data-
dependent regret guarantees for the problem of
bandit convex optimization. In the process, we
develop a general framework from which the
main previous results in this setting can be recov-
ered. The key method is the introduction of adap-
tive regularization. By appropriately adapting the
exploration scheme, we show that one can derive
regret guarantees that can be significantly more
favorable than those previously known. More-
over, our analysis also modularizes the problem-
atic quantities in achieving the conjectured min-
imax optimal rates in the most general setting of
the problem.

1 INTRODUCTION

Bandit convex optimization (BCO) is a general scenario for
sequential decision making under uncertainty. In contrast
to the standard full information setting of online convex op-
timization, in the BCO scenario, at each round, the learner
only receives only the value of the loss function and no
other feedback, in particular no information about the func-
tion derivatives.

BCO extends the well-known multi-armed bandit scenario
and is an instance of the exploration-exploitation dilemma
inherent in many online machine learning problems: at
each round, the learner must decide between exploring new
actions and exploiting the best actions determined thus far.

The partial information assumption also captures many
real-world problems where the exact form of the loss func-
tion is not readily available at each step. These include set-
tings such as ad prediction and medical diagnosis. In these
problems, the learner is typically able to see only the value
returned from the current action, as the exact loss function
and its gradients are often quite abstract and complex.

From a theoretical vantage point, bandit convex optimiza-
tion also remains an area of online learning in which ex-
isting regret guarantees in several regimes are known to be
sub-optimal and where optimal methods have still yet to be
discovered.

We now formalize the setting that we consider. Let K ⊂
Rn be a compact convex set, and let {ft}∞t=1 be a sequence
of convex functions. At each round t = 1, 2, . . . , T , the
learner selects a point xt ∈ K and incurs loss ft(xt). The
learner’s objective is to minimize his regret, defined by:

RegT := max
x∈K

T∑
t=1

ft(xt)− ft(x),

that is the difference between his cumulative loss and that
of the best fixed point x∗ ∈ K in hindsight. In contrast to
the standard online learning or online convex optimization
scenarios, in bandit convex optimization, the learner has
access only to the value ft(xt) and not any higher-order in-
formation. This scenario was first studied by Flaxman et al.
(2005), where they proved that for sequences of Lipschitz
functions, one can achieve a regret that is in O(T 3/4). The
seminal work of Abernethy et al. (2008) showed that, for
linear functions, one can attain a regret in O(

√
T). Agar-

wal et al. (2010) showed that one can improve upon Flax-
man’s bound and attain O(T 2/3) in the strongly convex
setting, and Saha and Tewari (2011) showed that one can
achieveO(T 2/3) in the strongly smooth setting. Hazan and
Levy (2014) showed that when the functions are guaran-
teed to be both strongly smooth and strongly convex, one
can attain O(

√
T) regret. Most recently, Bubeck and El-

dan (2015) presented a non-constructive proof demonstrat-
ing that a O(

√
T) bound is also theoretically attainable in

the general setting, albeit with a much heavier dependence
on the dimension of the domain O(n11) than in the other
references mentioned above.

It still remains an open question whether one can efficiently
obtain the desired O(

√
T) regret in the purely strongly

convex, purely strongly smooth, or purely Lipschitz set-
tings. To make progress in this direction, we will build
upon recent advances in other areas of the online convex

optimization literature. Specifically, we will draw from the
techniques in adaptive regularization presented in (Bartlett
et al., 2007; Duchi et al., 2010; McMahan and Streeter,
2010) as well as ideas from the “learning faster from easy
data” paradigm studied in (Even-Dar et al., 2007; Bubeck
and Slivkins, 2012; Sani et al., 2014; de Rooij et al., 2014)
to derive two efficient adaptive algorithms with minimal
assumptions on the function’s loss sequence.

Our algorithms will provide strong data-dependent guaran-
tees, so that while their regret will never be worse than that
of previous algorithms in the same setting, they can also
be much better depending on how favorable and “easy” the
actual data is. Moreover, the algorithms we present are any-
time and automatically adjust to the data, so that they can
run without any a priori tuning or unreasonable parameter
specification. Perhaps most importantly, analyzing the re-
sulting bounds provides insight into both whether the con-
jectured optimal bounds are truly achievable as well as how
they might viably be attained.

We will start off by introducing some mathematical nota-
tion for the rest of our paper. Then, in Section 3, we will
describe the general methodology of BCO, and in the pro-
cess, introduce several key concepts and tools as well as
our intuition and contribution to this framework. This will
be formalized in Sections 4, 5, and 6, where we introduce
concrete algorithms and guarantees. Finally, we will high-
light the main implications of our results in Section 7, both
in terms of new regret guarantees as well as added insight
for the general bandit convex optimization setting with only
the Lipschitz loss assumption.

2 NOTATION

In what follows, we will denote by Bn the n-dimensional
unit ball under the Euclidean norm, and Sn = ∂Bn the
(n−1)-dimensional unit sphere. For any sequence of func-
tions {ct}∞t=1, we will write c1:t =

∑t
s=1 ct. Given a func-

tion ft and a point xt, we will denote by gt ∈ ∂ft(xt)
an element of the subgradient of ft at xt, such that for
any y, ft(y) ≥ ft(xt) + g>t (y − xt). Given any norm
‖ · ‖, we will denote its dual by ‖ · ‖∗, so that ‖x‖∗ =
sup‖y‖≤1 x

>y. Moreover, given any symmetric positive
semi-definite (SPSD) matrix A, we define the semi-norm
‖x‖A =

√
x>Ax, and we denote the j-th eigenvalue of A

by λj(A) (in decreasing order).

Definition 1 (Strongly Smooth and Strongly Convex). Let
A be an SPSD matrix. A function f is said to be

• A-strongly smooth if f(x) ≤ f(y)+∇f(y)>(x−y)+
1
2‖x− y‖

2
A;

• A-strongly convex if f(x) ≥ f(y)+∇f(y)>(x−y)+
1
2‖x− y‖

2
A.

For a scalar β ∈ R+, f is said to be β-strongly smooth (β-
strongly convex) if it is βI-strongly smooth (respectively
strongly convex). For functions that are not C1, we replace
the gradients by subgradients in these definitions.

3 OVERVIEW OF BANDIT CONVEX
OPTIMIZATION

Bandit convex optimization, and bandit problems in gen-
eral, can be viewed as online learning problems with par-
tial information. In this context, the natural approach is to
estimate the missing data from the full information setting,
and to then apply online learning methods to the problem.

One online learning method that is commonly used in
bandit convex optimization is the Follow-the-Regularized-
Leader (FTRL) (Kalai and Vempala, 2005) algorithm,
which is based on the update:

xt+1 = argmin
x∈K

ηg>1:tx+R(x),

whereR is some regularization function.

However, in bandit convex optimization, the missing data
at each round is the gradient. Since the learner only knows
the value of the loss function at each round, the FTRL algo-
rithm cannot be readily applied (nor can most other online
learning algorithms, which also typically use gradient in-
formation). This is what makes bandit convex optimization
significantly more difficult than standard online onvex op-
timization.

A key step toward addressing this issue has been the in-
sight that by playing an action randomly near the intended
one, it is possible to estimate the gradient of a smoothed
version of the loss function. More formally, given any
f : Rn → R and A ∈ Rn×n an SPSD matrix, we define
f̂(x) = Ev∈Bn [f(x+Av)], the average of f at x over
the ellipsoid generated by A, and ĝt = nf(x+ Au)A−1u,
its one-point gradient estimate. Then the following result
holds:

Lemma 1 (Saha and Tewari (2011)). Eu∼Sn [ĝt] = ∇f̂(x).

For completeness, we provide a proof of this result in Ap-
pendix A.

This implies that by sampling a point x+Av in an ellipsoid
around the intended action, we can estimate the gradient
of a smoothed version of our loss function even if we are
only able to play a single action. Moreover, by playing
these gradient estimates, our regret will be the regret of this
smoothed loss up to the approximation error of smoothing.

In practice, the smoothing ellipsoid is defined by scaling
the inverse Hessian of the regularization function R, i.e.
A = δ∇2R(x)−1/2v. Thus, the choice of regulariza-
tion becomes crucial towards determining how much to
explore and how much approximation error to incur. The

key work along this direction has been (Abernethy et al.,
2008), which showed that one can use the notion of self-
concordant barrier to find a good tradeoff.

For completeness, we briefly introduce this concept and
summarize the key results that we will use in our analysis.

3.1 BACKGROUND ON SELF-CONCORDANT
FUNCTIONS

The use of self-concordant functions can be traced back
to Nesterov’s work on Newton’s method (see (Nesterov,
2004) for a comprehensive treatment).

Definition 2 (Self-concordant barrier). A C3 function
R : int(K) → R is a ν-self concordant barrier if for any
h ∈ Rn:

1. R approaches infinity for any sequence of points ap-
proaching the boundary of K.

2.
∣∣∇3R(x)[h, h, h]

∣∣ ≤ 2(∇2R(x)[h, h])3/2.

3. |∇R(x)h| ≤ (ν∇2R(x)[h, h])1/2.

Definition 3 (Dikin Ellipsoid). LetR be a self-concordant
function and x ∈ int(K). Then, the Dikin Ellipsoid W1(x)
is the ellipsoid induced by the Hessian ofR at x:

W1(x) = {z ∈ Rn|‖z − x‖∇2R(x) ≤ 1} ⊂ K.

Definition 4 (Newton Decrement). Given any C2 func-
tion R whose Hessian is invertible at a point x, the New-
ton decrement of R at x is defined to be λ(x,R) =
‖∇R(x)‖∇2R(x)−1 .

The following two results can be found in (Nemirovski and
Todd, 2008) and will be the most important properties for
our analysis.

Lemma 2. Let R be a self concordant function and x ∈
int(K) a point such that λ(x,R) ≤ 1

2 . Then, ‖x −
argminuR(u)‖∇2R(x) ≤ 2λ(x,R).

Given x, y ∈ int(K), the Minkowsky function is defined as
πx(y) = inf

{
t ≥ 0 | x+ 1

t (y − x)
}

.

Lemma 3. Let R be a ν-self concordant barrier. Then for
any x, y ∈ int(K): R(y)−R(x) ≤ ν log

(
1

1−πx(y)

)
.

Thus, the current state-of-the-art approach to bandit convex
optimization problem has been to play a FTRL-type algo-
rithm with the update:

xt+1 = argmin
x∈K

ηĝ>1:tx+R(x),

where ĝ = ĝ(δ,∇2R), andR is a self-concordant barrier.

For global σ-strongly convex loss functions, one can also
add an associated quadratic term to the optimization prob-
lem and a σ-ball to the sampling ellipsoid.

In this paper, we extend the above framework with the con-
cept of adapting to the data. Specifically, we will tune the
learning rate and sampling ellipsoid at each step of the al-
gorithm according to the local data that we see. The goal
of this approach is two-fold. On the one hand, we want to
design any-time algorithms with general regret bounds that
recover all existing approaches in a unified manner. Previ-
ous algorithms assumed various levels of global regularity
information, had different sampling schemes for each, and
had to be tuned with a posteriori knowledge. On the other
hand, and perhaps more importantly, we also want to derive
data-dependent guarantees that can reveal new insight into
the difficulties of the problem.

4 ADAPTIVE BANDIT CONVEX
OPTIMIZATION

Using the motivation above, we now present AdaBCO, an
adaptive procedure for bandit convex optimization. Ad-
aBCO is a skeleton algorithm that we will use as a launch-
ing point for our two data-dependent algorithms. As such,
it is not meant to be implemented on its own, and some of
its parameters, such as ηt and δt, are not specified precisely.
These will be selected carefully in Algorithms 2 and 3.

Unlike previous algorithms in the literature, AdaBCO does
not need the learner to specify a priori a fixed level of global
convexity for the entire sequence of loss functions encoun-
tered during learning. This is often an unreasonable re-
quirement, particularly in a truly online setting, and so in-
stead, AdaBCO allows the learner to specify the convexity
of functions as it sees them. The algorithm is designed such
that the regret bound will automatically adapt to this data.
This is achieved via dynamic tuning of the sampling el-
lipsoids and learning rates, which will be prescribed more
explicitly in Algorithms 2 and 3, when we also take into
account the level of function smoothness.

Moreover, it is important to realize that computing param-
eters in real-time is never more difficult than computing
bounds that hold uniformly over all rounds at the start in a
truly online scenario. Thus, AdaBCO is never more diffi-
cult to implement than previous algorithms.

AdaBCO also differs from previous work in that it treats
strong convexity as a matrix parameter instead of a scalar
parameter. This is based on the insight that, for minimiz-
ing regret, convexity of the loss function is closely tied to
convexity of the self-concordant barrier’s Hessian, and that
one can bound regret in terms of the average eigenvalue of
the sum of these matrices as opposed to the minimal eigen-
value. Essentially, the algorithm can “borrow” convexity
from the self-concordant barrier if the convexity of the loss
function is not strong enough to achieve the desired regret.
This becomes particularly useful when the learner is query-
ing points near the decision set’s boundary, and the Hessian

ofR has large eigenvalues in the direction of the boundary
(often the case because R ↗ ∞ at ∂K). This will become
more clear with the data-dependent guarantees and discus-
sion in Sections 5, 6, and 7.

We will first show that AdaBCO yields a strong data-
dependent regret bound on the sequence of smoothed loss
functions. The proof technique is based on a few key steps.
We first use convexity of the loss function to change the
problem into bounding the regret of quadratic functions.
Then we use the fact that our original algorithm can be
seen as a Follow-the-Regularized-Leader algorithm played
on this sequence of surrogate loss functions to bound the
regret. From here, we leverage the fact that part of our
loss function is proximal, along with the properties of self-
concordant barriers that we stated, to show that in the local
norm, the incremental update can be bounded by the gradi-
ent of the (smoothed) loss function. Then we can estimate
the gradient in the local norm in terms of the quantities that
we have prescribed. Finally, we use more properties about
self-concordant barriers to bound their growth near the cen-
ter of the domain.

In the process, we will require a few technical lemmas
about the properties of smoothed functions as well as some
results from the general online learning literature. For com-
pleteness, all proofs are provided in Appendix A.

4.1 TECHNICAL LEMMAS

The following result is a mild generalization of Lemma 7
in (Hazan and Levy, 2014) and states that a smoothed loss
function retains the same strong convexity properties as the
original.

Lemma 4. Let A be an SPSD matrix, and let f : Rn → R
be A-strongly convex. Then f̂ is also A-strongly convex.

Next we state a lemma by Zinkevich (2003), which shows
that we can bound the regret of any sequence of loss func-
tions by a lower barrier. This will be useful for switching
between our loss functions and the quadratic lower bounds
induced by their strong convexity.

Lemma 5. Let {ft}∞t=1 be a sequence of functions and
{xt}∞t=1 ⊂ K. Suppose there exists a sequence of lower
barrier functions {ht}∞t=1 such that ht(xt) = ft(xt) and
ht ≤ ft. Then, the following inequality holds:

max
x∈K

T∑
t=1

ft(xt)− ft(x) ≤ max
x∈K

T∑
t=1

ht(xt)− ht(x).

The final technical lemma in this section extends the
well-known “be-the-leader”-based result of follow-the-
regularized-leader type algorithms (originally from (Kalai
and Vempala, 2005), to algorithms with adaptive regular-
ization.

Algorithm 1 AdaBCO
1: Input: η0 = 1

2nC , ν-self concordant barrierR.
2: Initialize: x1 = argminx∈KR(x).
3: for t = 1, . . . , T : do
4: Choose matrix Qt < 0 such that ft(x) ≥ ft(xt) +
g>t (x− xt) + 1

2‖x− xt‖
2
Qt

.
5: Define ηt ≤ ηt−1.
6: Set Bt =

[
∇2R(xt) + ηtQ1:t

]−1/2
.

7: Sample u ∼ Sn uniformly.
8: Define δt and set yt = xt+ δtBtu ∈W1(xt) ⊂ K.
9: Play yt and incur loss ft(yt).

10: Compute the estimate ĝt = nft(yt)(δtBt)
−1u.

11: Update xt+1 = argminx∈K ĝ
>
1:tx+ 1

2

∑t
s=1 ‖(x−

xs)‖2Qs +
1
ηt
R(x).

12: end for

Lemma 6. Let {ft}∞t=1 be a sequence of convex func-
tions defined on a closed convex set K, and let {xt}∞t=1

be a sequence of points in K such that the subgradient of
ft at xt is denoted as gt. Let {rt}∞t=1 be a sequence of
non-negative convex functions. Then the update xt+1 =
argminx g

>
1:tx+ r0:t(x) incurs regret at most

T∑
t=1

ft(xt)− ft(x) ≤ r0:T (x) +
T∑
t=1

g>t (xt − xt+1).

We are now able to present the regret guarantee for Algo-
rithm 1:

Theorem 1 (AdaBCO). Let K be a convex set with diame-
terDK, andR a ν-self-concordant barrier overK. Assume
that |f | ≤ C. Then, for 0 < ηt ≤ 1

2nC , the following regret
bound holds for Algorithm 1:

max
w∈K

T∑
t=1

E[f̂t(yt)− f̂t(w)]

≤
T∑
t=1

ηt
δ2t

E
[
(nft(xt + δtBtu))

2 +
1

ηT
ν log(T)

]
.

Proof. We will refer back to the series of lemmas presented
in the prior sections in our analysis.

Let r0 and rt be defined as follows:

r0(x) =
1

η
R(x), rt(x) =

1

2
‖x− xt‖2Qt .

Let h0 = r0, and for t ≥ 1, let ht(x) = ĝ>t x+rt(x). Then,
h0:t(x) = ĝ>1:tx + r0:t(x), and the update in Algorithm 1
can be written as xt+1 = argminh0:t(x).

Now, define bt(x) = ĝ>t (x − xt) + rt(x). By our choice
of Qt and the fact that smoothed functions preserve strong
convexity (Lemma 4), it follows that f̂t(x) ≥ bt(x) +

f̂t(xt) for all x ∈ K, with equality at xt. Thus, if we define

f̃t(x) = ĝ>t x + rt(x), we can apply Lemma 5 to obtain
maxx

∑T
t=1 f̂t(xt)− f̂t(x) ≤ maxx

∑T
t=1 f̃t(xt)− f̃t(x).

This helps us reduce upper bounding the regret of our
theorem by the regret of quadratic functions plus a self-
concordant barrier.

Note that xt+1 = argmin f̃1:t(x)+ 1
ηt
R(x) is a FTRL-style

update. Thus, by Lemma 6, the following holds:

T∑
t=1

E
[
f̃t(xt)− f̃t(x)

]
≤

T∑
t=1

E
[
∇f̃t(xt)>(xt − xt+1) +

1

ηT
R(x)

]
.

The first term can be bounded by

T∑
t=1

E
[
∇f̃t(xt)>(xt − x)

]
=

T∑
t=1

E
[
ĝ>t (xt − x)

]
≤

T∑
t=1

‖ĝt‖∇2ηth0:t(xt),∗ ‖xt − xt+1‖∇2ηth0:t(xt).

Since xt+1 = argminx ηth0:t(x), Lemma 2 tells
us that if the Newton decrement λ(xt, ηth0:t) =
‖∇ηth0:t(xt)‖(∇2ηth0:t(xt))−1 ≤ 1

2 , then
‖xt − xt+1‖∇2ηth0:t(xt) ≤ 2λ(xt, ηth0:t).
This implies that

∑T
t=1∇f̃t(xt)>(xt − x) ≤∑T

t=1 2ηt‖ĝt‖∇2ηh0:t(xt),∗‖∇h0:t(xt)‖∇2ηth0:t(xt),∗.

At the same time, since

xt = argmin
x

h0:t−1(x),

h0:t−1(x) + rt(x) = h0:t(x)− ĝ>t x,

and xt also minimizes rt, it follows that 0 = ∇(h0:t−1 +
rt)(xt) = ∇h0:t(xt) − ĝt. Thus, the following holds:∑T
t=1∇f̃t(xt)>(xt − x) ≤

∑T
t=1 2ηt‖ĝt‖2∇2ηth0:t(xt),∗.

Putting everything together yields:

T∑
t=1

E
[
f̂t(xt)− f̂t(x)

]
≤

(
T∑
t=1

E
[
2ηt‖ĝt‖2∇2ηth0:t(xt),∗

])
+ E

[
1

ηT
R(x)

]
.

In addition, we know that

E
[
‖ĝt‖2∇2ηth0:t(xt),∗

]
= E

[
‖nft(yt)(δtBt)−1u‖2∇2ηth0:t(xt),∗

]
= E[(nft(yt)(δtBt)−1u)>∇2ηth0:t(xt)

−1

(nft(yt)(δtBt)
−1u)]

≤ E
[
1

δ2t
(nft(xt + δtBtu))

2

]
.

To bound the self-concordant function, Lemma 3 shows
that ifR is any ν-self concordant function over K, then

R(y)−R(x) ≤ ν log
(

1

1− πx(y)

)
, ∀x, y ∈ int(K)

where πK,x(y) = inf{t ≥ 0: x + 1
t (y − x) ∈ K} is the

Minkowsky functional over K at x.

By definition, x1 = argminx∈KR(x). Now, any point
y ∈ K satisfying πK,x1(w) ≤ 1− 1

T must satisfy R(w)−
R(x1) ≤ ν log(T). SinceR ≥ 0 on K by assumption, this
also means thatR(w) ≤ ν log(T).

On the other hand, if πK,x1(w) > 1 − 1
T , then the fact

that πK,x1
(w) ≤ 1 implies that there exists 0 < ε ≤ 1

T
such that πK,x1

(w) ≤ 1 − 1
T + ε. Defining z = x1 +

(w − x1)
1− 1

T

1− 1
T +ε

∈ K yields that ‖w − z‖ = ‖ ε
1− 1

T

x1 −
w‖ ≤ O

(
1
T

)
and πK,x1(z) ≤ 1 − 1

T . But R is Lipschitz
on any compact subset of int(K), so we get that R(w) ≤
ν log(T) + O

(
1
T

)
. Since the last term does not grow as a

function of T , we will ignore it in the regret bound.

Combining the above estimates shows that if
ηt‖ĝt‖∇2R(xt)+ηtQt,∗ ≤ 1

2 (i.e. if ηt ≤ 1
2nC), then

T∑
t=1

E[f̂t(yt)− f̂t(w)]

≤
T∑
t=1

E
[
ηt
δ2t

(nft(xt + δtBtu))
2 +

1

ηT
ν log(T)

]
.

The extrapolation of the regret bound in Theorem 1 for
smoothed loss functions to a regret bound on the origi-
nal loss requires taking into account some local regular-
ity assumptions. Factoring in local second-order regularity
yields Algorithm 2.

5 AdaBCO FOR SMOOTH FUNCTIONS

The major differences between Algorithm 2 with the previ-
ous algorithm are that we now account for the local smooth-
ness parameter βt and that we also specify precisely the

Algorithm 2 AdaBCO-Smooth
1: Input: η0 = 1

2nC , ν-self concordant barrier R, C > 0
constant.

2: Initialize: x1 = argminx∈KR(x).
3: for t = 1, . . . , T : do
4: Choose a constant βt > 0 such that ft(x) ≤
ft(y) +∇ft(y)>(x− y) + βt

2 ‖x− y‖
2
2.

5: Choose matrix Qt < 0 such that ft(x) ≥ ft(xt) +
g>t (x− xt) + 1

2‖x− xt‖
2
Qt

.

6: Define B̃t,s =
(
∇2R(xs) + ηs1{s<t}Q1:s

)−1/2
and

ηt =

 t∑
s=1

√√√√4βs
1

n

n∑
j=1

λj(B̃2
t,s)n

2C2

−2/3

(ν log(T))
2/3

.

7: Let Bt =
[
∇2R(xt) + ηtQ1:t

]−1/2
.

8: Define δt =
(

n3C2ηt
βt

∑n
j=1 λj(B

2
t)

)1/4
.

9: Sample u ∼ Sn uniformly.
10: Set yt = xt + δtBtu ∈W1(xt) ⊂ K.
11: Play yt and incur loss ft(yt).
12: Compute the estimate ĝt = nft(yt)(δtBt)

−1u.
13: Update xt+1 = argminx∈K g

>
1:tx+ 1

2

∑t
s=1 ‖(x−

xs)‖2Qs +
1
ηt
R(x).

14: end for

dynamic learning rate ηt and sampling radius δt. Thus, Al-
gorithm 2 is also an upgrade from previous algorithms in
the literature in the sense that it does not require a priori
assumptions on the global convexity or smoothness of the
loss functions. One can adjust these parameters online, and
the algorithm’s regret will adapt.

The proof of the regret bound relies first on comparing the
true loss function with the smoothed one by using the regu-
larity parameters at each step. In contrast to previous algo-
rithms which used global regularity parameters in a coarse
manner (e.g. (Saha and Tewari, 2011)), we analyze the
random sampling of the ellipsoid in greater depth in order
to produce data-dependent estimates that we can leverage.
This requires some general results about random variables
and sampling that we present in Lemmas 8 and 9. Af-
ter analyzing the approximation error, we use the result of
Theorem 1 to derive a tight data-dependent bound in terms
of all the relevant controllable quantities. From here, the
sampling ellipsoid and learning rate at each iteration are
adjusted dynamically to achieve a tight bound on the re-
gret.

The choice of these ellipsoids and learning rates is fairly
subtle and cannot be done directly due to their interdepen-
dence. The optimal a posteriori learning rate depends on
the sampling ellipsoid, and the radius of the sampling el-

lipsoid depends on the learning rate. To get around this
chicken-and-egg type of phenomenon, we force the learner
to first hallucinate a different set of sampling ellipsoids
based on history from which the learner can determine
good learning rates. From here, the learner is then able to
define an efficient true sampling ellipsoid. Deriving a tight
on-line approximation to the a posteriori optimal param-
eters also involves an abstract calculation on normalized
sums, which we present in Lemma 7.

We first formerly state the technical lemmas that we will
need in this section. Their proofs are provided in Ap-
pendix A.

5.1 TECHNICAL LEMMAS

Lemma 7. Let αt ≥ 0, γ > 0, β > 1, and ηt =

β
1

1+γ (α1:t)
−1
1+γ . Then

(
T∑
t=1

ηγt αt

)
+

β

ηT
≤ (2 + γ)β

γ
1+γ (α1:T)

1
1+γ .

To derive finer estimates on the approximation error, we
will use the following facts about quadratic forms of ran-
dom variables and the statistical properties of sampling
from the unit sphere.

Lemma 8. Let x ∼ D be a random vector and A be a
symmetric matrix. Then, the following identity holds:

Ex∼D[x>Ax] = trace(Acov(x)) + E[x]>AE[x],

where cov(x) = E[xx>] − E[x]E[x]> is the covariance
matrix associated to x.

Lemma 9. Let u ∼ Sn. Then cov(u) = 1
nI and E[u] = 0.

We are now ready to present the regret guarantee of Algo-
rithm 2:

Theorem 2 (AdaBCO using dynamic smoothness bounds).
Let K be a convex set and R a ν-self-concordant barrier
over K. Assume that |f | ≤ C. Then the following regret
bound holds for Algorithm 2:

max
x∈K

T∑
t=1

E[ft(yt)− ft(x)]

≤ E

5
2
(ν log(T))

1
3

 T∑
t=1

√√√√4βtnC2

n∑
j=1

λj(B2
t)

 2
3

Proof. We will show first that Algorithm 2 yields regret of

at most:

T∑
t=1

E[ft(yt)− ft(x)]

≤
T∑
t=1

E

δ2t βt 1n
n∑
j=1

λj(B
2
t)

+ E

[(
T∑
t=1

ηt
δ2t

(nft(xt +Btu))
2

)
+

1

ηT
ν log(T)

]

for any schedule of {δt}Tt=1 and {ηt}Tt=1.

The expected regret can be decomposed as follows:

E[RegT (w)]

=

T∑
t=1

E[ft(yt)− ft(w)]

=

T∑
t=1

E[ft(yt)− ft(xt)] + E[ft(xt)− f̂t(xt)]

+ E[f̂t(w)− ft(w)] + E[f̂t(xt)− f̂t(w)].

The first three terms reflect the approximation error from
running our algorithm against the true loss functions ver-
sus the smoothed out versions, and the last term can be
bounded via Theorem 1. To bound the first three, we use
the βt-strongly smooth property.

For the first term, we can use the smooothness constant of
the particular loss function along with the results on ran-
dom sampling to derive the following bound:

E[ft(yt)− ft(xt)]

= E
[
Eu∼Sn [ft(xt + δtBtu)− ft(xt)|xt]

]
≤ E

[
Eu∼Sn [∇ft(xt)δtBtu+ βt

2 ‖δtBtu‖
2
2|xt]

]
= E

[
E
[
βt
2 ‖δtBtu‖

2
2|xt

]]
= E

[
βt
2

trace
(
δ2tB

2
t

1

n
I

)]
(by Lemmas 8 and 9)

= E
[
βt
2
δ2t

1

n

n∑
j=1

λj(B
2
t)

]
.

The second term can be bounded using Jensen’s inequality:

E[ft(xt)− f̂t(xt)]
= E [ft(xt)− Ev∼Bn [ft(xt + δtBtv)]]

≤ E [ft(xt)− ft (Ev∼Bn [xt + δtBtv])]

= 0.

The third term can be analyzed in a way similar to the first
term, using the smoothness constant of the particular loss

function as well as the results on random sampling:

E[f̂t(w)− ft(w)]
= E[Ev∼Bn [ft(w + δtBtv)]− ft(w)]

≤ E
[
Ev∼Bn

[
∇ft(w)δtBtv +

βt
2
‖δtBtv‖22

]]
= E

[
βt
2
δ2tEv∼Bn

[
‖Btv‖22

]]

≤ E

βt
2
δ2t

1

n

n∑
j=1

λj(B
2
t)

 (by Lemmas 8 and 9).

By putting together all of the estimates above, we can arrive
at the following intermediate inequality:

T∑
t=1

E[ft(yt)− ft(x)]

≤
T∑
t=1

E

δ2t βt 1n
n∑
j=1

λj(B
2
t)

+ E

[(
T∑
t=1

ηt
δ2t

(nft(xt +Btu))
2

)
+

1

ηT
ν log(T)

]

≤
T∑
t=1

E

δ2t βt 1n
n∑
j=1

λj(B
2
t)

+ E

[(
T∑
t=1

ηt
δ2t
n2C2

)
+

1

ηT
ν log(T)

]
,

and by our choice of δt, it follows that

T∑
t=1

E[ft(yt)− ft(x)]

≤ E

 T∑
t=1

2

√√√√βtηtnC2

n∑
j=1

λj(B2
t) +

1

ηT
ν log(T)

 .
Finally, our choice of ηt, the fact that ηt ≤ ηt−1, and
Lemma 7 with γ = 1

2 , αt = 2
√
βtnC2

∑n
j=1 λj(B

2
t),

β = ν log(T) yield:

T∑
t=1

E[ft(yt)− ft(x)]

≤ E

5
2
(ν log(T))

1
3

 T∑
t=1

√√√√4βtnC2

n∑
j=1

λj(B2
t)

 2
3

 .

Algorithm 3 AdaBCO-Lipschitz
1: Input: η0 = 1

2nC , ν-self concordant barrier R, C > 0
constant.

2: Initialize: x1 = argminx∈KR(x).
3: for t = 1, . . . , T : do
4: Choose a constant Lt ≥ 0 such that |ft(x) −
ft(y)| ≤ Lt|x− y|.

5: Choose matrix Qt < 0 such that ft(x) ≥ ft(xt) +
g>t (x− xt) + 1

2‖x− xt‖
2
Qt

.

6: Define B̃t,s =
(
∇2R(xs) + (ηs1{s<t})Q1:s

)−1/2
and

ηt =

 t∑
s=1

2

2Ls
1

n

n∑
j=1

λj(B̃t,s)n
2C2

1/3

−3/4

(
ν log(T)

2

)3/4

.

7: Let Bt =
[
∇2R(xt) + ηtQ1:t

]−1/2
.

8: Define δt =
(
2 n3C2ηt
Lt

∑n
j=1 λj(Bt)

)1/3
.

9: Sample u ∼ Sn uniformly.
10: Set yt = xt + δtBtu ∈W1(xt) ⊂ K.
11: Play yt and incur loss ft(yt).
12: Compute the estimate ĝt = nft(yt)(δtBt)

−1u.
13: Update xt+1 = argminx∈K g

>
1:tx+ 1

2

∑t
s=1 ‖(x−

xs)‖2Qs +
1
ηt
R(x).

14: end for

6 AdaBCO FOR LIPSCHITZ
FUNCTIONS

Using first-order regularity instead of second motivates the
design of Algorithm 3. Like Algorithm 2, the major differ-
ence here is that we factor in the local Lipschitz constant
Lt and that we specify precisely ηt and δt. In the process,
we also need to hallucinate a separate set of ellipsoids to
circumvent the chicken-and-egg phenomenon.

Using similar techniques as in Theorem 2, one can derive
the following regret bound:

Theorem 3 (AdaBCO using dynamic Lipschitz bounds).
Let K be a convex set and R a ν-self-concordant barrier
over K. Assume that |f | ≤ C. Then Algorithm 2 provides
the regret bound:

max
x∈K

T∑
t=1

E[ft(yt)− ft(x)]

≤ E

5(ν log(T)) 1
4

 T∑
t=1

LtnC2
n∑
j=1

λj(B̃t)

 1
3

3
4

The proof of this result is similar to that of Theorem 2, and
is provided in Appendix B.

7 APPLICATIONS AND COMPARISON
WITH PREVIOUS RESULTS

The data-dependent nature of Algorithms 2 and 3 provide
two important implications.

The first is that they allow us to easily produce regret
bounds in a variety of new situations, where the learner
experiences loss functions with various levels of local
smoothness and convexity. In particular, we can identify
new scenarios where the optimal Õ(

√
T) regret is achiev-

able by navigating the relationship between smoothnesss
and convexity.

The second is that these algorithms also automatically
adapt to the smoothness and convexity of these scenar-
ios. These new cases do not require any a priori insight or
tuning. The algorithms presented in this paper adaptively
determine optimal sampling ellipsoids and learning rates,
which lead to strong guarantees.

In particular, they allow the learner to recover existing re-
gret bounds without modifying the algorithms. Proper-
ties such as strong convexity or smoothness are processed
adaptively and online, so that if, e.g., a sequence of loss
functions is found to be approximately strongly convex
(which will become clear in the following results), then the
strongly convex guarantee will apply. If the sequence of
loss functions is better than strongly convex, then the algo-
rithm will give an even better guarantee. Thus, these algo-
rithms are prime examples of algorithms that “learn faster
from easy data”.

We present first the results for Algorithm 2.

Corollary 1 (Power law asymptotics for the dynamically
smooth and strongly convex scenario). Assume that there
exists α ∈ R such that

βtnC
2

n∑
j=1

λj((∇2R(xt) + ηtQ1:t)
−1) = O(tα).

Then the inequality
∑T
t=1 E[ft(yt) − ft(x)] ≤ Õ(T

2+α
3)

holds.

In particular, Õ(
√
T) regret is attainable for α ≤ −12 .

Moreover, Õ(T 1/2) regret is adaptively attained for smooth
and strongly convex functions, while Õ(T 2/3) regret is
adaptively attained for smooth functions.

For purely strongly smooth and strongly convex functions,
βt ≡ β > 0, and Qt ≡ Q � 0, such that Q1:t = tQ.
Algorithm 2 then implies that ηt = Õ(t−1/2) (provable via
induction), so that the corollary above applies with α ≤
−1
2 . Thus, we adaptively attain the bound of Õ(

√
T) in

(Hazan and Levy, 2014) without a priori knowledge of the
function’s regularity or any extra tuning.

For purely strongly smooth functions, βt ≡ β and in the
worst case Qt ≡ 0. This implies that the expression above
reduces to βnC2

∑n
j=1 λj(∇2R(xt)−1), so that the regret

in t depends entirely on the average eigenvalue of the in-
verse Hessian,

∑n
j=1 λj(R(xt)−1). In the worst case, this

expression is O(1), which gives us the bound of Õ(T 2/3)
in (Saha and Tewari, 2011).

From another perspective, the corollary can be interpreted
as saying that as long as βt � 1

t
∑n
j=1 λj(Q

−1
1:t)
� tγ for

any γ ∈ R, then ηt = Õ(1√
t
), and a regret of at most

Õ(
√
T) regret is guaranteed. In other words, we can extend

the result of (Hazan and Levy, 2014) to not just the case
where the smoothness and strong convexity are fixed and
local, but in fact to any setting where the smoothness and
average strong convexity parameters are locally changing
at the same rate.

Moreover, we would like to stress that the above reductions
are worst-case guarantees. The data-dependent nature of
the regret bound above implies that it can do much better
on easier data. We also do not need to know about these
optimistic settings in advance of running the algorithms, as
they will be adaptively and automatically obtained.

In particular, our algorithms factor in and leverage the con-
vexity of the self-concordant barrier, so that the algorithm’s
bounds are much stronger when the algorithm plays points
at which the Hessian of the barrier has large average eigen-
values. For common self-concordant barriers such as the
log-barrier function, this corresponds to being closer to the
boundary of the action set. This insight is actually some-
what surprising, because being further from the boundary
generally implies that the learner will use a wider sam-
pling ellipsoid and be able to explore more. This suggests
that the self-concordant barrier regularization introduced
by Abernethy et al. (2008) might not ellicit the best trade-
off between exploration and exploitation for general con-
vex functions as it does for linear functions. Previous al-
gorithms in bandit convex optimization did not reveal this
phenomenon because they were not adaptive and did not
provide data-dependent guarantees.

We now present the accompanying results for Algorithm 3.
Corollary 2 (Power law asymptotics for the dynamically
Lipschitz and strongly convex scenario). Assume that there
exists α ∈ R such that

LtnC
2

n∑
j=1

λj((∇2R(xt) + ηtQ1:t)
−1/2) = O(tα).

Then the inequality
∑T
t=1 E[ft(yt) − ft(x)] ≤ Õ(T

3+α
4)

holds.

In particular, Õ(
√
T) regret is attainable for α ≤ −1.

Moreover, Õ(T 2/3) regret is adaptively attained for
strongly convex functions, and Õ(T 3/4) regret is adaptively
attained for Lipschitz functions.

For purely Lipschitz and strongly convex functions, Lt ≡
L > 0, and Qt ≡ Q � 0, such that Q1:t = tQ. Algo-
rithm 2 then implies that ηt = Õ(t−1/3), so that the corol-
lary above applies with α = −1

3 . Thus, we adaptively attain
the bound of Õ(T 2/3) of (Agarwal et al., 2010) without a
priori knowledge of the regularity or any extra tuning.

For purely Lipschitz functions, Lt ≡ L and in the worst
case Qt ≡ 0. This implies that the expression above re-
duces to LnC2

∑n
j=1 λj(∇2R(xt)−1/2), so that the re-

gret now depends entirely on the average eigenvalue of the
square root of the inverse Hessian,

∑n
j=1 λj(R(xt)−1/2).

In the worst case, this expression is O(1), which gives us
the bound of Õ(T 3/4) in (Flaxman et al., 2005).

Moreover, as long as Lt � 1

t
∑n
j=1 λj(Q

−1/2
1:t)

� tγ for γ ∈

R, it follows that ηt = Õ(t−1/3) and will attain a regret of
at least Õ(T 2/3).

However, as we mentioned before, these bounds can be
more favorable in optimistic settings with easier data, and
our algorithm will automatically adapt to these scenarios.

8 CONCLUSION

We presented two efficient and adaptive algorithms for ban-
dit convex optimization. Unlike previous algorithms, ours
do not require a priori assumptions of global strong con-
vexity or smoothness. Instead, they can process these pa-
rameters locally and online, which is much more suitable
for the setting of online convex optimization.

They also provide data-dependent guarantees, so that on
“easier data”, the algorithms learn faster and the bounds
become tighter. In particular, we present and characterize
many new data-dependent scenarios under which one can
obtain the desired Õ(

√
T) regret, including in the purely

Lipschitz and purely smooth settings.

Moreover, our algorithms characterize easy data to be sit-
uations where the local smoothness and convexity of our
loss functions grow at the same rate as well as when the
loss function guides the learner to play points closer to the
boundary. This bias in optimal exploration suggests that the
self-concordant barrier may be a sub-optimal regularizer in
the case of general Lipschitz convex functions.

9 ACKNOWLEDGEMENTS

This work was partly funded by the NSF awards IIS-
1117591 and CCF-1535987 and was also supported by the
National Science Foundation Graduate Research Fellow-
ship under Grant No. DGE 1342536.

References
Abernethy, J., E. Hazan, and A. Rakhlin (2008). Compet-

ing in the dark: An efficient algorithm for bandit linear
optimization. In COLT, pp. 263–274.

Agarwal, A., O. Dekel, and L. Xiao (2010). Optimal algo-
rithms for online convex optimization with multi-point
bandit feedback. In COLT, pp. 28–40.

Bartlett, P. L., E. Hazan, and A. Rakhlin (2007). Adaptive
online gradient descent. In NIPS, pp. 65–72.

Bubeck, S. and R. Eldan (2015). Multi-scale exploration
of convex functions and bandit convex optimization.
CoRR abs/1507.06580.

Bubeck, S. and A. Slivkins (2012). The best of both worlds:
Stochastic and adversarial bandits. In COLT, Volume 23,
pp. 42.1–42.23.

de Rooij, S., T. van Erven, P. D. Grünwald, and W. M.
Koolen (2014). Follow the leader if you can, hedge if
you must. Journal of Machine Learning Research 15,
1281–1316.

Duchi, J. C., E. Hazan, and Y. Singer (2010). Adaptive
subgradient methods for online learning and stochastic
optimization. In COLT, pp. 257–269.

Even-Dar, E., M. Kearns, Y. Mansour, and J. Wortman
(2007). Regret to the best vs. regret to the average. In
COLT, Volume 4539, pp. 233–247.

Flaxman, A. D., A. T. Kalai, and H. B. McMahan (2005).
Online convex optimization in the bandit setting: Gradi-
ent descent without a gradient. In SODA, pp. 385–394.

Hazan, E. and K. Y. Levy (2014). Bandit convex optimiza-
tion: Towards tight bounds. In NIPS, pp. 784–792.

Kalai, A. T. and S. Vempala (2005). Efficient algorithms
for online decision problems. J. Comput. Syst. Sci., 291–
307.

McMahan, H. B. and M. J. Streeter (2010). Adaptive bound
optimization for online convex optimization. In COLT,
pp. 244–256.

Nemirovski, A. S. and M. J. Todd (2008). Interior-point
methods for optimization. Acta Numerica, 191–234.

Nesterov, Y. (2004). Introductory Lectures on Convex Op-
timization: A Basic Course. New York, NY, USA:
Springer.

Saha, A. and A. Tewari (2011). Improved regret guaran-
tees for online smooth convex optimization with bandit
feedback. In AISTATS, pp. 636–642.

Sani, A., G. Neu, and A. Lazaric (2014). Exploiting easy
data in online optimization. In NIPS, pp. 810–818.

Zinkevich, M. (2003). Online convex programming and
generalized infinitesimal gradient ascent. In ICML, pp.
928–936.

