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Abstract

We present the Smoothing Machine (SMACH,
pronounced “smash”), a dynamical system learn-
ing algorithm based on chain Conditional Ran-
dom Fields (CRFs) with latent states. Unlike
previous methods, SMACH is designed to opti-
mize prediction performance when we have in-
formation from both past and future observa-
tions. By leveraging Predictive State Represen-
tations (PSRs), we model beliefs about latent
states through predictive states—an alternative
but equivalent representation that depends di-
rectly on observable quantities. Predictive states
enable the use of well-developed supervised
learning approaches in place of local-optimum-
prone methods like EM: we learn regressors or
classifiers that can approximate message pass-
ing and marginalization in the space of predic-
tive states. We provide theoretical guarantees on
smoothing performance and we empirically ver-
ify the efficacy of SMACH on several dynamical
system benchmarks.

1 INTRODUCTION

In time series, smoothing is the process of inferring a pos-
teriori latent state information given a model as well as
past and future observations. Many applications leverage
smoothing for inference, ranging from machine learning
and robotics to biological science. For example, in a Lin-
ear Dynamical System (LDS), a Kalman smoother is fre-
quently used to compute the posterior distribution of the
system’s states. Similarly, in Optical Character Recogni-
tion (OCR), smoothing is used to predict the word corre-
sponding to a sequence of of handwritten characters.

Chain CRFs [Lafferty et al., 2001] are remarkably success-
ful probabilistic graphical models for these applications.
As a discriminative approach, CRFs can capture detailed

structural properties of the observations and states with
a reasonable number of parameters. (In this context, the
states are often called labels.) Given a parametrization of
the CRF, along with a training data set consisting of pairs
of ground truth labels and observations, we can learn pa-
rameters for the CRF by maximizing the (log) conditional
likelihood of the training labels given the training obser-
vations. For appropriate feature parametrizations, the log-
likelihood objective is convex and one can achieve globally
optimal solutions.

In this work, we are interested in latent chain CRFs, which
generalize CRFs by adding a layer of latent variables be-
tween the labels and observations (Figure 1a). These la-
tent variables increase the expressiveness of the underlying
probabilistic model [Stratos et al., 2013], but also make the
optimization problem more challenging: the log-likelihood
objective becomes non-convex. Iterative approaches such
as Expectation-Maximization (EM) can only compute lo-
cally optimal solutions, making the search for a globally
optimal solution computationally infeasible. Though the
global maximizer of the likelihood can promise good per-
formance if we can find it, the locally optimal solutions that
are found in practice typically do not have any performance
guarantees.

To tackle the problem of local optima, we borrow ideas
from spectral learning methods and Predictive State Repre-
sentations (PSRs). In the last decade, these methods have
been successfully used for learning and inference in la-
tent state space models such as linear dynamical systems
and hidden Markov models [Jaeger, 2000, Hsu et al., 2009,
Boots, 2012, Boots et al., 2011, Song et al., 2010, Boots
et al., 2013, Hefny et al., 2015]. The main idea is that, in-
stead of tracking latent states directly, we track observable
quantities such as expectations of features of future obser-
vations. If the features are selected to be sufficient statistics
of the latent state distribution, knowing the predictive state
is equivalent to knowing the underlying state of the system
[Jaeger, 2000, Hefny et al., 2015, Sun et al., 2016]. Spectral
learning algorithms provide theoretical guarantees: their
estimating equations typically have a unique global solu-



tion, which converges to the true model parameters under
the assumption of realizability (no model mismatch). How-
ever, if there is model mismatch, no theoretical guarantees
are available for the learned model or the associated infer-
ence tasks [Kulesza et al., 2014].

To gain the benefits of spectral learning methods even in the
case of model mismatch, we propose a novel algorithm, the
Smoothing Machine (SMACH). Our method builds on re-
cent work on Predictive State Inference Machines (PSIMs)
[Sun et al., 2016, Venkatraman et al., 2016]. Like a PSR, a
PSIM uses predictive states to represent beliefs about latent
states. But, unlike a PSR, a PSIM directly learns a closed-
loop filter as an inference machine that propagates the pre-
dictive state forward in time. By focusing on inference in
predictive state space rather than latent state space, a PSIM
reduces the difficult problem of learning a latent state space
model to supervised learning and achieves guaranteed per-
formance for its inference task (filtering or forward belief
propagation) even in the presence of model mismatch.

A PSIM learns a filter that uses past and current obser-
vations to predict current latent information. Recently,
Venkatraman et al. [2016] applied PSIM to forward mes-
sage passing in a graphical model with partially observable
states. However, this approach is suboptimal for estimating
latent states in an offline setting where future observations
are also available. So, SMACH extends PSIMs by learning
a smoother that takes account of both past and future ob-
servations. Similar to PSIMs and PSRs, SMACH replaces
latent states by predictions of observable quantities. Differ-
ent from classic messages in graphical models, predictive
messages represent the distributions of the sufficient statis-
tics of observable quantities (e.g., labels and observations).

SMACH treats message passing as a sequence of predic-
tions. It directly learns three predictors for approximating
message passing in the predictive state space: one for for-
ward predictive state message passing, another for back-
ward predictive state message passing, and a third for com-
bining messages at a given time step. The first predictor
learns to recursively compute forward messages that en-
code information about past events (all past observations
up to now), while the second predictor learns to compute
backward messages that encode information about future
events (all future observations after now). The last predic-
tor predicts the current label given the local observation and
the corresponding forward and backward predictive states.
At testing time, SMACH uses the first two predictors to
compute the forward and backward predictive states along
the chain, and then uses the last predictor to combine the
forward and backward predictive states with the local ob-
servations to predict the labels.

The main advantages of SMACH are: (1) It leverages pre-
dictive states to reduce the problem of learning latent chain
CRFs to a supervised setting. This reduction enables us

(a) Latent chain CRF (b) Junction Tree

Figure 1: A form of latent chain CRF and its junction
tree. The labels a (double circled) are observable in train-
ing but are latent and need to be inferred during testing.
Latent state s is never observable and x (gray) is always
observable. During testing, given all observations x1:T ,
the inference task is to compute the posterior distribution
P (at | x1:T ) for all t.

to avoid local optima and use well developed theorems of
supervised learning to quantify the smoothing performance
of SMACH. (2) Similar to PSIM, SMACH combines the
two phases of modeling and learning into a siingle task,
to directly optimize the ultimate inference task of smooth-
ing. Hence, no parametrization is needed for an explicit
probabilistic graphical model (e.g., potential functions for
cliques). (3) The learned predictors implicitly encode the
information of the underlying probabilistic models. This
enables the use of arbitrarily powerful regressors or classi-
fiers as predictors for message passing and for the computa-
tion of marginal distributions and hence provides resistance
to model mismatch. Finally, (4) as we will show, our for-
mulation fully generalizes the special case of a chain CRF
without latent states (i.e., removing s from Figure 1a).

2 PRELIMINARIES

In this work we consider a general latent chain CRF struc-
ture, as shown in Figure 1a. The model consists of three
different types of variables: (1) Labels at that can be either
continuous (e.g, positions of a mobile robot) or discrete
(e.g., labels of a hand-written character). We assume that
the ground truth labels are available in the training data,
while the labels are latent at test time and need to be pre-
dicted. (2) Latent states st (either continuous or discrete)
that are hidden both at training and test time. (3) Obser-
vations xt (either continuous or discrete), available both at
training and test time. A sequence of labels and observa-
tions {a1, x1, ..., aT , xT } defines a trajectory τ . In order to
perform the smoothing inference process, we are interested
in computing the posterior distribution of the label at, con-
ditioned on all observations {x1, ..., xT }: P (at | x1:T ),∀t.

To discuss message passing in the latent chain CRF of
Figure 1a, we first need to generate the corresponding



junction tree representation, as shown in Figure 1b. The
junction tree allows inference algorithms to avoid the in-
ner loops in the original latent CRF model and perform
message passing as follows [Koller and Friedman, 2009].
First, pick the node (a1, s1, a2, s2) as the root and per-
form backward message passing starting from each leaf
(xt, at, st). The message at the separation set (at, st) be-
tween the node (at, st, at+1, st+1) and the node (xt, at, st)
can be represented by P (xt | at, st), where xt is the evi-
dence. We define the backward message at the separation
set (at, st), going from the node (at, st, at+1, st+1) to the
node (at−1, st−1, at, st), as bt ≡ P (at, st | xt:T ), which
we compute recursively as:

bt−1 ∝
∑
atst

P (at−1, st−1 | at, st)P (xt | at, st)bt. (1)

We assume without loss of generality that the (forward)
transition probability P (at+1, st+1 | at, st) is time-
invariant, and we write P (at, st | at+1, st+1) for the cor-
responding backward transition probability. After all back-
ward messages are computed, starting from the root, we
pass messages forward. The forward message at the sep-
aration set (at, st) from the node (at−1, st−1, at, st) to
the node (at, st, at+1, st+1) is represented by P (at, st |
x1:t−1), which we denote b̃t. The forward message is also
computed recursively:

b̃t+1 ∝
∑
st,at

P (at+1, st+1 | at, st)P (xt | at, st)b̃t. (2)

With forward and backward messages, at the node
(at, st, at+1, st+1) the marginal message P (at | x1:T ),
which we denote as b̂t, is computed as:

b̂t ∝
∑

st,at+1,st+1

P (at+1, st+1 | at, st)b̃tP (xt | at, st)bt+1

P (at+1, st+1)
.

(3)

If we assume that P (a, s) is time-invariant, the above equa-
tion can be regarded as a time-invariant, deterministic func-
tion that maps b̃t, bt+1, and the local observation xt to b̂t.

3 OBSERVABILITY AND PREDICTIVE
STATES

To perform message passing as described in Sec. 2, classic
MLE-based approaches first parametrize latent CRFs and
then learn the parametrization from training data. Learning
the parameters of the transition models and the observa-
tions models is hard due to the latent states: the log like-
lihood of the observations and labels is non-convex. As a
consequence, MLE-based approaches need to use iterative
methods such EM, which can only promise local optimality
and therefore lack performance guarantees.

Our approach leverages Predictive State Representations
(PSRs) to overcome the difficulties of dealing with latent
states. PSRs use predictive states, which consist of expec-
tations of observable quantities, as an alternative, equiva-
lent representation of latent belief states. Below, we first
introduce the definition of observability, which extends the
classic observability definition from latent state space mod-
els (e.g., LDS, HMM) to latent chain-CRFs.

3.1 OBSERVABILITY

Let us focus on a particular separation set (at, st) between
the two nodes (at−1, st−1, at, st) and (at, st, at+1, st+1)
on the junction tree modelled in Figure 2. The forward
belief in this separation set is represented as P (at, st |
x1:t−1). We define forward k-observability as follows:

Definition (Forward k-observability) There exists a con-
stant k ∈ N+ such that the relationship between P (at, st |
x1:t−1) and P (at:t+k, xt:t+k−1 | x1:t−1) is bijective.

Intuitively, forward k-observability means that the distribu-
tion of future observable quantities (labels a and observa-
tions x) uniquely determines the latent forward belief, con-
ditioned on the previous observations. We define backward
k-observability similarly:

Definition (Backward k-observability) There exists a con-
stant k ∈ N+ such that the relationship between P (at, st |
xt:T ) and P (at−k:t, xt−k:t−1 | xt:T ) is bijective.

Intuitively, backward k-observability means that the distri-
bution of past observable quantities (labels a and obser-
vations x) uniquely determines the latent backward belief
state, conditioned on future observations.1

In the Appendix, we conduct a case study of observability
on one special form of latent chain-CRF—the Refinement
Hidden Markov Model (RHMM) [Stratos et al., 2013].
Specifically, first we reduce the RHMM to a regular HMM,
and then we leverage the well-defined concept of observ-
ability of HMMs to define the forward and backward ob-
servability of the original RHMM. In fact, when we set k
big enough to cover the entire time windows of past and
future, our definition is actually agrees with the past and
future random variables defined by Stratos et al. [2013].

3.2 PREDICTIVE STATES

The definition of observability provides us with a differ-
ent way to represent the beliefs containing latent states:
we can use the joint distributions of future (past) labels

1In principle, the statistics could depend on the entire se-
quence of observations xt:T (or x1:t). The restriction to a k-step
window of visible variables simplifies the notation and is com-
monly used in practice.



Figure 2: Illustration of the forward predictive state (blue)
and backward predictive state (green) with k = 2.

and observations to represent the forward (backward) be-
liefs about latent states. Let us define a feature function
φ that computes sufficient statistics of at:t+k, xt:t+k−1,
such that P (at:t+k, xt:t+k−1 | x1:t−1) can be repre-
sented by E[φ(at:t+k, xt:t+k−1) | x1:t−1]. (In many
cases, a good feature function is a kernel mean embed-
ding, which is guaranteed to yield sufficient statistics for
a wide range of distributions.) Similarly we define a
feature function ξ that computes sufficient statistics of
at−k:t, xt−k:t−1, such that P (at−k:t, xt−k:t−1 | xt:T ) can
be represented by E[ξ(at−k:t, xt−k:t−1) | xt:T ]. (In prac-
tice, ξ could be the same as φ.) Under the assumption
that the system is forward k-observable and backward k-
observable, we can now replace the beliefs about latent
states P (at, st | x1:t−1) and P (at, st | xt:T ) with the
predictive messages E[φ(at:t+k, xt:t+k−1) | x1:t−1] and
E[ξ(at−k:t, xt−k:t−1) | xt:T ] respectively. For notational
simplicity, let us define ft = (at:t+k, xt:t+k−1) and ht =
(at−k:t, xt−k:t−1). We define the Forward Predictive State
(FPS) mt at step t, and the Backward Predictive State
(BPS) vt at step t as:

mt = E[φ(ft) | x1:t−1], vt = E[ξ(ht) | xt:T ]. (4)

Note that our formulation fully generalizes the special case
of a chain CRF without latent states (i.e., removing all s
and edges connected to s from Figure 1a). In this case,
by setting k = 0, the forward predictive state mt becomes
E[φ(at) | x1:t−1] and the backward predictive state vt be-
comes E[ξ(at) | xt:T ]. With sufficient feature functions φ
and ξ, mt and vt are then equivalent to P (at | x1:t−1) and
P (at | xt:T ), which are the classic forward and backward
beliefs on a chain CRF.

As we will show in the next section, we can use PSIM to
compute forward and backward predictive states.

4 ALGORITHM

We now present the Smoothing Machines (SMACH) algo-
rithm (Alg. 2). As introduced in the previous section, we
first leverage PSIM to learn stationary filters for the gener-
ation of forward and backward predictive states. The final

Algorithm 1 PSIM with DAgger (Forward Pass)

1: Input: M independent trajectories τi, 1 ≤ i ≤M ;
2: Initialize D0 ← ∅ and initialize F0 ∈ F1;
3: Initialize m̂1 = 1

M

∑M
i=1 φ(f i1)

4: for n = 0 to N do
5: Use Fn to perform belief propagation (Eq. 6) on tra-

jectory τi, 1 ≤ i ≤M
6: For each trajectory τi and each time step t, add the

input zit = (mi,Fn
t , xit) encountered by Fn to D′n+1

as feature variables and the corresponding f it+1 to
D′n+1 as the targets ;

7: Aggregate dataset Dn+1 = Dn ∪D′n+1;
8: Train a new hypothesis Fn+1 ∈ F1 onDn+1 to min-

imize the loss d(F (m,x), f);
9: end for

10: Return: the best hypothesis Ff ∈ {Fn}n on valida-
tion trajectories.

step of SMACH is to combine the forward and backward
predictive states together with observations to learn a pre-
dictor for smoothing. Below we briefly introduce PSIM
and how PSIM can be used for computing predictive states.

4.1 PREDICTIVE STATE INFERENCE
MACHINES

We utilize Predictive State Inference Machines (PSIM)
[Sun et al., 2016] to directly compute the predictive states
mt and vt. PSIM is a discriminative learning approach
that learns a filter (black box represented by any regres-
sors or classifiers) to mimic the predictive message passing
process: by taking the incoming predictive message and
the local observation as inputs, it outputs the next predic-
tive message. Specifically, for forward predictive message
passing, given a trajectory τ = {a1, x1, ..., aT , xT } sam-
pled from the distribution D, PSIM aims at finding a hy-
pothesis Ff ∈ F1 to optimize the following objective:

min
Ff∈F1

Eτ
T∑
t=1

‖m̂τ
t − φ(fτt )‖2; (5)

s.t. m̂τ
t+1 = Ff (m̂τ

t , x
τ
t ). (6)

Namely, PSIM finds a hypothesis that can mimic for-
ward predictive message passing, and the quality of the
computed predictive messages are measured by the loss
‖m̂t − φ(f)t‖2 (i.e., moment matching).

Similar to forward predictive message passing, we can use
PSIM for backward predictive message passing. In this
case, PSIM aims at finding a hypothesis Fb ∈ F2 (F2 and
F1 could either be the same or different hypothesis classes)



to optimize the backward filtering performance as:

min
Fb∈F2

Eτ
T∑
t=1

‖v̂τt − ξ(hτt )‖2; (7)

s.t. v̂τt = Fb(v̂
τ
t+1, x

τ
t ). (8)

In its original form [Sun et al., 2016], two optimization
approaches are adopted for finding Ff or Fb: one uses
Forward Training [Ross and Bagnell, 2010] to learn a
non-stationary filter, while the other uses Data Aggrega-
tion [Ross et al., 2011b] to learn a stationary filter. How-
ever, as pointed out by the authors, even if the use of
PSIM with Forward Training provably guarantees hypoth-
esis consistency (i.e., the learned filters are equal to the
true underlying filters), this solution is often impractical
due to its data inefficiency. Conversely, PSIM with Data
Aggregation is significantly more data efficient, both in
the sample complexity analysis and in the empirical anal-
ysis [Sun et al., 2016]. Therefore, in this paper, we use
PSIM with Data Aggregation to learn stationary filters for
computing approximated predictive forward messages m̂
and backward messages v̂. The detailed description of the
PSIM with DAgger for computing the hypothesis Ff for
forward predictive message passing is provided in Alg. 1.
The computation of backward predictive states will be sim-
ilar, since we only need to reverse the belief propagation
order (Line 5) using Eq. 7 and replace f, m̂,F1, Ff with
h, v,F2, Fb respectively.

Theoretically, PSIM ensures that the filtering errors result-
ing from the learned Ff and Fb are upper bounded as:2

Eτ
1

T

T∑
t=1

[‖m̂τ
t − φ(ft)‖2] ≤ εm, (9)

Eτ
1

T

T∑
t=1

[‖v̂τt − ξ(ht)‖2] ≤ εv, (10)

where εm and εv are the regression or classification error
on the aggregated dataset [Ross et al., 2011a, Sun et al.,
2016]. In practice, both εm and εv can be small when we
have an expressive hypothesis class and small noise (e.g.,
small Bayes error) [Ross et al., 2011c].

Therefore, by using PSIM, we can learn two operators Ff
and Fb that mimic the forward and backward predictive
state passing procedures. With these two operators, we
can compute the approximated backward predictive state
v̂t and the forward predictive state m̂t for the separation set
(at, st) at any time step t (Figure 2).

2The original PSIM work by Sun et al. [2016] only provides
theoretical bounds for forward message passing. However, for
backward message passing, the same bounds directly apply if we
reverse message passing direction.

Algorithm 2 Smoothing Machines (SMACH)

1: Input: M training trajectories τi = {xit, ait}
Ti
t=1, 1 ≤

i ≤M ; Hypothesis class F1,F2,F3.
2: Run PSIM on {τi}Mt=1 to learn the forward model Ff ∈
F1.

3: Run PSIM on {τi}Mt=1 to learn the backward model
Fb ∈ F2 .

4: Initialize dataset S = ∅.
5: for each τi, 1 ≤ i ≤M do
6: Roll out Ff forward to generate forward predictive

states {m̂τi
t }

Ti
t=1 .

7: Roll out Fb backward to generate backward predic-
tive states {v̂τit }

Ti+1
t=2 .

8: Compose input feature ẑτit = (m̂τi
t , v̂

τi
t+1, x

τi
t ) for

1 ≤ t ≤ Ti .
9: Add input and output pair {(ẑτt , a

τi
t )}Tit=1 into S.

10: end for
11: Compute the marginal hypothesis:

Ĝ = arg max
G∈F3

E(z,a)∼S `(G(z), a). (11)

12: Return: Ff , Fb, Ĝ.

4.2 SMOOTHING MACHINES

The SMACH algorithm is presented in Alg. 2. SMACH
first learns a stationary forward filter Ff ∈ F1 and a back-
ward filter Fb ∈ F2: given training data, the SMACH algo-
rithm uses PSIM to learn a hypothesis Ff that can com-
pute and pass the forward predictive states m̂t (Line 2)
and, independently, uses PSIM to learn a hypothesis Fb
that can compute and pass the backward predictive states
v̂t (Line 3). Due to their independence, learning Ff and Fb
can be executed in parallel.

To learn the final message product and marginalization
step, we first generate the predictive states by rolling out
Ff and Fb on the training trajectories (Line 6 and 7). Next,
the algorithm collects the pairs of forward messages m̂t

and backward messages v̂t+1, together with the local ob-
servation xt, as the input feature, with the corresponding
label at as the output. Finally, SMACH learns a classifier
or regressor Ĝ as shown in Eq. 11 (Line 11) by minimizing
a loss function ` that measures the prediction error. When
at is discrete, ` can be a common classification loss, such
as hinge loss, softmax, or cross entropy.

At test time, given a sequence τ , we only have access to
the observations {xτt } and need to predict {aτt }. With
the learned Ff , Fb, Ĝ, we simply roll Ff forward to com-
pute {m̂τ

t } and roll Fb backward to compute {v̂t}, in
parallel. With all the messages available, we then use
Ĝ(m̂τ

t , v̂
τ
t+1, x

τ
t ) to predict the label. This whole process

uses all observations {xτt }t to predict at a posteriori.



4.3 DISCUSSION

Our learning algorithm shares some similarities with the
well-known Baum-Welch algorithm for HMMs. Baum-
Welch iterates between estimating the posterior distribu-
tions of latent states (using forward and backward pass),
and optimizing the parameters. SMACH also performs a
forward and backward pass to compute the messages rep-
resented by predictive states. The key difference is that we
leverage predictive state representations (PSRs) to reduce
the problem of learning latent chain-CRFs back to the su-
pervised setting, where we can avoid local optimality issues
and give strong theoretical guarantees (Sec. 5).

5 THEORETICAL ANALYSIS

Let us assume that we use PSIM to learn Ff to pass predic-
tive states forward on any given sequences of observations
{x1, ..., xT } from τ as m̂τ

t+1 = Ff (m̂τ
t , x

τ
t ), and learn Fb

to pass predictive states backward as v̂τt = Fb(v̂
τ
t+1, x

τ
t ).

Let us define ∆mτt
= mτ

t − m̂τ
t , and ∆vτt

= vτt − v̂τt , as
the difference between the underlying true predictive states
(equivalent to the original beliefs bt, b̃t due to the existence
of the bijective map) and the predictive states computed
from the learned Ff and Fb, respectively.

Eq. 9 and Eq. 10 quantify the filtering error from the ap-
proximated predictive states computed from the learned
hypothesis Ff and Fb respectively. The ultimate goal of
smoothing is to use both past and future information to
compute the posterior distribution of a label more accu-
rately. As one might expect, if we can exactly compute
the forward and backward messages, namely m̂t = mt and
v̂t+1 = vt+1 for any t and τ , then, in a realizable case,
we can exactly learn a hypothesis that takes m̂t, v̂t and the
local observations as inputs and outputs the posterior dis-
tributions of the labels. However, one may wonder if we
can still achieve strong prediction guarantees on the learned
model even if we can only approximately compute mt and
vt. Moreover, we may be interested in quantifying the per-
formance of the learned model based on the accuracy of the
approximated predictive states (e.g., using ∆mt and ∆vt ).
In order to perform this type of analysis, we first introduce
some lemmas and notation.

The following lemma extends the results for PSIM shown
in Eq. 9 and 10, by explicitly quantifying ∆m̂t and ∆v̂t :

Lemma 5.1. Given Eq. 9 and 10 from PSIM, for ∆m̂t and
∆v̂t , we have:

1

T

T∑
t=1

Eτ [‖∆mτt
‖2] ≤ 2(εm + δm); (12)

1

T

T∑
t=1

Eτ [‖∆vτt
‖2] ≤ 2(εv + δv); (13)

where δm = 1
T

∑T
t=1 Eτ [‖mτ

t − φ(ft)‖2] and δv =
1
T

∑T
t=1 Eτ [‖vτt − ξ(ht)‖2].

Proof for this lemma and the lemmas/theorems in the re-
mainder of this paper are all included in Appendix.

The above lemma states that the size of ∆m (or ∆v) is up-
per bounded by the sum of εm (or εv), which is the risk re-
sulting from the predicted messages, and δm (or δv), which
is the Bayes error resulting from the system itself. Note
that the Bayes error is purely determined by the underly-
ing systems and has nothing to do with the learning algo-
rithms. In general, we cannot guarantee the elimination of
the Bayes errors. This is because when aiming at learning a
stationary Ff (or Fb) for forward (or backward) predictive
message passing, the objective (Eq. 5) that PSIM tries to
optimize is non-convex. Even ideally assuming that PSIM
is risk consistent, i.e., it finds an F that has the same fil-
tering error (risk) as the true underlying filter for predic-
tive states, which is the best we can do for a general non-
convex objective, we still cannot promise that the learned F
is exactly the true underlying filter. Therefore, even if F is
risk consistent with respect to the underlying true filter, we
cannot promise that the approximated predictive state m̂t

generated from F would be exactly equal to the true un-
derlying state mt. More detailed explanation is included in
Appendix. However, as shown in Lemma. 5.1, the smaller
the filtering error from PSIM, the better approximation we
get for the predictive states.

To analyze the performance of the learned marginalization
hypothesis Ĝ, we first assume that the loss function `(·, ·)
that we are using for classification is Lipschitz continuous,
with constantL1 with respect to the first item (G(z)). Com-
monly used classification loss functions have this property
(e.g., hinge loss, logistic loss). Additionally, we assume
that G(·), for any G ∈ F3, is also Lipschitz continuous
with constantL2 with respect to z. This is also a reasonable
assumption for common hypothesis classes such as linear,
quadratic and, in fact, any differentiable hypotheses with
bounded first derivatives.

Let us defineG∗ as the minimizer of the true risk measured
under the true messages (mτ

t , v
τ
t ):

G∗ = arg max
G∈F3

Eτ [`(G(zτt ), aτt )], (14)

where zτt is composed as (mτ
t , v

τ
t+1, x

τ
t ) with the true un-

derlying predictive messages mτ
t , v

τ
t+1 on the sequence τ .

With sufficient feature functions φ and ξ,mτ
t and vτt will be

equivalent to bτt and b̃τt subject to a bijective map. Hence,
in a realizable case, G∗ encodes as much information as
the true underlying marginalization step in the original la-
tent chain-CRF, as shown in Eq. 3. Let us first analyze
the learned model Ĝ under the assumption of infinite many
training trajectories (M →∞):
Theorem 5.2. Assuming Ff and Fb from PSIM gener-
ate the messages m̂t and v̂t satisfying Eq. 12 and 13, the



marginalization hypothesis Ĝ obtained from Eq. 11 has the
following property:

1

T

T∑
t=1

Eτ∼D[`(Ĝ(ẑτt ), aτt )]

≤ 1

T
Eτ∼D[`(G∗(zτt ), aτt )] +O(εm + εv + δm + δv).

The above theorem shows that if PSIM learns good hypoth-
esis Ff and Fb for estimating messages (e.g., εm and εm
are small) and the underlying noise of the dynamical sys-
tems is not big, the learned hypothesis Ĝ can achieve com-
petitive smoothing performance with respect to G∗—the
global minimizer of the smoothing risk with access to the
true messages (e.g., mτ

t , vτt ).

For Theorem 5.2 we assumed an infinite number of training
sequences, although in practice, we only have a finite num-
ber of sequences. To show the finite sample complexity
of our algorithm, we additionally assume that the training
sequences τ1, ..., τM are separated in two halves. We use
the first half to learn Ff and Fb with PSIM, and the sec-
ond half to generate messages m̂ and v̂ with Ff and Fb,
and then train Ĝ for the marginalization step. This assump-
tion ensures that, at every time step t, the generated mes-
sages {m̂τM/2

t , m̂
τM/2+1

t , ..., m̂τM
t } are i.i.d sampled (note

that Ff is independent with respect to τM/2, ..., τM , and
each τ is i.i.d sampled). Let us define the distribution
d̂t as the distribution of ẑτt = (m̂τ

t , v̂
τ
t+1, x

τ
t ). Note that

{(m̂τi
t , v̂

τi
t+1, x

τi
t )}Mi=M/2 will be i.i.d sampled from d̂t. For

convenience, we assume that we have 2M training se-
quences. We use the first M sequences for PSIM to learn
Ff and Fb and the remaining M for learning Ĝ.

Using the finite sample analysis for PSIM with Data Aggre-
gation as the optimization tool,we first extend Lemma. 5.1
to the corresponding high probability bounds:

Lemma 5.3. Using PSIM with Data Aggregation, with
probability 1− δ, we have:

1

T

T∑
t=1

Eτ [(∆mτt
)] ≤ 2γ̂m + 2ε̂m + 2δm +O(

√
ln(1/δ)

MN
);

1

T

T∑
t=1

Eτ [(∆vτt
)] ≤ 2γ̂v + 2ε̂v + 2δv +O(

√
ln(1/δ)

MN
);

where N is number of iterations PSIM used and γ̂m and
γ̂v converge to zero as N →∞

We present the finite sample analysis using Rademacher
complexity. We define Rt(F3) as the Rademacher num-
ber of the hypothesis class F3 under distribution d̂t, and
R̄(F3) = (R1(F3) + ... + RT (F3))/T , as the average
Rademacher number across T time steps. In our analysis,
we assume we know T or the upper bound of T .

KF EKF KS iEKS SMACH-0 Avg ‖at‖2
Cart-Pole 12.80 2.14 4.13 2.02 0.29 0.65
Bicycle 0.093 0.068 0.091 0.067 0.065 2.01
Helicopter ∼ 2.49 ∼ 2.19 2.17 21.98
Swimmer ∼ 1.90 ∼ 1.72 0.69 9.61

Table 1: Prediction error of different approaches without
latent states (at encodes the exact state of the system).

Theorem 5.4. Given 2M training sequences for Alg. 2, as
N →∞, with probability 1−δ, for anyG∗ ∈ F3, we have:

1

T

T∑
t=1

Eτ∼D[`(Ĝ(ẑτt ), aτt )] ≤ 1

T

T∑
t=1

Eτ∼D[`(G∗(zτt ), aτt )]

+ Õ(

√
ln(1/δ)

M
) +O(R̄(F3) + ε̂m + ε̂v + δv + δm).

6 EXPERIMENTS
We test SMACH on two different types of datasets: (1)
datasets with continuous labels at (SMACH needs to per-
form regression), which are collected from several simu-
lated robotics dynamical systems, and (2) datasets whose
labels at are discrete (SMACH needs to perform classifi-
cation), which are from two domains: Optical Character
Recognition, a sequential image recognition task, and ques-
tions and answers recognition [McCallum et al., 2000], a
Natural Language Processing task.

6.1 REGRESSION TASKS

To show that our approach is able to deal with complicated,
non-linear dynamical models of robotics systems, we test
our approach on four classic simulated dynamics models:
(1) Cart-Pole Balancing, (2) Bicycle Balancing [Ernst et al.,
2005], (3) Helicopter Hover [Abbeel et al., 2005] and (4)
Swimmer [Tassa et al., 2008]. The simulated models are
available from RLPy [Geramifard et al., 2013].

We compare SMACH to classic physics-based algorithms:
the Kalman Filter (KF), the Kalman Smoother (KS), the
Extended Kalman Filter (EKF), and the iterated Extended
Kalman Smoother (iEKS) [Bell, 1994]. We first consider
the chain-CRF structure without latent states (no st in
Fig. 1a). Hence, the label at represents the full state of
the robot, and xt is generated from at through a stochastic
observation model. Since there are no latent states, we set
k = 0. Here, we define the smoothing error as the average
of the prediction errors ‖a− â‖2.

In our setup, we allow KF, KS, EKF, iEKS to access the
real underlying dynamical models and observation models.
For KF and KS, we linearize the real dynamics and obser-
vation model around the balancing state. Note that directly
comparing to KF, KS EKF, and iEKS is not fair since these
approaches have access to the true stochastic dynamical
models, while SMACH only has access to the data gen-
erated from the models. Nevertheless, as we can see from



Tab. 1, by using Kernel Ridge regression (i.e., F1,F2,Ft
are Reproducing Kernel Hilbert Spaces), SMACH outper-
forms these classic physics-based approaches on all four
testbeds.3 We only tested SMACH-0 here as we do not
have latent states st in the setup here. As we expected, in-
creasing k (using predictive states) does not give noticeable
improvement on the prediction error.

To test the performances of SMACH with latent states, we
separate the full state into two parts: labels at and latent
states st (see Appendix for the detailed components of st
and at). Under this setup, SMACH is never allowed to
access st. Due to the existence of latent states, we set
k ≥ 1 (i.e. we use predictive states). Figure 3a and 3b
show the performance of SMACH as k increases on the bi-
cycle balancing and swimmer datasets. A similar trend is
observed on the other two datasets. Overall, the smooth-
ing performance improves as k increases, which illustrates
that longer predictive states can potentially capture more
information about latent states. Interestingly, SMACH out-
performs iEKS (note that we still give iEKS full access to
the latent states st in order to perform Kalman smoothing,
but we only report smoothing prediction error with respect
to label at). Since iEKS can be understood as applying
the Gauss-Newton algorithm on the log likelihood, which
could be non-convex due to non-linear dynamics and obser-
vation models, it is likely that iEKS will be stuck at locally
optimal solutions.

Since KF, KS, EKF, and iEKS have access to the perfect
stochastic models, this set of experiments also supports one
of our main claims: separately learning the models and
then using the learned models to perform inference may
result in decreased performance. This can happen even if
we can leverage powerful learning algorithms to learn the
perfect models (e.g., using Gaussian Process [Deisenroth
et al., 2012] or Hilbert space embeddings [Nishiyama et al.,
2016] to model dynamics) due to the unavoidable approx-
imations that one usually needs in order to make inference
computationally tractable (e.g., linearize the real/learned
dynamics and observations models as KF, KS, GP-EKF
and GP-EKS [Ko and Fox, 2009] do). These approxima-
tions on the learned/real models may cancel out the benefits
derived from the availability of perfect models. SMACH,
instead, directly learns powerful predictors to optimize the
smoothing performance. Since the predictors operate as
black boxes to directly perform the smoothing operation,
no further approximation is needed for inference.

6.2 CLASSIFICATION TASKS

We evaluate SMACH on classification tasks belonging to
two different domains: Optical Character Recognition and

3Note that, for iEKS, we use the solutions from EKF as ini-
tialization. Simply using random initialization, or the average of
the training trajectories as initialization, does not perform well.

(a) Bicycle (b) Swimmer

Figure 3: Performance of SMACH with respect to k (length
of predictive states) for models with latent states.

questions and answers recognition (FAQ) [McCallum et al.,
2000]. In this case, for fair comparison to previous ap-
proaches, we use standard feature design. We compare
SMACH to two families of algorithms: (1) search-based
prediction algorithms such as SEARN [Daumé III et al.,
2009], DAgger [Ross et al., 2011b], and PSIM [Sun et al.,
2016], (2) CRF [Lafferty et al., 2001] and its extensions,
such as Hidden-unit CRF [van der Maaten et al., 2011] and
NeuroCRFs [Do et al., 2010].

Optical Character Recognition The OCR dataset con-
tains 6877 handwritten words. Each word is represented
as a series of handwritten characters and there are 52152
total characters. Each character is a binary 16 × 8 image,
leading to 128-dimensional binary feature vectors. Each
character is one of the 26 letters in the English alphabet.
We define the binary vector for character at slot t as ct.
The task is to predict the identity of each character, given
a sentence. In our experiments, we use a 7-step time win-
dow: we represent xt as [ct−3, ..., ct, ..., ct+3] and we test
SMACH with different k (SMACH-k).

We first test SMACH on a small experimental setting,
where we separate the dataset into 10 folds and perform
training on one fold while testing on the remaining 9
folds. Table 2 shows the comparison between SMACH
and other closely related approaches.4 SMACH outper-
forms SEARN, DAgger and PSIM, which are the state-
of-art search-based prediction algorithms. Compared to
probabilistic graphical model approaches, SMACH also
has better performance than CRFs. From Table 2, we see
that from DAgger (equivalent to PSIM-0) to PSIM-1 and
PSIM-2 the prediction error decreases when we use, in the
predictive messages, more steps of future/past labels and
observations. This is consistent with the claim from Sun
et al. [2016] that a larger k can lead to more accurate pre-
dictive states. As a result, SMACH-2 surpasses SMACH-
1, since SMACH-2 uses more accurate predictive messages
computed from PSIM-2. This evidence agrees with Theo-

4The results of SVMstruct, SVMstruct, M3N, CRF are
from [Nguyen and Guo, 2007]; SVMstruct2 and CRF2 are from
[Keerthi and Sundararajan, 2007]



SVMstruct SVMstruct2 M3N SEARN
21.16 19.24 25.08 27.02
CRF CRF2 Hidden unit CRF DAgger
32.30 19.97 18.36 30.02

PSIM-1 PSIM-2 SMACH-1 SMACH-2
26.11 23.89 18.41 16.21

Table 2: Comparison of SMACH with previous related ap-
proaches on the small OCR experimental setting.

Figure 4: Performance of SMACH-k on large OCR task.

rem 5.4: when we have more accurate predictive messages
for the marginal step (e.g., smaller ε), the marginal step has
a smaller generalization error. We also ran SMACH on a
larger setting (training on 9 folds and testing on the remain-
ing one) with different k, reporting the results in Figure 4.5

From the graph, we note that larger k can greatly improve
smoothing performance. SMACH-3 achieves an average
prediction error of 3.5%, while Hidden unit CRF achieves
a 2.0% prediction error. Note, however, that SMACH-2
achieves a smaller error in the small experiment.

Recognizing questions and answers We also test
SMACH on the FAQ dataset from McCallum et al. [2000].
We use the same feature representation from McCallum
et al. [2000], where each sentence is described using a 24-
dimensional binary vector. Each sentence in the FAQ data
set is labeled by one of four labels: (1) question, (2) answer,
(3) header, or (4) footer. We use linear SVM for PSIM
for computing backward and forward predictive states. For
the marginalization step, we use two classifiers: Linear
SVM with Random Fourier feature (RFF-SVM) and Ran-
dom Forest (RF) with 60 trees and maximum depth 30.

From Table 3, we see that both SMACH with RFF-SVM
and SMACH with RF achieve performances which are
comparable to Hidden-unit CRF [van der Maaten et al.,
2011] with Stochastic Gradient Descent as the optimiza-
tion (we note that SMACH performs slightly better than
hidden-unit CRF with other optimizers like Perceptron and
BFGS). SMACH with RF gives slightly better performance
than SMACH with RFF-SVM. This indicates that using a
powerful classifier for the marginal step can potentially en-

5The result of SVM+CRF is from [Hoefel and Elkan, 2008].

Method Error (%)
Linear SVM [Do et al., 2010] 9.87

Linear CRF [Maaten et al., 2011] 6.54
NeuroCRFs [Do et al., 2010] 6.05

Hidden-unit CRF [Maaten et al., 2011] 4.43
DAgger 7.47

SMACH-0 with RFF-SVM 5.10
SMACH-0 with RF 5.01

Table 3: Comparison of SMACH with related approaches
on the FAQ dataset.

hance the performance. We also tested k = 1, leading to a
slightly worse performance than k = 0. Since we are only
allowed to use one file (one sequence) to train the model
and test on all the remaining files in the same group [Mc-
Callum et al., 2000], when we increase k, we may not have
enough training data, since the complexity of the hypothe-
sis classes increases as k becomes larger.

7 CONCLUSION

In this paper we present Smoothing Machines (SMACH),
a data-driven approach that directly optimizes smoothing
performance on time series with latent states. We use
the concepts of predictive states and inference machines
to directly learn functions that mimic forward and back-
ward message passing in our system. Under this setting,
we can achieve strong performance guarantees for the ulti-
mate inference task (i.e., smoothing) in the agnostic setting.
We show that SMACH outperforms classic physics-based
smoothing algorithms on dynamical systems with compli-
cated non-linear transition models. We also show that in the
presence of latent states, using more features (i.e., a longer
time window) can boost the algorithm’s performance. Ad-
ditionally, our experimental results on classification tasks
are promising. We leave the application of SMACH on
more complicated NLP tasks (e.g., Part of Speech Tagging)
as future work.
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