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Abstract

A large body of algorithms have been proposed
for multi-task learning. However, the effec-
tiveness of many multi-task learning algorithms
highly depends on the structural regularization,
which incurs bias in the resulting estimators and
leads to slower convergence rate. In this paper,
we aim at developing a multi-task learning al-
gorithm with faster convergence rate. In partic-
ular, we propose a general estimator for multi-
task learning with row sparsity constraint on the
parameter matrix, i.e., the number of nonzero
rows in the parameter matrix being small. The
proposed estimator is a nonconvex optimization
problem. In order to solve it, we develop a for-
ward backward greedy algorithm with provable
guarantee. More specifically, we prove that the
output of the greedy algorithm attains a sharper
estimation error bound than many state-of-the-art
multi-task learning methods. Moreover, our esti-
mator enjoys model selection consistency under
a mild condition. Thorough experiments on both
synthetic and real-world data demonstrate the ef-
fectiveness of our method and back up our the-
ory.

1 INTRODUCTION

Multi-task learning (MTL) (Caruana, 1997) has witnessed
increasing attention in machine learning and statistics in
the past decades. In multi-task learning, one deals with a
number of related learning tasks simultaneously, with the
goal to improve the generalization performance by utiliz-
ing the intrinsic relationship among these tasks. It has been
successfully applied to a wide range of applications includ-
ing object recognition (Caruana, 1997), speech recogni-
tion (Parameswaran and Weinberger, 2010), handwritten
digits recognition (Quadrianto et al., 2010), and disease
progression prediction (Zhou et al., 2011).

The fundamental problem in multi-task learning is how
to characterize the relationship among tasks. Representa-
tive methods include learning hidden units in neural net-
works (Caruana, 1997; Baxter, 2000), sharing prior in hi-
erarchical Bayesian models (Bakker and Heskes, 2003;
Schwaighofer et al., 2004; Yu et al., 2005; Zhang et al.,
2005) and Gaussian processes (Lawrence and Platt, 2004),
learning a shared feature mapping matrix in multiple re-
gression (Ando and Zhang, 2005; Evgeniou and Pontil,
2004). Some other works also proposed to learn the task
relations (Zhang and Yeung, 2012, 2013; Han and Zhang,
2015), to mention a few. In this study, we focus on a large
family of multi-task learning algorithms, which assume
that all tasks share a common set of features (Obozinski
et al., 2006; Argyriou et al., 2008; Negahban and Wain-
wright, 2008; Liu et al., 2009; Lounici et al., 2009; Yang
et al., 2009; Zhang et al., 2010; Lounici et al., 2011), be-
cause they serve as the basis for many other sophisticated
multi-task learning algorithms. Note that our method and
theory can be extended to those sophisticated multi-task
learning settings (Jacob et al., 2009; Kim and Xing, 2010;
Kang et al., 2011; Zhang and Yeung, 2012; Gong et al.,
2012; Zhang and Yeung, 2013; Han and Zhang, 2015)
straightforwardly.

In detail, the multiple task learning setting (Obozinski
et al., 2006; Argyriou et al., 2008; Negahban and Wain-
wright, 2008; Liu et al., 2009; Lounici et al., 2009; Yang
et al., 2009; Zhang et al., 2010) considered in this paper is
as follows: Given a set of observations {X(i),y(i)}, i =

1, · · · ,m from m tasks, where X(i) = [x
(i)
1 , . . . ,x

(i)
ni ]> ∈

Rni×d, i = 1, · · · ,m are the design matrices for each task,
and y(i) = [y

(i)
1 , . . . , y

(i)
ni ]> ∈ Rni , i = 1, · · · ,m are cor-

responding vectors of response variables. It is often useful
to represent the parameters in multiple tasks via a matrix,
where each column corresponds to a task, and each row to a
feature, i.e., Θ∗ = [θ∗1 , · · · ,θ∗m] ∈ Rd×m, where θ∗i ∈ Rd

is the parameter vector of the i-th task. We assume that,
conditioned on the covariate (feature) vector x

(i)
j , the re-

sponse variable y(i)j for each task depends on the same sub-
set of features. In other words, θ∗i ’s are sparse and share the



same support. This corresponds to the matrix Θ∗ being “
row-sparse”: each row is either all zero or mostly nonzero,
and the number of nonzero rows is relatively small. More
specifically, the number of nonzero rows in Θ∗ is denoted
by s∗ = ‖Θ∗‖0,2. A lot of recent research in this set-
ting used `1,q(q > 1) norm regularizations that encour-
age the parameter matrix to have such row-sparse struc-
ture. Particular examples include the `1,∞ norm regular-
ization (Turlach et al., 2005; Zhang and Huang, 2008; Ne-
gahban and Wainwright, 2008), the `1,2 norm regulariza-
tion (Lounici et al., 2009; Obozinski et al., 2011), and the
mixture of `1,∞ norm and `1,1 norm regularizations (Jalali
et al., 2013).

However, all the methods mentioned above for multi-task
learning are based on convex regularization, i.e., `1,q, q > 1
norm regularization. Recent studies (Fan and Li, 2001;
Zhang, 2010) have shown that convex regularization based
estimators suffer from the bias. To remedy this problem,
one can choose nonconvex regularization alternatively such
as the smoothly clipped absolute deviation (SCAD) penalty
(Fan and Li, 2001) and the mimimax concave penalty
(MCP) (Zhang, 2010). However, the empirical perfor-
mance of nonconvex penalty regularized estimator highly
relies on the parameters of the nonconvex penalty, which
are difficult to tune in practice. One can also use the debias-
ing method proposed in Javanmard and Montanari (2014)
to cancel the bias. However, the debiasing method will re-
sult in a non-sparse estimation result. In order to sparsify
the result, a truncation step is needed, which introduces
an extra tuning parameter. Moreover, the estimation error
bound of debiased estimator is no better than that of convex
relaxation based estimator.

In this paper, we aim at developing a new estimator which
is able to get rid of the bias, attain faster convergence rate,
and easy to implement in practice. In detail, we propose a
general estimator for multi-task learning with row-sparsity
constraint on the parameter matrix. Due to the nonconvex
`0,2 norm constraint, the estimator is a non-convex opti-
mization problem and finding its global optimal solution
is generally NP-hard. We propose a greedy algorithms
to attain an approximate solution with provable guaran-
tee. At the core of the proposed greedy algorithm is a for-
ward backward feature selection strategy. We prove that
the output of our algorithm attains a sharp statistical es-
timation error bound. As a special example of the pro-
posed general estimator, we consider the multivariate lin-
ear regression model y(i) = X(i)θ∗i + ε, where ε is the
zero mean noise vector. We show that its estimation er-
ror bound is O(

√
s∗m/n+

√
s∗ log s∗/n) in terms of the

Frobenius norm with n = mini{ni}, which is sharper than
the state-of-the-art results Jalali et al. (2013); Gong et al.
(2013). Furthermore, in order to achieve model selection
consistency, most existing work for the square loss func-
tion (Jalali et al., 2013; Wainwright, 2009; Zhao and Yu,

2006) relies on the very stringent incoherence condition. In
sharp contrast, our estimator enjoys model selection consis-
tency under a mild condition on the `2 norms of the nonzero
rows in Θ∗. Thorough experiments on both simulated data
and real data show that the proposed method outperforms
the state-of-the-art methods.

The remainder of this paper is organized as follows. In Sec-
tion 2, we propose a general estimator for multi-task learn-
ing with row sparsity constraint, followed by a greedy al-
gorithm with forward-backward feature selection strategy.
In Section 3, we prove the convergence of the greedy al-
gorithm, as well as the statistical estimation error bound
for the output of the greedy algorithm. We report the ex-
perimental results in Section 4 and conclude our work in
Section 5.

Notation We use bold capitals to denote matrices, bold
lowercase letters for vectors, and lowercase letters for
scalars. The j-th natural basis in Rd is denoted as ej .
For matrices A and B with commensurate dimensions,
we use 〈A,B〉 to denote their trace inner product, i.e.
〈A,B〉 = tr(A>B). Given a matrix Θ, its i-th row is
denoted by Θi∗ and its j-th column is denoted by Θ∗j .
The `p,q norm of a matrix Θ is defined as ‖Θ‖p,q ={∑

i[ (
∑

j |Θij |q)1/q ]p
}1/p

, and the Frobenius norm of Θ

is ‖Θ‖F =
√
〈Θ,Θ〉 = ‖Θ‖2,2. For a matrix Θ, we use

F (Θ) to denote the index set of the non-zero rows in Θ.
For a row index set F , we denote by ΘF to be the matrix
that its i-th row is the same as the i-th row of Θ if i ∈ F ,
and its i-th row is a zero vector if i /∈ F .

2 THE PROPOSED METHOD

In this section, we first introduce the underlying model for
multi-task learning, followed by a general estimator. Then
we propose a greedy algorithm to solve the estimator.

2.1 THE MODEL AND ESTIMATOR

Suppose that we have observations
{(X(1),y(1)), . . . , (X(m),y(m))} from m tasks, where
X(i) ∈ Rni×d is the design matrix of the i-th task,
yi ∈ Rni is the vector of response variables for the i-th
task. We assume that the observations in each task are
generated from generalized linear models

P(y
(i)
j |x

(i)
j ,θ∗i , σi) = exp

{
y
(i)
j 〈θ∗i ,x

(i)
j 〉 − Φ(θ∗>i x

(i)
j )

c(σi)

}
,

i = 1, . . . ,m, j = 1, . . . , ni,

where Φ(·) : R → R is a link function, x
(i)
j is the j-th

row of X(i), y(i)j is the j-th coordinate of y(i), θ∗i ∈ Rd

is the parameter of i-th task, and c(σi) ∈ R is fixed and
known scale parameter of the i-th task. A special example



of generalized linear model is the linear regression model
where the distribution of the response variable conditioned
on the covariates is a normal distribution. That is, when
c(σ) is chosen as σ2 and Φ(t) = t2. Logistic regression is
another special case of the generalized linear model, where
Φ(t) = log(1 + exp(t)), c(σ) = 1 and y(i)j ∈ {0, 1}.

Our goal is to recover the unknown θ∗i ’s given the obser-
vations from m tasks. A general estimator for multi-task
learning is based on minimizing the negative log likelihood,
under the `0,2 constraint on the parameter matrix Θ. This
gives rise to:

min
Θ∈Rd×m

L(Θ) subject to ‖Θ‖0,2 ≤ s, (2.1)

where s is a tuning parameter which controls the row spar-
sity of Θ, L(Θ) is the sum of the negative log likelihood
over all the tasks, which is given by

L(Θ) = −
m∑
i=1

[
1/(2ni)

ni∑
j=1

y
(i)
j Θ>∗ix

(i)
j + Φ(Θ>∗ix

(i)
j )
]
,

(2.2)

where Θ∗i is the i-th column of Θ. In particular, when
c(σ) = σ2 and Φ(t) = t2, the negative log likelihood func-
tion of the exponential family distribution in (2.2) reduces
to the square loss function, which is shown as follows:

L(Θ) =

m∑
i=1

1

2ni
‖y(i) −X(i)Θ∗i‖22. (2.3)

Note that the square loss function has been used in Obozin-
ski et al. (2006); Argyriou et al. (2008); Negahban and
Wainwright (2008); Lounici et al. (2009); Zhang et al.
(2010) for simplicity.

In addition, the optimization problem in (2.1) is noncon-
vex, because the constraint set ‖Θ‖0,2 ≤ s is nonconvex.
In fact, due to the combinatorial nature of this constraint,
finding its global optimal solution is actually NP-hard. In
the next subsection, we will propose a greedy algorithm to
solve (2.1) approximately, yet with provable guarantee.

2.2 THE PROPOSED ALGORITHM

In order to get a good estimation of Θ∗, a vital problem is
to get the row support of Θ∗. In order to get a good esti-
mation of the row support of Θ∗, we designed the follow-
ing algorithm. The formal description of the algorithm is
summarized in Algorithm 1. In detail, we use the forward-
backward strategy (Zhang, 2009) to select the feature set
iteratively. In particular, we start from an empty feature set.
The proposed algorithm adds the feature that will decrease
the loss function most greatly into the current selected fea-
ture set in each iteration (The “Forward” strategy). Since
the `2 norm of each row of the gradient characterize the de-
crease rate of the loss function, we use the row with largest

`2 norm which is indexed by i(t+1) during the forward step
(The seventh line of Algorithm 1).After each feature set up-
dating, we also update the coefficients for each feature just
as an ordinary regression problem. However, the forward
strategy is too greedy because it only permits the entrance
of new features but prohibits the deletion of irrelevant fea-
tures. Hence we introduce the “Backward” mechanism to
help the algorithm get rid of the bad local optima. That is,
in each iteration, we not only add a new feature but also re-
move one or more irrelevant features from the feature set.
The goodness of a feature is measured by the increase of
the loss function when the feature is removed from the fea-
ture set. Similarly, the coefficient of each selected features
is updated when there is a modification of feature set.

Algorithm 1 Forward Backward Greedy Algorithm for
Multi-Task Learning (MultiFoBa)

1: Require: ε > 0
2: Initialize: Θ(0) = 0, t = 0, F (0) = ∅
3: while TRUE do
4: if ‖∇L(Θ(t))‖∞,2 < ε then
5: break
6: end if
7: i(t+1) = argmaxi/∈F (t)

∥∥∇L(Θ(t))i
∥∥
2

8: F (t+1) = F (t) ∪ {i(t+1)}
9: Θ(t+1) = argminΘi∗=0,i/∈F (t+1) L(Θ)

10: δ(t+1) = L(Θ(t))− L(Θ(t+1))
11: t = t+ 1
12: while TRUE do
13: if mini∈F (t) L(Θ(t)−eiΘ

(t)
i∗ )−L(Θ(t)) ≥ δ(t)/2

then
14: break
15: end if
16: i(t) = argmini∈F (t) L(Θ(t) − eiΘ

(t)
i∗ )

17: F (t−1) = F (t) \ {i(t)}
18: Θ(t−1) = argminΘi∗=0,i/∈F (t−1) L(Θ)
19: t = t− 1
20: end while
21: end while
22: Output: Θ(t)

Note that we only delete those features which cause an in-
crease of loss function by less than δ(t)/2, where δ(t) is
the decrease of the loss function when the last feature is
added. This guarantees that the loss function will not in-
crease when the cardinality of the feature set returns back.
And this implies that the algorithm will not stuck in an infi-
nite loop. In contrast to the forward feature selection algo-
rithm, our algorithm employs a backward feature elimina-
tion step, which is able to help avoid the local optima. As
we will show in the next section, the backward step is es-
sential in achieving the model selection consistency under
mild conditions.

We now analyze the time complexity of the algorithm.



The main computational overhead in the “forward” step
is the 9-th line in Algorithm 1. For square loss, there ex-
ist a closed-form solution to the optimization problem in
this line. In detail, for the i-th task, the solution is given
by Θ

(t)
∗i =

(
X

(i)>
F (t) X

(i)

F (t)

)−1
X

(i)>
F (t) y

(i). The time com-
plexity is O(|F (t)|2

∑m
i=1 ni) in the t-th iteration of the

loop. Similarly, in the “backward” step, the main work-
load falls in the 18-th line and the time complexity is also
O(|F (t)|2

∑m
i=1 ni). Since |F (t)| is much smaller than d,

the computational cost is not expensive. Furthermore, we
will prove in Section 3 that Algorithm 1 will terminate after
finite steps. Therefore, the total time complexity of our al-
gorithm is O(|F (t)|2

∑m
i=1 ni) times the number of steps.

Overall, Algorithm 1 is efficient.

3 MAIN THEORETICAL RESULTS

In this section we will analyze the practicability of the al-
gorithm and prove the finite-sample statistical rate of the
proposed estimator. The detailed proofs of all the theory
are deferred in the supplemental material.

For the ease of statistical analysis, we consider an ora-
cle estimator Θ̂O which is obtained by restricting the row
support of the estimator onto the row support of the un-
known true parameter matrix Θ∗. More specifically, let
F (Θ) ⊂ {1, 2, . . . , d} denote the index set of nonzero rows
of Θ. Then Θ̂O is the optimal solution to the following
problem:

Θ̂O = argmin
Θ∈Rd×m

L(Θ) subject to F (Θ) = F (Θ∗).

(3.1)

Note that Θ̂O is not a practical estimator but a reference
estimator used for theoretical analysis only. To simplify
notation, let F ∗ ≡ F (Θ∗) = F (Θ̂O) and F (t) ≡ F (Θ(t)).
We use F (t) − F ∗ to denote the set difference. For the
matrix Θ

(t)

F (t)−F∗ ∈ Rd×m, its i-th row is the same as the
i-th row of Θ(t) if i ∈ F (t)−F ∗. For i /∈ F (t)−F ∗, the i-
th row of Θ

(t)

F (t)−F∗ is a zero vector. Note that according to

this definition, Θ
(t)

F (t)−F∗ is equal to [Θ(t) − Θ̂O]F (t)−F∗ .

To concisely characterize the property of L(Θ), we first
introduce the definition of sparse eigenvalues, which is
the extension of sparse eigenvalue for sparse regression
(Zhang, 2009; Jalali et al., 2011; Liu et al., 2013; Rao
et al., 2015). Similar extension has been used in Gong et al.
(2013).

Definition 3.1 (Sparse Eigenvalues). The smallest and

largest s-sparse eigenvalues of∇2L(Θ) are

ρ+(s) = max
1≤i≤m

sup
{
u>∇2

θi
L(Θ)u :

‖u‖0 ≤ s, ‖u‖2 = 1,Θ ∈ Rd×m},
ρ−(s) = min

1≤i≤m
inf
{
u>∇2

θi
L(Θ)u :

‖u‖0 ≤ s, ‖u‖2 = 1,Θ ∈ Rd×m}.
Remark 3.2. The definition of ρ−(·) is highly related to
the definition of restricted strong convexity in Negahban
et al. (2009). Previous studies (Zhang et al., 2009; Negah-
ban et al., 2009) have shown that the assumption ρ−(s) > 0
can be satisfied for different forms of L(Θ). This is often
referred to as sparse eigenvalue condition. For example,
Zhang et al. (2009) proved that when the model is a lin-
ear regression model and L(Θ) is a square loss, ∇2

θi
L(Θ)

satisfies the sparse eigenvalue condition with high proba-
bility. Therefore, when we choose square loss in (2.3), it
is easy to show that ρ−(s) > 0 holds with high probabil-
ity analogously. Another example is the generalized linear
model. Negahban et al. (2009) proved that with high prob-
ability the loss function corresponding to generalized linear
model satisfies the restricted strong convexity, which also
implies that ρ−(s) > 0.

Without loss of generality, we make the following assump-
tion on the structure of the loss function L(Θ).
Assumption 3.3 (Decomposable Loss Function). The loss
function can be decomposed into the sum of loss functions
on different tasks. By formulation, we have

L(Θ) =

m∑
i=1

`i(Θ∗i),

where `i is the loss function defined on the i-th task.

Assumption 3.3 can be verified for many types of loss func-
tions, including the loss functions in (2.2) and (2.3).

Combining Assumption 3.3 with the definition of sparse
eigenvalues, it is easy to show that

ρ−(s)

2
‖∆‖2F ≤ L(Θ + ∆)− L(Θ)− 〈∇L(Θ),∆〉

≤ ρ+(s)

2
‖∆‖2F , for all ‖∆‖0,2 ≤ s.

(3.2)

These two inequalities in (3.2) are frequently used in the
proof in order to bound the difference between L(Θ) and
L(Θ + ∆). In fact, it is highly related to the restricted
strong convexity and smoothness condition proposed in
Negahban et al. (2009). The key difference is here the in-
equality holds in the sparse subspace rather than a cone.

The first question we are going to address is whether and
when Algorithm 1 will terminate. The following theorem
guarantees that the proposed algorithm terminates in finite
steps.



Theorem 3.4. Suppose that the loss function L(Θ) sat-
isfies Assumption 3.3. Let s be any integer satisfying
ρ−(s) > 0 and the following condition:

s ≥
(
s∗ + 1

){[(√ρ+(s)

ρ−(s)
+ 1

)√
2ρ+(1)

ρ−(s)

]2
+ 1

}
,

(3.3)

and take ε > 2
√

2
∥∥∇L(Θ̂O)

∥∥
∞,2

ρ+(1)/ρ−(s) in Algo-
rithm 1. Then the algorithm terminates at some t ≤ s− s∗.

Next we will introduce some theoretical results about the
estimation error bounds of the output of Algorithm 1.

Theorem 3.5. Suppose that the loss function L(Θ) satis-
fies Assumption 3.3. Let s be any integer satisfying (3.3)
and ρ−(s) > 0. Take

ε >
2
√

2ρ+(1)

ρ−(s)
‖∇L(Θ̂O)‖∞,2, (3.4)

then the output of Algorithm 1 satisfies

∥∥Θ(t) −Θ∗
∥∥
F
≤ 2
√

2ε

ρ−(s)

√
s∗2 +

2
√
s∗

ρ−(s∗)

∥∥[∇L(Θ∗)]F∗
∥∥
∞,2

,

(3.5)

ρ−(s)2

8ρ+(1)2
∣∣F (t) − F ∗

∣∣ ≤ ∣∣F ∗ − F (t)
∣∣ ≤ 2s∗2, (3.6)

where s∗2 is defined as

s∗2 :=
∣∣{i ∈ F ∗ − F (t) :

∥∥Θ∗i∗∥∥2 < 2
√

2ε/ρ−(s)

+ ‖[Θ̂O −Θ∗]F∗‖∞,2

}∣∣. (3.7)

Note in Theorem 3.5 that s∗2 denotes the number of nonzero
rows in Θ∗ whose `2 norms are small. Those correspond to
the rows which are difficult to recover. It is easy to verify
that if s∗2 = 0, we have |F (t) − F ∗| = |F ∗ − F (t)| = 0 by
(3.6), which implies that F (t) = F ∗.

In the following corollary, we show that if the `2 norms of
all the nonzero rows are sufficiently large, i.e., s∗2 = 0, we
can achieve a sharper estimation error bound, together with
model selection consistency.

Corollary 3.6. Under the same conditions as Theorem 3.5,
if s∗2 = 0, i.e., the `2 norm of each row of Θ̂O is sufficiently
large, then the estimation error of the output of Algorithm
1 is bounded by

∥∥Θ(t) −Θ∗
∥∥
F
≤ 2
√
s∗

ρ−(s∗)

∥∥[∇L(Θ∗)]F∗
∥∥
∞,2

, (3.8)

and the model selection consistency can be obtained, i.e.,
F (t) = F ∗.

3.1 HIGH PROBABILITY RESULTS FOR
SQUARE LOSS

In this subsection, we present the high probability result
for a specific example, i.e., the square loss case. Similar
high probability results can be proved for the general loss
function in (2.2) with more involved arguments.

For the sake of simplicity, we assume that every task has
the same number of observations, i.e., n1 = . . . = nm =
n. Then the square loss function in (2.3) can be further
reduced to

L(Θ) =
1

2n

m∑
i=1

‖X(i)θi − y(i)‖22. (3.9)

Our analysis can be easily extended to the general square
loss in (2.3) where different tasks may have different num-
ber of observations.

Without loss of generality, we make the following assump-
tion on the design matrices X(i)’s.

Assumption 3.7. For all columns in X(i), we have
‖X(i)
∗j ‖2 ≤

√
n, where X

(i)
∗j is the j-th column of X(i).

Note that Assumption 3.7 is often made in the analysis of
Lasso estimator (Negahban et al., 2009; Zhang et al., 2009).

The estimation error bound of the output of Algorithm 1 is
shown in the following theorem.

Theorem 3.8. Under the same conditions as Theorem 3.5,
when the loss function is the square loss in (3.9) and sat-
isfies Assumption 3.7, we have with probability at least
1− 1/d− 2/s∗ that

‖Θ(t) −Θ∗‖F ≤
10ρ+(1)σ

ρ2−(s)

√
s∗m

n
+

16ρ+(1)σ

ρ2−(s)

√
s∗2 log d

n

+
4σ

ρ−(s∗)

√
s∗ log s∗

n
, (3.10)

where s∗2 is defined as

s∗2 =

∣∣∣∣{i ∈ F ∗ − F (t) :
∥∥Θ∗i∗∥∥2 ≤
9ρ+(1)σ

ρ2−(s)

(√
m

n
+ 2

√
log d

n

)}∣∣∣∣.
Remark 3.9. Theorem 3.5 suggests that the statistical es-
timation rate of our algorithm is

O

(√
s∗m

n
+

√
s∗ log s∗

n
+

√
s∗2 log d

n

)
,

which is sharper than the statistical rate of convex relax-
ation based methods (Lounici et al., 2009; Obozinski et al.,
2011), i.e., O(

√
s∗m/n +

√
s∗ log d/n), since s∗2 could

be much smaller than s∗, and log s∗ is much smaller than



log d. From the sample complexity point of view, Theo-
rem 3.5 implies the sample complexity of our algorithm
is O(s∗m + s∗ log s∗ + s∗2 log d). When s∗2 is sufficiently
smaller than s∗, our sample complexity is tighter than the
existing best sample complexity for group sparse signal
recovery (Baraniuk et al., 2010; Rao et al., 2012), i.e.,
O(s∗ log d+ s∗m).
Corollary 3.10. Under the same conditions as Theorem
3.8, when s∗2 = 0, we have with probability at least
1− 1/d− 2/s∗ that

‖Θ(t) −Θ∗‖F ≤
10ρ+(1)σ

ρ2−(s)

√
s∗m

n
+

4σ

ρ−(s∗)

√
s∗ log s∗

n
,

and the model selection consistency can be obtained with
probability at least 1− 1/d− 2/s∗, i.e., F (t) = F ∗.
Remark 3.11. From Corollary 3.10, we know that our al-
gorithm can get a even faster convergence rate in terms of
Frobenius norm as follows

O

(√
s∗m

n
+

√
s∗ log s∗

n

)
. (3.11)

In addition, the sufficient condition for our algorithm to
achieve model selection consistency is as follows∥∥Θ∗i∗∥∥2 &

√
m

n
+

√
log d

n
for all i ∈ F ∗ − F (t),

(3.12)

which is implied by s∗2 = 0. In other words, we need all
non-zero rows of Θ∗ in the row index set F ∗−F (t) are big
enough in terms of `2 norm. This thanks to the `0,2 con-
straint on the parameter matrix, which does not introduce
bias when the nonzero rows of the parameter matrix are of
large magnitude in terms of `2 norm. In fact, our analysis
can be directly applied to the original forward backward
algorithm in Zhang (2009), and delivers a sharper bound
for single task sparse regression. This can be seen as a by-
product of our technical contribution.
Remark 3.12. One may be curious that why our bound in
(3.11) beats the minimax lower bound for group sparse re-
covery Lounici et al. (2011). Note that when s∗2 = 0, our al-
gorithm fully recovers the support of Θ∗, and our estimator
is identical to the multivariate regression estimator that is
restricted on the true supportF ∗ of the parameter matrix. In
this case, our estimator reduces to a multivariate regression
in the classical regime rather than in the high dimensional
regime, i.e., the oracle estimator in (3.1). Therefore, the
minimax lower bound that characterizes the information
theoretic limit is no longer the one in the high dimensional
regime Lounici et al. (2011), but the one for the multivari-
ate regression in the classical regime, i.e., O(

√
s∗m/n).

As we can see, the upper bound in (3.11) achieved by our
algorithm matches the minimax lower bound of multivari-
ate regression in the classical regime up to log(s∗). This is
one of our major contributions in this paper and what we
referred to as “faster rate”.

Remark 3.13. It is interesting to compare our result in
Corollary 3.10 with the main result in Gong et al. (2013).
Gong et al. (2013) proposed multi-stage multi-task learning
method and proved an estimation error bound as follows

‖Θ(t) −Θ∗‖F .

√
s∗m

n
+

√
m log d

n
. (3.13)

The sufficient condition for their method to achieve model
selection consistency is

‖Θ∗i∗‖2 &

√
m(log d+ logm)

n
for all i ∈ F ∗.

(3.14)

By comparing (3.11) with (3.13), it is clear that our estima-
tor attains a much shaper estimation error bound than Gong
et al. (2013).

Furthermore, by comparing (3.12) with (3.14), we can see
that the sufficient condition of model selection consistency
for our algorithm is much milder than their method. In de-
tail, our sufficient condition only takes into account those
dimensions that fall in F ∗−F (t) rather than the whole F ∗.
Moreover, the magnitude condition in (3.12) is also in a
much smaller order than (3.14). This clearly demonstrates
that the sufficient condition of the model selection consis-
tency for our algorithm is substantially milder than Gong
et al. (2013).

4 EXPERIMENTS

In this section, we conduct extensive empirical study on
both synthetic and real-world datasets, to verify the effec-
tiveness of the proposed method.

4.1 COMPARED ALGORITHMS

We present the empirical study by comparing the results
of the following algorithms: Lasso: we apply Lasso (Tib-
shirani, 1996) to each task individually; FoBa: a for-
ward backward algorithm for sparse regression (Zhang,
2009). Similar to Lasso, we apply FoBa to each task
individually; L1,2: multi-task feature learning based on
`2,1-norm regularization (Liu et al., 2009); MSMTFL:
the Multi-Stage Multi-Task learning method proposed
by Gong et al. (2013); DirtyMTL: a dirty statistical
model based multi-task learning algorithm with regular-
izer λ1‖P‖1,1 + λ2‖Q‖1,∞ (Θ = P + Q) (Jalali et al.,
2013); rRMTL: a robust multi-task learning algorithm em-
ploying λ1‖P‖2,1 + λ2‖Q>‖2,1 as the regularizer (Θ =
P + Q) (Gong et al., 2012); MultiFoBa: This is our
proposed algorithm, which employs the forward-backward
strategy to select features under feature set cardinality con-
straint. We implement the proposed algorithm by MAT-
LAB. For other algorithms, we use the implementation in



Table 1: The estimation error in terms of Frobenius norm of different algorithms on synthetic datasets.

Lasso FoBa L1,2 MSMTFL DirtyMTL rMTFL MultiFoBa

Dataset 1 7.61±0.38 5.79±0.39 1.59±0.10 1.80±0.09 6.30±0.19 1.89±0.46 0.72±0.09
Dataset 2 11.14±0.84 7.45±0.85 2.25±0.17 2.77±0.12 8.11±0.75 5.22±1.39 1.04±0.09
Dataset 3 11.35±0.59 9.27±0.59 3.12±0.49 3.36±0.21 8.56±0.74 6.29±1.01 1.66±0.17

Table 2: The F1 scores of support recovery of different algorithms on synthetic datasets.

Lasso FoBa L1,2 MSMTFL DirtyMTL rMTFL MultiFoBa

Dataset 1 0.99±0.01 1.00±0.00 1.00±0.00 1.00±0.00 0.98±0.02 0.93±0.07 1.00±0.00
Dataset 2 0.60±0.11 1.00±0.00 0.98±0.02 0.99±0.01 0.86±0.11 1.00±0.00 1.00±0.00
Dataset 3 0.54±0.11 0.80±0.00 0.82±0.17 0.96±0.04 0.76±0.08 0.84±0.04 0.95±0.02

the software package MALSAR1 In the experiments, the
quadratic loss function in (3.9) is employed for all the com-
pared algorithms. For MSMTFL, we use the capped-`1 reg-
ularizer. Note that the proposed algorithm has only one pa-
rameter ε, which controls the termination of the algorithm.

4.2 SYNTHETIC DATA

The synthetic data are generated by setting the number of
tasks as m, where each task has n samples and of dimen-
sionality d. Each sample is drawn from a multivariate nor-
mal distribution N(0, I) where I is a d × d identity ma-
trix. Then we normalize all columns of each data matrix
X(i) ∈ Rn×d to length one. Each entry of the underlying
parameter matrix Θ∗ is sampled i.i.d. from the uniform
distribution over the interval [−10, 10]. To simulate spar-
sity, we randomly set d − s∗ rows of Θ∗ to zero vectors.
The response vector is generated by y(i) = X(i)θ∗i + ε(i),
where each entry of ε(i) is drawn i.i.d. from the normal dis-
tribution N(0, σ2

i ). We choose σi = 0.1 for all i. In detail,
we generate two synthetic datasets as follows. The param-
eter settings are d = 256,m = 10, s∗ = 5, n = 100 for
“Dataset 1”; and d = 512,m = 10, s∗ = 10, n = 100 for
“Dataset 2”. In addition, we generate a more challenging
synthetic dataset (“Dataset 3”) to test the support recovery
ability of different algorithms when there are nonzero rows
with small `2 norm in Θ∗. “Dataset 3” is generated differ-
ently. Firstly, we generate a d × m matrix in which each
element is sampled i.i.d. from the uniform distribution in
the interval [−10, 10]. Then we randomly set d − s∗ rows
as zero vectors. Among the other s∗ nonzero rows, we ran-
domly select s∗w rows and divide each element in these rows
by 20 to simulate the small norm. Other procedures of the
data generation are the same as “Dataset 1” and “Dataset
2”. We set d = 512,m = 10, n = 100, s∗ = 15, s∗w = 5
for “Dataset 3”.

All algorithms in the comparative study are employed to es-

1https://github.com/jiayuzhou/MALSAR

timate Θ̂ given X(i)’s and y(i)’s. Since all the algorithms
have one or several parameters, we tune the parameters by
5-fold cross validation on each synthetic data. The esti-
mation error of the parameter matrix in terms of Frobenius
norm ‖Θ(t) −Θ∗‖F is reported in Table 1.

In order to evaluate the support recovery results of different
algorithms, we use F1 score defined as follows

F1 =
2 · precision · recall

precision + recall
,

where precision = |supp(Θ∗)∩supp(Θ̂)|/|supp(Θ̂)| and
recall = |supp(Θ∗) ∩ supp(Θ̂)|/|supp(Θ∗)| . Note that
for some algorithms (such as Dirty and rMTFL) they not
only output the estimator Θ̂, but also output two interme-
diate estimators P̂ and Q̂, where Θ̂ = P̂ + Q̂. By empir-
ical study, we found that the estimator P̂ is more suitable
for support recovery than the estimator Θ̂ (i.e., P̂ achieves
higher F1 score than Θ̂), because in these algorithms P̂ is
a sparse or row-sparse matrix. Hence for Dirty and rMTFL
algorithms, we use P̂ to evaluate the feature selection (i.e.,
support recovery) performance. The F1 score of support
recovery is reported in Table 2.

From Tables 1 and 2, it can be seen that when all nonzero
rows are with large `2 norms (Dataset 1 and 2), our algo-
rithm can exactly recover the supports of Θ∗ and attain a
small estimation error. While some other algorithms can
also recover most supports (with a high F1 score), they suf-
fer from larger estimation error than ours. This is reason-
able because our algorithm employs the support cardinality
constraint, which is unbiased when the supports are recov-
ered correctly. In contrast, many other algorithms employ
some kinds of convex penalties, which lead to biased esti-
mators. In order to recover the support correctly, they have
to use a large penalty parameter λ, which makes the esti-
mators more biased.

When there are nonzero rows with small `2 norm (Dataset
3), our algorithm can still recover the support of Θ∗ with
high accuracy. This is consistent with our theory. In con-

https://github.com/jiayuzhou/MALSAR


Table 3: The nMSE of different algorithms on school dataset.

Lasso FoBa L1,2 MSMTFL DirtyMTL rMTFL MultiFoBa

20% 0.903±0.012 0.832±0.009 0.924±0.022 0.804±0.009 0.803±0.009 0.802±0.010 0.762±0.022
30% 0.859±0.014 0.766±0.013 0.911±0.043 0.765±0.009 0.749±0.009 0.750±0.008 0.727±0.027

Table 4: The nMSE of different algorithms on SARCOS dataset.

Lasso FoBa L1,2 MSMTFL DirtyMTL rMTFL MultiFoBa

50 0.093±0.035 0.083±0.012 0.073±0.012 0.077±0.011 0.082±0.037 0.072±0.010 0.067±0.010
100 0.075±0.013 0.055±0.006 0.055±0.010 0.053±0.005 0.071±0.038 0.050±0.005 0.045±0.003
150 0.068±0.034 0.051±0.005 0.049±0.006 0.047±0.002 0.063±0.037 0.044±0.002 0.040±0.001

trast, the other algorithms achieve even worse recovery re-
sults when nonzero rows with small `2 norms exist.

4.3 REAL DATA

We use the School data2 and the SARCOS data3 to verify
the effectiveness of the proposed algorithm on real datasets.

The School dataset consists of information of students from
139 secondary schools, as well as their exam scores. Each
student is described by their 27 attributes, such as gender
and ethnic group. The student exam score predicting prob-
lem can be cast as a multi-task regression problem: each
school is considered as a task, each task as different num-
ber of data points, the attributes of students are input vari-
ables and their scores are responses. We randomly choose
20% and 30% samples from each task to form the training
set and the rest samples as the test set. We tune the param-
eters of all the algorithms by 5-fold cross validation on the
training data. We use the normalized Mean Square Error
(nMSE), i.e., the mean squared error divided by the vari-
ance of ground-truth output, to measure the performance
of all algorithms. Experiment results averaged over 20 rep-
etitions are reported in Table 3.

The SARCOS data is collected for an inverse dynamic pre-
diction problem for a anthropomorphic arm with 7 degrees
of freedom. The data contains the training part and the test-
ing part. The training part consists of 44,484 samples and
the testing part 4,449 samples. Each sample is described by
21 attributes such as joint positions and velocities. There
are also 7 responses attached to each sample, representing
7 torques. Our goal is predicting the responses based on the
attributes. This problem can be casted as a multi-task re-
gression problem, where the prediction of each response is
regarded as a task, and all tasks share the same design ma-
trix. We randomly choose 50, 100 and 150 samples from
the training data of the original dataset to form 3 training

2http://ttic.uchicago.edu/˜argyriou/code/
3http://www.gaussianprocess.org/gpml/

data/

sets and accordingly select 2000 samples from the testing
data of the original dataset to form 3 testing sets. The ex-
periment results averaged over 20 repetitions are summa-
rized in Table 4.

From both Table 3 and Table 4, we can observe that the pro-
posed algorithm outperforms the other algorithms greatly
under different training/test splits on both datasets. This is
due to the unbiased property of our estimator under mild
conditions, as well as the faster statistical rate of our pro-
posed estimator.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a general estimator for multi-
task learning with row sparsity constraint on the parameter
matrix. In order to solve it, we develop a forward back-
ward greedy algorithm, whose output attains a sharper es-
timation error bound than many state-of-the-art multi-task
learning methods. Moreover, the output of the proposed
greedy algorithm enjoys model selection consistency under
a mild condition. Thorough experiments on both synthetic
and real-world data back up our theory.

We notice that the `0,2 constrained nonconvex optimization
problem in (2.1) can be potentially solved by the extensions
of iterative hard thresholding (Jain et al., 2014) and Frank-
Wolfe algorithms (Jaggi, 2013; Lacoste-Julien and Jaggi,
2013). We will investigate these algorithms in the future.
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