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Abstract

There has been growing interest in inferring
implicit social structures using interaction data.
This approach is motivated by the fact that enti-
ties organize themselves into groups having fre-
quent interactions between each other. Unlike
previous approaches that focused on subjectively
declared relationships, the idea is to exploit the
actual evidence at hand to reach conclusions
about group formations, resulting in more ob-
jective data-driven inferences. To this end, [5]
have employed Hawkes processes, and proposed
a Hawkes IRM model to infer social structures
from interaction data. A major factor that en-
courages the use of Hawkes processes is the ca-
pability to model reciprocity in the interaction
between social entities. However, reciprocation
is dynamically conditioned upon two key fac-
tors: the significance of each message sent by
the sender, and the receptivity to each message
received by the receiver. In the model proposed
by [5], reciprocity is not affected by either of
these factors, since the content of each message
is not taken into account. In this paper, we ex-
tend the work of [5] by introducing Gaussian pro-
cesses (GPs) into the Hawkes IRM model: based
on the content of each message, GPs are used to
model the message significance as well as recep-
tivity. This allows us to more accurately capture
the interactions among entities. The application
of GPs also allows us to flexibly model the rates
of reciprocal activities between two entities, al-
lowing asymmetry in reciprocity to be captured
more accurately. This leads to better cluster de-
tection capability. Our model outperforms pre-
vious Hawkes and Poisson process-based models
at predicting verbal, email, and citation activities.

1 INTRODUCTION

In the social sciences, group dynamics is the study of the
content and dynamics of the complex interactions occur-
ring within a social group or between social groups. The
study of group dynamics helps understand decision making
processes, disease epidemics and develop effective ther-
apeutic/control techniques. Early approaches [12, 19, 4]
have focused on declared relationships between individuals
to infer latent group structures. For example, if three people
declare they like each other but dislike others, it is reason-
able to put them into one group. However, these declared
relationships are not easily accessible, sometimes incorrect
and usually highly subjective. Another limitation of pre-
vious models is their incapability to capture reciprocity in
social interactions. Reciprocity is a common characteristic
in group dynamics. It expresses the fact that social enti-
ties reciprocate in their interaction between each other. For
example, if Alice has sent a message to Bob, it increases
the likelihood of Bob replying back to Alice. Reciprocity
is expected to be more prominent between entities within a
group, and hence it can be used to infer social groups.

To address these issues, recently, there has been a trend
to infer implicit social structures using interaction data.
This approach is motivated by the fact that interactions be-
tween different groups varies in nature and frequency. Un-
like approaches that focused on subjectively declared re-
lationships, the idea is to exploit the actual evidence at
hand to reach conclusions about group formations, mak-
ing this approach is more objective in nature. Recently,
[5] proposed a nonparametric Bayesian model that is built
upon mutually-exciting point processes, known as Hawkes
processes [9, 10], and the Infinite Relational Model (IRM)
[19, 4] to infer social structures from continuous time inter-
action data. Pairs of mutually-exciting Hawkes processes
are able to exploit reciprocity to infer social groups; here
the processes excite one another through their actualized
events.

However, reciprocation is dynamically conditioned upon
two key factors: the significance of each message sent by



the sender, and the receptiveness of the receiver to each in-
coming message. In real communication, conveying an im-
portant message develops interest in the receiver. Then, if
the receiver finds the message relevant, reciprocation takes
place. Accordingly, reciprocal communication emerges
from the interplay of these two factors. The model pro-
posed by [5] does not take these factors into consideration,
instead assuming that entities reciprocate simply because
they received a message, and giving no consideration to the
content of the message and its effects on the interaction.

In this paper, we extend the work of [5] by introducing
Gaussian processes (GPs) into the Hawkes IRM model.
We use these to account for the content of the messages,
capturing the message significance as well as receptivity.
This allows us to more accurately capture the interactions
among entities. The interaction between a pair of clusters
is modeled as the additive effect of the interactions between
all pairs of nodes in the two clusters, allowing us to iden-
tify the contribution of each pair of nodes, where the actual
communication is taking place, to the interaction between
a pair of clusters. The introduction of GPs also allows us to
flexibly model the rates of reciprocal activities between two
entities, hence the asymmetry in reciprocity can be cap-
tured more accurately. We show how this leads to a better
cluster detection capability. Since our proposed work is a
natural extension of Hawkes IRM, it covers both Poisson
processes and IRM as special cases.

The remainder of the paper is organized as follows: section
2 discusses Poisson and Hawkes processes, with and with-
out IRM. Section 3 describes our extension of the Hawkes
IRM model. Section 4 presents an inference algorithm for
our model, section 5 discusses related work, and section 6
presents experimental results using our model on synthetic,
verbal, email, and citation data.

2 BACKGROUND

We start with a brief description of Poisson processes,
Hawkes processes, and Hawkes IRM model.

2.1 Poisson and Hawkes Processes

Point processes are stochastic processes, realizations of
which are collections of points in time or space. The for-
mer are called temporal point processes, and the latter, spa-
tial point processes. The homogeneous Poisson process is
the simplest example of a point process, have a constant
rate function, while the inhomogeneous Poisson process
has rate function λ varying with, say, time. Both are exam-
ples of completely random measures, where events in dis-
joint sets are independent of each other. Hawkes processes,
on the other hand, are mutually-exciting doubly point pro-
cesses, whose rate function is itself a stochastic process,
depending on events of its own and of other processes.

For both Poisson processes and Hawkes processes, with
conditional rate function λ(t) and event time history
H(0,T ] = {t1, · · · , tn}, the likelihood function can be writ-
ten as

L(λ(t)|H) = exp {−Λ(0, T )}
n∏
i=1

λ(ti) (1)

where Λ(0, T ) =
∫ T
0
λ(t)dt is the cumulative conditional

rate function. When the conditional rate function λ(t) = λ
is a constant, the Poisson process likelihood is simply:

L(λ|H) = exp {−λT}λn (2)

For a Hawkes process, the rate function λ depends on ear-
lier events. Let N(·) and N ′(·) be a pair of mutually-
exciting Hawkes processes. The conditional rate func-
tion λ(t) of N(·), given the event time history HN ′ =
{t′1, · · · , t′n} of N ′, has the form

λ(t) = γ +

∫ t

−∞
g(t− s)dN ′(s) (3)

where γ is the base rate ofN(·), and the triggering function
g(·) is a non-negative function such that

∫∞
0
g(s)ds < 1,

ensuring that N(·) is stationary.

If g(·) = 0 then the process becomes a Poisson process
with rate γ. If the counting measureN ′(·) isN(·) itself, the
process is self- exciting: its current rate only depends on its
own past events. If the two counting measures are different,
the rate is affected by the past events of each other.

2.2 Hawkes Processes with Infinite Relational Model
(HP+IRM)

Amongst the models that use declared relationships to in-
fer group information, the Infinite Relational Model (IRM)
[12] is especially flexible and popular. [5] has combined the
IRM idea with the concept of Hawkes Processes to model
reciprocity in the interaction between entity groups. Let V
denote the vertices of the graph, corresponding to individ-
uals. Then the generative model for a Hawkes process is
defined as follows:

π|α ∼ CRP (α) (4)
λpq(t)|γpq, βpq, τpq = γpqnpnq +∫ t

−∞
gpq(t− s)dNqp(s) ∀p, q ∈ range(π)

(5)

Npq(·)|λpq ∼ HawkesProcess(λpq) (6)
Nuv(·)|Nπ(u)π(v), π ∼ Thin(Nπ(u)π(v)) ∀u, v ∈ V (7)

Here π is a partition of the vertices V , distributed accord-
ing to the Chinese restaurant process (CRP ) with con-
centration parameter α. We use p and q to index clusters



of π. We denote the cluster that vertex u belongs to as
π(u). The operator Thin refers to thinning; this means
distributing the atoms of Npq(·) among each Nuv(·), such
that Npq =

∑
u,v Nu,v(·). Any thinning scheme may be

used, such as a uniform thinning, which uniformly picks to
elements of a cluster. The type of reciprocation (parameter-
ized by gpq and gqp, respectively) differs with events from
cluster p to cluster q and events from cluster q to cluster p.
This difference in reciprocity is what the model exploits to
learn about social groups.

3 HAWKES PROCESSES WITH IRM
AND GAUSSIAN PROCESSES (HPGP +
IRM)

We define the Hawkes process conditional rate function as:

λuv(t) = γpq +

∫ t

0

βuve
− t−sτuv dNvu(s) (8)

where p = π−1(u), q = π−1(v) are the clusters individu-
als u and v belong to; and the triggering function guv(·) is
defined as:

guv(δ) = βuve
− δ
τuv (9)

Geometrically, the excitation function βpq is essentially the
“jump size” of the rate function λuv(t) whenever a new
message is received. However, in the above definition, βuv
is not affected by the content of the message; its value does
not change based on the significance and receptivity of the
messages.

We would like to define βuv in a way such that it mea-
sures the significance and receptivity of individual mes-
sages communicated between individuals u and v. The
content measure xvu can be suitably defined according to
the application, for example, it can be a distribution of
words, the length of the message, or the text entropy of
the message, etc. The individual level excitation function
βuv(xvu(s)) = 0 if no message was sent from v to u at
time s, but can be otherwise any non-negative function.

We propose to use two sets of Gaussian Process (GP) pri-
ors to address sources of inhomogeneity of the excitation
functions βuv(·), one for the significance of the message
and one for the receptivity of the message:

βuv(s) =eru(xvu(s))+sv(xvu(s)) (10)

where

ru(·) ∼GP(0, kr) (11)
sv(·) ∼GP(0, ks) (12)

kr and ks are radial basis function (RBF) kernels of the
GPs. The exponential transformation is used to make sure
that βuv(·) is non-negative.

Larger values of ru and sv indicate that an important mes-
sage has been sent by the sender, and receiver is receptive
to the message, these result in larger values for βuv . If ei-
ther ru or sv is small, or both of them have smaller values,
it leads to smaller values of βuv . Application of GP func-
tions also allows us to flexibly model the rates of reciprocal
activities between two entities, allowing the asymmetry in
reciprocity to be captured more accurately. This, as a by-
product, leads to a better cluster detection capability.

The receptivity and significance functions ru and sv may
have different behaviors and hence are designed to come
from two different GPs. One subtle point is that although
ru and sv seem exchangeable in the definition of βuv and
both use message content xvu as input, they are evaluated
from different perspectives: ru evaluates xvu from the re-
ceiver u’s perspective, while sv from the sender v’s per-
spective. One alternative way is to model a single pair
of GPs s(·) and r(·) for all users, instead of this per-user
GP su(·) and rv(·) framework. Experiments have shown
that both the modeling schemes have good performances,
however, we believe that the per-user GP setting can reveal
more interesting user-specific details, and hence in the later
sections, our results are based on the per-user GP frame-
work.

The generative process of our model can be summarized
as:

π|α ∼ CRP (α) (13)
λuv(t)|γpq, βuv(·), τuv = γpq +∫ t

−∞
βuv(Xvu)e−

t−s
τuv dNvu(s) (14)

Nuv(·)|λuv ∼ HawkesProcess(λuv) (15)

where Xvu = {xvu(s)} is the set of all messages sent from
v to u, and the cluster level excitation function βpq can be
seen as an additive effect of βuv:

βpq(Xqp) =
∑

π(u)=p,π(v)=q

βuv(xvu(s)) (16)

Now, the excitation function βpq is no longer a constant,
as in [5], but a function of the message content in the past
events of the reciprocal process Nqp, taking into account
both the significance and the receptivity of the messages.
Our model is a generalization of the model described in
[5], and if βuv in equation 10 are constants, our model re-
duces to the model described in [5]. Therefore, all the basic
features of the original model are inherited by our model.
Also, in our modeling framework, the individual rate func-
tion λuv is affected by the group initial rate γpq , which, on
the one hand, tends to put similarly behaving individuals
into the same cluster; and on the other hand, if one member
of a group is heavily influenced by a particular message, it
is highly likely that other individuals in the same group will
also be affected.



3.1 Stability Conditions of HPGP + IRM

For Hawkes processes with constant excitation functions
βpq , the sufficient condition of stationarity is βpqτpq < 1,
derived from the condition

∫∞
0
β(s)ds < 1. By con-

trast, since our βpq is a function of message contents, the
expectation of λ(t) cannot be time invariant. Therefore,
the stationarity condition no longer holds. However, since
βpq is evaluated at finite locations (in the domain of mes-
sage content x), we can define βMAX

pq to be the maxi-
mum value of βpq across all locations. For our model,
we can still require that βMAX

pq

∫∞
0
e
− u
τpq du < 1. Since

βMAX
pq

∫∞
0
e
− u
τpq du = βMAX

pq τpq , we just need to make
sure that βMAX

pq τpq < 1.

4 HPGP + IRM INFERENCE

We perform posterior inference using Markov chain Monte
Carlo method. In our model there is no conjugacy between
prior and the likelihood, hence we can not marginalize out
parameters and must sample all of them separately. To
infer the partition of individuals π, the concentration pa-
rameter α, the parameters of each Hawkes process θpq =
{γpq, τpq}, the training and test point projections of func-
tions ru and sv , we use Algorithm 5 in [15] to draw samples
from the posterior. We use elliptical slice sampling [14] for
ru and sv , and standard slice sampling [16] for γpq , τpq
and α. In case of τpq we set the upper bound of the slice
sampler to 1

βMAXpq
, to ensure that βMAX

pq τpq < 1.

5 RELATED WORK

The interest of modeling relational data dates back to at
least the work of [11], who introduced the Bayesian formu-
lation of the stochastic block-model. This model was then
extended by [12] to the Infinite Relational Model (IRM).

The IRM typically assumes that there is a fixed graph, de-
scribing the relationship between individuals, which is ob-
served. This idea is used in many proposed works [12, 19].
Our model does not make this assumption, but learns the
relationship among participants’ interactions.

There have also been research works modeling relational
events via latent classes [6]. They assume each event’s
sender, receiver, and action type are conditionally indepen-
dent given the latent class for that event. This strong as-
sumption greatly simplifies the model, but may not reflect
real situations. Our model is not limited to any fixed num-
ber of action types.

Other works [17, 18, 7] are based on temporal Poisson-
processes, where the rate of events on each edge is inde-
pendent of every other edge. Although [18, 7] allow mutu-
ally exciting events to be modeled, they do not use content
information to model dependencies between events. Our

model uses Hawkes processes which are capable of dealing
with interaction and reciprocal events, and also use mes-
sage content information to capture the interactions more
accurately. Our work is also closely related to [13]. They
combine mutually exciting Hawkes process with random
graph models by defining the excitation function, between
a pair of nodes, as a product of a latent binary indicator
variable, indicating the presence or absence of edge, and
weight variable that determines the strength of interaction
between the two nodes. However, unlike our model, their
method does not use side information, such as information
content, and simply relies on time interaction data to in-
fer latent network structures. Lastly, our work extends the
work of [5]. In their paper, the excitation function is not
affected by the information content of the message. By in-
troducing Gaussian processes, we are able to model non ho-
mogeneous excitation functions. In addition to that, since
we use Gaussian processes to model the flexible rates of re-
ciprocal activities between two entities, our model can cap-
ture the asymmetry in reciprocity more accurately. This, as
a by-product, leads to a better cluster detection capability.
The model in [8] does not have this leverage.

6 EXPERIMENTS

We compared our model (HPGP + IRM) to four methods:
1) Poisson Process Model (Poisson), 2) Hawkes Process
Model (HP), 3) Poisson Processes with IRM (Poisson +
IRM), and 4) Hawkes Processes with IRM (HP + IRM).

6.1 Synthetic Data Sets

We tested several synthetic data sets under various condi-
tions to compare different model fittings to the rate func-
tions, as well as their clustering behaviors.

A Simple Case Consists of Two Individuals. To gen-
erate synthetic data set, we need to set parameter values
γuv , and τuv , as well as the functional form of βuv(·) and
message content measure xvu. In figure 1, two mutually-
exciting Hawkes processes are simulated during time inter-
val (0, 10], where γ12 = γ21 = 0.1, τ12 = τ21 = 1.

In part (a), case 1 used a constant message content
x12(ti) = x21(t′i) = 1 for all event times ti and t′i, and a
constant excitation function β12(x) = β21(x) = x = 1 for
all messages. Since this synthetic data set has constant β
values, it is essentially generated from a HP+IRM; we see
that HP+IRM and our model, a generalization to HP+IRM,
both perform well, and are better than other models, in
terms of log-likelihood shown in table 1.

In part (b), case 2 used the same settings as part (a), except
for the introduction of variable message content, where
both x12(ti) and x21(t′i) follow an exponential distribution
exp(0.5), which can be thought of as different message en-
tropy values at different event times ti and t′i. We see that



the jump sizes of both processes are no longer constant.
This cannot be modeled by a constant β model, but can
only be handled by models like ours, which allow variable
β. The effectiveness of our model in this case can be seen
from the comparison of the log-likelihoods in table 1.

In part (c), case 3 further introduced non-constant
βuv(·), with all other settings being the same as in
case 2, but β12(ti) = e2sin(x21(ti))+1.5log(x21(ti))

and β21(t′i) = e0.1cos(x12(t
′
i))+0.2

√
x12(t′i), where

r1(x21(ti)) = 2sin(x21(ti)), r2(x12(t′i)) =
0.1cos(x12(t′i)), s1(x12(t′i)) = 0.2

√
x12(t′i), and

s2(x21(ti)) = 1.5log(x21(ti)). Again, the jump sizes
for both processes are not constant, and also note that
β21(x) > β12(x),∀x ∈ (0, 10). This suggests that process
2 is excited to respond to any messages received from
process 1, while process 1 is reluctant to respond to
messages sent from process 2. In this case, the difference
in log-likelihoods of different models is pronounced even
more.

Table 1: Log likelihood comparison for the three-case syn-
thetic data set

CASE 1 CASE 2 CASE 3
HPGP+IRM -21.88 -13.41 -10.86

HP+IRM -22.97 -35.53 -82.78
POISSON + IRM -72.31 -89.73 -126.33

HP -129.37 -238.94 -192.78
POISSON -127.83 -182.76 -187.23

Next, we will discuss our modeling preferences based on
the three-case example used in figure 1.

GP Against Simple Parametric Functions. In order to
demonstrate the effectiveness of using GP in our model, we
compared its performances with simple parametric func-
tions. In table 2, we summarize the log likelihood for the
three-case synthetic data set mentioned earlier in figure 1,
using GP and simple polynomials (up to order 3). The
results clearly show the superior performance of GP over
polynomial functions. The coefficients of polynomials are
estimated by sampling from the posterior.

Table 2: Log likelihood comparison between GP and sim-
ple parametric functions

GP CUBIC QUAD LINEAR
CASE 1 -21.88 -38.67 -38.88 -39.18
CASE 2 -13.41 -61.27 -78.17 -89.28
CASE 3 -10.86 -71.26 -72.13 -76.73

Estimate Kernel Width From Data. In our experiment, we
used the RBF (radial basis function) kernel, which has the

form:

k(δ) = exp

(
− δ2

2σ2

)
(17)

where δ is the distance between two data points, and σ
the kernel width. The estimation of the kernel width is
crucial in our modeling framework as it controls the com-
plexity of the underlying receptivity and significance func-
tions. We applied 3 different approaches to estimate σ:
Bayesian, heuristic, and fixed. The Bayesian approach in-
troduces a prior on σ and obtains an estimate using MCMC;
the heuristic way, bearing in mind that sigma largely de-
pends on the maximum distance among the training data,
estimates σ directly from sample data distances; and the
fixed approach manually assigns a fixed value to the kernel
width. It is evident from table 3 that the Bayesian approach
is the best choice for our model in terms of log likelihood.

Table 3: Log likelihood comparison for kernel estimation

BAYESIAN HEURISTIC FIXED
CASE 1 -21.88 -25.12 -39.78
CASE 2 -13.41 -17.16 -18.72
CASE 3 -10.86 -22.13 -24.67

Comparison Between Different Information Metrics. We
compared four strategies to evaluate the information con-
tent of a message: KL divergence of word distribution,
message length, TF-IDF, and message Shannon entropy.
Using length as the measure of information may not be suf-
ficient in practice; the importance of a message is simply
determined by its longevity, without giving any considera-
tion to the content. In case of Shannon entropy, however,
the significance and receptivity of the message are better
captured. TF-IDF has similar behavior and characteristics
as those of message entropy. The best performance in our
experiments were given by using KL divergence of word
distribution and Shannon entropy, and we preferred KL di-
vergence of word distribution over the other measures be-
cause it is more interpretable, and seemed to give consistent
good performances in terms of log-likelihoods as shown in
table 4. However, encoding content information efficiently
is still an open question, and certainly a direction for future
work.

Table 4: Log likelihood comparison for different informa-
tion metrics

WORD KL ENTROPY TF-IDF LENGTH
CASE 1 -21.88 -21.98 -39.38 -128.76
CASE 2 -13.41 -12.78 -28.61 -87.21
CASE 3 -10.86 -12.63 -23.78 -72.13

Next, we will discuss a more detailed example consisting
of three individuals.
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(c) Case 3: x random, β non-trivial func-
tion. The “jump sizes” are not constant.

Figure 1: Simulated rate functions of two individuals

A Full Example Consists of Three Individuals. In this
example, we put processes 1 and 2 in one cluster whereas
process 3 is in another cluster, and we also intentionally
made them behave differently to each other.

The settings we used were mij ∼ multinomial(p =
[0.25, 0.25, 0.25, 0.25], n = 4),∀i, j ∈ {1, 2, 3}, which
could represent a dialog consisting of only four words, and
each mij can be thought of as the distribution of these
four words in a message sent from j to i. We define the
message content measure as xij = KL(mij ||m̄i), where
m̄i is the four-word distribution assigned to individual i
(m̄i = (1, 1, 1, 1),∀i in our experiment). For the excitation
functions we have: β12 = β21 = 5 exp(1/x), β23 = β31 =
0.1 exp(1/x), and β13 = β32 = 10 exp(1/x). Note that
β12 = β21, β31 < β13, and β32 > β23.

Figure 2 (a) shows that processes 1 and 2 are frequently
interacting in a similar way, while in part (b), process 3 is
not excited to respond to messages from process 1 but tends
to, suggested in part (c), reply to process 2’s messages more
actively. In figure 2 (g, h, and i), we see that only our model
was able to correctly cluster processes 1 and 2 in the same
cluster and put process 3 in a separate one. On the other
hand, the other models generated redundant clusters. We
have also shown in figure 2 (d, e, and f) that our model
successfully recovered the underlying excitation functions.

6.2 Real Data Sets

We tested our model on various turn-taking data sets, which
include public meetings, private conversations, email com-
munications, and publication citations. Each data set has
several lines of event records, indicated by a quadruplet
(ti, si, ri,mi), where ti is the time when the event took
place, si the index of the sender, ri the index of the recipi-
ent, and mi the message word distribution.

We divided the data set into two parts: the first part con-
sists of the first 90% of the data lines, used as the training

data set; and the second part contains the remaining 10% of
the data lines, used as the testing data set. To compute the
average log probability, we ran our code 10 times with dif-
ferent prior settings and computed the mean and standard
deviation of the 10 values.

Enron email threads The Enron data set (ENRON) con-
tains about half a million email messages sent or received
by about 150 senior managers of the Enron corporation
[2, 3]. We restricted ourselves to “true” conversation emails
(e.g., auto-messages were ignored) sent and received only
from the domain “@enron.com”, and identified the threads
by time, sender, receiver, and the subject line. The longest
email communication was selected.

Santa Barbara Conversation Corpus The Santa Barbara
Corpus [1] data set (SB) contains text and video recordings
for various conversations. The data set used (#33) is a lively
family argument/discussion recorded at a vacation home in
Falmouth, Massachusetts. There are eight participants, all
relatives or close friends. Discussion centers around a dis-
agreement Jennifer (#2) is having with her mother Lisbeth
(#5).

High-energy Physics Theory Citation Network The
Arxiv HEP-TH (high energy physics theory) citation data
set (CITATION) covers all 352807 citations of 27770 pa-
pers published during the time period January 1993 to April
2003 (124 months). We converted paper citation events to
author citation events. For example, if a paper by authors
A and B cited another paper by authors C, D, and E, we
would record six events: A cited C, D, and E; and B cited
C, D, and E. Only the most cited 17 authors and 97 citation
events in the year 2003 were used from this data set.

Results Table 5 and 6 show, for training and test data sets
respectively, the predictive probability results as well as the
most probable predictive number of clusters for competing
methods. We used 10-fold cross-validation to prevent our
model from being over-fitted to training data sets, and the
performances on real data sets suggested a good general-
ization ability of our model.
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Figure 2: Simulated rate functions of three individuals and their cluster configurations



Table 5: Average log likelihood for each model with stan-
dard error (TRAINING data sets). N is number of individ-
uals, T is number of events, and C the predicted number of
clusters.

ENRON SB #33 CITATION
(N, T, C) (2, 896, 2) (8, 499, 8) (17, 97, 17)

HPGP + IRM 5612.67 ± 0.13 672.03 ± 0.11 1265.31 ± 0.14
HP + IRM 5513.25 ± 0.12 475.13 ± 0.50 987.34 ± 0.23

POISSON + IRM 2360.37 ± 0.06 572.35 ± 0.11 918.56 ± 0.17

Table 6: Average log predictive likelihood for each model
with standard error (TEST data sets).

ENRON SB #33 CITATION
C 2 2 11

HPGP + IRM 327.13 ± 0.02 126.87 ± 0.05 217.51 ± 0.43
HP + IRM 270.36 ± 0.01 89.05 ± 0.04 127.81 ± 0.32

POISSON + IRM 46.21 ± 0.01 13.08 ± 0.00 97.00 ± 0.41

We also compared our model with HP+IRM in terms of
cluster detection capability. Figure 3 shows the cluster
configurations generated by our model and HP+IRM. This
dataset is a record of a lively family argument/discussion.
There were eight participants, all relatives or close friends,
but the main communication was between Jennifer (#2) and
her mother Lisbeth (#5). For our model, Jennifer and Lis-
beth were put in one cluster, and rest in the other. This
is more consistent with data evidence: Jennifer and Lis-
beth reciprocate each other more frequently, and respond
occasionally to others, despite receiving a lot of messages
from them. Individuals other than #2 and #5 may be further
decomposed into subgroups, but at this level, the best clus-
tering would probably be the one given by our model. The
contrast in the thicknesses of the arrows between the two
clusters correctly reveals this aspect. On the other hand,
the cluster configuration generated by HP+IRM model in-
dicates a high level of reciprocity, indicated by comparable
thicknesses of the two arrows, between clusters {2,5} and
{4,6,7,8} which is inconsistent with data evidence. Addi-
tionally, the model creates an extra cluster,{1,3}, which is
inconsistent with data evidence.

{2, 5}

{1, 3, 4, 6, 7, 8}

(a) HPGP+IRM

{1, 3}

{4, 6, 7, 8}

{2, 5}

(b) HP+IRM

Figure 3: Diagram for data set SB #33. The thickness of
the arrows are proportional to the expectation of the rate
function.

7 CONCLUSION

In this paper, we have presented a non-parametric Bayesian
model that uses Hawkes processes to model reciprocal rela-
tionships. Unlike previous approaches, our model utilizes
the content of the messages to model reciprocity. Based on
the content, our model captures the significance of the mes-
sage sent by the sender, and receptivity to the message re-
ceived by the receiver. This gives us the leverage to model
reciprocity in a more realistic manner and more accurately.
Empirical results suggest that our novel model formulation
can yield improved predictive probability results, and can
reveal clusters more accurately than alternative methods.
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