
Utilize Old Coordinates: Faster Doubly Stochastic Gradients for Kernel
Methods

Chun-Liang Li
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

chunlial@cs.cmu.edu

Barnabás Póczos
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

bapoczos@cs.cmu.edu

Abstract

To address the scalability issue of kernel meth-
ods, random features are commonly used for
kernel approximation (Rahimi and Recht, 2007).
They map the input data to a randomized low-
dimensional feature space and apply fast linear
learning algorithms on it. However, to achieve
high precision results, one might still need a large
number of random features, which is infeasible
in large-scale applications. Dai et al. (2014) ad-
dress this issue by recomputing the random fea-
tures of small batches in each iteration instead
of pre-generating for the whole dataset and keep-
ing them in the memory. The algorithm increases
the number of random features linearly with iter-
ations, which can reduce the approximation error
to arbitrarily small. A drawback of this approach
is that the large number of random features slows
down the prediction and gradient evaluation after
several iterations. We propose two algorithms to
remedy this situation by “utilizing” old random
features instead of adding new features in cer-
tain iterations. By checking the expected descent
amount, the proposed algorithm selects “impor-
tant” old features to update. The resulting pro-
cedure is surprisingly simple without enhancing
the complexity of the original algorithm but ef-
fective in practice. We conduct empirical studies
on both medium and large-scale datasets, such as
ImageNet, to demonstrate the power of the pro-
posed algorithms.

1 INTRODUCTION

Kernel methods are powerful tools for learning non-linear
hypotheses. Many algorithms can be combined with kernel
methods, including SVM and logistic regression. However,
kernel methods are usually considered as non-scalable due
to the kernel matrix K ∈ Rn×n, where n is the number

of examples. For large-scale datasets, such as MNIST-8M
(8.1 million) and ImageNet (1.3 million), the memory us-
age makes kernels methods prohibitive for these applica-
tions.

One line of research is devoted to kernel approximation
with limited memory usage (Williams and Seeger, 2000;
Rahimi and Recht, 2007). Random Features (Rahimi and
Recht, 2007), inspired by Bochner’s theory, approximate
the kernel mapping via a simple sampling procedure. After
mapping the input data into the randomized feature space
created by random features, we then apply existing fast lin-
ear learning algorithms. It has attracted machine learning
community’s interest because of its simplicity and effec-
tiveness in practice. The extensions of random features in-
clude Rahimi and Recht (2008); Yang et al. (2012); Le et al.
(2013); Yang et al. (2014); Chen et al. (2015); Bach (2015).
However, both theoretical (Rahimi and Recht, 2007) and
empirical studies show one might still need a large num-
ber of random features to achieve high precision results. If
we pre-generate the random features and keep them in the
memory, it is still infeasible in modern large-scale applica-
tions.

Dai et al. (2014) propose a remedy which generates random
features on the fly by connecting functional gradients and
random features, which is called Doubly Stochastic Gradi-
ent Descent (DSG). DSG re-computes the random features
for a small batch of data in each iteration instead of keep-
ing them in the memory. The re-computing manner allows
DSG to increase the number of random features in every
iteration. The algorithm can also be treated as a variant
of random coordinate gradient (RCD) algorithm, because
DSG updates the newly increased feature (coordinate) in
every iteration. Therefore, by increasing the number of fea-
tures, DSG can achieve arbitrarily small approximation er-
ror if one have sufficient budget of time. On the flip side,
increasing features in every iteration causes the number of
random features to grow linearly with number iterations.
After several iterations, the large number of used random
features makes prediction and computing gradients slow.

In this paper, we make the following contributions. First,

we solve the drawback of large number of random features
by updating old coordinates instead of increasing features
in certain iterations (Section 4) to reduce the number of the
used random features. One simple extension is sampling
from old coordinates uniformly and periodically as typi-
cal RCD over the finite dimensions, which is called DSG
with Uniform Sampling (UDSG). We make the second con-
tribution by analyzing the convergence rate of UDSG. Al-
though UDSG usually works well in practice, our theoreti-
cal analysis suggests the descent amount of UDSG is not as
much as Dai et al. (2014) in the worst case. We then make
our third contribution by proposing the other non-trivial al-
gorithm, DSG with Checking (CDSG), which chooses the
old coordinate by checking the expected descent amount
and derive a expected line search methodology to further
boost the performance. Theoretically, CDSG enjoys the
same convergence rate as DSG. Empirically, it outperforms
other algorithms. Last, we conduct experiments on large-
scale datasets, including ImageNet, and further study the
comparison with deep neural nets in Section 5. We then
conclude in Section 6 and make a guideline of choosing
algorithms in practice.

2 PRELIMINARIES

The problem we are interested in this paper is as follows.
Assume the data point (x, y) ∈ X × Y is an i.i.d. sample
from a distribution P(x, y), where X ⊆ Rd, we want to
estimate a function f : X → Y in Reproducing Hilbert
Space (RKHS)H by optimizing

f∗ = argmin
f∈H

R(f) = argmin
f∈H

λ

2
‖f‖2H+E(x,y)[`(f(x), y)],

(1)
where `(z, y) is a convex loss function in z. Commonly
used loss functions are hinge loss (SVM), logistic loss (lo-
gistic regression) and square loss (ridge regression). Note
that if the data comes from a batch setting, we replace the
above expectation with the empirical expectation (average).

2.1 RKHS AND KERNEL

The RKHSH on X is a Hilbert space of functions from X
to R. One typical way to define RKHS is via kernel func-
tions k(x,x′) : X × X → R, which encodes the similarity
between two data points. The kernel function k is symmet-
ric and positive definite. H is RKHS if and only if there
exists a kernel k(x,x′) such that ∀x ∈ X , k(x, ·) ∈ H
and 〈k(x, ·), k(x′, ·)〉H = k(x,x′). Also, if f ∈ H,
f(x) = 〈f, k(x, ·)〉H. One commonly used kernel is Gaus-
sian RBF kernel k(x,x′) = exp

(
−‖x−x′‖2

2σ2

)
. The train-

ing bottleneck of using kernels is to compute and store the
kernel matrix K ∈ Rn×n for n data points. It brings the
computational concern in both time and space complex-
ity and makes designing scalable algorithms for large-scale

problems a challenging task. There are several approach
to addressing this difficulty by making trade-off between
and time as space. For example, LIBSVM (Chang and Lin,
2011) only caches some columns of kernel matrix to save
the memory usage and re-compute the columns where there
is a cache miss.

2.2 RANDOM FEATURE

The other way to define kernel is finding the explicit fea-
ture mapping φ(x) such that k(x,x′) = φ(x)>φ(x′).
Bochner’s theorem suggests a way to find this mapping
for the stationary (shift-invariant) kernel, i.e., k(x,x′) =
k(x − x′), and draws the community’s attention in this
decade (Rahimi and Recht, 2007).
Theorem 1. (Bochner’s Theorem) A continuous, real-
valued, symmetric and shift-invariant function k on Rd is a
positive definite kernel if and only if there is a positive finite
measure P(ω) such that

k(x− x′) =
∫
Rd 2

(
cos(ω>x) cos(ω>x′)

+ sin(ω>x) sin(ω>x′)
)
dP(ω),

For Gaussian RBF kernel, the corresponding density P(ω)
is the Gaussian distribution.

Inspired from Bochner’s Theorem, we can approximate
the kernel evaluation by the Monte-Carlo approximation.
Define φω(x) =

√
2[cos(ω>x), sin(ω>x)] and z(x) =

1√
m

[φω1
(x), · · · , φωm

(x)], where ω1, . . . ,ωm are i.i.d.
samples from P(ω). We then have

k(x− x′) = Eω (φω(x)φω(x′)) ≈ z(x)>z(x′)

and (1) can be transformed to

w∗ = argmin
w

λ

2
‖w‖2 + E(x,y)[l(w

>z(x), y)], (2)

which can be solved by fast linear learning algorithms to
handle million-scale data easily (Fan et al., 2008).

3 DOUBLY STOCHASTIC KERNEL
MACHINE

By using random features, we can represent the feature
mapping with a finite-length vector z(x) and approximate
the kernel evaluation by the inner product k(x,x′) ≈
z(x)>z(x′). We are then able to transform problem (1)
into the linear learning problem (2). The approximation er-
ror E[(f∗(x) − w>∗ (x))2] ≤ ε can be bounded by ε with
O(1/ε) number of random features (Rahimi and Recht,
2007), which is the consequence of the bound of Monte-
Carlo approximation. More discussions on the optimality
can be referred to Sriperumbudur and Szabó (2015).

Suppose we use m random features for approximation,
then the space complexity for storing the transformed data

is O(nm), where n is the number of data points. One line
of research is to replace the simple Monte-Carlo with dif-
ferent sampling scheme to improve the learning with ran-
dom features. Le et al. (2013) propose an efficient sampling
procedure to save the feature generation time. Yang et al.
(2014); Chen et al. (2015); Bach (2015) use different sam-
pling strategies with faster convergence rate to reduce m.

In practice, to achieve accurate results, m usually has to be
large, which cause the space cost for storing. For example,
MNIST-8M data contains eight million training points. If
we use 105 random features with double type, it takes
more than 1T memory to store the transformed data, which
is prohibitive to many machines. On the other hand, the
kernel matrix K is approximated by z(X)z(X)>, where
z(X) ∈ Rn×m. However, K is not low rank and has long-
tailed eigenvalue distributions for many commonly used
kernels (Weyl, 1912; Wathen and Zhu, 2015), which im-
plies there is no hope to accurately approximate K with
small m.

Therefore, the other line of research is to save memory us-
age with large m. Yen et al. (2014) propose a algorithm by
imposing a sparsity constraint in (2) to reduce the memory
usage. However, the sparsity constraint makes the problem
not an unbiased approximation of (1). Dai et al. (2014) pro-
pose to re-generate the random features repeatedly during
the training to save the memory usage, which makes using
a large number of random features possible.

3.1 DOUBLY STOCHASTIC GRADIENT

Dai et al. (2014) propose a novel algorithm by using “dou-
bly functional gradient” to address the scalability issue of
kernel methods. Given a data point (x, y), the stochas-
tic functional gradient of (1) is ∇fR(f) = λf(·) +
E(x,y) [ξ(·)], where ξ(·) = `′(f(x), y)k(x, ·). By Bocher’s
theorem, we could further approximate the functional gra-
dient ξ(·) by the random feature φω(x). That is, given
ω ∼ P(ω) and a data point (x, y), the doubly stochastic
gradient of `(f(x), y) with respect to f ∈ H is ζ(·) =
l′(f(x), y)φω(x)φω(·), where Eω (ζ(·)) = ξ(·). The fol-
lowing formula connects the randomness from data (x, y)
and random feature ω,

∇fR(f) = λf(·) + E(x,y)[ξ(·)]
= λf(·) + E(x,y)Eω[ζ(·)].

In each iteration t, the doubly stochastic gradient of
`(f(xt), yt) is ζt(·) = `′(ft(xt), yt)φωt

(xt)φωt
(·) by

sampling ωt from P(ω) and (xt, yt) from P(x, y). The
update rule for the algorithm is

ft+1(·) = ft(·)− γt (λft(·) + ζt(·)) =

t∑
i=1

aitζi(·),

where ait are coefficients from λ and γt in each iteration.
For each data point x, we do not need to pre-generate the

corresponding z(x) until we want to evaluate the func-
tion as well as the doubly stochastic gradient on x. The
potential problem is how to regenerate the z(x) every
time. If we store ω1, . . . ,ωt, which takes O(dt), when
both d and t are large, it is still infeasible in practice.
Thanks for the pseudo-randomness used in modern com-
puters, we could use different random seeds for different
iterations, then we are guaranteed to sample the same ω
back. Then the space complexity is only O(t) for stor-
ing αit = ait`

′(fi(xi), yi)φω(xi). We call the algorithm
as DSG, which is shown in Algorithm 1. The convergence
rate of DSG is proved in Dai et al. (2014) under the condi-
tions of Assumption 2.

Algorithm 1 {αi}ti=1 = DSG(P(x, y))

for i = 1, . . . , t do
Sample (xi, yi) ∼ P(x, y).
Sample ωi ∼ P(ω) with seed i.
f(xi) = Predict(xi, {αj}i−1j=1).
αi = −γil′(f(xi), yi)φωi

(xi).
αj = (1− γiλ)αj for j = 1, . . . , i− 1.

end for

Algorithm 2 f(x) = Predict(x, {αi}mi=1)

Set f(x) = 0.
for i = 1, . . . ,m do

Sample ωi ∼ P(ω) with seed i.
f(x) = f(x) + αiφωi

(x).
end for

Assumption 2.

1. The optimal solution f∗ to the problem (1) exists.

2. Loss function `(u, y) : R× R→ R and its first-order
derivative is L-Lipschitz continous in terms of the first
argument.

3. There exists M > 0, such that |`′(ft(xt), yt)| 6 M .
Note that in our situation M < ∞ exists since we
assume bounded domain and the functions ft we gen-
erate are always bounded as well.

4. There exists κ > 0 and φ > 0, such that k(x,x′) 6
κ, |φω(x)φω(x′)| 6 φ, ∀x,x′ ∈ X , ω ∈ Ω. For
Gaussian RBF kernel, we have κ = 1, φ = 2.

Theorem 3 (Convergence rate of DSG (Dai et al., 2014)).
When γt = θ

t with θ > 0 such that θλ ∈ (1, 2) ∪ Z+, for
any x ∈ X ,

EDt,ωt

[
|ft+1(x)− f∗(x)|2

]
6

2C2
0 + 2κS2

0

t
,

where

S0 = max

{
‖f∗‖H ,

Q0 +
√
Q2

0 + Z(1 + θλ)2θ2κM2

Z

}
,

with Z = 2λθ − 1, Q0 =
√

2κ1/2LC0θ, and C0 = 2(κ +
φ)Mθ.

4 FAST DOUBLY STOCHASTIC
KERNEL MACHINES

The O(1/t) convergence rate in Theorem 3 is already opti-
mal as proved in Dai et al. (2014). However, we could still
improve DSG. In in each iteration, DSG is required to eval-
uate f(x) for calculating gradients in each iteration, which
needs to go through ω1, . . . ,ωt to compute φωi(x) in Al-
gorithm 2. For continuous distributions, such as Gaussian
distribution P(ω) for Gaussian kernel, the collision proba-
bility of sampling is zero. After t iterations, we have t dif-
ferent ω1, . . . ,ωt for the feature generation. Then the com-
plexity of the tth iteration isO(td), and the total complexity
from iteration 1 to iteration t is O(t2d), which makes DSG
less efficient when t is large.

On the other hand, DSG could be treated as a random coor-
dinate descent (RCD) with mini-batch. In each iteration t,
sampling ωt can be treated as choosing one coordinate to
update. Since the collision probability is zero, it is equiva-
lent to updating a new coordinate in every iteration. From
the perspective of RCD, we could also choose an “old” co-
ordinate to update instead of sampling new ω in certain
iterations. Then we could reduce the number of used coor-
dinates.

In what follows, we will present two algorithms, UDSG
and CDSG, which “utilize” previous coordinates. UDSG
is a nature extension from RCD. Studying its theoretical
analysis gives us deeper insight to design the non-trivial al-
gorithm CDSG, which enjoys the better bound of sample
complexity than UDSG. In some following descriptions,
we will abuse ωi as the coordinate index for convenience.

4.1 UTILIZE WITH UNIFORM SAMPLING

A simple strategy is using empirical distribution to approx-
imate P(ω), which is a widely-used technique in statis-
tics. Assume we already independently sample Ωm =
{ω1, . . . ,ωm} from P(ω), then we could create an em-
pirical distribution P̂m(ω), which is a uniform distribution
on ω1, . . . ,ωm. Sampling from P̂m(ω) is unbiased since
EΩmEω∼P̂m

[ω|Ωm] = Eω∼P(ω). When m is large, we
could expect the empirical distribution P̂m(ω) to be a good
approximation of P(ω). Note that it is similar to typical
RCD algorithm over a finite number of dimensions.

Here we study one simple algorithm for a concise presen-
tation, which periodically samples from P(ω) for G itera-
tions and then sample from the empirical distribution P̂(ω)
for U iterations. The number of random features m af-
ter t iterations is O(Gt/G + U). The proposed algorithm,
doubly stochastic gradients descent with uniform sampling,

which is called UDSG and shown in Algorithm 3. Based
on Assumption 2, the convergence rate of UDSG is shown
in Theorem 4.

Algorithm 3 {αi}mi=1 = UDSG(P(x, y))

m = 0
for i = 1, . . . , t do

Sample (xi, yi) ∼ P(x, y).
f(xi) = Predict(xi, {αj}mj=1).
if mod(i, G+ U) < G then

Sample ωm+1 ∼ P(ω) with seed m+ 1.
αj = (1− γiλ)αj for j = 1, . . . ,m.
αm+1 = −γi`′(f(xi), yi)φωm+1

(xi).
m = m+ 1

else
Sample ωk ∼ P̂m(ω), where 1 ≤ k ≤ m.
αj = (1− γiλ)αj for j = 1, . . . ,m.
αk = αk − γi`′(f(xi), yi)φωk

(xi).
end if

end for

Theorem 4 (Convergence rate of UDSG). When γt = θ
t

with θ > 0 such that θλ ∈ (1, 2) ∪ Z+, for any x ∈ X ,

EDt,ωt

[
|ft+1(x)− f∗(x)|2

]
6

2C2
1 + 2κS2

1

t
,

where

S1 = max

{
‖f∗‖H ,

Q1 +
√
Q2

1 + Z(1 + θλ)2θ2κM2

Z

}
,

with Z = 2λθ − 1, Q1 =
√

2κ1/2LC1θ, and C1 = 2(κ +

φ)Mθ
√

1 + 2U
G+U + 2U2

G(G+U) + 2U(U−1)
Gt

4.1.1 PROOF OF THEOREM 4

We provide a proof sketch here. Our analysis closely fol-
lows Dai et al. (2014) but we need to carefully deal with
several cross-terms as shown in (3) later. Some technical
lemmas are in Appendix.

We decompose the error into two terms,

|ft(x)− f∗(x)|2 ≤ 2|ft(x)− ht(x)|2 + 2κ‖ht − f∗‖2H,

where

ht(·) = Eω[ft(·)] = Eω[

t∑
i=1

aitζωi
(·)] =

t∑
i=1

aitξωi
(·).

Since EDt,ωt

[
‖ht+1 − f∗‖2H

]
6 S2

t , where S is a con-

stant related to EDt,ωt

(
|ft+1(x)− ht+1(x)|2

)
as shown

in Dai et al. (2014), the remaining task is to bound
EDt,ωt

(
|ft+1(x)− ht+1(x)|2

)
. We define the following

terms to simplify the notations.

• G = {x|(x− 1) mod (G+ U) < G and 1 ≤ x ≤ t}.

• Gk = {x|x ∈ G and dx/(G+ U)e = k}.

• Uk = {x|x /∈ G, dx/(G+ U)e = k and 1 ≤ x ≤ t}.

• Vi(x) = ait (ζt(x)− ξt(x)).

By definition, we have EDt,ωt

(
|ft+1(x)− ht+1(x)|2

)
=

EDt,ωt

[(∑t
i=1 Vi(x)

)2]
, then

EDt,ωt

[(∑t
i=1 Vi(x)

)2]

= EDt,ωt

∑
G
Vi(x) +

dt/(G+U)e∑
k=1

∑
i∈Uk

Vi(x)

2

≤ EDt,ωt

(∑
G
Vi(x)

)2

+

dt/(G+U)e∑
k=1

(∑
i∈Uk

Vi(x)

)2

+2

dt/(G+U)e∑
k=1

(∑
i∈Uk

Vi(x)

)(∑
G
Vi(x)

)
d t
G+U e−1∑
p=1

d t
G+U e∑
q=p+1

∑
i∈Up

Vi(x)

∑
i∈Uq

Vi(x)

 .
(3)

We complete the proof by bounding each term. For details
please refer to the Appendix.

4.1.2 TOTAL COMPLEXITY

The sample complexity bound in Theorem 4 is clearly
worse than the result in Theorem 3 for DSG. However, we
should take the complexity of single iteration into account
for comparison. After t iterations, the ratio of the number
of used ω between UDSG and DSG is O(G/G+ U).

We suppose Q2
1 in Theorem 4 dominates Z(1 +

θλ)2θ2κM2. Also, we assume S0 > ‖f∗‖H and S1 >
‖f∗‖H in Theorem 3 and Theorem 4, respectively. The ra-
tio between sample complexities of Theorem 3 and Theo-
rem 4 is close to O(1+ 2U

G+U + 2U2

G(G+U) + 2U(U−1)
Gt). Then

the ratio r between the total complexity of DSG and UDSG
is

r ≥
(

1 + 2U
G+U + 2U2

G(G+U)

)
× G

G+U

=
(

1 + 2U
G+U ×

G+U
G

)
G

G+U

= G+2U
G+U ,

This result suggests setting U to be zero to minimize the
complexity, which implies DSG is theoretically no worse
than UDSG under certain conditions. However, this pes-
simistic result inspires us to design a better algorithm in
Section 4.2.

4.2 UTILIZE WITH CHECKING

In each iteration t, we could either pick up the coordinate
we have used, or sample a new coordinate from P(ω) to
update. The uniform sampling strategy algorithm, UDSG,
has a worse bound than DSG, which implies updating a
new coordinate ω ∼ P(ω) reduces the objective more than
updating old coordinates in expectation. Therefore, before
updating, we should “check” the old coordinate to ensure
the chosen coordinate ωk is as effective as the newly sam-
pled coordinate ω ∼ P(ω).

We start by investigating the reason that causes UDSG
to be worse than DSG in expectation. We take
the simple case that we sample ω1, . . . ,ωt−1 from
P(ω) as DSG and set ωt = ωk, where 1 ≤
k ≤ t − 1. Then EDt,ωt(|ft+1(x) − ht+1(x)|2) =

EDt,ωt

[(
(
∑t−1
i=1,i6=k Vi(x)) + (Vk(x) + Vt(x))

)2]
. We

abbreviate EDt,ωt(·) as E(·) in the following context for
a succinct representation.

Lemma 5. (Dai et al., 2014)

If ωi and ωj are i.i.d. samples from P(ω),

E
[
(Vi(x) + Vj(x))

2
]

= E
(
Vi(x)2

)
+ E

(
Vj(x)2

)
.

We then have the bound

E
[(∑t

i=1 Vi(x)
)2]

≤
t−1∑

i=1,i6=k

E
(
Vi(x)2

)
+ E

[
(|Vk(x)|+ |Vt(x)|)2

]
.

(4)
In contrast, the bound of DSG is

EDt,ωt

(t∑
i=1

Vi(x)

)2
 ≤ t∑

i=1

EDt,ωt

(
Vi(x)2

)
. (5)

The cross term EDt,ωt (|Vk(x)||Vt(x)|) from expanding
the quadratic term in (4) causes a worse bound than (5).
The generalization of this simple example is Theorem 4 in
Section 4.1. The cross terms cause a larger constant C1 in
Theorem 4 than C0 in Theorem 3.

Without any further knowledge about Vk(x) and Vt(x), the
upper bound in (4) is unavoidable. Therefore, in iteration t,
we should choose 1 ≤ k ≤ t− 1 such that the upper bound
Ut of E

[
(Vk(x) + Vt(x))

2
]

can be bounded by the bound

of E
(
Vk(x)2

)
+ E

(
Vt(x)2

)
. To be specific, we should

select k such that

Ut ≤ E
[(
akt `
′(fk(xk), yk)

)2
+
(
att`
′(ft(xt), yt)

)2]
(κ+φ)2.

(6)

For convenience, we let gi = `′(fi(xi), yi) and
Φx(ωi,xk) = φωi

(xk)φωk
(x) − k(xk,x). Expanding

Vk(x) and Vt(x) results the upper bound Ut as

E
[
(Vk(x) + Vt(x))

2
]

= E
[(
akt gkΦx(ωk,xk) + attgtΦx(ωt,xt)+

attgtΦx(ωk,xk)− attgtΦx(ωk,xk))
2
]

≤ 2E
[(
akt gk + attgt

)2]
(κ+ φ)2

+2
(
(attM)2

)
E
[
(Φx(ωk,xt)− Φx(ωk,xk))

2
]
.

(7)
Note that we suppose ωt = ωk.

If x1 and x2 are i.i.d. samples from P(x),
then E

(
(x1 − x2)2

)
= 2Var(x). Let σ2 =

Eωk
[Vary (Φx(ωk, y))] and βkt = akt gk. Incorporat-

ing (7) into (6) with the above fact of variance results the
selection criterion as choosing ωk such that

2E
[
(βkt + attgt)

2
]

(κ+ φ)2 + 2 (attMσ(κ+ φ))
2

≤ E
[
(βkt)2 + (attgt)

2
]

(κ+ φ)2.
(8)

4.2.1 MINI-BATCH AND EXPECTED LINE
SEARCH

In (8), smaller attMσ(κ + φ) makes it easier to find an
ωk which satisfies (8). Reducing attMσ(κ + φ) comes
for free by using the mini-batch extension of stochastic
gradient descent. If the batch size is B, the variance of
1
B

∑B
i=1 Φxi

(ωk, y) is 1
BVary (Φx(ωk, y)).

Also, instead of setting att = −γt, we could further do line-
search in expectation for a steeper descent with a larger
step size. Assume the step size is η, and we want to
keep the error upper bounded by DSG. Therefore, given
ω1, . . . ,ωt−1, combining with the mini-batch extension,
We find the largest step size η < −γt, such that

2(βkt + ηgt)
2 +

2 (ηMσ)
2

B2
≤ (βkt)2 + (attgt)

2. (9)

The optimization problem (9) is a quadratic inequality,
which can be solved with the analytical solution. We then
choose ωk with the max step size |ηk| to update. We call
the algorithm as “doubly stochastic gradient descent with
checking” (CDSG), which is shown in Algorithm 4. For
simplicity, we show the case when B = 1 in Algorithm 4,
but one can extend it to general B > 1 cases.

Convergence rate of CDSG. The convergence rate of
CDSG is exactly the same as Theorem 3. We omit the proof
in the Appendix.

5 EXPERIMENT

In this section, we first study medium-scale data, which
allows us to do thorough comparisons to understand the

Algorithm 4 {αi}mi=1 = CDSG(P(x, y))

m = 0
for i = 1, . . . , t do

Sample (xi, yi) ∼ P(x, y).
f(xi) = Predict(xi, {αj}mj=1).
Compute step sizes η1, . . . , ηm via (9), and suppose
|ηk| = argmaxj |ηj |.
if |ηj | ≤ γt then
αj = (1− γiλ)αj for j = 1, . . . ,m.
αm+1 = −γi`′(f(xi), yi)φωm+1

(xi).
βj = (1− γiλ)βj for j = 1, . . . ,m.
βm+1 = −γi`′(f(xi), yi).
m = m+ 1

else
αj = (1− ηkλ)αj for j = 1, . . . ,m.
αk = αk − ηk`′(f(xi), yi)φωk

(xi).
βj = (1− ηkλ)αj for j = 1, . . . ,m.
βk = αk − ηk`′(f(xi), yi).

end if
end for

Dataset # train # test # classes
CIFAR-10 60K 10K 10

Epsilon 0.4M 0.1M 2
Year 0.46M 51K R

MNIST-8M 8.1 M 10K 10
ImageNet 2012 1.3 M 0.1M 1000

Table 1: The dataset information for experiments, where
the label of Year is real number.

trade-off between different algorithms. We then also show
the results on the large-scale datasets. Last, we compare
DSG-based algorithms with deep neural nets. The details
of the datasets are shown in Table 1.

General Setting In all experiments, we use Gaussian
kernel. The kernel bandwidth is obtained by the median
trick (Smola, 2004). For UDSG, we set G = 1 and U = 1.
The other parameters will be specified later.

5.1 MEDIUM-SCALE DATA

We observed that the algorithms tend to overfit the
medium-scale data without carefully tunning regularization
terms. In this subsection, we only compare the training ob-
jectives, which is a natural criterion for optimization prob-
lems.

Setting for Medium-Scale Data For the CIFAR-10, we
use raw pixels as input. Also, we conduct PCA to reduce
the number of dimension of every datasets to be no more
than 100. The parameters for DSG-based algorithms are
shown in Table 2, where the feature block F means we
sample F random features in each iteration. For non-DSG-

Dataset Batch Size B Feature Block F λ
CIFAR10 4, 096 256 10−5

Epsilon 10, 000 512 10−5

Year 10, 000 512 10−5

Table 2: Parameters for DSG-based algorithms on
medium-scale datasets.

based algorithms, which pre-generate random features for
the data points, we set the number of random features as
4F .

Compare with Other Approximation There are several
competitors that can be considered, such as Kivinen et al.
(2004), kernel SDCA (Shalev-Shwartz and Zhang, 2013),
and several stochastic optimization algorithms with random
feature or Nyström method (Shalev-Shwartz and Zhang,
2013; Johnson and Zhang, 2013; Nesterov, 2012). Here we
only choose SVRG (Johnson and Zhang, 2013) with ran-
dom features, which has been shown to be one of the best
among the above algorithms.

We compare DSG, UDSG, CDSG and SVRG (Johnson
and Zhang, 2013) with multi-class kernel logistic regres-
sion and kernel ridge regression. The results are shown in
Figure 1.

We first look at Figure 1(a), Figure 1(b) and Figure 1(c).
Since we only use 4F random features for SVRG, is not
surprising that SVRG with limited random features con-
verges to unsatisfactory results at the early stage. Without
the enough number of the random features, the bottleneck
of the learning is the approximation error instead of the op-
timization algorithms. Although we can use more features
than 4F to achieve better performance for medium-scale
data, it takes longer time and more memory for training.
This issue becomes more critical in the large-scale applica-
tions. The memory usage can even make this approach pro-
hibitive to large-scale problems. Note that we do not show
SVRG in Figure 1(d), Figure 1(e) and Figure 1(f) since it
converges out of the range.

Second, we compare DSG-based algorithms. In Fig-
ure 1(b), UDSG performs worse than DSG, which confirms
the bound of Theorem 4 and the worst-case discussion of
uniform sampling in Section 4.2. However, we observe that
the worst case does not occur often in practice. Although
the analysis in Section 4.1.2 is pessimistic, UDSG gener-
ally outperforms DSG in Figure 1. On the other hand, the
proposed CDSG outperforms both DSG and UDSG in all
datasets, which justifies the correctness of the validity of
the proposed checking rule and expected line search in Sec-
tion 4.2.

Compare with Exact Optimization We compare DSG-
based algorithms with LIBSVM (Chang and Lin, 2011),
which is the state-of-the-art solver for kernel learning by

using kernel matrices. We consider kernel SVM in this
comparison since there is no kernel logistic regression im-
plementation in LIBSVM. We report the performance of
each algorithm when LIBSVM converges. CIFAR-10 and
Epsilon take LIBSVM 583 and 8457 seconds to converge,
respectively. The results are shown in Table 3.

LIBSVM DSG UDSG CDSG
CIFAR-10 0.386 0.407 0.402 0.402

Epsilon 0.143 0.145 0.146 0.145

Table 3: The training error of each algorithm at the time
when LIBSVM converges.

In these experiments, to achieve high-precision results, the
exact optimization is always preferable in practice if we
have enough memory. We observe that in both CIFAR-10
and Epsilon, DSG-based algorithms achieve the satisfac-
tory performance quickly, but they take longer time to con-
verge to the precise results. For example, all DSG-based al-
gorithms can achieve 0.15 error of Epsilon within 150 sec-
onds. Especially, CDSG can achieve 0.147. However, they
take more than 10, 000 seconds to get the error lower than
0.144. We address this issue to the variance from doubly
stochastic methodology, which requires the learning rate to
be small and make the learning slow in the later iterations
as the typical SGD algorithms (Johnson and Zhang, 2013;
Shalev-Shwartz and Zhang, 2013).

5.2 LARGE-SCALE DATA

We study MNIST-8M digit recognition dataset, which con-
tains 8.1 million training data and 10 classes. We re-
duce the raw pixel to 100 dimensions as feature and set
B = 20, 000, F = 4096 and λ = 10−6. LIBSVM cannot
run on this dataset due to the memory limitation, and we
can only load 500 pre-generated random features into our
memory, which results in unsatisfactory result (0.05 train-
ing and testing error) with any algorithms, such as SVRG.
Therefore, we focus on the comparison on DSG-based al-
gorithms. The result is shown in Figure 21.

As one can see from Figure 2, CDSG consistently outper-
forms the other two algorithms in both training objectives
and testing error as well as under different loss functions.
The results justify the correctness and usefulness of the pro-
posed CDSG again. In contrast, UDSG does not perform
as well as Figure 1, which confirms the worst case analysis
in Theorem 4.

5.3 STUDY WITH DEEP NEURAL NET

We follow Dai et al. (2014) to compare DSG-based al-
gorithms with deep neural nets on image classification

1Compared with multi-class logistic regression, the training
objective of one-vs-one kernel SVM is less meaningful, so we do
not compare it.

0 10 20 30 40
Time (s)

1.4

1.45

1.5

1.55

1.6
T

ra
in

in
g

O
bj

ec
tiv

e
DSG
UDSG
CDSG
SVRG

(a) CIFAR-10/Logistic Regression

0 10 20 30 40
Time (s)

0.36

0.37

0.38

0.39

0.4

T
ra

in
in

g
O

bj
ec

tiv
e

DSG
UDSG
CDSG
SVRG

(b) Epsilon/Logistic Regression

0 10 20 30 40 50
Time (s)

0.04

0.05

0.06

0.07

0.08

0.09

T
ra

in
in

g
O

bj
ec

tiv
e

DSG
UDSG
CDSG
SVRG

(c) Year/Ridge Regression

0 50 100 150 200 250
Time (s)

1.3

1.35

1.4

1.45

1.5

T
ra

in
in

g
O

bj
ec

tiv
e

DSG
UDSG
CDSG

(d) CIFAR-10/Logistic Regression

0 500 1000
Time (s)

0.345

0.35

0.355

0.36

T
ra

in
in

g
O

bj
ec

tiv
e

DSG
UDSG
CDSG

(e) Epsilon/Logistic Regression

0 500 1000
Time (s)

0.035

0.0355

0.036

0.0365

0.037

0.0375

0.038

T
ra

in
in

g
O

bj
ec

tiv
e

DSG
UDSG
CDSG

(f) Year/Ridge Regression

Figure 1: Training objective of different algorithms on each datasets.

Data Batch Size b Feature Block r λ
CIFAR-10 32768 512 0.0005

MNIST-8M 16384 512 0.0005
ImageNet 16384 128 0.0005

Table 4: The parameters for DSG-based algorithms.

tasks. Besides CIFAR-10 and MNIST-8M, we also study
ImageNet-2012, which is one of the most challenging im-
age classification data currently. Since we do not aim to
compare the representation learning ability, we use the pre-
trained features provided by Dai et al. (2014). The detailed
information of the used neural-net architectures (LeCun
et al., 1998; Krizhevsky et al., 2012) can be found in the
Appendix.

We study the following algorithms and the parameters are
shown in Table 4.

• Joint: Put two fully connected layers at the top of the
neural net for classification and train these two layers
and the pre-trained layers “jointly”.

• Fixed: Put two fully connected layers at the top of the
neural net for classification and only train these two
layers and without modifying pre-trained layers.

• DSG-based: Apply DSG algorithms on the pre-
trained features.

DSG UDSG CDSG Fixed Joint
CIFAR-10 16.0 15.9 15.8 18.0 19.1

MNIST-8M 6.1 5.9 5.3 7.1 8.5
ImageNet 45.1 44.9 44.7 48.2 58.6

Table 5: The testing error (%) of each dataset when CDSG
converges.

DSG UDSG CDSG Fixed Joint
CIFAR-10 15.8 15.9 15.8 15.8 15.9

MNIST-8M 5.3 5.4 5.3 7.1 6.2
ImageNet 44.9 44.8 44.7 46.2 42.4

Table 6: The converged results (%) of all algorithms for
each dataset.

Since the joint-trained neural net takes much more time
than other algorithms, we report the results when CDSG
converges in Table 5. The result shows that DSG-based al-
gorithms converge faster than deep neural nets, and CDSG
is the best in this family. For example, CDSG converges
to 44.7% testing error on ImageNet. At the same time, the
joint-trained neural net only achieves 58.6% testing error.

The converged results of all algorithms are shown in Ta-
ble 6. In both CIFAR-10 and MNIST-8M, the CDSG al-
gorithm is better than neural nets, which suggests proposed
CDSG is not only efficient but also effective in some tasks.
However, in ImageNet, the joint-trained neural net is still

0 500 1000 1500 2000
Time (s)

0.15

0.2

0.25

0.3

T
ra

in
in

g
O

bj
ec

tiv
e

DSG
UDSG
CDSG

(a) Training objective of logistic regres-
sion

0 500 1000 1500 2000
Time (s)

0.009

0.01

0.011

0.012

0.013

T
es

tin
g

E
rr

or

DSG
UDSG
CDSG

(b) Testing error of logistic regression

0 500 1000 1500 2000
Time (s)

0.009

0.01

0.011

0.012

T
es

tin
g

E
rr

or

DSG
UDSG
CDSG

(c) Testing error of SVM

Figure 2: Training objective of logistic regression on MNIST-8M.

the state-of-art by using more than twice of the training
time needed for CDSG. We address the performance gap
to the unsatisfactory representativeness of the pre-trained
features, because the time for learning pre-trained features
provided by Dai et al. (2014) only takes less than 10% of
the training time. We could expect better pre-trained fea-
tures could result in better performance of CDSG, but it
takes more time for getting pre-trained features. Also, if
we only have limited training time budget, such as the fine-
tunning step in training deep neural networks, CDSG en-
joys the advantage of the fast training to achieve satisfac-
tory results quickly as shown in Table 5.

6 CONCLUSION

In this paper, we extended the DSG algorithm (Dai et al.,
2014) to be more efficient by utilizing previous coordi-
nates. We studied two algorithms including UDSG and
CDSG. UDSG samples old coordinates with uniform sam-
pling, which results in a worse convergence bound than the
original DSG, though it outperforms DSG usually in prac-
tice. We also propose the other variant, CDSG, which se-
lects previous coordinates in a more conservative way by
checking the upper bound of the expected error. In the the-
oretical side, CDSG enjoys the same bound as DSG; in the
practical side, CDSG is demonstrated to have better perfor-
mance than DSG and UDSG consistently in all datasets we
studied.

From our empirical study, we make the following sugges-
tions.

Medium-Scale Data: If the size of memory permits and
we want to achieve high-precision result, the solver with
exact optimization by computing kernel matrices is still
preferable, such as LIBSVM. However, they take longer
time than the time needed for CDSG to achieve satisfac-
tory performance (less than 5 minutes in all datasets we
studied). For some medium-scale data we studied, the ex-
act optimization solver takes hours to converge.

Large-Scale Data: For large-scale problems, such as Im-
ageNet, the proposed CDSG algorithm enjoys several ad-
vantages. First, it is memory efficient, so we are allowed to
use a large number of random features for kernel approx-
imation, Second, it is computationally efficient and much
faster than the original DSG algorithm. Under the situation
with limited time budget, CDSG can quickly achieve satis-
factory performance. However, if we want to achieve the
state-of-the-art performance as deep neural nets, the pro-
posed kernel approximation needs better feature represen-
tation as input to achieve better performance. Otherwise,
the jointly-trained neural net may be preferable. The other
alternative is combining the recent development of unsu-
pervised training of deep neural networks (Doersch et al.,
2015) with CDSG, which could possibly give us competi-
tive performance with jointly-trained neural nets.

References
Bach, F. R. (2015). On the equivalence between quadrature

rules and random features. CoRR.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library
for support vector machines. ACM Transactions on In-
telligent Systems and Technology.

Chen, X., Yang, H., King, I., and Lyu, M. R. (2015).
Training-efficient feature map for shift-invariant kernels.
In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence.

Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M., and
Song, L. (2014). Scalable kernel methods via doubly
stochastic gradients. In Advances in Neural Information
Processing Systems.

Doersch, C., Gupta, A., and Efros, A. A. (2015). Unsuper-
vised visual representation learning by context predic-
tion. In International Conference on Computer Vision.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and
Lin, C.-J. (2008). LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research.

Johnson, R. and Zhang, T. (2013). Accelerating stochastic

gradient descent using predictive variance reduction. In
Advances in Neural Information Processing Systems.

Kivinen, J., Smola, A. J., and Williamson, R. C. (2004).
Online Learning with Kernels. IEEE Transactions on
Signal Processing.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing
Systems.

Le, Q. V., Sarlós, T., and Smola, A. J. (2013). Fastfood -
computing hilbert space expansions in loglinear time. In
Proceedings of the International Conference on Machine
Learning.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. In Proceedings of the IEEE.

Nesterov, Y. (2012). Efficiency of coordinate descent meth-
ods on huge-scale optimization problems. SIAM Journal
on Optimization.

Rahimi, A. and Recht, B. (2007). Random features for
large-scale kernel machines. In NIPS.

Rahimi, A. and Recht, B. (2008). Weighted sums of ran-
dom kitchen sinks: Replacing minimization with ran-
domization in learning. In Advances in Neural Infor-
mation Processing Systems.

Shalev-Shwartz, S. and Zhang, T. (2013). Stochastic dual
coordinate ascent methods for regularized loss. Journal
of Machine Learning Research.

Smola, A. J. (2004). An introduction to machine learning
with kernels lecture 5.

Sriperumbudur, B. K. and Szabó, Z. (2015). Optimal rates
for random fourier features.

Wathen, A. J. and Zhu, S. (2015). On spectral distribution
of kernel matrices related to radial basis functions. Nu-
merical Algorithms.

Weyl, H. (1912). Das asymptotische verteilungsgesetz
der eigenwerte linearer partieller differentialgleichun-
gen (mit einer anwendung auf die theorie der hohlraum-
strahlung). Mathematische Annalen.

Williams, C. K. I. and Seeger, M. W. (2000). Using the
nyström method to speed up kernel machines. In Ad-
vances in Neural Information Processing Systems.

Yang, J., Sindhwani, V., Avron, H., and Mahoney, M. W.
(2014). Quasi-monte carlo feature maps for shift-
invariant kernels. In Proceedings of the International
Conference on Machine Learning.

Yang, T., Li, Y.-F., Mahdavi, M., Jin, R., and Zhou, Z.-H.
(2012). ”nystr”̈om method vs random fourier features:
A theoretical and empirical comparison”. In Advances
in Neural Information Processing Systems.

Yen, I. E., Lin, T., Lin, S., Ravikumar, P. K., and Dhillon,
I. S. (2014). Sparse random feature algorithm as coor-
dinate descent in hilbert space. In Advances in Neural
Information Processing Systems.

	INTRODUCTION
	PRELIMINARIES
	RKHS AND KERNEL
	RANDOM FEATURE

	DOUBLY STOCHASTIC KERNEL MACHINE
	DOUBLY STOCHASTIC GRADIENT

	FAST DOUBLY STOCHASTIC KERNEL MACHINES
	UTILIZE WITH UNIFORM SAMPLING
	PROOF OF THEOREM 4
	TOTAL COMPLEXITY

	UTILIZE WITH CHECKING
	MINI-BATCH AND EXPECTED LINE SEARCH

	EXPERIMENT
	MEDIUM-SCALE DATA
	LARGE-SCALE DATA
	STUDY WITH DEEP NEURAL NET

	CONCLUSION

