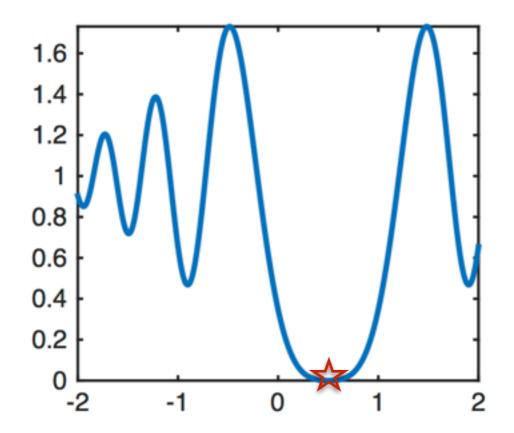
Convex Relaxation Regression (CoRR)

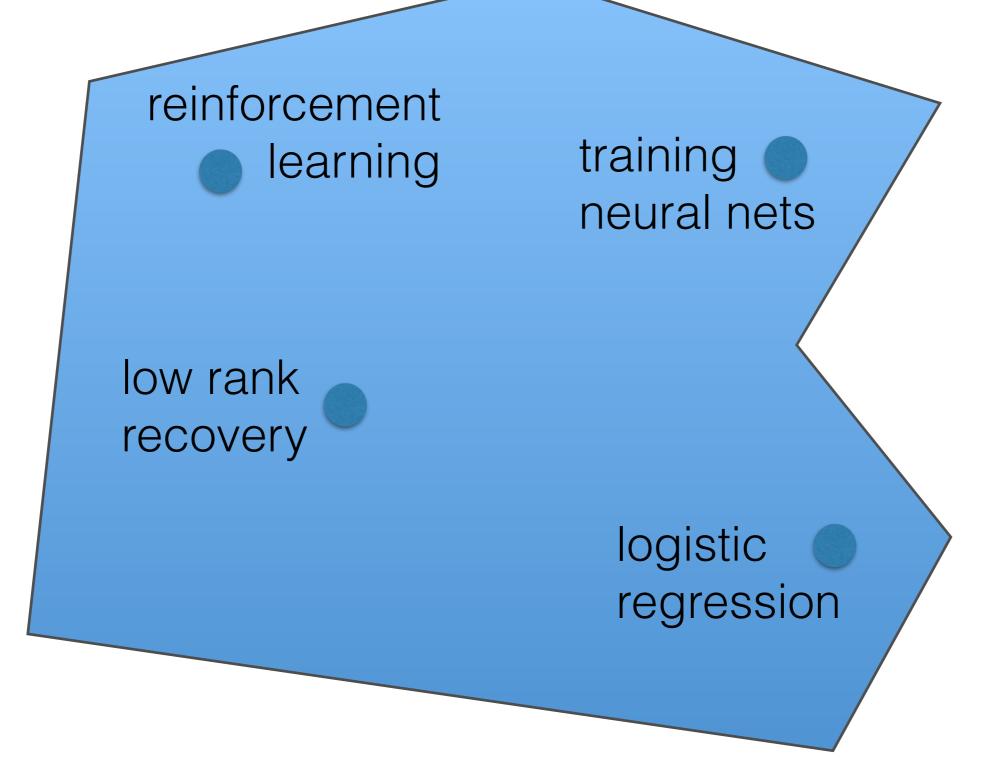
Eva Dyer

work with: Mohammad Azar Konrad Körding

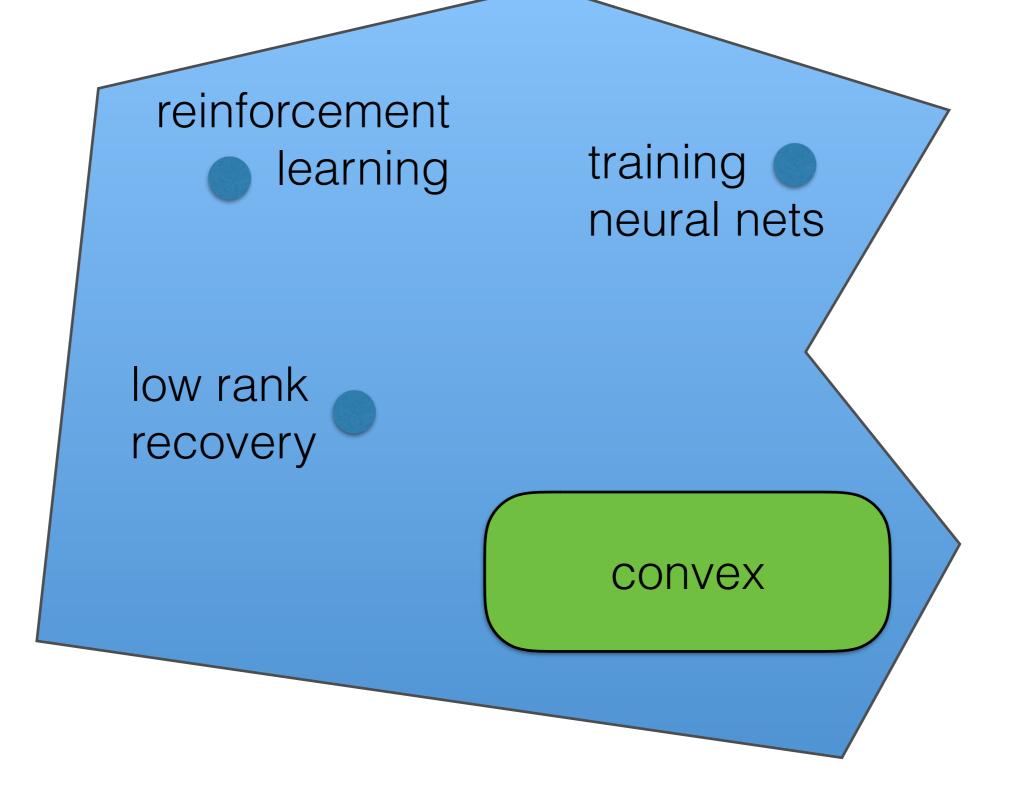
global optimization



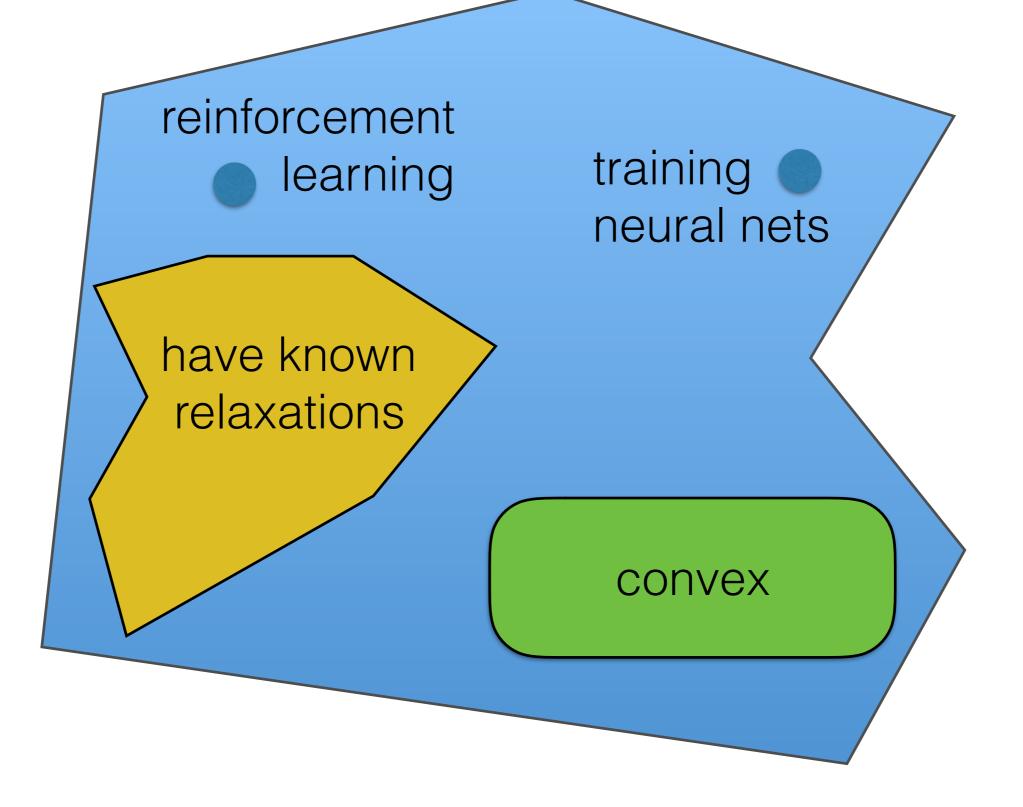
optimization problems



optimization problems

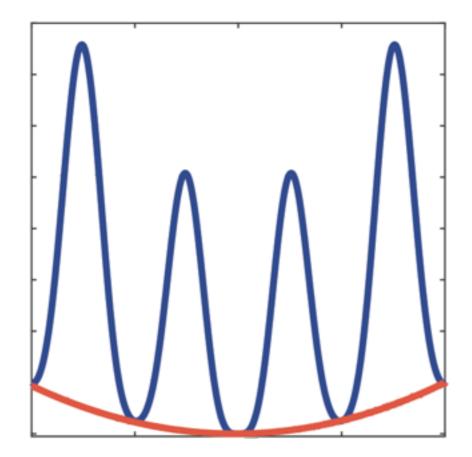


optimization problems



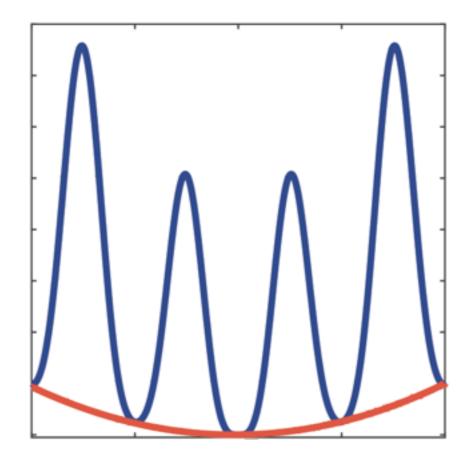
convex relaxation

Step 1: find a tight lower bound to f(x)



convex relaxation

Step 2: optimize the convex surrogate instead of f(x)



convex envelope

convex envelope = tightest convex lower bound

Kleibohm, 1967

Let f_c be the convex envelope of $f : \mathcal{X} \to \mathbb{R}$. Then (a) $\min_{x \in \mathcal{X}} f_c(x) = f^*$ and (b) $\mathcal{X}_f^* \subseteq \mathcal{X}_{f_c}^*$.

$$\mathcal{X}_f^*$$
: set of the optimizers of f

convex envelope

convex envelope = tightest convex lower bound

Kleibohm, 1967

Let f_c be the convex envelope of $f : \mathcal{X} \to \mathbb{R}$. Then (a) $\min_{x \in \mathcal{X}} f_c(x) = f^*$ and (b) $\mathcal{X}_f^* \subseteq \mathcal{X}_{f_c}^*$.

 \mathcal{X}_{f}^{*} : set of the optimizers of f**problem:** finding the **convex envelope** is hard!

idea behind CoRR

solution: approximate the convex envelope!

$h(x;\theta) = \langle \theta, \phi(x) \rangle$ $h(\cdot;\theta) \in \mathcal{H}, x \in \mathcal{X}, \theta \in \Theta$

idea behind CoRR

solution: approximate the convex envelope!

$\min_{\theta} \mathbb{E}[d(h(x;\theta), f(x))]$

idea behind CoRR

solution: approximate the convex envelope!

$\min_{\theta} \mathbb{E}[d(h(x;\theta), f(x))]$

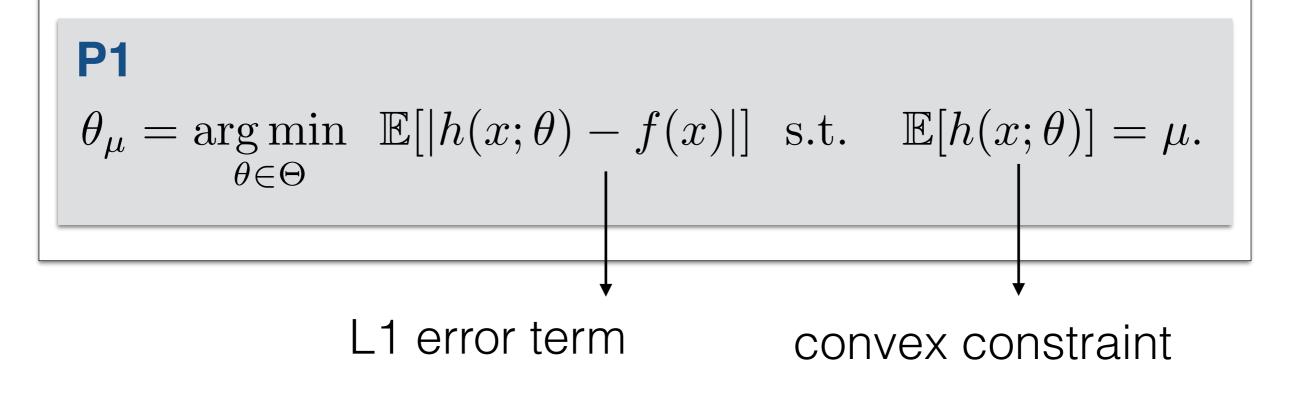
what is the right objective function??

the key to CoRR

Lemma 1

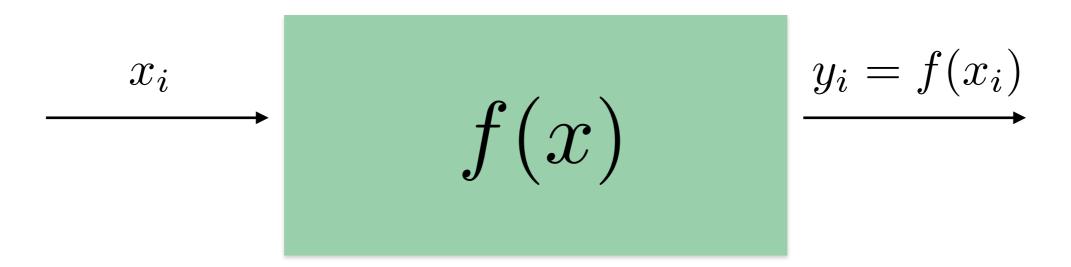
Assume that the convex envelope $f_c(x) \in \mathcal{H}$ and that $\mu = \mathbb{E}[f_c(x)]$

Then the convex approximation h(x) returned by (P1) will coincide with the convex envelope.



CoRR algorithm

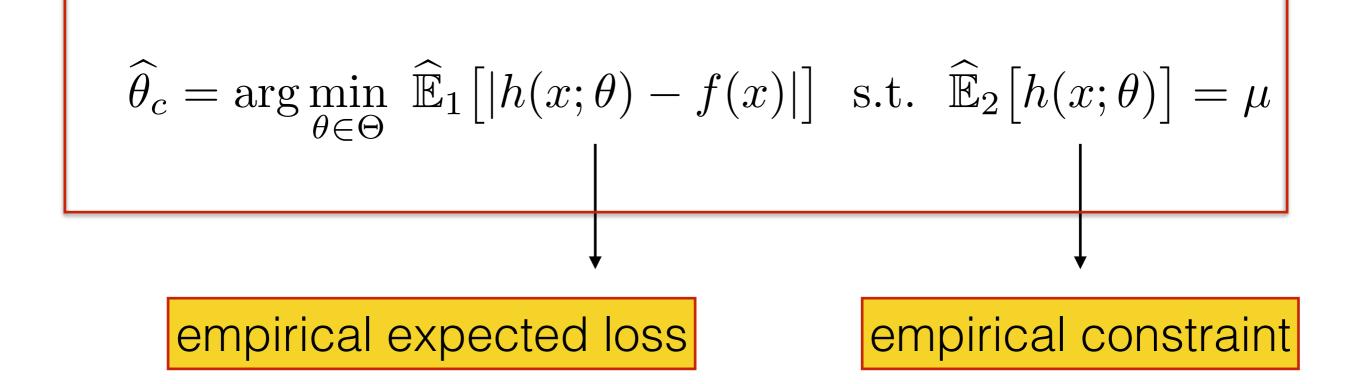
Step 1: draw T samples from the function



black-box setting = **no gradient** information

CoRR algorithm

Step 2: find a convex approximation to the function



CoRR algorithm

Step 2: fit a convex envelope to the function

$$\widehat{\theta}_c = \arg\min_{\theta\in\Theta} \widehat{\mathbb{E}}_1[|h(x;\theta) - f(x)|] \text{ s.t. } \widehat{\mathbb{E}}_2[h(x;\theta)] = \mu$$

Lemma 1 tells us how we should regularize this problem...

finding μ

1. Solve **Step 2** for fixed value of $\mu \longrightarrow h(x; \theta_{\mu})$ 2. Optimize the convex function $h(x) \longrightarrow \hat{x}_{\mu}$

$$\widehat{\mu} = \operatorname*{arg\,min}_{\mu \in [-R,R]} f(\widehat{x}_{\mu})$$

(Thm. 1) After T function evaluations, CoRR returns an estimate \hat{x} such that with probability $1 - \delta$

$$f(\widehat{x}) - f^* = \mathcal{O}\left[\left(\frac{\log(1/\delta)}{T}\right)^{\alpha}\right]$$

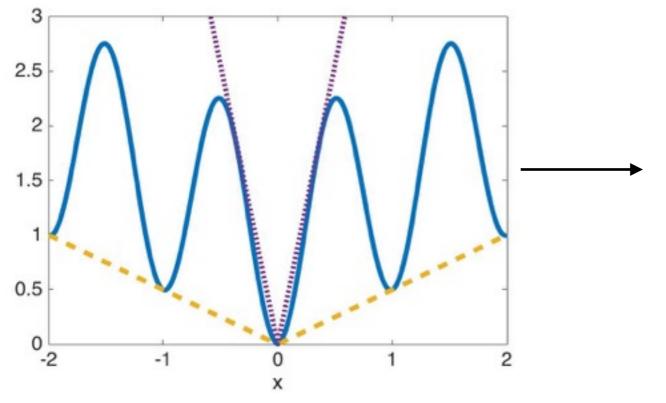
(Thm. 1) After T function evaluations, CoRR returns an estimate \hat{x} such that with probability $1 - \delta$

$$f(\widehat{x}) - f^* = \mathcal{O}\left[\left(\frac{\log(1/\delta)}{T}\right)^{\alpha}\right]$$

characterizes difficulty of problem

(Thm. 1) After T function evaluations, CoRR returns an estimate \hat{x} such that with probability $1 - \delta$

$$f(\widehat{x}) - f^* = \mathcal{O}\left[\left(\frac{\log(1/\delta)}{T}\right)^{\alpha}\right]$$

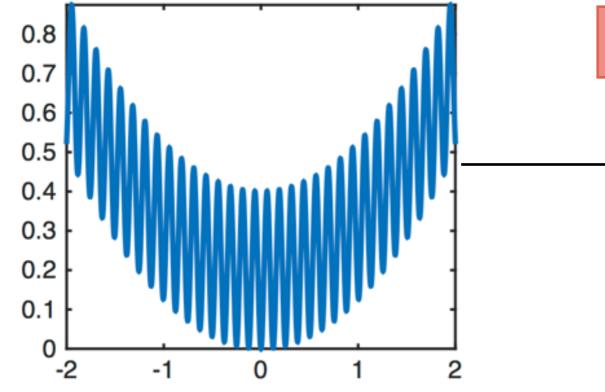


what makes a problem easy:

1. smoothness around its minimum 2. upper and lower bound are matched u = 1/2

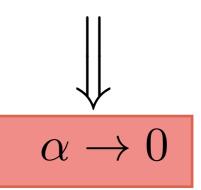
(Thm. 1) After T function evaluations, CoRR returns an estimate \hat{x} such that with probability $1 - \delta$

$$f(\widehat{x}) - f^* = \mathcal{O}\left[\left(\frac{\log(1/\delta)}{T}\right)^{\alpha}\right]$$

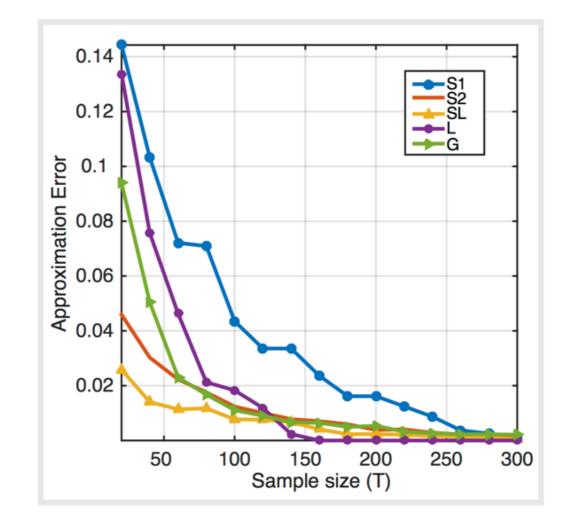


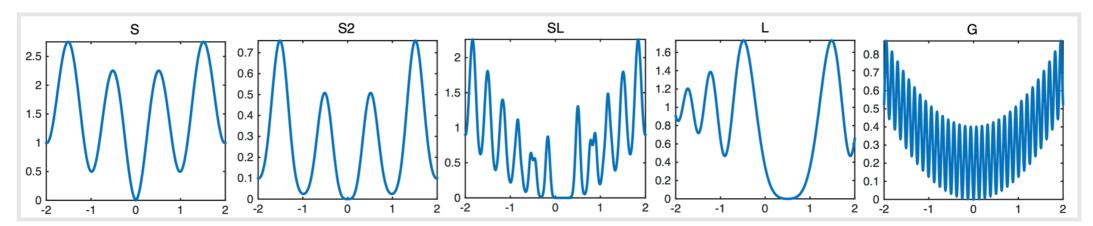
what makes a problem difficult:

- 1. fast growth around its minimum
- 2. needle in the haystack!

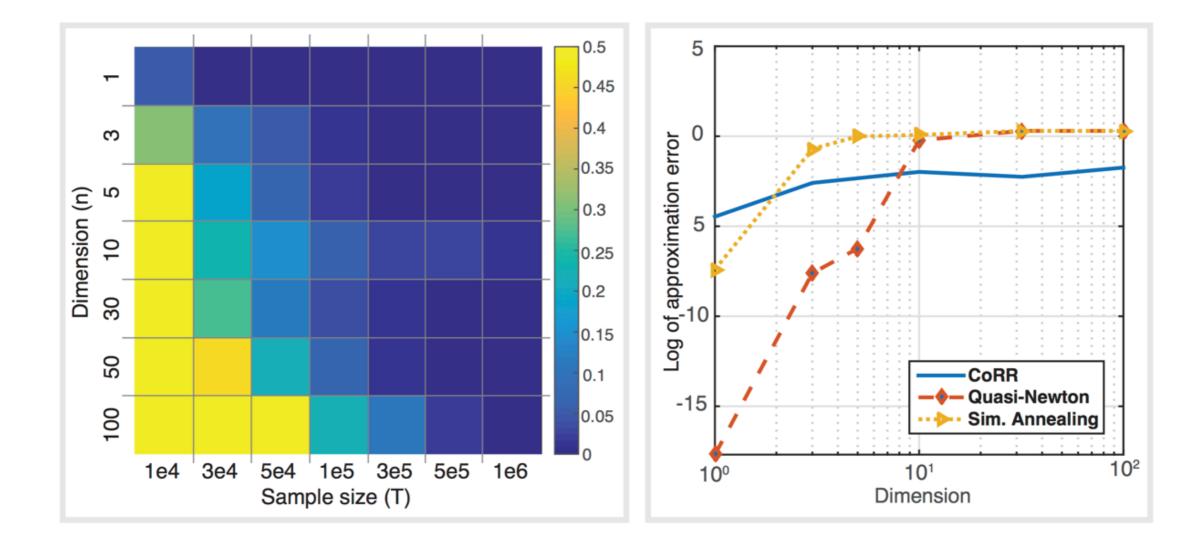


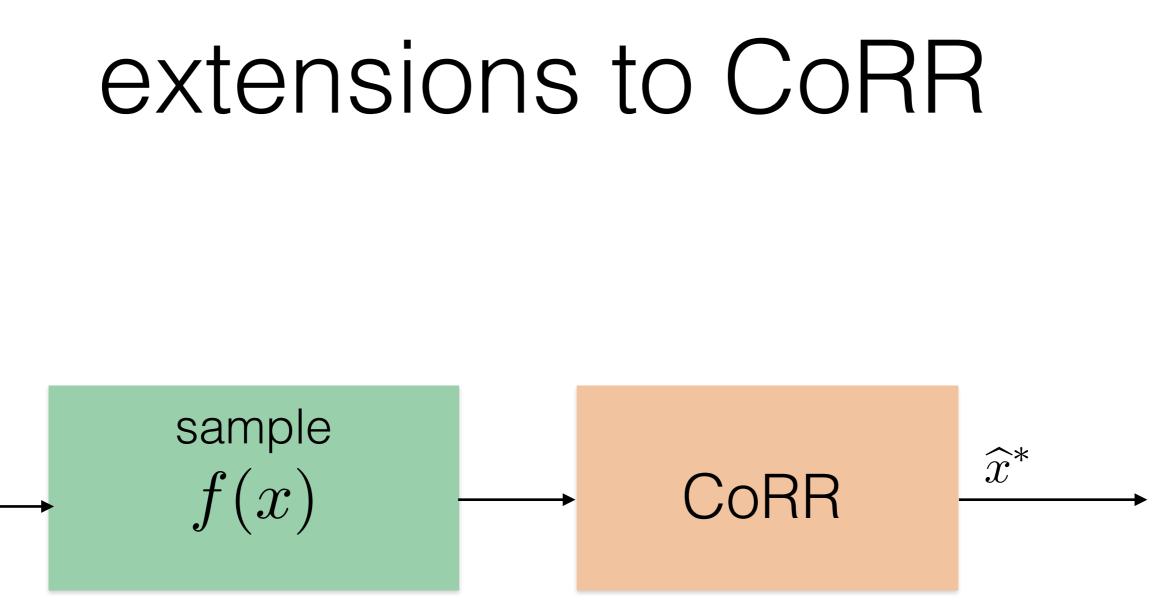
numerical results





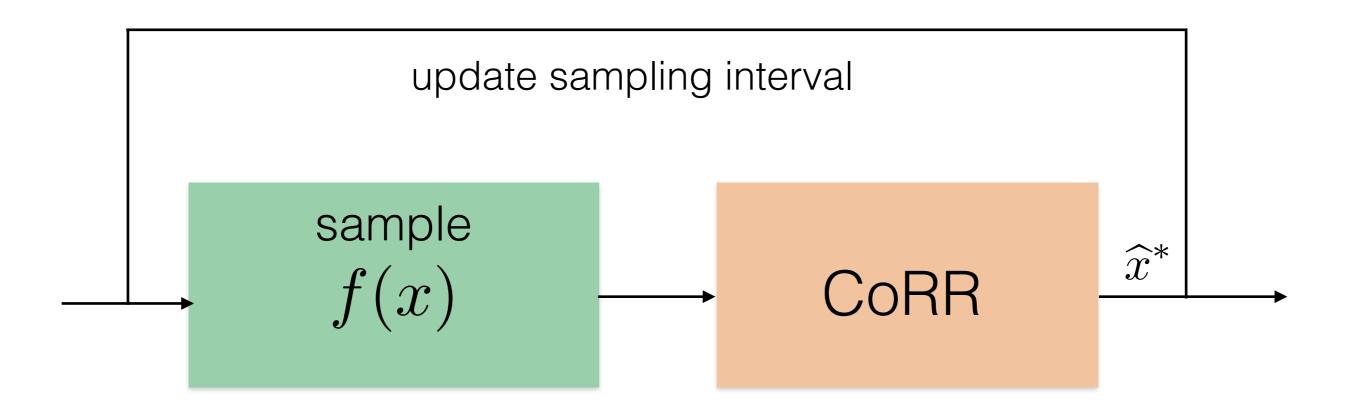
numerical results





CoRR = fixed set of samples (one-shot)

extensions to CoRR



adaCoRR = iteratively select samples around \widehat{x}^*

take-home message...

new approach for solving non-convex problems

CoRR = Convex Relaxation Regression

- learn a convex approximation h(x) from black-box samples of f(x)
- 2. optimize a convex surrogate instead of f(x)

the team

Mohammad Azar (Google DeepMind)

Konrad Körding (RIC, Northwestern)

thank you!

questions?