A Characterization of
 Markov Equivalence Classes of Relational Causal Models under Path Semantics

Sanghack Lee
joint work with Vasant Honavar

Penn State University
June 27, UAI 2016

Overview

- Relational Causal Model (RCM, Maier et al. 2010) is
- a generalization of Causal Bayesian Network (CBN, causal DAG)
- one of relational models (between PRM \& DAPER).
- Generalized
- (causal) Markov condition, (causal) faithfulness
- d-separation
- Characterization of Markov equivalence of RCM
- When do two RCMs yield the same independence relations?
- Generalized existing ideas for Markov equivalence of DAG.
- Basis for a sound and complete causal discovery algorithm

Overview

- Relational Causal Model (RCM, Maier et al. 2010) is
- a generalization of Causal Bayesian Network (CBN, causal DAG)
- one of relational models (between PRM \& DAPER).
- Generalized
- (causal) Markov condition, (causal) faithfulness
- d-separation
- Characterization of Markov equivalence of RCM
- When do two RCMs yield the same independence relations?
- Generalized existing ideas for Markov equivalence of DAG.
- Basis for a sound and complete causal discovery algorithm

Overview

- Relational Causal Model (RCM, Maier et al. 2010) is
- a generalization of Causal Bayesian Network (CBN, causal DAG)
- one of relational models (between PRM \& DAPER).
- Generalized
- (causal) Markov condition, (causal) faithfulness
- d-separation
- Characterization of Markov equivalence of RCM
- When do two RCMs yield the same independence relations?
- Generalized existing ideas for Markov equivalence of DAG.
- Basis for a sound and complete causal discovery algorithm

Overview

- Relational Causal Model (RCM, Maier et al. 2010) is
- a generalization of Causal Bayesian Network (CBN, causal DAG)
- one of relational models (between PRM \& DAPER).
- Generalized
- (causal) Markov condition, (causal) faithfulness
- d-separation
- Characterization of Markov equivalence of RCM
- When do two RCMs yield the same independence relations?
- Generalized existing ideas for Markov equivalence of DAG.
- Basis for a sound and complete causal discovery algorithm

BACKGROUND

- Relational Schema S
- Relational Skeleton σ
- Relational Causal Model \mathcal{M}
- Ground Graph $\mathcal{G}_{\sigma}^{\mathcal{M}}$

Relational Schema S

- $\mathcal{S}=(\mathcal{E}, \mathcal{R}, \mathcal{A}$, card $)$

Entity classes \mathcal{E}, Relationship classes \mathcal{R}, Attribute classes \mathcal{A}
Cardinality constraints, $\mathcal{R} \times \mathcal{E} \rightarrow$ \{one, many $\}$

Maier [2014]

Relational Skeleton $\sigma \in \Sigma_{\delta}$

- an instance of the given relational schema \mathcal{S}
- Σ_{s}, all possible instantiations
- an undirected bipartite graph
- node = item (i.e., entity or relationship, i, j)
- edge $=$ the participation of an entity in a relationship

modified from Maier [2014]

Relational Skeleton $\sigma \in \Sigma_{\delta}$

- an instance of the given relational schema \mathcal{S}
- Σ_{s}, all possible instantiations
- an undirected bipartite graph
- node = item (i.e., entity or relationship, i, j)
- edge $=$ the participation of an entity in a relationship

modified from Maier [2014]

Relational Causal Model

- $\mathcal{M}=(\mathcal{S}, \mathbf{D}, \boldsymbol{\Theta})$
with a set of relational dependencies \mathbf{D}, and relevant functions or parameters $\boldsymbol{\Theta}$

Relational Causal Model

- $\mathcal{M}=(\mathcal{S}, \mathbf{D}, \boldsymbol{\Theta})$
with a set of relational dependencies \mathbf{D}, and relevant functions or parameters $\boldsymbol{\Theta}$

relational dependency

Success of a product depends on the Competence of its developer(s).
[Product, Develops, Employee]. Competence \rightarrow [Product].Success
relational path

Relational Causal Model

- $\mathcal{M}=(\mathcal{S}, \mathbf{D}, \boldsymbol{\Theta})$
with a set of relational dependencies \mathbf{D}, and relevant functions or parameters $\boldsymbol{\Theta}$

relational dependency

Success of a product depends on the Competence of its developer(s).
[Product, Develops, Employee]. Competence $\rightarrow{ }^{\nu}$ Success

Relational Causal Model

- $\mathcal{M}=(\mathcal{S}, \mathbf{D}, \boldsymbol{\Theta})$
with a set of relational dependencies \mathbf{D}, and relevant functions or parameters $\boldsymbol{\Theta}$

[E]. Competence $\rightarrow \mathcal{V}_{\text {Salary }}$,
$[P, D, E]$.Competence $\rightarrow \nu_{\text {Success }}$,
$[B, F, P]$.Success $\rightarrow \mathcal{V}_{\text {Revenue }}$,
$[B]$.Revenue $\rightarrow \mathcal{V}_{\text {Budget }}$,
$[E, D, P, F, B]$.Budget $\rightarrow \nu_{\text {Salary }}$

Maier [2014]

Relational Causal Model: Class Dependency Graph

- $\mathcal{M}=(\mathcal{S}, \mathbf{D}, \boldsymbol{\Theta})$ with a set of relational dependencies \mathbf{D}, and relevant functions or parameters $\boldsymbol{\Theta}$

Class Dependency Graph $\mathcal{G}_{\mathcal{A}}^{\mathcal{M}}$ acyclicity of an RCM
= acyclicity of its CDG
$=\mathcal{A}$ is partially-ordered.

Ground Graph \mathcal{G}_{σ}^{M}

- is an instance of an RCM \mathcal{M} given a relational skeleton σ
- is a CBN of item-attributes (e.g., i.X, paul.Salary)

instantiating relational dependencies

$$
j . Y \rightarrow i . X \in \mathcal{G}_{\sigma}^{M} \quad \text { if } \exists P . Y \rightarrow \nu_{X} \in \mathbf{D} \text { and }\left.j \in P\right|_{i} ^{\sigma}
$$

Ground Graph $\mathcal{G}_{\sigma}^{\mathcal{M}}$

- is an instance of an RCM \mathcal{M} given a relational skeleton σ
- is a CBN of item-attributes (e.g., i.X, paul.Salary) instantiating $[E, D, P, F, B]$.Budget $\rightarrow \nu_{\text {Salary }} @$ paul

Ground Graph \mathcal{G}_{σ}^{M}

- is an instance of an RCM \mathcal{M} given a relational skeleton σ
- is a CBN of item-attributes (e.g., i.X, paul.Salary)

instantiating $[E, D, P, F, B]$.Budget $\rightarrow \nu_{\text {Salary }} @$ paul

$$
\{\text { accessories, devices }\}=\left.[E, D, P, F, B]\right|_{\text {paul }} ^{\sigma}
$$

Ground Graph $\mathcal{G}_{\sigma}^{\mathcal{M}}:$ Path Semantics

- is an instance of an RCM \mathcal{M} given a relational skeleton σ
- is a CBN of item-attributes (e.g., i.X, paul.Salary)
instantiating $[E, D, P, F, B]$.Budget $\rightarrow \nu_{\text {Salary }} @$ paul

$$
\text { accessories }\left.\in[\mathbf{E}, \mathbf{D}, \mathbf{P}, \mathbf{F}, \mathbf{B}]\right|_{\text {paul }} ^{\sigma}
$$

Ground Graph $\mathcal{G}_{\sigma}^{\mathcal{M}}:$ Path Semantics

- is an instance of an RCM \mathcal{M} given a relational skeleton σ
- is a CBN of item-attributes (e.g., i.X, paul.Salary)
instantiating $[E, D, P, F, B]$.Budget $\rightarrow \nu_{\text {Salary }} @$ paul

$$
\text { devices }\left.\in[\mathbf{E}, \mathbf{D}, \mathbf{P}, \mathbf{F}, \mathbf{B}]\right|_{\text {paul }} ^{\sigma}
$$

Ground Graph \mathcal{G}_{σ}^{M}

- is an instance of an RCM \mathcal{M} given a relational skeleton σ
- is a CBN of item-attributes (e.g., i.X, paul.Salary)

instantiating relational dependencies

$$
j . Y \rightarrow i . X \in \mathcal{G}_{\sigma}^{M} \quad \text { if } \exists P . Y \rightarrow \nu_{X} \in \mathbf{D} \text { and }\left.j \in P\right|_{i} ^{\sigma}
$$

MARKOV EQUIVALENCE of RCMs

Markov Equivalence of DAG: Review

Two DAGs \mathcal{G} and \mathcal{G}^{\prime} are equivalent under Markov condition, $[\mathcal{G}]=\left[\mathcal{G}^{\prime}\right]$, if they entail the same independence relations (= d-separation).

Markov Equivalence of DAG: Review

Two DAGs \mathcal{G} and \mathcal{G}^{\prime} are equivalent under Markov condition, $[\mathcal{G}]=\left[\mathcal{S}^{\prime}\right]$, if they entail the same independence relations (= d-separation).

unshielded colliders (e.g., $\{W \rightarrow X \leftarrow Z\}$)
$[\mathcal{G}]=\left[\mathcal{G}^{\prime}\right] \Leftrightarrow \operatorname{pattern}(\mathcal{G})=\operatorname{pattern}\left(\mathcal{G}^{\prime}\right)$ [Verma and Pearl, 1990]

Markov Equivalence of DAG: Review

Two DAGs \mathcal{G} and \mathcal{G}^{\prime} are equivalent under Markov condition, $[\mathcal{G}]=\left[\mathcal{S}^{\prime}\right]$, if they entail the same independence relations (= d-separation).

Pattern of \mathcal{G}

CPDAG of \mathcal{G}
unshielded non-colliders \& acyclicity
Meek's rules [Meek, 1995], \&
PDAG extensibility [Dor and Tarsi, 1992]

Markov Equivalence of DAG: Review

Markov Equivalence of RCM: Plan

Markov Equivalence of RCM

Two RCMs \mathcal{M} and \mathcal{M}^{\prime} are equivalent under Markov condition, $[\mathcal{M}]=\left[\mathcal{N}^{\prime}\right]$, if they entail the same set of relational d-separation.

Markov Equivalence of RCM

Two RCMs \mathcal{M} and \mathcal{N}^{\prime} are equivalent under Markov condition, $[\mathcal{M}]=\left[\mathcal{N}^{\prime}\right]$, if they entail the same set of relational d-separation.

Relational d-separation [Maier et al., 2013] generalizes d-separation among variables to among relational variables

Example

$[E]$.Salary $\Perp[E, D, P, D, E]$.Competence |
$\{[E]$. Competence, $[E, D, P, F, B]$. Budget $\}$

Markov Equivalence of RCM

Two RCMs \mathcal{M} and \mathcal{N}^{\prime} are equivalent under Markov condition, $[\mathcal{M}]=\left[\mathcal{N}^{\prime}\right]$, if they entail the same set of relational d-separation.

Relational d-separation [Maier et al., 2013] generalizes d-separation among variables to among relational variables

Example - base item class

$[E]$.Salary $\Perp[E, D, P, D, E]$.Competence \mid
$\{[E]$. Competence, $[E, D, P, F, B]$. Budget $\}$

Markov Equivalence of RCM

Two RCMs \mathcal{M} and \mathcal{N}^{\prime} are equivalent under Markov condition, $[\mathcal{M}]=\left[\mathcal{N}^{\prime}\right]$, if they entail the same set of relational d-separation.

Relational d-separation generalizes d-separation among variables (i.e., attributes) to among relational variables

relational d-separation $=\forall$ d-separation

Let U, V, \mathbf{W} be relational variables starting with $B \in \mathcal{E} \cup \mathcal{R}$,

$$
(U \Perp V \mid \mathbf{W})_{\mathcal{M}} \triangleq \forall_{\sigma \in \Sigma_{s}} \quad \forall_{i \in \sigma(B)}\left(\left.\left.U\right|_{i} ^{\sigma} \Perp V\right|_{i} ^{\sigma}|\mathbf{W}|_{i}^{\sigma}\right)_{\mathcal{S}_{\sigma}^{\mathcal{M}}}
$$

for every relational skeleton for every base item

Markov Equivalence of RCM

Two RCMs \mathcal{M} and \mathcal{M}^{\prime} are equivalent under Markov condition, $[\mathcal{M}]=\left[\mathcal{N}^{\prime}\right]$, if they entail the same set of relational d-separation.

Pattern of \mathcal{M}

A Necessary and Sufficient Condition

Theorem

$$
[\mathcal{M}]=\left[\mathcal{M}^{\prime}\right] \quad \Leftrightarrow \quad \forall_{\sigma \in \Sigma_{s}}\left[\mathcal{G}_{\sigma}^{\mathcal{M}}\right]=\left[9_{\sigma}^{\mathcal{M}^{\prime}}\right]
$$

- Sufficiency:
from the definition of relational d-separation
- Necessity:

1. Different adjacencies:

$$
\exists i . X-j . Y \quad \Rightarrow \quad \exists P . Y-\nu_{X} \quad \Rightarrow \quad \exists \mathbf{s} \nu_{X} \Perp P . Y \mid \mathbf{S}
$$

2. Different unshielded colliders:

$$
\exists(i . X, j . Y, k . Z) \Rightarrow \exists\left(\mathcal{V}_{X}, \mathbf{P} . Y, R . Z\right) \Rightarrow \exists \mathbf{s} \mathcal{V}_{X} \Perp R . Z \mid \mathbf{S}
$$

Pattern of RCM

Definition

adjacencies of $\mathcal{M}+$ orientations from canonical unshielded colliders of \mathcal{M}.

- Problem: infinite \# of canonical unshielded (non-)colliders. $\left\{\left(\mathcal{V}_{X}, \mathbf{P} . Y, R . Z\right)\right\}$ of $\mathcal{M} \quad \leftrightarrow \quad\{(i . X, j . Y, k . Z)\}$ of $\forall_{\sigma \in \Sigma_{S}} \mathcal{G}_{\sigma}^{\mathcal{M}}$.
- Solution: enumerate a sufficient subset of canonical unshielded triples to retrieve a pattern.

Pattern of RCM

Definition

adjacencies of $\mathcal{M}+$ orientations from canonical unshielded colliders of \mathcal{M}.

- Problem: infinite \# of canonical unshielded (non-)colliders.

$$
\left\{\left(\mathcal{V}_{X}, \mathbf{P} . Y, \text { R. } Z\right)\right\} \text { of } \mathcal{M} \quad \leftrightarrow \quad\{(i . X, j . Y, k . Z)\} \text { of } \forall_{\sigma \in \Sigma_{\delta}} \mathcal{G}_{\sigma}^{\mathcal{M}} .
$$

- Solution: enumerate a sufficient subset of canonical unshielded triples to retrieve a pattern.

Pattern of RCM

Definition

adjacencies of $\mathcal{M}+$ orientations from canonical unshielded colliders of \mathcal{M}.

- Problem: infinite \# of canonical unshielded (non-)colliders.

$$
\left\{\left(v_{X}, \mathbf{P} . Y, R . Z\right)\right\} \text { of } \mathcal{M} \quad \leftrightarrow \quad\{(i . X, j . Y, k . Z)\} \text { of } \forall_{\sigma \in \Sigma_{\delta}} \mathcal{G}_{\sigma}^{\mathcal{M}} .
$$

- Solution: enumerate a sufficient subset of canonical unshielded triples to retrieve a pattern.

undirected

([B].Budget, \{[B, F, P, D, E].Salary\}, [B, F, P, D, E].Competence) canonical unshielded collider

([E].Competence, $\{[E, D, P]$. Success $\},[E, D, P, D, E]$.Competence) canonical unshielded collider

([P].Success, $\{[P, F, B]$.Revenue $\},[P, F, B, F, P]$.Success) canonical unshielded collider

Pattern of RCM

Completed Partially-directed RCM: CPRCM

- acyclicity: \mathcal{A} is a partially-ordered set. CDG $\mathcal{G}_{\mathcal{A}}^{\mathcal{M}}$
- canonical unshielded non-colliders
e.g., ([B].Budget, $\{[B]$.Revenue $\},[B, F, P]$.Success)

Completed Partially-directed RCM: CPRCM

- acyclicity: \mathcal{A} is a partially-ordered set. CDG $\mathcal{G}_{\mathcal{A}}^{\mathcal{M}}$
- canonical unshielded non-colliders $=\mathcal{A}$-level non-colliders
e.g., (Budget, Revenue, Success)

Completed Partially-directed RCM: CPRCM

- acyclicity: \mathcal{A} is a partially-ordered set. CDG $\mathcal{G}_{\mathcal{A}}^{\mathcal{M}}$
- canonical unshielded non-colliders $=\mathcal{A}$-level non-colliders
e.g., (Budget, Revenue, Success)
- generalized PDAG extensibility with (un)shielded non-colliders.

Completed Partially-directed RCM: CPRCM

- acyclicity: \mathcal{A} is a partially-ordered set. CDG $\mathcal{G}_{\mathcal{A}}^{\mathcal{M}}$
- canonical unshielded non-colliders $=\mathcal{A}$-level non-colliders
e.g., (Budget, Revenue, Success)
- generalized PDAG extensibility with (un)shielded non-colliders.

Pattern-CDG

pattern((\mathcal{M})

Completed Partially-directed RCM: CPRCM

- acyclicity: \mathcal{A} is a partially-ordered set. CDG $\mathcal{G}_{\mathcal{A}}^{\mathcal{M}}$
- canonical unshielded non-colliders $=\mathcal{A}$-level non-colliders
e.g., (Budget, Revenue, Success)
- generalized PDAG extensibility with (un)shielded non-colliders.

CP-CDG

CPRCM

Summary \& Future work

- RCM generalizes CBN
- Markov equivalence of RCM generalizes that of CBN.
- adjacencies and unshielded (non-)colliders.
- generalized PDAG extensibility with non-colliders.

Summary \& Future work

- RCM generalizes CBN
- Markov equivalence of RCM generalizes that of CBN.
- adjacencies and unshielded (non-)colliders.
- generalized PDAG extensibility with non-colliders.
- a sound mechanism for relational d-separation
- relax assumptions (e.g., acyclicity)
- accurate, non-parametric, CI tests for relational data (non-iid)
- robust causal discovery algorithm

Summary \& Future work

- RCM generalizes CBN
- Markov equivalence of RCM generalizes that of CBN.
- adjacencies and unshielded (non-)colliders.
- generalized PDAG extensibility with non-colliders.
- a sound mechanism for relational d-separation
- relax assumptions (e.g., acyclicity)
- accurate, non-parametric, Cl tests for relational data (non-iid)
- robust causal discovery algorithm
thank you meet me @ poster session

References I

Dorit Dor and Michael Tarsi. A simple algorithm to construct a consistent extension of a partially oriented graph. Technical Report R-185, Cognitive Systems Laboratory, UCLA, 1992.
Marc Maier, Brian Taylor, and David Jensen. Learning causal models of relational domains. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pages 531-538. AAAI Press, 2010.
Marc Maier, Katerina Marazopoulou, David Arbour, and David Jensen. A sound and complete algorithm for learning causal models from relational data. In Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pages 371-380. AUAI Press, 2013.
Marc E Maier. Causal Discovery for Relational Domains: Representation, Reasoning, and Learning. PhD thesis, University of Massachusetts Amherst, 2014.
Christopher Meek. Causal inference and causal explanation with background knowledge. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 403-410. Morgan Kaufmann, 1995.
Tom Verma and Judea Pearl. Equivalence and synthesis of causal models.
In Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, pages 220-227. AUAI Press, 1990.

