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Overview

I Relational Causal Model (RCM, Maier et al. 2010) is
- a generalization of Causal Bayesian Network (CBN, causal DAG)
- one of relational models (between PRM & DAPER).

I Generalized
- (causal) Markov condition, (causal) faithfulness
- d-separation

I Characterization of Markov equivalence of RCM
- When do two RCMs yield the same independence relations?
- Generalized existing ideas for Markov equivalence of DAG.

I Basis for a sound and complete causal discovery algorithm
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BACKGROUND

I Relational Schema S

I Relational Skeleton σ

I Relational Causal Model M

I Ground Graph GM
σ



Relational Schema S

I S = (E,R,A, card)

Entity classes E, Relationship classes R, Attribute classes A

Cardinality constraints, R× E→ {one,many}

Biz-Unit

revenue

budget

FundsDevelops

Product

success

Employee

competence

salary

many one manymany

Maier [2014]



Relational Skeleton σ ∈ ΣS

I an instance of the given relational schema S
I ΣS, all possible instantiations

I an undirected bipartite graph
I node = item (i.e., entity or relationship, i , j)
I edge = the participation of an entity in a relationship

adopter

paul sally

accessories devices

laptop tabletcase

modified from Maier [2014]
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Relational Causal Model

I M = (S,D,Θ)
with a set of relational dependencies D,
and relevant functions or parameters Θ
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Maier [2014]

[E ].Competence→VSalary ,

[P,D,E ].Competence→VSuccess,

[B,F ,P].Success →VRevenue,

[B].Revenue→VBudget ,

[E ,D,P,F ,B].Budget →VSalary



Relational Causal Model: Class Dependency Graph

I M = (S,D,Θ)
with a set of relational dependencies D,
and relevant functions or parameters Θ

revenue

budget

success

competence

salary

Class Dependency Graph GM
A

acyclicity of an RCM
= acyclicity of its CDG
= A is partially-ordered.



Ground Graph GM
σ

I is an instance of an RCM M given a relational skeleton σ
I is a CBN of item-attributes (e.g., i .X , paul .Salary )

instantiating relational dependencies

j .Y → i .X ∈ GM
σ if ∃P.Y → VX ∈ D and j ∈ P|σi
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Ground Graph GM
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I is an instance of an RCM M given a relational skeleton σ
I is a CBN of item-attributes (e.g., i .X , paul .Salary )

instantiating [E ,D,P,F ,B].Budget → VSalary @ paul
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adopter

paul sally

accessories devices

laptop tabletcase



Ground Graph GM
σ : Path Semantics

I is an instance of an RCM M given a relational skeleton σ
I is a CBN of item-attributes (e.g., i .X , paul .Salary )
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Ground Graph GM
σ

I is an instance of an RCM M given a relational skeleton σ
I is a CBN of item-attributes (e.g., i .X , paul .Salary )

instantiating relational dependencies

j .Y → i .X ∈ GM
σ if ∃P.Y → VX ∈ D and j ∈ P|σi



Relational Schema Relational Causal Model

Relational Skeleton(s) Ground Graph(s)

instantiated

given

instantiated

given



MARKOV EQUIVALENCE of RCMs



Markov Equivalence of DAG: Review

Two DAGs G and G′ are equivalent under Markov condition, [G] = [G′],
if they entail the same independence relations (= d-separation).
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unshielded non-colliders & acyclicity

Meek’s rules [Meek, 1995], &
PDAG extensibility [Dor and Tarsi, 1992]



Markov Equivalence of DAG: Review

DAG G pattern(G) CPDAG

Unshielded
Colliders

Unshielded
Non-colliders

Acyclicity



Markov Equivalence of RCM: Plan
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Markov Equivalence of RCM

Two RCMs M and M′ are equivalent under Markov condition,
[M] = [M′], if they entail the same set of relational d-separation.

Relational d-separation generalizes d-separation
among variables (i.e., attributes) to among relational variables

relational d-separation = ∀d-separation

Let U, V , W be relational variables starting with B ∈ E ∪ R,

(U ⊥⊥ V |W)M , ∀σ∈ΣS
∀i∈σ(B) (U|σi ⊥⊥ V |σi |W|σi )GM

σ

for every relational skeleton
for every base item



Markov Equivalence of RCM

Two RCMs M and M′ are equivalent under Markov condition,
[M] = [M′], if they entail the same set of relational d-separation.
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A Necessary and Sufficient Condition

Theorem
[M] = [M′] ⇔ ∀σ∈ΣS

[GM
σ ] = [GM′

σ ]

I Sufficiency:
from the definition of relational d-separation

I Necessity:
1. Different adjacencies:

∃i .X − j .Y ⇒ ∃P.Y − VX ⇒ ∃SVX ⊥⊥ P.Y | S

2. Different unshielded colliders:

∃(i .X , j .Y , k .Z ) ⇒ ∃(VX ,P.Y ,R.Z ) ⇒ ∃SVX ⊥⊥ R.Z | S
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Pattern of RCM

Definition
adjacencies of M +

orientations from canonical unshielded colliders of M.

I Problem: infinite # of canonical unshielded (non-)colliders.

{(VX ,P.Y ,R.Z )} of M ↔ {(i.X , j.Y , k .Z )} of ∀σ∈ΣS
GM
σ .

I Solution: enumerate a sufficient subset of canonical unshielded
triples to retrieve a pattern.
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([B].Budget , {[B,F ,P,D,E ].Salary}, [B,F ,P,D,E ].Competence)
canonical unshielded collider
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([E ].Competence, {[E ,D,P].Success}, [E ,D,P,D,E ].Competence)
canonical unshielded collider
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([P].Success, {[P,F ,B].Revenue}, [P,F ,B,F ,P].Success)
canonical unshielded collider
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Completed Partially-directed RCM: CPRCM
I acyclicity: A is a partially-ordered set. CDG GM

A

I canonical unshielded non-colliders
e.g., ([B].Budget , {[B].Revenue}, [B,F ,P].Success)

I generalized PDAG extensibility with (un)shielded non-colliders.
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Summary & Future work

I RCM generalizes CBN
I Markov equivalence of RCM generalizes that of CBN.

I adjacencies and unshielded (non-)colliders.
I generalized PDAG extensibility with non-colliders.

I a sound mechanism for relational d-separation
I relax assumptions (e.g., acyclicity)

I accurate, non-parametric, CI tests for relational data (non-iid)
I robust causal discovery algorithm
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