Bayesian Estimators As Voting Rules

Lirong Xia Rensselaer

UAI 2016

- "Complex voter weighting system"
 - Claimed to be accurate

≻a "true Bayesian estimate"

Claimed to be fair

Different Voice

Q: "This is unfair ! "

- "That film / show has received awards, great reviews, commendations and deserves a much higher vote!"
- My read: obviously strong candidates should win
- IMDB: "...only votes cast by IMDb users are counted. We do not delete or alter individual votes"

IMDb Votes/Ratings Top Frequently Asked Questions http://www.imdb.com/help/show_leaf?votestopfaq

This paper

- ➢Q1: How to measure fairness?
 - A: View them as voting rules

Evaluate by fairness axioms in social choice

- Q2: How can we design fair Bayesian estimators?
 - A: model + loss function [APX NIPS-14]

Who cares about both truth and fairness?

Social choice (rank aggregation)

Measuring Fairness of Voting Rules with Ties

Strict Condorcet criterion

- Weak Condorcet winners (if exist) must win
- Fairness for obviously strong candidates

Fairness Axiom: Condorcet Criterion

> (non-strict) Condorcet criterion

- Condorcet winner (if exist) must win
- Fairness for obviously strong candidates

Fairness Axiom: Neutrality

➢Neutrality

Fairness for candidates

Fairness Axiom: Anonymity

►Anonymity

Fairness for voters

Fairness Axiom: Monotonicity

Monotonicity

- Weak form of strategy-proofness
- Fairness for non-sophisticated voters

Bayesian estimators

r : Data \rightarrow *D* with minimum Bayesian expected lost:

•
$$r(P) = \operatorname{argmin}_{d} \mathsf{E}_{\theta|P} L(\theta, d)$$

General results

- Theorem: Strict Condorcet
 - No Bayesian estimator satisfies strict Condorcet criterion
- Theorem: Neutrality
 - **Neutral Bayesian estimators**
 - = Bayesian estimators of "neutral" models

Other fairness axioms?

Mallows' model [Mallows-1957]

- Fixed dispersion φ <1
- ➢Parameter space
 - all full rankings over candidates
- Sample space
 - i.i.d. generated full rankings
- ➢Probabilities:

 $\Pr_W(V) \propto \varphi^{\operatorname{Kendall}(V,W)}$

\geq Probabilities: $Z = 1 + 2\varphi + 2\varphi^2 + \varphi^3$

A Bayesian estimator

 $\succ f_{Ma}^{Top}$ (Mallows with the top loss) [Young 1988]

- Mallows' model
- Decision: a set of winners
- Loss: the top loss function

 L(*W*, *a*) =0 if *a* is top-ranked in *W*, otherwise it is 1
- Uniform prior

Condorcet's model [Condorcet-1785, Young-1988, ES UAI-14, APX NIPS-14]

- Fixed dispersion φ <1
- ➢Parameter space

- all binary relations over candidates
- Sample space
 - i.i.d. generated binary relations

➢Probabilities:

 $\Pr_W(V) \propto \varphi^{\operatorname{Kendall}(V,W)}$

A New Mechanism

 $\succ f_{Co}^{Borda}$ (Condorcet with Borda loss)

- Condorcet's model
- Decision: a set of winners
- Loss: the Borda loss function

 $\succ L(W, a) = #$ alternatives who beats a in W

• Uniform prior

Our Results

Bayesian estimator	Anonymity, neutrality, monotonicity	Strict Condorcet	Condorcet	Complexity
$f_{\mathrm{Ma}}^{\mathrm{Top}}$			$\frac{\varphi(1-\varphi^{m-1})}{1-\varphi} \le 1$	NPH [PRS UAI-12]
f_{Co} Borda		X	$\varphi \leq \frac{1}{m-1}$	
f_{Pair}^{1}			$\varphi \leq \frac{1}{m-1}$	Р
$f_{\rm Pair}^{2}$			×	

m: number of alternatives

 f_{Pair}^1 and f_{Pair}^2 are BEs of a new model

Answering the Questions

- ➢Q1: How to measure fairness?
 - A: View them as voting rules

> Evaluate by fairness axioms in social choice

Impossibility theorem about strict Condorcet criterion

- Q2: How can we design fair Bayesian estimators?
 - A: model + loss function [APX NIPS-14]

Use New BEs that satisfy many desirable axioms

Future Work

➢Other axioms

Other types preferences

- Partial orders, range voting (IMDb), probabilistic preferences...
- ➢Other types of mechanisms
 - Probabilistic mechanisms

Thank you!