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Problem Settings



Strongly Convex Optimization

We consider the constrained optimization problem

i f
i (x)

st c(x) <0,

where ¢(x) is convex and f(x) is -strongly convex.

e A stochastic access model for f(-), i.e., E[g(x)] € Of(x)
e A full access to the (sub)gradient of c(+)



Convex and Strongly Convex

e Convex in c(x)
c(x) = ¢(R) + Ve(x) (x = %) (1)
e [3-Strongly Convex in f(x)
f(x) = f(?)+Vf(X)T(X—>A<)+gllx—?\\27 (2)

which implies
B
F(x) 2 Fx) + Slx = x| 3)



Examples from Machine Learning

e Constrained Lasso

d
C(W)ZZ\W:'|—)\

e Large Margin Nearest Neighbor Classification Formulation

1< S
j=1

1 g , , ; :
- - > max(0, [Ix{ = xlI% — g — |2 +1)
j=1

c(A) = A—el

e Adding a L regularization term, i.e., |[w]||? or ||A||%, to attain strong
convexity.



Standard SGD for Solving Eq. (1)

o lIterate the following step
Xt41 = P{c(x)go} [xt — neg(xt)], (4)
where Pp[X] is a projection operator defined as
Pp[x] = in [|x — x||3. 5
p[x] = arg min ||lx — x| (5)

e Return the final solution as

1 T
XT:7;xt. (6)



Limitations in SGD

The computation in Pp[x] = arg min,ep || x — X||3 may be expensive if
c(x) is complex.

e Popular types of D as {x € R9*?:0 < x < e/} and
{x € RY: Ax < b}

e A projection onto a PSD cone

; _ 22
=
st. 0=<x=<e€l (7)

has the complexity of order O(d?).



The proposed Epro-SGD and its
Proximal Variant



Proposed Epro-SGD Approach

The standard SGD solves

min f(x)

X

s.t. c(x) <0 (8)

Our proposed Epro-SGD (Epoch-Projection SGD) considers to minimize
an augmented function

F(x) + Ale(x)]+- (9)

e [s]; is a hinge operator defined as [s]. =sif s >0, and [s] =0
otherwise.

e )\ is a prescribed parameter (our analysis shows it has to satisfy
A > Gi/p).



Proposed Epro-SGD Approach

Key ideas in Epro-SGD
e In the inner loop, iteratively optimize f(x) + A[c(x)]+, i.e,,
Xer1 = Xe — 1 {g(xt) + A0[c(x)]+}

e In the outer loop, compute the projection Xt = Pp[XT]
1 T
~ . ~12 -~
xT =argmin||x = X||5, x= =) x;.
r=argpiglx - %IE £ =23 0x
=

Main Advantage

e A projection is computed after one epoch (one inner loop).

e The optimal convergence rate can be obtained.



Main Algorithms

1: Initialization: x} € D and k=1
2 while Y5 T, <T
3: fort=1,..., T

4 Compute a stochastic gradient g(xX)

5 Compute xky; = xk — (g (k) + Mlc(x)]s)
6: endfor

7: Compute Xk = Pp[RX], where Xk = S xk/ T

8: Update Xf“ = >~<§ Tir1 = 2Tk, M1 = Nk /2

0: Set k=k+1

10: endwhile

e Line 3 - 6: inner loop

e Line 2 - 10: outer loop



Convergence Analysis

Assumptions

Al. The stochastic subgradient g(x) is uniformly bounded by G, i.e.,
1g()2 < G
A2. The subgradient dc(x) is uniformly bounded by G, i.e.,
[0c(x)]l2 < Go.
A3. There exists a positive value p > 0 such that
. > 5
c(x)=0, \/»rTE“@nc(x) v#£0 H V||2 =P
Remarks on A3

e For any X, let X = arg minc(x)<o ||x — X||3.
o e e
1% = X]l2 < ;[C(X)h, p>0. (10)

e Eq. (10) ensures that the projection of a point onto a feasible
domain does not deviate too much from this intermediate point.
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Convergence Analysis

Under Assumptions A1~A3, we derive

e Expected convergence bounds

e High-probability convergence bounds

all with optimal rates for strongly convex optimization.
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Expected Convergence Bound

Under Assumptions A1~A3 and given that f(x) is S-strongly convex, if
we let 1= p/(p— G1/A), G = G + \?G3, and set
T1 =8, = 11/(2B), the total number of epochs k' is given by

kT = [log2 (; + 1)} < log, (D : (11)

the solution xlkhrl enjoys a convergence rate of
3242 G?
E[f(x<' )] = f(x) < ——— 12
[FOq )] (X)_ﬁ(T+8)’ (12)

and c(xlkul) < 0.
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High Probability Bound

Under Assumptions A1~A3 and given ||x; — x.||2 < D for all t. If we let
w=rp/(p— Gi/N), G*> = G2+ \2G2,

C = (8GZ/B+2G,D)In(m/e) +2G, D, and set

Ty > max (3CB/ (1G?),9), m = p/(3B), the total number of epochs k'
is given by

Kkt = {Iogz (TTl + 1)J < logy(T/4),

and the final solution xlkT+1 enjoys a convergence rate of
t 4T 112 G?
g 1) = F(x) < s

with a probability at least 1 — §, where m = [2log, T].
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Limitations in Epro-SGD

e The proposed Epro-SGD introduces an augmented objective function
f(x) + Ale(x)]+
and optimize it in the inner loop as
Xer1 = X — 1 {g(xe) + A0[c(xe)]+} -

e The desirable structure of the objective function, for example,
F(x) = 1 Xia(al x = bi)? +7llx

1, Is not exploited.
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Proximal Variant of Epro-SGD

e Propose a proximal variant to exploit the desirable structure.

e Denote the objective function by
f(x) = h(x) + k(x),

where k(x) embeds the structure of interest.

e The proposed Epro-SGD proximal variant introduces an augmented

objective function as

h(x) + N[c(x)]+ + k(x). (13)
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Proximal Variant of Epro-SGD

Key ideas

e In the inner loop, iteratively optimize h(x) + A[c(x)]+ + k(x), i.e,,

Xe1 = arg min % Ix = [xe — n(g(x) + A0[c(x)]-)]ll5 + nk(x).

e In the outer loop, compute the projection Xt = Pp[XT]

-

- . 2 o~ 1

XT = a"ggyg [x = X]l3, x= 72&'-
i=1
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Expected Convergence Bound

o~

Under Assumptions A1~A3 and given that f(x) is S-strongly convex, if
we let = p/(p — Gi/N\) and G = 3G; + 2\Gy, and set T; = 16,
m = j1/3, then the total number of epochs k' is given by

Kt = bog2 <1T7 + 1)J < log,(T/8),

and the final solution xlkul enjoys a convergence rate of
-~ ~ 68112 G2
E[F(x" )] = F(x,) < ———
(FOd ] = Fo) < gt

and c(xlkul) < 0.
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Comparisons and Experiments




Comparison with Competing Algorithms

Algorithms H Convergence Rate ‘ Project Number
Standard SGD (SGD) O(logT/T) o(T)
One-Projection SGD (OneProj) || O(logT/T) 1
log T-projection SGD (logT) O(1/T) O(klog T)
Epro-SGD o(1/T) O(log T)

e In SGD, OneProj, and Epro-SGD, 1, is set to 1/(At).
e In LogT, 7, is set to 1/(v/6L) as suggested in the original paper.
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e Solve L1-norm constrained least squares optimization problem

N
. 1
min W\/;(XiTW_yi)2+a||W”2

w

st |wlh <8

e Compare SGD, OneProj, logT, Epro-SGD, in terms of objective
values, and the required computation time.
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Experiments
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Figure 1: Empirical comparison of the four competing methods for solving
the constrained Lasso. (1) Left plot: the change of the objective values with
respect to the iteration number. (2) Right plot: the change of the objective
values with respect to the computation time (in seconds).
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LMNN

e Solve the large margin nearest neighbor (LMNN) classification
formulation

N
. C . . .
min N;é(A,x{,Xé,Xé> + (1 — c)tr(AL)

M1 o
+7||A||,2: + 2| AlIST
s.t. A= el, (14)

e Compare SGD, OneProj, logT, Epro-SGD, in terms of objective
values, and the required computation time.
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Experiments
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Figure 2: Empirical comparison of the four competing methods for solving
LMNN. (1) Left plot: the change of the objective values with respect to the
iteration number. (2) Right plot: the change of the objective value with
respect to the computation time.
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