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Problem Settings



Strongly Convex Optimization

We consider the constrained optimization problem

min
x∈Rd/Rp×q

f (x)

s.t. c(x) ≤ 0,

where c(x) is convex and f (x) is β-strongly convex.

• A stochastic access model for f (·), i.e., E [g(x)] ∈ ∂f (x)

• A full access to the (sub)gradient of c(·)
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Convex and Strongly Convex

• Convex in c(x)

c(x) ≥ c(x̂) +∇c(x)T (x − x̂) (1)

• β-Strongly Convex in f (x)

f (x) ≥ f (x̂) +∇f (x)T (x − x̂) +
β

2
‖x − x̂‖2, (2)

which implies

f (x) ≥ f (x∗) +
β

2
‖x − x∗‖2. (3)

3



Examples from Machine Learning

• Constrained Lasso

f (w) =
1

n

n∑
i=1

` (ai , bi ,w) =
1

n

n∑
i=1

(
aTi w − bi

)2

c(w) =
d∑

j=1

|wi | − λ

• Large Margin Nearest Neighbor Classification Formulation

f (A) =
1

n

n∑
j=1

`(A, x j1, x
j
2, x

j
3)

=
1

n

n∑
j=1

max(0, ‖x j1 − x j2‖
2
A − ‖x

j
1 − x j3‖

2
A + 1)

c(A) = A− εI

• Adding a L2 regularization term, i.e., ‖w‖2 or ‖A‖2
F , to attain strong

convexity.
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Standard SGD for Solving Eq. (1)

• Iterate the following step

xt+1 = P{c(x)≤0} [xt − ηtg(xt)] , (4)

where PD [x̂ ] is a projection operator defined as

PD [x̂ ] = arg min
x∈D
‖x − x̂‖2

2. (5)

• Return the final solution as

x̂T =
1

T

T∑
t=1

xt . (6)
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Limitations in SGD

The computation in PD [x̂ ] = arg minx∈D ‖x − x̂‖2
2 may be expensive if

c(x) is complex.

• Popular types of D as {x ∈ Rd×d : 0 � x � εI} and

{x ∈ Rd : Ax ≤ b}
• A projection onto a PSD cone

min
x∈Rd×d

‖x − x̂‖2
2

s.t. 0 � x � εI (7)

has the complexity of order O(d3).
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The proposed Epro-SGD and its

Proximal Variant



Proposed Epro-SGD Approach

The standard SGD solves

min
x

f (x)

s.t. c(x) ≤ 0 (8)

Our proposed Epro-SGD (Epoch-Projection SGD) considers to minimize

an augmented function

f (x) + λ[c(x)]+. (9)

• [s]+ is a hinge operator defined as [s]+ = s if s ≥ 0, and [s]+ = 0

otherwise.

• λ is a prescribed parameter (our analysis shows it has to satisfy

λ > G1/ρ).
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Proposed Epro-SGD Approach

Key ideas in Epro-SGD

• In the inner loop, iteratively optimize f (x) + λ[c(x)]+, i.e,,

xt+1 = xt − η {g(xt) + λ∂[c(xt)]+}

• In the outer loop, compute the projection x̃T = PD [x̂T ]

x̃T = arg min
x∈D
‖x − x̂‖2

2, x̂ =
1

T

T∑
i=1

xi .

Main Advantage

• A projection is computed after one epoch (one inner loop).

• The optimal convergence rate can be obtained.
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Main Algorithms

1: Initialization: x1
1 ∈ D and k = 1

2: while
∑k

i=1 Ti ≤ T

3: for t = 1, . . . ,Tk

4: Compute a stochastic gradient g(xkt )

5: Compute xkt+1 = xkt − ηk(g(xkt ) + λ∂[c(xkt )]+)

6: endfor

7: Compute x̃kT = PD [x̂kT ], where x̂kT =
∑Tk

t=1 x
k
t /Tk

8: Update xk+1
1 = x̃kT , Tk+1 = 2Tk , ηk+1 = ηk/2

9: Set k = k + 1

10: endwhile

• Line 3 - 6: inner loop

• Line 2 - 10: outer loop
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Convergence Analysis

Assumptions

A1. The stochastic subgradient g(x) is uniformly bounded by G1, i.e.,

‖g(x)‖2 ≤ G1.

A2. The subgradient ∂c(x) is uniformly bounded by G2, i.e.,

‖∂c(x)‖2 ≤ G2.

A3. There exists a positive value ρ > 0 such that[
min

c(x)=0, v∈∂c(x), v 6=0
‖v‖2

]
≥ ρ.

Remarks on A3

• For any x̂ , let x̃ = arg minc(x)≤0 ‖x − x̂‖2
2.

‖x̂ − x̃‖2 ≤
1

ρ
[c(x̂)]+, ρ > 0. (10)

• Eq. (10) ensures that the projection of a point onto a feasible

domain does not deviate too much from this intermediate point.
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Convergence Analysis

Under Assumptions A1∼A3, we derive

• Expected convergence bounds

• High-probability convergence bounds

all with optimal rates for strongly convex optimization.
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Expected Convergence Bound

Under Assumptions A1∼A3 and given that f (x) is β-strongly convex, if

we let µ = ρ/(ρ− G1/λ), G 2 = G 2
1 + λ2G 2

2 , and set

T1 = 8, η1 = µ/(2β), the total number of epochs k† is given by

k† =

⌈
log2

(
T

8
+ 1

)⌉
≤ log2

(
T

4

)
, (11)

the solution xk
†+1

1 enjoys a convergence rate of

E [f (xk
†+1

1 )]− f (x∗) ≤
32µ2G 2

β(T + 8)
, (12)

and c(xk
†+1

1 ) ≤ 0.
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High Probability Bound

Under Assumptions A1∼A3 and given ‖xt − x∗‖2 ≤ D for all t. If we let

µ = ρ/(ρ− G1/λ), G 2 = G 2
1 + λ2G 2

2 ,

C =
(
8G 2

1 /β + 2G1D
)

ln(m/ε) + 2G1D, and set

T1 ≥ max
(
3Cβ/

(
µG 2

)
, 9
)
, η1 = µ/(3β), the total number of epochs k†

is given by

k† =

⌊
log2

(
T

T1
+ 1

)⌋
≤ log2(T/4),

and the final solution xk
†+1

1 enjoys a convergence rate of

f (xk
†+1

1 )− f (x∗) ≤
4T1µ

2G 2

β(T + T1)

with a probability at least 1− δ, where m = d2 log2 T e.
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Limitations in Epro-SGD

• The proposed Epro-SGD introduces an augmented objective function

f (x) + λ[c(x)]+

and optimize it in the inner loop as

xt+1 = xt − η {g(xt) + λ∂[c(xt)]+} .

• The desirable structure of the objective function, for example,

f (x) = 1
n

∑n
i=1(aTi x − bi )

2 + γ‖x‖1, is not exploited.
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Proximal Variant of Epro-SGD

• Propose a proximal variant to exploit the desirable structure.

• Denote the objective function by

f (x) = h(x) + k(x),

where k(x) embeds the structure of interest.

• The proposed Epro-SGD proximal variant introduces an augmented

objective function as

h(x) + λ[c(x)]+ + k(x). (13)
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Proximal Variant of Epro-SGD

Key ideas

• In the inner loop, iteratively optimize h(x) + λ[c(x)]+ + k(x), i.e,,

xt+1 = arg min
x

1

2
‖x − [xt − η(g(xt) + λ∂[c(xt)]+)]‖2

2 + ηk(x).

• In the outer loop, compute the projection x̃T = PD [x̂T ]

x̃T = arg min
x∈D
‖x − x̂‖2

2, x̂ =
1

T

T∑
i=1

xi .
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Expected Convergence Bound

Under Assumptions A1∼A3 and given that f̂ (x) is β-strongly convex, if

we let µ = ρ/(ρ− G1/λ) and G = 3G1 + 2λG2, and set T1 = 16,

η1 = µ/β, then the total number of epochs k† is given by

k† =

⌊
log2

(
T

17
+ 1

)⌋
≤ log2(T/8),

and the final solution xk
†+1

1 enjoys a convergence rate of

E [f̂ (xk
†+1

1 )]− f̂ (x∗) ≤
68µ2G 2

β(T + 17)
,

and c(xk
†+1

1 ) ≤ 0.
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Comparisons and Experiments



Comparison with Competing Algorithms

Algorithms Convergence Rate Project Number

Standard SGD (SGD) O(logT/T ) O(T )

One-Projection SGD (OneProj) O(logT/T ) 1

logT-projection SGD (logT) O(1/T ) O(κ logT )

Epro-SGD O(1/T ) O(logT )

• In SGD, OneProj, and Epro-SGD, ηt is set to 1/(λt).

• In LogT, ηt is set to 1/(
√

6L) as suggested in the original paper.
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Experiments

• Solve L1-norm constrained least squares optimization problem

min
w

1

2N

N∑
i=1

(
xTi w − yi

)2
+ α‖w‖2

s.t. ‖w‖1 ≤ β.

• Compare SGD, OneProj, logT, Epro-SGD, in terms of objective

values, and the required computation time.
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Experiments

iteration
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Figure 1: Empirical comparison of the four competing methods for solving

the constrained Lasso. (1) Left plot: the change of the objective values with

respect to the iteration number. (2) Right plot: the change of the objective

values with respect to the computation time (in seconds).
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LMNN

• Solve the large margin nearest neighbor (LMNN) classification

formulation

min
A

c

N

N∑
j=1

`
(
A, x j1, x

j
2, x

j
3

)
+ (1− c)tr(AL)

+
µ1

2
‖A‖2

F + µ2‖A‖off
1

s.t. A � εI , (14)

• Compare SGD, OneProj, logT, Epro-SGD, in terms of objective

values, and the required computation time.
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Experiments

iteration
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Figure 2: Empirical comparison of the four competing methods for solving

LMNN. (1) Left plot: the change of the objective values with respect to the

iteration number. (2) Right plot: the change of the objective value with

respect to the computation time.
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Thank you!
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