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Overview

New probabilistic model for learning kernel mean embeddings:
» Bayesian Kernel Embedding combines a Gaussian process
prior over RKHS with conjugate likelihood
> Yields closed form Bayesian posterior
» Hyperparameter learning through sampling or by maximizing a
closed form marginal pseudolikelihood

» Yields a Bayesian viewpoint on estimation of kernel mean
embeddings and covariance operators for unsupervised
settings such as Maximum Mean Discrepancy (MMD) and
Hilbert-Schmidt Independence Criterion (HSIC)
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Kernel embeddings

X =RP Kernel k: X x X — R and corresponding RKHS #.
Feature space representation: ¢(x) = k(-, x).

h: X — R where h(x) = (h, k(-,x))n,, Vx € X ,Vhe H
For probability measure P on X, define kernel embedding in H:
p = /k(.,x) P(dx).

up € Hy uniquely represents P for characteristic kernels
(captures all moments), and gives expectations of RKHS functions:

/ Bx)P(d) = (h, e,

X H;.
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Estimating kernel mean embeddings

Given iid samples x, ..., x,, empirical estimator:
1 n
ﬁ; = HMp = E Zk('vxi)’
i=1
Spectral kernel mean shrinkage estimator (S-KMSE) of ?:

fin = Exx (Exx + M) p,

where 3 xx = 15" 1 k(-,x;)) ® k(. x;) is the empirical covariance
operator on Hy, and A is a regularization parameter.
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Statistical testing with kernel embeddings

pk(P) = Ex[k(-, X)]

k(@) = Ey[k(-, V)]

o —7m
ek (P) = 1 ( Q)[4

Figure: Given a kernel k and probability measures P and Q, the maximum
mean discrepancy (MMD) between P and Q (?) is defined as the RKHS
distance ||,LLP — /J’Q”Hk between their embeddings. [Figure credit: Heiko Strathmann.]
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Uses of kernel embeddings

For an overview, see Muandet et al. survey [2016]

>

Statistical testing: two sample testing, (conditional)
independence testing

Learning with kernels: kernel Bayes' rule, kernel EP, kernel
ABC, etc.

Kernel PCA and kernel CCA
Distribution regression

Many causal inference approaches, e.g. Zhang et al. [UAI
2012], Lopez-Paz et al. [ICML 2015], Flaxman et al. [ACM
TIST 2015]

Note: randomized explicit feature expansions (e.g. random Fourier
features) mean these methods are scalable and do not require the
kernel trick.
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How to set hyperparameters?

!
flx—x"||?

k(x,x')=e 22

v

Supervised settings

v

Classical approaches

v

Gaussian processes

» Unsupervised settings: “median heuristic”:

lengthscale ¢ = median(||x; — x;]|2)
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Problem statement

Given a parametric family of kernels {ky(-,-)}gco, a dataset
{x;}7_, ~ P of observations in RP for an unknown P, we wish to:

» Infer the kernel embedding upg = [ kg (-, x) P(dx) for a given
kernel kg, given observations.

> Infer the kernel hyperparameters 6, given observations.

0 determines kg which determines Hy so at a high level, we are
trying to learn a good feature representation.

For Bayesian posterior learning, need both a prior over up g and a
likelihood.
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Prior: an approach that does not work!
Let h ~ GP(0, kg(+,))-

Then P(h € Hy) = 0 [Parzen 1963, Wahba 1990, Luki¢ & Beder
2001].

Why? Because | h||3;, is not finite. Proof in Appendix.
Intuition: f € H, is smoother then h.

Nuclear dominance [Fortet 1974, Luki¢ & Beder 2001, Pillai et al
2007] makes this precise.

9/23



Prior: an approach that does work

We define a GP prior over g as follows:
po | 6~ g'P(O, r9('> )) )
) = [ ol a(u. y)u(da)

where v is any finite measure on X.

This choice of ry ensures that py € Hy, with probability 1 by the
nuclear dominance of ky over ry.

ry is the convolution of a kernel with itself with respect to v, so ry
can be thought of as a smoother version of ky.
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Likelihood

Likelihood links 19 to the observations {x;}7_;.

Use the empirical mean embedding estimator: 115 = £ 37 | k(-, x;)
which depends on {x;}7_; and 6.

Evaluate 7i5 at some x € RP,

Result: real number giving an empirical estimate of pg(x) based
on {xj}"_; and 0.
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Likelihood continued

Our likelihood links the empirical estimate, fig(x), to the
corresponding modeled estimate, py(x) using a Gaussian
distribution with variance 72/n:

P(Ra(x) po(x)) = N (Ha(x); po(x), 7%/n),  x € X.

CLT motivation: for fixed x, fig(x) = £ S°0_ ko(x;, x) is an

n
average of iid random variables so it satisfies:

Va(a(x) = po(x)) 2 N0, Varxplks(X, x)]).
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Posterior inference

Standard GP results (?) yield the posterior distribution:

[o(xa), - o)l | [a(xa), - - g (xa)] T, 0
~ N(Ro(Ro + (7 /n) 1) Mg (x1), - -, T (xa)] T,
Ry — Ro(Ro + (72/n)1n) " Ry),

where Ry is the matrix such that its (7, )-th element is ry(x;, X;).

For squared exponential kernel kg, easy to derive ry in closed form.
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[[lustration

H(x)
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[[lustration

P(u(3))
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Bayesian Kernel Learning

» We infer hyperparameters using marginal pseudolikelihood

> We evaluate empirical embedding at a set of points z,...,zny
in X C RP, with m > D.

» Consider change of variables from mapping ¢, : RP — R™,
given by

02(x) = [ko(x, 21), - - ., ko(x, zm)] € R™,

» By Cramér’'s decomposition theorem our model is equivalent

to:
¢Z(Xi)|ﬂ9 ~N (MB(Z)a 7'2lm) . (1)
» Applying the change of variable x — ¢,(x) we obtain:
p(x|pg,0) = p (¢2(x)|1o(z)) vol [Jp(x)], (2)
where Jp(x) = [%} _is.an m x D matrix.
ij
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Experiments

(A) data, epsilon=2 (B) data, epsilon=10

(C) Type Il error
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Experiments

(A) Normal vs. Laplace

—— Normal

/\ ©=-- Laplace

(B) Witness function (n = 50)
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Conclusion

» Lots

| 4

vV vy vy

of open questions:

Refining the model: more realistic likelihood

How well does it work in high-dimensions?

Scalable learning approaches

Can you choose between different kernel classes?

Does it help with KPCA, clustering, other unsupervised
settings?

Fully Bayesian measures of (in)dependence, distance between
distributions

> New paper on arXiv, “Probabilistic Integration and Intractable
Distributions” [Oates et al.] using Bayesian Kernel
Embedding.

» Come see poster for more details

Thanks!
Contact: flaxman@stats.ox.ac.uk
www.sethrf.com
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