# Bayesian Learning of Kernel Embeddings

**Seth Flaxman** Department of Statistics



joint work with Dino Sejdinovic, John P. Cunningham, and Sarah Filippi

UAI 2016

## Overview

New probabilistic model for learning kernel mean embeddings:

- Bayesian Kernel Embedding combines a Gaussian process prior over RKHS with conjugate likelihood
- Yields closed form Bayesian posterior
- Hyperparameter learning through sampling or by maximizing a closed form marginal pseudolikelihood
- Yields a Bayesian viewpoint on estimation of kernel mean embeddings and covariance operators for unsupervised settings such as Maximum Mean Discrepancy (MMD) and Hilbert-Schmidt Independence Criterion (HSIC)

## Kernel embeddings

 $\mathcal{X} = \mathbb{R}^D$  Kernel  $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  and corresponding RKHS  $\mathcal{H}_k$ . Feature space representation:  $\phi(x) = k(\cdot, x)$ .

 $h: \mathcal{X} \to \mathbb{R}$  where  $h(x) = \langle h, k(\cdot, x) \rangle_{\mathcal{H}_k}, \ \forall x \in \mathcal{X}, \forall h \in \mathcal{H}_k$ 

For probability measure P on  $\mathcal{X}$ , define kernel embedding in  $\mathcal{H}_k$ :

$$\mu_{\mathsf{P}} = \int k(\cdot, x) \, \mathsf{P}(dx).$$

 $\mu_{P} \in \mathcal{H}_{k}$  uniquely represents P for *characteristic* kernels (captures all moments), and gives expectations of RKHS functions:

$$\int h(x)\mathsf{P}(dx) = \langle h, \mu_{\mathsf{P}} \rangle_{\mathcal{H}_k}$$



#### Estimating kernel mean embeddings

Given iid samples  $x_1, \ldots, x_n$ , empirical estimator:

$$\widehat{\mu_{\mathsf{P}}} = \mu_{\widehat{\mathsf{P}}} = \frac{1}{n} \sum_{i=1}^{n} k(\cdot, x_i),$$

Spectral kernel mean shrinkage estimator (S-KMSE) of ?:

$$\check{\mu}_{\lambda} = \hat{\Sigma}_{XX} (\hat{\Sigma}_{XX} + \lambda I)^{-1} \widehat{\mu_{\mathsf{P}}},$$

where  $\hat{\Sigma}_{XX} = \frac{1}{n} \sum_{i=1}^{n} k(\cdot, x_i) \otimes k(\cdot, x_i)$  is the empirical covariance operator on  $\mathcal{H}_k$ , and  $\lambda$  is a regularization parameter.

Statistical testing with kernel embeddings



Figure: Given a kernel k and probability measures P and Q, the maximum mean discrepancy (MMD) between P and Q (?) is defined as the RKHS distance  $\|\mu_{P} - \mu_{Q}\|_{\mathcal{H}_{k}}$  between their embeddings. [Figure credit: Heiko Strathmann.]

## Uses of kernel embeddings

For an overview, see Muandet et al. survey [2016]

- Statistical testing: two sample testing, (conditional) independence testing
- Learning with kernels: kernel Bayes' rule, kernel EP, kernel ABC, etc.
- Kernel PCA and kernel CCA
- Distribution regression
- Many causal inference approaches, e.g. Zhang et al. [UAI 2012], Lopez-Paz et al. [ICML 2015], Flaxman et al. [ACM TIST 2015]

Note: randomized explicit feature expansions (e.g. random Fourier features) mean these methods are **scalable** and do not require the kernel trick.

## How to set hyperparameters?

$$k(x, x') = e^{-\frac{\|x-x'\|^2}{2\ell^2}}$$

- Supervised settings
- Classical approaches
- Gaussian processes
- Unsupervised settings: "median heuristic":

lengthscale  $\ell = \text{median}(||x_i - x_j||_2)$ 

## Problem statement

Given a parametric family of kernels  $\{k_{\theta}(\cdot, \cdot)\}_{\theta \in \Theta}$ , a dataset  $\{x_i\}_{i=1}^n \sim \mathsf{P}$  of observations in  $\mathbb{R}^D$  for an unknown  $\mathsf{P}$ , we wish to:

- ▶ Infer the kernel embedding  $\mu_{P,\theta} = \int k_{\theta}(\cdot, x) P(dx)$  for a given kernel  $k_{\theta}$ , given observations.
- Infer the kernel hyperparameters  $\theta$ , given observations.

 $\theta$  determines  $k_{\theta}$  which determines  $\mathcal{H}_k$  so at a high level, we are trying to learn a good feature representation.

For Bayesian posterior learning, need both a prior over  $\mu_{\mathrm{P},\theta}$  and a likelihood.

Prior: an approach that does not work!

Let 
$$h \sim \mathcal{GP}(0, k_{\theta}(\cdot, \cdot))$$
.

Then  $P(h \in \mathcal{H}_k) = 0$  [Parzen 1963, Wahba 1990, Lukić & Beder 2001].

Why? Because  $||h||_{\mathcal{H}_k}$  is not finite. Proof in Appendix.

Intuition:  $f \in \mathcal{H}_k$  is smoother then h.

*Nuclear dominance* [Fortet 1974, Lukić & Beder 2001, Pillai et al 2007] makes this precise.

#### Prior: an approach that does work

We define a GP prior over  $\mu_{\theta}$  as follows:

$$\mu_{ heta} \mid \theta \sim \mathcal{GP}(0, r_{ heta}(\cdot, \cdot)) \;,$$
  
 $r_{ heta}(x, y) := \int k_{ heta}(x, u) k_{ heta}(u, y) \nu(du) \;.$ 

where  $\nu$  is any finite measure on  $\mathcal{X}$ .

This choice of  $r_{\theta}$  ensures that  $\mu_{\theta} \in \mathcal{H}_{k_{\theta}}$  with probability 1 by the nuclear dominance of  $k_{\theta}$  over  $r_{\theta}$ .

 $r_{\theta}$  is the convolution of a kernel with itself with respect to  $\nu$ , so  $r_{\theta}$  can be thought of as a smoother version of  $k_{\theta}$ .

## Likelihood

Likelihood links  $\mu_{\theta}$  to the observations  $\{x_i\}_{i=1}^n$ .

Use the empirical mean embedding estimator:  $\widehat{\mu_{\theta}} = \frac{1}{n} \sum_{i=1}^{n} k(\cdot, x_i)$  which depends on  $\{x_i\}_{i=1}^{n}$  and  $\theta$ .

Evaluate  $\widehat{\mu_{\theta}}$  at some  $x \in \mathbb{R}^{D}$ .

**Result:** real number giving an empirical estimate of  $\mu_{\theta}(x)$  based on  $\{x_i\}_{i=1}^n$  and  $\theta$ .

## Likelihood continued

Our likelihood links the empirical estimate,  $\widehat{\mu_{\theta}}(x)$ , to the corresponding modeled estimate,  $\mu_{\theta}(x)$  using a Gaussian distribution with variance  $\tau^2/n$ :

$$p(\widehat{\mu_{ heta}}(x)|\mu_{ heta}(x)) = \mathcal{N}(\widehat{\mu_{ heta}}(x);\mu_{ heta}(x),\tau^2/n), \quad x \in \mathcal{X}.$$

CLT motivation: for fixed x,  $\widehat{\mu_{\theta}}(x) = \frac{1}{n} \sum_{i=1}^{n} k_{\theta}(x_i, x)$  is an average of iid random variables so it satisfies:

$$\sqrt{n}(\widehat{\mu_{ heta}}(x) - \mu_{ heta}(x)) \stackrel{D}{
ightarrow} \mathcal{N}(0, \operatorname{Var}_{X \sim \mathsf{P}}[k_{ heta}(X, x)]).$$

## Posterior inference

Standard GP results (?) yield the posterior distribution:

$$\begin{split} & [\mu_{\theta}(x_1), \dots, \mu_{\theta}(x_n)]^{\top} \mid [\widehat{\mu_{\theta}}(x_1), \dots, \widehat{\mu_{\theta}}(x_n)]^{\top}, \theta \\ & \sim \mathcal{N}(R_{\theta}(R_{\theta} + (\tau^2/n)I_n)^{-1}[\widehat{\mu_{\theta}}(x_1), \dots, \widehat{\mu_{\theta}}(x_n)]^{\top}, \\ & R_{\theta} - R_{\theta}(R_{\theta} + (\tau^2/n)I_n)^{-1}R_{\theta}), \end{split}$$

where  $R_{\theta}$  is the matrix such that its (i, j)-th element is  $r_{\theta}(x_i, x_j)$ .

For squared exponential kernel  $k_{\theta}$ , easy to derive  $r_{\theta}$  in closed form.

#### (A) Draws from the prior



#### (A) Draws from the prior



#### (A) Draws from the prior



Histogram of x



#### (B) Empirical mean



#### (C) Posterior



# Bayesian Kernel Learning

- We infer hyperparameters using marginal pseudolikelihood
- We evaluate empirical embedding at a set of points z<sub>1</sub>,..., z<sub>m</sub> in X ⊂ ℝ<sup>D</sup>, with m ≥ D.
- ► Consider change of variables from mapping φ<sub>z</sub> : ℝ<sup>D</sup> → ℝ<sup>m</sup>, given by

$$\phi_{\mathsf{z}}(x) := [k_{\theta}(x, z_1), \dots, k_{\theta}(x, z_m)] \in \mathbb{R}^m,$$

 By Cramér's decomposition theorem our model is equivalent to:

$$\phi_{\mathbf{z}}(X_i)|\mu_{\theta} \sim \mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \tau^2 I_m\right).$$
 (1)

• Applying the change of variable  $x \mapsto \phi_z(x)$  we obtain:

$$p(x|\mu_{\theta},\theta) = p(\phi_{z}(x)|\mu_{\theta}(z)) \operatorname{vol} \left[J_{\theta}(x)\right], \qquad (2)$$

where 
$$J_{ heta}(x) = \left[rac{\partial k_{ heta}(x,z_i)}{\partial x^{(j)}}
ight]_{ij}$$
 is an  $m imes D$  matrix.

## Experiments



# Experiments



# Conclusion

- Lots of open questions:
  - Refining the model: more realistic likelihood
  - How well does it work in high-dimensions?
  - Scalable learning approaches
  - Can you choose between different kernel classes?
  - Does it help with KPCA, clustering, other unsupervised settings?
  - Fully Bayesian measures of (in)dependence, distance between distributions
- New paper on arXiv, "Probabilistic Integration and Intractable Distributions" [Oates et al.] using Bayesian Kernel Embedding.
- Come see poster for more details

Thanks! Contact: flaxman@stats.ox.ac.uk www.sethrf.com