Bayesian Learning of Kernel Embeddings

Seth Flaxman
\section*{Department of Statistics}

joint work with Dino Sejdinovic, John P. Cunningham, and Sarah Filippi

UAI 2016

Overview

New probabilistic model for learning kernel mean embeddings:

- Bayesian Kernel Embedding combines a Gaussian process prior over RKHS with conjugate likelihood
- Yields closed form Bayesian posterior
- Hyperparameter learning through sampling or by maximizing a closed form marginal pseudolikelihood
- Yields a Bayesian viewpoint on estimation of kernel mean embeddings and covariance operators for unsupervised settings such as Maximum Mean Discrepancy (MMD) and Hilbert-Schmidt Independence Criterion (HSIC)

Kernel embeddings

$\mathcal{X}=\mathbb{R}^{D} \quad$ Kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ and corresponding RKHS \mathcal{H}_{k}.
Feature space representation: $\phi(x)=k(\cdot, x)$.

$$
h: \mathcal{X} \rightarrow \mathbb{R} \text { where } h(x)=\langle h, k(\cdot, x)\rangle_{\mathcal{H}_{k}}, \quad \forall x \in \mathcal{X}, \forall h \in \mathcal{H}_{k}
$$

For probability measure P on \mathcal{X}, define kernel embedding in \mathcal{H}_{k} :

$$
\mu_{\mathrm{P}}=\int k(\cdot, x) \mathrm{P}(d x)
$$

$\mu_{\mathrm{P}} \in \mathcal{H}_{k}$ uniquely represents P for characteristic kernels
(captures all moments), and gives expectations of RKHS functions:

$$
\int h(x) \mathrm{P}(d x)=\left\langle h, \mu_{\mathrm{P}}\right\rangle_{\mathcal{H}_{k}}
$$

Estimating kernel mean embeddings

Given iid samples x_{1}, \ldots, x_{n}, empirical estimator:

$$
\widehat{\mu \mathrm{P}}=\mu_{\widehat{\mathrm{P}}}=\frac{1}{n} \sum_{i=1}^{n} k\left(\cdot, x_{i}\right),
$$

Spectral kernel mean shrinkage estimator (S-KMSE) of ?:

$$
\check{\mu}_{\lambda}=\hat{\Sigma}_{X X}\left(\hat{\Sigma}_{X X}+\lambda I\right)^{-1} \widehat{\mu_{P}},
$$

where $\hat{\Sigma}_{X X}=\frac{1}{n} \sum_{i=1}^{n} k\left(\cdot, x_{i}\right) \otimes k\left(\cdot, x_{i}\right)$ is the empirical covariance operator on \mathcal{H}_{k}, and λ is a regularization parameter.

Statistical testing with kernel embeddings

$$
\mu_{k}(P)=\mathbb{E}_{X}[k(\cdot, X)]
$$

Figure: Given a kernel k and probability measures P and Q , the maximum mean discrepancy (MMD) between P and $\mathrm{Q}(?)$ is defined as the RKHS distance $\left\|\mu_{\mathrm{P}}-\mu_{\mathrm{Q}}\right\|_{\mathcal{H}_{k}}$ between their embeddings. [Figure credit: Heiko Strathmann.]

Uses of kernel embeddings

For an overview, see Muandet et al. survey [2016]

- Statistical testing: two sample testing, (conditional) independence testing
- Learning with kernels: kernel Bayes' rule, kernel EP, kernel ABC, etc.
- Kernel PCA and kernel CCA
- Distribution regression
- Many causal inference approaches, e.g. Zhang et al. [UAI 2012], Lopez-Paz et al. [ICML 2015], Flaxman et al. [ACM TIST 2015]
Note: randomized explicit feature expansions (e.g. random Fourier features) mean these methods are scalable and do not require the kernel trick.

How to set hyperparameters?

$$
k\left(x, x^{\prime}\right)=e^{-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \ell^{2}}}
$$

- Supervised settings
- Classical approaches
- Gaussian processes
- Unsupervised settings: "median heuristic":

$$
\text { lengthscale } \ell=\operatorname{median}\left(\left\|x_{i}-x_{j}\right\|_{2}\right)
$$

Problem statement

Given a parametric family of kernels $\left\{k_{\theta}(\cdot, \cdot)\right\}_{\theta \in \Theta}$, a dataset $\left\{x_{i}\right\}_{i=1}^{n} \sim \mathrm{P}$ of observations in \mathbb{R}^{D} for an unknown P , we wish to:

- Infer the kernel embedding $\mu_{\mathrm{P}, \theta}=\int k_{\theta}(\cdot, x) \mathrm{P}(d x)$ for a given kernel k_{θ}, given observations.
- Infer the kernel hyperparameters θ, given observations.
θ determines k_{θ} which determines \mathcal{H}_{k} so at a high level, we are trying to learn a good feature representation.

For Bayesian posterior learning, need both a prior over $\mu_{\mathrm{P}, \theta}$ and a likelihood.

Prior: an approach that does not work!

Let $h \sim \mathcal{G P}\left(0, k_{\theta}(\cdot, \cdot)\right)$.
Then $P\left(h \in \mathcal{H}_{k}\right)=0$ [Parzen 1963, Wahba 1990, Lukić \& Beder 2001].

Why? Because $\|h\|_{\mathcal{H}_{k}}$ is not finite. Proof in Appendix.
Intuition: $f \in \mathcal{H}_{k}$ is smoother then h.
Nuclear dominance [Fortet 1974, Lukić \& Beder 2001, Pillai et al 2007] makes this precise.

Prior: an approach that does work

We define a GP prior over μ_{θ} as follows:

$$
\begin{aligned}
\mu_{\theta} \mid \theta & \sim \mathcal{G P}\left(0, r_{\theta}(\cdot, \cdot)\right) \\
r_{\theta}(x, y) & :=\int k_{\theta}(x, u) k_{\theta}(u, y) \nu(d u)
\end{aligned}
$$

where ν is any finite measure on \mathcal{X}.
This choice of r_{θ} ensures that $\mu_{\theta} \in \mathcal{H}_{k_{\theta}}$ with probability 1 by the nuclear dominance of k_{θ} over r_{θ}.
r_{θ} is the convolution of a kernel with itself with respect to ν, so r_{θ} can be thought of as a smoother version of k_{θ}.

Likelihood

Likelihood links μ_{θ} to the observations $\left\{x_{i}\right\}_{i=1}^{n}$.
Use the empirical mean embedding estimator: $\widehat{\mu_{\theta}}=\frac{1}{n} \sum_{i=1}^{n} k\left(\cdot, x_{i}\right)$ which depends on $\left\{x_{i}\right\}_{i=1}^{n}$ and θ.

Evaluate $\widehat{\mu_{\theta}}$ at some $x \in \mathbb{R}^{D}$.
Result: real number giving an empirical estimate of $\mu_{\theta}(x)$ based on $\left\{x_{i}\right\}_{i=1}^{n}$ and θ.

Likelihood continued

Our likelihood links the empirical estimate, $\widehat{\mu_{\theta}}(x)$, to the corresponding modeled estimate, $\mu_{\theta}(x)$ using a Gaussian distribution with variance τ^{2} / n :

$$
p\left(\widehat{\mu_{\theta}}(x) \mid \mu_{\theta}(x)\right)=\mathcal{N}\left(\widehat{\mu_{\theta}}(x) ; \mu_{\theta}(x), \tau^{2} / n\right), \quad x \in \mathcal{X}
$$

CLT motivation: for fixed $x, \widehat{\mu_{\theta}}(x)=\frac{1}{n} \sum_{i=1}^{n} k_{\theta}\left(x_{i}, x\right)$ is an average of iid random variables so it satisfies:

$$
\sqrt{n}\left(\widehat{\mu_{\theta}}(x)-\mu_{\theta}(x)\right) \xrightarrow{D} \mathcal{N}\left(0, \operatorname{Var}_{X \sim \mathrm{P}}\left[k_{\theta}(X, x)\right]\right) .
$$

Posterior inference

Standard GP results (?) yield the posterior distribution:

$$
\begin{gathered}
{\left[\mu_{\theta}\left(x_{1}\right), \ldots, \mu_{\theta}\left(x_{n}\right)\right]^{\top} \mid\left[\widehat{\mu_{\theta}}\left(x_{1}\right), \ldots, \widehat{\mu_{\theta}}\left(x_{n}\right)\right]^{\top}, \theta} \\
\sim \mathcal{N}\left(R_{\theta}\left(R_{\theta}+\left(\tau^{2} / n\right) I_{n}\right)^{-1}\left[\widehat{\mu_{\theta}}\left(x_{1}\right), \ldots, \widehat{\mu_{\theta}}\left(x_{n}\right)\right]^{\top},\right. \\
\left.R_{\theta}-R_{\theta}\left(R_{\theta}+\left(\tau^{2} / n\right) I_{n}\right)^{-1} R_{\theta}\right),
\end{gathered}
$$

where R_{θ} is the matrix such that its (i, j)-th element is $r_{\theta}\left(x_{i}, x_{j}\right)$.
For squared exponential kernel k_{θ}, easy to derive r_{θ} in closed form.

Illustration

(A) Draws from the prior

Illustration

(A) Draws from the prior

Illustration

(A) Draws from the prior

Illustration

Histogram of x

Illustration

(B) Empirical mean

Illustration

(C) Posterior

Bayesian Kernel Learning

- We infer hyperparameters using marginal pseudolikelihood
- We evaluate empirical embedding at a set of points z_{1}, \ldots, z_{m} in $\mathcal{X} \subset \mathbb{R}^{D}$, with $m \geq D$.
- Consider change of variables from mapping $\phi_{\mathbf{z}}: \mathbb{R}^{D} \mapsto \mathbb{R}^{m}$, given by

$$
\phi_{\mathbf{z}}(x):=\left[k_{\theta}\left(x, z_{1}\right), \ldots, k_{\theta}\left(x, z_{m}\right)\right] \in \mathbb{R}^{m}
$$

- By Cramér's decomposition theorem our model is equivalent to:

$$
\begin{equation*}
\phi_{\mathbf{z}}\left(X_{i}\right) \mid \mu_{\theta} \sim \mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \tau^{2} I_{m}\right) . \tag{1}
\end{equation*}
$$

- Applying the change of variable $x \mapsto \phi_{\mathbf{z}}(x)$ we obtain:

$$
\begin{equation*}
p\left(x \mid \mu_{\theta}, \theta\right)=p\left(\phi_{\mathbf{z}}(x) \mid \mu_{\theta}(\mathbf{z})\right) \operatorname{vol}\left[J_{\theta}(x)\right] \tag{2}
\end{equation*}
$$

where $J_{\theta}(x)=\left[\frac{\partial k_{\theta}\left(x, z_{i}\right)}{\partial x^{(j)}}\right]_{i j}$ is an $m \times D$ matrix.

Experiments

(A) data, epsilon=2

(B) data, epsilon=10

(C) Type II error

(E) Witness function, epsilon=2

Experiments

Conclusion

- Lots of open questions:
- Refining the model: more realistic likelihood
- How well does it work in high-dimensions?
- Scalable learning approaches
- Can you choose between different kernel classes?
- Does it help with KPCA, clustering, other unsupervised settings?
- Fully Bayesian measures of (in)dependence, distance between distributions
- New paper on arXiv, "Probabilistic Integration and Intractable Distributions" [Oates et al.] using Bayesian Kernel Embedding.
- Come see poster for more details

Thanks!
Contact: flaxman@stats.ox.ac.uk www.sethrf.com

