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Overview

New probabilistic model for learning kernel mean embeddings:

I Bayesian Kernel Embedding combines a Gaussian process
prior over RKHS with conjugate likelihood

I Yields closed form Bayesian posterior

I Hyperparameter learning through sampling or by maximizing a
closed form marginal pseudolikelihood

I Yields a Bayesian viewpoint on estimation of kernel mean
embeddings and covariance operators for unsupervised
settings such as Maximum Mean Discrepancy (MMD) and
Hilbert-Schmidt Independence Criterion (HSIC)
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Kernel embeddings

X = RD Kernel k : X × X → R and corresponding RKHS Hk .
Feature space representation: φ(x) = k(·, x).

h : X → R where h(x) = 〈h, k(·, x)〉Hk
, ∀x ∈ X ,∀h ∈ Hk

For probability measure P on X , define kernel embedding in Hk :

µP =

∫
k (·, x) P(dx).

µP ∈ Hk uniquely represents P for characteristic kernels
(captures all moments), and gives expectations of RKHS functions:∫

h(x)P(dx) = 〈h, µP〉Hk
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Estimating kernel mean embeddings

Given iid samples x1, . . . , xn, empirical estimator:

µ̂P = µ
P̂

=
1

n

n∑
i=1

k(·, xi ),

Spectral kernel mean shrinkage estimator (S-KMSE) of ?:

µ̌λ = Σ̂XX (Σ̂XX + λI )−1µ̂P,

where Σ̂XX = 1
n

∑n
i=1 k(·, xi )⊗ k(·, xi ) is the empirical covariance

operator on Hk , and λ is a regularization parameter.
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Statistical testing with kernel embeddings

Figure: Given a kernel k and probability measures P and Q, the maximum
mean discrepancy (MMD) between P and Q (?) is defined as the RKHS
distance ‖µP − µQ‖Hk

between their embeddings. [Figure credit: Heiko Strathmann.]
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Uses of kernel embeddings

For an overview, see Muandet et al. survey [2016]

I Statistical testing: two sample testing, (conditional)
independence testing

I Learning with kernels: kernel Bayes’ rule, kernel EP, kernel
ABC, etc.

I Kernel PCA and kernel CCA

I Distribution regression

I Many causal inference approaches, e.g. Zhang et al. [UAI
2012], Lopez-Paz et al. [ICML 2015], Flaxman et al. [ACM
TIST 2015]

Note: randomized explicit feature expansions (e.g. random Fourier
features) mean these methods are scalable and do not require the
kernel trick.
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How to set hyperparameters?

k(x , x ′) = e−
‖x−x′‖2

2`2

I Supervised settings

I Classical approaches

I Gaussian processes

I Unsupervised settings: “median heuristic”:

lengthscale ` = median(‖xi − xj‖2)
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Problem statement

Given a parametric family of kernels {kθ(·, ·)}θ∈Θ, a dataset
{xi}ni=1 ∼ P of observations in RD for an unknown P, we wish to:

I Infer the kernel embedding µP,θ =
∫
kθ (·, x) P(dx) for a given

kernel kθ, given observations.

I Infer the kernel hyperparameters θ, given observations.

θ determines kθ which determines Hk so at a high level, we are
trying to learn a good feature representation.

For Bayesian posterior learning, need both a prior over µP,θ and a
likelihood.
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Prior: an approach that does not work!

Let h ∼ GP(0, kθ(·, ·)).

Then P(h ∈ Hk) = 0 [Parzen 1963, Wahba 1990, Lukić & Beder
2001].

Why? Because ‖h‖Hk
is not finite. Proof in Appendix.

Intuition: f ∈ Hk is smoother then h.

Nuclear dominance [Fortet 1974, Lukić & Beder 2001, Pillai et al
2007] makes this precise.
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Prior: an approach that does work

We define a GP prior over µθ as follows:

µθ | θ ∼ GP(0, rθ(·, ·)) ,

rθ(x , y) :=

∫
kθ(x , u)kθ(u, y)ν(du) .

where ν is any finite measure on X .

This choice of rθ ensures that µθ ∈ Hkθ with probability 1 by the
nuclear dominance of kθ over rθ.

rθ is the convolution of a kernel with itself with respect to ν, so rθ
can be thought of as a smoother version of kθ.
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Likelihood

Likelihood links µθ to the observations {xi}ni=1.

Use the empirical mean embedding estimator: µ̂θ = 1
n

∑n
i=1 k(·, xi )

which depends on {xi}ni=1 and θ.

Evaluate µ̂θ at some x ∈ RD .

Result: real number giving an empirical estimate of µθ(x) based
on {xi}ni=1 and θ.
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Likelihood continued

Our likelihood links the empirical estimate, µ̂θ(x), to the
corresponding modeled estimate, µθ(x) using a Gaussian
distribution with variance τ2/n:

p(µ̂θ(x)|µθ(x)) = N (µ̂θ(x);µθ(x), τ2/n), x ∈ X .

CLT motivation: for fixed x , µ̂θ(x) = 1
n

∑n
i=1 kθ(xi , x) is an

average of iid random variables so it satisfies:

√
n(µ̂θ(x)− µθ(x))

D→ N (0,VarX∼P[kθ(X , x)]).
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Posterior inference

Standard GP results (?) yield the posterior distribution:

[µθ(x1), . . . , µθ(xn)]> | [µ̂θ(x1), . . . , µ̂θ(xn)]>, θ

∼ N (Rθ(Rθ + (τ2/n)In)−1[µ̂θ(x1), . . . , µ̂θ(xn)]>,

Rθ − Rθ(Rθ + (τ2/n)In)−1Rθ),

where Rθ is the matrix such that its (i , j)-th element is rθ(xi , xj).

For squared exponential kernel kθ, easy to derive rθ in closed form.
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Illustration

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
(A) Draws from the prior

x

µ(
x)^

14 / 23



Illustration

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
(A) Draws from the prior

x

µ(
x)^

15 / 23



Illustration

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
(A) Draws from the prior

x

µ(
x)^

16 / 23



Illustration

Histogram of x

x

F
re

qu
en

cy

−2 −1 0 1 2

0
5

10
15

17 / 23



Illustration

−2 −1 0 1 2

−
0.

4
0.

0
0.

2
0.

4
(B) Empirical mean

x

µ(
x)^

18 / 23



Illustration

−2 −1 0 1 2

−
0.

4
0.

0
0.

2
0.

4
(C) Posterior

x

p(
µ(

x)
)

19 / 23



Bayesian Kernel Learning

I We infer hyperparameters using marginal pseudolikelihood

I We evaluate empirical embedding at a set of points z1, . . . , zm
in X ⊂ RD , with m ≥ D.

I Consider change of variables from mapping φz : RD 7→ Rm,
given by

φz(x) := [kθ(x , z1), . . . , kθ(x , zm)] ∈ Rm,

I By Cramér’s decomposition theorem our model is equivalent
to:

φz(Xi )|µθ ∼ N
(
µθ(z), τ2Im

)
. (1)

I Applying the change of variable x 7→ φz(x) we obtain:

p(x |µθ, θ) = p (φz(x)|µθ(z)) vol [Jθ(x)] , (2)

where Jθ(x) =
[
∂kθ(x ,zi )

∂x(j)

]
ij

is an m × D matrix.
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Experiments
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Experiments
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Conclusion

I Lots of open questions:
I Refining the model: more realistic likelihood
I How well does it work in high-dimensions?
I Scalable learning approaches
I Can you choose between different kernel classes?
I Does it help with KPCA, clustering, other unsupervised

settings?
I Fully Bayesian measures of (in)dependence, distance between

distributions

I New paper on arXiv, “Probabilistic Integration and Intractable
Distributions” [Oates et al.] using Bayesian Kernel
Embedding.

I Come see poster for more details

Thanks!
Contact: flaxman@stats.ox.ac.uk

www.sethrf.com
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