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Graphical models encode high-dimensional distributions in a compact and intuitive way:

Qualitative uncertainty (interdependencies) is captured by the structure

Quantitative uncertainty (probabilities) is captured by the parameters
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For an outcome space X ⊆Rn, a class of graphical models is a pair M =G×Θ, where G is
space of n-dimensional graphs, and Θ is a space of d-dimensional vectors.

G captures structural constraints (directed vs. undirected, sparse vs. dense, etc.)

Θ captures parametric constraints (binomial, multinomial, Gaussian, etc.)
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Online Density Estimation

Environment LearnerM t = (
Gt ,θt )100000000111

`
(
M t ,x t )

Repeated game between the learner and its environment. During each trial t = 1, · · · ,T ,

the learner chooses (the structure and the parameters of) a model M t ∈M ;

the environment responds by an outcome x t ∈X , and the learner incurs the log-loss

`(M t ,x t )=− lnPM t (x t )
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Online density estimation is particularly suited to:

* Adaptive environments, where the target distribution can change over time;

* Streaming applications, where all the data is not available in advance;

* Large-scale datasets, by processing only one outcome at a time.

In the literature of online density estimation (universal coding):

uni-dimensional models (binomial, multinomial, exponential families) have been
extensively studied

Xie and Barron (2000); Takimoto and Warmuth (2000); Kotłowski and Grünwald (2011),. . .

much less is known, however, about multi-dimensional models, especially graphical
models, where both the structure and the parameters are updated at each iteration!
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The performance of an online learning algorithm A is measured according to two metrics:

Minimax Regret

Defined by the maximum, over every sequence of outcomes x1:T = (x1, · · · ,xT ), of
the cumulative relative loss between A and the best model in M :

R(A,T )= max
x1:T ∈X T

[
T∑

t=1
`(M t ,x t )− min

M∈M

T∑
t=1

`(M ,x t )

]

Per-round complexity

Given by the amount of computational resources spent by A at each trial t , for choosing
a model M t in M , and evaluating its log-loss `

(
M t ,x t )=− lnPM t (x t ).
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Markov Forests
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For a set of n random variables defined over the discrete domain {0,1, · · · ,m−1}, the class of
(m-ary n-dimensional) Markov Forests is given by the product Fm,n = F n ×Θm,n, where

F n is the space of all acyclic graphs of order n;
Θm,n is the space of all parameter vectors mapping

a probability table θi ⊆ [0,1]m to each candidate node i , and
a probability table θij ⊆ [0,1]m×m to each candidate edge (i , j).
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Markov Forests

Two key properties
For the class of Markov forests,

The probability distribution associated with a Markov forest M = (f ,θ) can be factorized
into a closed-form:

PM(x)=
n∏

i=1
θi (xi )

∏
(i ,j)∈(n

2)

(
θij (xi ,xj )

θi (xi )θj (xj )

)fij

So, the log-loss extended to convF n ×Θm,n is an affine function of the structure:

`(p,θ,x)=ψ(x)+〈p,φ(x)〉,where ψ(x)= ∑
i∈[n]

ln
1

θi (xi )
and φij (xi ,xj )= ln

(
θi (xi )θj (xj )

θij (xi ,xj )

)

The space F n of forest structures is a matroid; minimizing a linear function over F n

can be done in quadratic time using the matroid greedy algorithm.
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The Algorithm

set θ1 =Um,n

set p1 = 0
Initialization

for each trial t = 1, · · · ,T

play M t = (f t ,θt ), where f t = SWAP1(pt )

receive x t

set θt+1
i (u)= tu +1/2

t +m/2
for all n nodes

set θt+1
ij (u,v)= tuv +1/2

t +m2/2
for all

(n
2
)

possible edges

Parameter Update
(Jeffreys rule)

draw r t in
[
0, 1
βt

](n
2) uniformly at random

set f t+ 1
2 = argminf∈Fn 〈f ,r t +∑t

s=1φ
s(xs)〉

set pt+ 1
2 =αt pt +(1−αt )f

t+ 1
2

set pt+1 = SWAPk

(
pt+ 1

2

)
Structure Update
(Mixture of perturbed leaders)

SWAPk uses random base exchanges to derive a convex mixture with at most k components. 12



Analysis

Based on the closed-form expression of Markov forests, parameter updates and structure
updates can be analyzed in an independent way:

R
(
M1:T ,x1:T

)
=R

(
p1:T ,x1:T

)
+R

(
θ1:T ,x1:T

)
where

R
(
p1:T ,x1:T

)
=

T∑
t=1

`(pt ,θt ,x t )−`(p∗,θt ,x t ) (Structural Regret)

R
(
θ1:T ,x1:T

)
=

T∑
t=1

`(p∗,θt ,x t )−`(p∗,θ∗,x t ) (Parametric Regret)
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Analysis

Parametric Regret
Decomposable into local regrets, which can be bounded using universal coding techniques:

R
(
θ1:T ,x1:T

)
=

n∑
i=1

ln
θ∗i (x

1:T
i )

θ1:T
i (x1:T

i )
Univariate estimators

+ ∑
(i ,j)∈F

ln
θ∗ij (x

1:T
ij )

θ1:T
ij (x1:T

ij )
Bivariate estimators

+ ∑
(i ,j)∈F

ln
θ1:T

i (x1:T
i )

θ∗i (x
1:T
i )

θ1:T
j (x1:T

j )

θ∗j (x
1:T
j )

Bivariate compensation

Using symmetric Dirichlet mixtures for the parametric estimators,

θ1:T (x1:T )=
∫ T∏

t=1
Pλ(x

t )pµ(λ)dλ= Γ(mµ)
Γ(µ)m

∏m
v=1Γ(tv +µ)
Γ(t +mµ)

the parametric regret for µ= 1
2 (Jeffreys mixture) is in O(lnT ). The per-round time complexity

for parameter updates is in O(m2n2).
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Analysis

Structural Regret

Based on the telescopic decomposition (and using `t =φt (x t )),

R
(
p1:T ,x1:T

)
=

T∑
t=1

〈pt ,`t 〉−〈pt+ 1
2 ,`t 〉 ≤ 0

+
T∑

t=1
〈pt+ 1

2 ,`t 〉−〈f t+ 1
2 ,`t 〉 Convex mixture

+
T∑

t=1
〈f t+ 1

2 ,`t 〉−〈p∗,`t 〉 Follow the Perturbed Leader
(Kalai and Vempala, 2005)

the structural regret is in O(
p

T lnT ). The per-round time complexity for structure updates is in
in O(n2 logn+kn2).
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Preliminary Experiments
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The OFDE algorithm (with F for forests, and T for trees, k = lnn) was compared to batch
algorithms (Chow-Liu (1968) for trees, and Chow-Liu with Thresholding (2011) for forests),
which had the benefit of hindsight for the train set.

The average log-loss was measured on the test set at the end of each iteration.
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Conclusions

Online density estimation has very attractive properties

Designed for adversarial environments

Naturally suited to streaming applications

Can be applied to large-scale applications with massive amounts of data

Online graphical density estimation is challenging
We are faced with a tradeoff between minimax optimality and computational complexity:

Minimax optimality often requires super-exponential time.

Online approximation algorithms (Kakade et al., 2009) look promising for handling more
expressive graphical models (ex: polytrees, bounded treewidth networks).

18



Thank You!

(and thanks to the anonymous reviewers for helping to improve this paper!)
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