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Preface

The Conference on Uncertainty in Artificial Intelligence (UAI) is the premier international conference on research
related to representation, inference, learning and decision making in the presence of uncertainty within the field
of Artificial Intelligence. This volume contains all papers that were accepted for the 30th UAI Conference, held in
Quebec City, Quebec, Canada, from July 23rd to 27th 2014. Papers appearing in this volume were subjected to
a rigorous review process. 292 papers were submitted to the conference and each was peer-reviewed by 3 or more
reviewers with the supervision by one Senior Program Committee member. A total of 94 papers were accepted,
24 for oral presentation and 70 for poster presentation, for an acceptance rate of 32%. We are very grateful to
the program committee and senior program committee members for their diligent efforts. We are confident that
the proceedings, like past UAI conference proceedings, will become an important archival reference for the field.

We are pleased to announce that the Microsoft Best Paper Award was given to Dougal Maclaurin and Ryan
Adams for their paper “Firefly Monte Carlo: Exact MCMC with Subsets of Data”. The IBM Best Student
Paper Award was given to Benito van der Zander (co-authored with Maciej Liskiewicz and Johannes Textor)
for their paper “Constructing Separators and Adjustment Sets in Ancestral Graphs”. The Google Best Student
Paper Award was given to Nguyen Viet Cuong (co-authored with Wee Sun Lee and Nan Ye) for their paper
“Near-optimal Adaptive Pool-based Active Learning with General Loss”. The Facebook Best Student Paper
Award was given to Krishnamurthy Dvijotham (co-authored with Maryam Fazel and Emanuel Todorov) for their
paper “Universal Convexification via Risk-Aversion”. And the Best Paper Runner-Up was “Optimal Resource
Allocation with Semi-Bandit Feedback” by Tor Lattimore, Koby Crammer, and Csaba Szepesvari.

In addition to the presentation of technical papers, we were very pleased to have five distinguished invited
speakers at UAI 2014: David M. Blei (Columbia University), Craig Boutilier (University of Toronto), Michael L.
Littman (Brown University), Andrew Ng (Stanford University), and, as Banquet Speaker, Yann LeCun (Facebook
and NYU). Another interesting addition to the conference program was the Fifth UAI Probabilistic Inference
Competition, organized by Vibhav Gogate.

The UAI 2014 tutorials program, chaired by Vibhav Gogate, consisted of four tutorials: “Random Perturba-
tions for Inference” by Tamir Hazan, “Learning Tractable Probabilistic Models” by Pedro Domingos and Daniel
Lowd, “Probabilistic Programming” by Avi Pleffer, and “Probabilistic Inference in Relational Models” by Dan
Suciu and Guy Van den Broeck.

UAI 2014 also hosted two one-day workshops (organized by workshops chair John Mark Agosta): “11th
Bayesian Applications Workshop” and “Causal Inference: Learning and Prediction”.

Jin Tian and Nevin L. Zhang (Program Co-Chairs)
Ann Nicholson (General Chair)
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Abstract

We bring to bear the tools of convexity, mar-
gins and the newly proposed technique of
monotone retargeting upon the task of learn-
ing permutations from examples. This leads
to novel and efficient algorithms with guaran-
teed prediction performance in the online set-
ting and on global optimality and the rate of
convergence in the batch setting. Monotone
retargeting efficiently optimizes over all pos-
sible monotone transformations as well as the
finite dimensional parameters of the model.
As a result we obtain an effective algorithm
to learn transitive relationships over items.
It captures the inherent combinatorial char-
acteristics of the output space yet it has a
computational burden not much more than
that of a generalized linear model.

1 INTRODUCTION

Many applications require items to be ordered cor-
rectly. Prototypical examples of such applications are
information retrieval and recommender systems. In
most cases, however, the quality measure that actu-
ally defines the transitive relation of interest can be
accessed only through examples. This lack of direct
access to the ordering relation motivates learning the
quality measure from the covariates of the items. We
distinguish this task from a related and easier one of
learning binary pairwise relations where transitivity is
not required by the application.

Existing techniques of learning to rank (LETOR) fall
under 3 categories: (i) point-wise methods, (ii) pair-
wise methods and (iii) list-wise methods. In point-
wise methods, higher ranked items are assigned higher
target scores. The method ignores the combinatorial

∗Authors acknowledge NSF grant IIS-1017614

structure of the output space and regresses the scores
directly. Pair-wise methods capture some structure by
trying to classify for a pair whether the first item in the
pair out-ranks the second. Their predictions need not
be transitive and an order-reconciliation step is neces-
sary to enforce it. This is NP hard [8], necessitating
approximations and heuristics. Finally, there are list-
wise methods that model the full combinatorial struc-
ture and need to solve formidable optimization prob-
lems. They have to cut corners for scalability. Notable
approaches include sampling [25], approximations [2],
and resorting to point-wise methods [6] .

An ideal LETOR formulation should (i) capture com-
binatorial structure like list-wise methods, but with
(ii) algorithms as simple as point-wise methods. While
this seems too much to ask, the recently proposed
monotone retargeting (MR) technique is one way how
this may be approached [1]. MR outperforms sev-
eral state of the art ranking algorithms such as List-
net [6] and RankCosine, even after improving those
algorithms for statistical consistency as proposed by
Ravikumar et. al. [21].

MR efficiently reduces, the LETOR problem to a gen-
eralized linear model (GLM) with no loss in gener-
ality. It subsumes statistically consistent methods of
[21]. The distinguishing characteristic of MR is its “re-
targeting” paradigm, where instead of fitting training
scores exactly, it tries to fit any score that captures
the desired order. Recall that our task is to retrieve
the correct order and not the training scores. In this
setting, retrieving the specified training scores are an
unnecessary burden. The specified training scores may
be particularly difficult to fit for the chosen family of
regression function class, but there might exist score
assignments that capture the desired order and also
simultaneously lie in the range space of the regression
function class being used. The MR framework tries
to find such score assignments by formulating it as a
Bregman divergence minimization problem.

In this paper we push the retargeting idea further.
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This is facilitated by (i) a remarkably efficient finite
time optimization over the infinite space of all mono-
tonic transformations and (ii) properties of Bregman
divergences particularly suited for learning orders.

Let us draw a few analogies from classification. A
pointwise approach to a {−1, 1} encoded classification
problem would try to fit the {−1, 1} training scores
exactly, possibly enriching the approximating function
class till the quality of the fit is acceptable. Most suc-
cessful classifiers, however, fit values that are discrim-
inable, ignoring, entirely, whether they are close to the
training scores of {−1, 1} in value.

The MR cost function consists of two parts: a loss and
a regularization. Similar to perceptrons, the moment
MR predictions retrieve the training ranks, its loss
drops to zero. Experience in classification has taught
us that losses that continue to be active after training
error has dropped to zero yield better accuracy, for ex-
ample, SVMs, logistic regression and boosting. In our
paper we equip MR with such a margin-like property.
This can be done in a few different ways. Our intent is
not to champion one over another. This paper is not
about advocacy, but about exploring how margin may
be incorporated into the “retargeting” paradigm.

In this paper (i) we introduce large and fixed margin
variants of the MR approach. Without margins the
MR cost function is degenerate, an aspect that is not
developed in the previous work [1]. Unlike the previ-
ous approach, we model the requirement of a margin
explicitly in this paper. (ii) Unlike [1] we are able to
model the notion that ordering errors at the top are
worse than those at the bottom. (iii) It was shown
that MR cost function is jointly convex iff the Breg-
man divergence chosen is squared Euclidean. We ex-
tend the formulation to enable joint convexity to all
strongly convex Bregman divergence, not to advocate
non-Euclidean divergences but to explore them.

Joint convexity has two important ramifications: one
affects ease of evaluation of the technique, the other
affects efficiency of training. The initialization inde-
pendence of the optimum, gained as a result of con-
vexity induced uniqueness, makes comparing different
Bregman divergences easier, eliminating the need for
multiple initializations during training. (iv) On the
other hand for training, joint convexity allows us to
replace exact coordinate-wise updates that were used
in [1] with more efficient gradient updates with guar-
antees on global optimality. (v) This yields efficient
online algorithms with regret bounds over permuta-
tions. Finally, (vi) we provide rates of convergence
guarantees, an aspect missing from the previous work.

To date many cost functions have been designed to
evaluate rankings, for example, discounted cumula-

tive gain (DCG), normalized discounted cumulative
gain (NDCG) [13], expected reciprocal rank (ERR) [7],
mean average precision (MAP) [3]. They are functions
of permutations and capture the notion that positional
accuracy at the top is more important than at the
bottom. They are reasonably easy to compute given
a ranking, but to optimize them in training is notori-
ously intractable. Our formulation, on the other hand,
introduces a family of cost functions that have charac-
teristics desired in ranking: dependence on order not
on scores and the ability to capture the importance of
non-uniform positional accuracy, but at the same time
optimized globally with ease. These aspects set our
work apart from other approaches of learning to rank.

We follow the notation used in the MR paper. Vec-
tors are denoted by bold lower case letters, matrices
are capitalized. x† is x transposed and ||x|| its L2

norm. Adj-Diff(·) is the adjacent difference operator,
and Cum-Sum(Adj-Diff(x)) = x. x is in descending
order if xi ≥ xj when i > j. the set of such vectors is
R↓. x is isotonic with y if xi ≥ xj implies yi ≥ yj .
∆ denotes an unit simplex and ∆ε its subset with
members component-wise bounded away from 0 by ε.
R+

d is the positive orthant and Rdε its subset similarly
bounded away from 0 by ε. Interior is denoted by int .

2 BACKGROUND

We will use Bregman Divergences to construct our
cost function. Let φ : Θ 7→ R, Θ = domφ ⊆ Rd

be a strictly convex, closed function, differentiable
on int Θ. The corresponding Bregman divergence

Dφ

(
·
∣∣∣
∣∣∣·
)

: dom(φ) × int(dom(φ)) 7→ R+ is defined

as Dφ

(
x
∣∣∣
∣∣∣y
)
, φ(x) − φ(y) − 〈x− y,∇φ(y)〉 . From

strict convexity it follows that Dφ

(
x
∣∣∣
∣∣∣y
)
≥ 0 and

Dφ

(
x
∣∣∣
∣∣∣y
)

= 0 iff x = y. Bregman divergences are

(strictly) convex in their first argument, but not nec-
essarily convex in their second.

In this paper we only consider functions φ(·) : Rn 3
x 7→ ∑

i wiφ(xi) that are weighted sums of identi-
cal scalar convex functions applied to each component,
the former referred to as weighted, identically separable
(WIS) or IS if the weights are equal. [1] and [21] iden-
tify this class to have properties particularly suited for
ranking. The MR approach, in concert with Bregman
divergences can provide compelling guarantees that in-
cludes convergence, parallelizability, statistical consis-
tency, and avoids solving a linear assignment problem
in every iteration of their training loop. Many LETOR
algorithms [24], [25] fall prey to the latter.

Monotone Retargeting: The ranking problem in-
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volves set of queries Q = {q1, qi . . . q|Q|} and a set of
training items V. For every query qi, the elements of
Vi ⊂ V are ordered based on their relevance to the
query. This ordering is expressed through a rank score
vector r̃i ∈ R|Vi| whose components r̃ij correspond
to items in Vi. Beyond establishing the order, the ac-
tual values are irrelevant. In our formulation, however,
one may choose whether to treat these as irrelevant or
incorporate them in the retargeting step, making the
formulation more flexible.

For a query qi the index j of r̃ij is local to Vi and
assigned such that r̃ij are in descending order for any
Vi. For every pair {qi, vij} a feature vector Rn 3 aij =
F (qi, vij) is an input to the algorithm, Ai is a matrix
whose jth row is aij

†. The following formulation seems
suitable for ranking:

min
w,Υi∈M

∑

i

Di

(
r̃i,Υi ◦ f(Ai,w)

)
, (1)

where Di : R|Vi| × R|Vi| 7→ R+ is some distance-like
loss function, f : R|Vi|×n × Rn 7→ R|Vi| is some para-
metric form with the parameter w and Υi : R|Vi| 7→
R|Vi| is a mapping that transforms the components
by a scalar, strictly monotonic increasing function Υi,
and M is the class of all such functions. Formulation
(1) avoids the problem that adversely affects point-
wise-methods: solving an unnecessarily hard problem
of matching the scores by value.

To avoid working in the space of M which is infinite
dimensional, MR solves a qualitative equivalent

min
w,r∈R↓i

∑

i

Di(ri, f(Ai,w)) s.t. R↓i = {r| ∃M∈MM(r̃i)=r}.

(2)
Let us take a closer look at the constraint set used
in formulation (2): Instead of considering all strictly
increasing monotonic transforms Υi of the right ar-
gument, MR considers all inverse monotonic transfor-
mations of the left argument. This, remarkably, is a
finite dimensional optimization problem because R↓i,
the set of all vectors isotonic with r̃i is a finitely char-
acterizable convex cone. Motivated by convexity, MR

chooses Di(·, ·) to be a Bregman divergence Dφ

(
·
∣∣∣
∣∣∣·
)

and f(Ai,w) to be (∇φ)
−1

(Aiw) to obtain1

min
βi,w,ri∈R↓i∩Si

|Q|∑

i=1

1

|Vi|
Dφ
(
ri

∣∣∣
∣∣∣(∇φ)

−1
(Aiw + βi1)

)

+
C

2
||w||2. (3)

1We take a shortcut of writing Dφ
(
·
∣∣∣
∣∣∣(∇φ)−1 (·)

)
in-

stead of Dφi(·, (∇φ)−1) where φi indicates a separable
convex function of an input dimension di built from
component-wise sum of scalar function φ(·).

P
t+1
i = Argmin

π
Dφ
(
rti

∣∣∣
∣∣∣(∇φ)−1 (πAiw

t + βti
))
∀i

(4)

rt+1
i = Argmin

r∈R↓i∩Si
Dφ
(
r
∣∣∣
∣∣∣(∇φ)−1 (

P
t+1
i Aiw

t + βti
))
∀i

(5)

wt+1, {βt+1
i } = (6)

Argmin
w,{βi}

|Q|∑

i=1

Dφ
(
rt+1
i

∣∣∣
∣∣∣(∇φ)−1 (

P
t+1
i Aiw + βti

))C
2
||w||2

(7)

Figure 1: Updates of Monotone Retargeting

where (∇φ)
−1

is the inverse of the gradient mapping,
Si is a convenient convex set excluding 0, that is nec-
essary only for technical reasons.

In practice, even if Vi is totally ordered, it is common
to have a part of that information erased by quanti-
zation in the scores r̃. MR deals with this by opti-
mizing over block diagonal permutation matrices Pi
that permute contiguous blocks of indices that corre-
spond to items whose relative order have been erased.
The model is trained by iterating over the updates (4),
(5) and (7) shown in Figure 1. It has been shown
that these exact coordinate-wise minimizations up-
dates converge to a local minimum(or global for square
loss [1]) of function (3). Update (4) is accomplished
by sorting. This turns out to be so because of special
properties of separable Bregman divergences (see [1]
for details). Update (5) uses the exponentiated gradi-
ent algorithm [15] and (7) is the same problem as es-
timating the parameters of a generalized linear model
[19]. A quasi-Newton method ( LBFGS [17]) was used
to solve (7). In the rest of the paper the block diago-
nal permutation matrices Pi will be suppressed. Our
extensions continue to be effective for partial order via
updates that correspond to (4), but this is not elabo-
rated further for brevity.

3 FORMULATION

The rest of the paper describes our contribution. Its
prominent features are: (i) formulation of fixed and
large margin aspects, (ii) joint convexity of the cost
function in the targets r and the parameters w, which
yields (iii) guarantees on performance in the online set-
ting and super-linear convergence in the batch setting.

Since there are multiple moving parts in our formula-
tion, it is easy to get lost in the details. To preempt
that we lay out the flow of our arguments. We explain
the formulation by modifying the cost function (3) suc-
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cessively. We conclude each subsection with summary
of what has been achieved in the subsection so far.

Convexity: We equip the cost function with strong
and joint convexity, aspects missing in the original
work. We pick a matching form of the regularizer
so that it adds no extra computational burden and
quantify the amount of regularization that is sufficient
to guarantee joint convexity. It may not be surprising
that regularization extends convexity properties to MR
losses other than squared Euclidean. What is surpris-
ing, however, is that this convexity applies jointly to
r and w although the regularizers themselves are sep-
arated. Strong joint convexity and smoothness thus
gained lead to the performance and convergence guar-
antees. This is the topic of section 3.1.

Margins: Second we plug a loophole in the MR cost
function by ensuring margins between all adjacent tar-
get scores ri,j , ri,j+1. Without this, the cost function
(3) is degenerate: one can achieve zero loss by setting
w, β = 0. We provide different ways of ensuring this:
(i) directly by setting constraints, and (ii) indirectly by
rewarding margins. Since both the constraints and the
rewards are linear, this does not disrupt joint convex-
ity. The key is to optimize the modified cost function
efficiently. This is the topic of section 3.3.

3.1 Convexity, Smoothness and Optimization

MR ensures joint convexity only if squared Euclidean
distance is used. We incorporate joint convexity into
the cost function (3). This benefits us in two ways:
(i) it removes initialization dependence of the training
method and (ii) as we shall see, allows for a more effi-
cient method of training, both online and batch with
excellent convergence rates. We know that strong con-
vexity together with smooth gradients (and Hessians
for second order methods) admit efficient minimiza-
tion: gradient descent achieves linear rate of conver-
gence, quasi-Newton (truncated-Newton) achieves su-
perlinear rates. We examine conditions under which
our ranking formulations have these properties.

3.1.1 Joint Convexity

Let φ(·) be s strongly convex [5]. Consider the term:

Fi(ri,w) =
1

|Vi|
(
Dφ
(
ri

∣∣∣
∣∣∣(∇φ)

−1
(Aiw)

)

+ CriDφ

(
ri

∣∣∣
∣∣∣qi
)

+
Cwi

2
||w||2Ai︸ ︷︷ ︸

Regularization terms

)
(8)

using which we modify cost function (3) to

F ({ri},w) =

|Q|∑

i

Fi(ri,w) +
C

2
||w||2. (9)

The β terms of equation (3) may be absorbed into Ai

by augmenting the features by vectors of ones, so no
generality is lost in equation (9).

Let us pause to take note of the extra terms in the cost
function (9). There is a term regularizing w towards
0 and another regularizing ri towards qi. Vector qi is
a “center” of regularization for the targets ri. If Cri
are nonzero we set these to r̃i when training scores
are available, otherwise we use qi = Argminx φi(x)
when only ordering is available (this corresponds to 0
for square loss and uniform distribution for KL loss).
This allows one to bias the targets towards the training
scores when Cri is high and focus on order otherwise.

Proposition 1. Let φ be s strongly con-
vex with L Lipschitz continuous gradients,
and σi be the smallest singular value of Ai,
then the cost function (9) is jointly convex if
∑ σi(Cwi+1/L)

|Vi| + C
2 −

4Q(
∑

1
|Vi|

)2

s
∑ 1+Cri

|Vi|
≥ 0

Proof.
∑|Q|
i=1

1
|Vi|

[
(1+Cri)Hφ −I
−I Ai

†(Hψ+Cwi)Ai+
C|Vi|
2|Q| I

]
, is

the Hessian of the cost function (9) where ψ is the
Legendre conjugate of φ and Hφ, Hψ the correspond-
ing diagonal. Recall that φ(·) and consequently ψ(·)
are separable. The smallest eigenvalue of the Hessian
may be bounded as the value of the following opti-
mization problem:

min 〈y,y〉
(∑

i

σi
|Vi|

(Cwi +
1

L
) +

C

2

)
−2 〈x,y〉

∑

i

|Q|
|Vi|

+ 〈x,x〉
∑

i

s

|Vi|
(1 + Cri) s.t. 〈x,x〉+ 〈y,y〉 = 1 (10)

where σi is the smallest singular value of Ai. Invoking
Cauchy-Schwarz inequality and treating the expression
as a quadratic function in

√
〈x,x〉 we can see that con-

vexity is implied by
∑ σi(Cwi+1/L)

|Vi| + C
2 −

4(
∑ Q

|Vi|
)2

s
∑ 1+Cri

|Vi|
≥

0

Corollary 1. The cost function (9) is jointly convex
if C ≥ 8Q

s(1+Cr) (
∑

1
|Vi| ), if Cri = Cr ∀i.

Corollary 1 gives practitioners an easy thumb rule to
ensure joint convexity.

These additional regularization terms do not come at
an extra computational burden. Estimating r,w re-
main just as easy. We show that the result of the
additional terms are that the ri updates (5) need to
be computed with respect to the deflected predicted
score (∇φ)

−1
(αAw + (1 − α)∇φ(qi)), as opposed to

the predicted score (∇φ)
−1

(Aw).

Lemma 1. Let αi = 1
1+Cφi

, then Argmin
ri∈R↓i∩Si

Fi(ri,w)

= Argmin
ri∈R↓i∩Si

Dφ
(
ri

∣∣∣
∣∣∣(∇φ)

−1
(αiAiw + (1− αi)∇φ(qi))

)
.
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Proof. Use E
x∼π

[
Dφ
(
x
∣∣∣
∣∣∣s
)]

= E
x∼π

[
Dφ
(
x
∣∣∣
∣∣∣µ
)]

+

Dφ
(
µ
∣∣∣
∣∣∣s
)

[4].

3.1.2 Marginal Strong Convexity and
Smoothness

Recall our motivations for pursuing joint convexity:
(i) initialization independence of the training and (ii)
more efficient training algorithms. In light of Proposi-
tion 1 and Corollary 1, the reader should be convinced
of the former. In this section we explore how joint
convexity may be exploited to provide an efficient op-
timization algorithm for training, as well as guarantees
of convergence rates. Previous work on MR [1] come
with no guarantees on rates of convergence.

The MR cost function was minimized in [1] using exact
coordinate-wise minimizations. This can be expensive
for the w, β updates (7) because they are iterative in
nature. Further since a single w, β update is equiv-
alent to solving a generalized linear model (GLM), it
is clear that the MR procedure would be slower than
solving for a GLM because typically multiple iterations
of GLM update are required for convergence.

Here we will replace exact coordinate-wise minimiza-
tions over r,w by inexact gradient descent updates
that satisfy any of the standard“sufficient descent”cri-
teria [5] (for example Armijo’s criteria) used in gradi-
ent based methods. Joint convexity will play a crucial
role in making this possible.

Joint convexity of F ({ri},w) allows us to work with
the marginal function

G(w) = min
{ri}

F ({ri},w) (11)

without losing convexity. This luxury is not available
in MR. The marginal function is guaranteed to be con-
vex when the joint function is convex [23]. Recall con-
vexity is always preserved under pointwise maximiza-
tion, however if the function is jointly convex it is also
preserved under pointwise minimization as in equation
(11).

The gradient ∇G(w) of the marginal is obtained as

∇G(w) =

|Q|∑

i

Gi(w) =

|Q|∑

i

∇Fi({r∗i },w) (12)

where r∗i = Argminri∈R↓ Fi(ri,w).

Now we can make a few observations: for a choice
of a closed form of φ(·) we know ∇Fi in closed form.
Hence the moment we are able to compute r∗i we can
also compute the gradient of the function G(w) and
hence minimize it using any gradient based minimiza-
tion methods. Also observe that this gradient compu-

tation trivially parallelizes because the ris are all in-
dependent and can be computed simultaneously. We
shall show that r∗i can be computed very efficiently in
not only finite time but also linear in the number of
training points per query. This is covered in Section
3.5.

If in addition to just convexity of the marginal function
G(w) we also had strong convexity, not only would
it facilitate super-linear convergence of quasi-Newton
methods, but it will also guarantee logarithmic regret
in the online setting [11]. With these motivations in
mind we investigate the conditions for strong convexity
of G(w). We do so by examining the Hessian ∇2G(w).
Note however that G(w) is not obtained in closed form
but by equation (11), which we now need to differen-
tiate twice to find the Hessian.

Differentiating Twice Under the Minimization
Sign: A prominent role is played in the analysis by
the ability to differentiate under the minimization sign.
We do not know the function G(w) in closed form but
are able to compute its Hessian in terms of r∗i . Using
assumptions of continuous second order differentiabil-
ity and the shorthand F ∗i = Fi(r

∗
i ,w) we obtain

∇2Gi(w) = ∇2

w
F ∗i −∇∇

w,ri
F ∗i
†(∇2

ri
F ∗i )

−1∇∇
w,ri

F ∗i =

Ai
†

|Vi|
[
Hψ + Cwi −

1

1 + Cri
(Hφ)

−1]
Ai +

C

|Q|I (13)

by differentiation twice under the min operator. Ex-
pression (13) will be useful because it allows to deter-
mine when is G(w) strongly convex (see Lemma 2) and
also because it gives us a way to compute the Hessian
that is important for Newton methods that we employ.

Lemma 2. If φ is s strongly convex with L-Lipschitz
continuous gradient and σi is the principal singu-
lar value of Ai, then G(w) is C strongly convex if∑
i

(
σi
L + σiCwi − σi

s(1+Cri)

)
> 0.

Strong convexity and Lipschitz continuity of the gra-
dient ensures that a gradient descent method will have
linear rate of convergence [5]. Lemma 2 gives the prac-
titioner a way to choose Cwi and Cri appropriately.

Can the convergence rates be pushed further ? Can
we obtain locally quadratic convergence ? We answer
in the affirmative in the next section.

3.1.3 Lipschitz Continuity of Hessian

In order to enjoy local quadratic convergence, quasi-
Newton methods require that the objective function
(i) be twice differentiable, (ii) be strongly convex and
(iii) have Lipschitz continuous Hessians [5]. The first
two have already been established, now we explore
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the third. Observe from equation (13) that we only
need to be concerned about the sensitivity of the term[
Hψ + Cwi − 1

1+Cφi
(Hφ)

−1]
to variations in w. We

make the notation more precise about dependency on
w. Let r∗i (w) = Argminri∈R↓ Fi(ri,w) and the paren-
thesis indicate where the Hessians are evaluated in the
expression:

[
Hψ(w) + Cwi − 1

1+Cφi
(Hφ(r∗i (w)))

−1]
.

Lemma 3. Let ψ(·) be the Legendre conjugate of φ(·)
that defines the cost function G(w) in equation (11).
Then if ψ(·) has a Lipschitz continuous Hessian then
G(w) has a Lipschitz continuous Hessian.

Proof.
[
Hψ(w) + Cwi − 1

1+Cφi
(Hφ(r∗i (w)))

−1]
=[

Hψ(w) + Cwi − 1
1+Cφi

Hψ(∇φ(r∗i (w)))
]

using

Legendre duality. Further, the vector ∇φ(r∗i (w))
turns out to be the Euclidean projection of the
vector Aiw on the set R↓i (see Proposition2).
Since projection is a non-expansive operator,
Hψ(∇φ(r∗i (w))) is Lipschitz continuous in w.

3.1.4 Summary: Impact on Optimization

Let us take stock of what have we achieved so far.
Lemmas 1 through 3 led to quantitative guarantees
on rate of convergence in the batch setting. They al-
low selecting the regularization parameters Cφi, Cwi
based on desired convergence performance. The pa-
per [1] could not provide any such quantitative guar-
antees, because their cost function was not proven to
be jointly convex. Note that the nested minimization
in the gradient computation trivially parallelizes. We
shall see that each parallel task completes in finite time
(Section 3.6). Batch gradient descent on the marginal
with (12) evaluated in parallel converges linearly as
a result of strong marginal convexity and smoothness
[5]. Stochastic gradient descent by sampling an index
from (12) also has linear rate of convergence (in an ex-
pected sense) [20]. Quasi-Newton (and truncated New-
ton) methods with parallel evaluation of gradients use
the gradient computation (12) (and explicit Hessian
(13) which has a simple diagonal structure) have su-
perlinear convergence [5].

3.2 Online Algorithm for Learning
Permutations

In this section we propose an online model for learn-
ing to rank where we have a varying set of items that
need to be ordered in each round. The adversary, at
round t provides the feature matrix At of dt items
that it has ranked, but that order is not revealed till
the learner responds with a “scoring vector” wt. The
learner is then charged a cost of Gt(wt) as defined in
(11) according to any twice differentiable σ strongly

convex function φt with L Lipschitz continuous gradi-
ent. The order and the function φt is then revealed for
the learner to use. The objective is to minimize the
cumulative loss

∑
tGt(wt).

For the tth gradient update we use the tth term of the
gradient (12) with a learning rate of 1

σt as

wt+1 = wt −
1

σt
Ft({r∗t },w)

where r∗t = Argminrt∈R↓∩St Fi(rt,w) and Ft is de-
fined in (9).

Theorem 1. [11] The online gradient algorithm ap-
plied in an online setting to a s strongly function
that has L Lipschitz continuous gradients has regret

O(L
2

σ log T ).

Neither the algorithm nor the bound is new, what is
novel though is that the ranking problem of such com-
binatorial nature can be transformed into a form, with-
out loss in generality, that this algorithm can exploit.

Summary: This concludes what we have to say about
the implications joint convexity of the cost function
we propose. One can see that it leads to quantitative
guarantees on rate of convergence in the batch setting
and performance guarantees in the online and the ad-
versarial setting. Now we turn our attention the next
topic of this paper: large margins.

3.3 Margins

Performant classification loss functions such as hinge
loss [22], logistic loss and exponential loss [9] continue
to be active even after training error has fallen to zero.
For MR such a margin like property is not only ben-
eficial but also essential because otherwise the cost
function is degenerate as may be verified by setting
w, β = 0. The necessity of this margin property is not
mentioned in [1]. Here we take an explicit approach.

By controlling the margin we can also model the no-
tion that errors at the top of the list are more severe
than at the bottom. We achieve this by adding lin-
ear inequalities and terms. Therefore the properties of
strong convexity and Lipschitz continuity of the gra-
dient established in Section 3.1 continue to hold.

We incorporate the margin property in two alternative
ways. We augment the cost function (9) by introducing
a fixed margin (14) and alternatively a large margin
variant (15). In addition to enforcing order in the tar-
get vector ri it enforces (for the fixed margin formula-
tion) or encourages (for the large margin formulation)
a gap between the target values of adjacently ordered
items ri,j , ri,j+1. In the formulations (14), (15), the
components of ti denote the gap between the adjacent
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targets. In (14) the gaps are pre-specified. It is natural
to specify a comparatively higher gap at the top. In
(15) the gaps are not specified explicitly, but a reward
ci is awarded per unit gap.

The fixed margin formulations is posed in terms of
positive pre-prescribed margins ti,j as follows:

min
ri,w

|Q|∑

i=1

Fi(ri,w)

ri,j+1 − ri,j ≥ ti,j ∀j ∈ [0, di − 1],∀i ∈ [1, |Q|]
ri,0 ≥ ti,0 ∀i ∈ [1, |Q|] (14)

The large margin formulations are posed in terms
of a vector of rewards ci associated with the vector of
gaps ti > 0 as follows: for every query qii ∈ Q, solve:

min
ri,w,ti

|Q|∑

i=1

Fi(ri,w)− 〈ci, ti〉

ri,j+1 − ri,j ≥ ti,j ≥ 0 ∀j ∈ [0, di − 1],∀i ∈ [1, |Q|]
ri,0 ≥ ti,0 ∀i ∈ [1, |Q|], (15)

Note that the ri optimization is a Bregman projection
problem. Furthermore, the r′is are independent and
therefore can be projected in parallel. Readers familiar
with generalized linear models (GLM) will recognize
that the optimization over w is penalized maximum
likelihood parameter estimation for GLMs. Since this
procedure is standard, we focus on r and t only in the
interest of space.

3.4 Bregman Projection on R↓t
Both the formulations (14) and (15) involve Bregman
projections on R↓t. Elements of R↓t ⊂ Rn are not
only sorted but also have separation between adja-
cent components, given by the vector t. In this sec-
tion we reduce it to a square Euclidean projection
on Argminy∈R↓t , hence removing the need to solve a
non-linear optimization problem. It is quite remark-
able that this is possible. For the reduction to hold
we need additional assumptions of strong convexity
and/or Lipschitz continuity. Consider the problem:

min
r
Dφ

(
r
∣∣∣
∣∣∣(∇φ)

−1
(Aw)

)
s.t. Adj-Diff (r) ≤ t. (16)

If t = 0 this is min
r∈R↓

Dφ

(
r
∣∣∣
∣∣∣(∇φ)

−1
(Aw)

)
. When t is

component-wise strictly positive it imposes strict mar-
gin between adjacent components of r.

Proposition 2. Let φ(·) be s strongly convex, then

(∇φ)
−1

(z∗) = ArgminrDφ

(
r
∣∣∣
∣∣∣(∇φ)

−1
(Aw)

)
+〈v, r〉

s.t. Adj-Diff (r) ≤ t (17)

where z∗ = Argminz ||z − Aw|| + 〈v, r〉 s.t.
Adj-Diff(z) ≤ st.

Proof. For the moment let us ignore the term 〈v, r〉 .
Let the set of points satisfying the KKT conditions for

(16) be A=
{
r
λ

∣∣∣∇φ(r)=Aw−Adj-Diff(λ)
Adj-Diff(r)≤t

}
, let us denote

the KKT points of the optimization problem

min
z
||z −Aw|| s.t. Adj-Diff(z) ≤ st by B =

{
z
λ

∣∣∣ z=Aw−Adj-Diff(λ)
Adj-Diff(z)≤st

}
=
{
∇φ(r)
λ

∣∣∣∇φ(r)=Aw−Adj-Diff(λ)
Adj-Diff(∇φ(r))≤st

}
.

From rj+1 − rj ≥ tj and strong convexity we have
∇φ(rj+1) − ∇φ(rj) ≥ stj thus A ⊂ B. Complemen-
tary slackness conditions are also verified thus A,B
are unique minimizers. The term 〈v, r〉 maintains the
relation between A and B proving that the minima of
the two problems coincide.

Proposition 3. Let φ(·) be strictly convex, t ≤ 0 and
∇φ(·) 1

L Lipschitz continuous, then minimizer z∗ of
(17) is

z∗ = Argminz ||z−Aw||+〈v, r〉 s.t. Adj-Diff(z) ≤ Lt.

Proof. Define A and B as before. From ∇φ(rj+1) −
∇φ(rj) ≥ Ltj and Lipschitz continuity we have rj+1−
rj ≥ tj therefore B ⊂ A, but A and B are unique
minimizers. Therefore the proposition holds.

The implications: of the propositions are, of course,
that, for the optimization over r, one only needs to
implement the square loss variants of (14) and (15) be-
cause they are in correspondence with other Bregman
divergences as long as the convex function is strongly
convex or its gradient is Lipschitz continuous.

The final piece is to show that the reduced quadratic
program (QP) is efficiently solvable. This is critical
because it is required for the numerical evaluating the
gradient (and Hessian) ofG(w) where we cannot afford
the expense of a generic QP solver. We now show how
the QP can be solved in linear time.

3.5 Pool Adjacent Violators Algorithm

The pool adjacent violators algorithm [10] solves

min
z
||z −Aw|| s.t. Adj-Diff∗(z) ≤ 0 (18)

called the isotonic regression problem. PAV is essen-
tially a block coordinate ascent of the dual of (18). It
runs in finite time and a straight-forward implementa-
tion scales as O(d2) in the dimensions. Subsequently
[10] observed that if implemented carefully it remark-
ably has complexity that is linear in d.
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The nonlinear optimization problems (14) and (15)
from (18). Fortunately, by a series of non-linear and
linear change of variables one can reduce these prob-
lems to variations of the isotonic regression problem.

3.6 Decomposing the Margin Formulation

For a fixed w, a plausible way to optimize (15) is to fix
ti and optimize ri and alternate, keeping w fixed. One
may update w once ti and ri converge. This clearly
fails because the constraints couple ri and ti. How-
ever, we show that an affine transformation can not
only correctly decompose the problem, but also that it
separates out the problem out into versions of isotonic
regression problems: namely isotonic regression with
a lower-bound on the smallest r. Thus it adds another
(scalar) constraint to the system Adj-Diff(r) ≤ −t,
where Adj-Diff is the adjacent-difference operator.

Because of the reduction properties shown in Proposi-
tions 2 and 3 to estimate ri in (15) one only needs to
consider the problem of the form:

min
ri,ti

1

2
||ri−yi||2−〈ci, ti〉 s.t. Adj-Diff(ri) ≤ −ti, ti > 0.

Substituting ti = −Adj-Diff(di), zi = ri − di we ob-
tain

1

2
||zi + di − yi||2 + 〈ci,Adj-Diff(di〉)
s.t. Adj-Diff(zi) ≤ 0, Adj-Diff(di) ≤ 0. (19)

The variables zi and di are completely decoupled, the
constraints are the ordering constraints, and if either
zi or di fixed, the formulation reduces to an isotonic
problem in the other (for di some simple algebraic ma-
nipulation is necessary to expose the PAV form). Thus,
one may alternate over zi and di as follows:

zt+1
i = PAV (yi − dti) (20)

dt+1
i = PAV (yi − zt+1

i −Adj-Diff†(c)) (21)

and obtain the large margin solution by recovering
ri, ti from converged zi and di.

Problem (14) can be decomposed similarly using
propositions 2, 3 and the exact same affine transfor-
mation ti = −Adj-Diff(di) and zi = ri − di. Here
however di is immediately determined, so no iteration
over the variables zi and di is necessary and solving
zi = PAV (yi−di) is sufficient to recover the optimal
ri. Since this requires a single instance of PAV, it is
obvious that this converges in finite time, linear in the
number of items.

4 EXPERIMENTS

We evaluated the ranking performance of the proposed
margin equipped monotone retargeting (MEMR) ap-

Sqr.MEMR

LBFGS

Sqr.MEMR
TRON

Sqr MR RankSVM

MQ’07 0.166s 0.101s 26.396s 17.187s
KL.MEMR

LBFGS

KL.MEMR

TRON
KL MR -

MQ’07 0.326s 0.199s 54.15s

Table 1: CPU time of MEMR and Baselines

HyperThreads 1 2 3 4 8
Sqr.MEMR
LBFGS,ms

166 91 72 59 46

Speedup 1 1.8 2.3 2.8 3.6

Table 2: MEMR speedup with parallelism

proach on the benchmark LETOR 4.0 datasets [18]
as well as the OHSUMED dataset [12]. Each of
these datasets are pre-partitioned into five-fold val-
idation sets for easy comparison across algorithms.
We focus on the variants that use Sqr-loss and KL-
divergence because these are strongly convex Bregman
divergences. We compare the performance of MEMR
against the following strong baselines (i) The MR al-
gorithm as reported in [1] (Recall that the MR algo-
rithm has been shown to outperform many of the cur-
rent state of the art techniques [1]), (ii) NDCG consis-
tent generalized linear models that also use different
Bregman divergences [21] and (iii) max-margin based
pairwise learning to rank method RankSVM as imple-
mented by SVMPerf [14] (Note RankSVM as imple-
mented by SVMPerf is a factor of 20 faster than its
original implementation in SVMLight). MEMR is im-
plemented in C++ as a minimization method on the
function G(w). PAV algorithm is used to compute the
gradient, and the Hessian. We tried two strategies (i)
quasi-Newton using LBFGS [17] and (ii) Trust region
truncated Newton (TRON) [16]. While both were an
order of magnitude faster than our baselines the lat-
ter gave the fastest convergence. The CPU timings of
serial implementations on a 2.8 Ghz Intel Quad core
processor are reported in Table 1. We parallelized the
LBFGS based implementation. The timings and cor-
responding speedups are shown in Table 2. We found
that overprovisioning of threads (8 threads on a quad-
core) was necessary to reach full speedup supported by
the hardware.

In our experiments the fixed margin constraints (see
equation (14)) were set using different non-increasing
functions of the rank. In Figure 2 we show the effect of
margins set to different constant values. In Figure 3 we
show the effect of margins set by different polynomi-
ally decaying functions. The regularization parameter
C was selected on the basis of maximum NDCG on
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MQ 2007: Mean NDCG (non-truncated)

SQ KL Hinge

MEMR 0.7491 0.7564 -
MR 0.7398 0.6978 -

NDCG consistent

GLM [21]
0.7344 0.7399 -

RankSVM - - 0.6528

Table 3: Test NDCG on MQ2007 Dataset

OHSUMED: Mean NDCG (non-truncated)

SQ KL Hinge

MEMR 0.7115 0.7146 -
MR 0.6878 0.6997 -

NDCG consistent

GLM [21]
0.6892 0.6947 -

RankSVM - - 0.6571

Table 4: Test NDCG on OHSUMED Dataset.

the validation set.Figure 4 shows the behavior of the
same margin function but for the loss measured by KL
divergence.
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Figure 2: Truncated NDCG@N obtained on MQ2007 us-
ing Sqr-loss MEMR with margin between adjacent targets
set to {0.0625e − 3, 0.125e − 3, 0.25e − 3, .5e − 3, 1e − 3}
respectively showing improved rank quality as margins in-
crease. The plot labeled “Sqr-Loss” represents pointwise
NDCG consistent Sqr loss proposed by [21]. Plot labeled
“Sqr-MR”corresponds to MR [1] with Sqr-loss.Performance
of RankSVM is also shown

5 CONCLUSION

In this paper we presented a margin based monotone
retargeting framework for learning to rank. Pointwise
ranking methods search for optimal parameters of a
regression function to fit the training scores that were
specified to define the correct ranking order. MEMR
on the other hand searches not only for optimal param-
eters of a regression function but also over all order-
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Figure 3: Truncated NDCG@N obtained on MQ2007 us-
ing Sqr-loss MEMR with margin between adjacent targets
set by function C√· on the rank associated with the tar-

get. Plots shown for values of C ∈ {0.0625e − 3, 0.125e −
3, 0.25e−3, .5e−3}. The baselines are the same as in Figure
2.
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Figure 4: Truncated NDCG@N obtained on MQ2007 us-

ing KL-loss MEMR with margin between adjacent targets

set by the function C√· for values of C ∈ {1e−1, 2e−1, 3e−
1, 4e− 1}. The plot labeled ”KL-Loss” corresponds KL loss

minimizing NDCG consistent GLM [21].

preserving transformations of the training score vec-
tors such that its adjacent components are well sepa-
rated. The separation property leads to state of the
art performance as compared to MR and other max-
margin based ranking formulations. Moreover its joint
convexity and second order smoothness properties per-
mit efficient algorithms that lead to running times that
are a small fraction of competing algorithms, giving al-
most the best of both worlds: ranking accuracy better
than pairwise methods and running times comparable
to simple pointwise methods.
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Abstract

While many multiagent algorithms are designed
for homogeneous systems (i.e. all agents are iden-
tical), there are important applications which re-
quire an agent to coordinate its actions without
knowing a priori how the other agents behave.
One method to make this problem feasible is to as-
sume that the other agents draw their latent policy
(or type) from a specific set, and that a domain ex-
pert could provide a specification of this set, albeit
only a partially correct one. Algorithms have been
proposed by several researchers to compute poste-
rior beliefs over such policy libraries, which can
then be used to determine optimal actions. In this
paper, we provide theoretical guidance on two cen-
tral design parameters of this method: Firstly, it is
important that the user choose a posterior which
can learn the true distribution of latent types, as
otherwise suboptimal actions may be chosen. We
analyse convergence properties of two existing
posterior formulations and propose a new poste-
rior which can learn correlated distributions. Sec-
ondly, since the types are provided by an expert,
they may be inaccurate in the sense that they do
not predict the agents’ observed actions. We pro-
vide a novel characterisation of optimality which
allows experts to use efficient model checking al-
gorithms to verify optimality of types.

1 INTRODUCTION

Many multiagent algorithms are developed with a homoge-
neous setting in mind, meaning that all agents use the same
algorithm and are a priori aware of this fact. However, there
are important applications for which this assumption may
not be adequate, such as human-machine interaction, robot
search and rescue, and financial markets. In such problems,
it is important that an agent be able to effectively coordinate
its actions without knowing a priori how the other agents

behave. The importance of this problem has been discussed
in works such as [Albrecht and Ramamoorthy, 2013, Stone
et al., 2010, Bowling and McCracken, 2005].

This problem is hard since the agents may exhibit a large
variety of behaviours. General-purpose algorithms for mul-
tiagent learning are often impracticable, either because they
take too long to produce effective policies or because they
rely on prior coordination of behaviours [Albrecht and Ra-
mamoorthy, 2012]. However, it has been recognised (e.g.
[Albrecht and Ramamoorthy, 2013, Barrett et al., 2011]) that
the complexity of this problem can often be reduced by as-
suming that there is a latent set of policies for each agent
and a latent distribution over these policies, and that a do-
main expert can provide informed guesses as to what the
policies might be. (These guesses could also be generated
automatically, e.g. using some machine learning method on
a corpus of historical data.)

One algorithm that takes this approach is Harsanyi-Bellman
Ad Hoc Coordination (HBA) [Albrecht and Ramamoorthy,
2013]. This algorithm maintains a set of user-defined types
(by “type”, we mean a policy or programme which specifies
the behaviour of an agent) over which it computes posterior
beliefs based on the agents’ observed actions. The beliefs
are then used in a planning procedure to compute expected
payoffs for all actions (a procedure combining the concepts
of Bayesian Nash equilibrium and Bellman optimality) and
the best action is chosen. HBA was implemented as a rein-
forcement learning procedure and shown to be effective in
both simulated and human-machine problems [Albrecht and
Ramamoorthy, 2013]. Similar algorithms were studied in
[Barrett et al., 2011, Carmel and Markovitch, 1999].

While works such as [Albrecht and Ramamoorthy, 2013,
Barrett et al., 2011, Carmel and Markovitch, 1999] demon-
strate the practical usefulness of such methods, they provide
no theoretical guidance on two central design parameters:
Firstly, one may compute the posterior beliefs in various
ways, and it is important that the user choose a posterior for-
mulation which is able to accurately approximate the latent
distribution of types. This is important as otherwise the ex-
pected payoffs may be inaccurate, in which case HBA may
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choose suboptimal actions. In this paper, we analyse the con-
vergence conditions of two existing posterior formulations
and we propose a new posterior which can learn correlated
type distributions. These theoretical insights can be applied
by the user to choose appropriate posteriors.

Secondly, since the types are provided by the user (or gen-
erated automatically), they may be inaccurate in the sense
that their predictions deviate from the agents’ observed ac-
tions. This raises the need for a theoretical analysis of how
much and what kind of inaccuracy is acceptable for HBA to
be able to solve its task, by which we mean that it drives the
system into a terminal state. (A different question pertains to
payoff maximisation; we focus on task accomplishment as
it already includes many practical problems.) We describe
a methodology in which we formulate a series of desirable
termination guarantees and analyse the conditions under
which they are met. Furthermore, we provide a novel char-
acterisation of optimality which is based on the notion of
probabilistic bisimulation [Larsen and Skou, 1991]. In ad-
dition to concisely defining what constitutes optimal type
spaces, this allows the user to apply efficient model checking
algorithms to verify optimality in practice.

2 RELATED WORK

Opponent modelling methods such as case-based reason-
ing [Gilboa and Schmeidler, 2001] and recursive modelling
[Gmytrasiewicz and Durfee, 2000] are relevant to the extent
that they can complement the user-defined types by creating
new types (the opponent models) on the fly. For example,
[Albrecht and Ramamoorthy, 2013] used a variant of case-
based reasoning and [Barrett et al., 2011] used a tree-based
classifier to complement the user-defined types.

Plays and play books [Bowling and McCracken, 2005] are
similar in spirit to types and type spaces. However, plays
specify the behaviour of an entire team, with additional struc-
ture such as applicability and termination conditions, and
roles for each agent. In contrast, types specify the action
probabilities of a single agent and do not require commit-
ment to conditions and roles.

Plans and plan libraries [Carberry, 2001] are conceptually
similar to types and type spaces. However, the focus of plan
recognition has been on identifying the goal of an agent (e.g.
[Bonchek-Dokow et al., 2009]) and efficient representation
of plans (e.g. [Avrahami-Zilberbrand and Kaminka, 2007]),
while types are used primarily to compute expected payoffs
and can be efficiently represented as programmes [Albrecht
and Ramamoorthy, 2013, Barrett et al., 2011].

I-POMDPs [Gmytrasiewicz and Doshi, 2005] and I-DIDs
[Doshi et al., 2009] are related to our work since they too
assume that agents have a latent type. These methods are
designed to handle the full generality of partially observ-
able states and latent types, and they explicitly model nested

beliefs. However, this generality comes at a high computa-
tional cost and the solutions are infeasible to compute in
many cases. In contrast, we remain in the setting of fully ob-
servable states, and we implicitly allow for complex beliefs
within the specification of types. This allows our methods
to be computationally more tractable.

To the best of our knowledge, none of these related works di-
rectly address the theoretical questions considered in this pa-
per. While our results apply to [Albrecht and Ramamoorthy,
2013, Barrett et al., 2011, Carmel and Markovitch, 1999], we
believe they could be generalised to account for some of the
other related works as well. This includes the methodology
described in Section 5.

3 PRELIMINARIES

3.1 MODEL

Our analysis is based on the stochastic Bayesian game [Al-
brecht and Ramamoorthy, 2013]:

Definition 1. A stochastic Bayesian game (SBG) consists of

• discrete state space S with initial state s0 ∈ S and
terminal states S̄ ⊂ S

• players N = {1, ..., n} and for each i ∈ N :
– set of actions Ai (where A = A1 × ...×An)
– type space Θi (where Θ = Θ1 × ...×Θn)
– payoff function ui : S ×A×Θi → R
– strategy πi : H×Ai ×Θi → [0, 1]

• state transition function T : S ×A× S → [0, 1]

• type distribution ∆ : Θ→ [0, 1]

where H contains all histories Ht = 〈s0, a0, s1, a1, ..., st〉
with t ≥ 0, (sτ , aτ ) ∈ S ×A for 0 ≤ τ < t, and st ∈ S.

Definition 2. A SBG starts at time t = 0 in state s0:

1. In state st, the types θt1, ..., θ
t
n are sampled from Θ with

probability ∆(θt1, ..., θ
t
n), and each player i is informed

only about its own type θti .

2. Based on the history Ht, each player i chooses an action
ati ∈ Ai with probability πi(Ht, ati, θ

t
i), resulting in the

joint action at = (at1, ..., a
t
n).

3. The game transitions into a successor state st+1 ∈ S
with probability T (st, at, st+1), and each player i re-
ceives an individual payoff given by ui(st, at, θti).

This process is repeated until a terminal state st ∈ S̄ is
reached, after which the game stops.

3.2 ASSUMPTIONS

We make the following general assumptions in our analysis:

Assumption 1. We control player i, by which we mean that
we choose the strategies πi (using HBA). Hence, player i
has only one type, θi, which is known to us.
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We sometimes omit θi in ui and πi for brevity, and we use j
and −i to refer to the other players (e.g. A−i = ×j 6=iAj).
Assumption 2. Given a SBG Γ, we assume that all elements
of Γ are known except for the type spaces Θj and the type
distribution ∆, which are latent variables.

Assumption 3. We assume full observability of states and
actions. That is, we are always informed of the current his-
tory Ht before making a decision.

Assumption 4. For any type θj and history Ht, there exists
a unique sequence (χaj )aj∈Aj such that πj(Ht, aj , θj) =
χaj for all aj ∈ Aj .
We refer to this as external randomisation and to the oppo-
site (when there is no unique χaj ) as internal randomisation.
Technically, Assumption 4 is implied by the fact that πj is a
function, which means that any input is mapped to exactly
one output. However, in practice this can be violated if ran-
domisation is used “inside” a type implementation, hence it
is worth stating it explicitly. Nonetheless, it can be shown
that under full observability, external randomisation is equiv-
alent to internal randomisation. Hence, Assumption 4 does
not limit the types we can represent.

Example 1. Let there be two actions, A and B, and let the
expected payoffs for agent i be E(A) > E(B). The agent
uses ε-greedy action selection [Sutton and Barto, 1998] with
ε > 0. If agent i randomises externally, then the strategy πi
will assign action probabilities 〈1− ε/2, ε/2〉. If the agent
randomises internally, then with probability ε it will assign
probabilities 〈0.5, 0.5〉 and with probability 1 − ε it will
assign 〈1, 0〉, which is equivalent to external randomisation.

3.3 ALGORITHM

Algorithm 1 gives a formal definition of HBA (based on
[Albrecht and Ramamoorthy, 2013]) which is the central al-
gorithm in this analysis. (Section 1 provides an informal
description.) Throughout this paper, we will use Θ∗j and
Prj , respectively, to denote the user-defined type space and
posterior for player j, where Prj(θ∗j |Ht) is the probability
that player j has type θ∗j ∈ Θ∗j after history Ht. Further-
more, we will use Pr to denote the combined posterior, with
Pr(θ∗−i|Ht) =

∏
j 6=i Prj(θ∗j |Ht), and we sometimes refer

to this simply as the posterior.

Note that the likelihood L in (1) is unspecified at this point.
We will consider two variants for L in Section 4. The prior
probabilities Pj(θ∗j ) in (1) can be used to specify prior be-
liefs about the distribution of types. It is convenient to spec-
ify Prj(θ∗j |Ht) = Pj(θ

∗
j ) for t = 0. Finally, note that (2)/(3)

define an infinite regress. In practice, this may be imple-
mented using stochastic sampling (e.g. as in [Albrecht and
Ramamoorthy, 2013, Barrett et al., 2011]) or by terminating
the regress after some finite amount of time. In this analysis,
we assume that (2)/(3) are implemented as given.

Algorithm 1 Harsanyi-Bellman Ad Hoc Coordination (HBA)
[Albrecht and Ramamoorthy, 2013]
Input: SBG Γ, player i, user-defined type spaces Θ∗j ,

history Ht, discount factor 0 ≤ γ ≤ 1

Output: Action probabilities πi(Ht, ai)

1. For each j 6= i and θ∗j ∈ Θ∗j , compute posterior probability

Prj(θ∗j |Ht) =
L(Ht|θ∗j )Pj(θ

∗
j )

∑
θ̂∗j∈Θ∗j

L(Ht|θ̂∗j )Pj(θ̂∗j )
(1)

2. For each ai ∈ Ai, compute expected payoff Eai
st

(Ht) with

Eais (Ĥ) =
∑

θ∗−i∈Θ∗−i

Pr(θ∗−i|Ht)
∑

a−i∈A−i

Q
ai,−i
s (Ĥ)

∏

j 6=i
πj(Ĥ, aj , θ

∗
j )

(2)

Qas(Ĥ) =
∑

s′∈S
T (s, a, s′)

[
ui(s, a) + γmax

ai
Eais′
(
〈Ĥ, a, s′〉

)]

(3)

where Pr(θ∗−i|Ht) =
∏
j 6=i Prj(θ∗j |Ht) and ai,−i , (ai, a−i)

3. Distribute πi(Ht, ·) uniformly over arg maxai E
ai
st

(Ht)

4 LEARNING THE TYPE
DISTRIBUTION

This section is concerned with convergence and correctness
properties of the posterior. The theorems in this section tell
us if and under what conditions HBA will learn the type
distribution of the game. As can be seen in Algorithm 1, this
is important since the accuracy of the expected payoffs (2)
depends crucially on the accuracy of the posterior (1).

However, for this to be a well-posed learning problem, we
have to assume that the posterior Pr can refer to the same
elements as the type distribution ∆. Therefore, the results in
this section pertain to a weaker form of ad hoc coordination
[Albrecht and Ramamoorthy, 2013] in which the user knows
that the latent type space Θj must be a subset of the user-
defined type space Θ∗j . Formally, we assume:

Assumption 5. ∀j 6= i : Θj ⊆ Θ∗j

Based on this assumption, we simplify the notation in this
section by dropping the * in θ∗j and Θ∗j . The general case in
which Assumption 5 does not hold is addressed in Section 5.

We consider two kinds of type distributions:

Definition 3. A type distribution ∆ is called pure if there
is θ ∈ Θ such that ∆(θ) = 1. A type distribution is called
mixed if it is not pure.

Pure type distributions can be used to model the fact that
each player has a fixed type throughout the game, e.g. as in
[Barrett et al., 2011]. Mixed type distributions, on the other
hand, can be used to model randomly changing types. This
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was shown in [Albrecht and Ramamoorthy, 2013], where a
mixed type distribution was used to model defective agents
and human behaviour.

4.1 PRODUCT POSTERIOR

We first consider the product posterior:

Definition 4. The product posterior is defined as (1) with

L(Ht|θj) =

t−1∏

τ=0

πj(H
τ , aτj , θj) (4)

This is the standard posterior formulation used in Bayesian
games (e.g. [Kalai and Lehrer, 1993]) and was used in [Al-
brecht and Ramamoorthy, 2013, Barrett et al., 2011].

Our first theorem states that the product posterior is guaran-
teed to converge to any pure type distribution:

Theorem 1. Let Γ be a SBG with a pure type distribution ∆.
If HBA uses a product posterior, and if the prior probabilities
Pj are positive (i.e.∀θ∗j ∈Θ∗j :Pj(θ

∗
j )> 0), then, for t→∞:

Pr(θ−i|Ht) = ∆(θ−i) for all θ−i ∈ Θ−i.

Proof. The proof is not difficult, but tedious. In the interest
of space, we give a proof sketch.1 [Kalai and Lehrer, 1993]
studied a model which can be equivalently described as a
single-state SBG (|S| = 1) with pure ∆ and proved that the
product posterior converges to the type distribution of the
game. Their convergence result can be extended to multi-
state SBGs by translating the multi-state SBG Γ into a single-
state SBG Γ̂ which is equivalent to Γ in the sense that the
players behave identically. Essentially, the trick is to remove
the states in Γ by introducing a new player whose action
choices correspond to the state transitions in Γ.

Theorem 1 states that the product posterior will learn any
pure type distribution. However, it does not necessarily learn
mixed type distributions, as shown in the following example:

Example 2. Consider a SBG with two players. Player 1 is
controlled by HBA using a product posterior while player 2
has two types, θA and θB , which are assigned by a mixed
type distribution ∆ with ∆(θA) = ∆(θB) = 0.5. The type
θA always chooses action A while θB always chooses action
B. In this case, there will be a time t after which both types
have been assigned at least once, and so both actions A and
B have been played at least once by player 2. This means
that from time t and all subsequent times τ ≥ t, we have
Pr2(θA|Hτ ) = Pr2(θB |Hτ ) = 0 (since each type plays
only one action), so the posterior will never converge to ∆.

4.2 SUM POSTERIOR

We now consider the sum posterior:

1A full proof of Theorem 1 can be found at:
http://rad.inf.ed.ac.uk/data/publications/2014/uai14proof.pdf

Definition 5. The sum posterior is defined as (1) with

L(Ht|θj) =

t−1∑

τ=0

πj(H
τ , aτj , θj) (5)

The sum posterior was introduced in [Albrecht and Ra-
mamoorthy, 2013] to allow HBA to recognise changed types.
In other words, the purpose of the sum posterior is to learn
mixed type distributions. It is easy to see that a sum posterior
would indeed learn the mixed type distribution in Example 2.
However, we now give an example to show that without ad-
ditional requirements the sum posterior does not necessarily
learn any (pure or mixed) type distribution:

Example 3. Consider a SBG with two players. Player 1 is
controlled by HBA using a sum posterior while player 2
has two types, θA and θAB , which are assigned by a pure
type distribution ∆ with ∆(θA) = 1. The type θA always
chooses action A while θAB chooses actions A and B with
equal probability. The product posterior converges to ∆,
as predicted by Theorem 1. However, the sum posterior
converges to probabilities 〈 23 , 1

3 〉, which is incorrect.

Note that this example can readily be modified to use a
mixed type distribution, with similar results. Therefore, we
conclude that the sum posterior does not necessarily learn
any type distribution.

Under what condition is the sum posterior guaranteed to
learn the true type distribution? Consider the following two
quantities, which can be computed from a given history Ht:

Definition 6. The average overlap of player j in Ht is

AOj(Ht) =
1

t

t−1∑

τ=0

[
|Λτj | ≥ 2

]
1

∑

θj∈Θj

πj(H
τ , aτj , θj) |Θj |−1

(6)
Λτj =

{
θj ∈ Θj |πj(Hτ , aτj , θj) > 0

}

where [b]1 = 1 if b is true, else 0.

Definition 7. The average stochasticity of player j in Ht is

ASj(Ht) =
1

t

t−1∑

τ=0

|Θj |−1
∑

θj∈Θj

1− πj(Hτ , âτj , θj)

1− |Aj |−1
(7)

where âτj ∈ arg maxaj πj(H
τ , aj , θj).

Both quantities are bounded by 0 and 1. The average overlap
describes the similarity of the types, where AOj(Ht) = 0
means that player j’s types (on average) never chose the
same action in history Ht, whereas AOj(Ht) = 1 means
that they behaved identically. The average stochasticity de-
scribes the uncertainty of the types, where ASj(Ht) = 0
means that player j’s types (on average) were fully de-
terministic in the action choices in history Ht, whereas
ASj(Ht) = 1 means that they chose actions randomly with
uniform probability.
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We can show that, if the average overlap and stochasticity of
player j converge to zero as t→∞, then the sum posterior
is guaranteed to learn any pure or mixed type distribution:

Theorem 2. Let Γ be a SBG with a pure or mixed type dis-
tribution ∆. If HBA uses a sum posterior, then, for t → ∞:
If AOj(Ht) = 0 and ASj(Ht) = 0 for all players j 6= i,
then Pr(θ−i|Ht) = ∆(θ−i) for all θ−i ∈ Θ−i.

Proof. Throughout this proof, let t → ∞. The sum poste-
rior is defined as (1) where L is defined as (5). Given the
definition of L, both the numerator and the denominator in
(1) may be infinite. We invoke L’Hôpital’s rule which states
that, in such cases, the quotient u(t)

v(t) is equal to the quo-
tient u

′(t)
v′(t) of the respective derivatives with respect to t. The

derivative of L with respect to t is the average growth per
time step, which in general may depend on the history Ht

of states and actions. The average growth of L is

L′(Ht|θj) =
∑

aj∈Aj
F (aj |Ht)πj(H

t, aj , θj) (8)

where

F (aj |Ht) =
∑

θj∈Θj

∆(θj)πj(H
t, aj , θj) (9)

is the probability of action aj after history Ht, with ∆(θj)
being the marginal probability that player j is assigned
type θj . As we will see shortly, we can make an asymp-
totic growth prediction irrespective of Ht. Given that
AOj(Ht) = 0, we can infer that whenever πj(Ht, aj , θj) >
0 for action aj and type θj , then πj(Ht, aj , θ

′
j) = 0 for all

other types θ′j 6= θj . Therefore, we can write (8) as

L′(Ht|θj) = ∆(θj)
∑

aj∈Aj
πj(H

t, aj , θj)
2 (10)

Next, given that ASj(Ht) = 0, we know that there exists
an action aj such that πj(Ht, aj , θj) = 1, and therefore
we can conclude that L′(Ht|θj) = ∆(θj). This shows that
the history Ht is irrelevant to the asymptotic growth rate
of L. Finally, since

∑
θj∈Θj

∆(θj) = 1, we know that the
denominator in (1) will be 1, and we can ultimately conclude
that Prj(θj |Ht) = ∆(θj).

Theorem 2 explains why the sum posterior converges to the
correct type distribution in Example 2. Since the types θA
and θB always choose different actions and are completely
deterministic (i.e. the average overlap and stochasticity are
always zero), the sum posterior is guaranteed to converge
to the type distribution. On the other hand, in Example 3
the types θA and θAB produce an overlap whenever action
A is chosen, and θAB is completely random. Therefore, the
average overlap and stochasticity are always positive, and
an incorrect type distribution was learned.
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Figure 1: Example run in random SBG with 2 players, 10 ac-
tions, and 100 states. Player j has 3 reinforcement learning types
with ε-greedy action selection (decreasing linearly from ε = 0.7
at t = 1000, to ε = 0 at t = 2000). The error at time t is∑
θj
|Prj(θj |Ht)−∆(θj)| where Prj is the sum posterior.

The assumptions made in Theorem 2, namely that the av-
erage overlap and stochasticity converge to zero, require
practical justification. First of all, it is important to note that
it is only required that these converge to zero on average as
t→∞. This means that in the beginning there may be arbi-
trary overlap and stochasticity, as long as these go to zero
as the game proceeds. In fact, with respect to stochasticity,
this is precisely how the exploration-exploitation dilemma
[Sutton and Barto, 1998] is solved in practice: In the early
stages, the agent randomises deliberately over its actions in
order to obtain more information about the environment (ex-
ploration) while, as the game proceeds, the agent becomes
gradually more deterministic in its action choices so as to
maximise its payoffs (exploitation). Typical mechanisms
which implement this are ε-greedy and Softmax/Boltzmann
exploration [Sutton and Barto, 1998]. Figure 1 demonstrates
this in a SBG in which player j has 3 reinforcement learning
types. The payoffs for the types were such that the average
overlap would eventually go to zero.

Regarding the average overlap converging to zero, we be-
lieve that this is a property which should be guaranteed by
design, for the following reason: If the user-defined type
space Θ∗j is such that there is a constantly high average over-
lap, then this means that the types θ∗j ∈ Θ∗j are in effect very
similar. However, types which are very similar are likely
to produce very similar trajectories in the planning step of
HBA (cf. Ĥ in (2)) and, therefore, constitute redundancy in
both time and space. Therefore, we believe it is advisable to
use type spaces which have low average overlap.

4.3 CORRELATED POSTERIOR

An implicit assumption in the definition of (1) is that
the type distribution ∆ can be represented as a product
of n independent factors (one for each player), so that
∆(θ) =

∏
j ∆j(θj). Therefore, since the sum posterior is

in the form of (1), it is in fact only guaranteed to learn in-
dependent type distributions. This is opposed to correlated
type distributions, which cannot be represented as a product
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of n independent factors. Correlated type distributions can
be used to specify constraints on type combinations, such
as “player j can only have type θj if player k has type θk”.
The following example demonstrates how the sum posterior
fails to converge to a correlated type distribution:

Example 4. Consider a SBG with 3 players. Player 1 is
controlled by HBA using a sum posterior. Players 2 and
3 each have two types, θA and θB , which are defined
as in Example 2. The type distribution ∆ chooses types
with probabilities ∆(θA, θB) = ∆(θB , θA) = 0.5 and
∆(θA, θA) = ∆(θB , θB) = 0. In other words, player 2 can
never have the same type as player 3. From the perspective
of HBA, each type (and hence action) is chosen with equal
probability for both players. Thus, despite the fact that there
is zero overlap and stochasticity, the sum posterior will even-
tually assign probability 0.25 to all constellations of types,
which is incorrect. This means that HBA fails to recognise
that the other players never choose the same action.

In this section, we propose a new posterior which can learn
any correlated type distribution:

Definition 8. The correlated posterior is defined as

Pr(θ−i|Ht) = η P (θ−i)
t−1∑

τ=0

∏

θj∈θ−i
πj(H

τ , aτj , θj) (11)

where P specifies prior probabilities (or beliefs) over Θ−i
(analogous to Pj) and η is a normalisation constant.

The correlated posterior is closely related to the sum poste-
rior. In fact, in converges to the true type distribution under
the same conditions as the sum posterior:

Theorem 3. Let Γ be a SBG with a correlated type distri-
bution ∆. If HBA uses the correlated posterior, then, for
t→∞: If AOj(Ht) = 0 and ASj(Ht) = 0 for all players
j 6= i, then Pr(θ−i|Ht) = ∆(θ−i) for all θ−i ∈ Θ−i.

Proof. Proof is analogous to proof of Theorem 2.

It is easy to see that the correlated posterior would learn
the correct type distribution in Example 4. Note that, since
it is guaranteed to learn any correlated type distribution, it
is also guaranteed to learn any independent type distribu-
tion. Therefore, the correlated posterior would also learn the
correct type distribution in Example 2. This means that the
correlated posterior is complete in the sense that it covers the
entire spectrum of pure/mixed and independent/correlated
type distributions. However, this completeness comes at a
higher computational complexity. While the sum posterior is
in O(nmaxj |Θj |) time and space, the correlated posterior
is in O(maxj |Θj |n) time and space. In practice, however,
the time complexity can be reduced drastically by comput-
ing the probabilities πj(Hτ , aτj , θj) only once for each j
and θj ∈ Θj (as in the sum posterior), and then reusing
them in subsequent computations.

5 INACCURATE TYPE SPACES

Each user-defined type θ∗j in Θ∗j is a hypothesis by the user
regarding how player j might behave. Therefore, Θ∗j may
be inaccurate in the sense that none of the types therein
accurately predict the observed behaviour of player j. This
is demonstrated in the following example:

Example 5. Consider a SBG with two players and actions
L and R. Player 1 is controlled by HBA while player 2
has a single type, θLR, which chooses L,R,L,R, etc. HBA is
provided with Θ∗j = {θ∗R, θ∗LRR}, where θ∗R always chooses
R while θ∗LRR chooses L,R,R,L,R,R etc. Both user-defined
types are inaccurate in the sense that they predict player 2’s
actions in only ≈ 50% of the game.

Two important theoretical questions in this context are how
closely the user-defined type spaces Θ∗j have to approximate
the real type spaces Θj in order for HBA to be able to (1)
solve the task (i.e. bring the SBG into a terminal state), and
(2) achieve maximum payoffs. These questions are closely
related to the notions of flexibility and efficiency [Albrecht
and Ramamoorthy, 2013] which, respectively, correspond
to the probability of termination and the average payoff per
time step. In this section, we are primarily concerned with
question 1, and we are concerned with question 2 only in so
far as that we want to solve the task in minimal time. (Since
reducing the time until termination will increase the average
payoff per time step, i.e. increase efficiency.) This focus is
formally captured by the following assumption, which we
make throughout this section:

Assumption 6. Let player i be controlled by HBA, then
ui(s, a, θi) = 1 iff. s ∈ S̄, else 0.

Assumption 6 specifies that we are only interested in reach-
ing a terminal state, since this is the only way to obtain a
none-zero payoff. In our analysis, we consider discount fac-
tors γ (cf. Algorithm 1) with γ = 1 and γ < 1. While all
our results hold for both cases, there is an important distinc-
tion: If γ = 1, then the expected payoffs (2) correspond to
the actual probability that the following state can lead to (or
is) a terminal state (we call this the success rate), whereas
this is not necessarily the case if γ < 1. This is since γ < 1
tends to prefer shorter paths, which means that actions with
lower success rates may be preferred if they lead to faster
termination. Therefore, if γ = 1 then HBA is solely inter-
ested in termination, and if γ < 1 then it is interested in fast
termination, where lower γ prefers faster termination.

5.1 METHODOLOGY OF ANALYSIS

Given a SBG Γ, we define the ideal process, X , as the pro-
cess induced by Γ in which player i is controlled by HBA
and in which HBA always knows the current and all future
types of all players. Then, given a posterior Pr and user-
defined type spaces Θ∗j for all j 6= i, we define the user
process, Y , as the process induced by Γ in which player i
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is controlled by HBA (same as in X) and in which HBA
uses Pr and Θ∗j in the usual way. Thus, the only difference
between X and Y is that X can always predict the player
types whereas Y approximates this knowledge through Pr
and Θ∗j . We write Eaist (Ht|C) to denote the expected pay-
off (as defined by (2)) of action ai in state st after history
Ht, in process C ∈ {X,Y }.
The idea is that X constitutes the ideal solution in the sense
that Eaist (Ht|X) corresponds to the actual expected payoff,
which means that HBA chooses the truly best-possible ac-
tions in X . This is opposed to Eaist (Ht|Y ), which is merely
the estimated expected payoff based on Pr and Θ∗j , so that
HBA may choose suboptimal actions in Y . The methodol-
ogy of our analysis is to specify what relation Y must have
to X to satisfy certain guarantees for termination.

We specify such guarantees in PCTL [Hansson and Jonsson,
1994], a probabilistic modal logic which also allows for the
specification of time constraints. PCTL expressions are in-
terpreted over infinite histories in labelled transition systems
with atomic propositions (i.e. Kripke structures). In order to
interpret PCTL expressions over X and Y , we make the fol-
lowing modifications without loss of generality: Firstly, any
terminal state s̄ ∈ S̄ is an absorbing state, meaning that if a
process is in s̄, then the next state will be s̄ with probability
1 and all players receive a zero payoff. Secondly, we intro-
duce the atomic proposition term and label each terminal
state with it, so that term is true in s if and only if s ∈ S̄.

We will use the following two PCTL expressions:

F≤t�pterm, F
<∞
�p term

where t ∈ N, p ∈ [0, 1], and �∈ {>,≥}.
F≤t�pterm specifies that, given a state s, with a probability
of � p a state s′ will be reached from s within t time steps
such that s′ satisfies term. The semantics of F<∞�p term
are similar except that s′ will be reached in arbitrary but
finite time. We write s |=C φ to say that a state s satisfies
the PCTL expression φ in process C ∈ {X,Y }.

5.2 CRITICAL TYPE SPACES

In the following section, we sometimes assume that the
user-defined type spaces Θ∗j are uncritical:

Definition 9. The user-defined type spaces Θ∗j are critical
if there is Sc ⊆ S \ S̄ which satisfies:

1. For each Ht ∈ H with st ∈ Sc, there is ai ∈ Ai such
that Eaist (Ht|Y ) > 0 and Eaist (Ht|X) > 0

2. There is a positive probability that Y may eventually get
into a state sc ∈ Sc from the initial state s0

3. If Y is in a state in Sc, then with probability 1 it will
always be in a state in Sc (i.e. it will never leave Sc)

We say Θ∗j are uncritical if they are not critical.

Intuitively, critical type spaces have the potential to lead
HBA into a state space in which it believes it chooses the
right actions to solve the task, while other actions are actu-
ally required to solve the task. The only effect that its actions
have is to induce an infinite cycle, due to a critical inconsis-
tency between the user-defined and true type spaces. The
following example demonstrates this:

Example 6. Recall Example 5 and let the task be to choose
the same action as player j. Then, Θ∗j is uncritical because
HBA will always solve the task at t = 1, regardless of the
posterior and despite the fact that Θ∗j is inaccurate. Now, as-
sume that Θ∗j = {θ∗RL} where θ∗RL chooses actions R,L,R,L
etc. Then, Θ∗j is critical since HBA will always choose the
opposite action of player j, thinking that it would solve the
task, when a different action would actually solve it.

A practical way to ensure that the type spaces Θ∗j are (even-
tually) uncritical is to include methods for opponent mod-
elling in each Θ∗j (e.g. as in [Albrecht and Ramamoorthy,
2013, Barrett et al., 2011]). If the opponent models are guar-
anteed to learn the correct behaviours, then the type spaces
Θ∗j are guaranteed to become uncritical. In Example 6, any
standard modelling method would eventually learn that the
true strategy of player j is θLR. As the model becomes
more accurate, the posterior gradually shifts towards it and
eventually allows HBA to take the right action.

5.3 TERMINATION GUARANTEES

Our first guarantee states that if X has a positive probability
of solving the task, then so does Y :

Property 1. s0 |=X F<∞>0 term ⇒ s0 |=Y F<∞>0 term

We can show that Property 1 holds if the user-defined type
spaces Θ∗j are uncritical and if Y only chooses actions for
player i with positive expected payoff in X .

Let A(Ht|C) denote the set of actions that process C may
choose from in state st after history Ht, i.e. A(Ht|C) =
arg maxai E

ai
st (Ht|C) (cf. step 3 in Algorithm 1).

Theorem 4. Property 1 holds if Θ∗j are uncritical and

∀Ht∈ H ∀ai ∈ A(Ht|Y ) : Eaist (Ht|X) > 0 (12)

Proof. Assume s0 |=X F<∞>0 term. Then, we know that X
chooses actions ai which may lead into a state s′ such that
s′ |=X F<∞>0 term, and the same holds for all such states
s′. Now, given (12) it is tempting to infer the same result
for Y , since Y only chooses actions ai which have positive
expected payoff in X and, therefore, could truly lead into a
terminal state. However, (12) alone is not sufficient to infer
s′ |=Y F<∞>0 term because of the special case in which Y
chooses actions ai such that Eaist (Ht|X) > 0 but without
ever reaching a terminal state. This is why we require that the
user-defined type spaces Θ∗j are uncritical, which prevents
this special case. Thus, we can infer that s′ |=Y F<∞>0 term,
and hence Property 1 holds.
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The second guarantee states that if X always solves the task,
then so does Y :

Property 2. s0 |=X F<∞≥1 term ⇒ s0 |=Y F<∞≥1 term

We can show that Property 2 holds if the user-defined type
spaces Θ∗j are uncritical and if Y only chooses actions for
player i which lead to states into which X may get as well.

Let µ(Ht, s|C) be the probability that process C transitions
into state s from state st after history Ht, i.e. µ(Ht, s|C) =
1
|A|
∑
ai∈A

∑
a−i

T (st, 〈ai, a−i〉, s)
∏
j πj(H

t, aj , θ
t
j) with

A ≡ A(Ht|C), and let µ(Ht, S′|C) =
∑
s∈S′ µ(Ht, s|C)

for S′ ⊂ S.

Theorem 5. Property 2 holds if Θ∗j are uncritical and

∀Ht∈ H ∀s ∈ S : µ(Ht, s|Y ) > 0⇒ µ(Ht, s|X) > 0
(13)

Proof. The fact that s0 |=X F<∞≥1 term means that,
throughout the process, X only transitions into states s with
s |=X F<∞≥1 term. As before, it is tempting to infer the
same result for Y based on (13), since it only transitions
into states which have maximum success rate in X . How-
ever, (13) alone is not sufficient since Y may choose actions
such that (13) holds true but Y will never reach a terminal
state. Nevertheless, since the user-defined type spaces Θ∗j
are uncritical, we know that this special case will not occur,
and hence Property 2 holds.

We note that, in both Properties 1 and 2, the reverse direction
holds true regardless of Theorems 4 and 5. Furthermore, we
can combine the requirements of Theorems 4 and 5 to ensure
that both properties hold.

The next guarantee subsumes the previous guarantees by
stating that X and Y have the same minimum probability
of solving the task:

Property 3. s0 |=X F<∞≥p term ⇒ s0 |=Y F<∞≥p term

We can show that Property 3 holds if the user-defined type
spaces Θ∗j are uncritical and if Y only chooses actions for
player i which X might have chosen as well.

Let R(ai, H
t|C) be the success rate of action ai, formally

R(ai, H
t|C) = Eaist (Ht|C) with γ = 1 (so that it corre-

sponds to the actual probability with which ai may lead
to termination in the future). Define Xmin and Xmax to
be the processes which for each Ht choose actions ai ∈
A(Ht|X) with, respectively, minimal and maximal success
rate R(ai, H

t|X).

Theorem 6. If Θ∗j are uncritical and

∀Ht∈ H : A(Ht|Y ) ⊆ A(Ht|X) (14)

then

(i) for γ = 1: Proposition 3 holds in both directions

(ii) for γ < 1: s0 |=X F<∞≥p term ⇒ s0 |=Y F<∞≥p′ term

with pmin ≤ q ≤ pmax for q ∈ {p, p′}, where pmin

and pmax are the highest probabilities such that s0 |=Xmin

F<∞≥pmin
term and s0 |=Xmax F

<∞
≥pmax

term.

Proof. (i): Since γ = 1, all actions ai ∈ A(Ht|X) have the
same success rate for a given Ht, and given (14) we know
that Y ’s actions always have the same success rate as X’s
actions. Provided that the type spaces Θ∗j are uncritical, we
can conclude that Property 3 must hold, and for the same
reasons the reverse direction must hold as well.

(ii): Since γ < 1, the actions ai ∈ A(Ht|X) may have
different success rates. The lowest and highest chances that
X solves the task are precisely modelled byXmin andXmax,
and given (14) and the fact that Θ∗j are uncritical, the same
holds for Y . Therefore, we can infer the common bound
pmin ≤ {p, p′} ≤ pmax as defined in Theorem 6.

Properties 1 to 3 are indefinite in the sense that they make
no restrictions on time requirements. Our fourth and final
guarantee subsumes all previous guarantees and states that
if there is a probability p such that X terminates within t
time steps, then so does Y for the same p and t:

Property 4. s0 |=X F≤t≥pterm ⇒ s0 |=Y F≤t≥pterm

We believe that Property 4 is an adequate criterion of op-
timality for the type spaces Θ∗j since, if it holds, Θ∗j must
approximate Θj in a way which allows HBA to plan (al-
most) as accurately — in terms of solving the task — as the
“ideal” HBA in X which always knows the true types.

What relation must Y have to X to satisfy Property 4? The
fact that Y andX are processes over state transition systems
means we can draw on methods from the model checking
literature to answer this question. Specifically, we will use
the concept of probabilistic bisimulation [Larsen and Skou,
1991], which we here define in the context of our work:

Definition 10. A probabilistic bisimulation between X and
Y is an equivalence relation B ⊆ S × S such that

(i) (s0, s0) ∈ B
(ii) sX |=X term⇔ sY |=Y term for all (sX , sY ) ∈ B
(iii) µ(Ht

X , Ŝ|X) =µ(Ht
Y , Ŝ|Y ) for any histories Ht

X , H
t
Y

with (stX , s
t
Y ) ∈ B and all equivalence classes Ŝ under B.

Intuitively, a probabilistic bisimulation states that X and Y
do (on average) match each other’s transitions. Our defini-
tion of probabilistic bisimulation is most general in that it
does not require that transitions are matched by the same
action or that related states satisfy the same atomic proposi-
tions other than termination. However, we do note that other
definitions exist that make such additional requirements, and
our results hold for each of these refinements.

The main contribution of this section is to show that the
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optimality criterion expressed by Property 4 holds in both
directions if there is a probabilistic bisimulation between X
and Y . Thus, we offer an alternative formal characterisation
of optimality for the user-defined type spaces Θ∗j :

Theorem 7. Property 4 holds in both directions if there is a
probabilistic bisimulation between X and Y .

Proof. First of all, we note that, strictly speaking, the stan-
dard definitions of bisimulation (e.g. [Baier, 1996, Larsen
and Skou, 1991]) assume the Markov property, which means
that the next state of a process depends only on the current
state of the process. In contrast, we consider the more gen-
eral case in which the next state may depend on the history
Ht of previous states and joint actions (since the player
strategies πj depend on Ht). However, one can always en-
force the Markov property by design, i.e. by augmenting
the state space S to account for the relevant factors of the
past. In fact, we could postulate that the histories as a whole
constitute the states of the system, i.e. S = H. Therefore,
to simplify the exposition, we assume the Markov property
and we write µ(s, Ŝ|C) to denote the cumulative probability
that C transitions from state s into any state in Ŝ.

Given the Markov property, the fact thatB is an equivalence
relation, and µ(sX , Ŝ|X) = µ(sY , Ŝ|Y ) for (sX , sY ) ∈ B,
we can represent the dynamics of X and Y in a common
graph, such as the following one:

Ŝ0s0 ∈ Ŝ1

Ŝ2

Ŝ3

Ŝ4

Ŝ5

Ŝ6 ≡ S̄

µ01

µ02 µ14

µ13

µ24

µ35

µ41 µ36

µ46

The nodes correspond to the equivalence classes under B. A
directed edge from Ŝa to Ŝb specifies that there is a positive
probability µab = µ(sX , Ŝb|X) = µ(sY , Ŝb|Y ) that X and
Y transition from states sX , sY ∈ Ŝa to states s′X , s

′
Y ∈ Ŝb.

Note that sX , sY and s′X , s
′
Y need not be equal but merely

equivalent, i.e. (sX , sY ) ∈ B and (s′X , s
′
Y ) ∈ B. There is

one node (Ŝ0) that contains the initial state s0 and one node
(Ŝ6) that contains all terminal states S̄ and no other states.
This is because once X and Y reach a terminal state they
will always stay in it (i.e. µ(s, S̄|X) = µ(s, S̄|Y ) = 1 for
s ∈ S̄) and since they are the only states that satisfy term.
Thus, the graph starts in Ŝ0 and terminates (if at all) in Ŝ6.

Since the graph represents the dynamics of both X and Y ,
it is easy to see that Property 4 must hold in both directions.
In particular, the probabilities that X and Y are in node Ŝ
at time t are identical. One simply needs to add the prob-
abilities of all directed paths of length t which end in Ŝ
(provided that such paths exist), where the probability of
a path is the product of the µab along the path. Therefore,

X and Y terminate with equal probability, and on average
within the same number of time steps.

Some remarks to clarify the usefulness of this result: First
of all, in contrast to Theorems 4 to 6, Theorem 7 does not
explicitly require Θ∗j to be uncritical. In fact, this is implicit
in the definition of probabilistic bisimulation. Moreover,
while the other theorems relate Y and X for identical his-
tories Ht, Theorem 7 relates Y and X for related histories
Ht
Y and Ht

X , making it more generally applicable. Finally,
Theorem 7 has an important practical implication: it tells
us that we can use efficient methods for model checking
(e.g. [Baier, 1996, Larsen and Skou, 1991]) to verify opti-
mality of Θ∗j . In fact, it can be shown that for Property 4
to hold (albeit not in the other direction) it suffices that
Y be a probabilistic simulation [Baier, 1996] of X , which
is a coarser preorder than probabilistic bisimulation. How-
ever, algorithms for checking probabilistic simulation (e.g.
[Baier, 1996]) are computationally much more expensive
(and fewer) than those for probabilistic bisimulation, hence
their practical use is currently limited.

6 CONCLUSION

This paper complements works such as [Albrecht and Rama-
moorthy, 2013, Barrett et al., 2011, Carmel and Markovitch,
1999] — with a focus on HBA due to its generality — by
providing answers to two important theoretical questions:
“Under what conditions does HBA learn the type distribution
of the game?” and “How accurate must the user-defined type
spaces be for HBA to solve its task?” With respect to the
first question, we analyse the convergence properties of two
existing posteriors and propose a new posterior which can
learn correlated type distributions. This provides the user
with formal reasons as to which posterior should be chosen
for the problem at hand. With respect to the second question,
we describe a methodology in which we analyse the require-
ments of several termination guarantees, and we provide a
novel characterisation of optimality which is based on the
notion of probabilistic bisimulation. This gives the user a
formal yet practically useful criterion of what constitutes
optimal type spaces. The results of this work improve our
understanding of how a method such as HBA can be used
to effectively solve agent interaction problems in which the
behaviour of other agents is not a priori known.

There are several interesting directions for future work. For
instance, it is unclear what effect the prior probabilities Pj
have on the performance of HBA, and if a criterion for
optimal Pj could be derived. Furthermore, since our con-
vergence proofs in Section 4 are asymptotic, it would be
interesting to know if useful finite-time error bounds exist.
Finally, our analysis in Section 5 is general in the sense
that it applies to any posterior. This could be refined by an
analysis which commits to a specific posterior.
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Abstract

Parallel predictive prefetching is a new frame-
work for accelerating a large class of widely-
used Markov chain Monte Carlo (MCMC) algo-
rithms. It speculatively evaluates many potential
steps of an MCMC chain in parallel while ex-
ploiting fast, iterative approximations to the tar-
get density. This can accelerate sampling from
target distributions in Bayesian inference prob-
lems. Our approach takes advantage of whatever
parallel resources are available, but produces re-
sults exactly equivalent to standard serial execu-
tion. In the initial burn-in phase of chain evalu-
ation, we achieve speedup close to linear in the
number of available cores.

1 INTRODUCTION

Probabilistic modeling is one of the mainstays of mod-
ern machine learning, and Bayesian methods are partic-
ularly appealing due to their ability to represent uncer-
tainty in parameter estimates and latent variables. Unfor-
tunately, Bayesian inference can be difficult in the real
world. Many problems are not amenable to exact inference,
and so require approximate inference in the form of Monte
Carlo estimates or variational approximations. These pro-
cedures require many evaluations of a target posterior den-
sity, and each evaluation can be expensive, especially on
large data sets. Our work accelerates Markov chain Monte
Carlo (MCMC) but, in contrast to other recent proposals,
we arrive at a method in which the stationary distribution is
exactly the target posterior. This method exploits approxi-
mations to the target density to speculatively evaluate many
potential future steps of the chain in parallel.

The increasing availability of multi-core machines, and
many-core cluster deployments, led to our focus on paral-
lelism. Unfortunately, the execution of MCMC algorithms
such as Metropolis-Hastings (MH) is inherently serial. One

can run many independent chains at once, but this does not
change the mixing time for any single chain. Since mixing
time can be prohibitively large, especially when the target
function is high-dimensional and multi-modal, this embar-
rassingly parallel approach tends not to reduce the time to
achieve a useful estimator. Sometimes the target function
evaluation can be parallelized, or multiple chains in an en-
semble method can be run in parallel, but these strategies
are not available in general.

We instead use speculative execution to parallelize a large
class of MCMC methods. This approach, sometimes called
prefetching, has received some attention in the past decade,
but does not seem to be widely recognized. Speculative ex-
ecution is the general technique of optimistically perform-
ing computational work that might be eventually useful. To
understand speculative execution in the context of MCMC,
consider the MH algorithm in Algorithm 1, in which each
iteration consists of a proposal that is stochastically ac-
cepted or rejected (Metropolis et al., 1953). MH uses ran-
domness in two ways: to generate uniform random vari-
ables and to generate proposals. Given a random stream
and an initial state, all possible future states of the chain
can be thought of as the nodes of a binary tree (Figure 1).
Serial execution of MH yields a sequence of states that
maps to a single path of nodes through the tree. Starting
at the root, each transition stochastically chooses between
the current state (left child) and the proposal (right child).
This requires evaluating the target density at the root and
each subsequent proposal. The main goal of prefetching is
to perform these evaluations in parallel. However, only the
immediate transition that compares the root of the tree to
the first proposal is known a priori to be on the true com-
putational path. Prefetching schemes use parallel cores to
evaluate these two nodes and also speculatively evaluate
additional nodes further down the tree.

An effective prefetching implementation must overcome
several challenges. Some involve correctness; for example,
care is required in the treatment of pseudo-randomness lest
bias be introduced (i.e., each node’s source of randomness
must produce exactly the same results as it would in a serial
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Algorithm 1 Metropolis-Hastings

Input: initial state θ0, number of iterations T , tar-
get π(θ), proposal q(θ ′ |θ)
Output: samples θ1, . . . ,θT
for t = 0, . . . ,T −1 do

θ ′ ∼ q(θ ′ |θt)
u∼ Unif(0,1)
if π(θ ′)q(θt |θ ′)

π(θt )q(θ ′ |θt )
> u then

θt+1 = θ ′
else

θt+1 = θt
end if

end for

execution). But the key challenge is performance. A naı̈ve
scheduling scheme always requires ≈ 2s parallel cores to
achieve a speedup of s. Less naı̈ve schemes improve on
this speedup using the average proposal acceptance rate: if
most proposals are rejected, a prefetching implementation
should prefetch more heavily among the right children of
the left-most branch, i.e., the path representing a sequence
of rejected proposals. Although in practice the optimal ac-
ceptance rate is less than 0.5 (Gelman et al., 1996), tiny
acceptance rates, which lead to good speedup, cause less
effective mixing. If the acceptance rate is set near the 0.234
value of Gelman et al., speedup is still at most logarithmic.

We evaluate a new scheduling approach that uses local in-
formation to improve speedup relative to other prefetch-
ing schemes. We adaptively adjust speculation based not
only on the local average proposal acceptance rate (which
changes as evaluation progresses), but also on the actual
random deviate used at each state. Even better, we make use
of any available fast approximations to the transition oper-
ator. Though these approximations are not required, when
they are available or learnable, we leverage them to make
better scheduling decisions.

We present results using a series of increasingly expensive
but more accurate approximations. These decisions are fur-
ther improved by modeling the error of these approxima-
tions, and thus the uncertainty of the scheduling decisions.
Performance depends critically on how we model the ap-
proximations, and a key insight is in our error model for
this setting; much smaller error, and therefore more pre-
cise prediction, is obtained by modeling the error of the
difference between two proposal evaluations, rather than
evaluating the errors of the proposals separately. Our cur-
rent implementation uses approximations that correspond
to incremental evaluation of the target distribution, but our
framework does not require this. We could use other exam-
ples of target density approximation, including exploiting
closed form approximations such as Taylor series (Chris-
ten and Fox, 2005) and fitting linear or Gaussian Process
regressions (Conrad et al., 2014).

Motivated by large-scale Bayesian inference, we present
results using incremental approximations that arise from
evaluating a subset of factors in a larger product. As we
show on inference problems using both real and synthetic
data, our system takes advantage of parallelism to speed up
the wall-clock time of serial Markov chain evaluation. Un-
like prior systems, we achieve near-linear speedup during
burn-in on up to 64 cores spread across two or more ma-
chines. As evaluation progresses, speedup eventually de-
creases to logarithmic in the number of cores; we show why
this is hard to avoid.

2 RELATED WORK

In this section, we summarize existing parallel strate-
gies for accelerating MCMC, motivated by the computa-
tional cost of MCMC. This cost is most often determined
by evaluation of the target density relative to mixing. In
Metropolis–Hastings, it is incurred when the target is evalu-
ated to determine the acceptance ratio of a proposed move;
in slice sampling (Neal, 2003) an expensive target slows
both bracket expansion and contraction. We focus on the
increasingly common case where the target is expensive
and the dominant computational cost. This evaluation can
sometimes be parallelized directly, e.g., when the target
function is a product of many individually expensive terms.
This can arise in Bayesian inference if the target easily de-
composes into one likelihood term for each data item. Prac-
tically achievable speedup in this setting is limited by the
communication and computational costs associated with
aggregating the partial evaluations. In general, the target
function cannot be parallelized; we divide methods that ac-
celerate MCMC via other sources of parallelism into two
classes: ensemble sampling and prefetching.

Other work speeds up MCMC evaluation using approxi-
mation. Stochastic variational inference techniques achieve
scalable approximate inference via randomized approxima-
tions of gradients (Hoffman et al., 2013), while recent de-
velopments in MCMC have implemented efficient transi-
tion operators that lead to approximate stationary distribu-
tions (Welling and Teh, 2011; Korattikara et al., 2014; Bar-
denet et al., 2014). Recent other work uses a lower bound
on the local likelihood factor to simulate from the exact
posterior distribution while evaluating only a subset of the
data at each iteration (Maclaurin and Adams, 2014). Un-
like such prior work, we speed up exact evaluation of many
existing MCMC algorithms.

2.1 ENSEMBLE SAMPLERS

Ensemble (or population) methods for sampling run multi-
ple chains and accelerate mixing by sharing information
between the chains. The individual chains can be simu-
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Figure 1: Schematic of a MH simulation superimposed on
the binary tree of all possible chains. Each level of the tree
represents an iteration, where branching to the right/left in-
dicates accepting/rejecting a proposal. Random variates (on
right) are shared across each layer. Thick red arrows high-
light one simulated chain starting at the root θ t ; the first
proposal is accepted and the next two are rejected, yield-
ing as output: θ t+1

1 ,θ t+2
10 ,θ t+3

100 . Dark filled circles indicate
states where the target density is evaluated during simula-
tion. Those not on the chain’s path correspond to rejected
proposals. Their siblings are pale filled circles on this path;
since each is a copy of its parent, the target density does not
need to be reevaluated to compute the next transition.

lated in parallel; any information sharing between chains
requires communication. Examples include parallel tem-
pering (Swendsen and Wang, 1986), the emcee implemen-
tation (Foreman-Mackey et al., 2012) of affine-invariant
ensemble sampling (Goodman and Weare, 2010), and a
parallel implementation of generalized elliptical slice sam-
pling (Nishihara et al., 2014).

2.2 PREFETCHING

The second class of parallel MCMC algorithms uses paral-
lelism through speculative execution to accelerate individ-
ual chains. This idea is called prefetching in some of the lit-
erature. To the best of our knowledge, prefetching has only
been studied in the context of MH-style algorithms where,
at each iteration, a single new proposal is drawn from a pro-
posal distribution and stochastically accepted or rejected.
The typical body of an MH implementation is a loop con-
taining a single conditional statement and two associated
branches. One can then view the possible execution paths
as a binary tree, as illustrated in Figure 1. The vanilla ver-
sion of prefetching speculatively evaluates all paths in this
binary tree (Brockwell, 2006). The correct path will be ex-
actly one of these, so with J cores, this approach achieves
a speedup of log2 J with respect to single core execution,
ignoring communication and bookkeeping overheads.

Naı̈ve prefetching can be improved by observing that the
two branches are not taken with equal probability. On av-
erage, the left-most branch, corresponding to a sequence of
rejected proposals, tends to be more probable; the classic

result for the optimal MH acceptance rate is 0.234 (Roberts
et al., 1997), so most prefetching scheduling policies have
been built around the expectation of rejection. Let α ≤ 0.5
be the expected probability of accepting a proposal. Byrd
et al. (2008) introduced a procedure, called “speculative
moves,” that speculatively evaluates only along the “reject”
branch of the binary tree; in Figure 1, this corresponds to
the left-most branch. In each round of their algorithm, only
the first k out of J−1 extra cores perform useful work,
where k is the number of rejected proposals before the first
accepted proposal, starting from the root of the tree. The
expected speedup is then:

1+E(k)< 1+
∞

∑
k=0

k(1−α)kα < 1+
1−α

α
=

1
α
.

Note that the first term on the left is due to the core at
the root of the tree, which always performs useful com-
putation in the prefetching scheme. When α = 0.23, this
scheme yields a maximum expected speedup of about 4.3;
it achieves an expected speedup of about 4 with 16 cores.
If only a few cores are available, this may be a reason-
able policy, but if many cores are available, their work is
essentially wasted. In contrast, the naı̈ve prefetching pol-
icy achieves speedup that grows as the log of the num-
ber of cores. Byrd et al. (2010) later considered the special
case where the evaluation of the likelihood function occurs
on two timescales, slow and fast. They call this method
“speculative chains”; it modifies “speculative moves” so
that whenever the evaluation of the likelihood function is
slow, any available cores are used to speculatively evaluate
the subsequent chain, assuming the slow step resulted in an
accept.

In work closely related to ours, Strid (2010) extend the
naı̈ve prefetching scheme to allocate cores according to
the optimal “tree shape” with respect to various assump-
tions about the probability of rejecting a proposal, i.e., by
greedily allocating cores to nodes that maximize the depth
of speculative computation expected to be correct (Strid,
2010). Their static prefetching scheme assumes a fixed ac-
ceptance rate; versions of this were proposed earlier in the
context of simulated annealing (Witte et al., 1991). Their
dynamic scheme estimates acceptance probabilities, e.g., at
each level of the tree by drawing empirical MH samples
(100,000 in the evaluation), or at each branch in the tree
by computing min{β ,r} where β is a constant (β = 1 in
the evaluation) and r is an estimate of the MH ratio based
on a fast approximation to the target function. Alterna-
tively, Strid proposes using the approximate target function
to identify the single most likely path on which to perform
speculative computation. Strid also combines prefetching
with other sources of parallelism to obtain a multiplicative
effect. To the best of our knowledge, these methods have
been developed for MH algorithms and evaluated on up to
64 cores, although usually many fewer.
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3 PREDICTIVE PREFETCHING

We propose predictive prefetching, an improved scheduling
approach that accelerates exact MCMC. Like Strid’s dy-
namic prefetching procedure, we also exploit inexpensive
but approximate target evaluations. However, there are sev-
eral fundamental differences between our approach and ex-
isting prefetching methods. We combine approximate tar-
get evaluation with the fact that the random stream used by
a MCMC algorithm can be generated in advance and thus
incorporated into the estimates of the acceptance probabil-
ities at each branch in the binary tree. Critically, we also
model the error of the target density approximation, and
thus the uncertainty of whether a proposal will be accepted.
In addition, we identify a broad class of MCMC algorithms
that could benefit from prefetching, not just MH, and we
show how prefetching can exploit a series of approxima-
tions, not just a single one.

3.1 MATHEMATICAL SETUP

Consider a transition operator T (θ → θ ′) which has π(θ)
as its stationary distribution on state space Θ. Simulation
of such an operator typically proceeds using an “external”
source of pseudo-random numbers that can, without loss
of generality, be assumed to be drawn uniformly on the
unit hypercube U . The transition operator is then a de-
terministic function T : Θ×U →Θ. Most practical transi-
tion operators – Metropolis–Hastings, slice sampling, etc.
– are actually compositions of two such functions, how-
ever. The first function produces a countable set of can-
didate points in Θ, here denoted Q : Θ×UQ→P(Θ),
where P(Θ) is the power set of Θ. The second func-
tion R : P(Θ)×UR→Θ then chooses one of the can-
didates for the next state in the Markov chain. Here we
have used UQ and UR to indicate the orthogonal parts
of U relevant to each part of the operator. In this setup,
the basic Metropolis–Hastings algorithm uses Q(·) to pro-
duce a tuple of the current point and a proposed point,
while multiple-try MH (Liu et al., 2000) and delayed-
rejection MH (Tierney and Mira, 1999; Green and Mira,
2001) create a larger set that includes the current point. In
the exponential-shrinkage variant of slice sampling (Neal,
2003), Q(·) produces an infinite sequence of candidates that
converges to, but does not include, the current point.

This setup is a somewhat more elaborate treatment than
usual, but this is intended to serve two purposes: 1) make
it clear that there is a separation between generating a set
of possible candidates via Q(·) and selecting among them
with R(·), and 2) highlight that both of these functions
are deterministic functions, given the pseudo-random vari-
ates. Others have pointed out this “deterministic given the
randomness” view, and used it to construct alternative ap-
proaches to MCMC (Propp and Wilson, 1996; Neal, 2012).
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Figure 2: Schematic of the same MH simulation as in Fig-
ure 1, this time superimposed on the jobtree. This tree in-
cludes only those nodes in the original MH tree where a
new state is introduced and thus the target density must
be evaluated when comparing such a state to another. The
filled circles, corresponding to states where the target den-
sity is evaluated in a serial MH execution, are now directly
connected by a single path.

We separately consider Q(·) and R(·) because it is gen-
erally the case that Q(·) is inexpensive to evaluate and
does not require computation of the target density π(θ),
while R(·) must compare the target density at the can-
didate locations and so represents the bulk of the com-
putational burden. Parallel predictive prefetching observes
that, since Q(·) is cheap and the pseudo-random variates
can be produced in any order, the tree of possible future
states of the Markov chain can be constructed before any
of the R(·) functions are evaluated, as in Figure 1. The se-
quence of R(·) evaluations simply chooses a path down this
tree. Parallelism can be achieved by speculatively choos-
ing to evaluate R({θi},u) for some part of the tree that has
not yet been reached. If this node in the tree is eventually
reached, then we achieve a speedup.

For clarity, we henceforth focus on the straightforward
random-walk Metropolis–Hastings operator. In this special
case, Q(·) produces a tuple of the current point and a pro-
posal, and the function R : Θ×Θ× (0,1)→Θ takes these
two points, along with a uniform random variate u in (0,1),
and selects one of the two inputs via:

R(θ ,θ ′,u) =

{
θ ′ if u q(θ ′ |θ)

q(θ |θ ′) <
π(θ ′)
π(θ)

θ otherwise
, (1)

where q(· | ·) is the proposal density corresponding to Q(·).
We write the acceptance ratio in this somewhat unusual
fashion to highlight the fact that the left-hand side of the
inequality does not require evaluation of the target density
and is easy to precompute.

3.2 THE JOBTREE

While the MH state tree in Figure 1 effectively repre-
sents a simulated chain as a path, it yields an awkward
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representation of the computation necessary to produce a
chain. Specifically, transitions to right children (when a
proposal is accepted) align with this path but transitions
to left children (when a proposal is rejected) branch off it.
For our prefetching framework, we wanted a better repre-
sentation of this computation. To this end, we introduced
the Metropolis–Hastings jobtree, depicted in Figure 2. It
contains the same information as the MH state tree but rep-
resents only those states where new computation occurs,
i.e., where the target density must be evaluated in order to
compare such a state to another. Like the original tree, the
jobtree is generally binary, except that the root has only
one child. It includes the root node and all right children
of the MH state tree, corresponding to the current state and
all possible subsequent proposals – together, these specify
the possible distinct states and at what iteration each would
first appear. Paths on the jobtree represent computation in
the sense that they map to sequences of states where the
target density is evaluated during serial MH simulation; we
call any such path a computation path.

3.3 EXPLOITING PREDICTIONS

Consider a prefetching framework with J cores that uses
one core to compute the immediate transition and the oth-
ers to precompute transitions for possible future iterations.
If each precomputation falls along the actual Markov chain,
the framework will achieve the ideal linear speedup propor-
tional to J. If some of them do not fall along the chain, the
framework will fail to scale perfectly with the available re-
sources. For instance, recall that the naı̈ve framework that
evaluates transitions based on breadth-first search of the
prefetching state tree (Figure 1) will achieve speedup pro-
portional to log2 J. Good speedup thus depends on making
good predictions of what path will be taken on the tree,
which is in turn determined by our prediction of whether
the threshold will be exceeded in Eq. 1.

Let ρ denote a node on the tree, θρ indicate the current state
at ρ , and θ ′ρ indicate the proposal. We define

rρ = uρ
q(θ ′ρ |θρ)

q(θρ |θ ′ρ)
(2)

where uρ is the MH threshold variate for node ρ . The
Markov chain’s steps are determined by iterations of com-
puting the indicator function ιρ = I(rρ < π(θ ′ρ)/π(θρ)),
where a proposal is accepted iff ιρ = 1. The quanti-
ties θρ , θ ′ρ , and rρ can be inexpensively computed at any
time from the stream of pseudo-random numbers, without
examining the expensive target π(·). The random variate uρ
depends only on the depth (iteration) of ρ .

The precomputation schedule should maximize expected
speedup, which corresponds to the expected number of pre-
computations along the true computation path in the job-

tree. To maximize this quantity, the framework needs to an-
ticipate which branches of the jobtree are likely to be taken.
The root node and its only child are always evaluated. We
associate with each remaining node ρ in the jobtree a pre-
dictor ψρ that models the probability that the proposal is
accepted, given approximate or partial information. For ex-
ample, suppose that π̃(·) is an approximation to the target
density π(·), and assume that in log space, the error of this
approximation relative to the target density is normally dis-
tributed with some variance σ2. Then, we could write the
predictor as:

ψρ = Pr
(

logrρ < logπ(θ ′ρ)− logπ(θρ)
∣∣∣ π̃(·),σ2

)
(3)

=
∫ ∞

logrρ
N
(

z
∣∣∣ log π̃(θ ′ρ)− log π̃(θρ),σ2

)
dz. (4)

As more information becomes available in the form
of better approximators, the predictor ψρ will change.
When π̃(·) = π(·), the predictor equals the indicator ιρ . We
label the edges in the jobtree with branch probabilities: the
edge from a node ρ to its right child has branch probability
equal to the predictor ψρ and the edge to its left child has
branch probability 1−ψρ . Assuming that the predictions
at each node are independent, the probability that a node’s
computation is used is the product of the branch probabil-
ities along the path connecting the root to ρ; we call this
quantity the node’s expected utility. Those nodes with max-
imum expected utility should be scheduled for precompu-
tation. (The immediate transition will always be chosen: it
has no ancestors and utility 1.)

A predictor is always available – for instance, one can use
the recent acceptance probability – but many problems can
improve predictions using computation. To model this, we
define a sequence of predictors

ψ(m)
ρ ≈ ψρ , m = 0,1,2, . . . ,N, (5)

where increasing m implies increasing accuracy,
and ψ(N)

ρ = ιρ . Workers move through this sequence
until they perform the exact computation. The predictor
sequence affects scheduling decisions: once it becomes
sufficiently certain that a worker’s branch will not be taken,
that worker and its descendants should be reallocated to
more promising branches. Ultimately, every true step
of the Markov chain is computed to completion. The
approach simulates from the true stationary distribution,
not an approximation thereof. The estimators are used only
in prefetching.

There are several schemes for producing this estimator se-
quence, and predictive prefetching applies to any Markov
chain Monte Carlo problem for which approximations are
available. We focus on the important case where improved
estimators are obtained by including more and more of the
data in the posterior target distribution.
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3.4 LARGE-SCALE BAYESIAN INFERENCE

In Bayesian inference with MCMC, the target density is
a (possibly unnormalized) posterior distribution. In most
modeling problems, such as those using graphical mod-
els, the target density can be decomposed into a product of
terms. If the data are conditionally independent given the
model parameters, there is a factor for each of the N data:

π(θ |x) ∝ π0(θ)π(x |θ) = π0(θ)
N

∏
n=1

π(xn |θ) . (6)

Here π0(θ) is a prior distribution and π(xn |θ) is the likeli-
hood term associated with the nth datum. The logarithm of
the target distribution is a sum of terms

L (θ) = logπ(θ |x) = logπ0(θ)+
N

∑
n=1

logπ(xn |θ)+ c ,

where c is an unknown constant that does not depend on θ
and can be ignored. Our predictive prefetching algorithm
uses this to form predictors ψρ as in Eq. 3; we again re-
frame ψρ using log probabilities as

ψρ ≈ Pr
(
logrρ <L (θ ′)−L (θ)

)
, (7)

where rρ is the precomputed random MH threshold of
Eq. 2. One approach to forming this predictor is to use
a normal model for each L (θ), as in Korattikara et al.
(2014). However, we can achieve a better estimator with
lower variance by modeling L (θ) and L (θ ′) together,
rather than separately. Expanding each log likelihood gives:

L (θ ′)−L (θ) = logπ0(θ ′)− logπ0(θ)+
N

∑
n=1

∆n (8)

∆n = logπ(xn |θ ′)− logπ(xn |θ) . (9)

In Bayesian posterior sampling, the proposal θ ′ is usually a
perturbation of θ and so we expect logπ(xn |θ ′) to be cor-
related with logπ(xn |θ). In this case, the differences ∆n
occur on a smaller scale and have a smaller variance com-
pared to the variance due to logπ(xn |θ) across data terms.

A concrete sequence of estimators is obtained by subsam-
pling the data. Let {∆n}m

n=1 be a subsample of size m< N,
without replacement, from {∆n}N

n=1. This subsample can be
used to construct an unbiased estimate of L (θ ′)−L (θ).
We model the terms of this subsample as i.i.d. from a nor-
mal distribution with bounded variance σ2, leading to:

L (θ ′)−L (θ)∼N (µ̂m, σ̂2
m) . (10)

The mean estimate µ̂m is empirically computable:

µ̂m = logπ0(θ ′)− logπ0(θ)+
N
m

m

∑
n=1

∆n . (11)

The error estimate σ̂m may be derived from sm/
√

m,
where sm is the empirical standard deviation of the m sub-
sampled ∆n terms. To obtain a confidence interval for the
sum of N terms, we multiply this estimate by N and the
finite population correction

√
(N−m)/N, giving:

σ̂m = sm

√
N(N−m)

m
. (12)

We can now form the predictor ψ(m)
ρ by considering the tail

probability for logrρ :

ψ(m)
ρ =

∫ ∞

logrρ
N (z | µ̂m, σ̂2

m)dz (13)

=
1
2

[
1+ erf

(
log µ̂m− logrρ√

2σ̂m

)]
. (14)

3.5 SYSTEM

Our system is fully parallel and runs on network clusters
of computers, each of which may comprise multiple cores.
We do not perform any affinity scheduling, so all cores
are treated identically whether they co-reside on the same
machine or not. Our system does not use shared memory;
rather, cores communicate via message passing. Note that
we assign one thread to each core. To date, the largest in-
stallation on which we have run is a shared cluster of 5
machines with a total of 160 cores, on which we have used
in parallel at least 64 cores spanning a minimum of 2 ma-
chines.

Our system executes predictive prefetching as follows. A
master node manages the jobtree and distributes a different
node in the jobtree to each worker. When a worker receives
a message to compute on node ρ , it first computes the cor-
responding proposal θρ (which may consume values from
the random sequence). It asynchronously transmits the pro-
posal and the new point in the random sequence back to
the master. It then starts evaluating the target density, pro-
ducing progressively improved approximations to the tar-
get that it periodically reports back to the master. Mean-
while, the master uses estimates of L (θ ′ρ)−L (θρ) val-
ues, the appropriate rρ constants, and an adaptive estimate
of the current acceptance probability to calculate the pre-
dictor ψ(m)

ρ for each node in the evaluation tree. To assign a
worker to a node, the master stochastically traverses down
the jobtree from the root, following branches according to
their branch probabilities, until it finds a node that is in-
active, i.e., no other worker is currently working on it. In
this way, the master stochastically assigns workers to those
nodes with highest expected utility. During computation,
expected utilities change. When the master notices that the
expected utility of a worker’s node falls below that of other
inactive nodes, the master tells the worker to abandon its
work. If the abandoned proposal becomes likely again, a
worker will pick it up where the earlier worker left off.
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Burn-in
J i1 = 9575 i2 = 24000 i3 = 50000

1 16674 — 41978 — 87500 —
16 2730 6.1× 8678 4.3× 20318 4.3×
32 1731 9.6× 7539 5.6× 19046 4.6×
64 989 16.8× 5894 7.1× 15146 5.8×

Table 1: Cumulative time (in seconds) and speedup for
evaluating the Gaussian mixture model with different num-
bers of workers J.

In our implementation, the target posteriors logπ(θ |x)
and logπ(θ ′ |x) are evaluated by separate workers. Our
normal model for the MH ratio based on a subsample of
size m depends on the empirical mean and standard devia-
tion of the differences ∆n, but we use an approximation to
avoid the extra communication required to keep track of all
these differences. The worker for θ calculates

Gm(θ) = logπ0(θ)+
N
m

m

∑
n=1

logπ(xn |θ) (15)

rather than the difference mean µ̂m from Eq. 11. The master
can then compute µ̂m = Gm(θ ′)−Gm(θ), but the empirical
standard deviation of differences, sm in Eq. 12, must be es-
timated. We set

sm =
√

Sm(θ)2 +Sm(θ ′)2−2c̃Sm(θ)Sm(θ ′) , (16)

where Sm(θ) denotes the empirical standard deviation of
the m logπ(xn |θ) terms, and c̃ approximates the correla-
tion between logπ(xn |θ) and logπ(xn |θ ′). We empirically
observe this correlation to be very high; in all experiments
we set c̃ = 0.9999. Note that this approximation only af-
fects the quality of our speculative predictions; it does not
affect the actual decision to accept or reject the proposal θ ′.

Our implementation requires at least two cores, one master
and one worker. Note that when there is only one worker, it
is always performing useful computation for the immediate
transition at the root, leaving the master with essentially
nothing to do besides some bookkeeping.

4 EXPERIMENTS

Our evaluation focuses on MH for large-scale Bayesian in-
ference using the approximations described above (though
our framework can use any approximation scheme for the
target distribution). Our implementation is written in C++
and Python, and uses MPI for communication between the
master and worker cores.1 We evaluate our implementa-
tion on up to 64 cores in a multicore cluster environment in
which machines are connected by 10GB ethernet and each

1https://github.com/elaine84/fetching

Figure 3: Cumulative speedup relative to our baseline, as
a function of the number of MH iterations, for the mixture
of Gaussians problem. The different curves correspond to
different numbers of workers.

machine has 32 cores (four 8-core Intel Xeon E7-8837 pro-
cessors). We report speedups relative to serial computation
with one worker.

We evaluate our system on both synthetic and real Bayesian
inference problems. First, we consider the posterior den-
sity of the eight-component mixture of eight-dimensional
Gaussians used by Nishihara et al. (2014), where the like-
lihood involves 106 samples drawn from this model. Next,
we consider the posterior density of a Bayesian Lasso re-
gression (Park and Casella, 2008) that models molecu-
lar photovoltaic activity. The likelihood involves a dataset
of 1.8×106 molecules described by 56-dimensional real-
valued cheminformatic features (Olivares-Amaya et al.,
2011; Amador-Bedolla et al., 2013); each response is real-
valued and corresponds to a lengthy density functional the-
ory calculation (Hachmann et al., 2011, 2014).

In our experiments, we use a spherical Gaussian for the pro-
posal distribution. A simple adaptive scheme sets the scale
of this distribution, improving convergence relative to stan-
dard MH. Our approach falls under the provably conver-
gent adaptive algorithms studied by Andrieu and Moulines
(2006); we easily incorporated them into our framework.

We expect predictive prefetching to perform best when the
densities at a proposal and corresponding current point are
significantly different, which is common in the initial burn-
in phase of chain evaluation. In this phase, early estimates
based on small subsamples effectively predict whether the
proposal is accepted or rejected. When the density at the
proposal is very close to that at the current point – for exam-
ple, as the proposal distribution approaches the target distri-
bution – the outcome is inherently difficult to predict; early
estimates will be uncertain or even wrong. Incorrect esti-
mates could destroy speedup (no precomputations would
be useful). We hope to do better than this worst case, and
to at least achieve logarithmic speedup.
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standard
mean deviation min max

neff 3405 7253 50 26000
R̂ 1.005 0.006 1.000 1.020

Table 2: Convergence statistics after burn-in (over itera-
tions i2–i3) for the Gaussian mixture model, computed over
the 64 dimensions of the model.

Figure 4: Cumulative speedup relative to our baseline, as
a function of the number of MH iterations, for the mixture
of Gaussians problem. The different curves correspond to
different initial conditions; all curves are for 64 workers.

In our experiments, we divide the evaluation of the target
function into 100 batches. Thus, for the mixture problem,
each subsample contains 104 data items.

Table 1 shows the results for the Gaussian mixture model.
We run the model with the same initial conditions and
pseudorandom sequences with varying numbers of worker
threads. All experiments produce identical chains. We eval-
uate the cumulative time and speedup obtained at three
different iteration counts. The first, i1 = 9575 iterations,
are burn-in. After i1 iterations, all dimensions of samples
achieve the Gelman-Rubin statistic R̂< 1.05, computed us-
ing two independent chains, where the first i1/2 samples
have been discarded (Gelman and Rubin, 1992). We then
run the model further to i3 iterations. Iterations i2 = 24000
through i3 = 50000 are used to compute an effective num-
ber of samples neff. (Table 2 shows convergence statistics
after i3 iterations.) The results are as we hoped. The ini-
tial burn-in phase obtains better-than-logarithmic speedup
(though not perfect linear speedup). With 64 workers, the
chain achieves burn-in 16.8× faster than with one worker.
After burn-in, efficiency drops as expected, but we still
achieve logarithmic speedup (rather than sub-logarithmic).
At 50000 iterations, speedup for each number of workers J
rounds to log2 J.

Figure 3 explains these results by graphing cumulative
speedup over the whole range of iterations. The initial

(a) Burn-in

(b) Convergence

Figure 5: Example predictor trajectories for the mixture of
Gaussians. We show the predictor ψ(m)

ρ as a function of
subsample size m. Different colors indicate different pro-
posals. Burn-in is much easier to predict than convergence.

speedup is close to linear – we briefly achieve more than
40× speedup at J = 64 workers. As burn-in proceeds, cu-
mulative speedup falls off to logarithmic in J. Figure 4
shows cumulative speedup for the Gaussian mixture model
with several different initial conditions. We see a range of
variation due to differences in the adaptive scheme dur-
ing burn-in. The overall pattern is stable, however: good
speedup during burn-in followed by logarithmic speedup
later. Also note that speedup does not necessarily decrease
steadily, or even monotonically. At some initial conditions,
the chain enters an easier-to-predict region before truly
burning in; while in such a region, speedup is maintained.
Our system takes advantage of these regions effectively.

Figure 5 shows how our predictors behave both during and
after burn-in. During burn-in, estimates are effective, and
the predictor converges quite quickly to the correct indica-
tor. After burn-in, the new proposal’s target density is close
to the old proposal’s, and the estimates are similarly hard
to distinguish. Sometimes the random variate rρ is small
enough for the predictor to converge quickly to 1; more
often, the predictor varies widely over time, and does not
converge to 0 or 1 until almost all data are evaluated. This
behavior makes logarithmic speedup a best case. Luckily,
the predictor is more typically uncertain (with an interme-
diate value) than wrong (with an extreme value that eventu-
ally flips to the opposite value): incorrect predictors could
lead to sublogarithmic speedup.

Figure 6 shows that good speedups are achievable for real
problems. The speedup distribution for the Bayesian Lasso
problem for molecular photovoltaic activity appears similar
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Figure 6: Cumulative speedup relative to our baseline, as a function of the number of MH iterations, for the Bayesian Lasso
problem. Different curves indicate different numbers of workers. Each figure corresponds to a different initial condition.

to that of the mixture of Gaussians. There are differences,
however: Lasso evaluation did not converge by 50000 it-
erations according to standard convergence statistics. On
several initial conditions, the chain started taking small
steps, and therefore dropped to logarithmic speedup, be-
fore achieving convergence. Overall performance might be
improved by detecting this case and switching some specu-
lative resources over to other initial conditions, an idea we
leave for future work.

5 CONCLUSIONS

We presented parallel predictive prefetching, a general
framework for accelerating many widely used MCMC al-
gorithms that are inherently serial and often slow to con-
verge. Our approach applies to MCMC algorithms whose
transition operator can be decomposed into two functions,
one that produces a countable set of candidate proposal
states and a second that selects the best candidate. Predic-
tive prefetching uses speculative computation to exploit the
common setting in which (1) generating candidates is com-
putationally fast compared to the evaluation required to se-
lect the best candidate, and (2) this evaluation can be ap-
proximated quickly. Our first focus has been on the MH
algorithm, in which predictive prefetching exploits a se-
quence of increasingly accurate predictors for the decision
to accept or reject a proposed state. Our second focus has
been on large-scale Bayesian inference, for which we iden-
tified an effective predictive model that estimates the like-
lihood from a subset of data. The key insight is that we
model the uncertainty of these predictions with respect to
the difference between the likelihood of each datum eval-
uated at the proposal and current state. As these evalua-
tions are highly correlated, the variance of the differences
is much smaller than the variance of the states evaluated
separately, leading to significantly higher confidence in our
predictions. This allows us to justify more aggressive use of
parallel resources, leading to greater speedup with respect
to serial execution or more naı̈ve prefetching schemes.

The best speedup that is realistically achievable for this

problem is sublinear in the number of cores but better than
logarithmic, and our results achieve this. Our approach gen-
eralizes both to schemes that learn an approximation to the
target density and to other MCMC algorithms with more
complex structure, such as slice sampling and more sophis-
ticated adaptive techniques.
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Abstract

We introduce a new convex formulation for
stable principal component pursuit (SPCP)
to decompose noisy signals into low-rank and
sparse representations. For numerical solu-
tions of our SPCP formulation, we first de-
velop a convex variational framework and
then accelerate it with quasi-Newton meth-
ods. We show, via synthetic and real data
experiments, that our approach offers advan-
tages over the classical SPCP formulations in
scalability and practical parameter selection.

1 INTRODUCTION

Linear superposition is a useful model for many appli-
cations, including nonlinear mixing problems. Surpris-
ingly, we can perfectly distinguish multiple elements
in a given signal using convex optimization as long as
they are concise and look sufficiently different from
one another. Popular examples include robust prin-
cipal component analysis (RPCA) where we decom-
pose a signal into low rank and sparse components
and stable principal component pursuit (SPCP), where
we also seek an explicit noise component within the
RPCA decomposition. Applications include alignment
of occluded images (Peng et al., 2012), scene trian-
gulation (Zhang et al., 2011), model selection (Chan-
drasekaran et al., 2012), face recognition, and docu-
ment indexing (Candès et al., 2011).

The SPCP formulation can be mathematically stated
as follows. Given a noisy matrix Y ∈ Rm×n, we de-
compose it as a sum of a low-rank matrix L and a

∗Author’s work is supported in part by the European
Commission under the grants MIRG-268398 and ERC Fu-
ture Proof, and by the Swiss Science Foundation under the
grants SNF 200021-132548, SNF 200021-146750 and SNF
CRSII2-147633.

sparse matrix S via the following convex program

minimize
L,S

|||L|||∗ + λsum‖S‖1

subject to ‖L+ S − Y ‖F ≤ ε,
(SPCPsum)

where the 1-norm ‖·‖1 and nuclear norm |||·|||∗ are given
by ‖S‖1 =

∑
i,j |si,j |, |||L|||∗ =

∑
i σi(L), where σ(L) is

the vector of singular values of L. In (SPCPsum), the
parameter λsum > 0 controls the relative importance
of the low-rank term L vs. the sparse term S, and the
parameter ε accounts for the unknown perturbations
Y − (L+ S) in the data not explained by L and S.

When ε = 0, (SPCPsum) is the “robust PCA” problem
as analyzed by Candès et al. (2011); Chandrasekaran
et al. (2009), and it has perfect recovery guarantees
under stylized incoherence assumptions. There is even
theoretical guidance for selecting a minimax optimal
regularization parameter λsum (Candès et al., 2011).
Unfortunately, many practical problems only approxi-
mately satisfy the idealized assumptions, and hence,
we typically tune RPCA via cross-validation tech-
niques. SPCP further complicates the practical tuning
due to the additional parameter ε.

To cope with practical tuning issues of SPCP, we pro-
pose the following new variant called “max-SPCP”:

minimize
L,S

max (|||L|||∗, λmax‖S‖1)

subject to ‖L+ S − Y ‖F ≤ ε,
(SPCPmax)

where λmax > 0 acts similar to λsum. Our work shows
that this new formulation offers both modeling and
computational advantages over (SPCPsum).

Cross-validation with (SPCPmax) to estimate (λmax, ε)
is significantly easier than estimating (λsum, ε) in
(SPCPsum). For example, given an oracle that pro-
vides an ideal separation Y ' Loracle + Soracle, we can
use ε = ‖Loracle+Soracle−Y ‖F in both cases. However,
while we can estimate λmax = ‖Loracle‖∗/‖Soracle‖1, it
is not clear how to choose λsum from data. Such cross
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validation can be performed on a similar dataset, or it
could be obtained from a probabilistic model.

Our convex approach for solving (SPCPsum) gener-
alizes to other source separation problems (Baldas-
sarre et al., 2013) beyond SPCP. Both (SPCPmax) and
(SPCPsum) are challenging to solve when the dimen-
sions are large. We show in this paper that these prob-
lems can be solved more efficiently by solving a few
(typically 5 to 10) subproblems of a different functional
form. While the efficiency of the solution algorithms
for (SPCPsum) relies heavily on the efficiency of the
1-norm and nuclear norm projections, the efficiency of
our solution algorithm (SPCPmax) is preserved for ar-
bitrary norms. Moreover, (SPCPmax) allows a faster
algorithm in the standard case, discussed in Section 6.

2 A PRIMER ON SPCP

The theoretical and algorithmic research on SPCP for-
mulations (and source separation in general) is rapidly
evolving. Hence, it is important to set the stage first
in terms of the available formulations to highlight our
contributions.

To this end, we illustrate (SPCPsum) and (SPCPmax)
via different convex formulations. Flipping the objec-
tive and the constraints in (SPCPmax) and (SPCPsum),
we obtain the following convex programs

minimize
L,S

1
2‖L+ S − Y ‖2F

s.t. |||L|||∗ + λsum‖S‖1 ≤ τsum

(flip-SPCPsum)

minimize
L,S

1
2‖L+ S − Y ‖2F

s.t. max(|||L|||∗, λmax‖S‖1) ≤ τmax

(flip-SPCPmax)

Remark 2.1. The solutions of (flip-SPCPsum)
and (flip-SPCPmax) are related to the solutions
of (SPCPsum) and (SPCPmax) via the Pareto fron-
tier by Aravkin et al. (2013a, Theorem 2.1). If the
constraint ‖L + S − Y ‖ ≤ ε is tight at the solution,
then there exist corresponding parameters τsum(ε) and
τmax(ε), for which the optimal value of (flip-SPCPsum)
and (flip-SPCPmax) is ε, and the corresponding opti-
mal solutions (Ss, Ls) and (Sm, Lm) are also optimal
for (SPCPsum) and (SPCPmax).

For completeness, we also include the Lagrangian for-
mulation, which is covered by our new algorithm:

minimize
L,S

λL|||L|||∗ + λS‖S‖1 + 1
2‖L+ S − Y ‖2F

(Lag-SPCP)

Problems (flip-SPCPmax) and (flip-SPCPsum) can be
solved using projected gradient and accelerated gradi-
ent methods. The disadvantage of some of these for-
mulations is that it may not be clear how to tune the
parameters. Surprisingly, an algorithm we propose in
this paper can solve (SPCPmax) and (SPCPsum) us-
ing a sequence of flipped problems that specifically ex-
ploits the structured relationship cited in Remark 2.1.
In practice, we will see that better tuning also leads
to faster algorithms, e.g., fixing ε ahead of time to an
estimated ‘noise floor’ greatly reduces the amount of
required computation if parameters are to be selected
via cross-validation.

Finally, we note that in some cases, it is useful to
change the ‖L + S − Y ‖F term to ‖A(L + S − Y )‖F
where A is a linear operator. For example, let Ω be a
subset of the indices of a m× n matrix. We may only
observe Y restricted to these entries, denoted PΩ(Y ),
in which case we choose A = PΩ. Most existing
RPCA/SPCP algorithms adapt to the case A = PΩ
but this is due to the strong properties of the projec-
tion operator PΩ. The advantage of our approach is
that it seamlessly handles arbitrary linear operators
A. In fact, it also generalizes to smooth misfit penal-
ties, that are more robust than the Frobenius norm,
including the Huber loss. Our results also generalize
to some other penalties on S besides the 1-norm.

The paper proceeds as follows. In Section 3, we de-
scribe previous work and algorithms for SPCP and
RPCA. In Section 4, we cast the relationships be-
tween pairs of problems (flip-SPCPsum), (SPCPsum)
and (flip-SPCPmax), (SPCPmax) into a general varia-
tional framework, and highlight the product-space reg-
ularization structure that enables us solve the formula-
tions of interest using corresponding flipped problems.
We discuss computationally efficient projections as op-
timization workhorses in Section 5, and develop new
accelerated projected quasi-Newton methods for the
flipped and Lagrangian formulations in Section 6. Fi-
nally, we demonstrate the efficacy of the new solvers
and the overall formulation on synthetic problems and
a real cloud removal example in Section 7, and follow
with conclusions in Section 8.

3 PRIOR ART

While problem (SPCPsum) with ε = 0 has several
solvers (e.g., it can be solved by applying the widely
known Alternating Directions Method of Multipli-
ers (ADMM)/Douglas-Rachford method (Combettes
& Pesquet, 2007)), the formulation assumes the data
are noise free. Unfortunately, the presence of noise we
consider in this paper introduces a third term in the
ADMM framework, where the algorithm is shown to2
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be non-convergent (Chen et al., 2013). Interestingly,
there are only a handful of methods that can handle
this case. Those using smoothing techniques no longer
promote exactly sparse and/or exactly low-rank solu-
tions (Aybat et al., 2013). Those using dual decom-
position techniques require high iteration counts. Be-
cause each step requires a partial singular value de-
composition (SVD) of a large matrix, it is critical that
the methods only take a few iterations.

As a rough comparison, we start with related solvers
that solve (SPCPsum) for ε = 0. Wright et al. (2009a)
solves an instance of (SPCPsum) with ε = 0 and a
800 × 800 system in 8 hours. By switching to the
(Lag-SPCP) formulation, Ganesh et al. (2009) uses
the accelerated proximal gradient method (Beck &
Teboulle, 2009) to solve a 1000 × 1000 matrix in un-
der one hour. This is improved further in Lin et al.
(2010) which again solves (SPCPsum) with ε = 0 us-
ing the augmented Lagrangian and ADMM methods
and solves a 1500×1500 system in about a minute. As
a prelude to our results, our method can solve some
systems of this size in about 10 seconds (c.f., Fig. 1).

In the case of (SPCPsum) with ε > 0, Tao & Yuan
(2011) propose the alternating splitting augmented La-
grangian method (ASALM), which exploits separabil-
ity of the objective in the splitting scheme, and can
solve a 1500× 1500 system in about five minutes.

The partially smooth proximal gradient (PSPG) ap-
proach of Aybat et al. (2013) smooths just the nuclear
norm term and then applies the well-known FISTA al-
gorithm (Beck & Teboulle, 2009). Aybat et al. (2013)
show that the proximity step can be solved efficiently
in closed-form, and the dominant cost at every iter-
ation is that of the partial SVD. They include some
examples on video, lopsided matrices: 25000× 300 or
so, in about 1 minute). solving 1500 × 1500 formula-
tions in under half a minute.

The nonsmooth adaptive Lagrangian (NSA) algorithm
of Aybat & Iyengar (2014) is a variant of the ADMM
for (SPCPsum), and makes use of the insight of Aybat
et al. (2013). The ADMM variant is interesting in that
it splits the variable L, rather than the sum L+ S or
residual L+S − Y . Their experiments solve a 1500 ×
1500 synthetic problems in between 16 and 50 seconds
(depending on accuracy) .

Shen et al. (2014) develop a method exploiting low-
rank matrix factorization scheme, maintaining L =
UV T . This technique has also been effectively used in
practice for matrix completion (Aravkin et al., 2013b;
Lee et al., 2010; Recht & Ré, 2011), but lacks a full
convergence theory in either context. The method
of (Shen et al., 2014) was an order of magnitude faster
than ASALM, but encountered difficulties in some ex-

periments where the sparse component dominated the
low rank component in some sense. Mansour & Vetro
(2014) attack the SPCPsum formulation using a fac-
torized approach, together with alternating solves be-
tween (U, V ) and S. Non-convex techniques also in-
clude hard thresholding approaches, e.g. the approach
of Kyrillidis & Cevher (2014). While the factorization
technique may potentially speed up some of the meth-
ods presented here, we leave this to future work, and
only work with convex formulations.

4 VARIATIONAL FRAMEWORK

Both of the formulations of interest (SPCPsum)
and (SPCPmax) can be written as follows:

minφ(L, S) s.t. ρ (L+ S − Y ) ≤ ε. (4.1)

Classic formulations assume ρ to be the Frobenius
norm; however, this restriction is not necessary, and
we consider ρ to be smooth and convex. In particular,
ρ can be taken to be the robust Huber penalty (Huber,
2004). Even more importantly, this formulation allows
pre-composition of a smooth convex penalty with an
arbitrary linear operator A, which extends the pro-
posed approach to a much more general class of prob-
lems. Note that a simple operator is already embedded
in both formulations of interest:

L+ S =
[
I I

] [L
S

]
. (4.2)

Projection onto a set of observed indices Ω is also a
simple linear operator that can be included in ρ. Op-
erators may include different transforms (e.g., Fourier)
applied to either L or S.

The main formulations of interest differ only in the
functional φ(L, S). For (SPCPsum), we have

φsum(L, S) = |||L|||∗ + λsum‖S‖1,

while for (SPCPmax),

φmax(L, S) = max(|||L|||∗, λmax‖S‖1).

The problem class (4.1) falls into the class of problems
studied by van den Berg & Friedlander (2008, 2011) for
ρ(·) = ‖·‖2 and by Aravkin et al. (2013a) for arbitrary
convex ρ. Making use of this framework, we can define
a value function

v(τ) = min
L,S

ρ (A(L, S)− Y ) s.t. φ(L, S) ≤ τ, (4.3)

and use Newton’s method to find a solution to v(τ) =
ε. The approach is agnostic to the linear operator A
(it can be of the simple form (4.2); include restriction
in the missing data case, etc.).3
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For both formulations of interest, φ is a norm defined
on a product space Rn×m ×Rn×m, since we can write

φsum(L, S) =
∥∥∥∥
|||L|||∗

λsum‖S‖1

∥∥∥∥
1
, (4.4)

φmax(L, S) =
∥∥∥∥
|||L|||∗

λmax‖S‖1

∥∥∥∥
∞
. (4.5)

In particular, both φsum(L, S) and φmax(L, S) are
gauges. For a convex set C containing the origin, the
gauge γ (x | C) is defined by

γ (x | C) = inf
λ
{λ : x ∈ λC}. (4.6)

For any norm ‖·‖, the set defining it as a gauge is sim-
ply the unit ball B‖·‖ = {x : ‖x‖ ≤ 1}. We introduce
gauges for two reasons. First, they are more general (a
gauge is a norm only if C is bounded with nonempty
interior and symmetric about the origin). For exam-
ple, gauges trivially allow inclusion of non-negativity
constraints. Second, definition (4.6) and the explicit
set C simplify the exposition of the following results.

In order to implement Newton’s method for (4.3), the
optimization problem to evaluate v(τ) must be solved
(fully or approximately) to obtain (L, S). Then the τ
parameter for the next (4.3) problem is updated via

τk+1 = τk − v(τ)− τ
v′(τ) . (4.7)

Given (L, S), v′(τ) can be written in closed form using
(Aravkin et al., 2013a, Theorem 5.2), which simplifies
to

v′(τ) = −φ◦(AT∇ρ(A(L, S)− Y )), (4.8)
with φ◦ denoting the polar gauge to φ. The polar
gauge is precisely γ (x | C◦), with

C◦ = {v : 〈v, x〉 ≤ 1 ∀x ∈ C}. (4.9)

In the simplest case, where A is given by (4.2), and ρ
is the least squares penalty, the formula (4.8) becomes

v′(τ) = −φ◦
([
L+ S − Y
L+ S − Y

])
.

The main computational challenge in the approach
outlined in (4.3)-(4.8) is to design a fast solver to eval-
uate v(τ). Section 6 does just this.

The key to RPCA is that the regularization functional
φ is a gauge over the product space used to decompose
Y into summands L and S. This makes it straightfor-
ward to compute polar results for both φsum and φmax.
Theorem 4.1 (Max-Sum Duality for Gauges on Prod-
uct Spaces). Let γ1 and γ2 be gauges on Rn1 and Rn2 ,
and consider the function

g(x, y) = max{γ1(x), γ2(y)}.

Then g is a gauge, and its polar is given by

g◦(z1, z2) = γ◦1(z1) + γ◦2 (z2).

Proof. Let C1 and C2 denote the canonical sets corre-
sponding to gauges γ1 and γ2. It immediately follows
that g is a gauge for the set C = C1 × C2, since

inf{λ ≥ 0|(x, y) ∈ λC} = inf{λ|x ∈ λC1 and y ∈ λC2}
= max{γ1(x), γ2(y)}.

By (Rockafellar, 1970, Corollary 15.1.2), the polar of
the gauge of C is the support function of C, which is
given by

sup
x∈C1,y∈C2

〈(x, y), (z1, z2)〉 = sup
x∈C1

〈x, z1〉+ sup
y∈C2

〈y, z2〉

= γ◦1 (z1) + γ◦2(z2).

This theorem allows us to easily compute the polars
for φsum and φmax in terms of the polars of |||·|||∗ and
‖·‖1, which are the dual norms, the spectral norm and
infinity norm, respectively.
Corollary 4.2 (Explicit variational formulae
for (SPCPsum) and (SPCPmax)). We have

φ◦sum(Z1, Z2) = max
{
|||Z1|||2,

1
λsum

‖Z2‖∞
}

φ◦max(Z1, Z2) = |||Z1|||2 + 1
λmax

‖Z2‖∞,
(4.10)

where |||X|||2 denotes the spectral norm (largest eigen-
value of XTX).

This result was also obtained by (van den Berg &
Friedlander, 2011, Section 9), but is stated only for
norms. Theorem 4.1 applies to gauges, and in partic-
ular now allows asymmetric gauges, so non-negativity
constraints can be easily modeled.

We now have closed form solutions for v′(τ) in (4.8)
for both formulations of interest. The remaining chal-
lenge is to design a fast solver for (4.3) for formula-
tions (SPCPsum) and (SPCPmax). We focus on this
challenge in the remaining sections of the paper. We
also discuss the advantage of (SPCPmax) from this
computational perspective.

5 PROJECTIONS

In this section, we consider the computational issues
of projecting onto the set defined by φ(L, S) ≤ τ . For
φmax(L, S) = max(|||L|||∗, λmax‖S‖1) this is straight-
forward since the set is just the product set of the4
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nuclear norm and `1 norm balls, and efficient pro-
jectors onto these are known. In particular, project-
ing an m × n matrix (without loss of generality let
m ≤ n) onto the nuclear norm ball takes O(m2n) op-
erations, and projecting it onto the `1-ball can be done
on O(mn) operations using fast median-finding algo-
rithms (Brucker, 1984; Duchi et al., 2008).

For φsum(L, S) = |||L|||∗ + λsum‖S‖1, the projection is
no longer straightforward. Nonetheless, the following
lemma shows this projection can be efficiently imple-
mented.
Proposition 5.1. (van den Berg & Friedlander, 2011,
Section 5.2) Projection onto the scaled `1-ball, that is,
{x ∈ Rd | ∑d

i=1 αi|xi| ≤ 1} for some αi > 0, can be
done in O(d log(d)) time.

The proof of the proposition follows by noting that the
solution can be written in a form depending only on a
single scalar parameter, and this scalar can be found
by sorting (|xi|/αi) followed by appropriate summa-
tions. We conjecture that fast median-finding ideas
could reduce this to O(d) in theory, the same as the
optimal complexity for the `1-ball.

Armed with the above proposition, we state an impor-
tant lemma below. For our purposes, we may think of
S as a vector in Rmn rather than a matrix in Rm×n.
Lemma 5.2. (van den Berg & Friedlander, 2011,
Section 9.2) Let L = UΣV T and Σ = diag(σ),
and let (Si)mni=1 be any ordering of the elements of
S. Then the projection of (L, S) onto the φsum
ball is (U diag(σ̂)V T , Ŝ), where (σ̂, Ŝ) is the projec-
tion onto the scaled `1-ball {(σ, S) | ∑min(m,n)

j=1 |σj | +∑mn
i=1 λsum|Si| ≤ 1}.

Sketch of proof. We need to solve

min
{(L′,S′)|φsum(L′,S′)≤1}

1
2‖L

′ − L‖2F + 1
2‖S

′ − S‖2F .

Alternatively, solve

min
S′

min
{L′| |||L′|||∗≤1−λsum‖S′‖1}

1
2‖L

′ − L‖2F+1
2‖S

′ − S‖2F .

The inner minimization is equivalent to projecting
onto the nuclear norm ball, and this is well-known to
be soft-thresholding of the singular values. Since it
depends only on the singular values, recombining the
two minimization terms gives exactly a joint projection
onto a scaled `1-ball.

Remark 5.1. All the references to the `1-ball can be
replaced by the intersection of the `1-ball and the non-
negative cone, and the projection is still efficient. As
noted in Section 4, imposing non-negativity constraints

is covered by the gauge results of Theorem 4.1 and
Corollary 4.2. Therefore, both the variational and ef-
ficient computational framework can be applied to this
interesting case.

6 SOLVING THE SUB-PROBLEM
VIA PROJECTED
QUASI-NEWTON METHODS

In order to accelerate the approach, we can use quasi-
Newton (QN) methods since the objective has a sim-
ple structure.1 The main challenge here is that for
the |||L|||∗ term, it is tricky to deal with a weighted
quadratic term (whereas for ‖S‖1, we can obtain a
low-rank Hessian and solve it efficiently via coordinate
descent).

We wish to solve (flip-SPCPmax). Let X = (L, S) be
the full variable, so we can write the objective function
as f(X) = 1

2‖A(X)−Y ‖2F . To simplify the exposition,
we take A = (I, I) to be themn×2mn matrix, but the
presented approach applies to general linear operators
(including terms like PΩ). The matrix structure of L
and S is not important here, so we can think of them
as mn× 1 vectors instead of m× n matrices.

The gradient is ∇f(X) = AT (A(X)− Y ). For conve-
nience, we use r(X) = A(X)− Y and

∇f(X) =
(
∇Lf(X)
∇Sf(X)

)
= AT

(
r(X)
r(X)

)
, rk ≡ r(Xk).

The Hessian is ATA =
(
I I
I I

)
. We cannot simulta-

neously project (L, S) onto their constraints with this
Hessian scaling (doing so would solve the original prob-
lem!), since the Hessian removes separability. Instead,
we use (Lk, Sk) to approximate the cross-terms.

The true function is a quadratic, so the following

1 We use “quasi-Newton” to mean an approximation
to a Newton method and it should not be confused with
methods like BFGS5
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quadratic expansion around Xk = (Lk, Sk) is exact:

f(L, S) = f(Xk) +
〈(
∇Lf(Xk)
∇Sf(Xk)

)
,

(
L− Lk
S − Sk

)〉

+
〈(

L− Lk
S − Sk

)
, ∇2f

(
L− Lk
S − Sk

)〉

= f(Xk) +
〈(

rk
rk

)
,

(
L− Lk
S − Sk

)〉

+
〈(

L− Lk
S − Sk

)
,

(
1 1
1 1

)(
L− Lk
S − Sk

)〉

= f(Xk) +
〈(

rk
rk

)
,

(
L− Lk
S − Sk

)〉

+
〈(

L− Lk
S− Sk

)
,

(
L− Lk + S− Sk
L− Lk + S − Sk

)〉

The coupling of the second order terms, shown in
bold, prevents direct 1-step minimization of f , sub-
ject to the nuclear and 1-norm constraints. The
FISTA (Beck & Teboulle, 2009) and spectral gradi-
ent methods (SPG) (Wright et al., 2009b) replace

the Hessian
(
I I
I I

)
with the upper bound 2

(
I 0
0 I

)
,

which solves the coupling issue, but potentially lose
too much second order information. After comparing
FISTA and SPG, we use the SPG method for solving
(flip-SPCPsum). However, for (flip-SPCPmax) (and for
(Lag-SPCP), which has no constraints but rather non-
smooth terms, which can be treated like constraints
using proximity operators), the constraints are uncou-
pled and we can take a “middle road” approach, re-
placing

〈(
L− Lk
S− Sk

)
,

(
L− Lk + S− Sk
L− Lk + S − Sk

)〉

with
〈(

L− Lk
S − Sk

)
,

(
L− Lk + Sk − Sk−1
Lk+1 − Lk + S − Sk

)〉
.

The first term is decoupled, allowing us to update Lk,
and then this is plugged into the second term in a
Gauss-Seidel fashion. In practice, we also scale this
second-order term with a number slightly greater than
1 but less than 2 (e.g., 1.25) which leads to more robust
behavior. We expect this “quasi-Newton” trick to do
well when Sk+1 − Sk is similar to Sk − Sk−1.

7 NUMERICAL RESULTS

The numerical experiments are done with the algo-
rithms suggested in this paper as well as code from
PSPG (Aybat et al., 2013), NSA (Aybat & Iyengar,
2014), and ASALM (Tao & Yuan, 2011)2. We modi-

2PSPG, NSA and ASALM available from the experi-
ment package at http://www2.ie.psu.edu/aybat/codes.
html

fied the other software as needed for testing purposes.
PSPG, NSA and ASALM all solve (SPCPsum), but
ASALM has another variant which solves (Lag-SPCP)
so we test this as well. All three programs also use
versions of PROPACK from Becker & Candès (2008);
Larsen (1998) to compute partial SVDs. Since the cost
of a single iteration may vary among the solvers, we
measure error as a function of time, not iterations.
When a reference solution (L?, S?) is available, we
measure the (relative) error of a trial solution (L, S)
as ‖L−L?‖F /‖L?‖F +‖S−S?‖F /‖S?‖F . The bench-
mark is designed so the time required to calculate this
error at each iteration does not factor into the reported
times. Since picking stopping conditions is solver de-
pendent, we show plots of error vs time, rather than
list tables. All tests are done in Matlab and the dom-
inant computational time was due to matrix multipli-
cations for all algorithms; all code was run in the same
quad-core 1.6 GHz i7 computer.

For our implementations of the (flip-SPCPmax),
(flip-SPCPsum) and (Lag-SPCP), we use a random-
ized SVD (Halko et al., 2011). Since the number of
singular values needed is not known in advance, the
partial SVD may be called several times (the same is
true for PSPG, NSA and ASALM). Our code limits the
number of singular values on the first two iterations in
order to speed up calculation without affecting conver-
gence. Unfortunately, the delicate projection involved
in (flip-SPCPsum) makes incorporating a partial SVD
to this setting more challenging, so we use Matlab’s
dense SVD routine.

7.1 Synthetic test with exponential noise

We first provide a test with generated data. The ob-
servations Y ∈ Rm×n with m = 400 and n = 500 were
created by first sampling a rank 20 matrix Y0 with
random singular vectors (i.e., from the Haar measure)
and singular values drawn from a uniform distribution
with mean 0.1, and then adding exponential random
noise (with mean equal to one tenth the median ab-
solute value of the entries of Y0). This exponential
noise, which has a longer tail than Gaussian noise, is
expected to be captured partly by the S term and
partly by the ‖L+ S − Y ‖F term.

Given Y , the reference solution (L?, S?) was generated
by solving (Lag-SPCP) to very high accuracy; the val-
ues λL = 0.25 and λS = 10−2 were picked by hand tun-
ing (λL, λS) to find a value such that both L? and S?
are non-zero. The advantage to solving (Lag-SPCP) is
that knowledge of (L?, S?, λL, λS) allows us to gener-
ate the parameters for all the other variants, and hence
we can test different problem formulations.

With these parameters, L? was rank 17 with nuclear6
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norm 6.754, S? had 54 non-zero entries (most of them
positive) with `1 norm 0.045, the normalized residual
was ‖L? + S? − Y ‖F /‖Y ‖F = 0.385, and ε = 1.1086,
λsum = 0.04, λmax = 150.0593, τsum = 6.7558 and
τmax = 6.7540.
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Figure 1: The exponential noise test. The asterisk in
the legend means the method uses a fast SVD.

Results are shown in Fig. 1. Our methods for
(flip-SPCPmax) and (Lag-SPCP) are extremely fast,
because the simple nature of these formulations allows
the quasi-Newton acceleration scheme of Section 6. In
turn, since our method for solving (SPCPmax) uses
the variational framework of Section 4 to solve a se-
quence of (flip-SPCPmax) problems, it is also compet-
itive (shown in cyan in Figure 1). The jumps are due
to re-starting the sub-problem solver with a new value
of τ , generated according to (4.7).

Our proximal gradient method for (flip-SPCPsum),
which makes use of the projection in Lemma 5.2, con-
verges more slowly, since it is not easy to accelerate
with the quasi-Newton scheme due to variable cou-
pling, and it does not make use of fast SVDs. Our
solver for (SPCPsum), which depends on a sequence of
problems (flip-SPCPsum), converges slowly.

The ASALM performs reasonably well, which was un-
expected since it was shown to be worse than NSA
and PSPG in Aybat et al. (2013); Aybat & Iyengar
(2014). The PSPG solver converges to the wrong an-
swer, most likely due to a bad choice of the smoothing
parameter µ; we tried choosing several different values
other than the default but did not see improvement
for this test (for other tests, not shown, tweaking µ
helped significantly). The NSA solver reaches mod-
erate error quickly but stalls before finding a highly
accurate solution.

7.2 Synthetic test from Aybat & Iyengar
(2014)

We show some tests from the test setup of Aybat &
Iyengar (2014) in the m = n = 1500 case. The de-
fault setting of λsum = 1/

√
max(m,n) was used, and

then the NSA solver was run to high accuracy to ob-
tain a reference solution (L?, S?). From the knowledge
of (L?, S?, λsum), one can generate λmax, τsum, τmax, ε,
but not λS and λL, and hence we did not test the
solvers for (Lag-SPCP) in this experiment. The data
was generated as Y = L0 + S0 + Z0, where L0
was sampled by multiplication of m × r and r × n
normal Gaussian matrices, S0 had p randomly cho-
sen entries uniformly distributed within [−100, 100],
and Z0 was white noise chosen to give a SNR of
45 dB. We show three tests that vary the rank from
{0.05, 0.1} · min(m,n) and the sparsity ranging from
p = {0.05, 0.1} ·mn. Unlike Aybat & Iyengar (2014),
who report error in terms of a true noiseless signal
(L0, S0), we report the optimization error relative to
(L?, S?).

For the first test (with r = 75 and p = 0.05 × mn),
L? had rank 786 and nuclear norm 111363.9; S? had
75.49% of its elements nonzero and `1 norm 5720399.4,
and ‖L? + S? − Y ?‖F /‖Y ‖F = 1.5 · 10−4. The other
parameters were ε = 3.5068, λsum = 0.0258, λmax =
0.0195, τsum = 2.5906 · 105 and τmax = 1.1136 · 105.
An interesting feature of this test is that while L0 is
low-rank, L? is nearly low-rank but with a small tail
of significant singular values until number 786. We
expect methods to converge quickly to low-accuracy
where only a low-rank approximation is needed, and
then slow down as they try to find a larger rank highly-
accurate solution.
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Figure 2: The 1500× 1500 synthetic noise test.

The results are shown in Fig. 2. Errors barely dip
below 0.01 (for comparison, an error of 2 is achieved7
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by setting L = S = 0). The NSA and PSPG
solvers do quite well. In contrast to the previ-
ous test, ASALM does poorly. Our methods for
(flip-SPCPsum), and hence (SPCPsum), are not com-
petitive, since they use dense SVDs. We imposed
a time-limit of about one minute, so these methods
only manage a single iteration or two. Our quasi-
Newton method for (flip-SPCPmax) does well initially,
then takes a long time due to a long partial SVD
computation. Interestingly, (SPCPmax) does better
than pure (flip-SPCPmax). One possible explanation
is that it chooses a fortuitous sequence of τ values,
for which the corresponding (flip-SPCPmax) subprob-
lems become increasingly hard, and therefore bene-
fit from the warm-start of the solution of the eas-
ier previous problem. This is consistent with empiri-
cal observations regarding continuation techniques, see
e.g., (van den Berg & Friedlander, 2008; Wright et al.,
2009b).
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Figure 3: Second 1500× 1500 synthetic noise test.

Figure 3 is the same test but with r = 150 and p =
0.1 ·mn, and the conclusions are largely similar.

7.3 Cloud removal

Figure 4 shows 15 images of size 300 × 300 from the
MODIS satellite,3 after some transformations to turn
images from different spectral bands into one grayscale
images. Each image is a photo of the same rural lo-
cation but at different points in time over the course
of a few months. The background changes slowly and
the variability is due to changes in vegetation, snow
cover, and different reflectance. There are also outly-
ing sources of error, mainly due to clouds (e.g., major
clouds in frames 5 and 7, smaller clouds in frames 9,
11 and 12), as well as artifacts of the CCD camera on

3Publicly available at http://ladsweb.nascom.nasa.
gov/
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Figure 5: Showing frames 4, 5 and 12. Leftmost col-
umn is original data, middle column is low-rank term
of the solution, and right column is sparse term of the
solution. Data have been processed slightly to enhance
contrast for viewing.

the satellite (frame 4 and 6) and issues stitching to-
gether photos of the same scene (the lines in frames 8
and 10).

There are hundreds of applications for clean satellite
imagery, so removing the outlying error is of great
practical importance. Because of slow changing back-
ground and sparse errors, we can model the prob-
lem using the robust PCA approach. We use the
(flip-SPCPmax) version due to its speed, and pick pa-
rameters (λmax, τmax) by using a Nelder-Mead simplex
search. For an error metric to use in the parameter
tuning, we remove frame 1 from the data set (call it
y1) and set Y to be frames 2–15. From this training
data Y , the algorithm generates L and S. Since L is
a 3002 × 14 matrix, it has far from full column span.
Thus our error is the distance of y1 from the span of
L, i.e., ‖y1 − Pspan(L)(y1)‖2.
Our method takes about 11 iterations and 5 seconds,
and uses a dense SVD instead of the randomized
method due to the high aspect ratio of the matrix.
Some results of the obtained (L, S) outputs are in
Fig. 5, where one can see that some of the anoma-
lies in the original data frames Y are picked up by the
S term and removed from the L term. Frame 4 has
what appears to be a camera pixel error; frame 6 has
another artificial error (that is, caused by the camera
and not the scene); and frame 12 has cloud cover.8
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Figure 4: Satellite photos of the same location on different days

8 CONCLUSIONS

In this paper, we reviewed several formulations and
algorithms for the RPCA problem. We intro-
duced a new denoising formulation (SPCPmax) to
the ones previously considered, and discussed model-
ing and algorithmic advantages of denoising formula-
tions (SPCPmax) and (SPCPsum) compared to flipped
versions (flip-SPCPmax) and (flip-SPCPsum). In par-
ticular, we showed that these formulations can be
linked using a variational framework, which can be
exploited to solve denoising formulations using a se-
quence of flipped problems. For (flip-SPCPmax), we
proposed a quasi-Newton acceleration that is compet-
itive with state of the art, and used this innovation to
design a fast method for (SPCPmax) through the vari-
ational framework. The new methods were compared
against prior art on synthetic examples, and applied
to a real world cloud removal application application
using publicly available MODIS satellite data.
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Abstract

Real world systems typically feature a variety
of different dependency types and topologies
that complicate model selection for probabilistic
graphical models. We introduce the ensemble-of-
forests model, a generalization of the ensemble-
of-trees model of Meilă and Jaakkola (2006).
Our model enables structure learning of Markov
random fields (MRF) with multiple connected
components and arbitrary potentials. We present
two approximate inference techniques for this
model and demonstrate their performance on
synthetic data. Our results suggest that the
ensemble-of-forests approach can accurately re-
cover sparse, possibly disconnected MRF topolo-
gies, even in presence of non-Gaussian depen-
dencies and/or low sample size. We applied
the ensemble-of-forests model to learn the struc-
ture of perturbed signaling networks of immune
cells and found that these frequently exhibit
non-Gaussian dependencies with disconnected
MRF topologies. In summary, we expect that
the ensemble-of-forests model will enable MRF
structure learning in other high dimensional real
world settings that are governed by non-trivial
dependencies.

1 INTRODUCTION

This work presents the ensemble-of-forests model for ap-
proximate structure learning in Markov random fields
(MRF). As opposed to most existing MRF structure learn-
ers that either work with specific types of potentials (e.g.
discrete, Gaussian) or assume connected MRF topology
(Lin et al., 2009), our approach is applicable for MRFs with
arbitrary potentials and topology, including disconnected
topologies, and is therefore suited to accommodate a wide
range of real world settings.

Markov random fields (MRF) are undirected probabilis-
tic graphical models specifying conditional independence
relations among a set of random variables. Learning
MRFs involves parameter inference and model selection,
i.e. learning the underlying graph structure. For general
MRFs, exact parameter inference is difficult due to the ne-
cessity to evaluate the intractable partition sum and there-
fore is addressed by approximate inference approaches.
Structure learning is an even more difficult task. The
naive method of enumerating all possible topologies is pro-
hibitively expensive and, thus, alternative approaches have
been proposed based on independence tests or approximate
score-based methods Koller and Friedman (2009).

Currently, the prevalent approach to model continuous ran-
dom variables is to assume Gaussianity. Under this hypoth-
esis, the Gaussian Markov random field (GMRF) struc-
ture can be directly read from the inverse covariance ma-
trix (Koller and Friedman, 2009): zero entries exactly
correspond to conditional independence statements of the
Markov random field. Sparse inverse covariance selection
constitutes a convex relaxation of the structure learning
task for GMRFs that can be solved efficiently (Banerjee
et al., 2006; Friedman et al., 2008).

Random variables of real world systems typically exhibit
unusual dependency types (Trivedi and Zimmer, 2005;
Berkes et al., 2008) that are not appropriately captured
by the Gaussian potentials of GMRFs. Copula poten-
tials constitute a more general and expressive alternative
to deal with non-Gaussian dependency types. Copulas
are multivariate distributions that encode the dependencies
among random variables. Copula models are very flexi-
ble, as they enable researchers to independently specify the
marginal distributions of random variables and their de-
pendency structure. Liu et al. (2009) define MRFs with
semi-parametric Gaussian copula potentials. Approximate
structure learning in this model is tractable because the de-
pendency type is Gaussian and, thus, parameter inference
is easy and model selection can also be efficiently approxi-
mated by resorting to sparse inverse covariance estimation.
However, in MRFs with general copula potentials, even
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parameter estimation is difficult because of the intractable
partition sum. This situation entails that structure learning
is also difficult.

The intractability of exact inference for MRFs with gen-
eral copula potentials has motivated alternative approaches
based on approximate inference. Meilă and Jaakkola
(2006) introduced the ensemble-of-trees (ET) model that
enables approximate inference for both parameter estima-
tion and structure learning of general MRFs. A Markov
network is represented as a mixture model whose compo-
nents are tree-structured distributions defined over all pos-
sible spanning trees of the underlying graph. Despite the
super-exponential number of such trees, the model remains
tractable by defining conveniently decomposable priors
over the structure and parameters of tree-distributions. Re-
cently, Kirshner (2008) presented a tree-averaged density
model based on tree structured MRFs with copula poten-
tials. The tasks of parameter estimation and structure learn-
ing are jointly expressed as a single (non-convex) objective,
which is optimized via Expectation-Maximization. Lin
et al. (2009) utilize the ET model for structure learning of
GMRFs and empirically demonstrate superior performance
compared to sparse inverse covariance selection for limited
sample size. Above considerations render copula MRFs as
attractive models because they are more general than GM-
RFs and efficient learning approaches exist for them.

Real world systems with many random variables are fre-
quently best represented by MRFs that decompose into
several connected components. In biology, for instance,
a specific stimulus might activate competing, independent
signaling pathways each including its own MRF compo-
nent (Johnstone et al., 2008). However, the ET struc-
ture learning approach is not able to recover disconnected
topologies since it is averaging over ensembles of spanning
trees. It is desirable to generalize the ET approach in order
to overcome this limitation and, thereby, still benefit from
the expressiveness of copula MRFs in these real world set-
tings.

The main contribution of this work is the generalization of
the ET model to the ensemble-of-forests (EF) model that
explicitly accounts for graph topologies with multiple con-
nected components. In the proposed model, a Markov net-
work is represented as a mixture of forests, i.e. collections
of tree-structured MRFs. An implementation of the ex-
act model is intractable, as the averaging over all possible
forests results in a hard combinatorial problem. Instead, we
present approximate formulations of the structure learning
task. The rest of this paper is organized as follows. In Sec-
tions 2 – 3 we formally introduce the methods that we build
upon. Then, in Sections 4 – 6 we describe the ensemble-of-
forests model and present benchmark results on synthetic
datasets. In Sections 7 – 8 we apply our method to plant mi-
croarray and immune cell perturbation data. Finally, Sec-
tion 9 concludes with a short discussion.

2 COPULA MODELS

This section reviews the application of copulas to de-
scribe general multivariate distributions and/or potentials
in MRFs. Copulas are multivariate continuous distri-
butions defined on the unit hypercube, C : [0, 1]d →
[0, 1], with uniform univariate marginals. Let X1, . . . , Xd

be real random variables with joint cumulative distribu-
tion function (cdf) F (x) and marginally distributed as
F1(x1), . . . , Fd(xd) respectively. Then, the random vari-
ables U1 = F1(x1), . . . , Ud = Fd(xd) are uniformly
distributed on [0, 1]. This property forms the basis for
Sklar’s theorem, according to which any joint distribution
F (x1, . . . , xd) with continuous marginals can be uniquely
expressed as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (1)

The converse is also true: arbitrary univariate marginals
{Fi} can be combined using a copula function C to
uniquely construct a valid joint distribution with marginals
{Fi}. The copula function C exclusively encodes the de-
pendencies among random variables.

Furthermore, copula density functions

c(u) =
∂dC(u)

∂u1 . . . ∂ud
can be expressed in terms of

probability density functions as

c(u1, . . . , ud) =
f(x1, . . . , xd)∏d

i=1 fi(xi)
. (2)

A large number of copula functions have been proposed
in the literature (Nelsen, 1999), especially for the bivariate
case. Commonly used examples are the Clayton, Gumbel,
Frank, Gaussian and Student’s t parametric copula families.
In Figure 1, we present contour plots of six distributions
with standard Gaussian marginals but different types of de-
pendencies between the marginals. In each case, the depen-
dency structure is specified via a different copula function.

Figure 1: Contour plots of six joint distributions defined using
standard Gaussian marginals and different dependency structures
specified by different copulas.

43



Bivariate copulas are typically used to model strong
extreme-value dependencies in financial data (Embrechts
et al., 2003; Trivedi and Zimmer, 2005). Recently, the
probabilistic graphical model framework has been success-
fully employed for the construction of copula-based high-
dimensional models. A review on this topic can be found
in (Elidan, 2013).

3 ENSEMBLE-OF-TREES MODELS

Here we introduce the ensemble-of-trees (ET) method for
approximate parameter inference and structure learning of
MRFs. This method forms the basis for the ensemble-of-
forests method, the main conceptual contribution of this
paper. From here on, we adopt the following notation:
we consider a Markov network encoded by a graph G =
(V, E), where V is the set of nodes corresponding to ran-
dom variablesX = {X1, . . . , Xd} and E is the set of edges.

The ensemble-of-trees model of Meilă and Jaakkola (2006)
is an approximate inference approach to carry out structure
learning for MRFs with “inconvenient” potentials. It con-
stitutes a mixture model over all possible spanning trees of
the complete graph over the nodeset V . A prior distribution
over spanning tree structures T is defined as

pβ(T ) =
1

Zβ

∏

euv∈T
βuv (3)

where each parameter βuv = βvu ≥ 0, for all u 6= v,
u, v ∈ V can be interpreted as a weight for edge euv , di-
rectly proportional to the probability of appearance of that
edge.

Zβ =
∑
T

∏
euv∈T βuv is a normalizing constant, ensuring

that the prior constitutes a valid probability distribution. It
turns out that Zβ can be efficiently computed. Defining the
matrix Q(β) as the first d − 1 rows and columns of the
Laplacian matrix

Luv =

{
−βuv if u 6= v,∑

k βuk if u = v
(4)

Meilă and Jaakkola (2006) generalize Kirchhoff’s Matrix-
Tree theorem for binary weights and show that

Zβ =
∑

T

∏

euv∈T
βuv = |Q(β)|. (5)

This result makes the averaging over all possible (dd−2)
spanning tree structures computationally tractable.

Assuming a prior tree structure T , the conditional distribu-
tion of a data sample x can be expressed as

p(x|T,θ) =
∏

v∈V
θv(xv)

∏

euv∈T

θuv(xu, xv)

θu(xu)θv(xv)
(6)

where the parameter vector θ consists of univariate θv(xv)
and bivariate θuv(xu, xv) marginal densities defined, re-
spectively, over the nodes and the edges of the tree (Meilă
and Jaakkola, 2006). These distributions are assumed in-
variant for all tree structures.

Finally, after introducing the notation

wuv(x) =
θuv(xu, xv)

θu(xu)θv(xv)
, w0(x) =

∏
v∈V θv(xv) and

applying twice the generalized Matrix-Tree theorem we
have

pβ(x) =
∑

T

pβ(T )p(x|T,θ)

=
w0(x)

Zβ

∑

T

∏

euv∈T
βuvwuv(x)

= w0(x)
|Q(β ⊗w(x))|
|Q(β)| (7)

where the symbol ⊗ denotes element-wise multiplication.

The structure learning task in the ET model can be approx-
imated by an empirical estimation of β, as in (Lin et al.,
2009), where β is used to approximate the MRF adjacency
matrix: non-zero entries βuv correspond to edges in the
graph. In our model, we adopt this interpretation of β.

3.1 ET MODELS WITH DISCONNECTED
SUPPORT GRAPH

A mixture model over spanning trees is based on the im-
plicit assumption that the support graph of the model is
connected. The support graph is a graph that contains ex-
actly the edges corresponding to positive entries in β. The
case of disconnected support graphs is considered by Meilă
and Jaakkola (2006) only for a priori defined connected
components. That is, certain patterns of zero entries in
the parameter set β predefine a partitioning of nodes into
different connected components and these assignments to
components cannot be changed e.g. during the course of a
structure learning procedure. In this case, each connected
component can be treated independently from all others.
Assuming k connected components that partition V into
{V 1, . . . , V k} and introducing the notation

βV i = {βuv, u 6= v, u, v ∈ V i}

equation (7) is generalized as

pβ(x) = w0(x)

∏k
i=1 |Q(βV i ⊗wV i(x))|
∏k
i=1 |Q(βV i)|

(8)

4 ENSEMBLE-OF-FORESTS MODELS

Here we introduce the main contribution of our work, that
is the ensemble-of-forests (EF) model. This model con-
stitutes an approximate inference approach for structure
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learning of MRFs with multiple connected components that
are not known a priori. We assume a nodeset V of size d
and a partition thereof V = {V 1, . . . , V k}. Then, a maxi-
mal forest or forest of size k is a collection of spanning trees
{T i}i=1,...,k, one for each V i. Extending the ensemble-of-
trees model, we introduce a mixture model over all possible
forests up to a certain size, i.e. allowing for disconnected
structures with a maximal number of k connected compo-
nents. The limiting cases are k = 1, corresponding to the
ET model, and k = d, corresponding to a model that allows
for any possible arrangement of connected components.

The prior probability of a collection of spanning treesF :=
{T 1, . . . , T k} is defined as

pβ(F) =
1

Zβ

∏

T i∈F

∏

euv∈T i
βuv (9)

where βuv = βvu ≥ 0, for all u 6= v, u, v ∈ V . Now, in
order to normalize over all possible forests that consist of
at most k connected components, the partition function is
computed via

Zβ =
∑

V∈part(V)

∑

F∈f(V)

∏

T i∈F

∏

euv∈T i
βuv

=
∑

V∈part(V)

∏

V i∈V
|Q(βV i)| (10)

where the outer summation
∑

V∈part(V) is performed over
all possible partitions of V into k subsets and the inner sum-
mation

∑
F∈f(V) is performed over all maximal forests de-

fined on a specific node partition V. Partitions where some
of the subsets V i are empty are allowed and correspond to
graphs with less than k connected components. For exam-
ple, the partition {V, ∅, . . . , ∅} represents a fully connected
graph. In order to treat such partitions without changing
our notation, we define Q(β∅) = 1.

Ignoring the constant term w0(x), the nega-
tive log-likelihood of the model given a dataset
D = {x(1), . . . , x(N)} is written as

L(D ;β) = N log
∑

V∈part(V)

∏

V i∈V
|Q(βV i)|

−
N∑

j=1

log
∑

V∈part(V)

∏

V i∈V
|Q(βw

(j)
V i )| (11)

where βw(j)
V i is a shorthand for βV i ⊗wV i(x

(j)).

5 LEARNING IN THE EF MODEL

In this section, we describe two approaches for struc-
ture learning of Markov networks based on the EF model,

namely the EF-cuts and EF-λ methods. Additionally, we
describe common features of the two methods, such as the
choice of MRF potentials and the optimization algorithm
used for minimizing the learning objective.

5.1 SELECTION OF EDGE POTENTIALS

The first step in learning the EF model is concerned with
the choice of the edge potentials wuv(x). Here, we con-
sider continuous distributions as edge potentials. Although
we do not explicitly consider discrete distributions in the
following, we want to emphasize that learning in the EF
model easily extends to this class of potentials. In order to
keep our model as generic as possible, we have chosen to
use copula-based potentials. Note from Equation (2) that
the potentials wuv(x) exactly correspond to bivariate cop-
ula densities. In our analysis, we have used the bivariate
Clayton, Frank, Gumbel, Gaussian and Student’s t copula
as candidate parametric families. These copulas have one
single parameter to be estimated.

In order to fit a single-parameter copula family to data,
we follow a two-step procedure. As a first step, the
marginal cdf for each random variable is estimated in a
non-parametric approach (Kojadinovic and Yan, 2010) and
the obtained estimators, known as pseudo-observations, are
plugged into the copula function. Subsequently, the depen-
dence parameter is computed by maximizing the pseudo-
likelihood

logL(θ) =
n∑

i=1

log c(ûi ;θ) (12)

where Ûi is the vector of estimators for the marginals and
n is the sample size. The best-fitting copula for each vari-
able pair is selected via cross-validation, where the cross-
validation score is based on the pseudo-likelihood of the
left-out samples.

5.2 THE EF-cuts HEURISTIC

Graphs with two connected components constitute an im-
portant subclass of disconnected networks. Even when re-
stricting ourselves to a maximum of two connected com-
ponents, it is computationally prohibitive to use the ex-
act ensemble-of-forests model of Equation (11) for sets
of random variables of non-trivial size due to the super-
exponential number of possible node partitions part(V).
Therefore, we resort to heuristic approaches for choosing
partitions that are most likely to allow us to recover the
true graph structure. For a given parameter configuration
β, we aim to identify a number of high scoring partitions
of the nodeset and then average over these partitions only.

Our heuristic is based on the intuition that edges euv with
small βuv are assigned a low prior probability and, there-
fore, are expected to be most likely not present in the true
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MRF. Therefore, we would like to prioritize partitions gen-
erated by dropping these low-weight edges. Following that
intuition, we derive a scoring system based on systematic
enumeration of minimum cuts.

A cut of a graph G = (V, E) is a partition of V into sub-
sets A, B = V − A. The weight of a cut is the sum of
the weights of all edges crossing the cut. Starting with
the minimum-weight cut, we want to enumerate a ranked
set of graph cuts of increasing weight. An efficient algo-
rithm (Vazirani and Yannakakis, 1992) exists for this task.
In our case, edge weights correspond to the structural pa-
rameters β. Let (A,B) denote a cut and let C denote the
set of M minimum-weight cuts in the graph. Since we are
only considering graphs with at most two connected com-
ponents, a forest F consists of two spanning trees TA, TB .
To simplify our notation, we include the case of connected
graphs as a special case where A = V and B = ∅. This
is a special cut of zero weight and is always included in
C. We perform structure learning by minimizing the neg-
ative log-likelihood of the model with respect to β. The
respective objective is derived from Equation (11) by set-
ting k = 2 and only considering partitions that belong to
the set C. The optimization problem can be formulated as

min
β
N log

∑

(A,B)∈C
|Q(βA)||Q(βB)|

−
N∑

j=1

log
∑

(A,B)∈C
|Q(βw

(j)
A )||Q(βw

(j)
B )|

s.t. βuv ≥ 0 u, v ∈ V, u 6= v. (13)

Let us denote C′ the set of partitions where nodes u, v be-
long to the same connected component. The set of par-
titions where u, v belong to different components has no
contribution to the gradient (∇βf)uv . Without loss of gen-
erality, we will assume that if nodes u, v belong to the
same partition set, then this is set A and the other set is
B = V − A. Then the gradient of the objective (13) fol-
lows as

(∇βf)uv = N

∑
(A,B)∈C′

Muv(βA)|Q(βA)||Q(βB)|
∑

(A,B)∈C′
|Q(βA)||Q(βB)|

−
N∑

j=1

w(j)
uv

∑
(A,B)∈C′

Muv(βA)|Q(βw
(j)
A )||Q(βw

(j)
B )|

∑
(A,B)∈C′

|Q(βw
(j)
A )||Q(βw

(j)
B )|

(14)

where M is defined as in (Meilă and Jaakkola, 2006)

Muv =





Q−1uu +Q−1vv − 2Q−1uv if u 6= v, u 6= w, v 6= w,

Q−1uu if u 6= v, v = w,

Q−1vv if u 6= v, u = w,

0 if u = v.
(15)

With w we denote the index of the row and column that
are removed from the Laplacian matrix of Equation (4) in
order to obtain Q.

The min-cut heuristic is a feasible approximation to struc-
ture learning of MRFs with disconnected topologies. How-
ever, it is practically restricted to graph structures with at
most two connected components. Furthermore, the ap-
proach does not scale with increasing node or sample size
due to the complicated objective and gradient functions.
These considerations limit its applicability to real world
scenarios.

5.3 THE EF-λ HEURISTIC

In the following, we introduce the EF-λ heuristic that
scales well with dimensionality and number of connected
components of the underlying MRF. The starting point
is again equation (11), but now we drop the summation∑

V∈part(V) over possible node partitions. Instead, we
only consider a single partition V. Additionally, we im-
pose an L1 penalty term on the structural parameters β to
encourage sparse solutions. The new optimization task is
expressed as

min
β
N
∑

V i∈V
log |Q(βV i)|−

N∑

j=1

∑

V i∈V
log |Q(βw

(j)
V i )|+λ‖β‖1

s.t. βuv ≥ 0 u, v ∈ V, u 6= v. (16)

An iterative optimization procedure is employed to mini-
mize the objective (16). At each iteration step, summation
is performed over maximal forests defined for the single
node partition V that is induced by the current iterate β.
The number of connected components does not need to be
fixed. The penalty term has the critical role of controlling
sparsity and, thus, allowing structures with multiple con-
nected components to be considered.

A similar L1-regularized approach cannot be employed for
the ET model, because the ET objective is not defined for
all sparsity patterns in β. Therefore, there is effectively no
sparsity induction by an L1 penalty in ET. Furthermore, for
some iterative optimization procedures, numerical instabil-
ities might occur if β is temporarily set to an invalid value.

The gradient of the objective for the EF-λ takes a simple
form. Considering the non-negativity of β, the L1-norm
‖β‖1 is equal to

∑
u,v∈V, u 6=v βuv . Thus, the objective is

differentiable at all points. Assuming that β induces a par-
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titioning of V into {V 1, . . . , V k}, the gradient of the objec-
tive can be expressed as

(∇βf)uv = NMuv(βV i)−
N∑

j=1

w(j)
uvMuv(βw

(j)
V i ) + λ

(17)
for u, v ∈ V i and is equal to 0 otherwise.

The choice of the regularization parameter λ is an impor-
tant aspect of the EF-λ approach. We optimize the EF-λ
objective using different penalty parameters λ = exp(−ρ),
where ρ takes values in the interval [3, 6] with a step of 0.1.
The optimal λ is selected so as to minimize the extended
Bayesian Information Criterion (eBIC) (Foygel and Drton,
2010) defined as

eBIC = 2L+ |E| log n+ 4|E|γ log d (18)

where L is the negative log-likelihood of the model, |E| is
the number of non-zero predicted β entries, n is the sample
size, d is the number of nodes and γ is an additional penalty
term imposed on more complex structures. The classical
Bayesian Information Criterion is obtained as a subcase for
γ = 0. We performed simulations with different values of
γ in the interval [0, 1] and resulted in using γ = 0.5.

5.4 OPTIMIZATION OF THE LEARNING
OBJECTIVE

The objectives (13) and (16) to fit the EF model are non-
convex functions. Therefore, there is no guarantee of con-
vergence to a global optimum and the initial point for op-
timization has to be carefully chosen. Lin et al. (2009)
initialize β with an upper-bound obtained by optimizing
a convex sub-expression of the full objective. Our prelim-
inary experiments confirmed that this method yielded sig-
nificantly better optima than random initializations. There-
fore, we adopted this choice for initialization. As for the
main optimization task, we have used the Spectral Pro-
jected Gradient (SPG) algorithm (Varadhan and Gilbert,
2009), a gradient-based method that allows for simple box
constraints.

6 BENCHMARK ON SIMULATED DATA

In this section, we evaluate the empirical performance of
our proposed EF approximations via comparison to the
ET (Lin et al., 2009) and glasso (Friedman et al., 2008)
algorithms on synthetic Gaussian and non-Gaussian data.
We use the glasso implementation from the R-package
huge (Zhao et al., 2012). The glasso regularization term
is obtained via Stability Approach to Regularization Se-
lection (StARS) (Liu et al., 2010), a criterion based on
variability of the graphs estimated by overlapping subsam-
plings. We employ this criterion, since it achieves the best

performance in our simulations. For the ET and EF ap-
proaches we use Gaussian copula or Student’s t-copula po-
tentials and optimize the corresponding objective via SPG.
For the EF-cuts method, we consider the first 50 minimum-
weight cuts.

6.1 RESULTS ON GAUSSIAN MRF DATA

We first aim at confirming that the EF model achieves com-
parable performance to state-of-the-art methods for MRF
structure learning. To this end, we generated Gaussian
MRF data following the procedure described in (Lin et al.,
2009). The off-diagonal entries of the precision matrix
Ω = Σ−1 are sampled from ±(0.1 + 0.2|n|), where n is
drawn from N ∼ (0, 1). The diagonal entries are selected
via Gershgorin’s circle theorem to ensure that the matrix is
positive definite. Given Ω = Σ−1, data can be easily sam-
pled from a multivariate Gaussian distributionN ∼ (0,Σ).

We first generate random connected graphs of d = 25
nodes with an average of 2 neighbours/node. For a
given graph, we draw 500 samples from the correspond-
ing GMRF distribution and then compare the ability of dif-
ferent methods to retrieve the graph structure when a dif-
ferent sample size is available. Performance metrics for
this setting, obtained from 100 repetitions, are reported in
Figure 2A, while the average runtime for each method is
given in Table 1. We can see that the EF-λ and EF-cuts
approaches have similar accuracy as the ET, as the corre-
sponding Hamming distances to the ground truth (i.e. num-
ber of misclassified edges) are on the same level. Notably,
the number of false positive edges predicted by the EF-λ
method is zero in most cases. Thus, precision is always
very close to one. As a trade-off, recall is limited, espe-
cially for lower sample sizes. When 500 samples are avail-
able, recall reaches levels comparable to the baseline meth-
ods. The EF-cuts method performs very similar to the ET,
while exhibiting a much higher runtime. The reported run-
times for EF-λ and glasso correspond to a complete run
with 32 λ-values. The runtime for glasso is not dependent
on the sample size and is mostly consumed for choosing
the optimal λ. On the other hand, the runtime for EF-λ in-
creases with sample size. However, we argue that the added
runtime constitutes a reasonable trade-off for achieving su-
perior structure learning performance.

Table 1: Average runtime (in seconds) for the experiments pre-
sented in Figure 2. For EF-λ and glasso the reported runtime
corresponds to a complete run with 32 λ-values and choice of the
optimal λ.

Sample Size: 25 50 100 250 500

ET 6 9 13 28 57
EF-λ 32 39 56 110 188
EF-cuts 1166 2088 3512 8151 14435
glasso 31 31 31 31 31
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(A) (B)

Figure 2: Comparison of the EF-λ, EF-cuts, ET and glasso algorithms on recovering the structure of (A) connected (B) disconnected
sparse GMRFs from different sample sizes. Simulated graphs comprise 25 nodes with 2 neighbours/node on average. The boxplots
contain results from 100 repetitions.

In a next step, we evaluated the performance of the EF
model in a situation where the data is drawn from a Gaus-
sian MRF with multiple connected components. Therefore,
we generated data from GMRFs with no restriction on the
number of connected components. Again, each graph com-
prises d = 25 nodes with an average of 2 neighbours/node.
Performance metrics for this setting, obtained from 100
repetitions, are reported in Figure 2B. We can observe that
the EF-λ approach outperforms the other three in terms of
accuracy, as it achieves the lowest Hamming distance. As
in the one-component setting, the number of false positive
edges predicted by this method is zero in most cases. Thus,
there are no inter-cluster false positive edges (i.e. edges that
are falsely predicted to connect nodes belonging to differ-
ent clusters) and precision is always very close to one. The
recall achieved is inferior to the other methods. However,
as the sample size grows, recall also reaches competitive
levels. Again in this setting, the EF-cuts approach performs
very similar to the original ET method.

We have seen that the EF-cuts method performs very sim-
ilar to the original ET method, but exhibits much higher
runtimes. On the other hand, the EF-λ heuristic performs
very well for both connected and disconnected MRFs and
is additionally faster and more generic than the the EF-cuts.
Thus, we only include EF-λ in the next simulations and re-
fer to it as simply EF.

6.2 RESULTS ON NON-GAUSSIAN MRF DATA

Here we explore the ability to learn the structure of MRFs
with non-Gaussian potentials. The EF, as well as the ET
approach, are applicable for arbitrary potentials and are,
therefore, expected to well adapt to this situation.

We now perform simulations for a Markov network whose
data dependencies are no longer Gaussian. More specifi-

cally, we generate random graphs consisting of 25 nodes
that are organized in small cliques of size 3 or 4. For each
clique we draw data samples of pseudo-observations (Ko-
jadinovic and Yan, 2010) from a Student’s t-copula with
1 degree of freedom. The dependencies among random
variables in each clique are clearly non-Gaussian. Sub-
sequently, we apply the Gaussian quantile function to the
pseudo-observations of each random variable and, thereby,
we obtain data that is marginally normally distributed. In
this setting, we compare the EF approach to the ET, glasso
and, additionally, to the non-paranormal model (npn) of Liu
et al. (2009). The latter utilizes Gaussian copulas for struc-
ture learning. Its implementation is also available via the
R-package huge.

The results of 100 simulations are summarized in the box-
plots of Figure 3.The Hamming distances produced by
the EF approach are considerably smaller than those pro-
duced by competing approaches. Moreover, no false posi-
tive edges are predicted by the EF method. Precision and
also recall are very high. In contrast, the glasso and non-
paranormal methods, that assume Gaussian dependency
structures, achieve limited recall. The ET method produces
higher Hamming distances and also low precision, since
it introduces false positive edges that connect the cliques.
Note that the Hamming distance for this method is almost
equal to the number of inter-cluster false positive edges. In
such a setting, the EF approach performs significantly bet-
ter than all alternative methods since it naturally deals with
t-copula dependencies and disconnected MRF topologies.

6.3 A HIGH-DIMENSIONAL SETTING WITH
VERY LOW SAMPLE SIZE

Here, we explore structure learning on the basis of an ex-
tremely low number of samples from a comparably high
dimensional MRF. This situation commonly arises in many
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Figure 3: Comparison of the EF, ET, glasso and non-paranormal
algorithms on recovering the structure of sparse MRFs with Stu-
dent’s t-copula (df = 1) potentials. Simulated graphs comprise
25 nodes organized in small cliques of size 3 or 4. The boxplots
contain results from 100 repetitions.

real world applications, as for instance in biology where
typically only few observations are available. In this situa-
tion, we do not expect to comprehensively recover the un-
derlying MRF structure. Instead, we aim to maximize the
number of recovered true MRF edges at high precision, i.e.
without accumulating false positive relationships. There-
fore, we generate 50 data samples from an 80-dimensional
GMRF, where each node has on average 3 neighbours. The
ROC curves in Figure 4 compare the performance of the
EF and glasso approaches. We can see that, for very low
sample sizes, the EF method recovers almost a double num-
ber of edges at a tolerance level of 1% FDR. In Table 2 we
present the average runtime for EF and glasso when run
with a single λ value.

Figure 4: Comparison of the EF and glasso algorithms in a high-
dimensional setting (80-node graph) with very low sample size.
ROC curves for different numbers of available data replicates are
presented, averaged over 100 repetitions. The curves are trun-
cated at a tolerance level of 1% FDR.

Table 2: Average runtime (in seconds) for the simulations pre-
sented in Figure 4. Runtime is averaged over repetitions and λ
values.

Sample Size: 10 15 20 25 30 50

EF-λ 107 153 163 182 185 248
glasso < 1 < 1 < 1 < 1 < 1 < 1

7 RESULTS ON MICROARRAY DATA

Here we demonstrate the performance of the EF approach
on a microarray dataset (Wille et al., 2004) from the iso-
prenoid biosynthesis pathways in Arabidopsis thaliana.
Expression levels of 39 genes (variables) are quantified un-
der n = 118 conditions (observations). EF is evaluated
via comparison to glasso (Friedman et al., 2008), the state-
of-the-art algorithm for learning the structure of continuous
MRFs. For the EF analysis, we used the Gaussian, Gumbel,
Clayton, Frank and Student’s t copula as candidate para-
metric families. A summary of the copula selection results
is presented in Table 4, where we can observe that a variety
of different dependency types is present.

For both methods, a decreasing sequence of 40 λ-values
was used. The optimal regularization parameter λ for EF
was obtained via eBIC (Foygel and Drton, 2010), result-
ing in a sparse MRF whose graph structure is depicted in
Figure 5A. On the contrary, the use of information criteria
(eBIC, StARS (Liu et al., 2010)) for glasso yielded very
dense networks, as depicted in Figure 5B. In order to addi-
tionally compare both approaches with respect to results at
similar sparsity levels, we also selected the glasso graph
with the smallest Hamming distance with respect to the
graph learned via EF. To evaluate the performance of the
algorithms, we used a 5-fold cross validation setting and
evaluated the best-fitting model on the basis of the aver-
age per-sample held-out log-likelihood. Results are shown
in Table 3 and demonstrate that the MRF learned via EF
has better cross validation performance. Besides the per-
formance advantage, we note that the sparse structure of
EF model selection enables straightforward interpretation
and further hypothesis generation by domain experts.

(A) (B)

Figure 5: Optimal MRF graph structure recovered via (A) EF, (B)
glasso for the microarray data. The numbering scheme legend is
provided as Supplementary Material.
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Table 3: Average per-sample held-out log-likelihood for the mi-
croarray data.

Log-likelihood Std. error

EF-λ 9.694 0.526
glasso (StARS) 8.522 0.418
glasso (sparse) 8.995 0.455

8 RESULTS ON IMMUNE CELL
PERTURBATION DATA

Finally we apply the EF model to study the occurrence
of MRFs with multiple connected components in a pro-
teomics setting. Specifically, we analyze mass cytome-
try data from human peripheral blood mononuclear cells
(PBMC), essentially representing all immune cells resid-
ing in the blood stream (Bodenmiller et al., 2012). Mass
cytometry allows for proteomic profiling of molecular sig-
naling events at single-cell resolution. The considered pub-
licly available dataset recapitulates the response of PBMC
populations to various molecular stimuli under several dif-
ferent pharmacological interventions. Signaling response
has been measured by quantifying 14 phosphorylation sites
(variables). For each intervention and cell type, 96 condi-
tions were considered, where a condition consisted of an
intervention strength setting and a specific stimulus.

Here we present results for interventions with the drug
dasatinib. Again we observe the occurrence of a variety
of non-Gaussian dependencies in this real world dataset
(Table 4). We evaluate the performance of EF by com-
paring it to glasso, as we did for the microarray data. The
average held-out log-likelihood per dataset is reported in
the boxplots of Figure 6A. Different PBMC datasets are
grouped together according to the stimulus used in each
experiment. We can see that EF achieves constantly supe-
rior performance. Furthermore, in Figure 6B, separate his-
tograms of the number of connected components for each
stimulus are presented. For specific stimuli, MRF topolo-
gies with multiple components are common, reflecting the
molecular impact of the intervention on the respective cel-
lular signaling event. The EF approach is able to adapt
to and recover underlying disconnected topologies even in
the presence of unusual dependencies and, thus, we expect
this approach to enable the probabilistic characterization of
cellular signaling events and, thus, to enable molecular in-
sights of possibly pathologically altered responses and to
generate hypotheses for clinical interventions.

9 DISCUSSION

We have introduced the ensemble-of-forests model to ap-
proximate structure learning for MRFs with arbitrary po-
tentials and connected components. Additionally, we have

Table 4: Frequencies of selected copula families during the anal-
ysis of plant microarray and PBMC mass cytometry data.

Gumbel Frank Clayton Gaussian t (df=1)

Micro. 0.28 0.06 0.13 0.51 0.02
PBMC 0.20 0.06 0.35 0.23 0.16

(A) (B)

Figure 6: (A) Comparison of the EF and glasso algorithms. Box-
plots of average held-out log-likelihood for different cell-type /
stimulus combinations. (B) Histograms of the number of MRF
connected components predicted by EF when applied to PBMC
mass cytometry data. Separate histograms are given for each stim-
ulus, indicated on the x-axis. Frequencies on the y-axis are nor-
malized to sum up to 1 for each stimulus.

presented two approximate inference techniques for this
model and compared their structure learning performance
with state-of-the-art methods on a comprehensive set of
synthetic data.

ET and EF models are appealing structure learning ap-
proaches when unusual MRF potentials are to be expected.
Indeed, our simulation results confirm that the EF method
can accurately reconstruct non-Gaussian dependencies that
are a priori accounted for.

Disconnected dependency structures frequently arise in
real world applications. However, the ET model is con-
ceptually not able to handle such cases. We have extended
the ET to the EF model to the end of accommodating
multiple-component situations. Our simulation results con-
firm that we are able to faithfully recover MRF topologies
with one as well as with multiple connected components.
The study of the plant microarray and PBMC mass cytom-
etry data furthermore confirms the ubiquitous occurrence
of the multiple-component situation in cell biology and fur-
ther emphasizes the need for structure learning approaches
that are able to deal with this situation.

We also assessed how the EF model performs for limited
sample size, again a typical case for real world applications.
Our approach seems ideal for low-sample situations, where
we aim to maximize the number of recovered true MRF
edges at high precision.

In summary, we expect the EF model to enable MRF struc-
ture learning for many real world applications since this
approach naturally deals with low sample size, unusual de-
pendency types and disconnected dependency topologies.
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Abstract

The BDI architecture, where agents are modelled
based on their beliefs, desires and intentions, pro-
vides a practical approach to develop large scale
systems. However, it is not well suited to model
complex Supervisory Control And Data Acquisi-
tion (SCADA) systems pervaded by uncertainty.
In this paper we address this issue by extending
the operational semantics of CAN(PLAN) into
CAN(PLAN)+. We start by modelling the beliefs
of an agent as a set of epistemic states where each
state, possibly using a different representation,
models part of the agent’s beliefs. These epis-
temic states are stratified to make them commen-
surable and to reason about the uncertain beliefs
of the agent. The syntax and semantics of a BDI
agent are extended accordingly and we identify
fragments with computationally efficient seman-
tics. Finally, we examine how primitive actions
are affected by uncertainty and we define an ap-
propriate form of lookahead planning.

1 INTRODUCTION

SCADA (Supervisory Control And Data Acquisition)
systems are known for their large scale processes in
a wide variety of domains, including production pro-
cesses [Zhi et al., 2000] and energy and transportation sys-
tems [Boyer, 2009]. One way of modelling such systems is
by means of the BDI architecture [Bratman, 1987] which
allows us to decompose a complex system into a set of
autonomous and interacting agents, where an agent is de-
fined by its (B)eliefs, (D)esires and (I)ntentions. Agent-
based programming languages based on the BDI frame-
work have been proposed [Ingrand et al., 1992, Rao, 1996,
Dastani, 2008] and have been used to some extent to model
SCADA systems (e.g. [McArthur et al., 2007]).

However, current BDI implementations are not well-suited
to model the next generation of complex SCADA systems.

The reason for this is two-fold. On the one hand, current
BDI implementations are not able to deal with uncertainty
associated with the beliefs of an agent (e.g. due to noisy
sensing) or the uncertain effects of actions (e.g. due to ac-
tuator malfunctions). This limits the ability of a BDI agent
to react in a satisfactory way in an uncertain environment.
On the other hand, and closely related, is that most BDI
implementations do not provide any mechanisms for looka-
head planning to guide (part of) the BDI execution in this
uncertain setting.

(1) (2)
(3)

Figure 1: Scenario for a train agent with an unreliable sig-
nal (1), a dangerous junction (2) and a goal station (3).

To illustrate these issues, consider the running example in
Figure 1. A train agent is moving along a track with a sig-
nal (1). The signal, which is green or orange, informs the
agent if it violates the safe distance (with uncertainty due
to e.g. mist, conflicting signals . . . ). Once the agent has
passed the signal, the agent decides on how to approach
the junction (2). The speed of the train is not known ex-
actly, yet the agent needs to decide whether it wants to keep
speeding (as it is running late) or slow down (resp. 75%
and 50% chance of reaching the junction in time). Once
at the junction, the action to take the junction only has
a 30% chance of succeeding when speeding (e.g. due to
derailment). Otherwise, the junction can safely be taken.
For simplicity, the station is reached on time only when the
junction is safely taken. Clearly, an agent should be able to
reason about the uncertainty and be able to plan ahead, e.g.
foresee that slowing down is the best action.

Not a lot of work in the literature on BDI tackled the
problem of representing, and reasoning about, uncertain
information. A notable exception is the recent work
in [Chen et al., 2013], which incorporates uncertain per-
ceptions in the epistemic state of an agent after which
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it is mapped to a classical belief base, thus ignoring
the other information. The work on graded BDI sys-
tems [Casali et al., 2005, Casali et al., 2011] similarly dis-
cusses how uncertainty can pervade the beliefs, desires and
intentions. However, the graded BDI framework is mainly
of theoretical interest and has not led to actual implemen-
tations, contrary to how AgentSpeak and CAN have helped
to advance the state-of-the-art in BDI implementations.

Planning in a BDI agent, where the agent reflects on
its actions before executing them, has been considered
in numerous works. While the BDI model does not
prevent planning, most BDI implementations resort to
simple plan selection strategies to avoid the computa-
tional cost associated with declarative planning. This pre-
vents them from acting optimally when needed, e.g. when
important resources are consumed during the execution
of plans. A formal approach to planning in BDI,
called CANPLAN, was presented in [Sardiña et al., 2006].
CANPLAN is based on the Conceptual Agent Notation
(CAN) [Winikoff et al., 2002], a high-level agent language
in the spirit of BDI [Rao and Georgeff, 1991]. It is closely
related to AgentSpeak [Rao, 1996] but allows for declara-
tive goals alongside procedural steps (i.e. we can state what
we want to achieve, not just how to achieve it). CANPLAN
extends this work by introducing a Plan(·) action, making
planning on-demand an integral part of the BDI framework.
Nevertheless, none of the approaches to BDI address the
issues that arise when dealing with actions with uncertain
effects, or uncertain beliefs in general.

In this paper we propose the CAN+ and CANPLAN+ frame-
works, which extend CAN and CANPLAN to provide for-
mal approaches for dealing with uncertain beliefs and
(planning for) actions with uncertain effects. The beliefs of
an agent are modelled as a set of epistemic states, with each
local epistemic state representing a distinct part of the be-
liefs held by the agent. Each epistemic state can deal with a
different form of uncertainty (e.g. possibilities or infinites-
imal probabilities) and includes its own revision strategy.
Such a set of local epistemic states will be called a Global
Uncertain Belief set (GUB) and allows the agent to rea-
son about different forms of uncertainty in a uniform way,
as long as these can be expressed using epistemic states
that are equivalent to Definition 1. This is achieved in two
steps. Firstly, a stratification of each local epistemic state
allows for commensurability, along with the ability to rea-
son about the uncertain beliefs. In other words: it enables
an agent to reason about those beliefs it currently does not
assume to be true (in the sense of beliefs in classical log-
ics). Nevertheless, an agent commonly still considers some
outcomes to be more plausible than others. The agent thus
gains the ability to reflect on its own uncertainty. Secondly,
an agent will be able to revise a GUB directly, with the
GUB ensuring that only the information relevant to a spe-
cific local epistemic state is used to revise it. This idea of

a GUB will be introduced in the CAN framework to obtain
CAN+. CANPLAN+ further extends upon it by adding the
ability to execute and plan for non-deterministic actions, all
while dealing with uncertain beliefs.

The remainder of this paper is organised as follows. Some
preliminary notions are discussed in Section 2. We explore
how we can efficiently model and reason about uncertain
beliefs in Section 3, where we introduce the idea of epis-
temic states and how they can be applied in a BDI setting.
In Section 4 we extend CAN to enable us to deal with un-
certain beliefs, while uncertain actions and planning under
uncertainty are addressed in Section 5. Related work is dis-
cussed in Section 6 and conclusions are drawn in Section 7.

2 PRELIMINARIES

An agent in the BDI framework is defined by its beliefs,
desires and intentions. The beliefs encode the agent’s un-
derstanding of the environment, the desires are those goals
that an agent would like to accomplish and the intentions
those desires that the agent has chosen to act upon.

CAN, and its extension CANPLAN, formalise the behaviour
of a classical BDI agent, which is defined by a belief base
B and a plan library Π. The belief base of an agent is a
set of formulas over some logical language that supports
entailment (i.e. B |= b, b a belief), belief addition and be-
lief deletion (resp. B ∪ {b} and B \ {b}). The plan library
is a set of plans of the form e : ψ ← P where e is an
event, ψ is the context and P is a plan body. Events can
either be external (i.e. from the environment in which the
agent is operating) or internal (i.e. sub-goals that the agent
itself tries to accomplish). The plan body P is applicable
to handle the event e when B |= ψ, i.e. the context evalu-
ates to true. The event and context differ in that the context
is lazily evaluated; it is checked right before the execution
of the plan body. The language used in the plan body P is
defined in Backus-Naur Form (BNF) as:

P ::= nil | +b | −b | act | ?φ | !e | P1;P2 | P1 ‖ P2 |
P1 . P2 | (|∆|) | Goal(φs, P, φf ) | Plan(P )

with nil an empty or completed program, +b and −b be-
lief addition and deletion, act a primitive action, ?φ a test
for φ in the belief base, and !e a subgoal, i.e. an (internal)
event. Actions, tests and subgoals can fail, e.g. when the
preconditions are not met. Composition is possible through
P1;P2 for sequencing, P1 ‖ P2 for parallelism (i.e. a non-
deterministic ordering) and P1 . P2 to execute P2 only on
failure of P1. (|∆|) is used to denote a set of guarded plans,
with ∆ of the form ψ1 :P1, ..., ψn :Pn, which intuitively
states that the plan body Pi is guarded by the context ψi,
i.e. the context needs to be true to execute the plan body.
The plan form Goal(φs, P, φf ) is a distinguishing feature
of CAN that allows to model both declarative and procedu-
ral goals. It states that we should achieve the (declarative)
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goal φs using the (procedural) plan P , where the goal fails
if φf becomes true during the execution. CANPLAN fur-
thermore introduces the Plan(P ) construct, which is used
for offline lookahead planning. This construct will be dis-
cussed in more detail in Section 5.

The operational semantics of CANPLAN are defined in
terms of configurations. A basic configuration is a tuple
〈B,A, P 〉 with B a belief base,A the sequence of primitive
actions that have been executed so far and P the remainder
of the plan body to be executed (i.e. the current intention).
An agent (configuration) is a tuple 〈N ,D,Π,B,A,Γ〉 with
N the name of the agent, D the action description li-
brary, Π the plan library, Γ the set of current intentions
of the agent and B and A as before. For each action act
the action description library contains a rule of the form
act : ψ ← φ−;φ+. We have that ψ is the precondition,
while φ− and φ+ denote respectively a delete and add set
of belief atoms, i.e. propositional atoms.

A transition relation −→ on (both types of) configura-
tions is defined by a set of derivation rules. A transition
C −→ C ′ denotes a single step execution from C yielding
C ′. We write C −→ to state there exists a C ′ such that
C −→ C ′ and C 6−→ otherwise. We use ∗−→ to denote the
transitive closure over −→. A derivation rule consists of a
(possibly empty) set of premises pi and a single transition
conclusion c. Such a derivation rule is denoted as

p1 p2 . . . pn
lc

with l a label attached to the derivation rule for easy ref-
erence. Transitions over basic configurations (resp. agent
configurations) define what it means to execute a single in-
tention (resp. the agent as a whole). For example, the tran-
sition for belief addition and a primitive action are:

+b〈B,A,+b〉 −→ 〈B ∪ {b} ,A, nil〉
(a : ψ ← φ−;φ+) ∈ D aθ = act B |= ψθ

act〈B,A, act〉 −→ 〈(B \ φ−θ) ∪ φ+θ,A · act, nil〉
where the latter states that when the unified precondi-
tion ψθ is true in the belief base B, the effect of the action is
the application of the add and delete atom lists to the belief
base. We refer the reader to [Sardiña and Padgham, 2011]
for a full overview of the semantics of CANPLAN.

Finally, a preorder ≤A defined on any set A is a reflexive
and transitive relation over A×A. We say that ≤A is total
iff for all a, b ∈ A we have that either a ≤A b or b ≤A
a. A strict order <A and an indifference relation =A can
conventionally be induced from ≤A.

3 MODELLING AND REASONING
ABOUT UNCERTAIN BELIEFS

As discussed in Section 2, a belief base in CAN is de-
fined over a logic for which operations are available to add,

delete and entail beliefs. This classical setting allows for
an easy approach to belief revision. However in this pa-
per we are concerned with the modelling of, and reasoning
over, uncertain information. To deal with uncertainty we
will need more elaborate ways to both represent the beliefs
and to revise the beliefs when new information becomes
available. To this end, we will use epistemic states instead
of a belief base as in CAN.

3.1 MODELLING UNCERTAIN BELIEFS AS
EPISTEMIC STATES

To define epistemic states, we first start by considering a fi-
nite set At of propositional atoms. For a set of atoms A ⊆
Atwe define the set of literals that can be constructed using
the atoms in A as lit(A) = {a | a ∈ A} ∪ {¬a | a ∈ A}.
A proposition φ is defined in BNF as φ ::= a | ¬a |
(φ1 ∧ φ2) | (φ1 ∨ φ2), i.e. all propositions are in Negation
Normal Form (NNF). This does not affect the expressive-
ness of our language as arbitrary formulas can be efficiently
converted into NNF. It will, however, make the definition
of our semantics easier. We will denote this language as L.
Now we introduce the concept of an epistemic state:

Definition 1. (from [Ma and Liu, 2011]) Let Ω be a set
of possible worlds. An epistemic state is a mapping
Φ : Ω→ Z ∪ {−∞,+∞}.

An epistemic state will be used to represent the mental
state of an agent, where the value Φ(ω) associated with
a possible world ω, called the weight of ω, is understood
as the degree of belief in the possible world ω. Through-
out the paper we will denote epistemic states using capi-
tal Greek letters. For ω, ω′ ∈ Ω and Φ(ω) > Φ(ω′) the
intuition is that ω is more plausible than ω′. Two epis-
temic states Φ and Ψ are semantically equivalent iff
∃k ∈ Z · ∀ω ∈ Ω : Φ(ω) = Ψ(ω) + k, i.e. the value asso-
ciated with the possible worlds only has a relative meaning.
In the remainder of this paper we assume that epistemic
states have 2A as their domain with A ⊆ At. The strength
of preference on a propositional formula φ is defined as
Φ(φ) − Φ(¬φ) with Φ(φ) = maxω|=φ(Φ(ω)). We use
maxΦ to denote maxΦ = max

ω∈Ω
(Φ(ω))−min

ω∈Ω
(Φ(ω)) + 1,

i.e. the weight stronger than any of the strengths associated
with information in Φ, and minΦ = 1−maxΦ .1 The val-
ues maxΦ and minΦ are only needed in Section 4 when
considering belief additions and deletions as in CAN.

Before we provide an example, it is important to clar-
ify that the definition of an epistemic state from Defi-
nition 1 allows for the construction of a general frame-
work. Indeed, this definition does not impose any restric-
tions on the values associated with the possible worlds,
other than that they are weights. As such, it is the

1These values only change when the epistemic state is revised
and can be computed as a by-product of revision.
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most general way in which we can talk about an epis-
temic state, regardless of the actual representation. Other
representations for epistemic states, which attach more
specific meaning to the values, have been shown to be
equivalent to the one from Definition 1. For exam-
ple, Definition 1 induces an Ordinal Conditional Func-
tion (OCF) [Spohn, 1988]2, which in turn can be trans-
formed into other representations, e.g. those based on in-
finitesimal probabilities [Darwiche and Goldszmidt, 1994]
and possibility theory [Dubois and Prade, 1995]. The rep-
resentation from Definition 1 can thus be instantiated us-
ing any of the other representations to best suit the nature
of the uncertainty. After developing all main concepts, we
will show in Section 4 that this will allow us to work with
these different forms of uncertainty in a uniform way.

We now give an example of such an epistemic state.

Example 1. Consider a signal that can be (o)range or
(g)reen (but never both on). When the signal is orange it
usually indicates that the agent is about to violate the safe
distance (sd). The agent believes that the light is green
and that there is still a safe distance with the train in front.
Even when the signal would turn out not to be green, the
agent still believes that there would be a safe distance with
the train in front of it. An epistemic state Φ could be:

Φ({o, g, sd}) = −∞ Φ({¬o, g, sd}) = 10

Φ({o, g,¬sd}) = −∞ Φ({¬o, g,¬sd}) = −2

Φ({o,¬g, sd}) = 7 Φ({¬o,¬g, sd}) = 7

Φ({o,¬g,¬sd}) = 6 Φ({¬o,¬g,¬sd}) = −2

where maxΦ = +∞ and minΦ = −∞. The weight as-
sociated with e.g. {o, g, sd} means that we strongly disbe-
lieve this possible world, while the weight associated with
{¬o, g, sd} implies that we believe this possible world to
be more plausible than any of the other possible worlds.

The belief set, i.e. the sentences that an agent is committed
to believe, is commonly defined as the set that has all the
most plausible worlds as its models.

Definition 2. (from [Ma and Liu, 2011]) Let Φ be an epis-
temic state. The belief set of Φ, denoted as Bel(Φ), is
defined as Bel(Φ) = φ with φ any propositional formula
such that Mod(φ) = min(Ω,≤Φ). Here Mod(φ) is the set
of models of φ and ≤Φ is a total preorder relation over Ω
such that ω ≤Φ ω′ iff Φ(ω) ≥ Φ(ω′).

The model of the belief set thus only contains those possi-
ble worlds with the highest weight. In this paper we extend
on this idea by also taking the other possible worlds into
account. These other possible worlds constitute the uncer-
tain information, i.e. they define the preferences the agent
has over the outcomes that are currently not believed to be
true.

2Compared to OCFs, the representation from Definition 1
avoids the normalisation step.

To clearly identify these preferences, irrespective of the ac-
tual values of these weights in different representations of
the epistemic states, we consider a stratification of the set
of possible worlds. The highest stratum (containing those
possible worlds with the strongest associated belief) corre-
sponds to the set of models of the belief set, i.e. that what
the agent believes to be true. The other strata constitute the
uncertain information, with information in a higher stratum
believed/preferred over information in a lower stratum.

Definition 3. Let Φ be an epistemic state. The stratification
λ of the domain Ω from Φ induced by the total preorder
relation ≤Φ is defined as:

λ(ω) =

{
1 ω ∈ min(Ω,≤Φ)

n+ 1 ω ∈ min(Ω \ {ω | λ(ω) ≤ n} ,≤Φ)

In Example 1 we obtain λ({¬o, g, sd}) = 1,
λ({o,¬g, sd}) = λ({¬o,¬g, sd}) = 2, etc. This
idea of a stratification readily corresponds with the more
common notion of a stratification over propositional
formulas as any subset of possible worlds can trivially be
represented by a single propositional formula.

Notice that the models of the belief set (see Definition 2)
correspond to those possible worlds ω for which λ(ω) = 1,
i.e. information on all the other strata is ignored. Instead
of simply ignoring this information, we want to make it
possible for a BDI agent to reason about the preferences
expressed throughout the stratification. To this end we ex-
tend the language L with the connectives ≥ and >. The
intuition of a ≥ b (resp. a > b) is that the agent believes a
to be at least as plausible as b (resp. a is strictly more plau-
sible than b). These new connectives are taken to have the
lowest precedence. The resulting language L≥, or the con-
text language, can be defined in BNF as:

φ ::= a | ¬a | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ≥ φ2 | φ1 > φ2

where formulas with connectives such as → and ↔ can
easily be transformed into logically equivalent statements
in the language L≥. Notice that this definition is the equiv-
alent of NNF for propositional formulas. Any proposition
using the connectives ¬, ∧, ∨, ≥ and > can be turned
into an equivalent formula in L≥ in the usual way and by
rewriting ¬(ψ1 ≥ ψ2) as (ψ2 > ψ1) and ¬(ψ1 > ψ2)
as (ψ2 ≥ ψ1). We assume that this has been done when
needed throughout paper.

By extending the mapping λ we can define the semantics
of L≥ over arbitrary formulas. We have:

λ(φ) =

{
min {λ(ω) | ω |= φ} if φ ∈ L
λ(pare(φ)) otherwise

with min(∅) = ∞. Before defining the function
pare, we point out that λ is closely related to a pos-
sibility measure [Dubois et al., 1994] for propositional
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formulas φ, ψ ∈ L. We readily establish some inter-
esting properties such as λ(φ ∨ ψ) = min(λ(φ), λ(ψ)),
λ(φ ∧ ψ) ≥ max(λ(φ), λ(ψ)), λ(>) = 1, λ(⊥) = ∞ and
min(λ(φ), λ(¬φ)) = 1.

When φ is not a propositional statement (i.e. φ 6∈ L), we
need to pare down the formula until the formula is a classi-
cal propositional statement. This is done by:

pare(φ ∧ ψ) = check(φ) ∧ check(ψ)

pare(φ ∨ ψ) = check(φ) ∨ check(ψ)

pare(φ ≥ ψ) =

{
> if λ(¬φ) ≥ λ(¬ψ)

⊥ otherwise

check(φ) =

{
φ if φ ∈ L
pare(φ) otherwise

with pare(φ > ψ) equivalently defined as pare(φ ≥ ψ).
The intuition of paring down is straightforward: for each
operand of the operators ∧ and ∨ we verify whether it is
an expression in the language L (for which the λ-value can
readily be determined). Otherwise, we need to further pare
it down. When the operator is ≥ or >, we define it as a
plausibility ordering with an expression such as φ > ψ read
as “φ is more plausible than ψ” or, alternatively, “we have
less reason to believe ¬φ than ¬ψ”.3 Such an expression
can always be evaluated to true or false, i.e. > or ⊥.

Finally, we can define when a formula φ is entailed.
Definition 4. Let Φ be an epistemic state and φ a formula
in L≥. We say that φ is entailed by Φ, written as Φ |= φ, if
and only if λ(φ) < λ(¬φ).
Example 2. Consider λ of Φ from Example 1. We have:

λ(g ∧ sd) = 1 λ(o ∧ sd) = 2 λ(g ∧ ¬g) =∞
λ((o ∨ g) > ¬sd) = 1 λ(g ≥ o) = 1 λ(o ≥ g) =∞
For example, λ(g ∧ sd) = 1 since λ{¬o, g, sd} = 1
and {¬o, g, sd} |= g ∧ sd. An expression such as
(o ∨ g) > ¬sd, which is also believed to be true, states that
the agent does not care about the colour of the light as long
as the agent is not violating the safe distance.

Note that in Definition 4 it is insufficient to state that a for-
mula is entailed when λ(ψ) = 1. Indeed, for a ∈ At we
can have that λ(a) = λ(¬a) = 1, which occurs when we
are ignorant about the value of a. As such, we need to en-
sure that both expressions are mapped onto strictly distinct
strata. This notion of entailment (assuming ψ ∈ L) corre-
sponds exactly to those formulas that can be derived from
the belief base Bel(Φ).
Proposition 1. Let φ ∈ L be a propositional formula, Φ an
epistemic state with domain Ω and λ the stratification of Ω.
We have that Φ |= φ iff for all ω ∈ Ω such that λ(ω) = 1
we have that ω |= φ, i.e. Bel(Φ) |= φ.

3In terms of possibilistic theory: we want N(φ) ≥ N(ψ),
i.e. we want Π(¬φ) ≤ Π(¬ψ) (with λ a reversed order).

3.2 SEMANTICS BASED ON LITERAL MAPPING

While the semantics we presented thus far allows us to rea-
son about the uncertain information, they are computation-
ally expensive for evaluating a context because they rely
on an exponential structure. A tractable way to evaluate
contexts can be obtained by restricting ourselves to a frag-
ment of the languageL≥, allowing us to determine the truth
of a context based on the λ-value associated with the con-
stituent literals.

Example 3. Consider the stratification λ of Φ from Ex-
ample 1. We have λ(o) = 2, λ(¬o) = 1, λ(g) = 1,
λ(¬g) = 2, λ(sd) = 1 and λ(¬sd) = 3.

Due to the way we defined λ over arbitrary formu-
las, we know that λ(φ ∨ ψ) is decomposable, while
λ(φ ∧ ψ) is not. Indeed, recall that we only have that
λ(φ ∧ ψ) ≥ max(λ(φ), λ(ψ)). Therefore, we cannot al-
low∧ in our restricted language. Furthermore, it affects our
ability to verify whether for a given expression ψ we have
that λ(ψ) < λ(¬ψ). Indeed, we can only allow disjunction
as part of an operand of the operators ≥ or > as otherwise
its negation would turn it into a conjunction, which we do
not allow. As such, we obtain the fragment L≥, defined in
BNF as:

d ::= a | ¬a | d1 ∨ d2 φ ::= a | ¬a | d1 ≥ d2 | d1 > d2

Contexts in this language can easily be evaluated, once we
have the λ-values of the literals lit(A):

λ(φ ∨ ψ) = min(λ(φ), λ(ψ))

λ(φ ≥ ψ) =

{
1 λ(¬φ) ≥ λ(¬ψ)

∞ otherwise

and equivalently for λ(φ > ψ). As before, we say that φ is
true iff λ(φ) < λ(¬φ). Even though enforcing tractability
carries a penalty in terms of the expressive power, we still
retain a language that takes advantage of the new connec-
tives we have introduced, thus allowing us to reason over
the plausibility of statements.

3.3 EFFICIENTLY MODELLING ISOLATED
UNCERTAIN BELIEFS

As a final step in the representation of uncertain beliefs for
a BDI agent, we introduce the concept of a global uncertain
belief set (GUB) which applies to both Section 3.1 and 3.2.

Definition 5. A global uncertain belief set G is a set
{Φ1, ...,Φn} with each Φi an epistemic state over the do-
main Ai ⊆ At such that {A1, ..., An} is a partition of At.

Each local (or isolated) epistemic state models beliefs that
are semantically related, e.g. the colour of the signal or the
condition of the track, and that are governed by the same
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form of uncertainty. A GUB then groups a set of such lo-
cal epistemic states. A GUB is therefore a representation
of the overall beliefs of an agent, yet it differs in three sig-
nificant ways from a global epistemic state. First, it avoids
the exponential representation of a global epistemic state
by partitioning the beliefs. Second, it allows for a general
framework where each local epistemic state can use a dif-
ferent representation. Third, it does not include a revision
strategy (as each local epistemic state can have a distinct
revision strategy), i.e. it is not itself an epistemic state.

Despite these differences, we can use a GUB to determine
if a context φ is true according to the agent’s collective be-
liefs. Intuitively, φ can be evaluated directly if it applies to
a single local epistemic state Φi, i.e. we can verify whether
Φi |= φ. Otherwise, we need to break φ apart up until the
point where we can evaluate it directly. An expression can
be split when the connective is either ∧ or ∨. Since both
operands will either be true or false such a decomposition
is trivial. However, this also implies that we cannot decom-
pose≥ or>, since in this paper we require both operands to
be from the same local epistemic state. Indeed, in general,
stratifications of different formulas in different local epis-
temic states are incomparable due to the varying underlying
structures. The problem of comparing the plausibilities of
different local epistemic states is left for future work.

To formalise this intuition, we use LAi≥ to denote the lan-
guage L≥ limited to atoms a ∈ Ai, i.e. the language corre-
sponding to the epistemic state Φi. A formula φ is broken
apart by (simp)lifying it, which returns the evaluation of φ
by evaluating the operands (or it returns ⊥ if the connec-
tive is ≥ or > and both operands are incomparable). We
can then define valGUB (φ) as:

valGUB (φ) =





> if φ ∈ LAi≥ ,Φi |= φ

⊥ if φ ∈ LAi≥ ,Φi 6|= φ

simp(φ) otherwise

simp(φ ∧ ψ) = valGUB (φ) ∧ valGUB (ψ)

simp(φ ∨ ψ) = valGUB (φ) ∨ valGUB (ψ)

simp(φ ≥ ψ) = ⊥

and simp(φ > ψ) equivalently defined as simp(φ ≥ ψ).

Definition 6. Let G be a GUB and φ a formula in L≥.
We say that φ is entailed by G, written as G |= φ, if and
only if valGUB (φ) ≡ >.

A visual representation of a GUB is given in Figure 2.

4 DEALING WITH UNCERTAIN
BELIEFS IN A BDI AGENT

In the previous section we discussed how the beliefs of an
agent can be represented as a set of local epistemic states.
We also discussed how a GUB, and the underlying strat-
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Figure 2: A GUB models the belief of an agent as a set of epis-
temic states Φi, each having its own representation (Definition 5).
Commensurability is obtained by stratifying the possible worlds,
with each stratum constituting an (uncertain) belief set (Defini-
tion 3). These stratifications can be combined to compute the
λ-value of any arbitrary propositional formula. When new input
is received, the local epistemic states are revised by ignoring (or
forgetting) irrelevant information, as discussed in Section 4.

ification of the local epistemic states, can be used to en-
sure commensurability. In this section, we extend CAN to
CAN+ by adding to it a GUB to represent uncertain be-
liefs and by extending its syntax so that a CAN+ agent can
reason about its uncertain beliefs. After Definition 8, we
introduce how a GUB can be revised directly, thus allow-
ing an agent to revise its beliefs irrespective of the various
forms of uncertainty that govern those beliefs. In our exten-
sion CAN+, a context ψ is taken to be a sentence from the
language L≥. We assume the language for a plan body to
be defined as in CAN, where we will gradually modify the
language throughout this section. First though, we redefine
the concept of configurations in CAN+. Rather than con-
sidering a belief base to model the knowledge, we will thus
use a GUB to represent the uncertain beliefs of the agent.
We have:

Definition 7. A basic configuration is a tuple 〈G,A, P 〉
with G a GUB, A the list of executed actions and P a plan
body being executed (i.e. the current intention). An agent
(configuration) is a tuple 〈N ,D,Π,G,A,Γ〉 with N the
name of the agent, D the action description library (de-
fined in Section 5), Π the plan library, Γ the set of current
intentions of the agent and G and A as before.

With the configurations redefined we can extend the first
set of rules from CAN, i.e. the rule for a test goal (?φ) and
the rule for plan selection (select):

G |= φθ
?φ〈G,A, ?φ〉 −→ 〈G,A, nil〉

ψi :Pi ∈ ∆ G |= ψiθ
select〈G,A, (|∆|)〉 −→ 〈G,A, Piθ . (|∆ \ Pi|)〉

We retain the notation as used in [Sardiña et al., 2006] to
denote unification as e.g. φθ, i.e. variables are dealt with in
the customary way. The modified rules make clear that ver-
ifying whether a belief or context holds is now done against
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the GUB. The language has implicitly been extended in
both cases, since test goals and contexts can now include
statements to reason over uncertain beliefs, i.e. φ, ψi ∈ L≥.

So far we have looked at how we can reason about the
agent’s (uncertain) beliefs, but we also want to revise these
beliefs. When new input is presented (e.g. due to an in-
ternal belief change or the effects of an action), a naive
approach would be to compute the global epistemic state
as the Cartesian product of the local epistemic states, apply
the input and then marginalise the outcome. However, such
an approach is computationally too expensive. Instead, we
will apply the input directly to the relevant epistemic states.
First though, we define the notion of an uncertain belief.

Definition 8. Let φ be a sentence in the language LAin

with Ain ⊆ A. Let µ ∈ (Z ∪ {−∞,+∞}). We say that
b = (φ, µ) is an uncertain belief.

An input b, which is an uncertain belief, corresponds to a
sequence of inputs refine(b,Φi) for any given local epis-
temic state Φi ∈ G. We have:

refine(b,Φi) =

{
forget(b,Φi) Ain ∩Ai 6= ∅
〈〉 otherwise

with forget(b,Φi) a sequence of inputs defined as
〈(m′, µ) | b = (φ, µ),m ∈ Mod(φ),m′ = m ∩ lit(Ai)〉
andm′ in (m′, µ) treated as a conjunction of literals. When
Ain ⊆ Ai we could equivalently take forget(b,Φi) = 〈b〉.
By G ◦ b we denote that we want to revise the cur-
rent beliefs of the agent with the input b, such that
G ◦ b = {Φi ◦ refine(b,Φi) | ∀Φi ∈ G} with ◦ a revision
operator. That is, revising a global uncertain belief
set is taken as revising the local epistemic states with
the given input. Each input (m′, µ) in the sequence
refine(b,Φi) corresponds to a simple epistemic state
from [Ma and Liu, 2011], i.e. to an epistemic state Φin

with the domain 2Ai such that Φin(ω) = µ iff ω |= m′

and Φin(ω) = 0 otherwise. An epistemic state Φ can be
revised by a simple epistemic state Φ′ with the same do-
main Ω, denoted as Φ ◦ Φ′, as ∀ω ∈ Ω, (Φ ◦ Φ′)(ω) =
Φ(ω) + Φ′(ω).4 As such, when the input has been trans-
formed to refine(b,Φi) for a given local epistemic state
Φi, the revision is equivalent to iterated revision using
the simple epistemic states in refine(b,Φi). The final
output of this iterated revision is unique regardless of
the order in which we revise Φi with simple epistemic
states Φin in forget(b,Φi) based on postulates B5 and B6
in [Ma and Liu, 2011] (i.e. weights are cumulative and the
order of updating does not affect the result).

Now we can introduce the ◦b rule to CAN+ for belief
change. The intuition of this new rule is clear; we want to
change the beliefs encoded in the GUB with the uncertain
belief b. We have:

4For other epistemic states these values can be extrapolated.

◦b〈G,A, ◦b〉 −→ 〈G ◦ b,A, nil〉

The rule for belief change can serve as a template to define
the rules for classical belief addition +φ and deletion −φ.
Those rules would become:

+φ〈G,A,+φ〉 −→ 〈G ◦ (φ,maxG),A, nil〉

−φ〈G,A,−φ〉 −→ 〈G ◦ (φ,minG),A, nil〉

with maxG = max {maxΦi | Φi ∈ G} and minG analo-
gously defined. Notice that we transform the formula φ
into an uncertain belief by assigning to it the weight maxG
(minG). This ensures that φ will be true (false) after re-
vision. We can also define belief addition and deletion as
syntactic sugar on top of the belief change semantics. In-
deed, a statement such as +φ is nothing more than a short-
hand for the statement ◦(φ,maxG). Similarly, −φ can be
considered a shorthand for ◦(φ,minG). As we try to keep
the semantics as concise as possible, we opt to define these
operators in the latter way. Such a choice will also need to
be made in the next section, where we will directly present
the approach based on syntactic sugar.

In conclusion, the new language for a plan body in CAN+
is given in BNF as:

P ::= nil | ◦b | act | ?φ | !e | P1;P2 | P1 ‖ P2 |
P1 . P2 | (|∆|) | Goal(φs, P, φf )

with b an uncertain belief and φ, φs, φf ∈ L≥. We also
modified the rules for ?φ and select, while dropping the
rules for +φ and−φ and introducing a new rule for ◦b. The
rules in CAN dealing with program flow do not require any
changes and can be integrally applied to the CAN+ seman-
tics. The rules on declarative goals do need to be modified,
but in a straightforward way similar to ?φ, i.e. we need to
verify φs and φf against G.

5 DEALING WITH UNCERTAIN
ACTIONS IN A BDI AGENT

The primitive actions of a BDI agent are affected by uncer-
tainty in a variety of ways. Usually described in a STRIPS-
like style such as act : ψ ← φ−;φ+, an action act can have
uncertainty in the precondition ψ, uncertainty as to a spe-
cific effect (where the effect will change the epistemic state
and possibly the belief set) or uncertainty as to the outcome
of an action (with a probability for each outcome).

The first form of uncertainty is the easiest to incorporate.
Similar to how the rule select for plan selection allows us
to consider uncertain information, we can take ψ ∈ L≥ and
verify whether this context, or precondition, is satisfied.

Next, φ− and φ+ are usually taken to be delete and add
lists of atoms. Nothing in the semantics for CAN+ prevents
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us from instead considering a list of uncertain beliefs φu

as the results of an action. Not only does this consider-
ably increases the expressive powers of action effects, but
it also allows to define φ− and φ+ as special cases of φu

with each being a list of propositions φ ∈ L to which the
weight minΦ and maxΦ is assigned, respectively. As we
did before, we assume hereafter that φ− and φ+ are forms
of syntactic sugar for which we will not explicitly define
the semantics.

Finally, the effects of an action may not be known in ad-
vance. This form of uncertainty has already been ex-
tensively considered in the literature, leading to varia-
tions of the STRIPS language that consider various out-
comes with associated probabilities. Rather than a sin-
gle outcome φ−;φ+ we consider a set of outcomes{
〈p1, φ

−
1 , φ

+
1 〉, ..., 〈pn, φ−n , φ+

n 〉
}

with
∑n
i=1 pi=1.

By adopting a STRIPS-like probabilistic action library D,
populated by probabilistic action description rules – each
representing a single independent action – we can model
these three forms of uncertainty with rules of the form:

act : ψact ← {〈p1, φ
u
1 〉, ..., 〈pn, φun〉}

such that pi ≥ 0,
∑n
i=1 pi = 1 with ψact an uncertain

belief and φui a list of uncertain beliefs.
Example 4. Consider the running example from the intro-
duction and Figure 1. We can model the actions to slow
down and to continue at the same speed as

slow : true← {〈0.4, [(junc,maxG), (sp,−20)]〉,
〈0.6, [(late,maxG), (sp,−20)]〉}

cont : sd ≥ ¬sd← {〈0.75, [(junc,maxG)]〉,
〈0.25, [(late,maxG)]〉}

The first action can always be applied and has two out-
comes. With 40% chance the junction is reached in time
and with 60% the train is late. In both cases the (sp)eed is
reduced. The second action encodes an agent in a hurry:
the agent will not wait until there is a safe distance, i.e. the
agent continues whenever he thinks it is at least more plau-
sible that there is still a safe distance (or when the agent is
ignorant and doesn’t care).

While we already know how to correctly deal with un-
certain beliefs, we do not yet have the machinery in
the operational semantics to deal with probabilistic ef-
fects. To model a probabilistic action we use the notion
of a probabilistic transition C −→p C ′ where p repre-
sents the transition probability between the configurations
C and C ′ [Di Pierro and Wiklicky, 1998]. Notice that all
the transition rules used thus far are special cases of prob-
abilistic transition rules where the probability of the tran-
sition is 1. As such we assume in CAN+ that all transition
rules are probabilistic transition rules, where the probabil-
ity is 1 unless explicitly specified. The act derivation rule
can then be defined as:

(a : ψ ← effects) ∈ D aθ = act G |= ψθ
act〈G,A, act〉 −→pi 〈G ◦ φui θ,A · act, nil〉

with effects the set {〈p1, φ
u
1 〉, ..., 〈pn, φun〉}. As expected,

the transition will depend on the probabilities of the differ-
ent effects associated with the action act.

Thus far we have only discussed how CAN+, which extends
CAN, adds the ability to model and reason about uncertain
information. A parallel endeavour is to extend CANPLAN
into CANPLAN+. The main difference between CAN and
CANPLAN is the ability of the latter to perform lookahead
planning by means of the Plan(·) action. A similar idea
can be incorporated in CAN+ to arrive at CANPLAN+.

We know from the way we extended the act rule that, dur-
ing the BDI execution, it is the probability of the transition
that determines the effect of a primitive action. Further-
more, when a BDI agent tries to achieve some intention,
this may involve the execution of a large number of plans.
However, merely selecting the plan with the highest prob-
ability of reaching the next state without taking future ac-
tions into account may lead to poor performance. Indeed,
this single step may not be on the same path that offers
the highest overall chance of achieving our goal. Such is-
sues can be addressed by using lookahead planning. During
planning performed through the Plan(·) action we can take
the probability of the different transitions into account and
thus maximise the probability of achieving our intention.

To formalise this idea, we introduce the notion of maximis-
ing the overall transition probability. Intuitively, given two
configurations C and C ′′, there may be more than one op-

tion such that C
plan∗−→ C ′′. When a transition is labelled

with ‘plan’ or ‘bdi’, the transition is resp. only valid in the
planning context or during BDI execution. We want to take

the transition C
plan−→ C ′ such that C ′ is the next configura-

tion on the path which offers us the highest overall chance
of reaching our goal, which we will denote as C max∗−→

C′
C ′′.

Definition 9. Let C and C ′′ be configurations such

that C
plan∗−→ C ′′. Furthermore, let p be such that

p =
∏n
i=0 pi and C

plan−→p1 C ′
plan−→p2 . . .

plan−→pn C ′′.
We say that C max∗−→

C′
C ′′ when there does not exist a

configuration D′ that is different from C ′ in either its
belief base, executed actions or plan body such that

C
plan−→p′1 D′

plan−→p′2 . . .
plan−→p′m C ′′ and p′ > p with

p′ =
∏m
i=0 p

′
i.

In other words: C ′ is the next configuration on the most
probable path to reach C ′′. Using Definition 9 we can ex-
tend the operational semantics of the Plan(·) construct to
take into account that we are dealing with uncertain actions.
In CANPLAN the rule for Plan(·) is as follows:

C
plan−→ C ′ C ′

plan∗−→ C ′′ plan
〈B,A,Plan(P )〉 bdi−→ 〈B′,A′,Plan(P ′)〉
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with the configurations C,C ′ and C ′′ defined as 〈B,A, P 〉,
〈B′,A′, P ′〉 and 〈B′′,A′′, nil〉, respectively. Intuitively,
this rule states that the next action to execute is the one
that, according to our lookahead planning; will eventually
lead us to achieving our goal.

The rule in CANPLAN+ for Plan(·), which not only en-
sures that we reach our goal but also maximises the chances
of reaching our goal, is then defined as:

C
plan−→ C ′ C

max∗−→
C′

C ′′

plan
〈G,A,Plan(P )〉 bdi−→ 〈G′,A′,Plan(P ′)〉

with C, C ′ and C ′′ defined as 〈G,A, P 〉, 〈G′,A′, P ′〉 and
〈G′′,A′′, nil〉, respectively.

Example 5. Consider the running example from Figure 1.
Assume we are at the decision point just after reaching the
signal. An agent that plans ahead for the goal of reaching
the station in time, will make the rational choice to slow
down. If the agent did not perform lookahead planning and
only looked at the highest chance to reach the junction, then
continuing at the same speed would be preferred.

6 RELATED WORK

The BDI framework [Rao and Georgeff, 1991] is notable
for treating beliefs and intentions as two distinct ideas in an
agent-based setting. However, due to the complex tempo-
ral modal logic being used and the assumption of unlimited
resources there was a disconnect between the theory and
implementations based on BDI. This problem was mostly
resolved in [Rao, 1996] where an abstract agent-based lan-
guage, called AgentSpeak, was proposed. This language
was strongly related to the original BDI theory, while be-
ing easily implementable.

CAN [Winikoff et al., 2002] follows up on this approach of
AgentSpeak and provides operational semantics for deal-
ing with declarative goals. Such goals allow more flexi-
bility, e.g. plans can be stopped when the goal is reached
instead of being blindly executed until the end. Declar-
ative goals also make it easier to define semantics for
planning in a BDI setting. Most approaches on plan-
ning [de Silva and Padgham, 2005, Walczak et al., 2006,
Meneguzzi et al., 2007] had been ad-hoc approaches with-
out a semantical background for the integration of plan-
ning in BDI. Such a semantical background was provided
in [Sardiña et al., 2006, Sardiña and Padgham, 2011] with
the introduction of CANPLAN, an extension of CAN with a
Plan(·) action that allows for offline lookahead planning.

Notable work on the integration of uncertainty in a
BDI context has been done in the setting of graded
BDI [Casali et al., 2005]. In graded BDI it is assumed that
the beliefs, desires and intentions have a degree of uncer-
tainty. While of theoretical interest, their framework uses a

complex modal logic axiomatisation which makes it hard to
implement the work directly. Later, in [Criado et al., 2014],
the graded BDI system was further extended to incorporate
norms, i.e. patterns of behaviour that should be adhered to
in given circumstances. These norms are acquired and en-
forced in an uncertain environment. To accommodate this,
norms have an associated salience to reflect their impor-
tance in the given uncertain environment.

Implementations that deal with uncertain percepts in a
BDI setting [Chen et al., 2013] have not been based on
the graded BDI framework but approached the problem
more pragmatically. Our work extends upon the ideas of
graded beliefs (i.e. what the agent knows), where we allow
more fine-grained control by dividing the beliefs into iso-
lated parts, each with their own representation and revision
strategies. Contrary to graded BDI, our work has a vested
interest in the feasibility of implementations while still pro-
viding strong theoretical underpinnings. In that sense, our
work is close to the spirit of CANPLAN.

7 CONCLUSIONS

In this paper we showed how operational semantics for a
BDI agent can be devised to deal with uncertain beliefs and
actions affected by various forms of uncertainty. We intro-
duced CANPLAN+, an extension of CANPLAN, in which
we introduce a novel way of representing the agent’s beliefs
as a set of epistemic states. We furthermore introduced the
idea of stratifying the domains of epistemic states. This al-
lows an agent to reason about the plausibility of his beliefs
within a local epistemic state and allows commensurabil-
ity over the evaluation of these local results. As such, an
agent can select more appropriate plans and can revise his
current beliefs with uncertain information from the envi-
ronment. In addition, it gives a BDI agent system designer
the freedom to choose the best representation for the beliefs
at hand. We also established a way to model actions trig-
gered by uncertain beliefs, have uncertain effects and have
effects that may introduce extra uncertainty into the beliefs.
Finally, we extended the Plan(·) action from CANPLAN
to allow a BDI agent to plan for the most optimal plan,
i.e. with the highest chance of achieving the goal.

For future work, we plan to develop complete algorithms
as well as approximate/tractable algorithms to use in BDI
implementations that model and allow to reason about the
uncertain beliefs of an agent. Moreover, we want to ex-
plore how existing planners under uncertainty can be ex-
tended to deal with the various forms of uncertainty faced
in a SCADA environment.
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Abstract

Dual decomposition provides the opportunity to
build complex, yet tractable, structured predic-
tion models using linear constraints to link to-
gether submodels that have available MAP infer-
ence routines. However, since some constraints
might not hold on every single example, such
models can often be improved by relaxing the
requirement that these constraints always hold,
and instead replacing them with soft constraints
that merely impose a penalty if violated. A dual
objective for the resulting MAP inference prob-
lem differs from the hard constraint problem’s
associated dual decomposition objective only in
that the dual variables are subject to box con-
straints. This paper introduces a novel primal-
dual block coordinate descent algorithm for min-
imizing this general family of box-constrained
objectives. Through experiments on two nat-
ural language corpus-wide inference tasks, we
demonstrate the advantages of our approach over
the current alternative, based on copying vari-
ables, adding auxiliary submodels and using tra-
ditional dual decomposition. Our algorithm per-
forms inference in the same model as was previ-
ously published for these tasks, and thus is capa-
ble of achieving the same accuracy, but provides
a 2-10x speedup over the current state of the art.

1 INTRODUCTION

We often need complex structured prediction models that
encode rich global and local dependencies and constraints
among the outputs, but this can render efficient predic-
tion difficult. Therefore, dual decomposition is quite use-
ful, since it enables efficient inference in models composed
of various submodels with available black-box MAP infer-
ence routines (Komodakis et al., 2007; Sontag et al., 2011;
Rush & Collins, 2012).

In some cases, the flexibility and robustness of such models
can be improved by using soft constraints, where the model
imposes a cost if a constraint is violated, but does not re-
quire that it is satisfied. In natural language processing, for
example, soft constraints have enabled accuracy gains for
named entity recognition (Finkel et al., 2005; Sutton & Mc-
Callum, 2006), parsing (Smith & Eisner, 2008; Rush et al.,
2012), and citation field segmentation (Chang et al., 2012;
Anzaroot et al., 2014). Using soft constraints is reason-
able in these applications because the constraints are not
required in order to define feasible outputs, but are instead
a modeling layer imposed to improve predictive accuracy.
Soft constraints are advantageous over hard constraints be-
cause they allow the model to trade off evidence for and
against a constraint being satisfied.

In all of these examples besides Rush et al. (2012) and An-
zaroot et al. (2014), inference is performed using standard
techniques for inference in loopy graphical models such as
belief propagation or MCMC. However, these have poor
optimality guarantees and can also be difficult to general-
ize to prediction problems that are not graphical models.
An alternative method for handling soft constraints is to
make copies of variables participating in soft constraints,
constrain each variable to equal its copy, and apply dual de-
composition (Rush et al., 2012). While this exhibits better
flexibility, scalability, and guarantees, it requires inference
in auxiliary submodels and copying variables prevents the
feasibility of the output during intermediate iterations be-
fore convergence, since the two copies of a variable may
have different values.

Recently, Anzaroot et al. (2014) employed an attractive
alternative algorithm for performing MAP subject to soft
constraints that offers the optimality guarantees and gen-
erality of dual decomposition, but avoids variable copying
and auxiliary models completely. Their algorithm requires
an extremely straightforward modification to existing dual
decomposition objectives: if the model penalizes the viola-
tion of a constraint with a penalty of c, then the dual vari-
able is subject to a box constraint, where it can not exceed
c. They minimize this objective with projected subgradient
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descent.

While this projected subgradient algorithm is simple, its
convergence can be slow and sensitive to a choice of step
size schedule. On the other hand, block coordinate de-
scent algorithms, such as MPLP (Globerson & Jaakkola,
2007), are parameter-free and often converge much faster
than subgradient descent for dual decomposition objec-
tives, subject to our ability to obtain max-marginals from
the subproblems (Sontag et al., 2011).

In response, we contribute the following:

1. An extension of the projected subgradient algorithm
of Anzaroot et al. (2014) to general pairwise soft con-
straints (Section 5) that are capable of modeling arbi-
trary pairwise graphical model factors (Section 8).

2. An adaptation of the MPLP algorithm beyond graph-
ical models to alternative structured prediction prob-
lems with certain structure (Section 6).

3. Box-MPLP, a primal-dual message passing algorithm
for solving the box-constrained dual decomposition
objective for soft constraints (Section 7). Its update
rule and derivation differ substantially from MPLP.

4. Experiments on two corpus-wide prediction tasks
from natural language processing (Section 2) demon-
strating both the advantages of using Box-MPLP
v.s. projected subgradient and of using a box-
constrained dual objective v.s. variable copying and
hard-constraint dual decomposition (Section 10).

2 CORPUS-WIDE INFERENCE

We first motivate the use of soft constraints by describing
the application that we will explore in our experiments.
In natural language processing, it is common to part-of-
speech (POS) tag and dependency parse every sentence in
a corpus of documents. Both tasks can be posed as effi-
cient MAP inference, but a drawback of these algorithms is
that they process each sentence in isolation, despite the fact
that there is discriminative information shared across the
corpus. In response, Rush et al. (2012) performed corpus-
wide inference. Specifically, for word types that did not
appear in the training data, they introduced global model
terms that encouraged every occurrence of the word in the
test corpus to receive the same POS tag, or to be assigned a
dependency parent with the same POS tag. A similar model
appeared in Chieu & Teow (2012).

Rush et al. (2012) model these cross-sentence relationships
among sets of occurrences that are encouraged to agree, by
introducing one consensus structure, described in the Fig-
ure 1 caption, per set. There is a soft constraint between
every variable at the bottom of the consensus set, and the
one at the top. If the underlying sentence-level models are
graphical models, the corpus-wide inference problem could
be posed as a large loopy graphical model and we can per-

Figure 1: One consensus set. The circles at the bottom
represent words of the same type, and the boxes represent
arbitrary sentence-level prediction problems that they are
contained in. The circle at the top is a consensus variable
introduced to encourage consensus among the bottom cir-
cles, where the squares are soft constraints penalizing dis-
agreement. The corpus is linked together by a web of con-
sensus structures.

Figure 2: The variable-copying version of Fig. 1, where
dashed lines denote equality constraints.

form approximate MAP using standard techniques. An al-
ternative solution, depicted in Figure 2, is to copy variables
that participate in consensus sets, introduce an auxiliary
tree-structured subproblem, and use dual decomposition
for corpus-wide MAP. This has superior optimality guar-
antees and flexibility to use sentence-level problems that
are not graphical models. In practice, this algorithm can
be slow to converge, however. In response, we introduce
a new approach for performing MAP subject to soft con-
straints that when applied to corpus-wide inference allows
us to work directly in the soft constraint problem of Fig-
ure 1, yet yields the same flexibility and optimality guaran-
tees as Rush et al. (2012) and substantially faster runtimes.
The techniques are general and apply to a wide range of
additional applications.

3 NOTATION AND STRUCTURED
LINEAR MODELS

Bold-faced lower-case letters, such as x, represent column
vectors, and bold-faced upper case letters, such as A, rep-
resent matrices. The i-th coordinate of vector x is x(i) and
the i, jth coordinate of a matrix is A is A(i, j). Lower-
case greek letters such as λ represent either vector-valued
or matrix-valued dual variables. We use x(t) for x at iter-
ation t. The term ’constraint’ either refers to a constraint
between scalars or a set of coordinate-wise constraints be-
tween vectors (or matrices). In the latter case, the associ-
ated dual variable is a vector (or matrix).

We consider structured prediction problems defined by
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structured linear models such as conditional random fields
(Lafferty et al., 2001) and maximum spanning tree parsers
(McDonald et al., 2005). These assign a score to each pos-
sible output labeling by decomposing each candidate out-
put into a collection of parts, each of which can be active
or inactive in a given labeling. For example, in first-order
dependency parsing, each part corresponds to a single de-
pendency arc (Smith, 2011). In a conditional random field,
there is a part for each possible setting of each clique.

We write the indicator vector for the parts of a specific la-
beling of a datacase k as xk. It is a binary vector with
one coordinate per possible part, which is zero if the part
is not present in the structured output and one if it is. The
model for candidate outputs is called linear because the
score of a given labeling is the dot product 〈wk,xk〉 of a
weight vector wk and the indicator vector over the parts. In
many models, such as conditional random fields, the score
of each part is a function of some observed features, and in
many cases this mapping from features to weights is also
linear. We focus only on inference, however, and make no
assumptions about how the weights are set. In non-trivial
structured linear models, not all assignments of values to
these parts are valid, since they typically represent some
over-complete view of the structured output or are subject
to global structural constraints, such as projectivity for de-
pendency parsing (Smith, 2011). For an instance k we refer
to the set of valid assignments to parts as Uk.

We refer to the problem of finding the highest-scoring valid
collection of parts as MAP inference:

max
xk

〈wk,xk〉 s.t. xk ∈ Uk.

4 DUAL DECOMPOSITION

Following Sontag et al. (2011); Rush & Collins (2012); Ko-
modakis et al. (2007), we consider the problem:

max
x

∑

k

〈wk,xk〉 (1)

s.t. ∀k xk ∈ Uk (2)∑

k

Akxk = 0, (3)

where each xk represents the vector of parts for a specific
structured linear ’submodel.’ The formulation can easily
be adapted to account for a nonzero right hand side of (3).
If (3) did not exist, the problem would reduce to indepen-
dent MAP inference in each subproblem.

Dualizing the linear constraints in (3), but not the xk ∈ Uk
constraints, results in the Lagrange dual problem:

min
λ
D(λ) =

∑

k

max
xk∈Uk

〈
wk +AT

k λ,xk
〉
. (4)

Algorithm 1 Dual Decomposition with Subgradient De-
scent

1: λ← 0
2: while has not converged do
3: for submodel i do
4: x∗k ← maxxk∈Uk

〈
wk +AT

k λ,xk
〉

5: λ← λ− η(t)∑kAkx
∗
k

The dual objective D(λ) is convex and piece-wise linear,
as it is the sum of the supremum of linear functions of λ,
and hence can be solved with known convex optimization
techniques, including subgradient methods. Any particular
element of the subgradient of the dual function with respect
to λ can be written as

∂D(λ) =
∑

k

Akx
∗
k, (5)

where each x∗k is some maximizer of a MAP inference
problem with shifted weights:

x∗k ∈ argmax
xk∈Uk

〈
wk +AT

k λ,xk
〉
. (6)

We consider cases, where these MAP subproblems are
tractable and solving their linear programming relaxations
returns an integral value for any weight vector. Therefore,
one can use subgradient descent, Algorithm 1, to minimize
the dual problem. Subject to conditions on the sequence of
step sizes η(t) and the feasibility of the constraints that link
the subproblems, the subgradient method is guaranteed to
converge to the optimum, where (3) will be satisfied (Nes-
terov, 2003; Sontag et al., 2011).

5 SOFT DUAL DECOMPOSITION

5.1 PROBLEM STATEMENT

This paper focuses on applications of dual decomposition
where the underlying prediction problem has at least two
distinct sets of outputs x1 ∈ U1 and x2 ∈ U2, and linear
constraints are imposed between them not as a requirement
to define feasible outputs, but as an extra layer of modeling
to encourage global regularity of the outputs. This contrasts
with problems with a single output x subject to the linear
constraints x ∈ U1∩U2, and while these are unmanageable
directly, U1 and U2 can each be handled in isolation. Here,
dual decomposition can be employed via a copy variable
x2, and constraints x ∈ U1, x2 ∈ U2, and x1 = x2 (Koo
et al., 2010; Rush & Collins, 2012). The first family is pre-
cisely where it can make sense to employ soft constraints,
since they will not threaten the output’s feasibility.

Anzaroot et al. (2014) recently performed MAP with soft
constraints by performing projected gradient descent in a
box-constrained dual objective. Our message passing algo-
rithm requires using a slightly more restrictive set of global
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constraint structures to be converted into soft constraints
than what they considered, which are of the form (3).
Specifically, we assume the global constraints decompose
into sets of pairwise equality constraints between compo-
nents of submodels:

max
x

∑

k

〈wk,xk〉 (7)

s.t. ∀k xk ∈ Uk (8)
∀(Ap,Bp, p1, p2) ∈ P Apxp1 = Bpxp2 .(9)

A given product Apxp1 or Bpxp2 is allowed to appear in
multiple p ∈ P , so P effectively defines a collection of
linear measurements of the structured output and a graph
of equality constraints among them. These can be defined
over differently-size mapping matrices. Define sp to be the
length of the vector Apxp1 (also the length of Bpxp2 ).

Defining a dual variable λp ∈ Rsp for every p ∈ P , we
have the following convex dual decomposition objective:

∑

k

max
xk

〈
wk +

∑

p:p1=k

AT
p λ

p −
∑

p:p2=k

BT
p λ

p,xk

〉
.

(10)

A soft constraint formulation of (7) with penalty matrices
cp ∈ Rsp×sp subtracts a penalty of cp(i, j) from the score
of the global MAP problem whenever Apxp1 is set to value
i and Bpxp2 is not set to value j. In the subsequent expo-
sition, we leave the constraints xk ∈ Uk implicit, since we
assume we have available black-box algorithms for maxi-
mizing over these constraint sets. Therefore, we have:

max
x

∑

k

〈wk,xk〉 −
∑

p

∑

i,j

cp(i, j) [Apxp1(i)−Bpxp2(j)]+

(11)

where [·]+ = max(0, ·). Using a matrix-valued penalty is
important in order to support a mapping between arbitrary
graphical model factors and soft constraints (see Section 8).
In Section 7.1, we consider diagonal cp, which are suffi-
cient for the model to penalize when certain components of
the structured output do not take on the same value.

An alternative to (11) for expressing soft constraints is to
create copies of both of the terms appearing in each p ∈ P
and enforce the constraints that terms equal their copy:

max
x

∑
k 〈wk,xk〉 −

∑
p

∑
i,j cp(i, j) [vp(i)− up(j)]+

s.t. ∀p ∈ P Apxp1 = vp, Bpxp2 = up. (12)

Here, the second term is not a structured linear model, but
it is concave, can be handled efficiently in isolation, and

has integral optima. Therefore, we can apply standard dual
decomposition techniques. In Figure 2, we demonstrate
how Rush et al. (2012) similarly use variable copying to
make MAP tractable with dual decomposition. Rather than
employing pairwise hinge losses as auxiliary submodels,
they introduce a single tree-structured graphical model with
pairwise factors that encourage agreement. In Section (10)
we use this as a baseline to demonstrate the deficiencies of
using variable copying to implement soft constraints.

5.2 DUAL OBJECTIVE AND BOX CONSTRAINTS

Problem (11) can be rewritten as a linear program by intro-
ducing matrices of auxiliary variables zp ∈ Rsp×sp :

max
x,z

∑
k 〈wk,xk〉 −

∑
p

∑
i,j cp(i, j)zp(i, j) (13)

s.t. ∀(i, j), zp(i, j) ≥ Apxp1(i)−Bpxp2(j) (14)
zp ≥ 0

This problem is well-defined only if cp is non-negative in
every coordinate. In this case, we have that problems (11)
and (13) have the same optimal value and maximizing x.

We defer a full derivation of the associated Lagrange dual
problem for (13) to Appendix 1, since it parallels Anza-
root et al. (2014). The dual is similar to (10) , but imposes
coordinate-wise box constraints:

min
ν

∑

k

max
xk

〈
wk+

∑

p:p2=k

BT
p ν

T
p 1−

∑

p:p1=k

AT
p νp1,xk

〉

s.t. 0 ≤ νp ≤ cp. (15)

Unlike for hard constraints, we have a matrix-valued dual
variable νp ∈ Rsp×sp+ for every p ∈ P , where νp(i, j) cor-
responds to the constraint in (14) for a particular (i, j), and
R+ denotes the non-negative real numbers. We use 1 to be
a column vector of all ones, where its length is determined
by the context.

These box constraints exist for the same reason that they
occur in the dual problem for soft-margin SVMs (Cortes
& Vapnik, 1995), since the second term in (11) is a sum
of negative hinge losses. The box constraints on the dual
variables ν can be interpreted as the Lagrangian penalizing
the violation of constraints, but only so much as the primal
problem would penalize their violation.

The only qualitative difference between the dual problems
in (15) and (4) is the box constraints. Therefore, we can
employ the projected subgradient method, shown in Algo-
rithm 2, which will converge to the global MAP optimum if
P is feasible. At the end of Appendix 1, we derive the fol-
lowing complementary slackness criteria used for detecting
convergence. These will hold for every p ∈ P and ev-
ery coordinate pair (i, j) when maximizing over the primal
variables:
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Algorithm 2 Projected subgradient soft dual decomposi-
tion for general matrix-valued soft constraint penalties.

1: ν ← 0
2: while has not converged do
3: for submodel k do
4: w̃k ← wk +

∑

p:p2=k

BT
p ν

T
p 1−

∑

p:p1=k

AT
p νp1

5: x∗k ← max
xk∈Uk

〈w̃k,xk〉

6: for soft constraint p ∈ P do
7: νp(i, j) ← min(cp(i, j),max(0,νp(i, j) −
η(t)(Apx

∗
p1(i)−Bpx

∗
p2(j))))

either Apx
∗
p1(i) = Bpx

∗
p2(j) (16)

or Apx
∗
p1(i) = 1 and νp(i, j) = 0

or Apx
∗
p1(i) = 0 and νp(i, j) = cp(i, j).

6 MAX-MARGINALS AND MPLP

Using the subgradient method in Algorithm 2 is undesir-
able due to its sensitivity to step-size schedule and slow
convergence in practice. In response, we now revisit hard-
constraint dual objectives of the form (10) in order to ex-
plore previous use of block coordinate descent, which is
parameter-free. We introduce an adaptation of the MPLP
algorithm (Globerson & Jaakkola, 2007) to problems with
general structured linear models as subproblems, and em-
phasize a primal-dual interpretation of the algorithm’s up-
dates, which we will draw on when we derive our new al-
gorithm in the following section.

MPLP is a convergent alternative to max-product belief
propagation that was shown in Sontag et al. (2011) to be
performing block coordinate descent in a dual decompo-
sition objective for a certain instance of (10). Specifically,
there is a submodel for every node and every factor in a fac-
tor graph, and an element p ∈ P between every node and
every factor that it touches. MPLP generalizes to additional
cases (10) when the elements of P satisfy the following
condition, and when the subproblems admit efficient com-
putation of max-marginals, defined below.

Definition Let ej denote the vector that is all zeros, except
for a one in the jth coordinate. We say that the product
Axk is a projection variable if it satisfies the following
property:

∀xk ∈ Uk, ∃j s.t. Axk = ej . (17)

Unlike the previous subgradient algorithms, MPLP re-
quires every element of P to be defined between projec-
tion variables, which can be used to represent any set of
mutually-exclusive states of the structured output. This is

not a strong restriction, as they can be used, for example, to
zoom in on a specific graphical model node or dependency
parse arc and to optionally further coarsen the values of
these individual outputs. Also, the hinge loss of the previ-
ous section and 0-1 loss are equivalent for projection vari-
ables, so we are truly penalizing the event that a constraint
is violated, and not imposing a linear penalty on the de-
gree to which it is violated. Defining projection variables
is necessary because MPLP requires max-marginals, and
the following definition is only well-posed for projection
variables:

Definition For a given projection variable Axk and weight
vector w, the max-marginals mA

w are a vector where the jth
component is given by best possible score achievable by a
valid structured output when the projection variable takes
on value j, i.e.,

mA
w(j) = max

xk∈Uk
〈w,xk〉 s.t. Axk = ej . (18)

For a MAP assignment x∗ with respect to w, we have

Ax∗ = ei∗ , where i∗ = argmax
i

mA
w(i). (19)

In other words, locally maximizing max-marginals is
equivalent to finding a globally-optimal value (unless there
are ties in the max-marginals).

Furthermore, max-marginals change linearly with respect
to changes to w in the direction of their projection variable:

mA
w+ATα(i) = mA

w(i) + α(i). (20)

For example, if we shift the scores for a given factor in
a graphical model by a vector α, and otherwise leave the
model’s potentials unchanged, then the max-marginals for
this factor increase by exactly α. This fact, proven in Ap-
pendix 2, applies to arbitrary projection variables, and is
crucial in deriving both MPLP and our new algorithm in
the next section.

In Algorithm 3, we consider a version of MPLP where
block coordinate descent is performed by iteratively se-
lecting an element p ∈ P and updating the vector-valued
dual variable λp. Note this differs from the algorithms
in Globerson & Jaakkola (2007) and Sontag et al. (2011)
slightly because we pass messages (i.e., dual variables) di-
rectly between submodels, rather than from submodels to
primal variables and from primal variables to submodels.
This results from the fact that we pose (10) via equality
constraints between different parts of the structured output,
not between variables and their copies (Werner, 2008).

We discuss the optimality of this choice of λp in more de-
tail in Appendix 3, which presents a different primal-dual
argument than Sontag et al. (2011), in order to motivate
the techniques used by the new algorithm that we will in-
troduce later. The high level idea is to invoke (20) to ob-
serve that the chosen value for λp shifts the subproblems’
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Algorithm 3 An adaptation of the MPLP algorithm of Son-
tag et al. (2011) to dual decomposition with pairwise con-
straints between general structured linear submodels.

1: λ← 0
2: converged← false
3: while (! converged) and (iteration < maxIterations) do
4: converged← true
5: for equality constraint p ∈ P do
6: w̃p1 ← wp1 +

∑

p′:p′1=p1
p′ 6=p

AT
p′λp′ −

∑

p′:p′2=p1
p′ 6=p

BT
p′λp′

7: m1 ← MaxMargs (w̃p1)
8: w̃p2 ← wp2 +

∑

p′:p′1=p2
p′ 6=p

AT
p′λp′ −

∑

p′:p′2=p2
p′ 6=p

BT
p′λp′

9: m2 ← MaxMargs (w̃p2)
10: if (argmaxim1(i) ∩ argmaxim2(i) = ∅) then
11: converged← false

12: λp ← 1

2
(m1 −m2)

weights such that max-marginals for the two projection
variables in p become identical in all coordinates. There-
fore, with this setting of the dual variables, it is feasible to
achieve the equality Apxp1 = Bpxp2 when maximizing
over the primal variables. As a result, by strong duality, the
dual of (7) is minimized with respect toλp, since the primal
constraints for this block are satisfied. Algorithm 3 moni-
tors convergence by checking if all constraints are satisfied
when maximizing over the primal variables. See Sontag
et al. (2011) for a discussion of the convergence guarantees
of MPLP and Meshi et al. (2012) for its convergence rate.

The algorithm may require multiple passes to converge,
since updates for one λp may break the above optimality
condition for other p ∈ P . Furthermore, every time the
dual variables are updated for some p ∈ P , max-marginals
need to be recalculated for subproblems p1 and p2. MPLP,
and the algorithm in the next section, can not be applied for
constraints between projection variables in the same sub-
model, since their max-marginals interact with each other.
Therefore, it could not have been applied in the hard con-
straint experiments of Anzaroot et al. (2014), since they im-
pose constraints within a chain-structured graphical model.

7 MESSAGE PASSING FOR SOFT
CONSTRAINT DUAL
DECOMPOSITION

We now introduce the primary contribution of the paper: a
general dual block coordinate descent framework for min-
imizing the box-constrained dual objective (15) and Box-
MPLP, a novel algorithm for solving a common special
case of the problem. Naively applying the MPLP updates
may violate the box constraints, and we can not simply fol-
low them with a projection step, as this will not guarantee
a decrease in the dual objective.

Analogous to Algorithm (3), our block coordinate descent
steps update one vector νp at a time. Since we now focus on
a specific p ∈ P , we define y1 := Apxp1 y2 := Bpxp2 .
While MPLP is a purely dual algorithm, i.e., the update
to λp in Algorithm 3 line 12 does not require reasoning
about optimal settings of the corresponding primal vari-
ables, Box-MPLP requires explicitly constructing a primal-
dual pair.

The algorithm has two overall steps (a) fixing all dual vari-
ables besides νp, define a small block-specific optimization
problem, and efficiently determine what the optimal values
y∗1 and y∗2 should be for it, and (b) construct a value for ν∗p
for which maximizing over the primal variables yields the
values determined in step (a) and satisfies the complemen-
tary slackness conditions (16) (a). Therefore, by construc-
tion of a primal-dual certificate, ν∗p minimizes the block
coordinate descent objective.

In step (a), we seek primal optimizers y∗1 and y∗2 . With all
dual variables besides νp fixed, MAP inference in the sub-
problems p1 and p2 is with respect to shifted weight vectors
w̃p1 and w̃p2 as defined in Algorithm 3 lines 6 and 8 (which
doesn’t include νp in the shift). Using (19) we can reduce
the choice of y∗1 and y∗2 to a local optimization problem
by obtaining max-marginals m1 and m2 for the subprob-
lems, as in Algorithm 3 lines 7 and 9. With these, we have
(y∗1,y

∗
2) = (ei∗ , ej∗), where

(i∗, j∗) = argmax
(i,j)

m1(i) +m2(j)−
∑

j′ 6=j
cp(i, j

′). (21)

Step (b) constructs a ν∗p that satisfies (16) and for which
optimizing over the primal variables yields (y1,y2) =
(i∗, j∗). Invoking the ‘linearity’ of max-marginals (20),
this can be expressed as the following conditions on νp:

∀i, m1(i
∗)−

∑

j

νp(i
∗,j) ≥ m1(i)−

∑

j

νp(i,j) (22)

∀j, m2(j
∗)+

∑

i

νp(i,j
∗) ≥ m2(j)+

∑

i

νp(i,j). (23)

Satisfying (16) along with (22) and (23) ensures that
the independent maximizations of the reweighted problems
will have the same score and same maximizing values as
the joint maximization in equation (21), and thus we have
a primal-dual pair for the coordinate descent subproblem.

Solving the maximization in (21) can be done, in the worst
case, by enumerating all s2p possible i and j. Selecting νp
that satisfies conditions (16), (22), and (23) requires solv-
ing a linear feasibility problem, however. While this can
be done in time polynomial in sp, we focus in the next sec-
tion on an important special case where it is particularly
tractable, and leave exploration of general algorithms for
this feasibility problem to future work.

67



7.1 AGREEMENT FACTORS

Next, we focus on a particular structure of cp that is both
reasonable for applications and for which finding νp satis-
fying (16), (22), and (23) can be done in time O(sp). This
results in the block coordinate descent Algorithm 4.

Definition Let y1 and y2 be two projection variables with
values i and j, and define vector α ∈ Rsp+ . An agreement
factor between y1 and y2 is a structured linear model that
assigns a score of 0 if they agree and a score of −α(i) if
they disagree. This is equivalent to a penalty matrix:

cp(i, j) =

{
α(i) if i = j
0 otherwise. (24)

For many applications, it is sufficient to use agreement fac-
tors rather than full matrix penalties cp(i, j), since they al-
low the model to impose a penalty if two components of the
structured output are not equal. This, for example, supports
the soft constraints of Rush et al. (2012) that we employ in
our experiments. However, we show in Section 8 that ma-
trix penalties are important to support a mapping between
general graphical model factors and soft constraints.

Given the structure (24) on the penalties, there are effec-
tively only sp dual variables in the matrix νp, as the off-
diagonal elements are constrained to be equal to 0 by the
box constraints (15). We refer to the dual variable and costs
as νp(i) and cp(i), and equations (22) and (23) reduce to

m1(i
∗)− νp(i∗) ≥ m1(i)− νp(i) ∀i, j (25)

m2(j
∗) + νp(j

∗) ≥ m2(j) + νp(j) ∀i, j (26)

In Appendix 4 we derive an O(sp) method for choosing
νp that satisfies (16), (22), and (23). The overall insight
is that (25) and (26) can be manipulated to yield simple
upper and lower bounds on feasible values of νp(i) for
i 6= i∗, j∗, for which we choose the midpoint of the fea-
sible interval (Algorithm 4, line 22). Also, if i∗ 6= j∗, then
νp(i

∗) and νp(j∗) are determined by complementary slack-
ness (line 18) and otherwise, we can set them by similarly
taking the mid-point of a feasible interval obtained from
(25) and (26) (line 15). If we make the further restriction
that the agreement factor uniformly penalizes disagreement
between values of y1 and y2, i.e. cp is α in all coordinates,
then we have the added benefit that Algorithm 4 line 11 can
be solved in O(sp) time. See the end of Appendix 4.

8 SOFT CONSTRAINTS V.S. FACTORS

As identified in the introduction, a traditional way to model
soft constraints is to add global factors to a graphical
model. In this case, the factors contribute scores when
variables are set to certain values, which differs from our

Algorithm 4 Box-MPLP: block coordinate descent for soft
dual decomposition with agreement factors.

1: converged← false
2: while !converged do
3: converged← true
4: for constraint p ∈ P do
5: w̃p1 ← wp1 +

∑

p′:p′2=p1
p′ 6=p

BT
p′νp′ −

∑

p′:p1=p1
p′ 6=p

AT
p′νp′

6: m1 ← MaxMargs (w̃p1)
7: w̃p2 ← wp2 +

∑

p′:p′2=p2
p′ 6=p

BT
p′νp′ −

∑

p′:p1=p2
p′ 6=p

AT
p′νp′

8: m2 ← MaxMargs (w̃p2)
9: if (16) not satisfied then

10: converged← false
11: i∗, j∗ ← argmax

i,j
m1(i) +m(j)− cp(i)δ(i6=j)

12: if i∗ = j∗ then
13: U ← mini6=i∗m1(i

∗)−m1(i)
14: L← maxj 6=j∗m2(j)−m2(j

∗) + cp(j)
15: νp(i

∗)← 1
2
(U + L)

16: else
17: νp(i

∗)← 0
18: νp(j

∗)← cp(j
∗)

19: for all i such that i 6= i∗, i 6= j∗ do
20: L← −m1(i) +m1(i

∗) + νp(i
∗)

21: U ← m2(j
∗)−m2(j) + νp(j

∗)
22: νp(i)← 1

2
(U + L)

use of penalties that contribute negative score when vari-
ables are not set to certain values. We prove in Appendix
5 that the expressivity of factors and our soft constraints
are equivalent, though, as long as the soft constraints are
defined between projection variables. Specifically, any ta-
ble of factor scores can be mapped into a penalty matrix cp
by solving an associated linear system. This may require
using Algorithm 2 for inference, though, since Box-MPLP
only applies to diagonal cp.

Though the two formulations are similar, soft constraints
have attractive properties compared to factors. For exam-
ple our algorithms maintain primal feasibility during inter-
mediate iterations and avoid variable copying, which frac-
tures the evidence for variables’ MAP values across sub-
models and requires an entire dual decomposition iteration
for information to travel between output variables and their
copies. Our experiments support the desirability of avoid-
ing variable copying. In future work, we will explore solv-
ing problems that are natively expressed using factors by
first mapping them to problems with soft constraints.

9 RELATED WORK

There is a precedent for constructing message passing
schemes for inference problems by minimizing an asso-
ciated dual problem that decomposes into local interac-
tions (Wainwright et al., 2005; Komodakis et al., 2007;
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Globerson & Jaakkola, 2007; Ravikumar et al., 2010; Mar-
tins et al., 2012; Schwing et al., 2012). Many of these
are based on block coordinate descent. The generaliza-
tions we make in Section 6, such as working in terms of
projection variables to make MPLP apply to more gen-
eral structured prediction problems than graphical models,
could also be applied to a variety of these other algorithms,
where the requirement that the subproblems yield max-
marginals would be replaced with other requirements, such
as the ability to perform MAP in the presence of additional
strongly-convex terms. Our algorithm, particularly in the
context of the application we consider in the next section,
can also be seen as an example of special-case handling of
factors that have a specific combinatorial structure (Duchi
et al., 2007; Martins et al., 2012; Mezuman et al., 2013).

Our message passing algorithm has the same optimality
guarantees as those for MPLP discussed in Sontag et al.
(2011). Unlike (projected) subgradient descent, block co-
ordinate descent may return sub-optimal outputs because
our objective is non-smooth and not strongly convex (Luo
& Tseng, 1992). Analysis of the convergence rate for
smoothed versions of MPLP (Meshi et al., 2012) is doable,
however, and we encourage exploration of (smoothed) par-
allel versions of Box-MPLP (Richtárik & Takáč, 2012).

10 EXPERIMENTS

We evaluate soft constraint algorithms that vary along two
dimensions: whether they solve box-constrained dual de-
composition objectives or unconstrained ones based on
variable copying and whether they employ (projected) sub-
gradient descent or block coordinate descent. The first di-
mension is captured by the distinction between Figure 1,
where the consensus variable at the top is an isolated struc-
tured linear model and there are soft constraints between
this and the variables in the sentences, and Figure 2, which
requires variable copying and an auxiliary tree-structured
submodel. While Rush et al. (2012) did not employ MPLP,
max-marginals can be obtained for the CRF tagger and pro-
jective parser they used (Smith, 2011). Also, note that the
soft constraint penalties of Rush et al. (2012) used in both
figures take the form of agreement factors. Therefore, we
can apply Box-MPLP. We compare:

• Subgradient: Algorithm 1 applied to Figure 2
• Box-Subgradient: Algorithm 2 applied to Figure 1
• MPLP: Algorithm 3 applied to Figure 2
• Box-MPLP: Algorithm. 4 applied to Figure 1

The specific problem considered by Anzaroot et al. (2014)
problem does not admit a baseline algorithm that uses
variable copying and hard-constraint dual decomposition.
Therefore, besides providing experimental evidence for the
effectiveness of Box-MPLP, we also seek to demonstrate
the overall effectiveness of using a box-constrained objec-
tive for soft dual decomposition as an alternative to variable
copying, regardless of what inference algorithm is used for

minimizing the box-constrained objective. Finally, note
that all algorithms provide an O( 1√

t
) convergence rate, so

they can only be compared empirically.

We mirror the experimental setup of Rush et al. (2012) for
both tagging and parsing. To measure the speed of the
algorithms, we record the total number of calls to infer-
ence in sentence-level problems, which we normalize by
the number of sentences in the corpus to facilitate com-
parison across experiments. After the first pass, we only
perform inference when relevant dual variables change.

Measuring inference calls rather than wall-clock time
yields a more reliable experimental setting for the follow-
ing two reasons: (1) it is independent of the implementa-
tion used, and (2) it allows us to be generous to the base-
line algorithms we seek to outperform. First, we ignore the
cost of running MAP inference in the tree-structured auxil-
iary problem in Figure 2. Second, we assign a pessimistic
multiplier of two for all inference calls that require max-
marginals. For NLP models with millions of features, this
is an exaggeration because computing the model’s score
vector w is typically the most costly step.

10.1 POS TAGGING

Figure 3: Accuracy (top) and dual objective (bottom) v.s.
runs of sentence-level inference for WSJ-200 POS tagging.
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Following Rush et al. (2012), we learn models on subsets
of 50, 100, 200, and 500 sentences from the first chapter
of the Penn Treebank and test on the Penn Treebank chap-
ters test set (Marcus et al., 1993). We use a bigram CRF
tagger (Lafferty et al., 2001). For all experiments, we re-
port average sentence-level accuracy and the gains we ob-
tain from corpus-wide inference in Appendix 6. Both are
consistently comparable to Table 4 of Rush et al. (2012).
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Table 1: Normalized number of inference runs for each al-
gorithm to attain quantiles of the best dual solution in the
WSJ-200 tagging experiment. If a quantile was not reached
during 100 iterations, we show ‘na’.

Accuracy quantile 80% 85% 90% 95%
Subgradient 70 92 na na
MPLP 22 23 25 30
Box-Subgradient 20 35 40 54
Box-MPLP 8 9 10 10
Dual Quantile 80% 85% 90% 95%
Subgradient 24 34 56 na
MPLP 21 22 23 35
Box-Subgradient 30 35 40 54
Box-MPLP 7 7 8 9

We present results from where we train on 200 sentences,
but they are representative of the others, given in Appendix
6.1. Figure 3 shows the corpus-wide tagging accuracy and
dual objective as a function of the sentence-level MAP
calls. Recall that we double-count all calls to max-marginal
routines. Table 1 shows how much inference is neces-
sary to reach various percentile gains in accuracy and per-
centile reductions in the dual objective. Box-MPLP sub-
stantially outperforms both Box-Subgradient and MPLP,
and the box-constrained versions of both algorithms out-
perform their variable-copying-based counterparts. Com-
pared to the baseline subgradient algorithm used by Rush
et al. (2012), we require 10x fewer MAP calls.

10.2 DEPENDENCY PARSING

Table 2: Iteration costs for the parsing experiments.
PTB to QTB
Accuracy quantile 80% 85% 90% 95%
Subgradient 4.1 4.3 5.2 6.1
MPLP 4.3 4.3 4.3 ‘na’
Box-Subgradient 2.1 2.1 2.4 2.8
Box-MPLP 2.6 2.8 3 ‘na’
Dual quantile 80% 85% 90% 95%
Subgradient 3.0 3.2 3.4 3.9
MPLP 4.2 4.4 4.9 4.9
Box-Subgradient 1.6 1.7 1.8 2.0
Box-MPLP 2.5 2.5 2.5 2.6
QTB to PTB
Dual quantile 80% 85% 90% 95 %
Subgradient 15 16 18 22
MPLP 14 15 16 17
Box-Subgradient 8.1 9.2 10 12
Box-MPLP 6.9 7.4 7.9 8.6

Our corpus-wide parsing experiments present a character-
istically different regime for comparing the four algorithms
because the graph of connections between the subproblems
is much more sparse and the overall number of necessary
iterations for the algorithms to converge is much lower.

Following Rush et al. (2012), each set of POS tags around
a token defines a context, and identical contexts are encour-

aged to have parents with similar POS tags by introducing
various consensus structures. We mirror their domain adap-
tation experiments, training on the Penn Treebank (PTB)
and testing on the Question Treebank (QTB), and vice-
versa (Judge et al., 2006). We parse with a first-order pro-
jective arc-factored parser (McDonald et al., 2005) using
dynamic programming for inference, which has lower ac-
curacy than the second-order projective parser used in Rush
et al. (2012). Table 2 summarizes our results.

In the PTB-to-QTB experiment, the box-constrained algo-
rithms uniformly outperform their counterparts based on
variable copying. Unlike our POS experiments, however,
Box-MPLP does not outperform Box-Subgradient. Since
all the algorithms converge so quickly, the extra computa-
tion to obtain max-marginals is too costly (in the factor-
2 scheme). Box-MPLP is still about 2x faster than Sub-
gradient, which is what Rush et al. (2012) used, though.
For the QTB-to-PTB experiment we were unable to repro-
duce accuracy increases as reported in Rush et al. (2012);
none of the optimization algorithms managed to improve
the accuracy for any setting of the penalties. This is prob-
ably due to our simpler parser. However, regarding dual
optimization, each coordinate descent method outperforms
its corresponding subgradient method, and the boxed al-
gorithms outperform their variable-copying alternatives.
Again, Box-MPLP was about 2x faster than Subgradient.
See Appendix 6.2 for accuracy and dual figures.

11 CONCLUSION AND FUTURE WORK

Soft constraints can be easily modeled by imposing box
constraints on an associated dual decomposition objective.
This yields fast, simple-to-implement algorithms. Box-
MPLP, a block coordinate descent algorithm, provides a
competitive alternative to projected subgradient descent.

Future work will explore ways to adapt the alternative mes-
sage passing algorithms discussed in Section 9 to handle
box constraints and consider additional combinatorial fac-
tors besides soft constraints that can be ‘optimized out’ by
imposing constraints in an associated dual problem.
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Abstract

Even swaps is a method for solving de-
terministic multi-attribute decision problems
where the decision maker iteratively simpli-
fies the problem until the optimal alterna-
tive is revealed (Hammond et al. 1998, 1999).
We present a new practical decision support
system that takes a Bayesian approach to
guiding the even swaps process, where the
system makes queries based on its beliefs
about the decision maker’s preferences and
updates them as the interactive process un-
folds. Through experiments, we show that it
is possible to learn enough about the decision
maker’s preferences to measurably reduce the
cognitive burden, i.e. the number and com-
plexity of queries posed by the system.

1 INTRODUCTION

In deterministic multi-attribute problems, the decision
maker (or DM, for short) chooses among N alterna-
tives, each of which has M attributes. An alternative
x is a vector of consequences for each attribute:

x = {xi : i = 1, . . . ,M}, (1)

where xi is the consequence for attribute i. This is
often represented as a consequence table such as the
one illustrated in Fig 1(a), which displays alternatives
and attributes for a hiring problem along its columns
and rows respectively.

The DM’s preferences for the various attributes can
be modeled using a value function v(x). Additive
value functions are a popular choice, mainly due to the
ease with which they can be elicited:

v(x) =

M∑

i=1

wivi(xi), (2)

where attribute weights w = {wi : i = 1, . . . ,M} are
non-negative and sum to 1 and the vi(xi) represent
one-dimensional marginal value functions. Note that
we make a distinction between value and utility func-
tions, following Keeney and Raiffa (1976), who reserve
the term ‘utility function’ to characterize preferences
under uncertainty.

There are several well-known approaches to eliciting
additive value functions. The most popular ones tackle
direct elicitation, where the DM reveals their trade-
offs by answering questions pertaining to the weights
and marginal value functions. von Winterfeldt and
Edwards (1986) and Belton and Stewart (2002) re-
view some well known weighting techniques. An al-
ternate approach is that of even swaps, which is an
indirect preference elicitation method that simultane-
ously solves a specific decision problem (Hammond et
al. 1998, 1999). Here the DM answers a few simple
and pointed queries to iteratively reduce the num-
ber of columns and rows in the consequence table
until the optimal alternative is revealed. Mustajoki
and Hämäläinen (2005, 2007) coined the term smart
swaps to refer to guided even swaps, i.e. using a de-
cision support system to provide process suggestions.

In this paper, we propose a Bayesian approach to guid-
ing the even swaps process, whereby the system makes
queries based on its beliefs about the DM’s preferences
and updates them as the interactive process unfolds.
The literature on Bayesian techniques for learning a
DM’s preferences is vast and varied, spanning domains
such as management science, artificial intelligence, ex-
pert systems and machine learning (e.g. Eliashberg
and Hauser 1985, Jimison et al. 1992, Poh and Horvitz
1993, Chajewska et al. 2000, Anderson and Hobbs
2002, Boutilier 2002, Scott and Shachter 2005).

We review the even swaps method in Section 2. The
subsequent three sections summarize our main contri-
butions. In Section 3, we present some properties of
even swaps, providing conditions under which they are
feasible. In Section 4, we describe our swaps algorithm
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Tech.+skills+ 4 4
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Comm.+skills+ 3+ 4+ 3+ 2+ 1+(worst)+–+5+(best)+
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Experience+ 6+ 3+ 2+ 1+
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A B C

Experience+ 6 3 2

Tech.+skills+ 3 2 4

Comm.+skills+ 3 4 3

References+ 5 1 4

Figure 1: The even swaps method applied to a hiring problem.

in detail. In Section 5, we discuss the results of some
experiments that study the effect of problem size and
Bayesian learning on the number and type of queries
made to the DM. We are not aware of any previous
work with computer experiments that explores the ef-
fect of smart swaps on a set of consequence tables and
DMs. Finally, we conclude in Section 6.

2 EVEN AND SMART SWAPS

We will explain the even swaps method with the help
of the following illustrative example:

A Hiring Example. Figure 1(a) presents the conse-
quence table for a manager Zoe who faces a hiring deci-
sion and must choose among four candidates — Alice,
Bob, Chris and Diane — across four attributes: Ex-
perience (in # of years) and qualitative measures such
as Technical Skills, Communication Skills and Refer-
ences, all scored on a scale of 1 (worst) to 5 (best).

Zoe chooses to pursue the even swaps method to deter-
mine the optimal hire. First, she recognizes that Chris
scores at least as well as Diane on all attributes, and
therefore removes Diane from consideration in 1(b).
This is an example of absolute dominance. Next,
she observes that Alice fares better on most attributes
as compared to Bob, except for Technical Skills where
Bob scores 1 point higher. Feeling that Alice com-
pensates for this deficit along the other attributes, i.e.
that Alice exhibits practical dominance over Bob,
Zoe removes Bob from consideration in 1(c).1

1The original even swaps literature introduced practical

Zoe then notices that the remaining candidates, Alice
and Chris, have the same score (3) on Communication
Skills. Reasoning that she need not be concerned with
this attribute in subsequent iterations, as she can make
subsequent value judgments conditional on this com-
mon score, she greys this attribute out in 1(d). In the
even swaps literature, this task is referred to as identi-
fying an irrelevant attribute; for reasons explained in
the next section, we prefer the term equal attribute,
and say that this attribute has become inactive.

Now Zoe makes the move that gives the even swap
method its name. She observes that Alice fares worse
on Technical Skills, but better on the remaining active
attributes. She answers the following question, indi-
cated by the three boxes in 1(e): how many years of
Experience would she be willing to give up for Alice
to improve her Technical Skills score from 3 to 4? An
even swap produces a hypothetical equivalent alterna-
tive in which a change in the consequences of one at-
tribute balances the change in the consequences of an-
other, and is a specific kind of matching query (Delquié
1993). The DM’s response is determined by her value
judgments; in this case, she determines that Alice’s
Experience should change from 6 to 5 years. She then
replaces Alice with her hypothetical clone in the con-
sequence table in 1(f). In the final step, she recognizes
that Alice absolutely dominates Chris, thereby reveal-
ing Alice to be the optimal candidate.

dominance as an intuitive but vague notion. Subsequent
work on smart swaps proposed a definition with some prac-
tical drawbacks. A major contribution of our work is a
precise definition and demonstration of its practicality.
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The key idea that differentiates indirect methods like
even swaps from direct elicitation techniques is that
the analyst/system need not have a complete picture of
the DM’s preferences to find the optimal alternative for
a particular decision. It is therefore often beneficial to
use such techniques for reducing elicitation burden and
potential inaccuracies, as people are highly susceptible
to cognitive biases (Lichtenstein and Slovic 2006).

The even swaps method appears to be suitable for
small problems where the interactive nature of the
method, the access to the alternatives and the (almost)
instant gratification from solving the problem appeal
to the DM. It is particularly useful for DMs who ei-
ther find it difficult to answer questions about their
trade-offs in terms of weight ratios, or who need to
view/consider the alternatives to construct their pref-
erences. Kajanus et al. (2001) provide an application
to strategy selection in rural enterprises.

Even swaps was originally intended to be self-guided;
Mustajoki and Hämäläinen (2005, 2007) propose a de-
cision support system for smart swaps using preference
programming, i.e. by recognizing the feasible region
of weights for fixed bounds on marginal value func-
tions. Their model makes the practical dominance
notion precise by recommending it through pairwise
dominance, which occurs when there is no way an al-
ternative can be most preferred, based on the feasible
weight region and bounds. Their method however has
several limitations. For instance, there is little the sys-
tem can do if it proposes a practical dominance query
and the DM rejects it, aside from changing bounds
midway through the process. Crucially, they are un-
able to recognize swaps that are not feasible.

Here we propose a Bayesian approach that exploits
prior information about the feasible weight region as
represented by a prior probability distribution. We in-
troduce the notion of probable dominance as well as a
heuristic that recommends even swaps through proba-
bilistic computations. The system easily handles rejec-
tion of practical dominance queries. We also present
new results about feasibility conditions for even swaps,
using them to recognize and adapt to declarations of
infeasible swaps. Our approach is particularly adept
at providing inexperienced users with specific recom-
mendations. However, as discussed in the conclusions,
our method possesses its own set of limitations.

3 PROPERTIES OF EVEN SWAPS

The overarching even swaps method gets its name from
the even swap query, which is crucial towards reducing
the size (and therefore complexity) of the consequence
table. In this section, we specify our assumptions for
the class of multi-attribute problems under considera-

tion, and then present some results pertaining to the
properties of even swaps.

3.1 ASSUMPTIONS

We address multi-attribute problems where the DM
has an additive value function, i.e. of the form in equa-
tion (2). This is applicable only when attributes are
mutually preferentially independent. As noted by pre-
vious authors, this is a common assumption and is
widely applied in practice (Keeney and Raiffa 1976,
Stewart 1996, Belton and Stewart 2002).

In theory, the even swaps method is applicable for all
value functions and is not restricted to the additive
form. However, the method can be challenging to ap-
ply when there is value dependence, in which case the
DM would have to consider consequence levels of all at-
tributes while making a judgment about an even swap.
In that sense, no attribute would be ‘irrelevant’ when
the DM makes the even swap based on their trade-offs.
It is difficult to imagine the method being implemented
successfully in such a situation without an analyst in
the room to guide the DM. The additive assumption
therefore makes an automated decision support system
more likely to be used (and perhaps misused).

We also assume that the one-dimensional marginal
value functions are continuous, bounded and mono-
tonic. Since they are bounded, these functions can
be normalized such that 0 ≤ vi(xi) ≤ 1, vi(xi

0) = 0
and vi(xi

∗) = 1 for all attributes, where xi
0 and xi

∗

represent the least and most preferred consequences
for attribute i. The domain of an attribute is de-
noted Di, therefore for an attribute where more is pre-
ferred to less, Di =

[
xi

0, xi
∗]. Monotonic attributes

are common in practice; non-monotonic attributes can
sometimes be redefined so as to render them mono-
tonic. Furthermore, a discrete attribute can often be
approximated as continuous. For instance, in the hir-
ing problem in Figure 1, three of the four attributes
are measured as integers on a scale of 1 to 5, but they
could easily be approximated as continuous attributes.
These assumptions are therefore not too restrictive.

3.2 NOTATION AND PROPERTIES

The even swaps method attempts to guide the DM by
simplifying the consequence table. During this inter-
active process, the DM must carefully consider pairs of
alternatives and their consequences along specific at-
tributes. A consequence xi is deemed to be preferred
over yi if it has higher marginal value:

xi � yi ⇔ vi(xi) > vi(yi). (3)

Any pair of alternatives x and y can therefore be as-
sociated with the following three sets of attributes:
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dominating set D(x,y) = {i : xi � yi}, non-
dominating set N(x,y) = {i : xi ≺ yi}, and equal
set E(x,y) = {i : xi = yi}. Note that N(x,y) =
D(y,x).

The task with perhaps the lowest cognitive load for the
DM and the lowest computational load for a system is
identifying equal attributes. While somewhat more
complex for a DM, it is also trivial for a system to
discover absolute dominance, denoted x �A y, using
non-dominating attribute sets:

x �A y ⇔ N(x,y) = ∅. (4)

For a replicate pair of solutions, i.e. where both
N(x,y) = ∅ and D(x,y) = ∅, either x or y can be
removed from the table at random.

Practical dominance comes under consideration when
one of the sets N(x,y) and D(x,y) has many more
elements than the other. While practical dominance
claims help remove some solutions, the DM may even-
tually have to perform an even swap to manipulate
the consequence table and make further progress. We
denote an even swap as s(xi → x′i, xj → x′j), where
the alternative x is modified by the DM, such that the
change from xi to x′i along attribute i is compensated
by the change from xj to x′j along attribute j.

Consider the even swap in the hiring example, where
the DM provided a response to a change from the score
3 to 4 on Technical Skills, along Experience. Note that
the swap performed was specifically designed to make
consequences identical for Technical Skills. This type
of swap is relatively cognitively comfortable for the
DM, since they are able to observe the numbers along
a specific row. Moreover, ensuring equal consequences
simplifies the table and allows for potential ease of
elicitation in future tasks. We refer to such a swap as
an equalizing even swap, defined as an even swap
that makes the consequences of two alternatives equal
along an attribute. For any two alternatives x and
y, s(xi → yi, xj → x′j) is an equalizing even swap
because it makes attribute i’s consequences for both
alternatives equal, thereby increasing the set E(x,y).

Is an even swap always possible? No. The follow-
ing proposition provides the conditions under which
an even swap is feasible, assuming that the DM’s re-
sponse is consistent with their value function.

Proposition 1 (Even Swap Feasibility). The even
swap s(xi → x′i, xj → x′j), i 6= j, xi, x

′
i ∈ Di is feasible

only if:

(i) When x′i � xi: vj(xj) ≥ wi
wj

[vi(x
′
i)− vi(xi)]

(ii) When x′i ≺ xi: 1− vj(xj) ≥ wi
wj

[vi(xi)− vi(x′i)]

Proof. If x′i � xi, the swap is not feasible when
even a response of x′j = x0j cannot compensate for

the change, which occurs when wj
[
vj(xj)− vj(x0j )

]
<

wi [vi(x
′
i)− vi(xi)]. The result follows after recogniz-

ing vj(x
0
j ) = 0. The other case is similar.

The fact that not all swaps are feasible is potentially
problematic for a system attempting to guide the pro-
cess by recommending equalizing even swaps. Since
the system is not exactly aware of the DM’s prefer-
ences during the process, it is possible for the system
to propose a swap that is infeasible for the DM. For-
tunately, as determined in the following proposition, if
the swap s(xi → yi, xj → x′j) is not feasible, its con-
jugate swap s(xj → yj , xi → x′i) must be feasible.

Proposition 2 (Equalizing Even Swap Feasibility).
For any two alternatives x and y that do not dominate
each other over attributes i and j, at least one of the
equalizing even swaps s(xi → yi, xj → x′j) or s(xj →
yj , xi → x′i) is feasible.

Proof. Suppose that yi � xi. If the swap s(xi →
yi, xj → x′j) is not feasible, then from Proposition 1(i),
vj(xj) <

wi
wj

[vi(yi)− vi(xi)]. Rearranging, wivi(xi) +

wjvj(xj) < wivi(yi). For the conjugate swap, by defi-
nition, wivi(xi) +wjvj(xj) = wivi(x

′
i) +wjvj(yj). Us-

ing the condition from the infeasibility of the original
swap, wivi(x

′
i) + wjvj(yj) < wivi(yi) =⇒ wivi(x

′
i) <

wivi(yi) =⇒ x′i ≺ yi. The conjugate swap is therefore
indeed feasible. The other case is similar.

The implication of these results is that a feasible swap
can always be found: if the DM declares that a given
even swap is infeasible, then the conjugate swap will
be feasible, and the system can recommend it.

Note that both propositions assume that a DM’s re-
sponse is consistent with their value function. How-
ever, behavioral research on bi-matching suggests peo-
ple may provide inconsistent responses between queries
pertaining to a swap vs. its conjugate (Delquié 1997,
Willemsen and Keren 2003). In the algorithm de-
scribed in the next section, we assume the DM is will-
ing to make either a swap or its conjugate, but we
allow for noise in the response to an even swap query.

4 BAYESIAN SMART SWAPS

In our formulation of guiding an interactive even swap,
we assume the system has prior beliefs p(w) about
the DM’s weights in their additive value function. If
there is no a priori information available, the system
may choose a uniform prior over the weight simplex:
p(w) ∼ Dirichlet(α) where α is a vector of 1s.
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Figure 2: Regions of absolute and practical dominance for
the two-attribute example when w1 ∼ Uniform(0, 1).

We also assume for now that the system knows the
DM’s marginal value functions, perhaps through prior
assessments. Since these are one-dimensional func-
tions, they are usually easier to elicit than weights that
reflect trade-offs. In sub-section 4.4 we briefly outline
how our algorithm may be extended to the case of un-
known marginal functions.

We explore how a system can cope with uncertainty
about the DM’s weights, incorporating responses to
recommended practical dominance and even swap
queries from the DM. In our algorithm, the system
gradually learns the user’s preferences and exploits it
for the sole purpose of reaching the optimal alternative
as soon as possible. In the following sub-sections, we
describe various aspects of our overall approach.

4.1 ABSOLUTE VS. PROBABLE
DOMINANCE

One of the central notions of the original even swaps
method is that of practical dominance, according to
which an alternative can be discarded if it appears
to be nearly absolutely dominated by another. In
this section, we view practical dominance through a
Bayesian lens, with the intent of reducing the cogni-
tive burden of DMs. To motivate our approach, let us
first study absolute dominance.

Consider an alternative x whose consequences have
been normalized; therefore it lies somewhere in the
unit cube. x dominates a proportion of other alterna-
tives given by the volume

∏M
i=1 xi, and is dominated

by a proportion
∏M
i=1(1−xi). Note that if a family of

problems is built by generating alternatives uniformly
over the consequence domains, then the probability
that any particular alternative dominates another de-
creases exponentially with the number of attributes
M . Therefore absolute dominance does not occur with
sufficient frequency to be a basis for a practical deci-
sion support algorithm. Moreover, in real-world set-
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Figure 3: Regions of absolute and practical dominance for
the two-attribute example when w1 ∼ Uniform(0.4, 0.6).

tings, absolutely dominated alternatives would likely
be shelved before reaching the conference room.

A relationship that might be more useful is that of
probable dominance, which measures the system’s
beliefs about whether the DM prefers an alternative to
another. The probability that alternative x dominates
y is denoted pxy, where:

pxy =

∫

w

(
M∑

i=1

wi [vi(xi)− vi(yi)] ≥ 0

)
p(w)dw.

(5)
If the system believes that the DM is likely to pre-
fer an alternative over another, perhaps it can rec-
ommend them as a candidate pair for practical dom-
inance. Although the DM makes the eventual judg-
ment, the system recommends the pair in the hope
that it will simplify the problem. We therefore pro-
pose probable dominance above a certain threshold pT
to recognize potential practical dominance, pxy ≥ pT .

Let us study the following simple example to compare
the occurrence of absolute and probable dominance:

A Two-attribute Example. Suppose M = 2 and
that the DM’s marginal value functions are linear and
normalized to between 0 and 1. As a reference, sup-
pose that the DM’s trade-offs are accurately captured
by weights w1 = 0.5 and w2 = 0.5.

Figure 2 illustrates the regions of absolute and prac-
tical dominance with respect to a chosen alternative
x = (0.2, 0.6) (represented as a purple dot) when the
system believes that w1 ∼ Uniform(0, 1). Alternatives
that absolutely dominate x are shown in dark red,
while those that are absolutely dominated by x are
shown in dark blue. The regions of potential practical
dominance (as determined by probable dominance) for
various values of the probability p appear as bands of
lighter red and blue, in increments of 0.1, ranging from
p = 0.9 to 1.0 (almost deep red) down to p = 0 to 0.1
(almost deep blue).
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Figure 3 illustrates almost the same situation except
now the system believes that w1 ∼ Uniform(0.4, 0.6),
possibly by learning from responses to previous
queries. It is immediately apparent that the reduced
uncertainty yields enlarged regions in which there is
a high certainty that x dominates or is dominated.
These regions now appear as large triangles flanking
the rectangular regions of absolute dominance. From
a practical perspective, such regions are effectively
equivalent to those of absolute dominance.

Relative to Fig. 2, the region of uncertainty is much
more tightly clustered around the diagonal line x1 +
x2 = 0.8 that represents the boundary between x � y
and y � x. This is due to the reduced uncertainty
about the true value of w, and illustrates the bene-
fits of reducing the uncertainty: it allows the system
to be more confident in suggesting potential practical
dominance to the DM.

The simple example illustrates that a pair of alterna-
tives chosen at random is more likely to exhibit prob-
able rather than absolute dominance, making it more
useful in practice. Further numerical simulations were
performed, demonstrating that the probability for a
given vector x to practically dominate a given vec-
tor y above a given threshold pT is insensitive to the
number of attributes M . This suggests that probable
dominance may be a useful concept in practice.

Algorithm 1 summarizes the system’s approach to rec-
ommending practical dominance and updating beliefs.
We assume that the DM responds accurately to this
query based on their preferences, since this is a com-
parison question that is typically associated with low
cognitive load. This implies that the polytope of the
weight region can be updated to incorporate the fol-
lowing condition:

M∑

i=1

wi [vi(xi)− vi(yi)] ≥ (≤) 0, (6)

depending on whether the user responds ‘yes’ or ‘no’
to the question: do you prefer x over y? The implica-
tions and potential limitations of assuming an accurate
response to this query are discussed in the conclusions.

4.2 EVEN SWAPS

Recommending an effective even swap is more chal-
lenging than computing practical dominance. In Sec-
tion 3, we explored some properties, discovering that
not all swaps are feasible. The notion of an equal-
izing even swap was introduced as a practical means
of forming a simpler consequence table. To make an
equalizing even swap s(xi → yi, xj → x′j), the system
needs an alternative pair x, y and an attribute pair i,

Algorithm 1 Practical Dominance Query

Input: N alternatives, threshold pT , prior p(w)
Initialize pmaxD = 0
for each pair of vectors x and y do

Compute pxy from equation (5)
if pxy ≥ max(pT , p

max
D ) then

Store pair x,y; pmaxD = pxy
end if

end for
if pmaxD 6= 0 then

Recommend potential practical dominance for
x,y, inquiring whether x � y
Update p(w) in accordance with DM’s response,
using equation (6)

else
There is no candidate pair

end if

j. Moreover, the system should be able to handle an
infeasible swap.

We present a heuristic for recommending an even swap
that identifies the most suitable alternative and at-
tribute pairs. There are two main steps involved. In
the first step, the system identifies alternatives x, y
where it believes x might be preferred over y. It is
natural to use probable dominance to quantify this
belief. In the second step, the system identifies at-
tributes i ∈ N(x,y) and j ∈ D(x,y) such that swap
s(xi → yi, xj → x′j) is likely to decrease |N(x,y)|.
The intuition behind the heuristic is that an even swap
query potentially pushes a pair of alternatives towards
dominance of some sort, making it eventually evident
to both the system and the DM. Focusing on a pair
where one is likely to dominate the other and reducing
the non-dominated attribute set ensures that this oc-
curs. As shown in Section 3, an infeasible swap always
possesses a feasible conjugate swap, so the heuristic is
guaranteed to make progress (from a normative per-
spective). Note that the cognitive effort expended by
the user in trying to respond to the original (failed)
swap will be helpful in responding to its conjugate.
Note also that the heuristic is myopic in that it at-
tempts to find the ‘best’ swap at the current moment,
without regard to long-term savings. It can be viewed
as a dominance-focused heuristic, as it tries to drive
alternative pairs towards dominance.

Suppose that the system is considering the equalizing
even swap s(xi → yi, xj → x′j) based on the afore-
mentioned heuristic. By definition:

vj(x
′
j) =

wi (vi(xi)− vi(yi)) + wjvj(xj)

wj
, (7)

if it is feasible, i.e. satisfies Proposition 1.
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Algorithm 2 Even Swap Query

Input: N alternatives, swap response noise δ, prior
p(w)
Set threshold pT = 0 and find alternative pair x,y
from Algorithm 1
Initialize pmaxS = 0
for each pair of attributes i in N(x,y) and j in
D(x,y) do

Compute pS from equation (8)
if pS ≥ pmaxS then

Store pair i, j; pmaxS = pS
end if

end for
Recommend the swap s(xi → yi, xj → x′j)
if Response is x′j then

Update p(w) with conditions from equation (9)
else if DM declares swap is infeasible then

Recommend conjugate swap s(xj → yj , xi → x′i)
Update p(w) using equation (9), after swapping i
and j

end if

Suppose that i and j are both attributes where more
is preferred to less. Then xi is increased to yi for the
swap (because i ∈ N(x,y)), therefore xj is decreased
to x′j if the swap is feasible. The probability that this
swap will decrease the non-dominated set pS is:

pS = P (x′j ≥ yj) = P (vj(x
′
j) ≥ vj(yj))

=

∫

w


∑

k=i,j

wk [vk(xk)− vk(yk)] ≥ 0


 p(w)dw,

(8)

where the final step is a result of integration after re-
arranging (7). For the sake of brevity, we have nota-
tionally omitted specifying that pS is a function of the
swap; it should be inferred that it is associated with
swap s(xi → yi, xj → x′j). Also, note that although
equation (8) applies only when i and j have monoton-
ically increasing marginal value functions, it is easy to
generalize it to include all other cases.

Algorithm 2 summarizes the system’s approach to rec-
ommending even swaps and updating beliefs. Since
an even swap is associated with a significant cognitive
load, the system treats the response to lie within a
noise band measured using the swap response noise
δ. For instance, if a user responds to an even swap
query with normalized consequence 0.6 and δ = 0.2,
then the system forms a lower bound Lδ = 0.5 and
upper bound Uδ = 0.7. This noise band is subject to
the other constraints posed on a response, i.e. it must
lie within the domain. Therefore a response of 0.05
with δ = 0.2 results in Lδ = 0 and Uδ = 0.15. If
more of attribute j is preferred to less, the polytope

Algorithm 3 Bayesian Smart Swaps

Input: N alternatives, threshold pT , swap response
noise δ, prior p(w)
while more than 1 solution and 1 active attribute
remain in table do

Remove absolutely dominated solutions, if any
Mark any attributes with equal consequences
across alternatives as inactive, if any
Identify potential practical dominance using Al-
gorithm 1
if practical dominance detected then

Recommend it and update p(w) from response
else

Recommend an even swap using Algorithm 2
and update p(w) from response

end if
end while
if single attribute remains then

Find the optimal alternative x
end if
Return x

of the weight region can be updated with conditions
from two inequalities involving wi and wj :

Lδ ≤
x′j − x0j
x∗j − x0j

≤ Uδ, (9)

where Lδ and Uδ are bounds on normalized conse-
quences (Lδ, Uδ ∈ [0, 1]) that depend on the DM’s re-
sponse and δ as described above, and x′j is a function
of the weights and marginal values as in equation (7).
This equation could be easily modified for the case
where less of attribute j is preferred.

4.3 HIGH-LEVEL ALGORITHM

Now that we have outlined the two main sub-routines
– practical dominance and even swaps – Algorithm 3
provides the high-level routine for our proposed in-
teractive even swaps method. The algorithm identifies
absolute dominance and equal attributes, recommends
practical dominance when it is confident enough, and
recommends an equalizing even swap based on a dom-
inance focused heuristic. The algorithm terminates
when the optimal alternative is revealed.

4.4 EXTENSION: UNKNOWN
MARGINAL VALUE FUNCTIONS

In the algorithm described here, we assumed that the
system already knew the marginal value functions,
perhaps through initial assessments. There is a nat-
ural extension to the case of unknown marginal value
functions along the lines of Mustajoki and Hämäläinen

78



0	  

2	  

4	  

6	  

8	  

10	  

12	  

14	  

16	  

M3
N2
	  

M3
N2
L	  

M3
N8
	  

M3
N8
L	  

M5
N2
	  

M5
N2
L	  

M5
N8
	  

M5
N8
L	  

ProbDom	  

EvenSwap	  

EqA=rib	  

AbsDom	  

Figure 4: The effect of learning upon the number and
type of queries and events. Average number of absolute
dominance and equal attribute events, as well as probable
dominance and even swap queries per scenario, for M =
{3, 5} ×N = {2, 8}, with learning turned on (L) and off.

(2005, 2007), using previously determined lower and
upper bounds on the marginal value functions. Subse-
quently, for all probabilistic computations — in this
case those pertaining to computing probable domi-
nance and the probability that the swap will decrease
the non-dominated set — the system could use proba-
bility bounds for making recommendations and update
its beliefs based on inequalities from these bounds.
The current algorithm could be updated to incorpo-
rate these changes.

5 EXPERIMENTAL RESULTS

A first set of experiments were conducted to assess the
degree to which learning reduces the number and com-
plexity of queries directed to the DM. The high-level
algorithm described in Section 4 was applied to a set
of 100 randomly generated scenarios, each involving a
randomly generated set of N alternatives with M at-
tributes. Each of the NM values in the consequence
table was generated from a Uniform distribution (0, 1).
The user’s true weights were drawn uniformly from the
(M − 1)-dimensional unit simplex, and the prior was
the same uniform distribution over the simplex. For
simplicity, the marginal value functions were assumed
to be linear and ranging from 0 to 1.

For each scenario, the probability threshold for a prob-
able dominance query was set relatively high (0.9) to
ensure that the queries might not be too onerous for
real humans to answer. The probability that x � y
for the DM was computed by randomly generating at
least 10000 weight vectors uniformly in the (M − 1)-
dimensional unit simplex. First, rejection sampling
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Figure 5: Same data as in Figure 4, except that the scales
are normalized to 1 to illustrate the relative contributions
of the different types queries and events.

was employed, i.e. the randomly generated weight vec-
tors were reduced to a set that satisfied any constraints
introduced during the interactive process. Then the
probable dominance probability was computed as the
fraction of weight vectors for which x � y. Partic-
ularly in cases where several even swaps had been
applied, the weights were pinned down so precisely
that the number of samples satisfying the constraints
dropped below 100, in which case more points were
generated to ensure that the probable dominance prob-
ability was computed from reasonable statistics. To
simulate the DM answering a probable dominance or
even swaps query, the true weight vector was used to
generate the response that the DM would have gener-
ated. The DM’s noise about the swap value was mod-
eled using a modest swap response noise of δ = 0.2.

For each scenario, the number of absolute domi-
nance and equal-attribute events (accomplished purely
through system computations) were recorded. The
number of probable dominance and even swap queries
(including both regular and conjugate swaps) were
recorded as well; these are queries that must be an-
swered by the DM and therefore entail some cognitive
burden. Eight sets of 100 scenarios were run, with the
number of attributes set to M = {3, 5}, the number of
solutions set to N = {2, 8}, and the method’s learning
element both turned on and turned off. The results
are summarized in Figure 4.

For the smallest scenarios ((M,N) = (3, 2)), an aver-
age of just two queries and/or events is required, and
typically there is one absolute dominance event and
one even swap, with probable dominance and elimina-
tion by virtue of equal attributes playing a relatively
minor role. Due to the small number of queries and/or
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events, learning has little impact. The average num-
ber of queries and/or events decreases from 2.33±0.11
to 1.96 ± 0.11 — a drop that is of marginal statisti-
cal significance. On the other hand, when the num-
ber of solutions is increased from 2 to 8, the average
number of queries and/or events rises to 8.22 ± 0.34
without learning and 6.7±0.23 with learning — a sta-
tistically significant decrease of 18%. When the num-
ber of attributes is increased from 3 to 5, a similar
trend is observed. For N = 2 solutions, the number of
queries and/or events is 3.63 ± 0.27 without learning
and 3.35 ± 0.24 with learning — an insignificant dif-
ference — whereas for N = 8 solutions the number of
queries and/or events is 14.37± 0.57 and 11.51± 0.41
— a statistically significant drop of 20%.

Figure 5 provides another view of the same data, in
which the relative contribution of the various types
of queries and events is obtained by normalization.
As anticipated, the impact of absolute dominance de-
creases as the number of solutions N increases from 2
to 8. This is a consequence of the exponential decrease
in the probability for any given vector to absolutely
dominate another with the number of attributes. An-
other trend evident here is that as N increases, the
relative impact of probable dominance queries grows
stronger. Moreover, for larger problems, the effect of
learning is to further increase the relative importance
of probable dominance over even swap queries.

Having established that learning can substantially re-
duce the number of queries and/or events required to
identify the optimal alternative, and moreover that it
shifts the balance more from even swaps to probable
dominance queries as the problem size grows, a sec-
ond series of experiments were conducted with learn-
ing turned on. The objective of these experiments was
to chart in greater detail how the number and type
of queries and/or events change as the number of at-
tributes and alternatives are varied. The results de-
picted in Figure 6 demonstrate the same basic trends,
including the waning importance of absolute domi-
nance as the number of attributes M grows and the
ascendancy of probable dominance as N grows.

6 CONCLUSIONS

In this paper, we have presented a method for guid-
ing the DM through the even swaps process using an
overall Bayesian approach with a dominance focused
heuristic. We have demonstrated through experiments
that one can effectively learn about the DM’s prefer-
ences in the course of a single session to guide them
quickly to a final choice. A potential next step is to
implement a tool and test its efficacy through experi-
ments with real human subjects. Belton et al. (2005)
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Figure 6: The effect of M and N on the number and type
of queries and events. Average number of queries/events
of each type, from left to right, for M = {2, 3, 4, 5} and
N = {2, 3, 4, 5, 6, 7, 8}.

conduct some user experiments involving even swap
queries but such studies remain few and far between.

Our approach appears to be practical for modest-sized
decision problems (N < 10). One could argue that
direct elicitation techniques might be appropriate for
large N (∼ 100); however, if the DM prefers to use
even swaps (for reasons highlighted in Section 2), it
may be prudent to focus on learning the DM’s prefer-
ences rather than myopically trying to find the most
likely pair of alternatives such that one might domi-
nate the other.

Here we used a simple model for incorporating poten-
tial noise in a DM’s response to an even swap query;
it was chosen to enable conditions represented as in-
equalities. In future research, we envision more nu-
anced noise models accounting for cognitive effects
such as attribute conflict (e.g. Fischer et al. 2000,
Delquié 2003). Also, although we have used proba-
ble dominance to measure practical dominance, it re-
mains unclear how the metric would work for large
problems because it may be difficult for a DM to com-
pare any two arbitrary alternatives; note that compar-
ison queries are also subject to various cognitive biases
in general (e.g. Tversky et al. 1988, Tversky and Kah-
neman 1991). Finally, regarding the computations for
simulation, rejection sampling is sufficient when only
a few queries are asked in a single setting. If several
queries are asked back-to-back, efficient methods such
as hit and run sampling may be more effective.
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P. Delquié (1997) “Bi-matching”: A new preference as-
sessment method to reduce compatibility effects. Man-
agement Science, 43(5):640–658.
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Abstract

Crowdsourcing services like Amazon’s Mechan-
ical Turk have facilitated and greatly expedited
the manual labeling process from a large number
of human workers. However, spammers are often
unavoidable and the crowdsourced labels can be
very noisy. In this paper, we explicitly account
for four sources for a noisy crowdsourced label:
worker’s dedication to the task, his/her expertise,
his/her default labeling judgement, and sample
difficulty. A novel mixture model is employed
for worker annotations, which learns a prediction
model directly from samples to labels for effi-
cient out-of-sample testing. Experiments on both
simulated and real-world crowdsourced data sets
show that the proposed method achieves signifi-
cant improvements over the state-of-the-art.

1 INTRODUCTION

Supervised learning requires labels. However, the collec-
tion of labeled data from users is often expensive, tedious
and time-consuming. Recently, the use of crowdsourcing
allows this mundane process of obtaining manual labels
from a great number of human workers to be greatly expe-
dited. For example, in Amazon’s Mechanical Turk (AMT),
a “requester” can pose tasks known as HITs (Human In-
telligence Tasks). Workers then choose to complete any of
the existing HITs and get rewarded by a certain amount of
monetary payment set by the requester. Researchers in dif-
ferent areas, such as computer vision (Sorokin and Forsyth,
2008) and natural language processing (Snow et al., 2008),
have benefited from these crowdsourcing services and ac-
quired labels for large data sets.

However, in practice, the crowdsourced labels are often
noisy. On one hand, their quality depends on the labeling
task. For example, if the labeling task is not well designed
or not clearly described by the requester, the worker’s mo-
tivation to participate may decrease, and the noisy level of

the crowdsourced labels will increase (Zheng et al., 2011).
Moreover, different labeling tasks can have different diffi-
culties. If samples in one task are very challenging to anno-
tate, the obtained crowdsourced labels may be less reliable
(Whitehill et al., 2009; Yan et al., 2010; Zhou et al., 2012).
On the other hand, workers’ qualities can vary drastically
and lead to different noise levels in their annotations. For
example, their expertise differs due to their diverse knowl-
edge backgrounds (Whitehill et al., 2009; Welinder et al.,
2010). Moreover, their dedications to performing the task
can also greatly affect their annotation accuracies. In the
worst case, some workers may just randomly guess the
labels without actually looking at the samples (Welinder
et al., 2010). In particular, it is common to have “spam-
mers”, who provide wrong labels most of the time. The ex-
traction of “true” labels from a large pool of crowdsourced
labels is thus very important.

A popular and simple approach is to perform a majority
vote on workers. However, it implicitly assumes that all
workers are equally accurate, which is rarely the case in
practice. It can also be misleading when there is a sig-
nificant portion of spammers. To obtain a more accurate
consensus, a number of algorithms have been proposed
that model different aspects of the labeling noise (such as
worker expertise and sample difficulty) (Whitehill et al.,
2009; Welinder et al., 2010; Raykar and Yu, 2012; Liu
et al., 2012; Zhou et al., 2012). Interested readers are re-
ferred to the recent survey in (Sheshadri and Lease, 2013).
Yet, these models can only make estimations for samples
with crowdsourced labels. For out-of-sample testing (i.e.
prediction on an unseen test sample), the user has to first
crowdsource its labels before these algorithms can be run.

To alleviate this problem, one can build a prediction model
directly from the sample to the label. A popular approach
is the two-coin model (Raykar et al., 2010). It assumes that
each worker generates its label by flipping the ground-truth
label with a certain probability. Depending on whether the
true label being zero or one, the flipping probabilities are
in general different. A prediction model is then built on
the hidden “denoised” labels. This is further extended in
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Table 1: Comparison between the existing methods and ours.
prediction model

method from samples to labels worker expertise sample difficulty worker dedication
majority voting × × × ×

Whitehill et al. (2009) × X X ×
Welinder et al. (2010) × X × ×

Liu et al. (2012) × X × ×
Zhou et al. (2012) × X X ×

Raykar and Yu (2012) × X × ×
Raykar et al. (2010) X X × ×

Yan et al. (2010) X X X ×
Kajino et al. (2012) X X × ×
Kajino et al. (2013) X X × ×
proposed method X X X X

(Yan et al., 2010) by allowing the flipping probability to be
different from sample to sample. Another approach is to
formulate the crowdsourcing problem as a multitask learn-
ing problem (Evgeniou and Pontil, 2004). Each worker is
considered a task, and the final prediction model is a lin-
ear combination of the worker models (Kajino et al., 2012,
2013). However, this may not be robust when many work-
ers are spammers or incompetent.

In this paper, we propose a novel model for the generation
of crowdsourced labels. Specifically, we assume that the
label noise can come from four sources: (i) the worker is
not an expert; (ii) the worker is not dedicated to the task;
(iii) the worker’s default label judgement is incorrect; and
(iv) the sample is difficult. Note that some of these have
been considered in the literature (Table 1). Moreover, they
can be highly inter-correlated. For example, if a sample is
easy, even an uncommitted non-expert can output the cor-
rect label. On the other side, if the sample is very difficult,
even a dedicated expert can only rely on his default judge-
ment. If his prior knowledge happens to be incorrect, the
label will be wrong.

With these various factors, we employ a mixture model
for the worker annotation of the crowdsourced data. If the
worker is dedicated to the labeling task or if he considers
the sample as easy, the corresponding label is generated ac-
cording to his underlying decision function. Otherwise, the
label is generated based on his default labeling judgement.
To model sample difficulty, we use the usual intuition that
a sample is difficult if it is close to the worker’s underly-
ing decision boundary, and vice versa. Obviously, we do
not know in which way the worker generates the label of a
sample. For inference, we use the expectation maximiza-
tion (EM) algorithm (Dempster et al., 1977).

The rest of this paper is organized as follows. Sec-
tion 2 presents our worker annotation model, and Section 3
presents the inference procedure. Experiments are pre-
sented in Section 4, and the last section gives some con-
cluding remarks.

2 PROPOSED MODEL

In this paper, we assume that the crowdsourced task is a
binary classification problem, with T workers andN query
samples. The ith sample x(i) ∈ Rd is annotated by the set
of workers Si ⊆ {1, 2, . . . , T}. The annotation provided
by the tth worker (with t ∈ Si) is denoted y(i)t ∈ {0, 1}.

2.1 GENERATION OF GROUND TRUTH

We assume that for each sample x(i), its ground truth la-
bel y∗(i) ∈ {0, 1} is generated by a logistic regression
model with parameter w∗. In other words, y∗(i) follows
the Bernoulli distribution

p(y∗(i) = 1|w∗,x(i)) = σ(w∗Tx(i)), (1)

where σ(z) = 1/(1 + exp(−z)) is the logistic function. To
avoid over-fitting, we assume a normal prior on w∗:

w∗|γ ∼ N
(
0,

1

γ
I

)
,

where γ > 0 is a constant (in the experiments, this is tuned
by the validation set). Other priors can also be readily
added. For example, if w∗ is expected to be sparse, the
Laplace prior can be used instead.

As will be seen later, training the model only requires ac-
cess to the features but not the ground-truth labels. This
is more realistic in many crowdsourced applications, as the
features can often be readily extracted using standard un-
supervised feature extraction.

2.2 WORKER ANNOTATION: EXPERTISE AND
DEDICATION

For worker t, we assume that his failure in correctly anno-
tating x(i) is due to two reasons according to his dedica-
tion to the queried sample x(i). First, he may have tried
to annotate with the best effort, but still fails because his
expertise is not strong enough. We model this by assuming
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that worker t’s annotation y(i)t follows a similar Bernoulli
distribution as (1):

p(y
(i)
t = 1|wt,x

(i)) = σ(wT
t x

(i)), (2)

where wt is the worker’s “estimation” of w∗, and is sam-
pled from the following normal distribution

wt|w∗, δt ∼ N (w∗, δ2t I). (3)

A small δt means that wt is likely to be close to w∗, and
thus worker t is an expert, and vice versa. When no ad-
ditional information on the worker’expertise is available, a
uniform hyperprior on {δt}Tt=1 can be used.

The second reason for worker t’s failure in correctly anno-
tating x(i) is simply that he is not dedicated to the task and
has not even looked at x(i). In this case, he randomly an-
notates according to some default judgement. This can be
modeled by another Bernoulli distribution:

p(y
(i)
t = 1|bt) = bt, (4)

where bt ∈ [0, 1]. Again, when no additional information
on the worker’s default labeling judgement are available, a
uniform prior on {bt}Tt=1 will be used.

Combining these two causes, we have

p(y
(i)
t |x(i),wt, bt, z

(i)
t )

= p(y
(i)
t |x(i),wt)

z
(i)
t p(y

(i)
t |bt)(1−z

(i)
t ), (5)

where z(i)t ∈ {0, 1} determines whether (3) or (4) should be
used to generate y(i)t . Intuitively, an expert worker should
have an accurate prediction model (δt is small), and be ded-
icated to the task (z(i)t = 1 on most x(i)’s); whereas a
spammer either has a large δt or z(i)t = 0 most of the time.

2.3 INCORPORATING SAMPLE DIFFICULTY

The difficulty of a sample can greatly affect the annotation
quality (Whitehill et al., 2009; Yan et al., 2010; Zhou et al.,
2012). If a sample is vaguely described or too hard, even
an expert may have to make a random guess and thus acts
as if he has not looked at the sample. On the contrary, if
a sample is very easy, even a spammer (especially the lazy
ones) can quickly make a correct decision.

To model this effect on worker t, we incorporate the diffi-
culty of x(i) into the modeling of z(i)t . Intuitively, if x(i) is
difficult to annotate, z(i)t should be close to 0. From (5), the
annotation made is then independent of the decision model
of worker t. To measure sample difficulty, we use the pop-
ular notion that worker t will perceive x(i) as difficult if it
is close to his decision boundary (Tong and Koller, 2002;
Dong et al., 2013; Welinder et al., 2010). Thus, we arrive
at the following Bernoulli distribution on z(i)t :

p(z
(i)
t = 1|x(i),wt, λt) = 2σ

(
λt
‖wt

Tx(i)‖2
‖wt‖2

)
−1. (6)

Here, ‖wt
Tx(i)‖
‖wt‖ is the distance of x(i) from worker t’s de-

cision boundary wt
Tx = 0, and λt ≥ 0 models the sen-

sitivity of worker t’s annotation to sample difficulty. De-
pending on each worker’s expertise (as reflected by his wt),
one worker may consider sample x(i) difficult while an-
other worker may consider it easy. Moreover, a small λt
makes an easy sample (with a large ‖wt

Tx(i)‖
‖wt‖ ) look diffi-

cult and worker t will rely more on his default judgement,
and vice versa. As we are only interested in the value of
λt
‖wtTx(i)‖2
‖wt‖2 in (6), to simplify inference, we reparameter-

ize (6) as

p(z
(i)
t = 1|x(i),wt, λt) = 2σ(λt‖wt

Tx(i)‖2)− 1. (7)

After obtaining wt, the sensitivity of worker t’s annotation
to sample difficulty can be recovered as λt‖wt‖2.

A graphical model representation for the complete model
is shown in Figure 1.

True Labels 

Workers 

𝑇 

|𝑆𝑖| 𝑁 

   𝑥(𝑖)   𝑦𝑡
(𝑖)

 

  𝒘𝑡   𝑏𝑡 

  𝑧𝑡
(𝑖)

 

  𝒘∗ 

  𝑦∗ 

  𝛿𝑡 

Crowdsourced Labels Samples 𝑁 

 𝛾 

 𝜆𝑡 

Figure 1: The proposed model incorporating sample diffi-
culty and two sources for worker annotation.

2.4 EXTENSIONS

When the crowdsourced task is a multiclass classification
problem, one can simply replace the Bernoulli distribution
with a multinomial distribution. Similarly, for regression
problems, the normal distribution can be used instead.

For ease of exposition, we use the linear logistic regres-
sion model in (1) and (2). This has also been used in
most previous works (Raykar et al., 2010; Kajino et al.,
2012). It can be easily replaced by any binary classifier.
For example, to use a nonlinear kernelized version, one
can replace w∗Tx(i) in (1) by

∑N
j=1 α

∗(j)k(x(j),x(i)),
where k(·, ·) is an appropriate kernel function. Similarly,
wT
t x

(i) in (2) is replaced by
∑N
j=1 α

(j)
t k(x(j),x(i)), where

αt = [α
(1)
t , . . . , α

(N)
t ] serves as worker t’s “estimation”
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of the ground truth α∗ = [α∗(1), . . . , α∗(N)]T . Analo-
gous to (3), we can assume that each αt is sampled from
N (α∗, δ2t I).

3 INFERENCE

In this section, we use the Expectation Max-
imization (EM) algorithm (Dempster et al.,
1977) to obtain the model parameters 1 Θ =
{w∗, {wt}Tt=1, {δt}Tt=1, {bt}Tt=1, {λt}Tt=1}. Let the
samples X = {x(1), . . . ,x(N)} be independent. By
treating Y = {y(i)t } as the observed data and Z = {z(i)t }
as the missing data, the complete data likelihood can be
written as

L(Y,Z)

= p(Y,Z|X,Θ)

= p(Y|Z,X, {wt, bt}Tt=1)p(Z|X, {wt, λt}Tt=1)

=
N∏

i=1

∏

t∈Si
p(y

(i)
t |z(i)t ,wt,x

(i), bt)p(z
(i)
t |wt,x

(i), λt),(8)

by assuming that the workers annotate independently. The
posterior of Θ is then

p(w∗, {wt}Tt=1, {δt}Tt=1, {λt}Tt=1, {bt}Tt=1|X,Y,Z)

∝L(Y,Z)p(w∗)
T∏

t=1

p(wt|w∗, δt)p(δt)p(λt)p(bt).(9)

3.1 E-STEP

Taking the log of (8), we have

logL(Y,Z)

=

N∑

i=1

∑

t∈Si

(
z
(i)
t log p(y

(i)
t |wj ,x

(i))p(z
(i)
t = 1|wt,x

(i), λt)

+(1− z(i)t ) log p(y
(i)
t |bt)p(z(i)t = 0|wt,x

(i), λt)
)
.

The expected value of z(i)t , denoted z̄(i)t , is

z̄
(i)
t =

1

Q
(i)
t

p(y
(i)
t |wt,x

(i))p(z
(i)
t = 1|wt,x

(i), λt),

where Q(i)
t = p(z

(i)
t = 1|wt,x

(i), λt)p(y
(i)
t |wt,x

(i)) +

p(z
(i)
t = 0|wt,x

(i), λt)p(y
(i)
t |bt).

As can be seen, whether z̄(i)t is close to 1 is affected by
both the sample difficulty (i.e., p(z(i)t = 1|wt,x

(i), λt))
and the confidence of y(i)t generated from the current esti-
mated function wt (i.e., p(y(i)t |wt,x

(i))).
1In the kernelized version, Θ =

{α∗, {αt}Tt=1, {δt}Tt=1, {bt}Tt=1, {λt}Tt=1} and the EM proce-
dure is similar. In particular, the M-step updatesα∗ and {αt}Tt=1

as w∗ and {wt}Tt=1.

3.2 M-STEP

Here, we use alternating minimization. At each step, one
variable is minimized while the other variables are fixed.

• wt’s: From (9), the various wt’s can be learned inde-
pendently. The optimization subproblem for wt is

minwt

1

δ2t
‖wt−w∗‖2−

∑

i:t∈Si

(
z̄
(i)
t y

(i)
t log σ(wT

t x
(i))

+z̄
(i)
t (1− y(i)t ) log(1− σ(wT

t x
(i))

+z̄
(i)
t log(2σ(λt‖wt

Tx(i)‖2)− 1)

+(1− z̄(i)t ) log(2− 2σ(λt‖wt
Tx(i)‖2))

)
.

This can be maximized by gradient descent, and the
gradient w.r.t. wt is

2

δ2t
(wt −w∗)−

∑

i:t∈Si

(
z̄
(i)
t (y

(i)
t − σ(wT

t x
(i)))x(i)

+
(z̄

(i)
t −2σ(v

(i)
t )+1)σ(v

(i)
t )λtwt

Tx(i)x(i)

2σ(v
(i)
t )− 1

)
,

where v(i)t = λt‖wt
Tx(i)‖2.

• w∗: The optimization subproblem for w∗ is

min
w∗

T∑

t=1

1

δ2t
‖wt −w∗‖2 + γ‖w∗‖2,

with the closed-form solution

w∗ =

∑T
t=1

1
δ2t
wt

γ +
∑T
t=1

1
δ2t

. (10)

Note that w∗ is a weighted average of all the wt’s,
with contributions from the experts (those with small
δt’s) weighted heavier.

• δt: The optimization subproblem for δt is

min
δt

1

δ2t
‖wt −w∗‖2 + log det(δ2t I)

= min
δt

1

δ2t
‖wt −w∗‖2 + 2d log δt,

where I is the d× d identity matrix, and d is the num-
ber of input features. By setting its derivative w.r.t. δt
to 0, we obtain

δt =
1√
d
‖wt −w∗‖.

• bt: The optimization subproblem is

max
bt

∑

i:t∈Si
(1− z̄(i)t )(y

(i)
t log bt+(1− y(i)t )log(1− bt)).
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By setting its derivative w.r.t. bt to 0, we have

∑

i:t∈Si
(1− z̄(i)t )

(
y
(i)
t

bt
− 1− y(i)t

1− bt

)
= 0.

Rearranging gives the closed-form solution

bt =

∑
i:t∈Si(1− z̄

(i)
t )y

(i)
t∑

i:t∈Si(1− z̄
(i)
t )

.

Recall that z̄(i)t ∈ [0, 1] is the expectation of y(i)t gen-
erated by worker t’s default judgement. Hence, bt is
simply the average of worker t’s labels that are gener-
ated by his default judgement.

• {λt}Tt=1: The optimization subproblem is

maxλt
∑

i:t∈Si
z̄
(i)
t log(2σ(λt‖wt

Tx(i))‖2)− 1)

+(1−z̄(i)t )log(2−2σ(λt‖wt
Tx(i)‖2)).

Again, this can be solved by projected gradient (as
λt ≥ 0), with the gradient w.r.t. λt given by

∑

i:t∈Si

(z̄
(i)
t −2σ(v

(i)
t )+1)σ(v

(i)
t )‖wt

Tx(i)‖2

2σ(v
(i)
t )− 1

.

4 EXPERIMENTS

In this section, we perform two sets of experiments to
evaluate the performance of the proposed method. Sec-
tion 4.2 simulates a crowdsourced environment with syn-
thetic workers using a standard benchmark data set; while
Section 4.3 uses data sets with real labels crowdsourced
from the AMT.

4.1 SETUP

The proposed model will be compared with the following
groups of algorithms:

1. Algorithms that learn prediction models directly from
samples to labels (Table 1). In particular, we will com-
pare with

• MTL: The multitask formulation in (Kajino et al.,
2012). Each worker is considered as a task, and
the prediction model is a rescaled average of all
the learned worker models.

• RY: The two-coin model in (Raykar et al., 2010).
It considers the annotation generated by flipping
the ground truth label with a certain biased prob-
ability.

• YAN: This model is proposed in (Yan et al.,
2010), and an extension of (Raykar et al., 2010).
Its flipping probability is sample-specific and
varies with sample difficulty. However, unlike
ours, it does not have a clear connection with the
worker’s decision function.

2. Algorithms that do not learn a prediction model from
samples to labels (Table 1). In particular, we will com-
pare with

• GLAD (Whitehill et al., 2009) 2: It models each
sample’s difficulty level and each worker’s exper-
tise.

• CUBAM (Welinder et al., 2010) 3:: It considers
sample competence, worker expertise and bias.

• MV : Majority voting, a popular baseline which
essentially treats all the workers as equally accu-
rate.

For prediction on an unseen test sample, these algo-
rithms have to first crowdsource its labels. To avoid
this problem, we will proceed as follows: (i) Estimate
the “true” labels of the training samples using each
of these algorithms; (ii) Use the estimated labels to
train a logistic regression model; (iii) Use the trained
regression model to make predictions on the test sam-
ples.

3. We also include an ideal baseline (Ideal), which is
a logistic regression model trained using the training
samples with ground truth labels.

For performance evaluation, we follow (Raykar et al.,
2010) and report the area under ROC curve (AUC). The
ROC curve is obtained by varying the prediction thresh-
old. Parameters in all the models are tuned by a valida-
tion set (which is constructed by using 20% of the training
data). With the chosen parameters, a prediction model is
then learned using all the training data.

4.2 UCI DATA SET

Following (Kajino et al., 2012), we use the red wine data in
the UCI Wine-Quality data set4. There are a total of 1,599
samples, each with 11 features. The original multiclass la-
bels are binarized such that samples with quality levels be-
low 7 are labeled as 0, and 1 otherwise. 70% of the samples
are randomly chosen for training, and the remaining 30%
for testing. To reduce statistical variability, results are av-
eraged over 5 repetitions.

2Code is from http://mplab.ucsd.edu/˜jake/
3Code is from http://www.vision.caltech.edu/

welinder/cubam.html
4http://archive.ics.uci.edu/ml/datasets/

Wine+Quality
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Table 2: Testing AUCs on the wine data set. The best results and those that are not statistically worse (according to the
paired t-test with p-value less than 0.05) are in bold.

#workers proposed MTL RY YAN GLAD CUBAM MV Ideal

set 1 20 0.81 ± 0.01 0.79 ± 0.04 0.38 ± 0.04 0.49 ± 0.03 0.52 ± 0.02 0.66 ± 0.05 0.48 ± 0.06 0.87 ± 0.02
40 0.79 ± 0.01 0.75 ± 0.07 0.51 ± 0.01 0.53 ± 0.03 0.51 ± 0.03 0.58 ± 0.04 0.34 ± 0.02 0.87 ± 0.03

set 2 20 0.81 ± 0.01 0.80 ± 0.01 0.50 ± 0.03 0.49 ± 0.03 0.49 ± 0.05 0.52 ± 0.04 0.49 ± 0.01 0.87 ± 0.01
40 0.73 ± 0.04 0.76 ± 0.02 0.49 ± 0.01 0.50 ± 0.03 0.50 ± 0.03 0.54 ± 0.03 0.50 ± 0.03 0.79 ± 0.02

set 3 20 0.80 ± 0.01 0.82 ± 0.01 0.80 ± 0.03 0.78 ± 0.03 0.84 ± 0.05 0.84 ± 0.04 0.48 ± 0.03 0.84 ± 0.01
40 0.80 ± 0.04 0.82 ± 0.02 0.80 ± 0.01 0.76 ± 0.04 0.84 ± 0.05 0.84 ± 0.03 0.59 ± 0.03 0.85 ± 0.02

4.2.1 Generation of Labels

We generate three sets of simulated crowdsourced labels
based on different model assumptions:

• Set 1: The crowdsourced labels are generated using
the proposed annotation process. The “optimal” w∗

is obtained by training a logistic regression model on
all the training and test samples. We generate differ-
ent numbers (20 and 40) of noisy workers. For each
worker, we generate wt as in (3) with different set-
tings of δt’s:

1. 1
4 of the workers have δt = 10 (high expertise);

2. 1
2 of the workers have δt = 100 (moderate exper-
tise); and

3. 1
4 of the workers have δt = 1000 (low expertise).

Sample difficulty is generated as in Section 2.3:

1. For the expert workers, we set λt = 10, 000, and
so most of the samples appear easy;

2. For workers with moderate expertise, set λt =
100; and

3. For workers with low expertise, set λt = 1 (and
so most of the samples appear difficult).

For each sample i, we set z(i)t = 1 with probability
given in (7). If z(i)t = 1, y(i)t is labeled 1 with proba-
bility defined in (2); otherwise, y(i)t is always labeled
1 (i.e., bt in (4) is set to 1).

In summary, 1
4 of the workers are experts, 1

2 of them
are non-experts but not very noisy; while the remain-
ing 1

4 are very noisy workers.

• Set 2: The crowdsourced labels are generated using
the MTL assumption in (Kajino et al., 2012). Specif-
ically, from the wt generated in Set 1, we generate
y
(i)
t = 1 with probability σ(wT

t x
(i)).

• Set 3: The crowdsourced labels are generated using
the two-coin assumption in (Raykar et al., 2010). For
worker t, let αt (resp. βt) be the probability that a
ground truth label with value 1 (resp. 0) is flipped.

1. For 1
4 of the workers, we set αt = βt = 0.05

(experts);
2. For 1

2 of the workers, set αt = βt = 0.25 (non-
experts but not very noisy); and

3. For 1
4 of the workers, set αt = βt = 0.55 (very

noisy workers).

4.2.2 Results on ROC Curves

Figure 2 shows the obtained testing ROC curves (with each
point averaged over the five repetitions). The correspond-
ing averaged AUC values are shown in Table 2. As can
be seen, the proposed model performs well under various
noise generation scenarios.

On Set 1, since the labels are generated using the proposed
annotation process, the proposed method performs signifi-
cantly better than the others as expected. MTL is the second
best, as it also builds a prediction model for each worker.
RY, YAN, GLAD, CUBAM and MV perform poorly, as
their model assumptions are very different from the under-
lying data generation process.

On Set 2, MTL is the best. The proposed model also yields
comparable performance; while the others do not perform
well.

On Set 3, MTL, RY, GLAD, CUBAM and the proposed
method have comparable performance. Their performance
gaps with Ideal are also quite small, which is consistent
with the results in (Kajino et al., 2012). As various methods
can perform well here, it suggests that the noise generated
by the two-coin model is easier to remove than those in the
previous two settings.

4.2.3 Separating Experts from Noisy Workers

In this section, we examine the proposed model’s ability to
separate experts from noisy workers using the two criteria:
worker expertise and worker dedication. Because of the
lack of space, we will only show results (averaged over the
5 repetitions) on Set 1.

First, we check if the proposed model can detect workers
with high expertise. Figures 3(a) and 3(b) show the contri-
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bution of wt in w∗ in (10) (i.e., 1
δ2t
/(γ +

∑
j

1
δ2j

)). As can
be seen, all the nonzero contributions are from the experts,
while the other workers are barely used.

Next, we check if the proposed model can find the dedi-
cated workers. Recall that for experts, most of his z(i)t ’s
should be close to 1; while most of the z

(i)
t ’s for non-

dedicated workers are close to 0. Figures 3(c) and 3(d)
show the value of ẑt =

∑
i:t∈Si z̄

(i)
t for each worker. As

expected, the ẑ’s of experts are large; while those of the
others are usually much smaller (especially for the noisy
workers).
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(a) Set 1 (20 workers).
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(b) Set 1 (40 workers).
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(c) Set 2 (20 workers).
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(d) Set 2 (40 workers).
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(e) Set 3 (20 workers).
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(f) Set 3 (40 workers).

Figure 2: Testing ROC curves on the wine data set.

4.3 DATA SETS CROWDSOURCED FROM AMT

4.3.1 Data Collection and Feature Extraction

For better performance evaluation, it is desirable for the
data set to satisfy the following three conditions: (i) It is
labeled by a sufficient number of workers so that workers
with different expertise and dedications are all involved;
(ii) Each worker labels a sufficient amount of data so that
one can reliably model the annotating behavior of each
worker ; (iii) The ground truth labels are provided. To
our best knowledge, very few crowdsourced data sets meet
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Figure 3: Worker expertise and worker dedication on the
Set 1 data. 3(a) and 3(b): Contribution of each worker t
towards w∗ ( 1

δ2t
/(γ +

∑
j

1
δ2j

)). 3(c) and 3(d): Average ẑ’s
of the workers. Columns in red/blue/green correspond to
experts/non-experts/noisy workers. In 3(a) and 3(c): work-
ers 1-5 are experts; 6-15 are non-experts; and 16-20 are
noisy workers. In 3(b) and 3(d): workers 1-10 are experts;
11-30 are non-experts ; and 31-40 are noisy workers.

all these requirements. Thus, in the following, we build a
crowdsourced data set based on the Stanford Dog data set5

(Khosla et al., 2011). It contains images of 120 breeds (cat-
egories) of dogs collected from the ImageNet6 (Deng et al.,
2009).

For an image, its raw pixel representation is very high-
dimensional and also sensitive to image changes such as
scales, object locations, illuminations. Consequently, vari-
ous image features have been studied by the computer vi-
sion community to better represent the image from low
level (e.g. SIFT (Lowe, 1999)) to mid-level descriptors
(Wang et al., 2012). In this experiment, we extract 4,096-
dimensional features from images using the DeCAF (deep
convolutional activation feature) algorithm (Donahue et al.,
2014). These features are outputs from the intermediate
layers of a pre-trained deep convolutional neural network
(Krizhevsky et al., 2012). It has been shown that they can
be used as generic representations for various vision tasks,
and have achieved good performance even when combined
with simple linear classifiers (Donahue et al., 2014).

5http://vision.stanford.edu/aditya86/
ImageNetDogs/

6http://www.image-net.org/
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Chihuahua Japanese spaniel Maltese dog Pekinese Shih-Tzu Blenheim spaniel Papillon Toy terrier Rhodesian ridgeback Afghan hound 

Figure 4: Sample images of the 10 dog categories.

4.3.2 Setup

We select the 10 categories that are most difficult to classify
(Khosla et al., 2011) (Figure 4). For each category, images
belonging to this category are taken as positive samples;
while images from the other categories are treated as nega-
tive samples. Some statistics of the data sets are shown in
Table 3. The constructed data sets are then randomly split
into HITs on the AMT. Each HIT contains 50 images and
is labeled by 6 workers. There are a total of 65 HITS and
21 workers over the 10 categories.

Table 3: Statistics on the dog data sets.

data set #positive #negative avg #samples
sample sample per worker

Chihuahua 142 157 85
Japanese spaniel 142 157 85

Maltese dog 142 163 85
Pekinese 142 163 85
Shih-Tzu 142 157 83

Blenheim spaniel 142 207 89
Papillon 142 175 92

Toy terrier 142 175 86
Rhodesian ridgeback 142 207 88

Afghan hound 142 207 89

For each category, we randomly use 50% of the samples
for training, and the rest for testing. To reduce statistical
variability, results are averaged over 5 repetitions.

4.3.3 Results on ROC Curves

The ROC curves are shown in Figure 5, and the correspond-
ing AUC values in Table 4. As can be seen, the proposed
method yields the highest AUC on all 10 categories. It is
then followed by CUBAM, GLAD, RY and YAN, which are
very competitive on some categories. MTL can sometimes
achieve good performance (e.g., Blenheim spaniel), but are
often much inferior. Overall, the simple MV is the worst.

4.3.4 Experts vs Noisy Workers

As in Section 4.2.3, we examine the obtained δt’s and z̄t’s
on the Chihuahua, Japanese spaniel and Maltese dog cat-
egories. As the real experts and noisy workers are not
known, we assume that workers with high overall accura-
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(b) Japanese spaniel.
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(c) Maltese dog.
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(d) Pekinese.
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(e) Shih-Tzu.
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(f) Blenheim spaniel.
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(g) Papillon.
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(h) Toy terrier.
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(i) Rhodesian ridgeback.
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(j) Afghan hound.

Figure 5: Testing ROC curves of the dog data sets.
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Table 4: Testing AUCs on the dog data sets. The best results and those that are not statistically worse (according to the
paired t-test with p-value less than 0.05) are in bold.

data set proposed MTL RY YAN GLAD CUBAM MV Ideal
Chihuahua 0.92 ± 0.02 0.67 ± 0.01 0.88 ± 0.04 0.74 ± 0.08 0.76 ± 0.06 0.90 ± 0.02 0.58 ± 0.11 0.94 ± 0.02

Japanese spaniel 0.83 ± 0.01 0.57 ± 0.01 0.80 ± 0.03 0.84 ± 0.04 0.75 ± 0.04 0.85 ± 0.03 0.60 ± 0.05 0.92 ± 0.01
Maltese dog 0.90 ± 0.01 0.62 ± 0.05 0.85 ± 0.02 0.82 ± 0.03 0.76 ± 0.05 0.87 ± 0.03 0.43 ± 0.02 0.93 ± 0.02

Pekinese 0.73 ± 0.05 0.53 ± 0.02 0.60 ± 0.03 0.58 ± 0.04 0.72 ± 0.05 0.72 ± 0.03 0.56 ± 0.09 0.92 ± 0.01
Shih-Tzu 0.90 ± 0.02 0.85 ± 0.03 0.87 ± 0.04 0.93 ± 0.03 0.77 ± 0.03 0.88 ± 0.03 0.35 ± 0.08 0.94 ± 0.03

Blenheim spaniel 0.78 ± 0.03 0.78 ± 0.03 0.74 ± 0.02 0.69 ± 0.05 0.69 ± 0.07 0.77 ± 0.03 0.45 ± 0.03 0.93 ± 0.03
Papillon 0.83 ± 0.03 0.74 ± 0.07 0.70 ± 0.05 0.74 ± 0.04 0.66 ± 0.04 0.72 ± 0.04 0.53 ± 0.06 0.90 ± 0.03

Toy terrier 0.79 ± 0.02 0.75 ± 0.01 0.76 ± 0.03 0.76 ± 0.03 0.73 ± 0.02 0.79 ± 0.04 0.51 ± 0.05 0.89 ± 0.03
Rhodesian ridgeback 0.86 ± 0.04 0.85 ± 0.03 0.79 ± 0.02 0.78 ± 0.02 0.73 ± 0.05 0.79 ± 0.04 0.50 ± 0.05 0.92 ± 0.01

Afghan hound 0.85 ± 0.02 0.83 ± 0.02 0.76 ± 0.01 0.77 ± 0.01 0.73 ± 0.04 0.81 ± 0.04 0.47 ± 0.05 0.93 ± 0.01

cies (that are computed based on both the training and test
samples) are experts. In Figures 6(a),(c) and (e), we first
plot the overall accuracies versus average weighting of the
workers ( 1

δ2t
/(γ +

∑
j

1
δ2j

)) over five repetitions. As can be
seen, workers with high weights, which are detected as ex-
perts in our model, generally have high overall accuracies.
Next, we plot the overall accuracies versus average ẑt’s of
the workers over five repetitions (Figures 6(b),(d) and (e)).
Workers with high average ẑt’s are detected as dedicated
workers and those with low average ẑt’s as lazy workers.
As shown, the detected dedicated workers generally have
high overall accuracies.

5 CONCLUSION

In this paper, we proposed a new model for crowdsourced
labels that can perform out-of-sample prediction effec-
tively. We observe that the worker’s expertise and dedica-
tion to the task greatly affect the labeling process. We em-
ployed a mixture of distributions to model the annotation
process: one models the worker’s expertise and the other
one depicts worker’s labeling judgement with his random
guess. We showed that this model can be easily extended
to account for sample difficulty. The proposed model can
be solved by the simple EM algorithm. Experiments on
both UCI and real-world crowdsourced data sets demon-
strate that the proposed method has significant improve-
ments over other state-of-the-art approaches.
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Figure 6: Results on the Chihuahua, Japanese spaniel and
Maltese dog data sets. Figures 6(a), 6(c) and 6(e): Overall
accuracies vs average weighting of the workers ( 1

δ2t
/(γ +∑

j
1
δ2j

)); Figures 6(b),6(d) and 6(f): Overall accuracies vs

average ẑ(i)t ’s of all workers.
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Abstract

We analyze variational inference for highly sym-
metric graphical models such as those arising
from first-order probabilistic models. We first
show that for these graphical models, the tree-
reweighted variational objective lends itself to a
compact lifted formulation which can be solved
much more efficiently than the standard TRW
formulation for the ground graphical model.
Compared to earlier work on lifted belief prop-
agation, our formulation leads to a convex op-
timization problem for lifted marginal inference
and provides an upper bound on the partition
function. We provide two approaches for im-
proving the lifted TRW upper bound. The
first is a method for efficiently computing maxi-
mum spanning trees in highly symmetric graphs,
which can be used to optimize the TRW edge ap-
pearance probabilities. The second is a method
for tightening the relaxation of the marginal poly-
tope using lifted cycle inequalities and novel ex-
changeable cluster consistency constraints.

1 Introduction

Lifted probabilistic inference focuses on exploiting sym-
metries in probabilistic models for efficient inference [5,
2, 3, 10, 17, 18, 21]. Work in this area has demonstrated
the possibility to perform very efficient inference in highly-
connected, large tree-width, but symmetric models, such as
those arising in the context of relational (first-order) proba-
bilistic models and exponential family random graphs [19].
These models also arise frequently in probabilistic pro-
gramming languages, an area of increasing importance as
demonstrated by DARPA’s PPAML program (Probabilistic
Programming for Advancing Machine Learning).

Even though lifted inference can sometimes offer order-of-
magnitude improvement in performance, approximation is
still necessary. A topic of particular interest is the interplay
between lifted inference and variational approximate infer-

ence. Lifted loopy belief propagation (LBP) [13, 21] was
one of the first attempts at exploiting symmetry to speed
up loopy belief propagation; subsequently, counting be-
lief propagation (CBP) [16] provided additional insights
into the nature of symmetry in BP. Nevertheless, these
work were largely procedural and specific to the choice of
message-passing algorithm (in this case, loopy BP). More
recently, Bui et al., [3] proposed a general framework for
lifting a broad class of convex variational techniques by
formalizing the notion of symmetry (defined via automor-
phism groups) of graphical models and the corresponding
variational optimization problems themselves, independent
of any specific methods or solvers.

Our goal in this paper is to extend the lifted variational
framework in [3] to address the important case of approxi-
mate marginal inference. In particular, we show how to lift
the tree-reweighted (TRW) convex formulation of marginal
inference [28]. As far as we know, our work presents the
first lifted convex variational marginal inference, with the
following benefits over previous work: (1) a lifted con-
vex upper bound of the log-partition function, (2) a new
tightening of the relaxation of the lifted marginal poly-
tope exploiting exchangeability, and (3) a convergent infer-
ence algorithm. We note that convex upper bounds of the
log-partition function immediately lead to concave lower
bounds of the log-likelihood which can serve as useful sur-
rogate loss functions in learning and parameter estimation
[29, 13].

To achieve the above goal, we first analyze the symmetry
of the TRW log-partition and entropy bounds. Since TRW
bounds depend on the choice of the edge appearance prob-
abilities ⇢, we prove that the quality of the TRW bound
is not affected if one only works with suitably symmet-
ric ⇢. Working with symmetric ⇢ gives rise to an explicit
lifted formulation of the TRW optimization problem that is
equivalent but much more compact. This convex objective
function can be convergently optimized via a Frank-Wolfe
(conditional gradient) method where each Frank-Wolfe it-
eration solves a lifted MAP inference problem. We then
discuss the optimization of the edge-appearance vector ⇢,
effectively yielding a lifted algorithm for computing maxi-
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mum spanning trees in symmetric graphs.

As in Bui et al.’s framework, our work can benefit from
any tightening of the local polytope such as the use of cy-
cle inequalities [1, 23]. In fact, each method for relaxing
the marginal polytope immediately yields a variant of our
algorithm. Notably, in the case of exchangeable random
variables, radically sharper tightening (sometimes even ex-
act characterization of the lifted marginal polytope) can be
obtained via a set of simple and elegant linear constraints
which we call exchangeable polytope constraints. We pro-
vide extensive simulation studies comparing the behaviors
of different variants of our algorithm with exact inference
(when available) and lifted LBP demonstrating the advan-
tages of our approach. The supplementary material [4] pro-
vides additional proof and algorithm details.

2 Background

We begin by reviewing variational inference and the tree-
reweighted (TRW) approximation. We focus on in-
ference in Markov random fields, which are distribu-
tions in the exponential family given by Pr(x; ✓) =
exp {h�(x), ✓i �A(✓)}, where A(✓) is called the log-
partition function and serves to normalize the distribution.
We assume that the random variables x 2 X n are discrete-
valued, and that the features (�i), i 2 I factor according
to the graphical model structure G; � can be non-pairwise
and is assumed to be overcomplete. This paper focuses
on the inference tasks of estimating the marginal proba-
bilities p(xi) and approximating the log-partition function.
Throughout the paper, the domain X is the binary domain
{0, 1}, however, except for the construction of exchange-
able polytope constraints in Section 6, this restriction is not
essential.

Variational inference approaches view the log-partition
function as a convex optimization problem over the
marginal polytope A(✓) = supµ2M(G)hµ, ✓i � A⇤(µ) and
seek tractable approximations of the negative entropy A⇤

and the marginal polytope M [27]. Formally, �A⇤(µ) is
the entropy of the maximum entropy distribution with mo-
ments µ. Observe that�A⇤(µ) is upper bounded by the en-
tropy of the maximum entropy distribution consistent with
any subset of the expected sufficient statistics µ. To arrive
at the TRW approximation [26], one uses a subset given
by the pairwise moments of a spanning tree1. Hence for
any distribution ⇢ over spanning trees, an upper bound on
�A⇤ is obtained by taking a convex combination of tree en-
tropies�B⇤(⌧, ⇢) =

P
s2V (G) H(⌧s)�

P
e2E(G) I(⌧e)⇢e.

Since ⇢ is a distribution over spanning trees, it must belong
to the spanning tree polytope T(G) with ⇢e denoting the
edge appearance probability of e. Combined with a relax-
ation of the marginal polytope OUTER � M, an upper

1If the original model contains non-pairwise potentials, they
can be represented as cliques in the graphical model, and the
bound based on spanning trees still holds.

bound B of the log-partition function is obtained:

A(✓)  B(✓, ⇢) = sup
⌧2OUTER(G)

h⌧, ✓i �B⇤(⌧, ⇢) (1)

We note that B⇤ is linear w.r.t. ⇢, and for ⇢ 2 T(G), B⇤ is
convex w.r.t. ⌧ . On the other hand, B is convex w.r.t. ⇢ and
✓.

The optimal solution ⌧⇤(⇢, ✓) of the optimization problem
(1) can be used as an approximation to the mean param-
eter µ(✓). Typically, the local polytope LOCAL given by
pairwise consistency constraints is used as the relaxation
OUTER; in this paper, we also consider tightening of the
local polytope.

Since (1) holds with any edge appearance ⇢ in the spanning
tree polytope T, the TRW bound can be further improved
by optimizing ⇢

inf
⇢2T(G)

B(✓, ⇢) (2)

The resulting ⇢⇤ is then plugged into (1) to find the
marginal approximation. In practice, one might choose to
work with some fixed choice of ⇢, for example the uniform
distribution over all spanning trees. [14] proposed using
the most uniform edge-weight arg inf⇢2T(G)

P
e2E(⇢e �

|V |�1
|E| )2 which can be found via conditional gradient where

each direction-finding step solves a maximum spanning
tree problem.

Several algorithms have been proposed for optimizing the
TRW objective (1) given fixed edge appearance probabil-
ities. [27] derived the tree-reweighted belief propagation
algorithm from the fixed point conditions. [8] show how
to solve the dual of the TRW objective, which is a geomet-
ric program. Although this algorithm has the advantage of
guaranteed convergence, it is non-trivial to generalize this
approach to use tighter relaxations of the marginal poly-
tope, which we show is essential for lifted inference. [14]
use an explicit set of spanning trees and then use dual de-
composition to solve the optimization problem. However,
as we show in the next section, to maintain symmetry it is
essential that one not work directly with spanning trees but
rather use symmetric edge appearance probabilities. [23]
optimize TRW over the local and cycle polytopes using a
Frank-Wolfe (conditional gradient) method, where each it-
eration requires solving a linear program. We follow this
latter approach in our paper.

To optimize the edge appearance in (2), [26] proposed us-
ing conditional gradient. They observed that @B(✓,⇢)

@⇢e
=

�@B⇤(⌧⇤,⇢)
@⇢e

= �I(⌧⇤e ) where ⌧⇤ is the solution of (1). The
direction-finding step in conditional gradient reduces to
solving sup⇢2Th⇢, Ii, again equivalent to finding the maxi-
mum spanning tree with edge mutual information I(⌧⇤e ) as
weights. We discuss the corresponding lifted problem in
section 5.
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3 Lifted Variational Framework

We build on the key element of the lifted variational frame-
work introduced in [3]. The automorphism group of a
graphical model, or more generally, an exponential family
is defined as the group A of permutation pairs (⇡, �) where
⇡ permutes the set of variables and � permutes the set of
features in such a way that they preserve the feature func-
tion: ��

�1

(x⇡) = �(x). Note that this construction of A
is entirely based on the structure of the model and does not
depend on the particular choice of the model parameters;
nevertheless the group stabilizes2 (preserves) the key char-
acteristics of the exponential family such as the marginal
polytope M, the log-partition A and entropy �A⇤.

As shown in [3] the automorphism group is particularly
useful for exploiting symmetries when parameters are tied.
For a given parameter-tying partition � such that ✓i = ✓j

for i, j in the same cell3 of �, the group A gives rise to
a subgroup called the lifting group A� that stabilizes the
tied-parameter vector ✓ as well as the exponential family.
The orbit partition of the the lifting group can be used to
formulate equivalent but more compact variational prob-
lems. More specifically, let ' = '(�) be the orbit parti-
tion induced by the lifting group on the feature index set
I = {1 . . . m}, let Rm

['] denote the symmetrized subspace
{r 2 Rm s.t. ri = rj 8i, j in the same cell of '} and de-
fine the lifted marginal polytope M['] as M \ Rm

['], then
(see Theorem 4 of [3])

sup
µ2M

h✓, µi �A⇤(µ) = sup
µ2M[']

h✓, µi �A⇤(µ) (3)

In practice, we need to work with convex variational ap-
proximations of the LHS of (3) where M is relaxed to an
outer bound OUTER(G) and A⇤ is approximated by a con-
vex function B⇤(µ). We now state a similar result for lift-
ing general convex approximations.

Theorem 1. If B⇤(µ) is convex and stabilized by the lift-
ing group A�, i.e., for all (⇡, �) 2 A�, B⇤(µ�) = B⇤(µ),
then ' is the lifting partition for the approximate varia-
tional problem

sup
µ2OUTER(G)

h✓, µi �B⇤(µ) = sup
µ2OUTER[']

h✓, µi �B⇤(µ)

(4)

The importance of Theorem 1 is that it shows that it is
equivalent to optimize over a subset of OUTER(G) where
pseudo-marginals in the same orbit are restricted to take
the same value. As we will show in Section 4.2, this will
allow us to combine many of the terms in the objective,
which is where the computational gains will derive from. A

2Formally, G stabilizes x if xg = x for all g 2 G.
3If � = {�1 . . .�K} is a partition of S, then each subset

�k ⇢ S is called a cell.

sketch of its proof is as follows. Consider a single pseudo-
marginal vector µ. Since the objective value is the same for
every µ� for (⇡, �) 2 A� and since the objective is con-
cave, the average of these, 1

|A�|
P

(⇡,�)2A�
µ� , must have

at least as good of an objective value. Furthermore, note
that this averaged vector lives in the symmetrized subspace.
Thus, it suffices to optimize over OUTER['].

4 Lifted Tree-Reweighted Problem

4.1 Symmetry of TRW Bounds

We now show that Theorem 1 can be used to lift the TRW
optimization problem (1). Note that the applicability of
Theorem 1 is not immediately obvious since B⇤ depends
on the distribution over trees implicit in ⇢. In establishing
that the condition in Theorem 1 holds, we need to be care-
ful so that the choice of the distribution over trees ⇢ does
not destroy the symmetry of the problem.

The result below ensures that with no loss in optimality,
⇢ can be assumed to be suitably symmetric. More specifi-
cally, let 'E = 'E(�) be the set of G’s edge orbits induced
by the action of the lifting group A�; the edge-weights ⇢e

for every e in the same edge orbits can be constrained to be
the same, i.e. ⇢ can be restricted to T['E ].

Theorem 2. For any ⇢ 2 T, there exists a symmetrized
⇢̂ 2 T['E ] that yields at least as good an upper bound, i.e.

B(✓, ⇢̂)  B(✓, ⇢) 8✓ 2 ⇥[�]

As a consequence, in optimizing the edge appearance, ⇢
can be restricted to the symmetrized spanning tree polytope
T['E ]

8✓ 2 ⇥[�], inf
⇢2T

B(✓, ⇢) = inf
⇢2T['E ]

B(✓, ⇢)

Proof. Let ⇢ be the argmin of the LHS, and define ⇢̂ =
1

|A�|
P
⇡2A�

⇢⇡ so that ⇢̂ 2 T['E ]. For all (⇡, �) 2 A�

and for all tied-parameter ✓ 2 ⇥[�], ✓⇡ = ✓, so B(✓, ⇢⇡) =
B(✓⇡, ⇢⇡). By theorem 1 of [3], ⇡ must be an automor-
phism of the graph G. By lemma 7 (see supplementary ma-
terial), B(✓⇡, ⇢⇡) = B(✓, ⇢). Thus B(✓, ⇢⇡) = B(✓, ⇢).
Since B is convex w.r.t. ⇢, by Jensen’s inequality we have
that B(✓, ⇢̂)  1

|A�|
P
⇡2A�

B(✓, ⇢⇡) = B(✓, ⇢).

Using a symmetric choice of ⇢, the TRW bound B⇤ then
satisfies the condition of theorem 1, enabling the applica-
bility of the general lifted variational inference framework.

Theorem 3. For a fixed ⇢ 2 T['E ], ' is the lifting partition
for the TRW variational problem

sup
⌧2OUTER(G)

h⌧, ✓i�B⇤(⌧, ⇢) = sup
⌧2OUTER[']

h⌧, ✓i�B⇤(⌧, ⇢)

(5)
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4.2 Lifted TRW Problems

We give the explicit lifted formulation of the TRW opti-
mization problem (5). As in [3], we restrict ⌧ to OUTER[']

by introducing the lifted variables ⌧̄j for each cell 'j , and
for all i 2 'j , enforcing that ⌧i = ⌧̄j . Effectively, we sub-
stitute every occurrence of ⌧i, i 2 'j by ⌧̄j ; in vector form,
⌧ is substituted by D⌧̄ where D is the characteristic matrix
of the partition ': Dij = 1 if i 2 'j and 0 otherwise. This
results in the lifted form of the TRW problem

sup
D⌧̄2OUTER

⌦
⌧̄ , ✓̄
↵
�B⇤(⌧̄ , ⇢̄) (6)

where ✓̄ = D>✓; B⇤ is obtained from B⇤ via the
above substitution; and ⇢̄ is the edge appearance per edge-
orbit: for every edge orbit e, and for every edge e 2 e,
⇢e = ⇢̄e. Using an alternative but equivalent form B⇤ =
�Pv2V (1 �Pe2Nb(v) ⇢e)H(⌧v) �Pe2E ⇢eH(⌧e), we
obtain the following explicit form for

B⇤(⌧̄ , ⇢̄) = �
X

v2V̄

0
@|v|�

X

e2N(v)

|e|d(v, e)⇢̄e

1
AH(⌧̄v)

�
X

e2Ē

|e|⇢̄eH(⌧̄e) (7)

Intuitively, the above can be viewed as a combination of
node and edge entropies defined on nodes and edges of the
lifted graph Ḡ. Nodes of Ḡ are the node orbits of G while
edges are the edge-orbits of G. Ḡ is not a simple graph: it
can have self-loops or multi-edges between the same node
pair (see Fig. 1). We encode the incidence on this graph as
follows: d(v, e) = 0 if v is not incident to e, d(v, e) = 1
if v is incident to e and e is not a loop, d(v, e) = 2 if e
is a loop incident to v. The entropy at the node orbit v is
defined as

H(⌧̄v) = �
X

t2X
⌧̄v:t ln(⌧̄v:t)

and the entropy at the edge orbit e is

H(⌧̄e) = �
X

t,h2X
⌧̄{e1:t,e2:h} ln(⌧̄{e1:t,e2:h})

where {e1, e2} for e1, e2 2 V is a representative (any el-
ement) of e, {e1:t, e2:h} is an assignment of the ground
edge {e1, e2}, and {e1:t, e2:h} is the assignment orbit.
As in [3], we write {e1:t, e2:t} as e:t, and for t < h,
{e1:t, e2:h} as a:(t, h) where a is the arc-orbit (e1, e2).

When OUTER is the local or cycle polytope, the con-
straints D⌧̄ 2 OUTER yield the lifted local (or cycle) poly-
tope respectively. For these constraints, we use the same
form given in [3]. In section 6, we describe a set of addi-
tional constraints for further tightening when some cluster
of nodes are exchangeable.

Example. Consider the MRF shown in Fig. 1 (left) with 10
binary variables that we denote Bi (for the blue nodes) and

2 

2 
1 1 b r 

Figure 1: Left: ground graphical model. Same colored nodes and
edges have the same parameters. Right: lifted graph showing 2
node orbits (b and r), and 3 edge orbits. Numbers on the lifted
graph representing the incidence degree d(v, e) between an edge
and a node orbit.

Ri (for the red nodes). The node and edge coloring denotes
shared parameters. Let ✓b and ✓r be the single-node poten-
tials used for the blue and red nodes, respectively. Let ✓re

be the edge potential used for the red edges connecting the
blue and red nodes, ✓be for the edge potential used for the
blue edges (Bi, Bi+1), and ✓ke for the edge potential used
for the black edges (Bi, Bi+2).

There are two node orbits: b = {B1, . . . , B5} and r =
{R1, . . . , R5}. There are three edge orbits: re for the
red edges, be for the blue edges , and ke for the black
edges. The size of the node and edge orbits are all 5
(e.g., |b| = |be| = 5), and d(b, re) = d(r, re) = 1,
d(b,be) = d(b,ke) = 2. Suppose that ⇢ corresponds to
a uniform distribution over spanning trees, which satisfies
the symmetry needed by Theorem 2. We then have ⇢re = 1

and ⇢be
= ⇢ke

= 2
5 . Putting all of this together, the lifted

TRW entropy is given by B⇤(⌧̄ , ⇢̄) = 8H(⌧b)�5H(⌧ re)�
2H(⌧be) � 2H(⌧ke). We illustrate the expansion of the
entropy of the red edge orbit H(⌧̄re). This edge orbit
has 2 corresponding arc-orbits: rba = {(Ri, Bi)} and
bra = {(Bi, Ri)}. Thus, H(⌧̄re) = �⌧̄re:00 ln ⌧̄re:00 �
⌧̄re:11 ln ⌧̄re:11 � ⌧̄rba:01 ln ⌧̄rba:01 � ⌧̄bra:01 ln ⌧̄bra:01.

Finally, the linear term in the objective is given by⌦
⌧̄ , ✓̄
↵

=5 h⌧̄b, ✓bi+5 h⌧̄r, ✓ri+5 h⌧̄re , ✓re
i+5 h⌧̄be , ✓be

i+
5 h⌧̄ke , ✓ke

i where, as an example, h⌧̄re , ✓re
i =

⌧̄re:00✓re,00 + ⌧̄re:11✓re,11 + ⌧̄bra:01✓re,01 + ⌧̄rba:01✓re,10

4.3 Optimization using Frank-Wolfe

What remains is to describe how to optimize Eq. 6. Our
lifted tree-reweighted algorithm is based on Frank-Wolfe,
also known as the conditional gradient method [7, 11].
First, we initialize with a pseudo-marginal vector corre-
sponding to the uniform distribution, which is guaranteed
to be in the lifted marginal polytope. Next, we solve the lin-
ear program whose objective is given by the gradient of the
objective Eq. 6 evaluated at the current point, and whose
constraint set is OUTER. When using the lifted cycle re-
laxation, we solve this linear program using a cutting-plane
algorithm [3, 23]. We then perform a line search to find the
optimal step size using a golden section search (a type of bi-
nary search that finds the maxima of a unimodal function),
and finally repeat using the new pseudo-marginal vector.
We warm start each linear program using the optimal basis
found in the previous run, which makes the LP solves ex-
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tremely fast after the first couple of iterations. Although we
use a generic LP solver in our experiments, it is also possi-
ble to use dual decomposition to derive efficient algorithms
specialized to graphical models [24].

5 Lifted Maximum Spanning Tree

Optimizing the TRW edge appearance probability ⇢ re-
quires finding the maximum spanning tree (MST) in the
ground graphical model. For lifted TRW, we need to per-
form MST while using only information from the node and
edge orbits, without referring to the ground graph. In this
section, we present a lifted MST algorithm for symmetric
graphs which works at the orbit level.

Suppose that we are given a weighted graph (G, w), its au-
tomorphism group A = Aut(G) and its node and edge
orbits. We aim to derive an algorithm analogous to the
Kruskal’s algorithm, but with complexity depends only on
the number of node/edge orbits of G. However, if the algo-
rithm has to return an actual spanning tree of G then clearly
its complexity cannot be less than O(|V |). Instead, we con-
sider an equivalent problem: solving a linear program on
the spanning-tree polytope

sup
⇢2T(G)

h⇢, wi (8)

The same mechanism for lifting convex optimization prob-
lem (Lemma 1 in [3]) applies to this problem. Let 'E be
the edge orbit partition, then an equivalent lifted problem
problem is

sup
⇢2T['E ]

h⇢, wi (9)

Since ⇢e is constrained to be the same for edges in the same
orbit, it is now possible to solve (9) with complexity de-
pending only on the number of orbits. Any solution ⇢ of
the LP (8) can be turned into a solution ⇢̄ of (9) by letting
⇢̄(e) = 1

|e|
P

e02e ⇢(e
0) .

5.1 Lifted Kruskal’s Algorithm

The Kruskal’s algorithm first sorts the edges according
to their decreasing weight. Then starting from an empty
graph, at each step it greedily attempts to add the next edge
while maintaining the property that the used edges form a
forest (containing no cycle). The forest obtained at the end
of this algorithm is a maximum-weight spanning tree.

Imagine how Kruskal’s algorithm would operate on a
weighted graph G with non-trivial automorphisms. Let
e1, . . . , ek be the list of edge-orbits sorted in the order of
decreasing weight (the weights w on all edges in the same
orbit by definition must be the same). The main question
therefore is how many edges in each edge-orbit ei will be
added to the spanning tree by the Kruskal’s algorithm. Let
Gi be the subgraph of G formed by the set of all the edges
and nodes in e1, . . . ei. Let V (G) and C(G) denote the set
of nodes and set of connected components of a graph, re-
spectively. Then (see the supplementary material for proof)

Lemma 4. The number of edges in ei appearing in the
MST found by the Kruskal’s algorithm is �(i)V � �

(i)
C where

�
(i)
V = |V (Gi)|�|V (Gi�1)| and �(i)C = |C(Gi)|�|C(Gi�i)|.

Thus a solution for the linear program (9) is ⇢̄(ei) =
�
(i)
V ��

(i)
C

|ei| .

5.2 Lifted Counting of the Number of Connected
Components

We note that counting the number of nodes can be done
simply by adding the size of each node orbit. The remain-
ing difficulty is how to count the number of connected com-
ponents of a given graph4 G using only information at the
orbit level. Let Ḡ be the lifted graph of G. Then (see sup-
plementary material for proof)

Lemma 5. If Ḡ is connected then all connected compo-
nents of G are isomorphic. Thus if furthermore G0 is a con-
nected component of G then |C(G)| = |V (G)|/|V (G0)|.

To find just one connected component, we can choose an
arbitrary node u and compute Ḡ[u], the lifted graph fixing
u (see section 8.1 in [3]), then search for the connected
component in Ḡ[u] that contains {u}. Finally, if Ḡ is not
connected, we simply apply lemma 5 for each connected
component of Ḡ.

The final lifted Kruskal’s algorithm combines lemma 4 and
5 while keeping track of the set of connected components
of Ḡi incrementally. The full algorithm is given in the sup-
plementary material.

6 Tightening via Exchangeable Polytope
Constraints

One type of symmetry often found in first-order probabilis-
tic models are large sets of exchangeable random variables.
In certain cases, exact inference with exchangeable vari-
ables is possible via lifted counting elimination and its gen-
eralization [17, 2]. The drawback of these exact methods
is that they do not apply to many models (e.g., those with
transitive clauses). Lifted variational inference methods do
not have this drawback, however local and cycle relaxation
can be shown to be loose in the exchangeable setting, a po-
tentially serious limitation compared to earlier work.

To remedy this situation, we now show how to take advan-
tage of highly symmetric subset of variables to tighten the
relaxation of the lifted marginal polytope.

We call a set of random variables � an exchangeable cluster
iff � can be arbitrary permuted while preserving the prob-
ability model. Mathematically, the lifting group A� acts
on � and the image of the action is isomorphic to S(�),

4Since we are only interested in connectivity in this subsec-
tion, the weights of G play no role. Thus, orbits in this subsec-
tion can also be generated by the automorphism group of the un-
weighted version of G.
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the symmetric group on �. The distribution of the random
variables in � is also exchangeable in the usual sense.

Our method for tightening the relaxation of the marginal
polytope is based on lift-and-project, wherein we introduce
auxiliary variables specifying the joint distribution of a
large cluster of variables, and then enforce consistency be-
tween the cluster distribution and the pseudo-marginal vec-
tor [20, 24, 27]. In the ground model, one typically works
with small clusters (e.g., triplets) because the number of
variables grows exponentially with cluster size. The key
(and nice) difference in the lifted case is that we can make
use of very large clusters of highly symmetric variables:
while the grounded relaxation would clearly blow up, the
corresponding lifted relaxation can still remain compact.

Specifically, for an exchangeable cluster � of arbitrary size,
one can add cluster consistency constraints for the entire
cluster and still maintain tractability. To keep the exposi-
tion simple, we assume that the variables are binary. Let C
denote a �-configuration, i.e., a function C : � ! {0, 1}.
The set {⌧�C | 8 configuration C} is the collection of �-
cluster auxiliary variables. Since � is exchangeable, all
nodes in � belong to the same node orbit; we call this node
orbit v(�). Similarly, e(�) and a(�) denote the single edge
and arc orbit that contains all edges and arcs in � respec-
tively. Let u1, u2 be two distinct nodes in �. To enforce
consistency between the cluster � and the edge {u1, u2} in
the ground model, we introduce the constraints

9⌧� :
X

C s.t. C(ui)=si

⌧�C = ⌧u1:s1,u2:s2
8si 2 {0, 1} (10)

These constraints correspond to using intersection sets of
size two, which can be shown to be the exact characteri-
zation of the marginal polytope involving variables in � if
the graphical model only has pairwise potentials. If higher-
order potentials are present, a tighter relaxation could be
obtained by using larger intersection sets together with the
techniques described below.

The constraints in (10) can be methodically lifted by re-
placing occurrences of ground variables with lifted vari-
ables at the orbit level. First observe that in place of the
grounded variables ⌧u1:s1,u2:s2 , the lifted local relaxation
has three corresponding lifted variables, ⌧̄e(�):00, ⌧̄e(�):11

and ⌧̄a(�):01. Second, we consider the orbits of the set of
configurations C. Since � is exchangeable, there can be
only |�| + 1 �-configuration orbits; each orbit contains all
configurations with precisely k 1’s where k = 0 . . . |�|.
Thus, instead of the 2|�| ground auxiliary variables, we
only need |�| + 1 lifted cluster variables. Further manip-
ulation leads to the following set of constraints, which we
call lifted exchangeable polytope constraints.

Theorem 6. Let � be an exchangeable cluster of size n;
e(�) and a(�) be the single edge and arc orbit of the
graphical model that contains all edges and arcs in � re-
spectively; ⌧̄ be the lifted marginals. Then there exist

c�k � 0, k = 0 . . . n such that

n�2X

k=0

(n� k)(n� k � 1)

n(n� 1)
c�k = ⌧̄e(�):00

n�2X

k=0

(k + 1)(k + 2)

n(n� 1)
c�k+2 = ⌧̄e(�):11

n�2X

k=0

(n� k � 1)(k + 1)

n(n� 1)
c�k+1 = ⌧̄a(�):01

Proof. See the supplementary material.

In contrast to the lifted local and cycle relaxations, the num-
ber of variables and constraints in the lifted exchangeable
relaxation depends linearly on the domain size of the first-
order model. From the lifted local constraints given by [3],
⌧̄e(�):00 + ⌧̄e(�):11 + 2⌧̄a(�):01 = 1. Substituting in the
expression involved c̃�k , we get

Pn
k=0 c�k = 1. Intuitively,

c�k represents the approximation of the marginal probability
Pr(
P

i2� xi = k) of having precisely k ones in �.

As proved by [2], groundings of unary predicates in
Markov Logic Networks (MLNs) gives rise to exchange-
able clusters. Thus, for MLNs, the above theorem imme-
diately suggests a tightening of the relaxation: for every
unary predicate of a MLN, add a new set of constraints
as above to the existing lifted local (or cycle) optimiza-
tion problem. Although it is not the focus of our paper,
we note that this should also improve the lifted MAP infer-
ence results of [3]. For example, in the case of a symmetric
complete graphical model, lifted MAP inference using the
linear program given by these new constraints would find
the exact k that maximizes Pr(x�), hence recover the same
solution as counting elimination. Marginal inference may
still be inexact due to the tree-reweighted entropy approxi-
mation. We re-emphasize that the complexity of variational
inference with lifted exchangeable constraints is guaran-
teed to be polynomial in the domain size, unlike exact
methods based on lifted counting elimination and variable
elimination.

7 Experiments

In this section, we provide an empirical evaluation of our
lifted tree reweighted (LTRW) algorithm. As a baseline
we use a dampened version of the lifted belief propagation
(LBP-Dampening) algorithm from [21]. Our lifted algo-
rithm has all of the same advantages of the tree-reweighted
approach over belief propagation, which we will illustrate
in the results: (1) a convex objective that can be conver-
gently solved to optimality, (2) upper bounds on the parti-
tion function, and (3) the ability to easily improve the ap-
proximation by tightening the relaxation. Our evaluation
includes four variants of the LTRW algorithm correspond-
ing to using different outer bounds: lifted local polytope
(LTRW-L), lifted cycle polytope (LTRW-C), lifted local
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Figure 2: An example of the ground graphical model for the
Clique-Cycle model (domain size = 3).

polytope with exchangeable polytope constraints (LTRW-
LE), and lifted cycle polytope with exchangeable con-
straints (LTRW-CE). The conditional gradient optimization
of the lifted TRW objective terminates when the duality gap
is less than 10�4 or when a maximum number of 1000 it-
erations is reached. To solve the LP problem during condi-
tional gradient, we use Gurobi5.

We evaluate all the algorithms using several first-order
probabilistic models. We assume that no evidence has been
observed, which results in a large amount of symmetry.
Even without evidence, performing marginal inference in
first-order probabilistic models can be very useful for max-
imum likelihood learning [13]. Furthermore, the fact that
our lifted tree-reweighted variational approximation pro-
vides an upper bound on the partition function enables us
to maximize a lower bound on the likelihood [29], which
we demonstrate in Sec. 7.5. To find the lifted orbit parti-
tion, we use the renaming group as in [3] which exploits
the symmetry of the unobserved contants in the model.

Rather than optimize over the spanning tree polytope,
which is computationally intensive, most TRW implemen-
tations use a single fixed choice of edge appearance prob-
abilities, e.g. an (un)weighted distribution obtained using
the matrix-tree theorem. In these experiments, we initial-
ize the lifted edge appearance probabilities ⇢̄ to be the most
uniform per-orbit edge-appearance probabilties by solv-
ing the optimization problem inf ⇢̄2T['E ]

(⇢̄ � |V |�1
|E| )2 us-

ing conditional gradient. Each direction-finding step of
this conditional gradient solves a lifted MST problem of
the form sup⇢̄02T['E ]

D
�2(⇢̄� |V |�1

|E| ), ⇢̄
0
E

using our lifted
Kruskal’s algorithm, where ⇢̄ is the current solution. After
this initialization, we fix the lifted edge appearance proba-
bilities and do not attempt to optimize them further.

7.1 Test models

Fig. 3 describes the four test models in MLN syntax. We
focus on the repulsive case, since for attractive models, all
TRW variants and lifted LBP give similar results. The pa-
rameter W denotes the weight that will be varying during
the experiments. In all models except Clique-Cycle, W
acts like the “local field” potential in an Ising model; a
negative (or positive) value of W means the correspond-
ing variable tends to be in the 0 (or 1) state. Complete-

5http://www.gurobi.com/

Graph is equivalent to an Ising model on the complete
graph of size n (the domain size) with homogenous param-
eters. Exact marginals and the log-partition function can
be computed in closed form using lifted counting elimina-
tion. The weight of the interaction clause is set to �0.1
(repulsive). Friends-Smokers (negated) is a variant of the
Friends-Smokers model [21] where the weight of the fi-
nal clause is set to -1.1 (repulsive). We use the method in
[2] to compute the exact marginal for the Cancer predicate
and the exact value of the log-partition function. Lovers-
Smokers is the same MLN used in [3] with a full transi-
tive clause and where we vary the prior of the Loves pred-
icate. Clique-Cycle is a model with 3 cliques and 3 bipar-
tite graphs in between. Its corresponding ground graphical
model is shown in Fig. 2.

7.2 Accuracy of Marginals

Fig. 4 shows the marginals computed by all the algo-
rithms as well as exact marginals on the Complete-Graph
and Friends-Smokers models. We do not know how to effi-
ciently perform exact inference in the remaining two mod-
els, and thus do not measure accuracy for them. The result
on complete graphs illustrates the clear benefit of tight-
ening the relaxation: LTRW-Local and LBP are inaccu-
rate for moderate W , whereas cycle constraints and, es-
pecially, exchangeable constraints drastically improve ac-
curacy. As discussed earlier, for the case of symmetric
complete graphical models, the exchangeable constraints
suffice to exactly characterize the marginal polytope. As a
result, the approximate marginals computed by LTRW-LE
and LTRW-CE are almost the same as the exact marginals;
the very small difference is due to the entropy approxima-
tion. On the Friends-Smokers (negated) model, all LTRW
variants give accurate marginals while lifted LBP even with
very strong dampening (0.9 weight given to previous itera-
tions’ messages) fails to converge for W < 2. We observed
that LTRW-LE gives the best trade-off between accuracy
and running time for this model. Note that we do not com-
pare to ground versions of the lifted TRW algorithms be-
cause, by Theorem 3, the marginals and log-partition func-
tion are the same for both.

7.3 Quality of Log-Partition Upper bounds

Fig. 5 plots the values of the upper bounds obtained by
the LTRW algorithms on the four test models. The re-
sults clearly show the benefits of adding each type of con-
straint to the LTRW, with the best upper bound obtained
by tightening the lifted local polytope with both lifted cy-
cle and exchangeable constraints. For the Complete-Graph
and Friends-Smokers model, the log-partition approxima-
tion using exchangeable polytope constraints is very close
to exact. In addition, we illustrate lifted LBP’s approxima-
tion of the log-partition function on the Complete-Graph
(note it is non-convex and not an upper bound).
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Complete Graph

W V (x)

�0.1 [x 6= y ^ (V (x) , V (y))]

Friends-Smokers (Negated)

W [x 6= y ^ ¬Friends(x, y)]

1.4 ¬Smokes(x)

2.3 ¬Cancer(x)

1.5 Smokes(x) ) Cancer(x)

�1.1 [x 6= y ^ Smokes(x) ^ Friends(x, y) ) Smokes(y)]
Lovers-Smokers

W [x 6= y ^ Loves(x, y)]

100 Male(x) ,!Female(x)

2 Male(x) ^ Smokes(x)

1 Female(x) ^ Smokes(x)

0.5 [x 6= y ^ Male(x) ^ Female(y) ^ Loves(x, y)]

1 [x 6= y ^ Loves(x, y) ^ (Smokes(x) , Smokes(y))]

�100 [x 6= y ^ y 6= z ^ z 6= x ^ Loves(x, y) ^ Loves(y, z) ^ Loves(x, z)]

Clique-Cycle

W x 6= y ^ (Q1(x) , ¬Q2(y))

W x 6= y ^ (Q2(x) , ¬Q3(y))

W x 6= y ^ (Q3(x) , ¬Q1(y))

�W x 6= y ^ (Q1(x) , Q1(y))

�W x 6= y ^ (Q2(x) , Q2(y))

�W x 6= y ^ (Q3(x) , Q3(y))

Figure 3: Test models
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Figure 5: Approximations of the log-partition function on the four test models from Fig. 3 (best viewed in color).
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Figure 4: Left: marginal accuracy for complete graph
model. Right: marginal accuracy for Pr(Cancer(x)) in
Friends-Smokers (neg). Lifted TRW variants using differ-
ent outer bounds: L=local, C=cycle, LE=local+exchangeable,
CE=cycle+exchangeable (best viewed in color).

7.4 Running time

As shown in Table 1, lifted variants of TRW are order-of-
magnitudes faster than the ground version. Interestingly,
lifted TRW with local constraints is observed to be faster
as the domain size increase; this is probably due to the fact
that as the domain size increases, the distribution becomes
more peak, so marginal inference becomes more similar to
MAP inference. Lifted TRW with local and exchangeable
constraints requires a smaller number of conditional gradi-
ent iterations, thus is faster; however note that its running
time slowly increases since the exchangeable constraint set
grows linearly with domain size.

LBP’s lack of convergence makes it difficult to have a

Domain size 10 20 30 100 200
TRW-L 138370 609502 1525140 - -

LTRW-L 3255 3581 3438 1626 1416
LTRW-LE 681 703 721 1033 1307

Table 1: Ground vs lifted TRW runtime on Complete-Graph (mil-
liseconds)

meaningful timing comparison with LBP. For example,
LBP did not converge for about half of the values of W
in the Lovers-Smokers model, even after using very strong
dampening. We did observe that when LBP converges,
it is much faster than LTRW. We hypothesize that this is
due to the message passing nature of LBP, which is based
on a fixed point update whereas our algorithm is based on
Frank-Wolfe.

7.5 Application to Learning

We now describe an application of our algorithm to the
task of learning relational Markov networks for inferring
protein-protein interactions from noisy, high-throughput,
experimental assays [12]. This is equivalent to learning the
parameters of an exponential family random graph model
[19] where edges in the random graph represent the protein-
protein interactions. Despite fully observed data, maxi-
mum likelihood learning is challenging because of the in-
tractability of computing the log-partition function and its
gradient. In particular, this relational Markov network has
over 330K random variables (one for each possible inter-
action of 813 variables) and tertiary potentials. However,
Jaimovich et al. [13] observed that the partition function in
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Figure 6: Log-likelihood lower-bound obtained using lifted TRW
with the cycle and exchangeable constraints (CE) for the same
protein-protein interaction data used in [13] (left) (c.f. Fig. 7
in [13]). Improvement in lower-bound after tightening the local
constraints (L) with CE (right).

relational Markov networks is highly symmetric, and use
lifted LBP to efficiently perform approximate learning in
running time that is independent of the domain size. They
use their lifted inference algorithm to visualize the (approx-
imate) likelihood landscape for different values of the pa-
rameters, which among other uses characterizes the robust-
ness of the model to parameter changes.

We use precisely the same procedure as [13], substituting
lifted BP with our new lifted TRW algorithms. The model
has three parameters: ✓1, used in the single-node potential
to specify the prior probability of a protein-protein interac-
tion; ✓111, part of the tertiary potentials which encourages
cliques of three interacting proteins; and ✓011, also part of
the tertiary potentials which encourages chain-like struc-
tures where proteins A, B interact, B, C interact, but A and
C do not (see supplementary material for the full model
specification as an MLN). We follow their two-step esti-
mation procedure, first estimating ✓1 in the absence of the
other parameters (the maximum likelihood, BP, and TRW
estimates of this parameter coincide, and estimation can be
performed in closed-form: ✓⇤1 = �5.293). Next, for each
setting of ✓111 and ✓011 we estimate the log-partition func-
tion using lifted TRW with the cycle+exchangeable vs. lo-
cal constraints only. Since TRW is an upper bound on the
log-partition function, these provide lower bounds on the
likelihood.

Our results are shown in Fig. 6, and should be compared
to Fig. 7 of [13]. The overall shape of the likelihood land-
scapes are similar. However, the lifted LBP estimates of the
likelihood have several local optima, which cause gradient-
based learning with lifted LBP to reach different solutions
depending on the initial setting of the parameters. In con-
trast, since TRW is convex, any gradient-based procedure
would reach the global optima, and thus learning is much
easier. Interestingly, we see that our estimates of the likeli-
hood have a significantly smaller range over these parame-
ter settings than that estimated by lifted LBP. Moreover, the
high-likelihood parameter settings extends to larger values
of ✓111. For all algorithms there is a sudden decrease in the
likelihood at ✓011 > 0 (not shown in the figure).

8 Discussion and Conclusion

Lifting partitions used by lifted and counting BP [21, 16]
can be coarser than orbit partitions. In graph-theoretic

terms, these partitions are called equitable partitions. If
each equitable partition cell is thought of as a distinct node
color, then among nodes with the same color, their neigh-
bors must have the same color histogram. It is known that
orbit partitions are always equitable, however the converse
is not always true [9].

Since equitable partition can be computed more efficiently
and potentially leads to more compact lifted problems, the
following question naturally arises: can we use equitable
partition in lifting the TRW problem? Unfortunately, a
complete answer is non-trivial. We point out here a the-
oretical barrier due to the interplay between the spanning
tree polytope and the equitable partition of a graph.

Let " be the coarsest equitable partition of edges of G.
We give an example graph in the supplementary mate-
rial (see example 9) where the symmetrized spanning tree
polytope corresponding to the equitable partition ", T[✏] =

T(G)\R|E|
["] is an empty set. When T[✏] is empty, the conse-

quence is that if we want ⇢ to be within T so that B(., ⇢) is
guaranteed to be a convex upper bound of the log-partition
function, we cannot restrict ⇢ to be consistent with the eq-
uitable partition. In lifted and counting BP, ⇢ ⌘ 1 so it
is clearly consistent with the equitable partition; however,
one loses convexity and upper bound guarantee as a result.
This suggests that there might be a trade-off between the
compactness of the lifting partition and the quality of the
entropy approximation, a topic deserving the attention of
future work.

In summary, we presented a formalization of lifted
marginal inference as a convex optimization problem and
showed that it can be efficiently solved using a Frank-
Wolfe algorithm. Compared to previous lifted variational
inference algorithms, in particular lifted belief propagation,
our approach comes with convergence guarantees, upper
bounds on the partition function, and the ability to im-
prove the approximation (e.g. by introducing additional
constraints) at the cost of small additional running time.

A limitation of our lifting method is that as the amount of
soft evidence (the number of distinct individual objects)
approaches the domain size, the behavior of lifted infer-
ence approaches ground inference. The wide difference in
running time between ground and lifted inference suggests
that significant efficiency can be gained by solving an ap-
proximation of the orignal problem that is more symmetric
[25, 15, 22, 6]. One of the most interesting open questions
raised by our work is how to use the variational formula-
tion to perform approxiate lifting. Since our lifted TRW
algorithm provides an upper bound on the partition func-
tion, it is possible that one could use the upper bound to
guide the choice of approximation when deciding how to
re-introduce symmetry into an inference task.

Acknowledgements: Work by DS supported by DARPA
PPAML program under AFRL contract no. FA8750-14-C-
0005.
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Abstract

This paper presents an approximate method for
performing Bayesian inference in models with
conditional independence over a decentralized
network of learning agents. The method first
employs variational inference on each individual
learning agent to generate a local approximate
posterior, the agents transmit their local poste-
riors to other agents in the network, and finally
each agent combines its set of received local pos-
teriors. The key insight in this work is that, for
many Bayesian models, approximate inference
schemes destroy symmetry and dependencies in
the model that are crucial to the correct appli-
cation of Bayes’ rule when combining the lo-
cal posteriors. The proposed method addresses
this issue by including an additional optimization
step in the combination procedure that accounts
for these broken dependencies. Experiments on
synthetic and real data demonstrate that the de-
centralized method provides advantages in com-
putational performance and predictive test likeli-
hood over previous batch and distributed meth-
ods.

1 INTRODUCTION

Recent trends in the growth of datasets, and the methods
by which they are collected, have led to increasing interest
in the parallelization of machine learning algorithms. Par-
allelization results in reductions in both the memory usage
and computation time of learning, and allows data to be
collected by a network of learning agents rather than by a
single central agent. There are two major classes of paral-
lelization algorithms: those that require a globally shared
memory/computation unit (e.g., a central fusion processor
that each learning agent is in communication with, or the
main thread on a multi-threaded computer), and those that
do not. While there is as of yet no consensus in the litera-

ture on the terminology for these two types of paralleliza-
tion, in this work we refer to these two classes, respectively,
as distributed and decentralized learning.

Some recent approaches to distributed learning have in-
volved using streaming variational approximations (Brod-
erick et al., 2013), parallel stochastic gradient descent
(Niu et al., 2011), the Map-Reduce framework (Dean and
Ghemawat, 2004), database-inspired concurrency control
(Pan et al., 2013), and message passing on graphical mod-
els (Gonzalez et al., 2009). When a reliable central learning
agent with sufficient communication bandwidth is avail-
able, such distributed learning techniques are generally pre-
ferred to decentralized learning. This is a result of the con-
sistent global model shared by all agents, with which they
can make local updates without the concern of generating
conflicts unbeknownst to each other.

Decentralized learning is a harder problem in general, due
to asynchronous communication/computation, a lack of a
globally shared state, and potential network and learning
agent failure, all of which may lead to inconsistencies in
the model possessed by each agent. Addressing these is-
sues is particularly relevant to mobile sensor networks in
which the network structure varies over time, agents drop
out and are added dynamically, and no single agent has the
computational or communication resources to act as a cen-
tral hub during learning. Past approaches to decentralized
learning typically involve each agent communicating fre-
quently to form a consensus on the model over the net-
work, and are often model-specific: particle filtering for
state estimation (Rosencrantz et al., 2003) involves send-
ing particle sets and informative measurements to peers;
distributed EM (Wolfe et al., 2008) requires communica-
tion of model statistics to the network after each local it-
eration; distributed Gibbs sampling (Newman et al., 2007)
involves model synchronization after each sampling step;
robust distributed inference (Paskin and Guestrin, 2004)
requires the formation of a spanning tree of nodes in the
network and message passing; asynchronous distributed
learning of topic models (Asuncion et al., 2008) requires
communication of model statistics to peers after each local
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sampling step; and hyperparameter consensus (Fraser et al.,
2012) requires using linear network consensus on exponen-
tial family hyperparameters.

The method proposed in the present paper takes a differ-
ent tack; each agent computes an approximate factorized
variational posterior using only their local datasets, sends
and receives statistics to and from other agents in the net-
work asynchronously, and combines the posteriors locally
on-demand. Building upon insights from previous work on
distributed and decentralized inference (Broderick et al.,
2013, Rosencrantz et al., 2003), a naı̈ve version of this
algorithm based on Bayes’ rule is presented. It is then
shown that, due to the approximation used in variational
inference, this algorithm leads to poor decentralized pos-
terior approximations for unsupervised models with inher-
ent symmetry. Next, building on insights gained from the
results of variational and Gibbs sampling inference on a
synthetic example, an approximate posterior combination
algorithm is presented that accounts for symmetry struc-
ture in models that the naı̈ve algorithm is unable to cap-
ture. The proposed method is highly flexible, as it can
be combined with past streaming variational approxima-
tions (Broderick et al., 2013, Lin, 2013), agents can share
information with only subsets of the network, the network
may be dynamic with unknown toplogy, and the failure of
individual learning agents does not affect the operation of
the rest of the network. Experiments on a mixture model,
latent Dirichlet allocation (Blei et al., 2003), and latent fea-
ture assignment (Griffiths and Ghahramani, 2005) demon-
strate that the decentralized method provides advantages in
model performance and computational time over previous
approaches.

2 APPROXIMATE DECENTRALIZED
BAYESIAN INFERENCE

2.1 THE NAÏVE APPROACH

Suppose there is a set of learning agents i, i = 1, . . . , N ,
each with a distribution on a set of latent parameters θj ,
j = 1, . . . ,K (all parameters θj may generally be vec-
tors). Suppose a fully factorized exponential family distri-
bution has been used to approximate each agent’s posterior
qi(θ1, . . . , θK). Then the distribution possessed by each
agent i is

qi(θ1, . . . , θK) =
∏

j

qλij (θj), (1)

where λij parameterizes agent i’s distribution over θj .
Given the prior

q0(θ1, . . . , θK) =
∏

j

qλ0j
(θj), (2)

is known by all agents, and the conditional independence
of data given the model, the overall posterior distribu-

tion q(θ1, . . . , θK) may be approximated by using Bayes’
rule (Broderick et al., 2013) and summing over the λij :

q(·) ∝ q0(·)1−N
∏

i

qi(·)

=


∏

j

qλ0j (θj)




1−N
∏

i

∏

j

qλij (θj)

∴ q(·) =
∏

j

qλj (θj)

where λj = (1−N)λ0j +
∑

i

λij .

(3)

The last line follows from the use of exponential family dis-
tributions in the variational approximation. This procedure
is decentralized, as each agent can asynchronously com-
pute its individual posterior approximation, broadcast it to
the network, receive approximations from other agents, and
combine them locally. Furthermore, this procedure can be
made to handle streaming data by using a technique such
as SDA-Bayes (Broderick et al., 2013) or sequential vari-
ational approximation (Lin, 2013) on each agent locally to
generate the streaming local posteriors qi.

As an example, this method is now applied to decentralized
learning of a Gaussian model with unknown mean µ = 1.0
and known variance σ2 = 1.0. The prior on µ is Gaussian
with mean µ0 = 0.0 and variance σ2

0 = 2.0. There are
10 learning agents, each of whom receives 10 observations
y ∼ N (µ, σ2). Because the Gaussian distribution is in the
exponential family, the variational approximation is exact
in this case. As shown in Figure 1, the decentralized pos-
terior is the same as the batch posterior. Note that if the
approximation is used on a more complicated distribution
not in the exponential family, then the batch posterior may
in general differ from the decentralized posterior; however,
they will both approximate the same true posterior distri-
bution.

2.2 FAILURE OF THE NAÏVE APPROACH
UNDER PARAMETER PERMUTATION
SYMMETRY

As a second example, we apply decentralized inference to
a Gaussian mixture model with three components having
unknown means µ = (1.0,−1.0, 3.0) and cluster weights
π = (0.6, 0.3, 0.1) with known variance σ2 = 0.09. The
prior on each mean µi was Gaussian with mean µ0 = 0.0
and variance σ2

0 = 2.0, while the prior on the weights π
was Dirichlet with parameters (1.0, 1.0, 1.0). First, the true
posterior, shown in Figure 2a, was formed using 30 data-
points that were sampled from the generative model. Then,
the decentralized variational inference procedure in (3) was
run with 10 learning agents, each of whom received 3 of the
datapoints, resulting in the approximate decentralized pos-
terior in Figure 2b.
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Figure 1: (1a): Batch posterior of µ in black, with histogram of observed data. (1b): Decentralized posterior of µ in black, individual posteriors in color and correspondingly
colored histogram of observed data.

The decentralized posterior, in this case, is a very poor ap-
proximation of the true batch posterior. The reason for this
is straightforward: approximate inference algorithms, such
as variational inference with a fully factorized distribution,
often do not capture parameter permutation symmetry in
the posterior. Parameter permutation symmetry is a prop-
erty of a Bayesian model in which permuting the values
of some subset of the parameters does not change the pos-
terior probability. For example, in the Gaussian mixture
model, the true posterior over π, µ given data y is invariant
to transformation by any permutation matrix P :

p(Pπ, Pµ|y) = p(π, µ|y). (4)

Indeed, examining the true posterior in Figure 2a, one can
identify 6 differently colored regions; each of these regions
corresponds to one of the possible 3! = 6 permutation ma-
trices P . In other words, the true posterior captures the in-
variance of the distribution to reordering of the parameters
correctly.

To demonstrate that approximate inference algorithms typ-
ically do not capture parameter permutation symmetry in
a model, consider the same mixture model, learned with
30 datapoints in a single batch using Gibbs sampling and
variational Bayesian inference. Samples from 5 random
restarts of each method are shown in Figure 3. Both al-
gorithms fail to capture the permutation symmetry in the
mixture model, and converge to one of the 6 possible order-
ings of the parameters. This occurs in variational Bayesian
inference and Gibbs sampling for different reasons: Gibbs
sampling algorithms often get stuck in local posterior like-
lihood optima, while the variational approximation explic-
itly breaks the dependence of the parameters on one an-
other.

In a batch setting, this does not pose a problem, because
practitioners typically find the selection of a particular pa-
rameter ordering acceptable. However, in the decentralized
setting, this causes problems when combining the poste-
riors of individual learning agents. If each agent effec-
tively picks a parameter ordering at random when per-

forming inference, combining the posteriors without con-
sidering those orderings can lead to poor results (such
as that presented in Figure 2b). Past work dealing with
this issue has focused primarily on modifying the samples
of MCMC algorithms by introducing “identifiability con-
straints” that control the ordering of parameters (Jasra et al.,
2005, Stephens, 2000), but these approaches are generally
model-specific and restricted to use on very simple mixture
models.

2.3 MERGING POSTERIORS WITH
PARAMETER PERMUTATION SYMMETRY

This section presents a method for locally combining
the individual posteriors of decentralized learning agents
when the model contains parameter permutation symme-
try. Formally, suppose that the true posterior probability of
θ1, . . . , θK is invariant to permutations of the components
of one or more θj . In general, there may be subsets of
parameters which have coupled symmetry, in that the true
posterior is only invariant if the components of all parame-
ters in the subset are permuted in the same way (for exam-
ple, the earlier Dirichlet mixture model had coupled permu-
tation symmetry in µ and π). It is assumed that any such
coupling in the model is known beforehand by all agents.
Because the exponential family variational approximation
is completely decoupled, it is possible to treat each coupled
permutation symmetry set of parameters in the model inde-
pendently; therefore, we assume below that θ1, . . . , θK all
have coupled permutation symmetry, for simplicity in the
notation and exposition.

In order to properly combine the approximate posterior
produced by each learning agent, first the individual poste-
riors are symmetrized (represented by a tilde) by summing
over all possible permutations as follows:

q̃i(·) ∝
∑

P

∏

j

qPλij (θj), (5)

where the sum is taken to be over all permutation matrices
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Figure 2: (2a): Samples from the true posterior over µ, π. Each particle’s position on the simplex (with π3 = 1 − π1 − π2) represents the sampled weights, while RGB
color coordinates of each particle represent the sampled position of the three means. (2b): Samples from the naı̈vely constructed decentralized approximate posterior, with the
same coloring scheme. Note the disparity with Figure 2a.
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Figure 3: Batch Gibbs sampling (3a) and variational Bayes (3b) approximate posterior samples from 5 random restarts. Comparison to Figure 2a shows that both approximate
inference algorithms tend to converge to a random component of the permutation symmetry in the true posterior.

P with the same dimension as λij . This process of approxi-
mating the true single-agent posterior is referred to as sym-
metrization because q̃i has the same parameter permutation
symmetry as the true posterior, i.e. for all permutation ma-
trices P ,

q̃i(Pθ1, . . . , . . . , PθK) = q̃i(. . . ). (6)

To demonstrate the effect of this procedure, the mixture
model example was rerun with batch variational Bayesian
inference (i.e. all 30 datapoints were given to a single
learner) followed by symmetrization. Samples generated
from these new symmetrized posterior distributions over 5
random restarts of the inference procedure are shown in
Figure 4. This result demonstrates that the symmetrized
distributions are invariant to the random permutation to
which the original approximate posterior converged.

It is now possible to combine the individual (symmetrized)
posteriors via the procedure outlined in (3):

q(·) ∝ q0(·)1−N
∏

i

q̃i(·)

=


∏

j

qλ0j (θj)




1−N
∏

i

∑

Pi

∏

j

qPiλij (θj) (7)

=
∑

{Pi}i

∏

j

[
qλ0j (θj)

1−N∏

i

qPiλij (θj)

]
,

where the outer sum is now over unique combinations of
the set of permutation matrices {Pi}i used by the learning
agents.

2.4 AMPS - APPROXIMATE MERGING OF
POSTERIORS WITH SYMMETRY

The posterior distribution in (7) is unfortunately intractable
to use for most purposes, as it contains a number of terms
that is factorial in the dimensions of the parameters, and
exponential in the number of learning agents. Therefore,
we approximate this distribution by finding the component
with the highest weight – the intuitive reasoning for this is
that the component with the highest weight is the one for
which the individual posteriors have correctly aligned per-
mutations, thus contributing to each other the most and rep-
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Figure 4: Samples from the symmetrized batch variational Bayes approximate posterior from 5 random restarts. Comparison to Figure 2a shows that symmetrization reintro-
duces the structure of the true posterior to the approximate posteriors.

resenting the overall posterior the best. While the resulting
distribution will not be symmetric, it will appear as though
it were generated from variational Bayesian inference; this,
as mentioned before, is most often fine in practice.

In order to compute the weight of each component, we
need to compute its integral over the parameter space. Sup-
pose that each approximate posterior component qλij (θj)
has the following form:

qλij (θj) = hj(θj)e
tr[λTijT (θj)]−Aj(λij) (8)

where hj(·) and Aj(·) are the base measure and log-
partition functions for parameter j, respectively. The trace
is used in the exponent in case λij is specified as a ma-
trix rather than as a single column vector (such as in the
example presented in Section 3.1). Thus, given a set of
permutation matrices {Pi}i, the factor of the weight for the
component due to parameter j is

Wj ({Pi}i) =

∫

θj

qλ0j
(θj)

1−N∏

i

qPiλij (θj). (9)

The overall weight of the component is the product over the
parameters, so finding the maximum weight component of
(7) is equivalent to finding the set of permutation matrices
P ∗i that maximizes the product of the Wj ,

{P ∗i }i ← arg max
{Pi}i

∏

j

Wj ({Pi}i) . (10)

Due to the use of exponential family distributions in the
variational approximation, the optimization (10) can be
posed as a combinatorial optimization over permutation
matrices with a closed-form objective:

max
{Pi}i

∑

j

Aj

(
(1−N)λ0j +

∑

i

Piλij

)

s.t. Pi ∈ S ∀i
(11)

where S is the symmetric group of order equal to the row
dimension of the matrices λij . Using the convexity of the
log-partition function Aj (·), the fact that the objective is
affine in its arguments, and the fact that the vertices of the
Birkhoff polytope are permutation matrices, one can refor-

mulate (10) as a convex maximization over a polytope:

max
{Pi}i

∑

j

Aj

(
(1−N)λ0j +

∑

i

Piλij

)

s.t. PTi 1 = 1, Pi1 = 1, Pi ≥ 0 ∀i
(12)

where 1 is a vector with all entries equal to 1. Global op-
timization routines for this problem are intractable for the
problem sizes presented by typical Bayesian models (Ben-
son, 1985, Falk and Hoffman, 1986). Thus, the optimiza-
tion must be solved approximately, where the choice of the
approximate method is dependent on the particular form of
Aj(·).

As mentioned earlier, this optimization was formulated as-
suming that all the θj were part of a single coupled permu-
tation symmetry set. However, if there are multiple subsets
of the parameters θ1, . . . θK that have coupled permutation
symmetry, an optimization of the form (12) can be solved
for each subset independently. In addition, for any param-
eter that does not exhibit permutation symmetry, the origi-
nal naı̈ve posterior merging procedure in (3) may be used.
These two statements follow from the exponential family
mean field assumption used to construct the individual ap-
proximate posteriors qi.

3 EXPERIMENTS

All experiments were performed on a computer with an In-
tel Core i7 processor and 12GB of memory.

3.1 DECENTRALIZED MIXTURE MODEL
EXAMPLE REVISITED

The AMPS decentralized inference scheme was applied
to the Gaussian mixture model example from earlier,
with three components having unknown means µ =
(1.0,−1.0, 3.0) and cluster weights π = (0.6, 0.3, 0.1),
and known variance σ2 = 0.09. The prior on each mean µi
was Gaussian, with mean µ0 = 0.0 and variance σ2

0 = 2.0,
while the prior on the weights π was Dirichlet, with pa-
rameters (1.0, 1.0, 1.0). The dataset consisting of the same
30 datapoints from the earlier trial was used, where each
of 10 learning agents received 3 of the datapoints. Each
learning agent used variational Bayesian inference to find
their individual posteriors qi(µ, π), and then used AMPS
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to merge them. The only communication required between
the agents was a single broadcast of each agent’s individual
posterior parameters.

In this example, the AMPS objective1 was as follows:

JAMPS = − log Γ




3∑

j=1

(βj + 1)


+

3∑

j=1

−
η2j
4νj
− 1

2
log (−2νj) + log Γ (βj + 1)

(13)

with

λiµ =

[
ηi1 ηi2 ηi3
νi1 νi2 νi3

]T
, i = 1, . . . , 10

λiπ =
[
βi1 βi2 βi3

]T
, i = 1, . . . , 10

λµ = −9λ0µ +
∑

i

Piλiµ ≡
[
η1 η2 η3
ν1 ν2 ν3

]T

λπ = −9λ0π +
∑

i

Piλiπ ≡
[
β1 β2 β3

]T
(14)

λ0µ =

[
0 0 0

−0.25 −0.25 −0.25

]T

λ0π =
[

0 0 0
]T

βij = αij − 1, ηij =
µij
σ2
ij

, νij = − 1

2σ2
ij

where αij was agent i’s posterior Dirichlet variational pa-
rameter for cluster j, and µij/σ2

ij were agent i’s posterior
normal variational parameter for cluster j. The objective
was optimized approximately over the 3 × 3 permutation
matrices Pi by proposing swaps of two rows in Pi, accept-
ing swaps that increased JAMPS, and terminating when no
possible swaps increased JAMPS.

The individual posteriors for 3 of the learning agents are
shown in Figure 5, while the decentralized posterior over
all the agents is shown in Figure 6 alongside its sym-
metrization (for comparison to the true posterior – this fi-
nal symmetrization is not required in practice). The AMPS
posterior is a much better approximation than the naı̈ve de-
centralized posterior shown in Figure 2b; this is because
the AMPS posterior accounts for parameter permutation
symmetry in the model prior to combining the individual
posteriors. It may be noted that the decentralized posterior
has slightly more uncertainty in it than the batch posterior,
but this is to be expected when each learning agent indi-
vidually receives little information (as demonstrated by the
uncertainty in the individual posteriors shown in Figure 5).

1The AMPS objective for each experiment was constructed
using the log-partition function Aj(·) of the relevant exponen-
tial family models, which may be found in (Nielsen and Garcia,
2011).

3.2 DECENTRALIZED LATENT DIRICHLET
ALLOCATION

The next experiment involved running decentralized varia-
tional inference with AMPS on the LDA document cluster-
ing model (Blei et al., 2003). The dataset in consideration
was the 20 newsgroups dataset, consisting of 18,689 doc-
uments with 1,000 held out for testing, and a vocabulary
of 11,175 words after removing stop words and stemming
the remaining words. Algorithms were evaluated based
on their approximate predictive likelihood of 10% of the
words in each test document given the remaining 90%, as
described in earlier literature (Wang et al., 2011). The vari-
ational inference algorithms in this experiment were ini-
tialized using smoothed statistics from randomly selected
documents.

In LDA, the parameter permutation symmetry lies in the
arbitrary ordering of the global word distributions for each
topic. In particular, for the 20 newsgroups dataset, decen-
tralized learning agents may learn the 20 Dirichlet distribu-
tions with a different ordering; therefore, in order to com-
bine the local posteriors, we use AMPS with the following
objective to reorder each agent’s global topics:

JAMPS =

K∑

k=1

JAMPS,k =

K∑

k=1

W∑

w=1

log Γ (αkw)− log Γ

(
W∑

w=1

αkw

) (15)

α = (1−N)α0 +
N∑

i=1

Piαi, α, αi ∈ RK×W

α0kw =
10

W
K = 20, W = 11, 175

where αikw is agent i’s posterior Dirichlet variational pa-
rameter for topic k and word w, and the optimization is
over K × K permutation matrices Pi, i = 1, . . . , N . For
the LDA model, the AMPS objective JAMPS is additive
over the topics k; therefore, JAMPS can be optimized ap-
proximately by iteratively solving maximum-weight bipar-
tite matching problems as follows:

1. Initialize the decentralized posterior parameter α ←
(1−N)α0 +

∑N
i=1 Piαi with a set of Pi matrices

2. For each agent i until JAMPS stops increasing:

(a) Deassign agent i’s posterior: α← α− Piαi
(b) Form a bipartite graph with decentralized topics

k on one side, agent i’s topics k′ on the other, and
edge weights wkk′ equal to JAMPS,k if agent i’s
topic k′ is assigned to the decentralized topic k

(c) Pi ← Maximum weight assignment of agent i’s
topics

(d) Reassign agent i’s posterior: α← α+ Piαi
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Figure 5: Samples from the individual posterior distributions from variational Bayesian inference for 3 of the learning agents. Note the high level of uncertainty in both the
weights (position) and cluster locations (colour) in each posterior.
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Figure 6: (6a): Samples from the decentralized posterior output by AMPS. Comparison to Figure 5 shows that the AMPS posterior merging procedure improves the posterior
possessed by each agent significantly. (6b): Samples from the symmetrized decentralized posterior. This final symmetrization step is not performed in practice; it is simply
done here for comparison with Figure 2a.
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Figure 7: Plots of log likelihood on the test data for 5 (7a), 10 (7b), and 50 (7c) learning agents. The boxes bound the 25th and 75th percentiles of the data with medians shown
in the interior, and whiskers show the maximum and minimum values.

First, the performance of decentralized LDA with AMPS
was compared to the batch approximate LDA posterior
with a varying number of learning agents. Figure 7 shows
the test data log likelihood and computation time over 20
trials for the batch posterior, the AMPS decentralized pos-
terior, and each individual agent’s posterior for 5, 10, and
50 learning agents. The results mimic those of the syn-
thetic experiment – the posterior output by AMPS signif-
icantly outperforms each individual agent’s posterior, and
the effect is magnified as the number of agents increases.
Further, there is a much lower variance in the AMPS poste-
rior test log likelihood than for each individual agent. The

batch method tends to get stuck in poor local optima in
the variational objective, leading to relatively poor perfor-
mance, while the decentralized method avoids these pitfalls
by solving a number of smaller optimizations and com-
bining the results afterwards with AMPS. Finally, as the
number of agents increases, the amount of time required to
solve the AMPS optimization increases; reducing this com-
putation time is a potential future goal for research on this
inference scheme.

The next test compared the performance of AMPS to SDA-
Bayes (Broderick et al., 2013), a recent streaming, dis-
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Figure 8: Comparison with SDA-Bayes. The A × B in the legend names refer to
using A learning agents, where each splits their individual batches of data into B
subbatches.

tributed variational inference algorithm. The algorithms
were tested on 20 trials of each of three settings: one with
1 agent and 10 subbatches of data per agent; one with 10
agents and 1 subbatch of data per agent; and finally, one
with 10 agents and 10 subbatches of data per agent. Each
agent processed its subbatches in serial. For SDA-Bayes,
each agent updated a single distributed posterior after each
subbatch. For the decentralized method, each agent used
AMPS to combine the posteriors from its own subbatches,
and then used AMPS again to combine each agent’s result-
ing posterior.

Figure 8 shows the results from this procedure. AMPS out-
performs SDA-Bayes in terms of test log likelihood, and
is competetive in terms of the amount of time it takes to
perform inference and then optimize the AMPS objective.
This occurs because AMPS takes into account the arbi-
trary ordering of the topics, while SDA-Bayes ignores this
when combining posteriors. An interesting note is that the
AMPS10x10 result took less time to compute than the time
for 50 agents in Figure 7c, despite the fact that it effectively
merged 100 posterior distributions; this hints that develop-
ing a hierarchical optimization scheme for AMPS is a good
avenue for further exploration. A final note is that using
AMPS as described above is not truely a streaming proce-
dure; however, one can rectify this by periodically merging
posteriors using AMPS to form the prior for inference on
subsequent batches.

3.3 DECENTRALIZED LATENT FEATURE
ASSIGNMENT

The last experiment involved running decentralized varia-
tional inference with AMPS on a finite latent feature as-
signment model (Griffiths and Ghahramani, 2005). In this
model, a set of K feature vectors µk ∈ RD are sampled
from a Gaussian prior µk ∼ N (0, σ2

0I), and a set of fea-
ture inclusion probabilities are sampled from a beta prior
πk ∼ Beta(αk, βk). Finally, for each image i, a set of
features zi are sampled independently from the weights
zik ∼ Be(πk), and the image yi ∈ RD is sampled from

a Gaussian likelihood yi ∼ N (
∑
k µkzik, σ

2I).

Two datasets were used in this experiment. The first was a
synthetic dataset withK = 5 randomly generatedD = 10-
dimensional binary feature vectors, feature weights sam-
pled uniformly, and 1300 observations sampled with vari-
ance σ2 = 0.04, with 300 held out for testing. For this
dataset, algorithms were evaluated based on the error be-
tween the means of the feature posteriors and the true set
of latent features, and based on their approximate predic-
tive likelihoods of a random component in each test obser-
vation vector given the other 9 components. The second
dataset was a combination of the Yale (Belhumeur et al.,
1997) and Caltech2 faces datasets, with 581 32×32 frontal
images of faces, where 50 were held out for testing. The
number of latent features was set to K = 10. For this
dataset, algorithms were evaluated based on their approxi-
mate predictive likelihood of 10% of the pixels in each test
image given the remaining 90%, and the inference algo-
rithms were initialized using smoothed statistics from ran-
domly selected images.

The parameter permutation symmetry in the posterior of
the latent feature model lies in the ordering of the features
µk and weights πk. Therefore, to combine the local poste-
riors, we use AMPS with the following objective to reorder
each agent’s set of features and weights:

JAMPS =

K∑

k=1

JAMPS,k =

K∑

k=1

log Γ(αk) + log Γ(βk)− log Γ(αk + βk)

− ηTk ηk
4νk

− D

2
log(−2νk)

(16)

where α, β ∈ RK are the combined posterior beta natural
parameters, and η ∈ RD×K , ν ∈ RK are the combined
posterior normal natural parameters (combined using the
(1 −N) ∗0 +

∑
i Pi∗i rule as described in the foregoing).

The priors were αk0 = βk0 = 1, ηk0 = 0 ∈ RD, and
νk0 was estimated from the data. As in the LDA model,
the AMPS objective for the latent feature model is addi-
tive over the features k; therefore the optimization was per-
formed using iterative maximum-weight bipartite match-
ings as described in Section 3.2.

Figure 9 shows the results from the two datasets using batch
learning and decentralized learning. For the decentralized
results, the posteriors of 5 learning agents were combined
using AMPS or the naı̈ve approach (equivalent to SDA5×1
in the notation of Figure 8). Figure 9a shows that AMPS
discovers the true set of latent features with a lower 2-norm

2Available online: http://www.vision.caltech.edu/html-
files/archive.html
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Figure 9: (9a): 2-norm error between the discovered features and the true set for the synthetic dataset. (9b): Test log likelihood for the synthetic dataset. (9c): Test log
likelihood on the faces dataset. All distributed/decentralized results were generated using 5 learning agents.

error than both the naı̈ve posterior combination and the in-
dividual learning agents, with a comparable error to the
batch learning case. However, as shown in Figures 9b (syn-
thetic) and 9c (faces), AMPS only outperforms the naı̈ve
approach in terms of predictive log likelihoods on the held-
out test set by a small margin. This is due to the flexibil-
ity of the latent feature assignment model, in that there are
many sets of latent features that explain the observations
well.

4 DISCUSSION

This work introduced the Approximate Merging of Poste-
riors with Symmetry (AMPS) algorithm for approximate
decentralized variational inference. AMPS may be used
in ad-hoc, asynchronous, and dynamic networks. Experi-
ments demonstrated the modelling and computational ad-
vantages of AMPS with respect to batch and distributed
learning. Motivated by the examples in Section 3, there
is certainly room for improvement of the AMPS algorithm.
For example, it may be possible to reduce the computa-
tional cost of AMPS by using a hierarchical optimization
scheme, rather than the monolithic approach used in most
of the examples presented in the foregoing. Further, ex-
tending AMPS for use with Bayesian nonparametric mod-
els is of interest for cases when the number of latent param-
eters is unknown a priori, or when there is the possibility
that agents learn disparate sets of latent parameters that are
not well-combined by optimizing over permutations. Fi-
nally, while the approximate optimization algorithms pre-
sented herein work well in practice, it would be of interest
to find bounds on the performance of such algorithms with
respect to the true AMPS optimal solution.
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Abstract

One of the goals of probabilistic inference is
to decide whether an empirically observed
distribution is compatible with a candidate
Bayesian network. However, Bayesian net-
works with hidden variables give rise to
highly non-trivial constraints on the ob-
served distribution. Here, we propose an
information-theoretic approach, based on
the insight that conditions on entropies of
Bayesian networks take the form of simple
linear inequalities. We describe an algorithm
for deriving entropic tests for latent struc-
tures. The well-known conditional indepen-
dence tests appear as a special case. While
the approach applies for generic Bayesian
networks, we presently adopt the causal view,
and show the versatility of the framework by
treating several relevant problems from that
domain: detecting common ancestors, quan-
tifying the strength of causal influence, and
inferring the direction of causation from two-
variable marginals.

1 Introduction

Inferring causal relationships from empirical data is
one of the prime goals of science. A common sce-
nario reads as follows: Given n random variables
X1, . . . , Xn, infer their causal relations from a list of n-
tuples i.i.d. drawn from P (X1, . . . , Xn). To formalize
causal relations, it has become popular to use directed
acyclic graphs (DAGs) with random variables as nodes
(c.f. Fig. 1) and arrows meaning direct causal influ-
ence [23, 28]. Such causal models have been called
causal Bayesian networks [23], as opposed to tradi-
tional Bayesian networks that formalize conditional
independence relations without having necessarily a
causal interpretation. One of the tasks of causal infer-

ence is to decide which causal Bayesian networks are
compatible with empirically observed data.

The most common way to infer the set of possible
DAGs from observations is based on the Markov con-
dition (c.f. Sect. 2) stating which conditional statisti-
cal independencies are implied by the graph structure,
and the faithfulness assumption stating that the joint
distribution is generic for the DAG in the sense that no
additional independencies hold [28, 23]. Causal infer-
ence via Markov condition and faithfulness has been
well-studied for the case where all variables are ob-
servable, but some work also refers to latent structures
where only a subset is observable [23, 27, 1]. In that
case, we are faced with the problem of characterizing
the set of marginal distributions a given Bayesian net-
work can give rise to. If an observed distribution lies
outside the set of marginals of a candidate network,
then that model can be rejected as an explanation
of the data. Unfortunately, it is widely appreciated
that Bayesian networks involving latent variables im-
pose highly non-trivial constraints on the distributions
compatible with it [31, 33, 20, 21].

These technical difficulties stem from the fact that the
conditional independencies amount to non-trivial alge-
braic conditions on probabilities. More precisely, the
marginal regions are semi-algebraic sets that can, in
principle, be characterized by a finite number of poly-
nomial equalities and inequalities [14]. However, it
seems that in practice, algebraic statistics is still lim-
ited to very simple models.

In order to circumvent this problem, we propose an
information-theoretic approach for causal inference.
It is based on an entropic framework for treating
marginal problems that, perhaps surprisingly, has re-
cently been introduced in the context of Bell’s The-
orem and the foundations of quantum mechanics
[12, 7]. The basic insight is that the algebraic con-
dition p(x, y) = p1(x)p2(y) for independence becomes
a linear relation H(X,Y ) = H(X) + H(Y ) on the
level of entropies. This opens up the possibility of us-
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ing computational tools such as linear programming to
find marginal constraints – which contrasts pleasantly
with the complexity of algebraic methods that would
otherwise be necessary.

1.1 Results

Our main message is that a significant amount of infor-
mation about causation is contained in the entropies of
observable variables and that there are relatively sim-
ple and systematic ways of unlocking that information.
We will make that case by discussing a great variety
of applications, which we briefly summarize here.

After introducing the geometric and algorithmic
framework in Sections 2 & 3, we start with the applica-
tions in Section 4.1 which treats instrumentality tests.
There, we argue that the non-linear nature of entropy,
together with the fact that it is agnostic about the
number of outcomes of a random variable, can greatly
reduce the complexity of causal tests.

Two points are made in Sec. 4.2, treating an exam-
ple where the direction of causation between a set
of variables is to be inferred. Firstly, that marginal
entropies of few variables can carry non-trivial infor-
mation about conditional independencies encoded in
a larger number of variables. This may have practi-
cal and statistical advantages. Secondly, we point out
applications to tests for quantum non-locality.

In Sec. 4.3 we consider the problem of distinguish-
ing between different hidden common ancestors causal
structures. While most of the entropic tests in this
paper have been derived using automated linear pro-
gramming algorithms, this section presents analytic
proofs valid for any number of variables.

Finally, Sec. 4.4 details three conceptually important
realizations: (1) The framework can be employed to
derive quantitative lower bounds on the strength of
causation between variables. (2) The degree of vio-
lation of entropic inequalities carries an operational
meaning. (3) Under some assumptions, we can ex-
hibit novel conditions for distinguishing dependencies
created through common ancestors from direct causa-
tion.

2 The information-theoretic
description of Bayesian networks

In this section we introduce the basic technical con-
cepts that are required to make the present paper self-
contained. More details can be found in [23, 12, 7].

2.1 Bayesian networks

Here and in the following, we will consider n jointly
distributed discrete random variables (X1, . . . , Xn).
Uppercase letters label random variables while low-
ercase label the values taken by these variables, e.g.
p(Xi = xi, Xj = xj) ≡ p(xi, xj).
Choose a directed acyclic graph (DAG) which has the
Xi’s as its vertices. The Xi’s form a Bayesian network
with respect to the graph if every variable can be ex-
pressed as a function of its parents PAi and an un-
observed noise term Ni, such that the Ni’s are jointly
independent. That is the case if and only if the distri-
bution is of the form

p(x) =
n∏

i=1

p(xi|pai).

Importantly, this is equivalent to demanding that the
Xi fulfill the local Markov property : Every Xi is condi-
tionally independent of its non-descendants NDi given
its parents PAi: Xi ⊥⊥ NDi|PAi.
We allow some of the nodes in the DAG to stand
for hidden variables that are not directly observable.
Thus, the marginal distribution of the observed vari-
ables becomes

p(v) =
∑

u

∏

i=1,...,m

p(vi|pai)
∏

j=1,...,n−m
p(uj |paj), (1)

where V = (V1, . . . , Vm) are the observable variables
and U = (U1, . . . , Un−m) the hidden ones.

2.2 Shannon Entropy cones

Again, we consider a collection of n discrete random
variables X1, . . . , Xn. We denote the set of indices
of the random variables by [n] = {1, . . . , n} and its
power set (i.e., the set of subsets) by 2[n]. For ev-
ery subset S ∈ 2[n] of indices, let XS be the ran-
dom vector (Xi)i∈S and denote by H(S) := H(XS)
the associated Shannon entropy given by H(XS) =
−∑xs

p(xs) log2 p(xs). With this convention, entropy
becomes a function

H : 2[n] → R, S 7→ H(S)

on the power set. The linear space of all set functions
will be denoted by Rn. For every function h ∈ Rn
and S ∈ 2[n], we use the notations h(S) and hS inter-
changeably.

The region

{h ∈ Rn |hS = H(S) for some entropy function H}
of vectors in Rn that correspond to entropies has been
studied extensively in information theory [35]. Its clo-
sure is known to be a convex cone, but a tight and
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explicit description is unknown. However, there is a
standard outer approximation which is the basis of our
work: the Shannon cone Γn. The Shannon cone is the
polyhedral closed convex cone of set functions h that
respect the following set of linear inequalities:

h([n] \ {i}) ≤ h([n]) (2)

h(S) + h(S ∪ {i, j}) ≤ h(S ∪ {i}) + h(S ∪ {j})
h(∅) = 0

for all S ⊂ [n] \ {i, j}, i 6= j and i, j ∈ [n]. These in-
equalities hold for entropy: The first relation – known
as monotonicity – states that the uncertainty about a
set of variables should always be larger than or equal
to the uncertainty about any subset of it. The sec-
ond inequality is the sub-modularity condition which
is equivalent to the positivity of the conditional mutual
information I(Xi : Xj |XS) = H(XS∪i) + H(XS∪j) −
H(XS∪{i,j})−H(XS) ≥ 0. The inequalities above are
known as the elementary inequalities in information
theory or the polymatroidal axioms in combinatorial
optimization. An inequality that follows from the ele-
mentary ones is said to be of Shannon-type.

The elementary inequalities encode the constraints
that the entropies of any set of random variables are
subject to. If one further demands that the ran-
dom variables are a Bayesian network with respect to
some given DAG, additional relations between their
entropies will ensue. Indeed, it is a straight-forward
but central realization for the program pursued here,
that CI relations faithfully translate to homogeneous
linear constraints on entropy:

X ⊥⊥ Y |Z ⇔ I(X : Y |Z) = 0. (3)

The conditional independencies (CI) given by the local
Markov condition are sufficient to characterize distri-
butions that form a Bayesian network w.r.t. some fixed
DAG. Any such distribution exhibits further CI rela-
tions, which can be algorithmically enumerated using
the so-called d-separation criterion [23]. Let Γc be
the subspace of Rn defined by the equality (3) for all
such conditional independencies. In that language, the
joint distribution of a set of random variables obeys
the Markov property w.r.t. to Bayesian network if and
only if its entropy vector lies in the polyhedral convex
cone Γcn := Γn ∩ Γc, that is, the distribution defines
a valid entropy vector (obeying (2)) that is contained
in Γc. The rest of this paper is concerned with the
information that can be extracted from this convex
polyhedron.

We remark that this framework can easily be gener-
alized in various directions. E.g., it is simple to in-
corporate certain quantitative bounds on causal influ-
ence. Indeed, small deviations of conditional indepen-
dence can be expressed as I(X : Y |Z) ≤ ε for some

ε > 0. This is a (non-homogeneous) linear inequality
on Rn. One can add any number of such inequalities
to the definition of Γcn while still retaining a convex
polyhedron (if no longer a cone). The linear program-
ming algorithm presented below will be equally appli-
cable to these objects. (In contrast to entropies, the
set of probability distributions subject to quantitative
bounds on various mutual informations seems to be
computationally and analytically intractable).

Another generalization would be to replace Shannon
entropies by other, non-statistical, information mea-
sures. To measure similarities of strings, for instance,
one can replace H with Kolmogorov complexity, which
(essentially) also satisfies the polymatroidal axioms
(2). Then, the conditional mutual information mea-
sures conditional algorithmic dependence. Due to
the algorithmic Markov condition, postulated in [19],
causal structures in nature also imply algorithmic in-
dependencies in analogy to the statistical case. We
refer the reader to Ref. [30] for further information
measures satisfying the polymatroidal axioms.

2.3 Marginal Scenarios

We are mainly interested in situations where not all
joint distributions are accessible. Most commonly, this
is because the variables X1, . . . , Xn can be divided into
observable ones V1, . . . , Vm (e.g. medical symptoms)
and hidden ones U1, . . . , Un−m (e.g. putative genetic
factors). In that case, it is natural to assume that
any subset of observable variables can be jointly ob-
served. There are, however, more subtle situations
(c.f. Sec. 4.2). In quantum mechanics, e.g., position
and momentum of a particle are individually measur-
able, as is any combination of position and momentum
of two distinct particles – however, there is no way to
consistently assign a joint distribution to both position
and momentum of the same particle [4].

This motivates the following definition: Given a set
of variables X1, . . . , Xn, a marginal scenario M is the
collection of those subsets of X1, . . . , Xn that are as-
sumed to be jointly measurable.

Below, we analyze the Shannon-type inequalities that
result from a given Bayesian network and constrain
the entropies accessible in a marginal scenario M.

3 Algorithm for the entropic
characterization of any DAG

Given a DAG consisting of n random variables and a
marginal scenarioM, the following steps will produce
all Shannon-type inequalities for the marginals:

Step 1: Construct a description of the unconstrained
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Shannon cone. This means enumerating all n +(
n
2

)
2n−2 elementary inequalities given in (2).

Step 2: Add causal constraints presented as in (3).
This corresponds to employing the d-separation
criterion to construct all conditional independence
relations implied by the DAG.

Step 3: Marginalization. Lastly, one has to eliminate
all joint entropies not contained in M.

The first two steps have been described in Sec. 2. We
thus briefly discuss the marginalization, first from a
geometric, then from an algorithmic perspective.

Given a set function h : 2[n] → R, its restriction
h|M :M→ R is trivial to compute: If h is expressed
as a vector in Rn, we just drop all coordinates of h
which are indexed by sets outside of M. Geometri-
cally, this amounts to a projection PM : R2n → R|M|.
The image of the constrained cone Γcn under the pro-
jection PM is again a convex cone, which we will refer
to as ΓM. Recall that there are two dual ways of repre-
senting a polyhedral convex cone: in terms of either its
extremal rays, or in terms of the inequalities describing
its facets [2]. To determine the projection ΓM, a natu-
ral possibility would be to calculate the extremal rays
of Γcn and remove the irrelevant coordinates of each
of them. This would result in a set of rays generating
ΓM. However, Steps 1 & 2 above give a representation
of Γcn in terms of inequalities. Also, in order to obtain
readily applicable tests, we would prefer an inequality
presentation of ΓM. Thus, we have chosen an algo-
rithmically more direct (if geometrically more opaque)
procedure by employing Fourier-Motzkin elimination –
a standard linear programming algorithm for eliminat-
ing variables from systems of inequalities [34].

In the remainder of the paper, we will discuss appli-
cations of inequalities resulting from this procedure to
causal inference.

4 Applications

4.1 Conditions for Instrumentality

An instrument Z is a random variable that under cer-
tain assumptions helps identifying the causal effect
of a variable X on another variable Y [16, 22, 5].
The simplest example is given by the instrumentality
DAG in Fig. 1 (a), where Z is an instrumental vari-
able and the following independencies are implied: (i)
I(Z : Y |X,U) = 0 and (ii) I(Z : U) = 0. The variable
U represents all possible factors (observed and unob-
served) that may effect X and Y . Because conditions
(i) and (ii) involve an unobservable variable U , the use
of an instrument Z can only be justified if the observed

Z X Y

U

Z X Y

U1

U2

(a) (b)

Figure 1: DAG (a) represents the instrumental sce-
nario. DAG (b) allows for a common ancestor between
Z and Y : unless some extra constraint is imposed (e.g.
I(Y, U2) ≤ ε) this DAG is compatible with any proba-
bility distribution for the variables X, Y and Z.

distribution falls inside the compatibility region im-
plied by the instrumentality DAG. The distributions
compatible with this scenario can be written as

p(x, y|z) =
∑

u

p(u)p(y|x, u)p(x|z, u) (4)

Note that (4) can be seen as a convex combination of
deterministic functions assigning the values of X and
Y [22, 5, 25]. Thus, the region of compatibility asso-
ciated with p(x, y|z) is a polytope and all the proba-
bility inequalities characterizing it can in principle be
determined using linear programming. However, as
the number of values taken by the variables increases,
this approach becomes intractable [5] (see below for
further comments). Moreover, if we allow for vari-
ations in the causal relations, e.g. the one shown in
DAG (b) of Fig. 1, the compatibility region is not
a polytope anymore and computationally challenging
algebraic methods would have to be used [15]. For
instance, the quantifier elimination method in [15] is
unable to deal with the instrumentality DAG even in
the simplest case of binary variables. We will show
next how our framework can easily circumvent such
problems.

Proceeding with the algorithm described in Sec. 3, one
can see that after marginalizing over the latent variable
U , the only non-trivial entropic inequality constraining
the instrumental scenario is given by

I(Y : Z|X) + I(X : Z) ≤ H(X). (5)

By “non-trivial”, we mean that (5) is not implied by
monotonicity and sub-modularity for the observable
variables. The causal interpretation of (5) can be
stated as follows: Since Z influence Y only through
X, if the dependency between X and Z is large, then
necessarily the dependency between Y and Z condi-
tioned on knowing X should be small.

We highlight the fact that, irrespective of how many
values the variables X, Y and Z may take (as long as
they are discrete), (5) is the only non-trivial entropic

115



Compatible 
with 

Instrumental Scenario

Entropic Violations

Figure 2: A comparison between the entropic and
the probabilistic approach. The squares represent the
polytope of distributions compatible with the instru-
mental DAG. Each facet in the square corresponds to
one of the 4 non-trivial inequalities valid for binary
variables [22, 5]. The triangles over the squares repre-
sent probability distributions that fail to be compat-
ible with the instrumental constraints. Distributions
outside the dashed curve are detected by the entropic
inequality (5). Due to its non-linearity in terms of
probabilities, (5) detects the non-compatibility associ-
ated with different probability inequalities. See [8] for
more details.

constraint bounding the distributions compatible with
the instrumentality test. This is in stark contrast
with the probabilistic approach, for which the num-
ber of linear inequalities increases exponentially with
the number of outcomes of the variables [5]. There is,
of course, a price to pay for this concise description:
There are distributions that are not compatible with
the instrumental constraints, but fail to violate (5). In
this sense, an entropic inequality is a necessary but
not sufficient criterion for compatibility. However, it
is still surprising that a single entropic inequality can
carry information about causation that is in princi-
ple contained only in exponentially many probabilistic
ones. This effect stems from the non-linear nature of
entropy1 and is illustrated in Fig. 2.

Assume now that some given distribution p(x, y|z) is
incompatible with the instrumental DAG. That could
be due to some dependencies between Y and Z me-
diated by a common hidden variable U2 as shown in
DAG (b) of Fig. 1. Clearly, this DAG can explain any

1We remark that the reduction of descriptional com-
plexity resulting from the use of non-linear inequalities oc-
curs for other convex bodies as well. The simplest example
along these lines is the Euclidean unit ball B. It requires
infinitely many linear inequalities to be defined (namely
B = {x | (x, y) ≤ 1∀y, ‖y‖2 ≤ 1}). These can, of course, all
be subsumed by the single non-linear condition ‖x‖2 ≤ 1.

distribution p(x, y|z) and therefore is not very infor-
mative. Notwithstanding, with our approach we can
for instance put a quantitative lower bound on how de-
pendent Y and U2 need to be. Following the algorithm
in Sec. 3, one can see that the only non-trivial con-
straint on the dependency between Y and U2 is given
by I(Y : U2) ≤ H(Y |X). This inequality imposes a
kind of monogamy of correlations: if the uncertainty
about Y is small given X, their dependency is large,
implying that Y is only slightly correlated with U2,
since the latter is statistically independent of X.

4.2 Inferring direction of causation

As mentioned before, if all variables in the DAG are
observed, the conditional independencies implied by
the graphical model completely characterize the pos-
sible probability distributions [24]. For example, the
DAGs displayed in Fig. 3 display a different set of CIs.
For both DAGs we have I(X : Z|Y,W ) = 0, however
for DAG (a), it holds that I(Y : W |X) = 0 while for
DAG (b) I(Y : W |Z) = 0. Hence, if the joint distribu-
tions of (Y,W,X) and (Y,W,Z) are accessible, then CI
information can distinguish between the two networks
and thus reveal the “direction of causation”.

In this section, we will show that the same is possible
even if only two variables are jointly accessible at any
time. We feel this is relevant for three reasons.

First – and somewhat subjectively – we believe the
insight to be interesting from a fundamental point of
view. Inferring the direction of causation between two
variables is a notoriously thorny issue, hence it is far
from trivial that it can be done from information about
several pairwise distributions.

The second reason is that there are situations where
joint distributions of many variables are unavailable
due to practical or fundamental reasons. We have al-
ready mentioned quantum mechanics as one such ex-
ample – and indeed, the present DAGs can be related
to tests for quantum non-locality. We will briefly dis-
cuss the details below. But also purely classical situ-
ations are conceivable. For instance, Mendelian ran-
domization is a good example where the joint distri-
bution on all variables is often unavailable [10].

Thirdly, the “smoothing effect” of marginalizing may
simplify the statistical analysis when only few sam-
ples are available. Conditioning on many variables
or on variables that attain many different values of-
ten amounts to conditioning on events that happened
only once. Common χ2-tests for CI [32] involve di-
visions by empirical estimates of variance, which lead
to nonsensical results if no variance is observed. Test-
ing for CI in those situations requires strong assump-
tions (like smoothness of dependencies) and remains
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Figure 3: DAGs with no hidden variables and opposite
causation directions. The DAGs can be distinguished
based on the CIs induced by them. However, if only
pairwise information is available one must resort to the
marginalization procedure described in Sec. 3.

a challenging research topic [13, 36]. Two-variable
marginals, while containing strictly less information
than three-variable ones, show less fluctuations and
might thus be practically easier to handle. This ben-
efit may not sound spectacular as long as it refers to
2- versus 3-variable marginals. However, in general,
our formalism can provide inequality constraints for
k-variable marginals from equality constraints that in-
volve `-variable marginals for `� k.

We note that causal inference schemes using only pair-
wise mutual information is already known for trees,
i.e., DAGs containing no undirected cycles. The data
processing inequality implies that for every node, the
mutual information to a direct neighbor cannot be
smaller than the one with the neighbor of this neigh-
bor. Hence one can find adjacencies based on pairwise
mutual information only. This has been used e.g. for
phylogenetic trees [17, 9]. In that sense, our results
generalize these ideas to DAGS with cycles.

The non-trivial constraints on two-variable entropies
given by our algorithm for the DAG (a) of Fig. 3 are:

HY −HX −HYW +HXW ≤ 0 (6)

HW −HX −HYW +HXY ≤ 0

HWZ −HYW −HXZ +HXY ≤ 0

HY Z −HYW −HXZ +HXW ≤ 0

HY −HX +HW −HWZ −HY Z +HXZ ≤ 0

HZ −HX −HYW −HXZ +HXW +HXY ≤ 0

HZ +HX

+HYW +HXZ −HXW −HXY −HWZ −HY Z ≤ 0.

The ones for DAG (b) are obtained by the substitu-
tion X ↔ Z. Invariant under this, the final inequality
is valid for both scenarios. In contrast, the first six
inequalities can be used to distinguish the DAGs.

As an example, one can consider the following struc-
tural equations compatible only with the DAG (b): Z
is a uniformly distributed m-valued random variable,

Y = W = Z, and X = Y ⊕W (addition modulo m).
A direct calculation shows that the first inequality in
(6) is violated, thus allowing one to infer the correct
direction of the arrows in the DAG.

As alluded to before, we close this section by mention-
ing a connection to quantum non-locality [4]. Using
the linear programming algorithm, one finds that the
final inequality in (6) is actually valid for any distribu-
tion of four random variables, not only those that con-
stitute Bayesian networks w.r.t. the DAGs in Fig. 3.
In that sense it seems redundant, or, at best, a san-
ity check for consistency of data. It turns out, how-
ever, that it can be put to non-trivial use. While the
purpose of causal inference is to check compatibility
of data with a presumed causal structure, the task of
quantum non-locality is to devise tests of compatibil-
ity with classical probability theory as a whole. Thus,
if said inequality is violated in a quantum experiment,
it follows that there is no way to construct a joint dis-
tribution of all four variables that is consistent with
the observed two-variable marginals – and therefore
that classical concepts are insufficient to explain the
experiment.

While not every inequality which is valid for all clas-
sical distributions can be violated in quantum experi-
ments, the constraints in (6) do give rise to tests with
that property. To see this, we further marginalize over
H(X,Z) and H(Y,W ) to obtain

HXY +HXW +HY Z −HWZ −HY −HX ≤ 0 (7)

(and permutations thereof). These relations have been
studied as the “entropic version of the CHSH Bell in-
equality” in the physics literature [6, 12, 7], where it
is shown that (7) can be employed to witness that cer-
tain measurements on quantum systems do not allow
for a classical model.

4.3 Inference of common ancestors in
semi-Markovian models

In this section, we re-visit in greater generality the
problem considered in [29]: using entropic conditions
to distinguish between hidden common ancestors.

Any distribution of a set of n random variables can
be achieved if there is one latent parent (or ancestor)
common to all of them [23]. However, if the dependen-
cies can also be obtained from a less expressive DAG
– e.g. one where at most two of the observed vari-
ables share an ancestor – then Occam’s Razor would
suggest that this model is preferable. The question
is then: what is the simplest common ancestor causal
structure explaining a given set of observations?

One should note that unless we are able to intervene
in the system under investigation, in general it may
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be not possible to distinguish direct causation from a
common cause. For instance, consider the DAGs (a)
and (c) displayed in Fig. 4. Both DAGs are compat-
ible with any distribution and thus it is not possible
to distinguish between them from passive observations
alone. For this reason and also for simplicity, we re-
strict our attention to semi-Markovian models where
all the observable variables are assumed to have no di-
rect causation on each other or on the hidden variables.
Also, the hidden variables are assumed to be mutually
independent. It is clear then that all dependencies be-
tween the observed quantities can only be mediated by
their hidden common ancestors. We refer to such mod-
els as common ancestors (CM) DAGs. We reinforce,
however, that our framework can also be applied in the
most general case. As will be explained in more de-
tails in Sec. 4.4, in some cases, common causes can be
distinguished from direct causation. Our framework
can also be readily applied in these situations.

We begin by considering the simplest non-trivial case,
consisting of three observed variables [29, 11, 7]. If no
conditional independencies between the variables oc-
cur, then the graphs in Fig. 4 (a) and (b) represent
the only compatible CM DAGs. Applying the algo-
rithm described in Sec. 3 to the model (b), we find
that one non-trivial class of constraints is given by

I(V1 : V2) + I(V1 : V3) ≤ H(V1) (8)

and permutations thereof [11, 7].

It is instructive to pause and interpret (8). It states,
for example, that if the dependency between V1 and V2
is maximal (I(V1 : V2) = H(V1)) then there should be
no dependency at all between V1 and V3 (I(V1 : V2) =
0). Note that I(V1 : V2) = H(V1) is only possible if
V1 is a deterministic function of the common ancestor
U12 alone. But if V1 is independent of U13, it cannot
depend on V3 and thus I(V1 : V3) = 0.

Consider for instance a distribution given by

p (v1, v2, v3) =

{
1/2 , if v1 = v2 = v3
0 , otherwise

, (9)

This stands for a perfect correlation between all the
three variables and clearly cannot be obtained by pair-
wise common ancestors. This incompatibility is de-
tected by the violation of (8).

We now establish the following generalization of (8) to
an arbitrary number of observables:

Theorem 1 For any distribution that can be ex-
plained by a CM DAG where each of the latent an-
cestors influences at most m of the observed variables,

U
U12

(b)(a) (c)
V1

V2 V3

V1

V2 V3

U13

U23

U12

V1

V2 V3

U13

U23

Figure 4: Models (a) and (b) are CM DAGs for three
observable variables V1, V2, V3. Unlike (b), DAG (a) is
compatible with any observable distribution. DAG (c)
involves a direct causal influence between the observ-
able variable V1 and V2.

we have
∑

i=1,··· ,n
i 6=j

I(Vi : Vj) ≤ (m− 1)H(Vj). (10)

We present the proof for the case m = 2 while the gen-
eral proof can be found in the supplemental material.

Lemma 1 In the setting of Thm. 1 for m = 2:

n∑

i=2

H(VjUji) ≥ (N − 2)H(Vj) +H(Vj

N⋃

i=2

Uji). (11)

Proof. (By induction) We treat the case j = 1 w.l.o.g.
For n = 2 equality holds trivially. Now assuming the
validity of the inequality for any n:

∑n+1
i=2 H(V1U1i) ≥ (n− 2)H(V1) (12)

+H(V1
⋃n
i=2 U1i) +H(V1U1(n+1))

≥ [(n+ 1)− 2]H(V1) +H(V1
⋃n+1
i=2 U1i). (13)

From (12) to (13) we have used sub-modularity. �

Proof of Theorem 1. Apply the data processing
inequality to the left-hand side of (10) to obtain

∑n
i=2 I(A1 : Ai) ≤

∑n
i=2 I(A1 : U1i)

= (n− 1)H(A1) +
∑n
i=2H(λ1i)−

∑n
i=2H(A1λ1i).

With Lemma 1, we get

∑n
i=2 I(V1 : Vi) ≤ (n− 1)H(V1) +

∑n
i=2H(U1i)

−[(n− 2)H(V1) +H(V1
⋃n
i=2 U1i)] .

The mutual independence of hidden variables yields∑n
i=2H(U1i) = H(

⋃n
i=2 U1i) implying that

n∑

i=2

I(V1 : Vi) ≤ H(V1)−H(V1|
n⋃

i=2

U1i) ≤ H(V1).

�
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We highlight the fact that Ineq. (10) involves only
pairwise distributions – the discussion in Sec. 4.2 ap-
plies. Following our approach, one can derive further
entropic inequalities, in particular involving the joint
entropy of all observed variables. A more complete
theory will be presented elsewhere.

4.4 Quantifying causal influences

Unlike conditional independence, mutual information
captures dependencies in a quantitative way. In this
section, we show that our framework allows one to de-
rive non-trivial bounds on the strength of causal links.
We then go on to present two corollaries of this result:
First, it follows that the degree of violation of an en-
tropic inequality often carries an operational meaning.
Second, under some assumptions, the finding will allow
us to introduce a novel way of distinguishing depen-
dence created through common ancestors from direct
causal influence.

Various measures of causal influence have been stud-
ied in the literature. Of particular interest to us is
the one recently introduced in [18]. The main idea is
that the causal strength CX→Y between a variable X
on another variable Y should measure the impact of
an intervention that removes the arrow between them.
Ref. [18] draws up a list of reasonable postulates that
a measure of causal strength should fulfill. Of spe-
cial relevance to our information-theoretic framework
is the axiom stating that

CX→Y ≥ I(X : Y |PAX
Y ), (14)

where PAX
Y stands for the parents of variable Y other

than X. We focus on this property, as the quantity
I(X : Y |PAX

Y ) appears naturally in our description
and thus allows us to bound any measure of causal
strength CX→Y for which (14) is valid.

To see how this works in practice, we start by aug-
menting the common ancestor scenario considered in
the previous section. Assume that now we do allow
for direct causal influence between two variables, in
addition to pairwise common ancestors – c.f. Fig. 4
(c). Then (14) becomes CV1→V2 ≥ I(V1 : V2|U12, U13).
We thus re-run our algorithm, this time with the un-
observable quantity I(V1 : V2|U12, U13) included in the
marginal scenario. The result is

I(V1 : V2|U12, U13) ≥ I(V1 : V2) + I(V1 : V3)−H(V1),
(15)

which lower-bounds the causal strength in terms of
observable entropies.

The same method yields a particularly concise and rel-
evant result when applied to the instrumental test of
Sec. 4.1. The instrumental DAG may stand, for ex-
ample, for a clinical study about the efficacy of some

drug where Z would label the treatment assigned, X
the treatment received, Y the observed response and
U for any observed or unobserved factors affecting
X and Y . In this case we would be interested not
only in checking the compatibility with the presumed
causal relations but also the direct causal influence of
the drug on the expected observed response, that is,
CX→Y . After the proper marginalization we conclude
that CX→Y ≥ I(Y : Z), a strikingly simple, but non-
trivial bound that can be computed from the observed
quantities alone. Likewise, if one allows the instru-
mental DAG to have an arrow connecting Z and Y ,
one finds

CZ→Y ≥ I(Y : Z|X) + I(X : Z)−H(X). (16)

The findings presented here can be re-interpreted in
two ways:

First, note that the right hand side of the lower bound
(15) is nothing but Ineq. (8), a constraint on distribu-
tions compatible with DAG 3 (b). Similarly, the r.h.s.
of (16) is just the degree of violation of the entropic
instrumental inequality (5).

We thus arrive at the conceptually important realiza-
tion that the entropic conditions proposed here offer
more than just binary tests. To the contrary, their de-
gree of violation is seen to carry a quantitative mean-
ing in terms of strengths of causal influence.

Second, one can interpret the results of this sections as
providing a novel way to distinguish between DAGs (a)
and (c) in Fig. 4 without experimental data. Assume
that we have some information about the physical pro-
cess that could facilitate direct causal influence from
V1 to V2 in (c), and that we can use that prior infor-
mation to put a quantitative upper bound on CV1→V2

.
Then we must reject the direct causation model (c) in
favor of a common ancestor explanation (a), as soon
as the observed dependencies violate the bound (15).
As an illustration, the perfect correlations exhibited
by the distribution (9) is incompatible with DAG (c),
as long as CV1→V2

is known to be smaller than 1.

5 Statistical Tests

In this section, we briefly make the point that
inequality-based criteria immediately suggest test
statistics which can be used for testing hypotheses
about causal structures. While a thorough treatment
of statistical issues is the subject of ongoing research
[3, 26], it should become plain that the framework al-
lows to derive non-trivial tests in a simple way.

Consider an inequality I :=
∑
S⊂2[n] cSH(S) ≤ 0 for

suitable coefficients cS . Natural candidates for test
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statistics derived from it would be TI :=
∑
S cSĤ(S)

or T ′I := TI√
v̂ar(TI)

, where Ĥ(S) is the entropy of the

empirical distribution of XS , and v̂ar is some consis-
tent estimator of variance (e.g. a bootstrap estimator).
If the inequality I is fulfilled for some DAG G, then a
test with null hypothesis “data is compatible with G”
can be designed by testing TI ≤ t or T ′I ≤ t, for some
critical value t > 0. In an asymptotic regime, there
could be reasonable hope to analytically characterize
the distribution of T ′I . However, in the more relevant
small sample regime, one will probably have to resort
to Monte Carlo simulations in order to determine t for
a desired confidence level. In that case, we prefer to
use TI , by virtue of being “less non-linear” in the data.

We have performed a preliminary numerical study us-
ing the DAG given in Fig. 4 (b) together with Ineq. (8).
We have simulated experiments that draw 50 samples
from various distributions of three binary random vari-
ables V1, V2, V3 and compute the test statistic TI . To
test at the 5%-level, we must choose t large enough
such that for all distributions p compatible with 4(b),
we have a type-I error rate Prp[TI > t] below 5%. We
have employed the following heuristics for finding t:
(1) It is plausible that the highest type-I error rate oc-
curs for distributions p that reach equality Ep[Î] = 0;
(2) This occurs only if V1 is a deterministic function
of V2 and V3. From there, it follows that V1 must be a
function of one of V2 or V3 and we have used a Monte
Carlo simulation with (V2, V3) uniformly random and
V1 = V2 to find t = .0578. Numerical checks failed to
identify distributions with higher type-I rate (though
we have no proof). Fig. 5 illustrates the resulting test.
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Figure 5: Power (1 minus type-II error) of the test
TI ≥ t for the DAG Fig. 4(b) derived from Ineq. (8)
using 50 samples. The test was run on a distribution
obtained by starting with three perfectly correlated
binary random variables as in (9) and then inverting
each of the variables independently with a given “flip
probability” (x axis). Every data point is the result of
10000 Monte Carlo simulations.

6 Conclusions

Hidden variables imply nontrivial constraints on ob-
servable distributions. While we cannot give a com-
plete characterization of these constraints, we show
that a number of nontrivial constraints can be ele-
gantly formulated in terms of entropies of subsets of
variables. These constraints are linear (in)equalities,
which lend themselves well to algorithmic implemen-
tation.

Remarkably, our approach only requires the polyma-
troidal axioms, and thus also applies to various infor-
mation measures other than Shannon entropy. Some
of these may well be relevant to causal inference and
structure learning and may constitute an interesting
topic for future research.
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Abstract

We consider adaptive pool-based active learning
in a Bayesian setting. We first analyze two com-
monly used greedy active learning criteria: the
maximum entropy criterion, which selects the
example with the highest entropy, and the least
confidence criterion, which selects the example
whose most probable label has the least probabil-
ity value. We show that unlike the non-adaptive
case, the maximum entropy criterion is not able
to achieve an approximation that is within a con-
stant factor of optimal policy entropy. For the
least confidence criterion, we show that it is able
to achieve a constant factor approximation to the
optimal version space reduction in a worst-case
setting, where the probability of labelings that
have not been eliminated is considered as the ver-
sion space. We consider a third greedy active
learning criterion, the Gibbs error criterion, and
generalize it to handle arbitrary loss functions be-
tween labelings. We analyze the properties of
the generalization and its variants, and show that
they perform well in practice.

1 INTRODUCTION

We study pool-based active learning (McCallum and
Nigam, 1998) where the training data are sequentially se-
lected and labeled from a pool of unlabeled examples, with
the aim of having good performance after only a small
number of examples are labeled. In practice, the selection
of the next example to be labeled is usually done by greedy
optimization of some appropriate objective function.

In this paper, we consider adaptive algorithms for pool-
based active learning with a budget of k queries in a
Bayesian setting. We examine three commonly used
greedy criteria and their performance guarantees. We also
generalize one of the criteria, study its properties and show
that it performs well in practice.

One of the most commonly used criteria is the maximum
entropy criterion: select the example with maximum label
entropy given the observed labels (Settles, 2010). In the
non-adaptive case where the set of examples must be se-
lected before any label is observed, the analogue of this
greedy criterion selects the example that maximally in-
creases the label entropy of the selected set. This greedy
criterion in the non-adaptive case is well-known to be near-
optimal: the label entropy of the selected examples is at
least (1 − 1/e) of the optimal set. This follows from a
property satisfied by the entropy function called submodu-
larity. Selecting a set with large label entropy is desirable,
as the chain rule of entropy implies that maximizing the la-
bel entropy of the selected set will minimize the conditional
label entropy of the remaining examples. It would be desir-
able to have a similar near-optimal performance guarantee
for the adaptive case where the label is provided after every
example is selected. Whether the greedy maximum entropy
criterion provides such a guarantee was not known (Cuong
et al., 2013), although it was suspected that it does not. In
this paper, we show that the greedy algorithm, indeed, does
not provide a constant factor approximation in the adaptive
case.

Another commonly used greedy criterion is the least confi-
dence criterion: select the example whose most likely label
has the smallest probability (Lewis and Gale, 1994; Culotta
and McCallum, 2005). In this paper, we show that this cri-
terion provides a near-optimal adaptive algorithm for max-
imizing the worst-case version space reduction, where the
version space is the probability of labelings that are consis-
tent with the observed labels. This will be derived as the
consequence of a more general result which shows such
near-optimal approximation holds for utility functions that
satisfy pointwise submodularity and minimal dependency.
Pointwise submodular functions were previously studied in
(Guillory and Bilmes, 2010) for active learning, but with a
different objective function which focuses on identifying
the true function.

The Gibbs error criterion was proposed in (Cuong et al.,
2013) as an alternative uncertainty measure suitable for ac-
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Table 1: Theoretical Properties of Greedy Criteria for Adaptive Active Learning

Criterion Objective Near-optimality Property

Maximum entropy Policy entropy No constant
factor approximation (this paper)

Least confidence Worst-case (1-1/e) factor Pointwise monotone
version space reduction approximation (this paper) submodular

Maximum Gibbs error Policy Gibbs error (1-1/e) factor Adaptive monotone
(expected version approximation (Cuong et al., 2013) submodular
space reduction)

tive learning. The criterion selects the example with the
largest Gibbs error for labeling. The Gibbs error is the ex-
pected error of the Gibbs classifier, which predicts the label
by sampling from the current label distribution. Gibbs error
is a special case of Tsallis entropy, introduced in statistical
mechanics (Tsallis and Brigatti, 2004) as a generalization
of the Shannon entropy (which is used in the maximum en-
tropy criterion). In (Cuong et al., 2013), Gibbs error was
used as a lower bound to the Shannon entropy and was
maximized in order to minimize the posterior conditional
entropy. It was shown in (Cuong et al., 2013) that using
the Gibbs error criterion achieves at least (1 − 1/e) of the
optimal policy Gibbs error, a performance measure for this
criterion, given k queries in the adaptive case. This relies
on the property that the version space reduction function is
adaptive submodular (Golovin and Krause, 2011).

The results for the three commonly used greedy criteria are
shown in Table 1.

The Gibbs error criterion can be seen as a greedy algo-
rithm for sequentially maximizing the Gibbs error over the
dataset. The Gibbs error of the dataset is the expected er-
ror of a Gibbs classifier that predicts using an entire label-
ing sampled from the prior label distribution for the entire
dataset. Here, a labeling is considered incorrect if any ex-
ample is incorrectly labeled by the Gibbs classifier. Pre-
dicting an entirely correct labeling of all examples is often
unrealistic in practice, particularly after only a few exam-
ples are labeled. This motivates us to generalize the Gibbs
error to handle different loss functions between labelings,
e.g. Hamming loss which measures the Hamming distance
between two labelings. We call the greedy criterion that
uses general loss functions the average generalized Gibbs
error criterion.

The corresponding performance measure for the average
generalized Gibbs error criterion is the generalized policy
Gibbs error, which is the expected value of the general-
ized version space reduction function. The generalized ver-
sion space reduction function is an extension of the version
space reduction function with general loss functions. We
investigate whether the generalized version space reduction

function is adaptive submodular, as this property would
provide a constant factor approximation for the average
generalized Gibbs error criterion. Unfortunately, we can
show that the generalized version space reduction function
is not necessarily adaptive submodular, although it is adap-
tive submodular for the special case of the version space re-
duction function. Despite that, we show in our experiments
that the average generalized Gibbs error criterion can per-
form well in practice, even when we do not know whether
the corresponding utility function is adaptive submodular.

As in the case for the least confidence criterion, we also
consider a worst-case setting for the generalized Gibbs er-
ror. The worst case against a target labeling can be se-
vere, so we consider a variant: the total generalized version
space reduction function. This function targets the sum
of the remaining losses over all the remaining labelings,
rather than against a single worst-case labeling. We call the
corresponding greedy criterion the worst-case generalized
Gibbs error criterion. It selects the example with maximum
worst-case total generalized version space reduction as the
next query. As the total generalized version space reduction
function is pointwise submodular and satisfies the minimal
dependency property, the method is guaranteed to be near-
optimal. Our experiments show that the worst-case gener-
alized Gibbs error criterion performs well in practice. For
binary problems, the maximum entropy, least confidence,
and Gibbs error criteria are all equivalent, and the worst-
case generalized Gibbs error criterion outperforms them for
most problems in our experiments.

2 PRELIMINARIES

Let X be a finite set of items (or examples), and let Y be
a finite set of labels (or states). A labeling of X is a func-
tion fromX to Y , and a partial labeling is a partial function
fromX to Y . Each labeling ofX can be considered as a hy-
pothesis in the hypothesis spaceH = YX . In the Bayesian
setting, there is a prior probability p0[h] on H, and an un-
known true hypothesis htrue is initially drawn from p0[h].
After observing a labeled set (i.e. a partial labeling) D,
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we can obtain the posterior pD[h] = p0[h|D] using Bayes’
rule.

For any S ⊆ X and any distribution p on H,
we write p[y;S] to denote the probability that a ran-
domly drawn hypothesis from p assigns labels in the
sequence y to items in the sequence S. That is,
p[y;S] def=

∑
h∈H p[h]P[h(S) = y|h], where we use the

notation h(S) to denote the sequence (h(x1), . . . , h(xi))
whenever S is a sequentially constructed set (x1, . . . , xi),
or simply the set {h(x) : x ∈ S} if the items in S are not
ordered. In our setting, h is a deterministic hypothesis, so
P[h(S) = y|h] = 1(h(S) = y), where 1(·) is the indicator
function. Note that p[ · ;S] is a probability distribution on
the set of all label sequences y of S. For x ∈ X and y ∈ Y ,
we also write p[y;x] for p[{y}; {x}].
In practice, we often consider probabilistic models (like the
naive Bayes models) which are used to generate labels for
examples, and a prior is imposed on these models instead of
on the labelings. In this case, we can follow the construc-
tion in the supplementary material of (Cuong et al., 2013)
to construct an equivalent prior on the labelings and work
with this induced prior.

We consider pool-based active learning with a fixed bud-
get: given a budget of k queries, we aim to adaptively se-
lect from the pool X the best k examples with respect to
some objective function.1 A pool-based active learning al-
gorithm corresponds to a policy for choosing training ex-
amples from X . A policy is a mapping from a partial la-
beling to the next unlabeled example to query. When the
active learning policy chooses an unlabeled example, its
label according to htrue will be revealed.

A policy can be represented by a policy tree in which each
node corresponds to an unlabeled example to query, and
edges below a node correspond to its labels. In this paper,
we use policy and policy tree interchangeably. A policy can
be non-adaptive or adaptive. In a non-adaptive policy, the
observed labels are not taken into account when the policy
chooses the next example. An adaptive policy, on the other
hand, can use the observed labels to determine the next ex-
ample to query. We will focus on adaptive policies in this
paper.

Let Πk be the set of policy trees of height k. Note that Π|X |
contains full policy trees, while Πk with k < |X | contains
partial policy trees. Following the insight in (Cuong et al.,
2013), for any (full or partial) policy π, we define a prob-
ability distribution pπ0 [·] over the paths from the root to a
leaf of π. Intuitively, pπ0 [ρ] is the probability that the policy
π follows the path ρ during its execution. This probabil-
ity distribution is induced by the randomness of htrue and is

1 In our setting, the usual objective of determining the true
hypothesis htrue is infeasible unless the support of p0 is small.
When p0[h] > 0 for all h, we need to query the whole pool X in
order to determine htrue.

defined as pπ0 [ρ] def= p0[yρ;xρ], where xρ (resp. yρ) is the
sequence of examples (resp. labels) along path ρ. Some
objective functions for pool-based active learning can be
defined using this probability distribution.

3 SUBMODULARITY

Our objective in active learning can often be stated as max-
imizing some average or worst-case performance with re-
spect to some utility function f(S) in the non-adaptive
case, or f(S, h) in the adaptive case, where S is the set
of chosen examples. When f(S) is submodular or f(S, h)
is adaptive submodular, greedy algorithms are known to be
near-optimal (Nemhauser et al., 1978; Golovin and Krause,
2011). We shall briefly summarize some results about
greedy optimization of submodular functions and adaptive
submodular functions, then prove a new result about the
worst-case near-optimality of a greedy algorithm for maxi-
mizing a pointwise submodular function.2

3.1 NEAR-OPTIMALITY OF SUBMODULAR
MAXIMIZATION

A set function f : 2X → R is submodular if it satisfies the
following diminishing return property: for all A ⊆ B ⊆ X
and x ∈ X \B,

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

The function f is called monotone if f(A) ≤ f(B) for all
A ⊆ B.

To select a set of size k that maximizes a monotone sub-
modular function, one greedy strategy is to iteratively se-
lect the next example x∗ that satisfies

x∗ = arg max
x
{f(S ∪ {x})− f(S)}, (1)

where S is the previously selected examples. The follow-
ing theorem by Nemhauser et al. (1978) states the near-
optimality of this greedy algorithm when maximizing a
monotone submodular function.

Theorem 1 (Nemhauser et al. 1978). Let f be a monotone
submodular function such that f(∅) = 0, and let Sk be the
set of examples selected up to iteration k using the greedy
criterion in Equation (1). Then for all k > 0, we have
f(Sk) ≥ (1− 1/e) max|S|=k f(S).

3.2 NEAR-OPTIMALITY OF ADAPTIVE
SUBMODULAR MAXIMIZATION

Adaptive submodularity (Golovin and Krause, 2011) is an
extension of submodularity to the adaptive setting. For a
partial labeling D and a full labeling h, we write h ∼ D to

2 Note that our result can also be applied to settings other than
active learning.
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denote that D is consistent with h. That is, D ⊆ h when
we view a labeling as a set of (x, y) pairs. For two par-
tial labelings D and D′, we call D a sub-labeling of D′, if
D ⊆ D′.
We consider a utility function f : 2X × YX → R≥0
which depends on the examples selected and
the true labeling of X . For a partial labeling
D and an example x, we define ∆(x|D) def=
Eh [f(dom(D) ∪ {x}, h)− f(dom(D), h) |h ∼ D],
where the expectation is with respect to p0[h |h ∼ D] and
dom(D) is the domain of D.

From the definitions in (Golovin and Krause, 2011), f is
adaptive submodular with respect to p0 if for all D and D′
such that D ⊆ D′, and for all x ∈ X \ dom(D′), we have
∆(x|D) ≥ ∆(x|D′). Furthermore, f is adaptive monotone
with respect to p0 if for all D with p0[h ∼ D] > 0 and for
all x ∈ X , we have ∆(x|D) ≥ 0.

Let π be a policy for selecting the examples and xπh be the
set of examples selected by π under the true labeling h. We
define the expected utility of π as favg(π) def= E[f(xπh, h)],
where the expectation is with respect to p0[h]. To adap-
tively select a set of size k that maximizes favg, one greedy
strategy is to iteratively select the next example x∗ that sat-
isfies

x∗ = arg max
x

∆(x|D), (2)

where D is the partial labeling that has already been ob-
served. The following theorem by Golovin and Krause
(2011) states the near-optimality of this greedy policy when
f is adaptive monotone submodular.

Theorem 2 (Golovin and Krause 2011). Let f be an adap-
tive monotone submodular function with respect to p0, π
be the adaptive policy selecting k examples using Equa-
tion (2), and π∗ be the optimal policy with respect to favg

that selects k examples. Then for all k > 0, we have
favg(π) > (1− 1/e)favg(π∗).

3.3 NEAR-OPTIMALITY OF POINTWISE
SUBMODULAR MAXIMIZATION

Theorem 2 gives near-optimal average-case performance
guarantee for greedily optimizing an adaptive monotone
submodular function. We now give a new near-optimal
worst-case performance guarantee for greedily optimizing
a pointwise monotone submodular function. A utility func-
tion f : 2X × YX → R≥0 is said to be pointwise submod-
ular if the set function fh(S) def= f(S, h) is submodular for
all h. Similarly, f is pointwise monotone if fh(S) is mono-
tone for all h.

When f is pointwise monotone submodular, the aver-
age utility favg(S) = Eh∼p0 [f(S, h)] is monotone sub-
modular, and thus the non-adaptive greedy algorithm is a
near-optimal non-adaptive policy for maximizing favg(S)

(Golovin and Krause, 2011). However, we are more inter-
ested in the adaptive policies in this section.

For any partial labeling D, any x ∈ X \ dom(D), and any
y ∈ Y , we write D∪ {(x, y)} to denote the partial labeling
D with an additional mapping from x to y.

We assume that for any S ⊆ X and any labeling h, the
value of f(S, h) does not depend on the labels of examples
inX \S. We call this the minimal dependency property. Let
us extend the definition of f so that its second parameter
can be a partial labeling. The minimal dependency prop-
erty implies that for any partial labelingD and any labeling
h ∼ D, we have f(dom(D), h) = f(dom(D),D). With-
out this minimal dependency property, the theorem in this
section may not hold. We will see some examples of func-
tions that satisfy or do not satisfy the minimal dependency
property in Section 4 and 5.

For a partial labeling D and an example x, define

δ(x|D) def= min
y∈Y
{f(dom(D) ∪ {x},D ∪ {(x, y)})

−f(dom(D),D)}.

We consider the adaptive greedy strategy that iteratively se-
lects the next example x∗ satisfying

x∗ = arg max
x

δ(x|D), (3)

where D is the partial labeling that has already been ob-
served. For any policy π, let fworst(π) def= minh f(xπh, h) be
the worst-case objective function. The following theorem
states the near-optimality of the above greedy policy with
respect to fworst when f is pointwise monotone submodu-
lar.3

Theorem 3. Let f be a pointwise monotone submodu-
lar function such that f(∅, h) = 0 for all h, and f sat-
isfies the minimal dependency property. Let π be the
adaptive policy selecting k examples using Equation (3),
and π∗ be the optimal policy with respect to fworst that
selects k examples. Then for all k > 0, we have
fworst(π) > (1− 1/e)fworst(π

∗).

The main idea in proving this theorem is to show that at
every step, the greedy policy can cover at least (1/k)-
fraction of the optimal remaining utility. This property can
be proven by replacing the current greedy step with the op-
timal policy and considering the adversary’s path for this
optimal policy. See Appendix A for a proof of this theo-
rem.

We note that in the worst-case setting, Golovin and Krause
(2011) also considered the problem of minimizing the num-
ber of queries needed to achieve a target utility value. How-
ever, their results mainly rely on the condition that the

3 Note that in the definition of fworst(π), h has to range over
the set YX of all possible labelings. Otherwise, Theorem 3 does
not necessarily hold.
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utility function is adaptive submodular, not the pointwise
submodular condition considered in this section. It is also
worth noting that our new greedy criterion in Equation (3)
is different from the greedy criterion considered by Golovin
and Krause (2011), which is essentially Equation (2). Thus,
our result does not follow from their result and is developed
using a different argument.

4 PROPERTIES OF GREEDY ACTIVE
LEARNING CRITERIA

We now briefly introduce three greedy criteria that have
been used for active learning: maximum entropy, maxi-
mum Gibbs error, and least confidence. These criteria are
equivalent in the binary-class case (i.e. they all choose the
same examples to query), but they are different in the multi-
class case. We will prove some new properties of the max-
imum entropy and the least confidence criteria.

4.1 MAXIMUM ENTROPY

The maximum entropy criterion chooses the next exam-
ple whose posterior label distribution has the maximum
Shannon entropy (Settles, 2010). Formally, this criterion
chooses the next example x∗ that satisfies

x∗ = arg max
x

Ey∼pD[y;x][− ln pD[y;x]], (4)

where pD is the posterior obtained after observing the par-
tial labeling D. From (Cuong et al., 2013), it is desirable to
maximize the policy entropy

Hent(π) def= Eρ∼pπ0 [− ln pπ0 [ρ]],

where the expectation is over all the paths in the policy tree
of π, as maximizing the policy entropy will minimize the
expected label entropy given the observations. Criterion
(4) can be viewed as a greedy algorithm for maximizing
the policy entropy.

Due to the monotonicity and submodularity of Shannon en-
tropy (Fujishige, 1978), we can construct a non-adaptive
greedy policy that achieves near-optimality with respect to
the objective function Hent in the non-adaptive setting. In
the adaptive setting, however, it was previously unknown
whether the maximum entropy criterion is near-optimal
with respect to Hent (Cuong et al., 2013).

We now show that, in general, the maximum entropy crite-
rion may not be near-optimal with respect to the objective
function Hent (Theorem 4).

Theorem 4. Let π be the adaptive policy in Πk selecting
examples using Equation (4), and π∗ be the optimal adap-
tive policy in Πk with respect to Hent. For any 0 < α < 1,
there exists a problem where Hent(π)/Hent(π

∗) < α.

The main idea in proving this theorem is to construct a set
of independent distractor examples that have highest en-
tropy but provide no information about the true hypothe-
sis. The greedy criterion is tricked to choose only these
distractor examples. On the other hand, there is an identi-
fier example which gives the identity of the true hypothesis
but has a lower entropy than the distractor examples. Once
the label of the identifier example is revealed, there will be
a number of high entropy examples to query, so that the
policy entropy achieved is higher than that of the greedy
algorithm. See the supplement for a proof of this theorem.

4.2 MAXIMUM GIBBS ERROR

The maximum Gibbs error criterion chooses the next ex-
ample whose posterior label distribution has the maximum
Gibbs error (Cuong et al., 2013). Formally, this criterion
chooses the next example x∗ that satisfies

x∗ = arg max
x

Ey∼pD[y;x][1− pD[y;x]]. (5)

This criterion attempts to greedily maximize the policy
Gibbs error

Hgibbs(π) def= Eρ∼pπ0 [1− pπ0 [ρ]],

which is a lower-bound of the policy entropy Hent(π).

It has been shown by Cuong et al. (2013, sup.) that the pol-
icy Gibbs error Hgibbs corresponds to the expected version
space reduction in H. Furthermore, the maximum Gibbs
error criterion in Equation (5) corresponds to the algorithm
that greedily maximizes the expected version space reduc-
tion. For S ⊆ X and h ∈ H, the version space reduction
function is defined as f(S, h) def= 1− p0[h(S);S].

Since the version space reduction function is adaptive
monotone submodular (Golovin and Krause, 2011), the
maximum Gibbs error criterion is near-optimal with respect
to the objective functionHgibbs in both the non-adaptive and
adaptive settings. That is, the greedy policy using Equation
(5) has the policy Gibbs error within a factor (1 − 1/e) of
the optimal policy (Cuong et al., 2013).

4.3 LEAST CONFIDENCE

The least confidence criterion chooses the next example
whose most likely label has minimal posterior probabil-
ity (Lewis and Gale, 1994; Culotta and McCallum, 2005).
Formally, this criterion chooses the next examples x∗ that
satisfies

x∗ = arg min
x
{max
y∈Y

pD[y;x]}. (6)

Note that x∗ = arg maxx{1 − maxy pD[y;x]}. Thus,
the least confidence criterion greedily optimizes the error
rate of the Bayes classifier on the distribution pD[ · ;x]. In
this section, we use the result in Section 3.3 to prove that
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the least confidence criterion near-optimally maximizes the
worst-case version space reduction.

For a policy π, we define the worst-case version space re-
duction objective as

Hlc(π) def= min
h
f(xπh, h)

where f is the version space reduction function defined in
Section 4.2. We note that f satisfies the minimal depen-
dency property. It can also be shown that f is pointwise
monotone submodular, and the least confidence criterion is
equivalent to the criterion in Equation (3). Thus, it follows
from Theorem 3 that the least confidence criterion is near-
optimal with respect to the objective functionHlc (Theorem
5). See the supplement for a proof.

Theorem 5. Let π be the adaptive policy in Πk selecting
examples using Equation (6), and π∗ be the optimal adap-
tive policy in Πk with respect to Hlc. For all k > 0, we
have Hlc(π) > (1− 1/e)Hlc(π

∗).

5 ACTIVE LEARNING WITH GENERAL
LOSS

In this section, let us focus on the maximum Gibbs error
criterion in Section 4.2. The policy Gibbs error objec-
tive Hgibbs can be written as Hgibbs(π) = Eh∼p0 [f(xπh, h)],
where f is the version space reduction function (Cuong
et al., 2013, sup.). Note that f(xπh, h) is the expected 0-1
loss that a random labeling drawn from p0 differs from h
on xπh. Because of the nature of 0-1 loss, even if the ran-
dom labeling only differs from h on one element of xπh, it
is counted as an error.

To overcome this disadvantage, we formulate a new ob-
jective function that can handle an arbitrary general loss
function L : YX × YX → R≥0 satisfying the following
two properties: L(h, h′) = L(h′, h) for any two labelings
h and h′ of X , and if h = h′ then L(h, h′) = 0. For S ⊆ X
and h ∈ H, we define the generalized version space reduc-
tion function

fL(S, h) def= Eh′∼p0 [L(h, h′) 1 (h(S) 6= h′(S)) ].

Note that fL(S, h) =
∑
h′:h(S)6=h′(S) p0[h′]L(h, h′),

which can be written as
∑

h′

p0[h′]L(h, h′)−
∑

h′:h(S)=h′(S)

p0[h′]L(h, h′).

If L is the 0-1 loss, i.e. L(h, h′) = 1(h 6= h′), we have
f0-1(S, h) =

∑
h′:h(S) 6=h′(S) p0[h′], which is equal to the

version space reduction function f(S, h).

Our new objective is to maximize the expected value of the
generalized version space reduction

Havg
L (π) def= Eh∼p0 [fL(xπh, h)].

When L is the 0-1 loss, this objective function is equal to
the policy Gibbs errorHgibbs(π). Thus, we callHavg

L (π) the
generalized policy Gibbs error.

5.1 AVERAGE-CASE CRITERION

To maximize Havg
L (π), a natural algorithm is to greedily

maximize fL at each step. Let D be the previously ob-
served partial labeling, this greedy criterion chooses the
next example x∗ that satisfies

x∗ = arg max
x

Eh∼pD [fL(dom(D) ∪ {x}, h)

−fL(dom(D), h)] (7)

We call this criterion the average generalized Gibbs error
criterion.

From the result in Section 3.2, if fL is adaptive monotone
submodular, then using the average generalized Gibbs er-
ror criterion is near-optimal. Theorem 6 below states this
result, which is a direct consequence of Theorem 2.
Theorem 6. Let πavg

L be the adaptive policy in Πk selecting
examples using Equation (7), and π∗ be the optimal adap-
tive policy in Πk with respect to Havg

L . If fL is adaptive
monotone submodular with respect to the prior p0, then
Havg
L (πavg

L ) > (1− 1/e)Havg
L (π∗).

Note that if L is 0-1 loss, then fL is adaptive monotone
submodular with respect to any prior. Unfortunately, in
general, fL may not be adaptive submodular with respect
to a prior p0 (Theorem 7). See the supplement for a proof.
Theorem 7. Let p0 be a prior with p0[h] > 0 for all h.
There exists a loss function L such that fL is not adaptive
submodular with respect to p0.

In the supplementary material, we also discuss a sufficient
condition for fL to be adaptive monotone submodular with
respect to p0, and hence satisfy the precondition in The-
orem 6. However, it remains open whether this sufficient
condition is true for any interesting loss function other than
0-1 loss.

5.2 WORST-CASE CRITERION

We have shown in Theorem 7 that fL may not be adaptive
submodular, and thus we may not always have a theoretical
guarantee for the average generalized Gibbs error criterion.
In this section, we will reconsider our objective in the worst
case instead of the average case.

In the worst case, we may want to maximize the objective
function Hworst

L (π) def= minh fL(xπh, h). However, using
this objective function may be too conservative since the
generalized version space reduction is computed only from
the losses between the surviving labelings4 and the worst-

4 The surviving labelings in fL(S, h) are the labelings consis-
tent with h on S.
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case labeling. Instead, we propose a less conservative ob-
jective function based on the losses among all the surviving
labelings. Formally, we define the following total general-
ized version space reduction function

tL(S, h) def=
∑

h′

∑

h′′

p0[h′]L(h′, h′′) p0[h′′]

−
∑

h′:h′(S)=h(S)

∑

h′′:h′′(S)=h(S)

p0[h′]L(h′, h′′) p0[h′′].

Our new objective is to maximize the following function
called the worst-case total generalized policy Gibbs error

Tworst
L (π) def= min

h
tL(xπh, h).

To maximize Tworst
L , we propose a greedy algorithm that

maximizes the worst-case total generalized version space
reduction at every step. Note that tL(S, h) satisfies the min-
imal dependency property, i.e. its value does not depend on
the labels of X \ S in h. So, for a partial labeling D, we
have tL(dom(D), h) = tL(dom(D),D) for any h ∼ D.
Using this notation, the greedy criterion for choosing the
next example x∗ can be written as

x∗ = arg max
x
{min
y∈Y

[tL(dom(D) ∪ {x},D ∪ {(x, y)})

−tL(dom(D),D)]} (8)

where D is the previously observed partial labeling. We
call this criterion the worst-case generalized Gibbs error
criterion. It can be shown that tL is pointwise monotone
submodular and satisfies the minimal dependency prop-
erty for any loss function L. Furthermore, the criterion
in Equation (8) is equivalent to the criterion in Equation
(3). Thus, it follows from Theorem 3 that this greedy cri-
terion is near-optimal with respect to the objective function
Tworst
L (π) (Theorem 8). See the supplement for a proof.

Theorem 8. Let πworst
L be the adaptive policy in Πk se-

lecting examples using Equation (8), and π∗ be the opti-
mal adaptive policy in Πk with respect to Tworst

L . We have
Tworst
L (πworst

L ) > (1− 1/e)Tworst
L (π∗).

It is worth noting that, like tL, the function fL is also point-
wise submodular for any loss function L. The proof for the
pointwise submodularity of fL is essentially similar to the
proofs that f and tL are pointwise submodular in Theorem
5 and Theorem 8 (see the supplement for a proof of this
claim). However, fL does not satisfy the minimal depen-
dency property. Besides, Theorem 7 also shows that fL
may not be adaptive submodular. Thus, this is an exam-
ple that a pointwise submodular function is not necessar-
ily adaptive submodular, and we may not be able to use
Golovin and Krause (2011)’s result to obtain a result in the
average case for pointwise submodular functions.

5.3 COMPUTING THE CRITERIA

In this section, we discuss the computations of the crite-
ria in Equation (7) and Equation (8). First, we give two

propositions below regarding these equations. See the sup-
plement for proofs.

Proposition 1. The selected example x∗ in Equation (7) is
equal to

arg min
x

∑

y

Eh,h′∼pD [L(h, h′)1(h(x) = h′(x) = y)].

Proposition 2. The selected example x∗ in Equation (8) is
equal to

arg min
x
{max

y
Eh,h′∼pD [L(h, h′)1(h(x) = h′(x) = y)]}.

From these two propositions, we can compute Equa-
tion (7) and Equation (8) by estimating the expectation
Eh,h′∼pD [L(h, h′)1(h(x) = h′(x) = y)] for each y ∈ Y .
This estimation can be done by sampling from the poste-
rior.

We can sample directly from pD two sets H and H ′ which
contain samples of h and h′ respectively. Then, the ex-
pectation Eh,h′∼pD [L(h, h′)1(h(x) = h′(x) = y)] can be
approximated by

1

|H| × |H ′|
∑

h∈H

∑

h′∈H′

L(h, h′)1(h(x) = h′(x) = y).

Note that this approximation only requires samples of the
labelings from the posterior, and we do not need to explic-
itly maintain the set of all labelings which may be exponen-
tially large. In the case when the labelings are generated
by probabilistic models following some prior distribution,
sampling from pD may be difficult. A simple approxima-
tion is to sample H and H ′ from the MAP model.

6 EXPERIMENTS

Experimental results comparing the maximum entropy cri-
terion, the maximum Gibbs error criterion, and the least
confidence criterion were reported in (Cuong et al., 2013).
In this section, we only focus on the active learning criteria
with general loss functions, and conduct experiments with
two common loss functions used in practice: the Hamming
loss and the F1 loss. For two labelings h and h′ (viewing
them as label vectors), the Hamming loss is the Hamming
distance between them, and the F1 loss is 1 − F1(h, h′)
where F1(h, h′) ∈ [0, 1] is the F1 score between h and h′.

We experiment with various binary-class tasks from the
UCI repository (Bache and Lichman, 2013) and the
20Newsgroups dataset (Joachims, 1996). We use the
binary-class logistic regression as our model, and compare
the active learners using the greedy criteria in Section 5.1
and 5.2 with the passive learner (Pass) and the maximum
Gibbs error active learner (Gibbs). The maximum Gibbs er-
ror criterion is estimated from Equation (5) using the MAP
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Table 2: AUC for Accuracy and F1 on UCI Datasets

Dataset Accuracy F1

Pass Gibbs WorstH AvgH Pass Gibbs WorstF AvgF

Adult 74.81 73.94 77.81 77.72 82.00 81.12 85.15 84.57
Breast cancer 89.81 88.90 90.66 89.96 93.42 92.80 94.09 94.91

Diabetes 64.59 68.57 67.03 68.90 36.61 42.56 48.34 42.02
Ionosphere 78.31 82.96 84.77 83.79 63.99 72.57 72.19 72.93

Liver disorders 66.91 66.65 67.25 68.09 72.07 73.83 75.94 74.70
Mushroom 75.01 85.01 89.50 80.43 66.99 83.13 73.21 82.96

Sonar 65.75 68.76 67.58 66.37 71.84 75.31 73.92 73.48

Average 73.60 76.40 77.80 76.47 69.56 74.47 74.69 75.08

Table 3: AUC for Accuracy and F1 on 20Newsgroups Dataset

Task Accuracy F1

Pass Gibbs WorstH AvgH Pass Gibbs WorstF AvgF

alt.atheism/comp.graphics 85.34 86.76 87.21 86.71 87.38 88.77 88.89 89.87
talk.politics.guns/talk.politics.mideast 73.37 80.75 75.03 77.03 77.46 82.23 79.72 79.88

comp.sys.mac.hardware/comp.windows.x 78.36 79.84 80.20 78.05 79.58 80.22 76.43 79.31
rec.motorcycles/rec.sport.baseball 82.34 82.44 85.37 83.27 80.74 83.06 84.48 83.97

sci.crypt/sci.electronics 72.75 77.07 77.83 78.71 67.53 73.92 73.82 77.69
sci.space/soc.religion.christian 80.96 85.58 87.35 87.84 79.95 84.51 86.05 87.16

soc.religion.christian/talk.politics.guns 82.10 84.01 85.81 85.83 80.43 79.24 83.37 82.46

Average 79.32 82.35 82.69 82.49 79.01 81.70 81.82 82.91

hypothesis. Note that the maximum Gibbs error criterion
is equivalent to the maximum entropy and the least confi-
dence criteria in this case since the tasks are binary-class.

We estimate the average-case criteria (AvgH and AvgF)
in Section 5.1 and the worst-case criteria (WorstH and
WorstF) in Section 5.2 using the approximation in Section
5.3 with the MAP hypothesis. AvgH and WorstH use the
Hamming loss, while AvgF and WorstF use the F1 loss. We
compare the AUCs (area under the curve) for the accuracy
scores of Pass, Gibbs, AvgH, and WorstH. We also com-
pare the AUCs for the F1 scores of Pass, Gibbs, AvgF, and
WorstF.

The AUCs are computed from the first 150 examples and
normalized so that their ranges are from 0 to 100. We ran-
domly choose the first 10 examples as a seed set. We use
the same seed set for all the algorithms.

The detailed procedure to compute the AUCs for our ex-
periments is as follows. We sequentially choose 10 (seed
size), 11, . . ., 150 training examples using active learning
or passive learning. Then for each training size, we train a
model and compute its score (accuracy or F1) on a separate
test set. Using these scores, we can compute the AUCs. We

use the AUC scores because we want to compare the whole
learning curves from choosing 10 to 150 training examples,
not just the scores at any single point (e.g. 150 examples).
This is consistent with previous works such as (Settles and
Craven, 2008) and (Cuong et al., 2013).

The results for the UCI datasets are given in Table 2. From
Table 2, all the active learning algorithms perform better
than passive learning in terms of accuracy. On average,
WorstH and AvgH perform slightly better than Gibbs, and
WorstH achieves the best average AUC for accuracy. In ad-
dition, all the active learning algorithms also perform bet-
ter than passive learning in terms of F1 score. On average,
WorstF and AvgF also perform slightly better than Gibbs,
and AvgF achieves the best average AUC for F1 score.

The results for the 20Newsgroups dataset are given in Ta-
ble 3. From Table 3, all the active learning algorithms are
better than passive learning in terms of accuracy. WorstH
and AvgH are slightly better than Gibbs on average. Over-
all, WorstH achieves the best average AUC for accuracy. In
addition, the active learning algorithms are also better than
passive learning in terms of F1 score. WorstF and AvgF
are also slightly better than Gibbs, and AvgF has the best
average AUC for F1 score.

129



In both datasets, using the Hamming loss or F1 loss is bet-
ter than using the 0-1 loss (the Gibbs criterion). Further-
more, the worst-case criterion with Hamming loss achieves
the best average scores in terms of accuracy, while the
average-case criterion with F1 loss achieves the best av-
erage scores in terms of F1.

7 CONCLUSION

We have discussed several theoretical properties of greedy
algorithms for active learning. In particular, we proved a
negative result for the maximum entropy criterion and a
near-optimality result for the least confidence criterion in
the worst case. We also considered active learning with
general losses and proposed two greedy algorithms, one of
which is for the average case and the other is for the worst
case. Our experiments show that the new algorithms per-
form well in practice.

A APPENDIX: PROOF OF THEOREM 3

Let π and π∗ be the policies as in the statement of The-
orem 3. Let hπ = arg minh f(xπh, h). Then we have
fworst(π) = f(xπhπ , hπ). Note that hπ corresponds to a path
from the root to a leaf of the policy tree of π. Let the exam-
ples and labels along the path hπ (from the root of the tree
to a leaf) be: hπ def= {(x1, y1), (x2, y2), . . . , (xk, yk)}.
Since f satisfies the minimal dependency property, let us
abuse the notation and write f({xt}it=1, {yt}it=1) to denote
f({xt}it=1, hπ). Define

ui def= f({xt}it=1, {yt}it=1)− f({xt}i−1t=1, {yt}i−1t=1)

vi def=

i∑

t=1

ut and zi def= fworst(π
∗)− vi.

We prove the following claims.

Claim 1. For all i, we have ui+1 ≥ zi/k.

Proof. Consider the case that after observing
(x1, y1), . . . , (xi, yi), we run the policy π∗ from
its root and only follow the paths consistent with
(x1, y1), . . . , (xi, yi) down to a leaf. In this case, all
the paths of the policy π∗ must obtain a value at least
zi = fworst(π

∗) − vi, because running π∗ without any
observation would obtain at least fworst(π

∗) and the
observations (x1, y1), . . . , (xi, yi) cover a value vi.

Now we consider the adversary’s path of the policy π∗ in
this scenario which is defined as

hadv def= {(xadv
1 , yadv

1 ), (xadv
2 , yadv

2 ), . . . , (xadv
k , yadv

k )},

where yadv
j = arg miny{f({xt}it=1 ∪ {xadv

t }j−1t=1 ∪ {xadv
j },

{yt}it=1 ∪ {yadv
t }j−1t=1 ∪ {y})

−f({xt}it=1 ∪ {xadv
t }j−1t=1 , {yt}it=1 ∪ {yadv

t }j−1t=1 )}

if xadv
j has not appeared in {x1, . . . , xi}. Otherwise, if

xadv
j = xt for some t ∈ {1, . . . , i}, then yadv

j = yt. From
the previous discussion, hadv covers a value of at least zi in
k steps. Thus, one of its steps must cover a value of at least
zi/k.

Hence, what remains is to show that doing the greedy
step in π after observing (x1, y1), . . . , (xi, yi) is better
than any single step along hadv. In the trivial case where
(xadv
j , yadv

j ) ∈ {(x1, y1), . . . , (xi, yi)}, we obtain nothing
in this step since (xadv

j , yadv
j ) has already been observed.

Thus, the above is true in this case. In the non-trivial case,

ui+1

= f({xt}i+1
t=1, {yt}i+1

t=1)− f({xt}it=1, {yt}it=1)

≥ min
y
{f({xt}it=1 ∪ {xi+1}, {yt}it=1 ∪ {y})

− f({xt}it=1, {yt}it=1)}
≥ min

y
{f({xt}it=1 ∪ {xadv

j }, {yt}it=1 ∪ {y})

− f({xt}it=1, {yt}it=1)}
≥ min

y
{f({xt}it=1 ∪ {xadv

t }j−1t=1 ∪ {xadv
j },

{yt}it=1 ∪ {yadv
t }j−1t=1 ∪ {y})

−f({xt}it=1 ∪ {xadv
t }j−1t=1 , {yt}it=1 ∪ {yadv

t }j−1t=1 )}
= f({xt}it=1 ∪ {xadv

t }j−1t=1 ∪ {xadv
j },

{yt}it=1 ∪ {yadv
t }j−1t=1 ∪ {yadv

j })
−f({xt}it=1 ∪ {xadv

t }j−1t=1 , {yt}it=1 ∪ {yadv
t }j−1t=1 ).

Note that the second inequality is due to the greedy crite-
rion, and the third inequality is due to the submodularity of
f on the adversary path. Therefore, this claim is true.

Claim 2. For all i ≥ 0, we have zi ≤ (1− 1

k
)ifworst(π

∗).

Proof. We prove this claim by induction. For i = 0, this
holds because z0 = fworst(π

∗) by definition. Assume that
zi ≤ (1− 1

k )ifworst(π
∗), then due to Claim 1,

zi+1 = fworst(π
∗)− vi+1 = fworst(π

∗)− vi − ui+1

= zi − ui+1 ≤ zi −
zi
k

= (1− 1

k
)zi

≤ (1− 1

k
)i+1fworst(π

∗).

Therefore, this claim is true.

To prove Theorem 3, we apply Claim 2 with i = k and
have zk ≤ (1 − 1

k )kfworst(π
∗) < 1

efworst(π
∗). Hence,

fworst(π) = vk = fworst(π
∗)− zk > (1− 1

e )fworst(π
∗).
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Abstract

Determining conditional independence (CI) re-
lationships between random variables is a chal-
lenging but important task for problems such as
Bayesian network learning and causal discovery.
We propose a new kernel CI test that uses a sin-
gle, learned permutation to convert the CI test
problem into an easier two-sample test problem.
The learned permutation leaves the joint distri-
bution unchanged if and only if the null hypoth-
esis of CI holds. Then, a kernel two-sample test,
which has been studied extensively in prior work,
can be applied to a permuted and an unpermuted
sample to test for CI. We demonstrate that the
test (1) easily allows the incorporation of prior
knowledge during the permutation step, (2) has
power competitive with state-of-the-art kernel CI
tests, and (3) accurately estimates the null distri-
bution of the test statistic, even as the dimension-
ality of the conditioning variable grows.

1 INTRODUCTION

A distribution Pxyz over variables X , Y , and Z satisfies a
conditional independence relationship X⊥⊥Y | Z (“X is
conditionally independent of Y given Z”) when the joint
distribution factorizes as Pxyz = Px|z Py|z Pz , assum-
ing the existence of conditional density functions. There
are several other equivalent characterizations of conditional
independence (Dawid, 1979). Determining whether such
conditional independence relationships hold between vari-
ables is important for problems such as Bayesian network
learning, causal discovery, and counterfactual analysis. Us-
ing a conditional independence test as a subroutine, the PC
algorithm (Spirtes, Glymour, and Scheines, 2000), for ex-
ample, can be used to determine a set of causal graphs
based on the conditional independence relationships be-
tween variables. Moreover, counterfactual analysis of-
ten requires assumptions of ignorability, which involve

conditional independences among counterfactual variables
(Rosenbaum and Rubin, 1983).

Numerous approaches exist to measure conditional depen-
dence or test for conditional independence. For exam-
ple, under the assumption of Gaussian variables with lin-
ear dependence relationships, partial correlation can be
used to test for conditional independence (Baba, Shibata,
and Sibuya, 2004). Another characterization of conditional
independence is that Px|yz = Px|z . Some tests use this
characterization to determine conditional independence by
measuring the distance between estimates of these con-
ditional densities (Su and White, 2008). When the con-
ditioning variable is discrete, X⊥⊥Y | Z if and only if
X⊥⊥Y | Z = zi for every possible value zi that Z takes.
Permutation-based tests have been successfully applied to
conditional independence testing in this discrete-variable
case (Tsamardinos and Borboudakis, 2010). Other tests
use this characterization by discretizing continuous condi-
tioning variables and testing for independence within each
discrete “bin” of Z (Margaritis, 2005).

Generally, conditional independence testing is a challeng-
ing problem (Bergsma, 2004). The “curse of dimension-
ality” in terms of the dimensionality of the conditioning
variable Z can make the problem even more difficult to
solve. To see why, first consider the case when Z takes
a finite number of values {z1, . . . , zk}; then X⊥⊥Y | Z
if and only if X⊥⊥Y | Z = zi for each value zi. Given
a sample of size n, even if the data points are evenly dis-
tributed across values of Z, we must show independence
within every subset of the sample with identical Z values
using only approximately n/k points within each subset.
When Z is real-valued and Pz is continuous, the observed
values of Z are almost surely unique. To extend the pro-
cedure to the continuous case, we must infer conditional
independence using nonidentical but nearby values of Z,
where “nearby” must be quantified with some distance met-
ric. Finding nearby points becomes difficult (without addi-
tional assumptions) as the dimensionality of Z grows. To
guarantee that conditional independence reduces to uncon-
ditional independence between X and Y within each subset,
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we need a large number of subsets of Z. On the other hand,
with many subsets, in each subset one may not have enough
points to assess independence.

Recently, kernel-based tests have also been proposed for
conditional as well as unconditional independence testing
(see Section 3 for a more detailed discussion). Kernel func-
tions can be used to implicitly map objects from an input
space into a “feature space,” or reproducing kernel Hilbert
space (RKHS) (Aizerman, Braverman, and Rozoner, 1964;
Schölkopf and Smola, 2002). Some tests use the kernel
mean embedding, which is an embedding of distributions
into an RKHS (Berlinet and Thomas-Agnan, 2004; Smola
et al., 2007; Sriperumbudur et al., 2010). When the ker-
nel used is characteristic, the embeddings of two distri-
butions are equal (under the distance metric imposed by
the RKHS norm) if and only if the distributions are iden-
tical. For example, all universal kernels such as the radial
basis function (RBF) kernel are characteristic (Sriperum-
budur et al., 2010). The Hilbert–Schmidt independence
criterion (HSIC) is an unconditional independence test that
measures the distance in the RKHS between the embedding
of a joint distribution and the embedding of the product of
its marginal distributions. The HSIC can also be interpreted
as the Hilbert–Schmidt norm of a cross-covariance opera-
tor, a generalization of the covariance matrix, between the
RKHSs corresponding to the marginal distributions (Gret-
ton et al., 2008). The intuition behind the test is that a joint
distribution Pxy is equal to the product of its marginals if
and only ifX⊥⊥Y . The HSIC has been extended to the con-
ditional independence setting using the norm of the con-
ditional cross-covariance operator to measure conditional
dependence (Fukumizu et al., 2008). However, this ap-
proach also degrades as the dimensionality of the condi-
tioning variable increases. A more recent approach, the
kernel conditional independence test (KCIT), proposed by
Zhang et al. (2011), uses a characterization of conditional
independence defined in terms of the partial association un-
der all square-integrable functions relating the variablesX ,
Y , and Z (Daudin, 1980). The test relaxes this character-
ization to use a smaller, but sufficiently rich class of func-
tions from some universal RKHS. For this test, the distri-
bution of the test statistic is known and can be estimated ef-
ficiently. However, as the dimensionality of the condition-
ing variable grows larger or the relationships between the
variables grow more complex, the distribution of the KCIT
test statistic under the null distribution becomes harder to
accurately estimate in practice.

In contrast to a conditional independence test, a kernel two-
sample test (Gretton et al., 2006, 2009, 2012a) merely tests
whether two samples have been drawn from the same dis-
tribution. The two-sample problem is conceptually simpler
than testing for conditional independence, and has been
studied extensively in prior work. Thus, the behavior of
the null distributions for two-sample test statistics are well-

Figure 1: An overview of the proposed approach. First, we
observe a sample from the joint distribution (left), and per-
mute the sample to simulate a sample from the factorized
distribution (right). The permutation is chosen to induce
conditional independence while preserving Px|z , Py|z , and
Pz . Then, a two-sample test is used to compare the per-
muted sample to an independent, unpermuted sample from
the joint distribution.

understood.

We propose a new approach to test for conditional indepen-
dence that uses a permutation to reduce the problem to a
two-sample test. An overview of the approach is illustrated
in Figure 1. First, a single, carefully chosen permutation is
applied to a sample to simulate a sample from the factor-
ized distribution Px|z Py|z Pz , which equals the underlying
joint distribution if and only if the null hypothesis holds.
Then, a kernel two-sample test (Gretton et al., 2012a) is
performed between the permuted sample and an indepen-
dent, unpermuted sample from the original distribution to
determine whether the null hypothesis of conditional inde-
pendence should be rejected. The approach permits var-
ious strategies for “learning” an appropriate permutation
given prior knowledge about relationships between X , Y ,
and Z. The p-values for our test can be accurately, effi-
ciently approximated using the approaches studied previ-
ously for kernel two-sample tests. We show using synthetic
datasets that the proposed test has power competitive with
state-of-the-art approaches, and can accurately estimate the
distribution of the test statistic under the null hypothesis as
the dimensionality of Z grows to produce a well-calibrated
test. We also illustrate using a real-world dataset the prac-
ticability of the test for inferring conditional independence
relationships.

2 DESCRIPTION OF THE TEST

In testing for unconditional independence, we observe an
independent and identically distributed (i.i.d.) sample Ω =
{(xi, yi)}ni=1 drawn from Pxy . The variables X and Y are
independent if and only if the joint distribution factorizes as
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Pxy = Px Py . Here, P denotes a density function, but we
use the same notation to represent the distribution itself. If
we managed to draw a sample Ω′ from Px Py , we could use
a two-sample test between Ω and Ω′ to determine whether
to reject the null hypothesis H0 : X⊥⊥Y . Since we do not
have access to the underlying joint distribution, but only a
sample Ω, we must “simulate” a sample from the factorized
distribution. By the i.i.d. assumption, the joint distribution
of (X1, Y1), . . . , (Xn, Yn) is a product of identical factors
Pxy(Xi, Yi). Hence for all i, Xi and Yi have the same
marginals Px and Py , respectively. Moreover, for i 6= j,
we have Xi⊥⊥Yj . If π is a permutation satisfying π(i) 6= i,
we thus haveXi⊥⊥Yπ(i), and the distribution of (Xi, Yπ(i))
must be Px(Xi) Py(Yπ(i)). Therefore, the permuted sam-
ple (xi, yπ(i))

n
i=1 approximately simulates an i.i.d. sample

from Px Py .1

Below, we first discuss a way to extend the use of permu-
tations to the conditional independence setting. Then, we
show how to apply a kernel two-sample test to a permuted
and an unpermuted sample to test for conditional indepen-
dence. We describe how bootstrapping can be used to im-
prove the power of the test. Given the two-sample test, we
describe a kernel-based approach for learning an appropri-
ate permutation.

2.1 PERMUTING FOR CONDITIONAL
INDEPENDENCE

In this paper, for a joint distribution Pxyz over the vari-
ables X , Y , and Z, we are interested in determin-
ing whether X⊥⊥Y | Z, which occurs if and only if
Pxyz = Px|z Py|z Pz . We observe an i.i.d. sample Ω =
{(xi, yi, zi)}ni=1 drawn according to Pxyz . As above, if
we were able to draw an independent sample Ω′ from the
factorized distribution Px|z Py|z Pz , we could use a two-
sample test between Ω and Ω′ to determine whether to
reject the null hypothesis H0 : X⊥⊥Y | Z. Given the
distributions Px|z , Py|z , and Pz , we could sample from
the factorized distribution by first drawing zi ∼ Pz , and
then xi ∼ Px|zi and yi ∼ Py|zi . However, since we are
given only a sample, we must “simulate” a sample from
Px|z Py|z Pz . If the null hypothesis holds, one can consider
each xi and yi in Ω as independently drawn from the condi-
tional distributions Px|zi and Py|zi , respectively. Suppose
for some i 6= j, we find that zi = zj . In that case, we
can proceed analogously to the unconditional case: we can
swap the corresponding values yi and yj , breaking the de-
pendence between X and Y , to obtain a joint observations

1In the finite sample setting, this is only an approximation:
while the permutation removes the dependence betweenX and its
corresponding Y , it introduces a dependence to one of the other Y
variables. In the limit n → ∞, this becomes negligible (Janzing
et al., 2013); moreover, in the limit we could waive the constraint
π(i) 6= i which we do not do in the present work since it is easy
to implement.

(xi, yj , zi) (and, likewise, (xj , yi, zj)) drawn from the dis-
tribution Px|z Py|z Pz . Therefore, if we were able to (non-
trivially) permute every yi value so that the same permu-
tation leaves the values of zi in the sample invariant, then
this would simulate i.i.d. draws from Px|z Py|z Pz . Unfor-
tunately, when Z is continuous, the observed values of Z
in Ω will be almost surely unique. In this case, we must
“approximately” simulate a sample from Px|z Py|z Pz .

The procedure described above can be formalized as fol-
lows. Let the sample be expressed as Ω = (x,y, z), where
x, y, and z denote tuples of length n holding the sample
elements for each of the variables (which might be multi-
variate), with ranges X , Y , and Z . For the moment, we
assume that X , Y , and Z are equipped with addition and
scalar multiplication. When we introduce the kernelization
of the sample in Section 2.2, this assumption holds even
when the sample elements are nonvectorial structured ob-
jects. Let P be a linear transformation, represented as a
matrix with nonnegative entries, that is defined to act on
a sample as in: PΩ , (x,Py, z), where Py is a tuple
whose ith element contains

∑
j Pijyj . To preserve statisti-

cal properties of the sample, we cannot use a general linear
transformation P; it must be a permutation matrix:

Proposition 1. Let T be the set of transformation such that
for any P ∈ T and sample y of size n, mean (Py) =
mean(y) and ‖var(Py)‖HS = ‖var(y)‖HS. Then T is a
set of permutation matrices of size n.2

Essentially, the matrix P must be stochastic to preserve
the mean and orthogonal to preserve the variance, and
these properties combined imply that it is a permutation.
Given that P is a permutation, we additionally require that
Tr(P) = 0, so that no element in the sample y is permuted
with itself (i.e., left unchanged). Otherwise, some depen-
dence between xi and yi might remain. We use P to denote
the set of zero-trace permutations.

Ideally, we would further constrainP so that all P ∈ P sat-
isfy z = Pz; that is, the values of z are invariant under each
permutation P, or equivalently, we only permute the values
of yi that correspond to the same value of zi. In the uncon-
ditional case, we can consider Z to be some constant vari-
able, in which case any permutation is permitted. However,
in the conditional case, this requirement is too restrictive
so that the set of valid permutations is empty because each
value of Z appears only once almost surely in the sample
with continuous Z. Accordingly, we relax the problem to
finding a permutation that enforces z ≈ Pz. In particular,
given some distortion measure δ : Zn×Zn → [0,∞) that
quantifies the discrepancy between permuted and unper-
muted values of Z, we seek to optimize minP∈P δ(z,Pz).
For general classes of distortion measures, this optimiza-

2A proof can be found in the supplementary materi-
als, available at http://engr.case.edu/doran_gary/
publications.html.

134



tion problem is straightforward to solve. For example,
let d(zi, zj) be any symmetric pairwise distortion measure
(e.g., a distance metric) and δ(z,Pz) =

∑
i d(zi, (Pz)i).

Let D be a matrix of pairwise distances between sample
elements (Dij = d(zi, zj)). Since Pij = 1 if and only if
zi is permuted to zj , δ(z,Pz) =

∑
ij PijDij = Tr(PD)

and the distortion measure can be minimized using:

min
P∈P

Tr(PD). (1)

Relaxing P to the set of doubly stochastic matrices (ma-
trices whose rows and columns sum to one) with zero
trace, the feasible region becomes the convex hull of per-
mutation matrices, by the Birkhoff–von Neumann theorem
(Birkhoff, 1946; von Neumann, 1953), subject to a linear
constraint. Therefore, the simplex algorithm applied to
Equation 1 returns a solution corresponding to a vertex of
the feasible region, which is a permutation. The formula-
tion in Equation 1 gives a general approach to permuting a
sample, where the choice of distance metric d can encode
some assumptions about the properties of the distributions
Px|z or Py|z . Below we discuss using P to construct the
test statistic and possible choices for d.

2.2 TEST STATISTIC AND NULL DISTRIBUTION

After learning an appropriate permutation, a two-sample
test between a permuted and an unpermuted sample can
be used to test the null hypothesis of conditional inde-
pendence. A well-studied kernel-based two-sample test
uses the maximum mean discrepancy (MMD) test statistic
(Gretton et al., 2012a). The MMD employs mean embed-
dings of the two samples into some RKHS. Before describ-
ing the mean embedding, we introduce the notation used
to “kernelize” the sample. Given the ranges X , Y , and Z
of the random variables X , Y , and Z, let kx(·, ·), ky(·, ·),
and kz(·, ·) be positive-definite kernel functions defined on
these spaces (kx : X × X → R, etc.). Corresponding
to each kernel kx is some feature map φx : X → HX
such that kx(x, x′) = 〈φx(x), φx(x′)〉, where HX is the
RKHS or feature space of kx. We use a product of in-
dividual kernels to define the kernel on joint spaces; e.g.,
kxyz

(
(x, y, z), (x′, y′, z′)

)
= kx(x, x′)ky(y, y′)kz(z, z′)

is a kernel over X ×Y×Z with feature map φx⊗φy⊗φz ,
where ⊗ denotes the tensor product. Given that kx, ky ,
and kz are translation-invariant characteristic kernels, the
product kernel is also characteristic under mild assump-
tions (Sriperumbudur et al., 2010).

By mapping our sample into a feature space as
{(φx(xi), φy(yi), φz(zi)}ni=1, we can treat each sample el-
ement as a vector (which is infinite-dimensional for the
characteristic kernels used below), even when the un-
derlying distribution over X , Y , and Z is over arbi-
trary sets of objects on which kernels are defined. In
matrix notation, we can express the mapped sample as
(Φx(x),Φy(y),Φz(z)), and the permuted sample in the

feature space as PΩ = (Φx(x),PΦy(y),Φz(z)) with the
ith element of PΦy(y) equal to

∑
j Pijφy(yj). The con-

ditions on P in Proposition 1 are still necessary, since the
linear kernel with feature map φy : Y → Y is a special case
to which Proposition 1 applies. In prior work (Sriperum-
budur et al., 2010), mean(Φy(y)) is called the empirical
kernel mean embedding, and is expressed with the nota-
tion µ̂(y) = 1

n

∑
y∈y φy(y). Given the constraints on P,

Φy(Py) = PΦy(y) for any Φy , and the mean embedding
is invariant under P: µ̂(y) = µ̂(Py). The notation µ̂(Ω)
will be used to denote the mean embedding of an entire
sample using the product kernel defined on the joint space.

Given the kernelization of the sample, the test statistic is
computed as follows. The original sample Ω of n ele-
ments is randomly split in half to form the samples Ω(1)

and Ω(2), to ensure independence between the permuted
and unpermuted samples (a condition required by the two-
sample test). Using the formulation in Equation 1, we learn
a permutation that induces conditional independence in the
second subsample Ω(2). Finally, we compute the (biased)
MMD test statistic as follows:

MMD(Ω(1),PΩ(2)) =
∥∥∥µ̂(Ω(1))− µ̂(PΩ(2))

∥∥∥
2

H
(2)

= 4
n21

ᵀ(K(1) + K(2) − 2K(12))1.

Here, 1 is a vector of ones of an appropriate size, the ma-
trices K(1) and K(2) are pairwise kernel matrices within
the permuted and unpermuted samples, respectively, and
K(12) is the “cross” kernel matrix between the unpermuted
and permuted samples. Since we use product kernels, the
matrices can be expressed in terms of a Hadamard product
between the original kernel matrices for each variable:

K(1) = K(1)
x �K(1)

y �K(1)
z

K(2) = K(2)
x � (PK(2)

y Pᵀ)�K(2)
z

K(12) = K(12)
x � (K(12)

y Pᵀ)�K(12)
z ,

where (Kx)ij = kx(xi, xj), and likewise for Ky and Kz .

The behavior of the MMD test statistic has been exten-
sively studied in prior work (Gretton et al., 2006, 2009,
2012a), and there are numerous approaches to estimating
the null distribution and computing a p-value for the test
statistic. For example, the null distribution can be esti-
mated via a bootstrapping approach in which (1) Ω(1) and
PΩ(2) are randomly shuffled together and then split into
two again, and then (2) the test statistic is recomputed be-
tween the shuffled samples (Gretton et al., 2009). Steps (1)
and (2) are repeated b times to obtain an empirical estimate
of the null distribution. The null distribution can also be
approximated using a Gamma distribution. This estimate
is computationally more efficient to obtain, but can also be
less accurate in some scenarios (Gretton et al., 2009). As
we are interested in the small-sample case, we choose to
use the more robust bootstrap estimate at the expense of
more computation.
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Algorithm 1 KCIPT: Kernel Conditional Independence
Permutation Test
Require: Sample Ω = (x,y, z), Distortion measure δ,

Significant level α, Outer bootstrap iterations B, Inner
bootstrap iterations b, Monte Carlo iterations M

1: for Outer Bootstrap 1 ≤ i ≤ B do
2: Split sample evenly into Ω(1), Ω(2)

3: Find permutation matrix P for Ω(2) using δ to com-
pute D and solving Equation 1.

4: MMD[i]← MMD(Ω(1),PΩ(2))
5: for Inner Bootstrap 1 ≤ j ≤ b do
6: Shuffle, re-split Ω(1), PΩ(2) to Ω′, Ω′′.
7: inner null[i, j]← MMD(Ω′,Ω′′)
8: end for
9: end for

10: statistic← mean1≤i≤B(MMD[i])
11: for Monte Carlo Iteration 1 ≤ k ≤M do
12: for Outer Bootstrap 1 ≤ i ≤ B do
13: r ← random integer(1, b)
14: samples[i]← inner null[i, r]
15: end for
16: outer null[k]← mean1≤i≤B(samples[i])
17: end for
18: p-value← 1− percentile(statistic, outer null)
19: if p-value ≥ α then
20: Fail to RejectH0 (X⊥⊥Y | Z)
21: else
22: RejectH0, Conclude X 6⊥⊥Y | Z
23: end if

A characteristic kernel must be used to ensure that the
MMD test statistic is consistent (convergent to zero if
and only if the two samples are drawn from the same
distribution). A kernel kxyz is said to be characteris-
tic if the corresponding mean map is injective (Sriperum-
budur et al., 2010). Several popular kernels are charac-
teristic, including the Gaussian RBF kernel k(x, x′) =

exp(−‖x− x′‖22 /2σ2), with bandwidth parameter σ.
Given that the RBF kernel is used for the test, there is still a
question of how to select the bandwidth parameter. We set
σ to be the median pairwise distance between sample ele-
ments, which prior work shows to be an effective heuristic
(Gretton et al., 2012a). Other strategies existing for select-
ing σ to improve the power of the test statistic (Sriperum-
budur et al., 2009; Gretton et al., 2012b).

2.3 BOOTSTRAPPING THE TEST STATISTIC

As defined above, the test statistic relies on splitting a sam-
ple randomly in half, which reduces the power of the two-
sample test. However, if we randomly split the sample
many times to compute many test statistics, we can boot-
strap the MMD statistic itself to recover some of the power
lost due to splitting. An overview of the test with bootstrap-
ping is given in Algorithm 1.

Let {(Ω(1)
i ,Ω

(2)
i )}Bi=1 be a set of random splits of the

dataset, where B denotes the number of random splits.
The bootstrapped test statistic is the average of individ-
ual MMD test statistics for each split: MMDboot(Ω) =
1
B

∑B
i=1 MMD(Ω

(1)
i ,PiΩ

(2)
i ), where Pi is the permuta-

tion learned for the ith split. The null distribution of
MMDboot can be estimated via a Monte Carlo simulation
by repeatedly averaging together the draws from each in-
dividual test statistic’s null distribution. Specifically, the
null distribution Ni is first estimated for each test statis-
tic MMDb(Ω

(1)
i ,PiΩ

(2)
i ). Then, M points are drawn from

each of the B null distributions: sij ∼ Ni, for 1 ≤ i ≤ B,
1 ≤ j ≤ M . The points are averaged so that the result-
ing sample { 1

B

∑B
i=1 sij}Mj=1 is used to estimate the null

distribution of MMDboot(Ω).

Since we are combining many tests, any systematic error in
estimating the null distribution will be compounded. Ac-
cordingly, we choose to use the robust bootstrapping ap-
proach described in Section 2.2 with a large number of
draws b to estimate each null distribution Ni. Note that the
statistic bootstrapping procedure (the “outer” bootstrap) is
separate from the bootstrapping used to estimate the null
hypothesis (the “inner” bootstrap). In the first case, a new
permutation is learned for each split to compute the test
statistic. In the second case, the learned permutation for the
given split is left fixed, and the permuted and unpermuted
subsamples are shuffled together randomly to simulate the
null hypothesis. Since each Ni is an empirical estimate us-
ing a set of observed test statistics, we draw from Ni by
sampling with replacement from the underlying set. If de-
sired, the inner bootstrap shown in Algorithm 1 can be re-
placed with some other estimate of the null distribution of
each MMD test statistic.

2.4 LEARNING THE PERMUTATION

Given the description of our test procedure, we now re-
turn to the issue of learning a permutation. Intuitively,
since the test statistic uses an RKHS distance between sam-
ples, we would like our distortion measure to also utilize
the RKHS distance. Therefore, we choose d(zi, zj) =
‖φz(zi)− φz(zj)‖. In fact, we show that minimizing
Equation 1 with respect to the RKHS distortion measure
leads to a consistent test statistic when the distortion con-
verges to zero. That is, we would like for the MMD be-
tween permuted and unpermuted samples to converge to
zero if and only if the null hypothesis H0 : X⊥⊥Y | Z
holds.

Definition 1. A test statistic is asymptotically consistent if
it converges in probability to zero if and only if the null
hypothesis holds.

Theorem 1. Let DRKHS
ij = ‖φz(zi)− φz(zj)‖ be a pair-

wise RKHS distance matrix between Z values in a sam-
ple. The proposed test statistic (Equation 2) is asymptot-
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ically consistent if the quantity minP∈P 1
n Tr(PDRKHS)

converges in probability to zero as n→∞.

Proof. Intuitively, minimizing 1
n Tr(PDRKHS) minimizes

a majorant of the MMD between the permuted and un-
permtued joint samples (Py, z) and (y, z). When this
value converges to zero in probability, then so does the
MMD, which implies that the permuted sample embedding
converges to the embedding of the factorized joint distribu-
tion.3

The optimal choice of the distance metric d(zi, zj) should
depend on how Z influences X and Y . Consider an ex-
treme case where all dimensions of Z except Z1 are irrel-
evant to (independent from) X and Y given Z1. We aim
to find the nearby points along Z1, which are not necessar-
ily neighbors when all dimensions are included. In other
words, we should exclude all those irrelevant dimensions
of Z when calculating the distances between zi. An exam-
ple is shown in Figure 2, where Y is some linear function
of only the first component ofZ, plus some Gaussian noise.
Sample elements within the “level sets” of the hyperplane
(indicated in the figure) are approximately exchangeable.

Generally speaking, given prior knowledge about structure
in the relationships between variables, better measures of
distance can be employed when learning the permutation.
For example, a well-studied assumption in causal discovery
is thatX and Y are continuous functions ofZ plus some in-
dependent Gaussian noise (Hoyer et al., 2008). When this
is true, Py|z = N (f(z),Σ), where f is some continuous
function relating Z and Y , and Σ is a covariance matrix. In
this case, Py|zi ≈ Py|zj if f(zi) ≈ f(zj), so it makes sense
to use the distance metric d(zi, zj) = ‖f(zi)− f(zj)‖2
when learning the permutation. Although f is unknown,
it can be learned from the data; e.g., by using Gaussian
Process (GP) regression (Rasmussen and Williams, 2006).
Of course, the consistency of the test statistic when heuris-
tics are used depends upon whether the assumptions made
by the heuristics are satisfied by the underlying joint dis-
tribution. In our experimental results, described below, we
find that the function-based distance heuristic adds power
to the test for synthetic datasets in which X and Y are in
fact noisy functions of Z.

3 RELATED WORK

A previous approach, the conditional HSIC (CHSIC),
uses the Hilbert–Schmidt norm of the conditional cross-
covariance operator, which is a measure of conditional co-
variance of the images of X and Y under functions f and
g from RKHSs corresponding to some kernels defined on
X and Y . When the RKHSs correspond to characteristic
kernels, the operator norm is zero if and only if X⊥⊥Y | Z

3See supplementary materials for the full proof.

Z2
Z 1

Y

Figure 2: If Y is a function of Z plus noise, then many
dimensions of Z might be irrelevant for determining con-
ditional independence. In this example, Y is a noisy func-
tion of Z1, so sample elements within the level sets of the
hyperplane are approximately exchangeable.

(Fukumizu et al., 2008). Since it is unknown how to an-
alytically compute the null distribution of the CHSIC, the
distribution is estimated using a bootstrapping approach.
As described above for the MMD, a null distribution can
be estimated by shuffling and recomputing the test statistic
numerous times. In the conditional case, X and Y should
only be shuffled when the corresponding Z values are near
each other. Therefore, the values of Z are partitioned us-
ing a clustering algorithm, and bootstrap estimates are ob-
tained by permuting Y values only within clusters (Fuku-
mizu et al., 2008). Compared to our approach, the CHSIC
has several disadvantages. The CHSIC requires many per-
mutations to estimate the null distribution, whereas our
approach only requires one carefully chosen permutation
(per outer bootstrap iteration). Since the CHSIC clusters Z
values to generate permutations, the permuted data points
within each cluster have more widely varying values for
Z, causing larger approximation errors. Finally, for high-
dimensional datasets, finding an appropriate clustering al-
gorithm becomes difficult, and the approximation quickly
breaks down.

Other previous approaches to conditional independence
testing use the partial association of regression functions
relating X , Y , and Z (Huang, 2010; Zhang et al., 2011).
In particular, the kernel-based KCIT (Zhang et al., 2011)
is based on the following characterization of conditional
independence: for any f ∈ L2

XZ , and g ∈ L2
Y , define

f̃(X,Z) = f(X,Z) − hf (Z) and g̃(Y,Z) = g(Y ) −
hg(Z), where hf , hg ∈ L2

Z are regression functions of
the values of f and g using only the variable Z. Then
X⊥⊥Y | Z if and only if for all f ∈ L2

XZ , g ∈ L2
Y , and

f̃ , g̃ defined as above, E[f̃ g̃] = 0 (Daudin, 1980). The
KCIT relaxes the spaces of functions L2

XZ , L2
Y , and L2

Z to
be RKHSs corresponding to kernels defined on these vari-
ables. A universal kernel is required so that the RKHS for
Z is dense in corresponding L2

Z space. By contrast, the
HSIC and our approach only require characteristic kernels,
which need not be universal (Sriperumbudur et al., 2010).

137



4 EMPIRICAL EVALUATION

Our analysis suggests that by using a single permutation to
compute the test statistic, our approach, the kernel condi-
tional independence permutation test (KCIPT) will be more
powerful than the CHSIC, which requires clustering the
values of Z and many permutations in each cluster to es-
timate the null distribution. These permutations become
difficult to find as the dimensionality of Z grows, as shown
in prior work (Zhang et al., 2011). Furthermore, by using
an MMD-based test statistic, the KCIPT can better estimate
the null distribution than the KCIT in scenarios that require
a careful choice of parameters. Finally, the outer bootstrap-
ping procedure should improve the power of the KCIPT.

To empirically support our analysis, we implement KCIPT
in MATLAB,4 and compare it to implementations of
CHSIC and KCIT used in prior work (Zhang et al., 2011).
We use two criteria for performance evaluation, type I er-
ror (the fraction of the time the null hypothesisH0 is incor-
rectly rejected), and power (the fraction of the time H0 is
correctly rejected). Rather than choosing a specific signif-
icance level α at which to evaluate power and type I error,
we record the p-values resulting from each test and analyze
the behavior of the tests as α varies. For KCIPT, we use an
RBF kernel k(x, x′) = exp(−‖x− x′‖22 /2σ2) for each
variable, with bandwidth parameters σx, σy , and σz cho-
sen using the “median” heuristic (Gretton et al., 2012a).
For bootstrapping, we use parameters B = 25, b = 104,
and M = 104. CHSIC and KCIT use the recommended
parameters set in their implementations.

In order to characterize the power and type I error of the
tests, we must evaluate the tests across many samples from
the same underlying distribution. We use synthetic datasets
from prior work for this purpose (Fukumizu et al., 2008;
Zhang et al., 2011). Each dataset has a variant where the
null hypothesis holds, for testing type I error, and where
the null hypothesis does not hold, for testing power. We
perform 300 tests for each condition, for each dataset de-
scribed below.

Post-nonlinear Noise. The first dataset we use generates
X and Y as functions of Z using a post-nonlinear noise
model (Zhang and Hyvärinen, 2009; Zhang et al., 2011).
In this generative process, the dimensionality of the condi-
tioning variable Z grows, but only the first dimension Z1 is
relevant to the conditional independence ofX and Y . Each
of X and Y are determined using G(F (Z1) + E), where
G and F are arbitrary smooth, nonlinear functions and E
is a Gaussian noise variable. All dimensions of Z are i.i.d.
Gaussian random variables. Since X⊥⊥Y | Z by default,
identical Gaussian noise is added to X and Y to produce a
variant of the dataset for which X 6⊥⊥Y | Z. Because only

4The code is available online at http://engr.case.
edu/doran_gary/code.html

one conditioning variable is relevant to the problem, we
expect that at least the KCIT and KCIPT with the function-
distance distortion measure will be robust to increasing di-
mensionality, but that performance will degrade eventually.

Chaotic Times Series. The second dataset we use is a
chaotic time series based on the Hénon map (Hénon, 1976).
The two-dimensional variables X = (X

(1)
t , X

(2)
t ) and

Y = (Y
(1)
t , Y

(2)
t ) are computed using only the values from

the previous time step as follows:

X
(1)
t = 1.4−X(1)

t−1
2

+ 0.3X
(2)
t−1

Y
(1)
t = 1.4−

[
γX

(1)
t−1Y

(1)
t−1 + (1− γ)Y

(1)
t−1

2]
+ 0.3Y

(2)
t−1

X
(2)
t = X

(1)
t−1, Y

(2)
t = Y

(1)
t−1.

The parameter γ controls the effect that previous values of
X have on Y . To increase the difficulty of this task, two
additional independent Gaussian noise variables with zero
mean and standard deviation σ = 0.5 are concatenated to
both X and Y . Here, conditional dependence and inde-
pendence characterizes the causal influence from X to Y
when γ > 0. Namely, in this dataset, Xt+1⊥⊥Yt | Xt, but
Yt+1 6⊥⊥Xt | Yt.
For each underlying joint distribution, we generate the
cumulative density function (CDF) of the p-values obtained
for each test across the 300 random samples. While the
CDFs of the tests’ p-values are useful for understanding
the global behavior of the tests,5 it is more succinct to sum-
marize each curve with a single statistic. In prior work,
the powers and type I errors at a particular, fixed value of
α are used to summarize results (Fukumizu et al., 2008;
Gretton et al., 2012a; Zhang et al., 2011). However, pre-
senting results in this way can be misleading if one of the
tests has an advantage at a particular value of α. Therefore,
we use two statistics to summarize the power and type I
error across values of α. When the test has high power, it
correctly rejects the null hypothesis even when α is small.
Therefore, the area under the CDF, or power curve is close
to 1.0. On the other hand, when the null hypothesis is true,
a well-calibrated test will produce uniformly-distributed p-
values so that the type I error rate is equal to α. In this
case, the CDF is a diagonal line with slope 1. To measure
calibratedness, the Kolmogorov test can be used to quan-
tify the difference between the empirically observed CDF
and that for the uniform distribution. Since sample sizes
are finite and null distributions are only approximately es-
timated, the null hypothesis of perfect calibratedness will
likely be rejected by the Kolmogorov test after enough tests
are performed. However, the relative (log) p-values corre-
sponding to the Kolmogorov test can be used to compare
calibratedness; larger p-values roughly correspond to bet-
ter calibration.

5See the supplementary materials for details.
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Figure 3: (Left) Summarized results for the post-nonlinear noise dataset. These results clearly show how the power of
HSIC decreases as noise is added to the conditioning variable. (Right) A comparison of KCIT and KCIPT for high-
dimensional datasets. The performance of the tests begin to degrade in different ways, with the power of KCIPT falling to
chance levels while the KCIT becomes poorly calibrated between D = 10 and D = 50.

Figure 3 (left) shows results for the post-nonlinear noise
dataset as the dimensionality D of the conditioning vari-
able increases. Since Y is a function of Z, the function-
distance distortion measure is used, as described in Sec-
tion 2.4.6 Gaussian process regression is used to find the
function f relating Z and Y . As observed in prior work
(Zhang et al., 2011), the CHSIC approach is sensitive to
the dimensionality of the conditioning variable, so power
quickly decreases as D increases. With a dataset of size
200, KCIT is slightly more powerful than KCIPT, but the
performance converges as the sample size increases to 400.
Furthermore, the performance of KCIPT is preserved as di-
mensionality increases, since the regression-based distance
effectively serves as dimensionality reduction on the con-
ditioning variable.

Figure 3 (right) shows what happens to both KCIPT and
KCIT as the dimensionality of the dataset continues to in-
crease to D = 50; both tests fail by this point, but in differ-
ent ways. KCIT becomes very poorly calibrated between
D = 10 and D = 50, while the power of KCIPT degrades
around the same dimensionality. We conjecture that the ob-
served behavior is due to the differences in kernel parame-
ter selection for each approach. The kernel values for KCIT
are chosen heuristically depending on dataset size, but the
test is only evaluated on low-dimensional datasets (Zhang
et al., 2011). As dimensionality increases, the heuristic is
less effective, and the test poorly estimates the null distri-
bution. By contrast, the KCIPT uses the median heuristic,
which automatically adjusts the kernel parameter as dataset
size and dimensionality increase. Thus, the null distribu-
tion is correctly estimated, but the test statistic becomes
less powerful on this dataset.

The results for the chaotic time series are shown in Fig-
ure 4. For this test, the RKHS distance is used as the distor-
tion measure to learn the permutation. The behavior of the

6We compare this distortion measure with other choices in the
supplementary materials.
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Figure 4: Results for the chaotic time series. As expected,
the power of these tests increases as the conditional depen-
dence controlled by γ increases. The KCIT is not well-
calibrated on this dataset, and HSIC becomes less well-
calibrated as sample size increases.
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Figure 5: Effects of bootstrapping the test statistic with B
iterations on the post-nonlinear noise dataset with n = 400.
Bootstrapping increases the power of the test, but also de-
creases the calibration when dimensionality D of the con-
ditioning variable increases. The observed effect is likely
due to the approximation errors induced by the permutation
leading to an over-rejection of the null hypothesis.

tests is shown as γ increases. In this noisy chaotic dataset,
conditional dependence is more difficult to detect, and none
of the techniques perform very well when γ is small. Al-
though KCIT has the best performance in terms of power,
it is poorly-calibrated as the sample size increases. In fact,
both the CHSIC and KCIT become less well-calibrated as
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sample size increases, suggesting systematic errors in null
distribution estimation. For CHSIC, it appears that there
are difficulties in finding permutations to estimate the null
distribution, and for KCIT, the chaotic nature of the dataset
might violate its assumption that variables are related by
continuous, well-behaved functions.

Using the post-nonlinear noise dataset with n = 400, we
also quantify the extent to which the outer bootstrapping
procedure described in Section 2.3 improves the power of
the test. Figure 5 shows the power and calibration of the
test as the number of bootstraps B increases; B = 1 corre-
sponds to no bootstrapping of the test statistic, and B = 25
is used in the previous experiments. Bootstrapping the test
statistic does in fact increase power for this dataset. How-
ever, when the dimensionality of Z grows, the calibration
of the test decreases. We believe that this behavior is a
result of the approximation error induced by the permuta-
tion; as dimensionality increases, it becomes harder to find
an appropriate permutation with a fixed sample size. How-
ever, we observe in Figure 3 (left) that the other tests also
tend to be poorly calibrated on this dataset as the dimen-
sionality of Z increases. These results do not suggest a
general procedure for selecting B, but they illustrate that
at least for the post-nonlinear noise data, there is a power–
calibration trade-off involved in the use of bootstrapping.

Medical Data. Finally, we explore the application of the
KCIPT to a real-world dataset used in prior work (Fuku-
mizu et al., 2008). The data consists of three variables,
creatinine clearance (C), digoxin clearance (D), and urine
flow (U ), measured on 35 patients. The ground truth, that
D⊥⊥U | C, is known for this dataset. We try to recover
this relationship using the PC algorithm (Spirtes, Glymour,
and Scheines, 2000), with the KCIPT and α = 0.05
used as a test for conditional independence. We choose
B = 10, since it appears to be an effective setting that
reduces the overall computation time (Figure 5). The out-
put of the PC algorithm is the Markov equivalence class
D—C—U , which contains the only causal structures (ei-
ther D ← C ← U , D → C → U , or D ← C → U )
consistent with the ground truth conditional independence
relationship and pairwise dependence relationships, assum-
ing there are no unobserved confounding variables.

5 DISCUSSION

In relation to existing kernel-based conditional indepen-
dence tests, a major advantage of KCIPT observed in our
empirical analysis is its ability to accurately estimate the
null distribution. Hence, we observe that KCIPT is well-
calibrated across the synthetic datasets we study, even un-
der the more extreme scenarios when the dimensional-
ity of the conditioning variable is large or there are com-
plex, nonlinear relationships between variables in the joint
distribution. Our results align with those observed in

prior work, in which permutation-based conditional in-
dependence tests for datasets with discrete values were
found to be well-calibrated with respect to asymptotic tests
(Tsamardinos and Borboudakis, 2010). Additionally, using
a well-calibrated conditional independence test produces
more robust solutions in Bayesian network learning.

The need for conditional independence testing is ubiqui-
tous in the sciences. Unfortunately, performing the test
in practice is known to be very challenging. This work
not only simplifies the problem, but also present a general
framework for conditional independence testing which can
be extended immediately to numerous settings. Thus, there
remain many interesting extensions and questions to study
in future work, such as applications to non-i.i.d. data, dif-
ferent approaches for learning a permutation, and deciding
which variable to permute in the asymmetric test statistic.
Furthermore, we look forward to applying KCIPT to real-
world datasets with more complex conditional dependence
relationships.

6 CONCLUSION

In this work, we propose a new conditional independence
test that employs a permutation to generate an artificial
sample from a joint distribution for which the null hypoth-
esis of the test holds. Effectively, we transform the con-
ditional independence test into a two-sample test problem,
which is easier to solve, well-studied, and scales to high-
dimensional datasets. We use a kernel-based two sample
test between an original sample and a permuted sample,
which share the same distribution if and only if the condi-
tional independence relationship holds. Prior knowledge
about the joint distribution can be incorporated into the
process of finding an appropriate permutation. The result-
ing test has power competitive with existing kernel-based
approaches for conditional independence testing and bet-
ter estimates the null distribution on the datasets used for
evaluation. In future work, we will explore theoretical re-
lationships between our approach and those using partial
association and further investigate the use of our test for
applications in causal discovery.
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Abstract

The Pitman-Yor process provides an elegant way
to cluster data that exhibit power law behavior,
where the number of clusters is unknown or un-
bounded. Unfortunately, inference in Pitman-
Yor process-based models is typically slow and
does not scale well with dataset size. In this
paper we present new auxiliary-variable repre-
sentations for the Pitman-Yor process and a spe-
cial case of the hierarchical Pitman-Yor process
that allows us to develop parallel inference algo-
rithms that distribute inference both on the data
space and the model space. We show that our
method scales well with increasing data while
avoiding any degradation in estimate quality.

1 INTRODUCTION

Bayesian nonparametric priors such as the Dirichlet pro-
cess allow us to create flexible probabilistic models with
an unbounded number of parameters. These models are
appropriate when the latent dimensionality of our data is
unknown or may grow with sample size. Unfortunately, in-
ference in such models is often unwieldy, due to the high
number of instantiated parameters and the need to discover
the appropriate number of parameters for a given data set.

There has been growing interest in scalable inference al-
gorithms for Bayesian nonparametric models. Earlier at-
tempts at distributing inference were either highly model-
specific (Doshi-Velez et al., 2009), or introduced addi-
tional approximation into the inference procedure and were
mostly concentrated at distributed learning on data and
not on the model (Asuncion et al., 2008). More recent
approaches (Williamson et al., 2013; Lovell et al., 2012;
Chang and Fisher III, 2013) have used both model- and
data-parallel design to infer the latent structure without in-
troducing additional approximation.

Most previous research on scalable inference in Bayesian

nonparametrics has focused on parallel inference for
Dirichlet process-based models. Dirichlet process models
are not ideal for modeling language, as they do not cap-
ture the power-law behavior often found in text data (Zipf,
1935). The Pitman-Yor process (Perman et al., 1992; Pit-
man and Yor, 1997) is a two-parameter extension to the
Dirichlet process that allows heavier-tailed distributions
over partitions. It is therefore often used in text and lan-
guage applications, because it more accurately matches the
statistics of natural language (Goldwater et al., 2006; Teh,
2006a), and can be used to build hierarchical models for
text that out-perform their Dirichlet process-based counter-
parts (Teh, 2006b; Wood et al., 2009; Blunsom and Cohn,
2011). However, inference remains a bottleneck.

In this paper, we address this issue using an approach pio-
neered for the Dirichlet process by Williamson et al. (2013)
and Lovell et al. (2012): We construct an alternative repre-
sentation of a nonparametric process that incorporates con-
ditional independencies, and use these conditional indepen-
dencies to divide our model (and in doing so, our data) into
sub-models that can be learned in parallel.

The key to achieving this lies in the introduction of new
representations for the Pitman-Yor process and a hierarchi-
cal extension, presented in Section 3. These representations
afford the conditional independence structure required to
develop model- and data-parallel inference algorithms, as
demonstrated in Section 4. In Section 5, we perform a
thorough evaluation of our inference algorithms and of the
modeling assumptions made.We show that our hierarchical
model, which is a special case of the hierarchical Pitman-
Yor process (Teh, 2006b), is a good fit for natural language.
We empirically demonstrate that we can speed up computa-
tion in Pitman-Yor process mixture models and hierarchical
Pitman-Yor process models with no deterioration in per-
formance, and show good results across a range of dataset
sizes and data dimensionalities.
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2 BACKGROUND

In this section, we will review the Pitman-Yor process and
the hierarchical Pitman-Yor process, and discuss existing
approaches for parallelization in Bayesian nonparametric
models.

2.1 THE PITMAN-YOR PROCESS

The Dirichlet process (Ferguson, 1973) is a distribution
over probability measures of the form D :=

∑∞
k=1 πkδφk ,

parametrized by a concentration parameter α > 0 and a
probability measure H . The order statistics of the atom
sizes πk are described by the following stick-breaking dis-
tribution:

πk =wk

k−1∏

j=1

(1− wj)

wj ∼ Beta(1, α)

(1)

and the atom locations φk are sampled i.i.d. from H . The
resulting probability measure D can be used to cluster ob-
servations; a finite number of observations will belong to a
finite (but random) number of clusters.

The Pitman-Yor process (Perman et al., 1992; Pitman and
Yor, 1997) is a two-parameter extension of the Dirichlet
process, parametrized by a discount parameter 0 ≤ d ≤ 1,
a concentration parameter α > −d, and a probability mea-
sure H . When the discount parameter is zero, we recover
the Dirichlet process. As the discount parameter increases,
we get increasingly heavy-tailed distributions over the atom
sizes in the resulting probability measure. We can see this
behavior by considering the stick-breaking process for the
Pitman-Yor process:

πk =wk

k−1∏

j=1

(1− wj)

wj ∼ Beta(1− d, α+ jd).

(2)

As d increases, the rate of decay of the ordered atom sizes
will decrease. When d = 0, we recover the stick-breaking
construction for the Dirichlet process given in Equation 2.
This behavior makes the Pitman-Yor process particularly
appropriate for applications in language modeling. Natural
language has long been known to exhibit power-law be-
havior (Zipf, 1935), and the Pitman-Yor process is able to
capture this (Teh, 2006a).

We can use the Pitman-Yor process to cluster data using the
following mixture model:

D ∼ PY(α, d,H) θi|D ∼ D xi|θi ∼ f(θi).
(3)

We can also construct a hierarchy of Pitman-Yor processes
(Teh, 2006a) that allows us to jointly cluster multiple re-
lated groups of data. Each group is associated with a

Pitman-Yor process-distributed random measure, and the
group-specific Pitman-Yor processes are coupled via a
shared, Pitman-Yor process-distributed base measure. For
M groups, each containing Nm data points, the generative
process is

D0 ∼ PY(α, d,H)

Dm|D0 ∼ PY(γ, c,D0), m = 1, . . . ,M

θmi|Dm ∼ Dm, i = 1, . . . , Nm

xmi|θmi ∼ f(θmi).

(4)

This distribution has found a number of applications in text
and language modeling (Teh, 2006b; Wood et al., 2009;
Blunsom and Cohn, 2011).

2.2 PARALLEL METHODS FOR BAYESIAN
NONPARAMETRICS

Bayesian nonparametric models allow an unbounded num-
ber of parameters, and can increase the number of parame-
ters used as we see more data. This makes them appealing
for large, complex, and potentially growing datasets. Un-
fortunately, naive implementation of Gibbs samplers, such
as those developed in Ishwaran and James (2001), Neal
(1998) and Teh et al. (2006), do not scale well to such
datasets.

To counter issues of scalability, a number of authors have
attempted to parallelize inference in Bayesian nonparamet-
ric models. Such algorithms typically rely on data paral-
lelization – data is split onto multiple processors, and mes-
sages are passed between processors. Often, this involves
making approximations that break long-range dependen-
cies. For example in Asuncion et al. (2008) and Doshi-
Velez et al. (2009), each processor maintains local suffi-
cient statistics for the data stored on it, and approximates
the full sufficient statistics by combining the local statistics
with snapshots of the local statistics from other processors.

Such an approach typically leads to inaccuracies in the
estimates of the global parameters or sufficient statistics.
This is particularly true in Bayesian nonparametric models,
where we have many components with a small number of
observations. Combining the local statistics for these com-
ponents is difficult, and Williamson et al. (2013) show that
this leads to estimate deterioration in the case of Dirichlet
processes and hierarchical Dirichlet processes. In models
with power law behavior, this effect is likely to be more
pronounced, due to the larger number of components with
very few associated data points.

An alternative approach is to explicitly partition the model
into sub-models that are independent or conditionally inde-
pendent. Inference is performed on each sub-model inde-
pendently, and the results are combined globally. We call
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such algorithms model-parallel. Such models are typically
also data-parallel, with different sub-models governing dif-
ferent subsets of the data. They also have the advantage
that the sub-models typically have a smaller space of latent
parameters than the full model.

Recent examples of algorithms that are both data-parallel
and model-parallel are given by Williamson et al. (2013)
and Lovell et al. (2012), who use auxiliary variable model
representations for Dirichlet processes and hierarchical
Dirichlet processes to obtain conditional independence.
These algorithms hinge on the fact that we can write a
Dirichlet process mixture model as a mixture of Dirichlet
process mixture models, as follows:

Dj ∼ DP(αj , Hj),

φ ∼ Dirichlet(α1, . . . , αP ),

µi|φ ∼ φ,
θi|µi, D1, . . . , DP ∼ Dµi ,

xi ∼ f(θi).

(5)

The marginal distribution over the xis is the equal in dis-
tribution to that obtained by the Dirichlet process mixture
model

D ∼ DP
(∑

j

αj ,

∑
j αjHj∑
j αj

)
,

θi|D ∼ D,
xi|θi ∼ f(θi).

(6)

Conditioned on the µis in Equation 5, we can split our
model into conditionally independent sub-models involv-
ing disjoint subsets of the data, achieving both model- and
data-parallelization.

3 AUXILIARY VARIABLE
REPRESENTATIONS

In this section, we introduce new representations for the
Pitman-Yor process and hierarchical Pitman-Yor process,
that will allow us to develop model- and data-parallel in-
ference algorithms.

3.1 AUXILIARY VARIABLE REPRESENTATION
FOR THE PITMAN-YOR PROCESS

To obtain an auxiliary variable representation, we first show
that a Pitman-Yor mixture model with positive concentra-
tion parameter α and continuous base measure H can be
constructed as a finite mixture of Pitman-Yor mixture mod-
els. We start with a little-used representation of the atom
sizes of the Pitman-Yor process.

Theorem 1 (Mixture model representation of a Pitman-Yor
process). Let G0 :=

∑
k ρkδθk ∼ DP(α,H0), and let

Gk :=
∑
j πj,kδφj,k

i.i.d.∼ PY(0, d,H), where H is a
continuous probability measure (note that this is a nor-
malized stable process with stable parameter d). Then
D =

∑
k ρkGk is distributed according to a Pitman-Yor

process with concentration parameter α, discount parame-
ter d, and base measure H .

Proof. This is a direct consequence of Proposition 22 in
Pitman and Yor (1997).

By extension, we can express a Pitman-Yor mixture model
as a Dirichlet process mixture of normalized stable process
mixture models, provided the concentration parameter α
of the Pitman-Yor process is strictly positive and the base
measure H is continuous.

Corollary 1. The marginal distribution over the data
(xi, i = 1, . . . , N) implied by the generative procedure

G ∼ GEM(α)

Dj ∼ PY(d, 0, H)

ti|G ∼ G
θi|ti, D1, D2, . . . ∼ Dti

xi|θi ∼ f(θi)

(7)

is the same as the marginal distribution over the xi ob-
tained using the Pitman-Yor mixture model of Equation 3.

Proof. The proof is a straightforward extension of Theo-
rem 1.

We have therefore reduced a Pitman-Yor mixture model
with concentration parameter α > 0 to a Dirichlet pro-
cess mixture model. This allows us to apply Equation 5
and write our Pitman-Yor mixture model as a finite Dirich-
let mixture of Pitman-Yor mixture models, providing the
conditional independence required to construct a model-
parallel sampler.

Theorem 2 (Auxiliary variable representation for Pit-
man-Yor mixture models). Provided the concentration pa-
rameter α > 0 and the base probability measure H is
continuous, we can rewrite the generative process for the
Pitman-Yor mixture model given in Equation 3 as:

Dj ∼ PY
(
α

P
, d,H

)
,

φ ∼ Dirichlet
(
α

P
, . . . ,

α

P

)
,

µi|φ ∼ φ,
θi|µi, D1, . . . , DP ∼ Dµi ,

xi|θi ∼ f(θi),

(8)

for j = 1, . . . P and i = 1, . . . , N . The marginal distribu-
tion over the xi remains the same.
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Proof. Since we can write the Pitman-Yor mixture model
as a Dirichlet process mixture model, this follows as a di-
rect application of Equation 5. An alternative proof is given
in the supplement.

3.2 AUXILIARY VARIABLE REPRESENTATION
FOR THE HIERARCHICAL PITMAN-YOR
PROCESS

The results in Section 3.1 can be extended to certain spe-
cial cases of the hierarchical Pitman-Yor process described
in Equation 4. Unfortunately, we can only apply Theorem 1
and Corollary 1 when the base measure of the Pitman-Yor
process is continuous. For the group-level Pitman-Yor pro-
cesses in Equation 4, this is not the case.

The auxiliary variable representation for the Dirichlet pro-
cess given in Equation 5, however, does not require a con-
tinuous base measure. We note that the Dirichlet process
is a special case of the Pitman-Yor process, with discount
parameter d = 0. We therefore work with the following
special case of the hierarchical Pitman-Yor process:

D0 ∼ PY(α, d,H)

γ ∼ Gamma(α)

Dm|D0 ∼ DP(γ,D0), m = 1, . . . ,M

θmi|Dm ∼ Dm, i = 1, . . . , Nm

xmi|θmi ∼ f(θmi).

(9)

We will refer to this construction as a hierarchical Pitman
Yor/Dirichlet process (HPY/DP). The use of a gamma de-
pendence between the concentration parameters was first
introduced by Williamson et al. (2013) in the context of the
hierarchical Dirichlet process.

In Section 5, we investigate the performance of this special
case of the hierarchical Pitman-Yor process on a text cor-
pus. We find that it performs nearly as well as the more
general model of Equation 4, and out-performs the hierar-
chical Dirichlet process (Teh et al., 2006). We therefore
propose this model for large-scale text data, since it allows
scalable parallel inference without significant deterioration
in performance.

Theorem 3 extends the auxiliary variable representation of
Theorem 2 to the hierarchical model of Equation 9.

Theorem 3 (Auxiliary variable representation for the hier-
archical Pitman-Yor process). We can rewrite the genera-

tive process for the hierarchical model of Equation 9 as:

ζj ∼ Gamma(α/P ) ,

D0j ∼ PY(α/P, d,H) ,

νm ∼ Dirichlet(ζ1, . . . , ζP ) ,

Dmj |D0j ∼ DP(ζj , D0j) ,

µmi|νm ∼ νm

θmi|µmi, Dm1, . . . , DmP ∼ Dmµmi

xmi|θmi ∼ f(θmi) ,

(10)

for j = 1, . . . , P , m = 1, . . . ,M , and i = 1, . . . , Nm. The
marginal distribution over the xi remains the same as in
Equation 9.

Proof. Let γ :=
∑
j ζj . The normalized vector ζ1,...,ζP

γ

is distributed according to Dirichlet
(
α
P , . . . ,

α
P

)
, so from

Theorem 1 we find that

D0 :=
P∑

j=1

ζj
γ
D0j ∼ PY (α, d,H).

Now, for m = 1, . . . ,M and j = 1, . . . , P , let ηmj ∼
Gamma(ζj) and Dmj ∼ DP(ζj , D0j). The normalized
vector (ηm1, . . . , ηmP )/

∑P
j=1 ηmj is therefore distributed

according to Dirichlet(ζ1, . . . , ζP ). From Equation 5, we
see that

Dm :=

P∑

j=1

ηmjDmj ∼ DP(γ,D0).

The representation in Theorem 3 provides the conditional
independence structure required to construct a data- and
model-parallel inference algorithm.

4 INFERENCE

The auxiliary variable representation introduced in Theo-
rem 2 makes the cluster allocations for data points {xi :
µi = j} conditionally independent of the cluster alloca-
tions for data points {xi : µi 6= j}. A similar conditional
independence relationship for the hierarchical model is im-
plied by Theorem 3. We can therefore split the data onto P
parallel processors or cores, based on the values of µi (or
µmi in the hierarchical case). We will henceforth call µi
(µmi) the “processor indicator” for the ith data point (ith
data point in the mth group).

The resulting samplers allow both model and data paral-
lelization. Inference in Pitman-Yor mixture models and hi-
erarchical Pitman-Yor processes scales with both the num-
ber of data points and the number of clusters. Since each
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conditionally-independent sub-model only uses a subset of
the data points and of the clusters, we are able to obtain
significant computational advantage, as we will show em-
pirically in Section 5.

4.1 PARALLEL INFERENCE IN THE
PITMAN-YOR PROCESS

We consider first the Pitman-Yor mixture model of Equa-
tion 3. Under the auxiliary variable representation of Equa-
tion 8, each data point xi is associated with a processor in-
dicator µi and parameter θi. We introduce cluster indicator
variables zi, such that zi = zj iff θi = θj . Provided the
base measure H is continuous, all data points associated
with a single cluster will have the same processor indica-
tor, meaning that we can assign each cluster to one of the
P processors (i.e., all data points in a single cluster are as-
signed to the same processor). Note that the jth processor
will typically be associated with multiple clusters, corre-
sponding to the local Pitman-Yor process Dj . Conditioned
on the assignments of the processor indicators µi, the data
points xi in Equation 8 depend only on the local Pitman-
Yor process Dµi and the associated parameters.

We can easily marginalize out the Dj and φ. Assume
that each data point xi is assigned to a processor µi ∈
{1, . . . , P}, and a cluster zi residing on that processor. We
will perform local inference on the cluster assignments zi,
and intermittently we will perform global inference on the
µi.

4.1.1 Local inference: Sampling the zi

Conditioned on the processor assignments, the distribution
over cluster assignments zi is given by

P (zi = k|{zj : j 6= i, µj = µi}, xi, rest)

∝





n¬iµi,k−d
α+n¬iµi,·

fk(xi) for existing cluster k
α+Kd
α+n¬iµi,·

f∗(xi) new cluster k

where nj,k is the number of data points in the kth cluster
on processor j, fk(x) is the likelihood of data point x for
the kth cluster, and f∗(x) is the likelihood of data point x
under a new cluster.

4.1.2 Global inference: Sampling the µi

Under the auxiliary variable scheme, each cluster is associ-
ated with a single processor. We jointly resample the pro-
cessor allocations of all data points within a given cluster,
allowing us to move an entire cluster from one processor to
another. We use a Metropolis Hastings step with a proposal
distribution Q(k, j1, j2) that independently assigns cluster
k from processor j1 to processor j2. We discuss choices of
proposal distribution Q(k, j1, j2) in Section 4.3.

The accept/reject probability is given by r ·Q(k,j2,j1)
Q(k,j1,j2)

where
r is the likelihood ratio

r =

P∏

j=1

Γ(N∗j + α/P )

Γ(Nj + α/P )

(α/P )(d;K
∗
j−1)

(α/P )(d;Kj−1)

(α/P + 1− d)(1;Nj−1)

(α/P + 1− d)(1;N
∗
j −1)

max(Nj ,N
∗
j )∏

i=1

[(1− d)(1;i−1))](a
∗
ij−aij) aij !

a∗ij !
,

(11)

where Nj is the number of data points on processor j, aij
is the number of clusters of size i on processor j and

(a)(b;c) =

{
1 if c = 0
a(a+ b) . . . (a+ (c− 1)b) for c = 1, 2, . . .

A derivation of Equation 11 is given in the supplement. In
fact, we can simplify Equation 11 further, since many of
the terms in the ratio of factorials will cancel.

The reassignment of clusters can be implemented in a num-
ber of different manners. Actually transferring data from
one processor to another will lead to bottlenecks, but may
be appropriate if the entire data set is too large to be stored
in memory on a single machine. If we can store a copy of
the dataset on each machine, or we are using multiple cores
on a single machine, we can simply transfer updates to lists
of which data points belong to which cluster on which ma-
chine. We note that the reassignments need not occur at the
same time, reducing the bandwidth required.

4.2 PARALLEL INFERENCE IN THE
HIERARCHICAL PITMAN-YOR/DIRICHLET
PROCESS

Again, we can assign tokens xmi to one of P processors
according to µmi. Conditioned on the processor assign-
ment and the values of ζj , the data on each processor is
distributed according to an HPY/DP. We instantiate the pro-
cessor allocations µmi and the bottom-level DP parame-
ters, plus sufficient representation to perform inference in
the processor-specific HPY/DPs. We assume a Chinese
restaurant franchise representation (Teh et al., 2006) – each
group is represented using a “restaurant”; data points in the
lower-level Dirichlet processes are clustered into “tables”;
in the upper-level Pitman-Yor process, these “tables” are
clustered and each cluster is assigned a “dish”.

4.2.1 Local inference: Sampling the table and dish
allocations

Conditioned on the processor assignments, we simply have
P independent HPY/DPs, and can use any existing infer-
ence algorithm for the hierarchical Pitman-Yor process. In
our experiments, we used the Chinese restaurant franchise
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sampling scheme (Teh et al., 2006; Teh, 2006a); other rep-
resentations could also be used.

4.2.2 Global inference: Sampling the µmi and the ζj

We can represent the ζj as ζj := γξj , where
γ ∼ Gamma(α, 1) and ξ := (ξ1, . . . , ξP ) ∼
Dirichlet(α/P, . . . , α/P ). We sample ξ and the µmi
jointly, and then sample γ, in order to improve the accep-
tance ratio of our Metropolis Hastings steps.

Again, we want to reallocate whole clusters rather than
independently reallocate individual tokens. So, our pro-
posal distribution again assigns cluster k from processor
j1 to processor j2 with probability Q(k, j1, j2). Note
that this means that a single data point does not neces-
sarily reside on a single processor – its tokens may be
split among multiple processors. We also propose ξ∗ ∼
Dirichlet(α/P, . . . , α/P ), and accept the resulting state
with probability min(1, rQ(k,j2,j1)

Q(k,j1,j2)
), where

r =
P∏

j=1

(ξ∗j )(T
∗
.j+α/P )

((ξj)(T.j+α/P ))

T ∗.j !

T ∗.j !
(α/P )(d;U

∗
j −1)

(α/P )(d;Uj−1)

· (α/P + 1− d)(1;T.j−1)

(α/P + 1− d)(1;T
∗
.j−1)

·
{∏max(T·j ,T

∗
·j)

i=1 [(1− d)(1;i−1)]b
∗
ji−bji bji!

b∗ji!

}

·
M∏

m=1

max(Nj ,N
∗
j )∏

i=1

ajmi!

a∗jmi!
.

(12)

Here, Tmj is the total number of occupied tables from the
mth restaurant on processor j, Uj is the total number of
unique dishes on processor j, ajmi is the total number of
tables in restaurant m on processor j with exactly i cus-
tomers, and bji is the total number of dishes on processor j
served at exactly i tables. Many of the ratios can be simpli-
fied further, reducing computational costs. A derivation of
Equation 12 is given in the supplement.

As with the sampler described in Section 4.1, we can either
transfer the data between machines, or simply update lists
of which data points are “active” on each machine. We can
resample γ after sampling ξ and the µmi using a standard
Metropolis Hastings step.

4.3 CHOICE OF PROPOSAL DISTRIBUTION

There are many valid choices for the proposal distributions
Q(k, j1, j2) used to sample the µi and µmi in Sections 4.1
and 4.2. We tried several different proposal distributions
and found we obtained good mixing when

Q(k, j1, j2) =

{
1

P−1sj1 if j1 6= j2

1− sj1 if j1 = j2
(13)

where sj1 is the fraction of data in processor j1. As dis-
cussed by Gal and Ghahramani (2013), due to cluster size
imbalance inherent to the Pitman-Yor process, we do not
expect to see even load balance; however this proposal dis-
tribution encourages processors with a larger proportion of
the data (higher load) to transfer data to under-used data.
Since at any point the fraction of points in any cluster is
small it also reduces the number of transfer and hence net-
work load. We will show in Section 5 that this not only
gives good performance but also gives good load sharing
among multiple processors.

5 EVALUATION

We expect the inference algorithms presented in Section 4
to yield faster inference than a non-parallel implemen-
tation. Each processor is locally performing inference
in a Pitman-Yor mixture model or a hierarchical Pitman-
Yor/Dirichlet process. These models only contain a sub-
set of the total number of clusters and of the total data set.
Since inference in these models scales at least linearly (de-
pending on likelihood) with both the number of data points
and the number of latent components, we expect them to
converge much more quickly than a Pitman-Yor mixture
model or hierarchical Pitman-Yor/Dirichlet process on the
entire data set. Provided the computational cost of the
global steps remains relatively low, and provided the global
steps achieve sufficiently fast mixing, we expect to see
overall speed-ups. Further, we expect the estimate qual-
ity to remain high, since our algorithms do not introduce
approximations.

In both cases, we evaluate via comparison with non-parallel
implementations of the model. We are unaware of any
other parallelizable inference algorithms for the Pitman-
Yor process and its extensions.

5.1 PITMAN-YOR MIXTURE OF GAUSSIANS

We first evaluate performance of the parallel sampler for
the Pitman-Yor mixture model, described in Section 4.1,
using synthetic data. We generated data sets of vary-
ing size N and data dimensionality D, to evaluate per-
formance on different sized datasets. Each data set con-
tained N/2000 clusters of size 500, N/4000 clusters of
size 1000, N/10000 clusters of size 2500, and N/20000
clusters of size 5000, giving K = 9N/10000 clusters in
total. This was designed to give many smaller clusters and
fewer larger clusters. Each cluster parametrized a univari-
ate Gaussian with unit variance and mean sampled accord-
ing to a Uniform((−K/2,K/2)D) distribution.

We ran our algorithm on 90% of the resulting data sets us-
ing the algorithm described in Section 4.1, on 1,2,4 and 8
cores of a multi-core machine. Each algorithm was initial-
ized by clustering the data into 80 clusters. We performed
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Figure 1: Evaluation on synthetic data modeled using a Pitman-Yor mixture model. a: F1 score vs run time; b: Amount
of time spent on global vs local computation; c: Time taken to reach convergence (< 0.1% change in training set log
likelihood) vs number of data points; d: Time taken to reach convergence vs data dimension.
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Figure 2: Maximum, median, and minimum loads per global iteration, using (a) a uniform proposal distribution; (b) the
proposal distribution given in Equation 13.

100 iterations of the local inference step for each iteration
of the global inference step. The concentration parameter
α was set to 0.5 and d was set to 0.1; these values were
selected via grid search. We evaluated by calculating the
test set log likelihood for the remaining 10% of the data.

Figure 1(a) shows how the log likelihood of the test sample
varies with time, for one million datapoints with D = 3.
We see that we get good speedup by increasing the num-
ber of processors, while converging to (approximately) the
same value for all experiments. Figure 1(b) shows that the
amount of time spent on local computation far exceeds that
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Data Size 1M 2.5M 5M 10 M
Efficiency 0.864 0.873 0.877 0.879
Dimension 1 3 5 10
Efficiency 0.893 0.864 0.866 0.877
Processors 2 4 8
Efficiency 0.880 0.865 0.864

Table 1: Efficiency with varying data size (with D = 3 and
P = 8 ), varying data dimension (with N = 1M P = 8)
and number of processor (with N = 1M and D = 3).

spent on global steps, explaining why we have a faster per-
iteration time. Figures 1(c) and 1(d) show that the decrease
in computational speed is apparent at different sizes of data
set N and data dimensionality D.

Following Asuncion et al. (2008), we report the efficiency
of our model. If a model running on P processor converges
in time Tp while the single processor model converges in
time T then the efficiency is calculated as T

P ·Tp . Table 1
shows how efficiency varies if we change the number of
data points, the dimensionality of each data point, and the
number of processors. An efficiency of 1 would indicate
a linear speed-up – using P processors is P times as fast
as using one processor. We get efficiency very close to the
linear speedup as shown in Table 1.

Next we evaluate how evenly computation is split between
the cores. Figure 2 shows the how the data is split between
cores over time. Figure 2(b) shows the load distribution ob-
tained using the proposal distribution of Equation 13, and
Figure 2(a) shows the load distribution obtained using the
uniform distribution used by Williamson et al. (2013). The
maximum load governs the amount of time spend perform-
ing local computation (which was seen in Figure 1(b) to
dominate the computation time). While, as we would ex-
pect (Gal and Ghahramani, 2013), we have uneven loads in
both cases, we achieve better load balancing using the new
proposal.

5.2 HIERARCHICAL PITMAN-YOR/DIRICHLET
PROCESS

In this section, we evaluate the sampler described in Sec-
tion 4.2 on two text data sets:

• NIPS1: A collection of 2470 papers from the NIPS
conference, collected between 1988 and 2003 which
includes 14300 unique words and a total of 3, 280, 697
words.

• ENRON2: A collection of 39861 emails including
28102 unique words and a total of 6, 400, 000 words.

1http://ai.stanford.edu/ ∼ gal/data.html
2https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

Dataset HDP HPY/DP HPY
NIPS 1706.52 1650.44 1621.34
ENRON 2110.98 2054.85 2018.36

Table 2: Test set perplexity for different models.

Processors 2 4 8
NIPS 0.855 0.805 0.824
ENRON 0.854 0.807 0.817

Table 3: Efficiency of the HPY/DP algorithm with varying
number of processors.

In each case, we held out 10% of the data for testing, and
evaluated our algorithms using perplexity on the held out
test set, as calculated in Asuncion et al. (2008).

We begin by considering how much performance is gain-
ing by restricting the lower-level stochastic processes to
be Dirichlet processes, rather than Pitman-Yor processes.
Table 2 compares the full hierarchical Pitman-Yor process
described in Equation 4 (denoted HPY), the model imple-
mented using our algorithm and described in Equation 9
(denoted HPY/DP), and the hierarchical Dirichlet process
Teh et al. (2006) (denoted HDP).

We find that, while the full hierarchical Pitman-Yor process
obtains the best perplexity, the HPY/DP model still per-
forms better than the hierarchical Dirichlet process. Since
there is not, currently, a scalable inference algorithm for the
full hierarchical Pitman-Yor process, we argue that the pro-
posed algorithm and model offer a good trade-off between
scalability and performance

Having established the applicability of the model, we con-
sider scalability. Figures 3(a) and 3(b) show how the sam-
ple test set perplexity changes with time using 1,2,4 and
8 processors on the NIPS and ENRON data sets, respec-
tively. As with the Pitman-Yor mixture model, we see that
increasing the number of processors yields improvements
in computation time. Figures 3(c) and 3(d) show that, as
before, this occurs because the cost of the local computa-
tions decreases as we add more processors, and remains
high relative to the cost of the global computations. This is
reflected in the efficiencies obtained for different numbers
of processors (Table 3), which remain close to one.

6 DISCUSSION AND FUTURE WORK

In this paper, we have presented new auxiliary variable rep-
resentations for certain cases of the Pitman-Yor process and
the hierarchical Pitman-Yor process. These representations
allowed us to make use of conditional independencies to
develop inference schemes that are both data- and model-
parallel.

While this paper provides a significant step forward in
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Figure 3: Evaluation on text corpora using the HPY/DP model. a: Test set perplexity vs run time (NIPS); b: Test set
perplexity vs run time (ENRON); c: Amount of time spent on global vs local computation (NIPS); d: Amount of time
spent on global vs local communication (ENRON).

the development of parallel inference algorithms for the
Pitman-Yor process, it does not cover all algorithms of in-
terest. The auxiliary variable representation introduced in
Theorem 2 requires a positive concentration parameter. It
remains an open question whether there exist alternative
representations for α < 0 that yield the desired conditional
independence structure. Further, our auxiliary variable rep-
resentation requires a continuous base measure H . While
this is typically the case for Pitman-Yor mixture models, it
is not the case for the more general hierarchical Pitman-Yor
process described in Equation 4. We hope that this work
inspires further research into scalable inference for models
beyond the Dirichlet process, allowing parallel algorithms
for this and other models.
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Abstract

We study information elicitation in cost-func-
tion-based combinatorial prediction markets
when the market maker’s utility for information
decreases over time. In the sudden revelation set-
ting, it is known that some piece of information
will be revealed to traders, and the market maker
wishes to prevent guaranteed profits for trading
on the sure information. In the gradual decrease
setting, the market maker’s utility for (partial) in-
formation decreases continuously over time. We
design adaptive cost functions for both settings
which: (1) preserve the information previously
gathered in the market; (2) eliminate (or dimin-
ish) rewards to traders for the publicly revealed
information; (3) leave the reward structure unaf-
fected for other information; and (4) maintain the
market maker’s worst-case loss. Our construc-
tions utilize mixed Bregman divergence, which
matches our notion of utility for information.

1 INTRODUCTION

Prediction markets have been used to elicit information in
a variety of domains, including business [6, 7, 12, 28], pol-
itics [4, 29], and entertainment [25]. In a prediction mar-
ket, traders buy and sell securities with values that depend
on some unknown future outcome. For example, a mar-
ket might offer securities worth $1 if Norway wins a gold
medal in Men’s Moguls in the 2014 Winter Olympics and
$0 otherwise. Traders are given an incentive to reveal their
beliefs about the outcome by buying and selling securi-
ties, e.g., if the current price of the above security is $0.15,
traders who believe that the probability of Norway winning
is more than 15% are incentivized to buy and those who be-
lieve that the probability is less than 15% are incentivized
to sell. The equilibrium price reflects the market consensus
about the security’s expected payout (which here coincides
with the probability of Norway winning the medal).

There has recently been a surge of research on the design
of prediction markets operated by a centralized authority
called a market maker, an algorithmic agent that offers to
buy or sell securities at some current price that depends
on the history of trades in the market. Traders in these
markets can express their belief whenever it differs from
the current price by either buying or selling, regardless of
whether other traders are willing to act as a counterparty,
because the market maker always acts as a counterparty,
thus “providing the liquidity” and subsidizing the infor-
mation collection. This is useful in situations when the
lack of interested traders would negatively impact the ef-
ficiency in a traditional exchange. Of particular inter-
est to us are combinatorial prediction markets [8–10, 17–
19, 26] which offer securities on various related events such
as “Norway wins a total of 4 gold medals in the 2014 Win-
ter Olympics” and “Norway wins a gold medal in Men’s
Moguls.” In combinatorial markets with large, expressive
security spaces, such as an Olympics market with securities
covering 88 nations participating in 98 events, the lack of
an interested counterparty is a major concern. Only a single
trader may be interested in trading the security associated
with a specific event, but we would still like the market to
incorporate this trader’s information.

Most market makers considered in the literature are im-
plemented using a pricing function called the cost func-
tion [11]. While such markets have many favorable proper-
ties [1, 2], the current approaches have several drawbacks
that limit their applicability in real-world settings. First, ex-
isting work implicitly assumes that the outcome is revealed
all at once. When concerned about “just-in-time arbitrage,”
in which traders closer to the information source make last-
minute guaranteed profits by trading on the sure informa-
tion before the market maker can adjust prices, the market
maker can prevent such profits by closing the entire mar-
ket just before the outcome is revealed. This approach is
undesirable when partial information about the outcome is
revealed over time, as is often the case in practice, includ-
ing the Olympics market. For instance, we may learn the
results of Men’s Moguls before Ladies’ Figure Skating has
taken place. Closing a large combinatorial market when-
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ever a small portion of the outcome is determined seems to
be an unreasonably large intervention.

Second, in real markets, the information captured by the
market’s consensus prices often becomes less useful as the
revelation of the outcome approaches. Consider a market
over the event “Unemployment in the U.S. falls below 5.8%
by the end of 2015.” Although there may be a particular
moment when the unemployment rate is publicly revealed,
this information becomes gradually less useful as that mo-
ment approaches; the government may be less able to act
on the information as the end of the year draws near. In
the Olympics market, the outcome of a particular compe-
tition is often more certain as the final announcement ap-
proaches, e.g., if one team is far ahead by the half-time of
a hockey game, market forecasts become less interesting.
Existing market makers fail to take this diminishing utility
for information into account, with the strength of the mar-
ket incentives remaining constant over time.

To address these two shortcomings of existing markets, we
consider two settings:

• a sudden revelation setting in which it is known that
some piece of information (such as the winner of Men’s
Moguls) will be publicly revealed at a particular time,
driving the market maker’s utility for this information to
zero; crucially, in this setting we assume that the market
maker does not have direct access to this information at
the time it is revealed, which is realistic in the case of the
Olympics where a human might not be available to input
winners for all 98 events in real time;

• a gradual decrease setting in which the market maker
has a diminishing utility for a piece of information (such
as the unemployment rate for 2015) over time and there-
fore is increasingly unwilling to pay for this information
even while other information remains valuable.

The sudden revelation setting can be viewed as a special
case of the gradual decrease setting. In both cases, we
model the relevant information as a variable X , represent-
ing a partly determined outcome such as the identity of the
gold medal winner in a single sports event.

We consider cost-function-based market makers in which
the cost function switches one or many times, and aim to
design switching strategies such that: (1) information pre-
viously gathered in the market is not lost at the time of the
switch, (2) a trader who knows the value of X but has no
additional information is unable to profit after the switch
(for the sudden revelation setting) or is able to profit less
and less over time (in the gradual decrease setting), and (3)
the market maker maintains the same reward structure for
any other information that traders may have. To formalize
these objectives, we define the notion of the market maker’s
utility (Sec. 2) and show how it corresponds to the mixed
Bregman divergence [13, 15] (Sec. 2.5).

For the sudden revelation setting (Sec. 3), we introduce a
generic cost function switching technique which in many
cases removes the rewards for “just-in-time arbitragers”
who know only the value ofX , while allowing traders with
other information to profit, satisfying our objectives.

For the gradual decrease setting (Sec. 4), we focus on lin-
early constrained market makers (LCMMs) [13], propos-
ing a time-sensitive market maker that gradually decreases
liquidity by employing the cost function of a different
LCMM at each point in time, again meeting our objectives.

Others have considered the design of cost-function-based
markets with adaptive liquidity [3, 21–24]. That line of re-
search has typically focused on the goal of slowing down
price movement as more money enters the market. In
contrast, we adjust liquidity to reflect the current market
maker’s utility which can be viewed as something external
to trading in the market. Additionally, we change liquidity
only in the “low-utility” parts of the market, whereas previ-
ous work considered market-wide liquidity shifts. Brahma
et al. [5] designed a Bayesian market maker that adapts to
perceived increases in available information. Our market
maker does not try to infer high information periods, but as-
sumes that a schedule of public revelations is given a priori.
Our market makers have guaranteed bounds on worst-case
loss whereas those of Brahma et al. [5] do not.

2 SETTING AND DESIDERATA

We begin by reviewing cost-function-based market making
before describing our desiderata. Here and throughout the
paper we make use of many standard results from convex
analysis, summarized in Appendix A. All of the proofs in
this paper are relegated to the appendix. 1

2.1 COST-FUNCTION-BASED MARKET MAKING

Let Ω denote the outcome space, a finite set of mutually
exclusive and exhaustive states of the world. We are inter-
ested in the design of cost-function-based market makers
operating over a set of K securities on Ω specified by a
payoff function ρ : Ω → RK , where ρ(ω) denotes the
vector of security payoffs if the outcome ω ∈ Ω occurs.
Traders may purchase bundles r ∈ RK of securities from
the market maker, with ri denoting the quantity of security
i that the trader would like to purchase; negative values of
ri are permitted and represent short selling. A trader who
purchases a bundle r of securities pays a specified cost for
this bundle up front and receives a (possibly negative) pay-
off of ρ(ω) · r if the outcome ω ∈ Ω occurs.

Following Chen and Pennock [11] and Abernethy et al.
[1, 2], we assume that the market maker initially prices se-
curities using a convex potential function C : RK → R,

1The full version of this paper on arXiv includes the appendix.
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called the cost function. The current state of the market is
summarized by a vector q ∈ RK , where qi denotes the total
number of shares of security i that have been bought or sold
so far. If the market state is q and a trader purchases the
bundle r, he must pay the market maker C(q+ r)−C(q).
The new market state is then q+r. The instantaneous price
of security i is ∂C(q)/∂qi whenever well-defined; this is
the price per share of an infinitesimally small quantity of
security i, and is frequently interpreted as the traders’ col-
lective belief about the expected payoff of this security.
Any expected payoff must lie in the convex hull of the set
{ρ(ω)}ω∈Ω, called price space, denotedM.

While our cost function might not be differentiable at all
states q, it is always subdifferentiable thanks to convex-
ity, i.e., its subdifferential ∂C(q) is non-empty for each q
and, if it is a singleton, it coincides with the gradient. Let
p(q) := ∂C(q) be called the price map. The set p(q) is
always convex and can be viewed as a multi-dimensional
version of the “bid-ask spread”. In a state q, a trader can
make an expected profit if and only if he believes that
E[ρ(ω)] 6∈ p(q). If C is differentiable at q, we slightly
abuse notation and also use p(q) := ∇C(q).

We assume that the cost function satisfies two standard
properties: no arbitrage and bounded loss. The former
means that as long as all outcomes ω are possible, there
are no market transactions with a guaranteed profit for a
trader. The latter means that the worst-case loss of the mar-
ket maker is a priori bounded by a constant. Together, they
imply that the cost function C can be written in the form
C(q) = supµ∈M[µ · q − R(µ)], where R is the convex
conjugate of C, with domR = M. See Abernethy et al.
[1, 2] for an analysis of the properties of such markets.

Example 1. Logarithmic market-scoring rule (LMSR).
The LMSR of Hanson [18, 19] is a cost function for a
complete market where traders can express any probabil-
ity distribution over Ω. Here, for any K ≥ 1, Ω = [K] :=
{1, . . . ,K} and ρi(ω) = 1[i = ω] where 1[·] is a 0/1 indi-
cator, i.e., the security i pays out $1 if the outcome i occurs
and $0 otherwise. The price space M is the simplex of
probability distributions in K dimensions. The cost func-
tion is C(q) = ln

(∑K
i=1 e

qi
)
, which is differentiable and

generates prices pi(q) = eqi/
(∑K

j=1 e
qj
)
. Here R is the

negative entropy function, R(µ) =
∑K
i=1 µi lnµi.

Example 2. Square. The square market consists of two
independent securities (K = 2) each paying out either
$0 or $1. This can be encoded as Ω = {0, 1}2 with
ρi(ω) = ωi for i = 1, 2. The price space is the unit
square M = [0, 1]2. Consider the cost function C(q) =
ln
(
1 + eq1

)
+ ln

(
1 + eq2

)
, which is differentiable and gen-

erates prices pi(q) = eqi/(1 + eqi) for i = 1, 2. Using this
cost function is equivalent to running two independent bi-
nary markets, each with an LMSR cost function. We have
R(µ) =

∑2
i=1 µi lnµi + (1− µi) ln(1− µi).

PROTOCOL 1: Sudden Revelation Market Makers
Input: initial cost function C, initial state sini, switch time t,

update functions NewCost(q), NewState(q)

Until time t:
sell bundles r1, . . . , rN priced using C

for the total cost C(sini+r)− C(sini) where r =
∑N
i=1r

i

let s = sini+ r
At time t:
C̃ ← NewCost(s)
s̃← NewState(s)

After time t:
sell bundles r̃1, . . . , r̃Ñ priced using C̃

for the total cost C̃(s̃+ r̃)− C̃(s̃) where r̃ =
∑Ñ
i=1 r̃

i

let s̃fin = s̃+ r̃
Observe ω
Pay (r + r̃) · ρ(ω) to traders

PROTOCOL 2: Gradual Decrease Market Makers
Input: time-sensitive cost function C(q; t),

initial state s0, initial time t0,
update function NewState(q; t, t′)

For i = 1, . . . , N (where N is an unknown number of trades):
at time ti ≥ ti−1: receive a request for a bundle ri

s̃i−1 ← NewState(si−1; ti−1, ti)
sell the bundle ri

for the cost C(s̃i−1 + ri; ti)−C(s̃i−1; ti)
si ← s̃i−1 + ri

Observe ω
Pay

∑N
i=1 r

i · ρ(ω) to traders

Example 3. Piecewise linear cost. Here we describe a
non-differentiable cost function for a single binary security
(K = 1). Let Ω = {0, 1} and ρ(ω) = ω, soM = [0, 1].
The cost function is C(q) = max{0, q}. It gives rise to the
price map such that p(q) = 0 if q < 0, and p(q) = 1 if
q > 0, but at q = 0, we have p(q) = [0, 1], i.e., because
of non-differentiability we have a bid-ask spread at q = 0.
Here, R(µ) = I

[
µ ∈ [0, 1]

]
where I[·] is a 0/∞ indicator,

equal to 0 if true and∞ if false. This market is uninterest-
ing on its own, but will be useful to us in Sec. 3.3.

2.2 OBSERVATIONS AND ADAPTIVE COSTS

We study two settings. In the sudden revelation setting, it
is known to both the market maker and the traders that at
a particular point in time (the observation time) some in-
formation about the outcome (an observation) will be pub-
licly revealed to the traders, but not to the market maker.
More precisely, let any function on Ω be called a random
variable and its value called the realization of this ran-
dom variable. Given a random variable X : Ω → X ,
we assume that its realization is revealed to the traders
at the observation time. For a random variable X and a
possible realization x, we define the conditional outcome
space by Ωx := {ω ∈ Ω : X(ω) = x}. After observ-
ing X = x (where, using standard random variable short-
hand, we write X for X(ω)), the traders can conclude that
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ω ∈ Ωx. Note that the sets {Ωx}x∈X form a partition of Ω.

We design sudden revelation market makers (Protocol 1)
that replace the cost functionC with a new cost function C̃,
and the current market state s (i.e., the current value of q in
the definition above) with a new market state s̃ in order to
reflect the decrease in the utility for information about X .
Such a switch would typically occur just before the obser-
vation time. Note that we allow the new cost function C̃ as
well as the new state s̃ to be chosen adaptively according
to the last state s of the original cost function C.

In the gradual decrease setting, the utility for information
about a future observation X is decreasing continuously
over time. We use a gradual decrease market maker (Pro-
tocol 2) with a time-sensitive cost function C(q; t) which
sells a bundle r for the cost C(q+r; t)−C(q; t) at time t,
when the market is in a state q. We place no assumptions
on C other than that for each t, the function C(·; t) should
be an arbitrage-free bounded-loss cost function. The mar-
ket maker may modify the state between the trades.

Protocol 2 alternates between trades and cost-function
switches akin to those in Protocol 1. In each iteration i,
the cost function C(·; ti−1) is replaced by the cost func-
tion C(·; ti) while simultaneously replacing the state si−1

by the state s̃i−1. Crucially, unlike Protocol 1, the cost-
function switch here is state independent, so any state-
dependent adaptation happens through the state update. 2

At a high level, within each of the protocols, our goal is to
design switch strategies that satisfy the following criteria:

• Any information that has already been gathered from
traders about the relative likelihood of the outcomes in
the conditional outcome spaces is preserved.

• A trader who has information about the observation X
but has no additional information about the relative like-
lihood of outcomes in the conditional outcome spaces is
unable to profit from this information (for sudden reve-
lation), or the profits of such a trader are decreasing over
time (for gradual decrease).

• The market maker continues to reward traders for new
information about the relative likelihood of outcomes in
the conditional outcome spaces as it did before, with
prices reflecting the market maker’s utility for informa-
tion within these sets of outcomes.

To reason about these goals, it is necessary to define what
we mean by the information that has been gathered in the
market and the market maker’s utility.

2.3 MARKET MAKER’S UTILITY

By choosing a cost function, the market maker creates an
incentive structure for the traders. Ideally, this incentive

2This simplifying restriction matches our solution concept in
Sec. 4, but it could be dropped for greater generality.

structure should be aligned with the market maker’s sub-
jective utility for information. That is, the amount the mar-
ket maker is willing to pay out to traders should reflect the
market maker’s utility for the information that the traders
have provided. In this section, we study how the traders
are rewarded for various kinds of information, and use the
magnitude of their profits to define the market maker’s im-
plicit “utility for information” formally.

We start by defining the market maker’s utility for a belief,
where a belief µ ∈ M is a vector of expected security
payoffs E[ρ(ω)] for some distribution over Ω.
Definition 1. The market maker’s utility for a belief µ ∈
M relative to the state q is the maximum expected payoff
achievable by a trader with belief µ when the current mar-
ket state is q:
Util(µ; q) := supr∈RK

[
µ · r − C(q + r) + C(q)

]
.

Any subset E ⊆ Ω is referred to as an event. Observations
X = x correspond to events Ωx. Suppose that a trader has
observed an event, i.e., a trader knows that ω ∈ E , but is
otherwise uninformed. The market maker’s utility for that
event can then be naturally defined as follows.
Definition 2. The utility for a (non-null) event E ⊆ Ω rel-
ative to the market state q is the largest guaranteed payoff
that a trader who knows ω ∈ E (and has only this informa-
tion) can achieve when the current market state is q:

Util(E ; q) := sup
r∈RK

min
ω∈E

[
ρ(ω) · r − C(q + r) + C(q)

]
.

Finally, consider the setting in which a trader has ob-
served an event E , and also holds a belief µ consistent
with E . Specifically, let M(E) denote the convex hull of
{ρ(ω)}ω∈E , which is the set of beliefs consistent with the
event E , and assume µ ∈ M(E). Then we can define the
“excess utility for the belief µ” as the excess utility pro-
vided by µ over just the knowledge of E .
Definition 3. Given an event E and a belief µ ∈ M(E),
the excess utility of µ over E , relative to the state q is:

Util(µ | E ; q) = Util(µ; q)− Util(E ; q) .

Note that in these definitions a trader can always choose
not to trade (r = 0), so the utility for a belief and an
event is non-negative. Also it is not too difficult to see that
Util(µ; q) ≥ Util(E ; q) for any µ ∈ M(E), so the ex-
cess utility for a belief is also non-negative.

In Sec. 2.5, we show that given a state q and a non-null
event E , there always exists a (possibly non-unique) belief
µ ∈ E such that Util(µ | E ; q) = 0. Thus, a trader with
such a “worst-case” belief is able to achieve in expecta-
tion no reward beyond what any trader that just observed E
would receive. We show that these worst-case beliefs corre-
spond to certain kinds of “projections” of the current price
p(q) ontoM(E). For LMSR, the projections are with re-
spect to KL divergence and correspond to the usual condi-
tional probability distributions. Moreover, for sufficiently
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Table 1: Information Desiderata

PRICE Preserve prices:
p̃(s̃) = p(s).

CONDPRICE Preserve conditional prices:
p̃(X=x; s̃) = p(X=x; s) ∀x ∈ X .

DECUTIL Decrease profits for uninformed traders:
~Util(X=x; s̃) ≤ Util(X=x; s) ∀x∈X ,

with sharp inequality if Util(X=x; s) > 0.

ZEROUTIL No profits for uninformed traders:
~Util(X=x; s̃) = 0 ∀x ∈ X .

EXUTIL Preserve excess utility:
~Util(µ|X=x; s̃) = Util(µ|X=x; s)

for all x ∈ X and µ ∈M(X=x).

smooth cost functions (including LMSR) they correspond
to market prices that result when a trader is optimizing his
guaranteed profit from the information ω ∈ E as in Defini-
tion 2 (see Appendix E). Because of this motivation, such
beliefs are referred to as “conditional price vectors.”

Definition 4. A vector µ ∈ M(E) is called a conditional
price vector, conditioned on E , relative to the state q if
Util(µ; q) = Util(E ; q). The set of such conditional
price vectors is denoted

p(E ; q) := {µ ∈M(E) : Util(µ; q) = Util(E ; q)} .

See Appendix F for additional motivation for our defini-
tions of utility and conditioning. With these notions de-
fined, we can now state our desiderata.

2.4 DESIDERATA

Recall that we aim to design mechanisms which replace a
cost function C at a state s, with a new cost function C̃ at
a state s̃. Let Util denote the utility for information with
respect to C and ~Util with respect to C̃, and let p and p̃
be the respective price maps. In our mechanisms, we at-
tempt to satisfy (a subset of) the conditions on information
structures as listed in Table 1.

Conditions PRICE and CONDPRICE capture the require-
ment to preserve the information gathered in the market.
The current price p(q) is the ultimate information content
of the market at a state q before the observation time, but
it is not necessarily the right notion of information content
after the observation time. When we do not know the re-
alization x, we may wish to set up the market so that any
trader who has observed X = x and would like to max-
imize the guaranteed profit would move the market to the
same conditional price vector as in the previous market.
This is captured by CONDPRICE.

DECUTIL models a scenario in which the utility for infor-
mation about X decreases over time, and ZEROUTIL rep-
resents the extreme case in which utility decreases to zero.
These conditions are in friction with EXUTIL, which aims

to maintain the utility structure over the conditional out-
come spaces. A key challenge is to satisfy EXUTIL and
ZEROUTIL (or DECUTIL) simultaneously.

Apart from the information desiderata of Table 1, we would
like to maintain an important feature of cost-function-based
market makers: their ability to bound the worst-case loss
to the market maker. Specifically, we would like to show
that there is some finite bound (possibly depending on the
initial state) such that no matter what trades are executed
and which outcome ω occurs, the market maker will lose
no more than the amount of the bound. It turns out that
the solution concepts introduced in this paper maintain the
same loss bound as guaranteed for using just the market’s
original cost function C, but since the focus of the paper
is on the information structures, worst-case loss analysis is
relegated to Appendix H.

In Sec. 3, we study in detail the sudden revelation set-
ting with the goal of instantiating Protocol 1 in a way
that achieves ZEROUTIL while satisfying CONDPRICE and
EXUTIL. Our key result is a characterization and a geomet-
ric sufficient condition for when this is possible.

In Sec. 4, we examine instantiations of Protocol 2 for
the gradual decrease setting. Our construction focuses on
linearly-constrained market makers (LCMM) [13], which
naturally decompose into submarkets. We show how to
achieve PRICE, CONDPRICE, DECUTIL and EXUTIL in
LCMMs. We also show that it is possible to simultaneously
decrease the utility for information in each submarket ac-
cording to its own schedule, while maintaining PRICE.

Before we develop these mechanisms, we introduce the
machinery of Bregman divergences, which helps us ana-
lyze notions of utility for information.

2.5 BREGMAN DIVERGENCE AND UTILITY

To analyze the market maker’s utility for information, we
show how it corresponds to a specific notion of distance
built into the cost function, the mixed (or generalized)
Bregman divergence [13, 15]. Let R be the conjugate
of C. 3 The mixed Bregman divergence between a belief µ
and a state q is defined asD(µ‖q) := R(µ)+C(q)−q ·µ.
The conjugacy of R and C implies that D(µ‖q) ≥ 0 with
equality iff µ ∈ ∂C(q) = p(q), i.e., if the price vector
“matches” the state (see Appendix A). The geometric inter-
pretation of mixed Bregman divergence is as a gap between
a tangent and the graph of the function R (see Fig. 1).

To see how the divergence relates to traders’ beliefs, con-
sider a trader who believes that E[ρ(ω)] = µ′ and moves
the market from state q to state q′. The expected pay-
off to this trader is (q′ − q) · µ′ − C(q′) + C(q) =
D(µ′‖q)−D(µ′‖q′). This payoff increases as D(µ′‖q′)

3The conjugate is also, less commonly, called the “dual”.
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D(µ ‖ q)R

µ
tangent t with slope q

Figure 1: The mixed Bregman divergence D(µ‖q) derived from
the conjugate pair C and R measures the distance between the
tangent with slope q and the value ofR evaluated at µ. By conju-
gacy, the tangent t is described by t(µ) = µ ·q−C(q). Note that
the divergence is well defined even when R is not differentiable,
because each slope vector determines a unique tangent.

decreases. Thus, subject to the trader’s budget constraints,
the trader is incentivized to move to the state q′ which is
as “close” to his/her belief µ′ as possible in the sense of a
smaller value D(µ′‖q′), with the largest expected payoff
when D(µ′‖q′) = 0. This argument shows that D(·‖·) is
an implicit measure of distance used by traders.

The next theorem shows that the Bregman divergence also
matches the concepts defined in Sec. 2.3. Specifically, we
show that (1) the utility for a belief coincides with the Breg-
man divergence, (2) the utility for an event E is the small-
est divergence between the current market state andM(E),
and (3) the conditional price vector is the (Bregman) pro-
jection of the current market state on M(E), i.e., it is a
belief inM(E) that is “closest to” the current market state.
Theorem 1. Let µ ∈M, q ∈ RK and ∅ 6= E ⊆ Ω. Then

Util(µ; q) = D(µ‖q) , (1)
Util(E ; q) = minµ′∈M(E)D(µ′‖q) , (2)
p(E ; q) = argminµ′∈M(E)D(µ′‖q) . (3)

We finish this section by characterizing when EXUTIL is
satisfied and showing that it implies CONDPRICE. Recall
that Ωx = {ω : X(ω) = x} and letMx :=M(Ωx).
Proposition 1. EXUTIL holds if and only if for all x ∈ X ,
there exists some cx such that for all µ ∈ Mx, D(µ‖s)−
D̃(µ‖s̃) = cx. Moreover, EXUTIL implies CONDPRICE.

3 SUDDEN REVELATION

In this section, we consider the design of sudden revelation
market makers (Protocol 1). In this setting, partial informa-
tion in the form of the realization of X is revealed to mar-
ket participants (but not to the market maker) at a predeter-
mined time, as might be the case if the medal winners of an
Olympic event are announced but no human is available to
input this information into the automated market maker on
behalf of the market organizer. The random variableX and
the observation time are assumed to be known, and the mar-
ket maker wishes to “close” the submarket with respect to
X just before the observation time, without knowing the re-
alization x, while leaving the rest of the market unchanged.

Stated in terms of our formalism, we wish to find func-
tions NewState and NewCost from Protocol 1 such that the
desiderata CONDPRICE, EXUTIL, and ZEROUTIL from
Table 1 are satisfied. This implies that traders who know
only that X = x are not rewarded after the observation
time, but traders with new information about the outcome
space conditioned on X = x are rewarded exactly as be-
fore. As a result, trading immediately resumes in a “con-
ditional market” on M(Ωx) for the correct realization x,
without the market maker needing to know x and without
any other human intervention. We refer to the goal of si-
multaneously achieving CONDPRICE, EXUTIL, and ZE-
ROUTIL as achieving implicit submarket closing.

For convenience, throughout this section we writeMx :=
M(Ωx) to denote the conditional price space, andM? :=⋃
x∈XMx to denote prices possible after the observation.

3.1 SIMPLIFYING THE OBJECTIVE

We first show that achieving implicit submarket closing can
be reduced to finding a function R̃ satisfying a simple set of
constraints, and defining NewCost to return the conjugate
C̃ of R̃. As a first step, we observe that it is without loss
of generality to let NewState be an identity map, i.e., to
assume that s̃ = s; when this is not the case, we can obtain
an equivalent market by setting s̃ = s and shifting C̃ so
that the Bregman divergence is unchanged.

Lemma 1. Any desideratum of Table 1 holds for C̃ and s̃ if
and only if it holds for C̃ ′(q) = C̃(q+ s̃− s) and s̃′ = s.

To simplify exposition, we assume that s̃ = s through-
out the rest of the section as we search for conditions on
NewCost that achieve implicit submarket closing. Under
this assumption, Proposition 1 can be used to characterize
our goal in terms of R̃. Specifically, we show that EXUTIL
and CONDPRICE hold if R̃ differs from R by a (possibly
different) constant on each conditional price spaceMx.

Lemma 2. When s̃ = s, EXUTIL and CONDPRICE hold
together if and only if there exist constants bx for x ∈ X
such that R̃(µ) = R(µ)− bx for all x ∈ X and µ ∈Mx.

This suggests parameterizing our search for R̃ by vectors
b = {bx}x∈X . For b ∈ RX , define a function

Rb(µ) =

{
R(µ)− bx if µ ∈Mx, x ∈ X ,
∞ otherwise.

If the sets Mx overlap, Rb is not well defined for all b.
Whenever we write Rb, we assume that b is such that Rb

is well defined. To satisfy Lemma 2 with a specific b, it
suffices to find a convex function R̃ “consistent with” Rb

in the following sense.

Definition 5. We say that a function R̃ is consistent with
Rb if R̃(µ) = Rb(µ) for all µ ∈M?.

We next simplify our objective further by proving that
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whenever implicit submarket closing is achievable, it suf-
fices to consider functions NewCost that set C̃ to be the
conjugate of the largest convex function consistent withRb

for some b ∈ RX . To establish this, we examine properties
of the convex roof of Rb, the largest convex function that
lower-bounds (but is not necessarily consistent with) Rb.
Definition 6. Given a function f : RK → (−∞,∞], the
convex roof of f , denoted (conv f), is the largest convex
function lower-bounding f , defined by

(conv f)(x) := sup {g(x) : g ∈ G, g ≤ f}
where G is the set of convex functions g : RK → (−∞,∞],
and the condition g ≤ f holds pointwise.

The convex roof is analogous to a convex hull, and the epi-
graph of (conv f) is the convex hull of the epigraph of f .
See Urruty and Lemarchal [30, §B.2.5] for details.
Example 4. Recall the square market of Example 2. Let
X(ω) = ω1, so traders observe the payoff of the first
security at observation time. Then Mx = {x} × [0, 1]
for x ∈ {0, 1}. For simplicity, let b = 0. We have
Rb(µ) = µ2 lnµ2 +(1−µ2) ln(1−µ2) for µ ∈M1∪M2

andRb(µ) =∞ for all otherµ. Examining the convex hull
of the epigraph of Rb gives us that for all µ ∈ [0, 1]2, we
have (convRb)(µ) = µ2 lnµ2 + (1− µ2) ln(1− µ2).

As this example illustrates, the roof of Rb is the “flattest”
convex function lower-bounding Rb. Given the geomet-
ric interpretation of Bregman divergence (Fig. 1), a “flat-
ter” R̃ yields a smaller utility for information. This flatness
plays a key role in achieving ZEROUTIL. Assume that R̃
is consistent with Rb, so CONDPRICE and EXUTIL hold
by Lemma 2. Following the intuition in Fig. 1, to achieve
ZEROUTIL, i.e., D̃(µ̂x‖s) = 0 across all x ∈ X and
µ̂x ∈ p(Ωx; s), it must be the case that for all x and µ̂x, the
function values R̃(µ̂x) lie on the tangent of R̃ with slope
s. That is, the graph of R̃ needs to be flat across the points
µ̂x. This suggests that the roof might be a good candidate
for R̃. This intuition is formalized in the following lemma,
which states that instead of considering arbitrary convex R̃
consistent with Rb, we can consider R̃ which take the form
of a convex roof.
Lemma 3. If any convex function R̃ is consistent with Rb

then so is the convex roof R̃′ = (convRb). Furthermore, if
R̃ satisfies ZEROUTIL or DECUTIL then so does R̃′.

3.2 IMPLICIT SUBMARKET CLOSING

We now have the tools to answer the central question of this
section: When can we achieve implicit submarket closing?
Lemma 1 implies that we can assume that NewState is the
identity function, and Lemmas 2 and 3 imply that it suffices
to consider functions NewCost that set C̃ to the conjugate
of R̃ = (convRb) for some b ∈ RX . What remains is to
find the vector b that guarantees ZEROUTIL. As mentioned
above, ZEROUTIL is satisfied if and only if

(
µ̂x, R̃(µ̂x)

)

lies on the tangent of R̃ with the slope s for all x ∈ X and
µ̂x ∈ p(Ωx; s). This implies that R̃(µ̂x) = µ̂x · s − c for
all x and µ̂x and some constant c. The specific choice of c
does not matter since D̃ is unchanged by vertical shifts of
the graph of R̃. For convenience, we set c = C(s), which
makes the tangents of R and R̃ with the slope s coincide.
This and Lemma 2 then yield the choice of b = b̂, with

b̂x := R(µ̂x) + C(s)− µ̂x · s = D(µ̂x‖s) (4)

for all x and any choice of µ̂x ∈ p(Ωx; s). The result-
ing construction of R̃ = (convRb̂) can be described using
geometric intuition. First, consider the tangent of R with
slope equal to the current market state s. For each x ∈ X ,
take the subgraph of R over the set Mx and let it “fall”
vertically until it touches this tangent at the point µ̂x. The
set of fallen graphs for all x together describes Rb̂ and the
convex hull of the fallen epigraphs yields R̃ = (convRb̂).

Defining NewCost using this construction guarantees ZE-
ROUTIL, but CONDPRICE and EXUTIL are achieved only
when R̃ is consistent with Rb̂. Conversely, whenever the
three properties are achievable, this construction produces
a function R̃ consistent with Rb̂. This yields a full charac-
terization of when implicit submarket closing is achievable.
Theorem 2. Let b̂ be defined as in Eq. (4). CONDPRICE,
EXUTIL, and ZEROUTIL can be satisfied using Protocol 1
if and only if (convRb̂) is consistent with Rb̂. In this case,
they can be achieved with NewState as the identity and
NewCost outputting the conjugate of R̃ = (convRb̂).

3.3 CONSTRUCTING THE COST FUNCTION

Theorem 2 describes how to achieve implicit submarket
closing by defining the cost function C̃ output by NewCost

implicitly via its conjugate R̃. In this section, we provide
an explicit construction of the resulting cost function, and
illustrate the construction through examples.

Fixing R, for each x ∈ X define a function Cx(q) :=
supµ∈Mx

[
q ·µ−R(µ)

]
. Each function Cx can be viewed

as a bounded-loss and arbitrage-free cost function for out-
comes in Ωx. The conjugate of each Cx coincides with R
onMx (and is infinite outsideMx). The explicit expres-
sion for C̃ is described in the following proposition.
Proposition 2. For a given C with conjugate R, define b̂
as in Eq. (4) and let R̃ = (convRb̂). The conjugate C̃ of
R̃ can be written C̃(q) = maxx∈X

[
b̂x +Cx(q)

]
. Further-

more, for each x ∈ X , b̂x = C(s)− Cx(s).

At any market state q with a unique x̂ := argmaxx∈X
[
b̂x+

Cx(q)
]
, the price according to C̃ lies in the setMx̂. When

x̂ is not unique, the market has a bid-ask spread. The addi-
tion of b̂x ensures that the bid-ask spread at the market state
s contains conditional prices µ̂x across all x. To illustrate
this construction, we return to the example of a square.
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Example 5. Consider again the square market from Ex-
amples 2 and 4 with X(ω) = ω1. One can verify that
Cx(q) = xq1 + ln

(
1 + eq2

)
for x ∈ {0, 1}. Prop. 2 gives

C̃(q) = maxx∈{0,1}
[
x(q1−s1)+ln(1+eq2)+ln(1+es1)

]

= max{0, q1 − s1}+ ln(1 + es1) + ln(1 + eq2).

In switching from C to C̃ we have effectively changed the
first term of our cost from a basic LMSR cost for a single
binary security to the piecewise linear cost of Example 3,
introducing a bid-ask spread for security 1 when q1 = s1;
states q = (s1, q2) have p̃(q) = [0, 1] × {eq2/(1 + eq2)}.
The market for security 1 has thus implicitly closed; as the
new market begins with q = s, any trader can switch the
price of security 1 to 0 or 1 by simply purchasing an in-
finitesimal quantity of security 1 in the appropriate direc-
tion, at essentially no cost and with no ability to profit.

The example above illustrates our cost function construc-
tion, but does not show that R̃ is consistent with Rb̂ as
required by Theorem 2. In fact, it is consistent. This fol-
lows from the sufficient condition proved in Appendix G.2.
Briefly, the condition is thatM? does not contain any price
vectors µ that can be expressed as nontrivial convex com-
binations of vectors from multipleMx.

In Appendix G.3, we show that this sufficient condition
applies to many settings of interest such as arbitrary par-
titions of simplex and submarket observations in binary-
payoff LCMMs (defined in Sec. 4), which were used to run
a combinatorial market for the 2012 U.S. Elections [14].

A case in which the sufficient condition is violated is the
square market with X(ω) = ω1 + ω2 ∈ {0, 1, 2}, where
M0 = (0, 0) and M2 = (1, 1) but ( 1

2 ,
1
2 ) = 1

2 (0, 0) +
1
2 (1, 1) ∈M1. This particular example also fails to satisfy
Theorem 2 (see Appendix G.1), but in general the sufficient
condition is not necessary (see Appendix G.4).

4 GRADUAL DECREASE

We now consider gradual decrease market makers (Proto-
col 2) for the gradual decrease setting in which the utility
of information about a future observation X is decreasing
continuously over time. We focus on linearly constrained
market makers (LCMMs) [13], which naturally decompose
into submarkets. Our proposed gradual decrease market
maker employs a different LCMM at each time step, and
satisfies various desiderata of Sec. 2.4 between steps.

As a warm-up for the concepts introduced in this section,
we show how the “liquidity parameter” can be used to im-
plement a decreasing utility for information.

Example 6. Homogeneous decrease in utility for informa-
tion. We begin with a differentiable cost function C in a
state s. Let α ∈ (0, 1), and define C̃(q) = αC(q/α), and
s̃ = αs. C̃ is parameterized by the “liquidity parameter” α.

The transformation s̃ guarantees the preservation of prices,
i.e., p̃(s̃) = ∇C̃(s̃) = α∇C(s̃/α)/α = ∇C(s) = p(s).
We can derive that R̃(µ) = αR(µ), and D̃(µ‖q) =
αD(µ‖q/α), so, for all µ, D̃(µ‖s̃) = αD(µ‖s). In
words, the utility for all beliefsµwith respect to the current
state is decreased according to the multiplier α.

This idea will be the basis of our construction. We next de-
fine the components of our setup and prove the desiderata.

4.1 LINEARLY CONSTRAINED MARKETS

Recall that ρ : Ω → RK is the payoff function. Let G be
a system of non-empty disjoint subsets g ⊆ [K] forming a
partition of coordinates of ρ, so [K] =

⋃
g∈G g. We use the

notation ρg(ω) := (ρi(ω))i∈g for the block of coordinates
in g, and similarly µg and qg . Blocks g describe groups
of securities that are treated as separate “submarkets,” but
there can be logical dependencies among them.

Example 7. Medal counts. Consider a prediction market
for the Olympics. Assume that Norway takes part in n
Olympic events. In each, Norway can win a gold medal
or not. Encode this outcome space as Ω = {0, 1}n. De-
fine random variables Xi(ω) = ωi equal to 1 iff Norway
wins gold in the ith Olympic event. Also define a random
variable Y =

∑n
i=1Xi representing the number of gold

medals that Norway wins in total. We create K = 2n + 1
securities, corresponding to 0/1 indicators of the form
1[Xi = 1] for i ∈ [n] and 1[Y = y] for y ∈ {0, . . . , n}.
That is, ρi = Xi for i ∈ [n] and ρn+1+y = 1[Y = y] for
y ∈ {0, . . . , n}. A natural block structure in this market
is G =

{
{1}, {2}, . . . , {n}, {n + 1, . . . , 2n + 1}

}
with

submarkets corresponding to the Xi and Y .

Given the block structure G, the construction of a lin-
early constrained market begins with bounded-loss and
arbitrage-free convex cost functions Cg : Rg → R with
conjugates Rg and divergences Dg for each g ∈ G. These
cost functions are assumed to be easy to compute and give
rise to a “direct-sum” cost C⊕(q) =

∑
g∈G Cg(qg) with

the conjugate R⊕(µ) =
∑
g∈G Rg(µg) and divergence

D⊕(µ‖q) =
∑
g∈G Dg(µg‖qg).

Since C⊕ decomposes, it can be calculated quickly. How-
ever, the market maker C⊕ might allow arbitrage due to
the lack of consistency among submarkets since arbitrage
opportunities arise when prices fall outside M [1]. M
is always polyhedral, so it can be described as M ={
µ ∈ RK : A>µ ≥ b

}
for some matrix A ∈ RK×M and

vector b ∈ RM . Letting am denote the mth column of A,
arbitrage opportunities open up if the price of the bundle
am falls below bm. For any η ∈ RM+ , the bundle Aη
presents an arbitrage opportunity if priced below b · η.

A linearly constrained market maker (LCMM) is described
by the cost functionC(q) = infη∈RM+

[
C⊕(q+Aη)−b·η

]
.

While the definition of C is slightly involved, the conju-
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gate R has a natural meaning as a restriction of the direct-
sum market to the price spaceM, i.e., R(µ) = R⊕(µ) +
I [µ ∈M]. Furthermore, the infimum in the definition of
C is always attained (see Appendix D.1). Fixing q and let-
ting η? be a minimizer in the definition, we can think of
the market maker as automatically charging traders for the
bundle Aη?, which would present an arbitrage opportunity,
and returning to them the guaranteed payout b · η. This
benefits traders while maintaining the same worst-case loss
guarantee for the market maker as C⊕ [13].

Example 8. LCMM for medal counts. Continuing the pre-
vious example, for submarkets Xi, we can define LMSR
costs Ci(qi) = ln (1 + exp(qi)). For the submarket for Y ,
let g = {n + 1, . . . , 2n + 1} and use the LMSR cost
Cg(qg) = ln

(∑n
y=0 exp(qn+1+y)

)
. The submarkets for

Xi and Y are linked. One example of a linear constraint is
based on the linearity of expectations: for any distribution,
we must have E[Y ] =

∑n
i=1 E[Xi]. This places an equality

constraint
∑n
y=0 y ·µn+1+y =

∑n
i=1 µi on the vectorµ,

which can be expressed as two inequality constraints (see
Dudı́k et al. [13, 14] for more on constraint generation).

4.2 DECREASING LIQUIDITY

We now study the gradual decrease scenario in which the
utility for information in each submarket g decreases over
time. In the Olympics example, the market maker may
want to continuously decrease the rewards for information
about a particular event as the event takes place.

We generalize the strategy from Example 6 to LCMMs and
extend them to time-sensitive cost functions by introduc-
ing the “information-utility schedule” in the form of a dif-
ferentiable non-increasing function βg : R → (0, 1] with
βg(t

0) = 1. The speed of decrease of βg controls the speed
of decrease of the utility for information in each submarket.
(We make this statement more precise in Theorem 3.)

We first define a gradual decrease direct-sum cost func-
tion C⊕(q; t) =

∑
g∈G βg(t)Cg

(
qg/βg(t)

)
which is used

to define a gradual decrease LCMM, and a matching
NewState as follows:

C(q; t) = infη∈RM+
[
C⊕(q + Aη; t)− b · η

]

NewState(q; t, t̃) = q̃

such that q̃g =
βg(t̃)
βg(t) (qg + δ?g)− δ?g

where η? is a minimizer in C(q; t) and δ? = Aη? .

When considering the state update from time t to time t̃,
the ratio βg(t̃)/βg(t) has the role of the liquidity param-
eter α in Example 6. The motivation behind the def-
inition of NewState is to guarantee that q̃g + δ?g =

[βg(t̃)/βg(t)](qg + δ?g), which turns out to ensure that η?

remains the minimizer and the prices are unchanged. The
preservation of prices (PRICE) is achieved by a scaling sim-

ilar to Example 6, albeit applied to the market state in the
direct-sum market underlying the LCMM.

This intuition is formalized in the next theorem, which
shows that the above construction preserves prices and de-
creases the utility for information, as captured by the mixed
Bregman divergence, according to the schedules βg . We
use the notation Ct(q) := C(q; t) and write Dt

g for the
divergence derived from Ctg(qg) := βg(t)Cg(qg/βg(t)).

Theorem 3. Let C be a gradual decrease LCMM, let t, t̃ ∈
R and s ∈ RK . The replacement of Ct by C̃ := C t̃ and s
by s̃ := NewState(s; t, t̃) satisfies PRICE. Also,

D̃(µ‖s̃) =
∑

g∈G
αgD

t
g(µg‖sg+δ?g)+(A>µ−b) ·η? (5)

for all µ ∈ M, where η? and δ? are defined by
NewState(s; t, t̃), and αg = βg(t̃)/βg(t) > 0.

The first term on the right-hand side of Eq. (5) is the sum of
divergences in submarkets g, each weighted by a coefficient
αg which is equal to one at t̃ = t and weakly decreases as
t̃ grows. The divergences are between µg and the state
resulting from the arbitrager action in the direct-sum mar-
ket. The second term is non-negative, since µ ∈ M, and
represents expected arbitrager gains beyond the guaranteed
profit from the arbitrage in the direct-sum market. The only
terms that depend on time t̃ are the multipliers αg . Since
they are decreasing over time, we immediately obtain that
the utility for information, Util(µ; s̃) = D̃(µ‖s̃), is also
decreasing, with the contributions from individual submar-
kets decreasing according to their schedules βg .

When only one of the schedules βg is decreasing and the
other schedules stay constant, we can show that the excess
utility and conditional prices are preserved (conditioned on
ρg), and under certain conditions also DECUTIL holds.

For a submarket g, let Xg := {ρg(ω) : ω ∈ Ω} be the set
of realizations of ρg . Recall thatM(E) is the convex hull
of {ρ(ω)}ω∈E . We show that DECUTIL holds if Cg is dif-
ferentiable and the submarket g is “tight” as follows.
Definition 7. We say that a submarket g is tight if for all
x ∈ Xg the set {µ ∈ M : µg = x} coincides with
M(ρg = x), i.e., if all the beliefs µ with µg = x can
be realized by probability distributions over states ω with
ρg(ω) = x. (In general, the former is always a superset of
the latter, hence the name “tight” when the equality holds.)

While this condition is somewhat restrictive, it is easy to
see that all submarkets with binary securities, i.e., with
ρg(ω) ∈ {0, 1}g , are tight (see Appendix D.4).
Theorem 4. Assume the setup of Theorem 3. Let g ∈ G and
assume that βg(t̃) < βg(t) whereas βg′(t̃) = βg′(t) for
g′ 6= g. Then the replacement of Ct by C̃ and s by s̃ satis-
fies CONDPRICE and EXUTIL for the random variable ρg .
Furthermore, if Cg is differentiable and the submarket g is
tight, we also obtain DECUTIL.
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Abstract

We develop a framework for convexifying a
general class of optimization problems. We
analyze the suboptimality of the solution
to the convexified problem relative to the
original nonconvex problem, and prove ad-
ditive approximation guarantees under some
assumptions. In simple settings, the convexi-
fication procedure can be applied directly and
standard optimization methods can be used.
In the general case we rely on stochastic gra-
dient algorithms, whose convergence rate can
be bounded using the convexity of the under-
lying optimization problem. We then extend
the framework to a general class of discrete-
time dynamical systems where our convex-
ification approach falls under the paradigm
of risk-sensitive Markov Decision Processes.
We derive the first model-based and model-
free policy gradient optimization algorithms
with guaranteed convergence to the optimal
solution. We also present numerical results
in different machine learning applications.

1 INTRODUCTION

It has been said that the watershed in optimization is
not between linearity and nonlinearity, but between
convexity and nonconvexity. In this paper we de-
velop a framework for convexifying a general class of
optimization problems (section 3), turning them into
problems that can be solved with efficient convergence
guarantees. The convexification approach may change
the problem drastically in some cases, which is not sur-
prising since most nonconvex optimization problems
are NP-hard and cannot be reduced to solving convex
optimization problems. However, under additional as-
sumptions, we obtain guarantees that bound the sub-
optimality of the solution relative to the original non-

convex problem (section 3.2). We adapt stochastic gra-
dient methods to solve the resulting problems (section
4) and prove convergence guarantees that bound the
distance to optimality as a function of the number of
iterations. In section 5, we extend the framework to
arbitrary dynamical systems and derive the first policy
optimization approach with guaranteed convergence to
the global optimum. The control problems we study
fall under the framework of risk-sensitive control. The
condition required for convexity is a natural one, relat-
ing the control cost, risk factor and noise covariance. It
is very similar to the condition that reduces stochastic
optimal control to a linear problem [Fleming and Mit-
ter, 1982, Kappen, 2005, Todorov, 2009], which in turn
has given rise to path-integral and other specialized
methods for control [Theodorou et al., 2010a, Broek
et al., 2010, Dvijotham and Todorov, 2011, Toussaint,
2009].

Smoothing with noise is a relatively common approach
to simplify difficult optimization problems. It has been
used in computer vision [Rangarajan, 1990] heuristi-
cally and formalized in recent work [Mobahi, 2012]
where it is shown that under certain assumptions,
adding sufficient noise eventually leads to a convex op-
timization problem. In contrast, we show that for any
noise level one can choose the degree of risk-aversion
so as to obtain a convex problem. This procedure may
destroy minima that are not robust to perturbations –
which is not necessarily undesirable, because in many
applications it makes sense to seek a robust solution
rather than the best one.

2 NOTATION

Gaussian random variables are denoted by ω ∼
N (µ,Σ), where µ is the mean and Σ the covariance
matrix. Given a random variable ω ∈ Ω with distribu-
tion P and a function h : Ω 7→ R, the expected value
of the random variable h (ω) is written as E

ω∼P
[h (ω)].

Whenever it is clear from the context, we will drop
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the subscript on the expected value and simply write
E [h (ω)]. We differ from convention here slightly by
denoting random variables with lowercase letters and
reserve uppercase letters for matrices. We will fre-
quently work with Gaussian perturbations of a func-
tion, so we denote:

h̄ (θ) = E
ω∼N (0,Σ)

[h (θ + ω)] , h̃ω (θ) = h (θ + ω)−h̄ (θ) .

In denotes the n × n identity matrix. Unless stated
otherwise, ‖·‖ refers to the Euclidean `2 norm. Given
a convex set C, we denote the projection onto C of
x by ProjC (x): ProjC (x) = argminy∈C ‖y − x‖. The
maximum eigenvalue of a symmetric matrix M is de-
noted by λmax (M). Given symmetric matrices A,B,
the notation A � B means that A − B is a posi-
tive semidefinite matrix. Given a positive definite ma-
trix M � 0, we denote the metric induced by M as
‖x‖M =

√
xTMx.

3 GENERAL OPTIMIZATION
PROBLEMS

We study optimization problems of the form:

min
θ∈C

g (θ) (1)

where g is an arbitrary function and C ⊂ Rk is a
convex set. We do not assume that g is convex so
the above problem could be a nonconvex optimization
problem. In this work, we convexify this problem by
decomposing g (θ) as follows: g(θ) = f(θ) + 1

2θ
TRθ

and perturbing f with Gaussian noise. Optimization
problems of this form are very common in machine
learning (where R corresponds to a regularizer) and
control (where R corresponds to a control cost). The
convexified optimization problem is:

min
θ∈C

fα (θ) +
1

2
θTRθ (2)

where R � 0 and

fα (θ) =
1

α
log

(
E

ω∼N (0,Σ)
[exp (αf (θ + ω))]

)
.

This kind of objective is common in risk-averse op-
timization. To a first order Taylor expansion in
α, the above objective is equal to E [f (θ + ω)] +
αVar (f (θ + ω)), indicating that increasing α will
make the solution more robust to Gaussian perturba-
tions. α is called the risk-factor and is a measure of the
risk-aversion of the decision maker. Larger values of
α will reject solutions that are not robust to Gaussian
perturbations.

In order that the expectation exists, we require that f
is bounded above:

For all θ ∈ Rk, f (θ) ≤M <∞. (3)

We implicitly make this assumption throughout this
paper in all the stated results. Note that this is not a
very restrictive assumption, since, given any function
g with a finite minimum, one can define a new objec-
tive g′ = min (g, m̄), where m̄ is an upper bound on the
minimum (say the value of the function at some point),
without changing the minimum. Since the convex
quadratic is non-negative, f is also bounded above by
m̄ and hence 0 < exp (αf (θ + ω)) ≤ exp (αm). This
ensures that fα (θ) is finite. Some results will require
differentiability, and we can preserve this by defining g′

using a soft-min: For example, g′ (x) = m̄ tanh
(
g(x)
m̄

)
.

Theorem 3.1 (Universal Convexification). The opti-
mization problem (2) is a convex optimization problem
whenever C is a convex set and αR � Σ−1.

Proof. Writing out the objective function in (2) and
scaling by α, we get:

log

(
E

ω∼N (0,Σ)
[exp (αf(θ + ω))]

)
+
α

2
θTRθ (4)

Writing out the expectation, we have:

E
ω∼N (0,Σ)

[exp (αf(θ + ω))] = E
y∼N (θ,Σ)

[exp (αf(y))]

∝
∫

exp

(
−1

2
(y − θ)TΣ−1 (y − θ)

)
exp (αf(y)) d y

where we omitted the normalizing constant(√
(2π)

n
det (Σ)

)−1

in the last step. Thus, ex-

ponentiating (4), we get (omitting the normalizing
constant):

∫
exp

(
α

2
θTRθ − 1

2
(y − θ)TΣ−1 (y − θ) + αf(y)

)
d y

The term inside the exponent can be rewritten as

1

2
θT
(
αR− Σ−1

)
θ + θTΣ−1y + αf (y)− 1

2
yTΣ−1y

Since αR � Σ−1, this is a convex quadratic function of
θ for each y. Thus, the overall objective is the compo-
sition of a convex and increasing function log E [exp (·)]
and a convex quadratic and is hence convex [Boyd and
Vandenberghe, 2004]. Since C is convex, the overall
problem is a convex optimization problem.

3.1 INTERPRETATION

Theorem 3.1 is a surprising result, since the condi-
tion for convexity does not depend in any way on the
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properties of f (except for the boundedness assump-
tion (3)), but only on the relationship between the
quadratic objective R, the risk factor α and the noise
level Σ. In this section, we give some intuition behind
the result and describe why it is plausible that this is
true.

In general, arbitrary nonconvex optimization problems
can be very challenging to solve. As a worst case ex-
ample, consider a convex quadratic function g(x) = x2

that is perturbed slightly: At some point where the
function value is very large (say x = 100), we modify
the function so that it suddenly drops to a large neg-
ative value (lower than the global minimum 0 of the
convex quadratic). By doing this perturbation over a
small finite interval , one can preserve differentiabil-
ity while introducing a new global minimum far away
from the original global minimum. In this way, one
can create difficult optimization problems that cannot
be solved using gradient descent methods, unless ini-
tialized very carefully.

The work we present here does not solve this problem:
In fact, it will not find a global minimum of the form
created above. The risk-aversion introduced destroys
this minimum, since small perturbations cause the
function to increase rapidly, ie, g (θ∗ + ω)� g (θ∗), so
that the objective (2) becomes large. Instead, it will
find a “robust” minimum, in the sense that Gaussian
perturbations around the minimum do not increase
the value of the objective by much. This intuition
is formalized by theorem 3.2, which bounds the sub-
optimality of the convexified solution relative to the
optimal solution of the original problem in terms of
the sensitivity of f to Gaussian perturbations around
the optimum.

In figure 1, we illustrate the effect of the convexifica-
tion for a 1-dimensional optimization problem. The
blue curve represents the original function g (θ). It
has 4-local minima in the interval (−3, 3). Two of
the shallow minima are eliminated by smoothing with
Gaussian noise to get ḡ (θ). However, there is a deep
but narrow local minimum that remains even after
smoothing. Making the problem convex using risk-
aversion and theorem 3.1 leads to the green curve
that only preserves the robust minimum as the unique
global optimum.

3.2 ANALYSIS OF SUB-OPTIMALITY

We have derived a convex surrogate for a very general
class of optimization problems. However, it is possible
that the solution to the convexified problem is drasti-
cally different from that of the original problem and
the convex surrogate we propose is a poor approxima-
tion. Given the hardness of general non-convex opti-
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Figure 1: Illustration of Convexification for a 1-
dimensional optimization problem

mization, we do not expect the two problems to have
close solutions without additional assumptions. In this
section, we analyze the gap between the original and
convexified problem. In order to answer this, we first
define the sensitivity function, which quantifies the gap
between (1) and (2).

Definition 1 (Sensitivity Function). The sensitivity
function of f at noise level Σ, risk α is defined as:

Sα,f (θ) =
1

α
log
(

E
[
exp

(
α
(
f (θ + ω)− f̄ (θ)

))])

=
1

α
log
(

E
[
exp

(
αf̃ω (θ)

)])
.

This is a measure of how sensitive f is to Gaussian
perturbations at θ.

Theorem 3.2 (Suboptimality Analysis). Let g(θ) =
f(θ) + 1

2θ
TRθ and define:

θ∗α = argmin
θ∈C

fα (θ) +
1

2
θTRθ, θ∗ = argmin

θ∈C
ḡ (θ) .

Then,

ḡ (θ∗α)− ḡ (θ∗) ≤ Sα,f (θ)

Proof. We have that ∀θ, ḡ (θ) = f̄ (θ) + 1
2θ
TRθ +

1
2 tr (ΣR). From the convexity of the function y →
exp (αy) and Jensen’s inequality, we have

ḡ (θ∗α) = f̄ (θ∗α) +
1

2
θ∗α
TRθ∗α +

1

2
tr (ΣR)

≤ fα (θ∗α) +
1

2
θ∗α
TRθ∗α +

1

2
tr (ΣR)

Since θ∗α = argminθ∈C fα (θ) + 1
2θ
TRθ, for any θ ∈ C,

we have

ḡ (θ∗α) ≤ fα (θ) +
1

2
θTRθ +

1

2
tr (ΣR)

= Sα,f (θ) + ḡ (θ) .

The result follows by plugging in θ = θ∗ and subtract-
ing ḡ (θ∗) from both sides.
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Remark 1. Although we only prove suboptimality rel-
ative to the optimal solution of a smoothed version of
g, we can extend the analysis to the optimal solution
of g itself. Define θ∗ = argminθ∈C g (θ). We can prove
that

g (θ∗α)− g (θ∗) ≤ (ḡ (θ∗)− g (θ∗)) + (g (θ∗α)− ḡ (θ∗α))

+ Sα,f (θ)

Assuming that g changes slowly around θ∗ and θ∗α (in-
dicative of the fact that θ∗ is a “robust” minimum and
θ∗α is the minimum of a robustified problem), we can
bound the first term. We leave a precise analysis for
future work.

3.2.1 BOUNDING THE SENSITIVITY
FUNCTION

The sensitivity function is exactly the moment gener-
ating function of the 0-mean random variable f̃ω (θ).
Several techniques have been developed for bounding
moment generation functions in the field of concentra-
tion inequalities [Boucheron et al., 2013]. Using these
techniques, we can bound the moment generating func-
tion (i.e. the sensitivity function) under the assump-
tion that f is Lipschitz-continuous. Before stating the
lemma, we state a classical result:

Theorem 3.3 (Log-Sobolev Inequality, [Boucheron
et al., 2013], theorem 5.4). Let ω ∼ N

(
0, σ2I

)
and f

be any continuously differentiable function of ω. Then,

E


f (ω)

2
log


 f (ω)

2

E
[
f (ω)

2
]




 ≤ 2σ2 E

[
‖∇f (ω)‖2

]
.

Further, if f is Lipschitz with Lipschitz constant L,
then

E
[
exp

(
α
(
f (ω)− E [f (ω)]

))]
≤ exp

(
α2L2σ2/2

)
.

Finally, we can also prove that if f is differentiable and

E
[
expλ ‖∇f (ω)‖2

]
< ∞ for all λ < λ0, then, given

η such that λσ2 < ηλ0 and λη < 2, we have

log
(

E
[
exp

(
λ
(
f (ω)− E [f (ω)]

))])
≤

λη

2− λη log

(
E

[
exp

(
λσ2

η
‖∇f (ω)‖2

)])

Theorem 3.4 (Lipschitz Continuous Functions). As-
sume the same setup as theorem 3.2. Suppose further
that f is Lipschitz continuous with Lipschitz constant
L, that is,

∀θ, θ′, |f(θ)− f(θ′)| ≤ L ‖θ − θ′‖ .
Then, Sα,f (θ) ≤ 1

2αL
2λmax (Σ). Further,

ḡ (θ)−min
θ∈C

ḡ (θ) ≤ αL2λmax (Σ)

2
.

Proof. We can write

f̃ (ω′) = f
(
θ + Σ1/2ω′

)
− f̄ (θ)

where ω′ ∼ N (0, Ik).

|f̃ (ω′1)− f̃ (ω′2) | = |f
(
θ + Σ1/2ω′1

)
− f

(
θ + Σ1/2ω′2

)
|

≤ L
∥∥∥Σ1/2 (ω′1 − ω′2)

∥∥∥ ≤ Lλmax

(
Σ1/2

)
‖ω′1 − ω′2‖

Since λmax

(
Σ1/2

)
=
√
λmax (Σ), this shows that f̃ is

Lipschitz with Lipschitz constant
√
λmax (Σ)L. The

result now follows from theorem 3.3. From theorem
3.2, this implies that

ḡ (θ)−min
θ∈C

ḡ (θ) ≤ αL2λmax (Σ)

2
.

4 ALGORITHMS AND
CONVERGENCE GUARANTEES

In general, the expectations involved in (2) cannot be
computed analytically. Thus, we need to resort to sam-
pling based approaches in order to solve these prob-
lems. This has been studied extensively in recent years
in the context of machine learning, where stochastic
gradient methods and variants have been shown to be
efficient, particularly in the context training machine
learning algorithms with huge amounts of data. We
now describe stochastic gradient methods for solving
(2) and adapt the convergence guarantees of stochastic
gradient methods to our setting.

4.1 Stochastic Gradient Methods with
Convergence Guarantees

In this section, we will derive gradients of the con-
vex objective function (2). We will assume that the
function f is differentiable at all θ ∈ Rk. In order to
get unbiased gradient estimates, we exponentiate the
objective (2) to get:

G (θ) = E
ω∼N (0,Σ)

[
exp

(
αf (θ + ω) +

α

2
θTRθ

)]
.

Since f (θ) is differentiable for all θ, so is
exp

(
αf (θ + ω) + 1

2θ
T (αR) θ

)
. Further, suppose that

E
[
exp (2αf (θ + ω)) ‖∇f (θ + ω) +Rθ‖2

]

exists and is finite for each θ. Then, if we differen-
tiate G (θ) with respect to θ, we can interchange the
expectation and differentiation to get

E
[
exp

(
αf (θ + ω) +

α

2
θTRθ

)
(α∇f (θ + ω) + αRθ)

]
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Thus, we can sample ω ∼ N (0,Σ) and get an unbiased
estimate of the gradient

α exp
(
αf (θ + ω) +

α

2
θTRθ

)
(∇f (θ + ω) +Rθ) (5)

which we denote by ∇̂G (θ, ω). As in standard stochas-
tic gradient methods, one saves on the complexity of
a single iteration by using a single (or a small number
of) samples to get a gradient estimate while still con-
verging to the global optimum with high probability
and in expectation, because over multiple iterations
one moves along the negative gradient “on average”.

Algorithm 1 Stochastic Gradient Method for (2)

θ ← 0
for i = 1, . . . , T do

ω ∼ N (0,Σ) , θ ← ProjC
(
θ − ηi∇̂G (θ, ω)

)

end for

From standard convergence theory for stochastic gra-
dient methods [Bubeck, 2013], we have:

Corollary 1. Suppose that E

[∥∥∥∇̂G (θ, ω)
∥∥∥

2
]
≤ ζ2,

C is contained in a ball of radius R (C) and
αR � Σ−1. Run algorithm 1 for T iterations with

ηi = R(C)
ζ

√
1
2i and define θ̂ = 1

T

∑T
i=1 θi, G∗ =

argminθ∈CG (θ). Then, we have

E
[
G
(
θ̂
)]
−G∗ ≤ R (C) ζ

√
1

2T

In the following theorem, we prove a convergence rate
for algorithm 1.

Theorem 4.1. Suppose that R = κI,Σ = σ2I, ακ �
1
σ2 , C is contained in a sphere of radius R (C) and that
for all θ ∈ C ḡ (θ) ≤ m. Also, suppose that for some

β < (α)
−1

:

1

2α
log

(
E

ω∼N (0,Σ)

[
exp

(
2
ασ2

β
‖∇f (θ + ω)‖2

)])
≤ γ2

Define δ =
√

βγ2

σ2(1−αβ) + κR (C). Then, we can choose

ζ ≤ α2δ2 exp
(

2α(m+ γ2) + αβ
1−αβ − σ2κ

)
.

Remark 2. The convergence guarantees are in terms
of the exponentiated objective G (θ). We can convert
these into bounds on log (G (θ)) as follows:

E
[
log
(
G(θ̂)

)]
≤ log

(
E
[
G(θ̂)

])
≤

log

(
G∗ +

ζR (C)√
2T

)

where the first inequality follows from concavity of the
log function. Subtracting log (G∗), we get

E
[
log
(
G
(
θ̂
))]
− log (G∗) ≤ log

(
1 +

ζR (C)√
2TG∗

)
.

5 CONTROL PROBLEMS

In this section, we extend the above approach to the
control of discrete-time dynamical systems. Stochas-
tic optimal control of nonlinear systems in general is
a hard problem and the only known general approach
is based on dynamic programming, which scales expo-
nentially with the dimension of the state space. Al-
gorithms that approximate the solution of the dy-
namic program directly (approximate dynamic pro-
gramming) have been successful in various domains,
but scaling these approaches to high dimensional con-
tinuous state control problems has been challenging.
In this section, we pursue the alternate approach of
policy search or policy gradient methods [Baxter and
Bartlett, 2001]. These algorithms have the advantage
that they are directly optimizing the performance of
a control policy as opposed to a surrogate measure
like the error in the solution to the Bellman equation.
They have been used successfully for various applica-
tions and are closely related to path integral control
[Kappen, 2005, Theodorou et al., 2010b]. However,
in all of these approaches, there were no guarantees
made regarding the optimality of the policy that the
algorithm converges to (even in the limit of infinite
sampling) or the rate of convergence.

In this work, we develop the first policy gradient algo-
rithms that achieve the globally optimal solutions to a
class of risk-averse policy optimization problems.

5.1 Problem Setup

We deal with arbitrary discrete-time dynamical sys-
tems of the form

εεε =
(
ε1 . . . εN−1

)T ∼ Pε
x1 = 0, xt+1 = F (xt, yt, εt, t) t = 1, . . . , N − 1

(6)

yt = ut + ωt, ωt ∼ N (0,Σt) t = 1, . . . , N − 1 (7)

where xt ∈ Rns denotes the state, yt ∈ Rnu the ef-
fective control input, εt ∈ Rp external disturbances,
ut ∈ Rnu the actual control input, ωt ∈ Rnu the con-
trol noise, F : Rns×Rnu×Rp×{1, . . . , N−1} 7→ Rns

the discrete-time dynamics. In this section, we will use
boldface to denote quantities stacked over time (like
εεε). Equation (6) can model any noisy discrete-time
dynamical system, since F can be any function of the
current state, control input and external disturbance

166



(noise). However, we require that all the control di-
mensions are affected by Gaussian noise as in (7). This
can be thought of either as real actuator noise or arti-
ficial exploration noise. The choice of zero initial state
x1 = 0 is arbitrary - our results even extend to an
arbitrary distribution over the initial state.

We will work with costs that are a combination of ar-
bitrary state costs and quadratic control costs:

N∑

t=1

`t(xt) +

N−1∑

t=0

ut
TRtut

2
(8)

where `t (xt) is the stage-wise state cost at time t. `t
can be any bounded function of the state-vector xt.
Further, we will assume that the control-noise is non-
degenerate, that is Σt is full rank for all 0 ≤ t ≤ N−1.
We denote St = Σt

−1. We seek to design feedback
policies

ut = Ktφ (xt, t) , φ : Rns × {1, 2, . . . , N − 1} 7→ Rr

Kt ∈ Rnu×r (9)

to minimize the accumulated cost (8). We will assume
that the features φ are fixed and we seek to optimize
the policy parameters K = {Kt : t = 1, 2, . . . , N − 1}.
The stochastic optimal control problem we consider is
defined as follows:

Minimize
K

E
εεε,ωt

[exp (αL (K))]

Subject to x1 = 0, xt+1 = F (xt, yt, εt, t)

yt = ut + ωt, ut = Kt φ (xt, t)

εεε ∼ Pε, ωt ∼ N (0,Σt)

L (K) =
N∑

t=0

`t (xt) +
N−1∑

t=0

ut
TRtut

2
(10)

This is exactly the same as the formulation in Risk
Sensitive Markov Decision Processes [Marcus et al.,
1997], the only change being that we have explicitly
separated the noise appearing in the controls from the
noise in the dynamical system overall. In this formu-
lation, the objective depends not only on the aver-
age behavior of the control policy but also on variance
and higher moments (the tails of the distribution of
costs). This has been studied for linear systems under
the name of LEQG control [Speyer et al., 1974]. α
is called the risk factor: Large positive values of α re-
sult in strongly risk-averse policies while large negative
values result in risk-seeking policies. In our formula-
tion, we will need a certain minimum degree of risk-
aversion for the resulting policy optimization problem
to be convex.

5.2 Convex Controller Synthesis

Theorem 5.1. If αRt � (Σt)
−1

= St for t =
1, . . . , N − 1, then the optimization problem (10) is

convex.

Proof. We first show that for a fixed εεε, the quantity
Eωt∼N (0,Σt) [exp (αL (K))] is a convex function of K.
Then, by the linearity of expectation, so is the original
objective. We can write down the above expectation
(omitting the normalizing constant of the Gaussian)
as:

∫
exp

(
−
N−1∑

t=1

1

2
‖yt −Ktφ (xt, t)‖2St + αL (K)

)
dy

If we fix y, εεε, using (6), we can construct xt for every
t = 1, . . . , N . Thus, x is a deterministic function of
y, εεε and does not depend on K. The term inside the
exponential can be written as

− 1

2

(
N−1∑

t=1

‖yt‖2St

)
+ α

(
N∑

t=1

`t(xt)

)

+
N−1∑

t=1

1

2
tr
((
Kt

T (αRt − St)Kt

)
φ (xt, t)φ (xt, t)

T
)

−
N−1∑

t=1

yt
TStφ (xt, t)Kt

The terms on the first line don’t depend on K. The
function

(
Kt

T (αRt − St)Kt

)
is convex in K with re-

spect to the semidefinite cone [Boyd and Vanden-

berghe, 2004] when αRt−St � 0 and φ (xt, t)φ (xt, t)
T

is a positive semidefinite matrix. Hence the term on
the second line is convex in K. The term on the third
line is linear in K and hence convex. Since exp is a
convex and increasing function, the composed function
(which is the integrand) is convex as well in K. Thus,
the integral is convex in K.

We can add arbitrary convex constraints and penalties
on K without affecting convexity.

Corollary 2. The problem

min
K

E
εεε∼Pε,ωt∼N (0,Σt)

[exp (αL (K))]

Subject to (6), (7),K ∈ C (11)

is a convex optimization problem for any arbitrary con-
vex set C ⊂ Rnu×r×(N−1) if αRt � Σt ∀t.

6 NUMERICAL RESULTS

In this section, we present preliminary numerical re-
sults illustrating applications of the framework to var-
ious problems with comparisons to a simple baseline
approach. These are not meant to be thorough numer-
ical comparisons but simple illustrations of the power
and applications of our framework.
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6.1 BINARY CLASSIFICATION

We look at a problem of binary classification. Let y
denote the actual label and ŷ denote the predicted
label. We use the loss function

` (y, ŷ) =

{
−∞ if yŷ > 0

0 otherwise
.

This is a non-convex loss function (the logarithm of the
standard 0-1 loss). We convexify this in the prediction
ŷ using our approach:

1

α
log
(

E [exp (α` (y, ŷ))]
)

+
(ŷ)

2

2σ2
.

Plugging in ŷ = θTx where x is the feature vector, we
get

1

α
log

(
E

ω∼N (0,σ2)

[
exp

(
α`
(
y, θTx+ ω

))])
+

(
θTx

)2

2ασ2
.

Plugging in the expression for ` gives

1

α
log

(
1

2
erfc

(
yθTx√

2σ

))
+

(
θTx

)2

2ασ2
.

where erfc is the Gaussian error function. Given a
dataset {(xi, yu)}, we can form the empirical risk-
minimization problem with this convexified objective:

M∑

i=1

1

α
log

(
1

2
erfc

(
yiθTxi√

2σ

))
+

(
θTxi

)2

2ασ2

We can drop the α since it only scales the objective
(this is a consequence of the fact that exp (`) is 0-1
valued and does not change on raising it to a positive
power). Thus, we finally end up with

1

M

M∑

i=1

(
log

(
1

2
erfc

(
yiθTxi√

2σ

))
+

(
θTxi

)2

2σ2

)
.

The first term is a data-fit term (a smoothed version
of the 0-1 loss) and the second term is a regularizer.
although we penalize the prediction θTx rather than
θ itself. If x are normalized and span all directions,
by summing over the entire dataset we get something
close to the standard Tikhonov regularization.

We compare the performance of our convexification-
based approach with a standard implementation of
a Support Vector Machine (SVM) [Chang and Lin,
2011]. We use the breast cancer dataset from [Bache
and Lichman, 2013]. We compare the two algorithms
on various train-test splits of the dataset (without us-
ing cross-validation or parameter tuning). For each
split, we create a noisy version of the dataset by

adding Gaussian noise to the labels and truncating
to +1/− 1:ŷi = sign

(
yi + ω

)
, ω ∼ N

(
0, σ2

)
. The ac-

curacy of the learned classifiers on withheld test-data,
averaged over 50 random train-test splits with label
corruption as described above, are plotted as function
of the noise level σ in figure 1. This is not a completely
fair comparison since our approach explicitly optimizes
for the worst case under Gaussian perturbations to the
prediction (which can also be seen as a Gaussian per-
turbation to the label). However, as mentioned earlier,
the purpose of these numerical experiments is to illus-
trate the applicability of our convexification approach
to various problems so we do not do a careful compari-
son to robust variants of SVMs, which would be better
suited to the setting described here.
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Figure 2: Binary Classification

6.2 CLASSIFICATION WITH NEURAL
NETWORKS

We present an algorithm that does neural network
training using the results of section 5. Each layer
of the neural network is a time-step in a dynamical
system, and the neural network weights correspond
to the time-varying policy parameters. Let h denote
a component-wise nonlinearity applied to its vector-
input (a transfer function). The deterministic dynam-
ics is

xt+1 = h (Ktxt) , x0 = x

where xt is the vector of activations at the t-th layer,
Kt is the weight matrix and x is the input to the neural
network. The output is xN , where N is the number of
layers in the network. The cost function is simply the
loss function between the output of the neural network
xN and a desired output y: ` (y, xN ). To put this
into our framework, we add noise to the input of the
transfer function at each layer:

xt+1 = h (Ktxt + ωt) , x1 = x, ωt ∼ N (0,Σt)
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Additionally, we define the objective to be

E

[
exp

(
α` (y, xN ) +

N−1∑

t=1

‖Ktxt‖2Σt−1

2

)]

where the expectation is with respect to the Gaus-
sian noise added at each layer in the network. Note
that the above objective is a function of K, x, y. The
quadratic penalty on Ktxt can again be thought of as
a particular type of regularization which encourages
learning networks with small internal activations. We
add this objective over the entire dataset {xi, yi} to
get our overall training objective.

We evaluate this approach on a small randomly
selected subset of the MNIST dataset [LeCun
et al., 1998]. We use the version available
at http://nicolas.le-roux.name/ along with the
MATLAB code provided for training neural networks.
We use a 2-layer neural network with 20 units in the
hidden layer and tanh-transfer functions in both lay-
ers. We use a randomly chosen collection of 900 data
points for training and another 100 data points for
validation. We compare training using our approach
with simple backprop based training. Both of the ap-
proaches use a stochastic gradient - in our approach
the stochasticity is both in selection of the data point
i and the realization of the Gaussian noise ω while
in standard backprop the stochasticity is only in the
selection of i. We plot learning curves (in terms of
generalization or test error) for both approaches, as a
function of the number of neural network evaluations
(forward+back prop) performed by the algorithm in
figure 3a. The nonconvex approach based on standard
backprop-gradient descent gets stuck in a local mini-
mum and does not improve test accuracy much. On
the other hand, the convexified approach is able to
learn a classifier that generalizes better. We also com-
pared backprop with training a neural network on a
1-dimensional regression problem where the red curve
represents the original function with data-points in-
dicated by squares, the blue curve the reconstruction
learned by our convexified training approach and the
black curve the reconstruction obtained by using back-
prop (figure 3b). Again, backprop gets stuck in a bad
local minimum while our approach is able to find a
fairly accurate reconstruction.

7 CONCLUSION AND FUTURE
WORK

We have developed a general framework for convexi-
fying a broad class of optimization problems, analysis
that relates the solution of the convexified problem to
the original one and given algorithms with convergence
rate guarantees to solve the convexified problems. Ex-
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Figure 3: Training Neural Networks

tending the framework to dynamical systems, we de-
rive the first approach to policy optimization with op-
timality and convergence rate guarantees. We vali-
dated our approach numerically on problems of binary
classification and training neural networks. In future
work, we will refine the suboptimality analysis for our
convexification approach. Algorithmically, stochastic
gradient methods could be slow if the variance in the
gradient estimates is high, which is the case when using
the exponentiated objective (as in section 4). We will
study the applicability of recent work on using better
sampling algorithms with stochastic gradient [Atchade
et al., 2014] to our convexified problems.

APPENDIX

Corollary 3. [Boucheron et al., 2013], corollary 4.15
Let P,Q are arbitrary distributions on some space Ω
and f : Ω → R is such that Eω∼P [exp (f (ω))] < ∞.
Then, the Kullback-Leibler divergence satisfies:

KL (Q ‖ P ) = sup
f

[
E

ω∼Q
[f (ω)]− log

(
E

ω∼P
[exp (f (ω))]

)]

7.1 PROOF OF THEOREM 4.1

Throughout this section, Let α̃ = 2α and P denote
the Gaussian density N (0,Σ). Define a new distri-

bution Q with density Q (ω) ∝ P (ω) exp
(
α̃f̃ω (θ)

)
.

We denote ∇̂G (θ, ω) by ∇̂G, ∇f (θ + ω) by ∇̂f and
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∇f (θ + ω) + κθ by ∇̃f for brevity. Expectations are
always with respect to ω ∼ P , unless denoted other-
wise.

Proof. (α)
−2

E

[∥∥∥∇̂G
∥∥∥

2
]

evaluates to

exp
(
ακθT θ

)
E

[
exp (α̃f (ω + θ))

∥∥∥∇̃f
∥∥∥

2
]

=

exp
(
α̃
(κ

2
θT θ + f̄ (θ)

))
E

[
exp

(
α̃f̃ω (θ)

)∥∥∥∇̃f
∥∥∥

2
]

=

exp

(
α̃

(
ḡ (θ)− 1

2
σ2κ

))
E

[
exp

(
α̃f̃ω (θ)

)∥∥∥∇̃f
∥∥∥

2
]

(12)

By the theorem hypotheses, the term outside the ex-
pectation is bounded above by α2 exp

(
2αm− σ2κ

)
.

We are left with

E

[
exp

(
α̃f̃ω (θ)

)∥∥∥∇̃f
∥∥∥

2
]
.

Dividing this by E
[
exp

(
α̃f̃ω (θ)

)]
, we get

E

[
exp

(
α̃f̃ω (θ)

)∥∥∥∇̃f
∥∥∥

2
]

E
[
exp

(
α̃f̃ω (θ)

)] = E
ω∼Q

[∥∥∥∇̃f
∥∥∥

2
]
. (13)

Expanding
∥∥∥∇̃f

∥∥∥
2

, we get

∥∥∥∇̂f
∥∥∥

2

+ κ2 ‖θ‖2 + 2∇̂fT θ

≤
∥∥∥∇̂f

∥∥∥
2

+ κ2R (C)2
+ 2κ

∥∥∥∇̂f
∥∥∥R (C)

Finally from lemma 1, we have

E
ω∼Q

[∥∥∥∇̂f
∥∥∥

2
]
≤ βγ2

σ2 (1− αβ)

and by concavity of the square-root function,

E
ω∼Q

[∥∥∥∇̂f
∥∥∥
]
≤
√

βγ2

σ2 (1− αβ)
.

Plugging this bounds into the square expansion and

letting δ =
√

βγ2

σ2(1−αβ) + κR (C), we get

E
ω∼Q

[
‖∇f (θ + ω) + κθ‖2

]
≤ δ2 (14)

From (12),(13) and (14), E

[∥∥∥∇̂G
∥∥∥

2
]

is smaller than

α2 exp
(
2αm− σ2κ

)
δ2 E

[
exp

(
α̃f̃ω (θ)

)]

Finally, by the last part of theorem 3.3,

E
[
exp

(
α̃f̃ω (θ)

)]
≤ exp

(
αβ

1− αβ + 2αγ2

)
.

Combining the two above results gives the theorem.

lemma 1. Under the assumptions of theorem 4.1,

E
ω∼Q

[
σ2 ‖∇f (θ + ω)‖2

]
≤ βγ2

1− αβ (15)

Proof. The KL-divergence between Q and P is given
by

∫ P (ω) exp
(
α̃f̃ω (θ)

)

E
[
exp

(
α̃f̃ω (θ)

)] log




exp
(
α̃f̃ω (θ)

)

E
[
exp

(
α̃f̃ω (θ)

)]


 dω.

By theorem 3.3 applied to exp
(
α̃
2 f (θ + ω)

)
),

the above quantity is bounded above by

1
2 (α̃σ)

2
Eω∼Q

[∥∥∥∇̂f
∥∥∥

2
]
. Then, by corollary 3,

KL (Q ‖ P ) ≥ E
ω∼Q

[
α̃σ2

β

∥∥∥∇̂f
∥∥∥

2
]

− log

(
E

[
exp

(
α̃σ2

β

∥∥∥∇̂f
∥∥∥

2
)])

.

Denote the second term in the RHS by Γ. Plugging in
the upper bound on KL (Q ‖ P ), we get

Γ ≥ σ2

(
α̃

β
− α̃2

2

)
E

ω∼Q

[
‖∇f (θ + ω)‖2

]
.

Since the LHS is upper bounded by α̃γ2 (hypothesis
of theorem) which gives us the bound

E
ω∼Q

[
σ2 ‖∇f (θ + ω)‖2

]
≤ 2βγ2

2− α̃β =
βγ2

1− αβ .
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Abstract

Learning the association between observed
variables and future trajectories of continuous-
time stochastic processes is a fundamental task
in dynamic modeling. Often the dynamics are
non-homogeneous and involve a large number
of interacting components. We introduce a
conditional probabilistic model that captures
such dynamics, while maintaining scalability
and providing an explicit way to express the
interrelation between the system components.
The principal idea is a factorization of the
model into two distinct elements: one depends
only on time and the other depends on the
system configuration. We developed a learning
procedure, given either full or point observations,
and tested it on simulated data. We applied the
proposed modeling scheme to study large
cohorts of diabetes and HIV patients, and
demonstrate that the factorization helps shed
light on the dynamics of these diseases.

1 INTRODUCTION

Studies of dynamic systems often attempt to investigate the
dependency of these dynamics on a set of static explanatory
variables. In many cases, the studied process is composed
of interrelated components that evolve continuously in
time; hence, inter-component interactions are of interest
as well. Examples appear in diverse fields, ranging from
medicine to computational biology and economics.

Inferring such conditional dynamics of a real life system
involves several challenges. We illustrate these challenges
by our motivating example of studying disease progression
in patients infected with Human Immunodeficiency Virus

∗ Currently at: The Selim and Rachel Benin School of
Computer Science and Engineering. The Hebrew University of
Jerusalem.

Survival Disease CD4 
Viral 
Load 

Figure 1: A graphical representation of a SCUP model for
HIV. Directed arcs indicate directions of influence.

(HIV). The two common measures of the severity of
HIV infection, viral load and the immune system CD4
protein count, are interrelated. A higher viral load weakens
the immune system, while a weakened immune system
potentially affects viral dynamics. A weakened immune
system also increases the risk of death, either directly or
by increasing the risk of contracting other diseases. These
dynamics are depicted in Figure 1.

The typical properties of dynamic processes are a non-
constant states transition rate (non-homogeneity), and
the ability to observe the process states at only a finite
set of time-points (point observations). Additionally,
the processes may include highly diverse explanatory
variables whose distribution is often difficult to learn.
For example, this might include the type of drugs taken
by each individual and their viral genome at that time.
Due to these properties, a modeling framework for such
processes should account for non-homogeneity, deal
with point observations, be scalable in the number of
components, and provide a robust way to account for
observed explanatory variables without modeling their
distribution.

The seminal work of (Cox, 1972) laid the foundations for
rigorous analysis of the dynamics of non-homogeneous
irreversible processes by introducing the proportional
hazard model. A key point of this model is its focus on
modeling the dynamics of a single binary-valued variable
conditioned on some set of background variables. The
proportional hazard framework proposed by Cox turned
out to be extremely useful in modeling processes such
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as survival after medical procedures, how specific drugs
affect a disease, the failure of manufactured components,
and many more.

In recent years, several extensions of this model have been
proposed (e.g., (Du et al., 2013)). One notable extension
of the Cox model is Multi-State models (MSTMs), which
model single component processes that can occupy one
of a finite number of states at each time point (Putter
et al., 2007). MSTMs support non-homogeneity and
learning from point observations, and allow us to condition
the dynamics on explanatory variables, resolving the
difficulties in explicitly modeling covariates.

MSTMs are increasingly being used in medical and
epidemiological studies (e.g., (Looker et al., 2013; Walker
et al., 2013; Taghipour et al., 2013)). Nevertheless,
MSTMs are not naturally suited for analyzing multi-
component processes, because they require defining a
state space corresponding to the Cartesian product of the
individual components, resulting in a representation that is
exponential in the number of components.

In this paper we consider modeling the conditional
distribution of a non-homogeneous multi-dimensional
continuous-time Markov process Y(t) = Y1(t), . . . , Yn(t)
given a set of covariates x ∈ Rp, which we refer to
as background covariates. Our goal is to construct a
modeling language that is compact, interpretable, and
scalable, meaning that it allows learning dependencies of
specific components on specific covariates as well as on
other components, while allowing efficient inference and
learning.

A Continuous-Time Bayesian Network (CTBN) (Nodelman
et al., 2002), the continuous-time extension of a dynamic
Bayesian network, is a framework that enables the
modeling of high-dimensional processes with complex
dependencies; these dependencies are expressed via an
interpretable network topology. CTBNs naturally deal with
missing data, using exact inference for small topologies,
and a variety of approximate methods for large topologies.
Therefore, the principles that underlie CTBNs can serve
as a basis to scale up MSTMs, by introducing structured
representation and accompanying mathematical machinery
from CTBNs.

In this work, we define StruCtured proportional jUmp
Processes (SCUP), a new model combining ideas from
the fields of proportional hazard models, MSTMs, and
CTBNs. Our key modeling assumption decomposes
the dynamics of the process into two elements. The
first element is the effect of time on the dynamics
of each individual component, independently of the
others. The second element represent the dependence
of the evolution of each component on the background
covariates, as well as on the state of the other components.
This decomposition allows a compact representation of

the combined effect of non-homogeneity, background
variables, and interactions among components. We show
how this model can be learned from point observations and
demonstrate the properties of our approach on synthetic
data, as well as on large cohorts of data from diabetes
and HIV patients. Our analysis helps identify reliable
markers that may predispose diabetes and HIV patients
to medical complications. Namely, we find that routine
blood tests can serve as a biomarker for an increase in
glycated hemoglobin, which is a highly reliable marker for
complications among diabetes patients.

2 BACKGROUND

A multi-component continuous-time stochastic process
over a discrete state space is a collection of vector-valued
random variables {Y(t) = Y1(t), . . . , Yn(t)|t ≥ 0} where
for each component i, Yi(t) takes on values from a finite
set Si. We say that such a process is Markovian if, for all
sequences t1 ≤ t2 ≤ . . . ≤ tk, it satisfies

Pr(Y(tk) = yk|Y(tk−1) = yk−1, . . . ,Y(t1) = y1)

= Pr(Y(tk) = yk|Y(tk−1) = yk−1)

Continuous time Markov processes are completely
characterized by the rate function q(t;y,y′), which
determines the instantaneous transition probability
between states:

Pr(Y(t+∆t) = y′|Y(t) = y)) = 1y=y′+q(t;y,y
′)∆t+o(∆t)

(1)
where 1 is the indicator function and o(∆t) is a function
that converges to zero faster than its argument, i.e.,
lim∆t↓0

o(∆t)
∆t = 0. The rate functions are non-negative

for every y 6= y′. The diagonal elements q(t;y,y)
are the exit rates from state y at time t that satisfy
q(t;y,y) = −∑y′ 6=y q(t;y,y

′). A Markov jump process
is homogeneous if the rates do not depend on time, i.e.,
q(t;y,y′) = qy,y′ , otherwise it is non-homogeneous

Continuous time Bayesian networks (CTBNs) provide
a compact representation for homogeneous Markov
processes where only one component can change at a time,
and where the instantaneous dynamics of each component
i are influenced by a small set of parent components
denoted by pa(i). We refer to pa(i) as the context of the
component i. These assumptions are encoded by setting
q(t;y,y′) = 0 when y and y′ differ by more than one
component, and q(t;y,y′) = qyi,y′i|ypa(i) when they differ
in component i, where yi and ypa(i) are the states of
component i and of the subset pa(i), respectively. This
dependency structure is represented by a directed graph G
over the nodes labeled 1 . . . n, where the parents of node i
are pa(i). We note that the graph G need not be a DAG. In
recent years, several approximate methods that exploit this
structured representation have been developed (Saria et al.,
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2007; Cohn et al., 2010; El-Hay et al., 2010; Celikkaya
et al., 2011; Rao and Teh, 2011b; Opper and Sanguinetti,
2007).

3 STRUCTURED PROPORTIONAL
JUMP PROCESSES

Consider a system of interacting components with
two additional characteristics: (1) The dynamics of
each component depends on a set of background
variables x ∈ RP ; and (2) Transition rates are non-
homogeneous. This work deals with modeling and
learning the interactions between the components as well
as the relation between the background variable x and
the dynamics of the system represented by Y(t). As in
regression and conditional models, the distribution of the
background covariates x will not be modeled .

Assuming Markovian dynamics, such systems are
characterized by a conditional rate function q(t;y,y′|x).
To model this rate in a compact manner we first assume
that, as in CTBNs, Y has local dynamics, namely is
governed by conditional rate functions for all y 6= y′:

q(t;y,y′|x) ≡ qi(t; yi, y′i|ypa(i),x) · 1{j:yj 6=y′j}={i}.

Next, we need to capture the dependency of these dynamics
on both time and covariates. To do this, we decompose the
rate into two elements: the dependence on time and the
joint dependence on context and background variables.

The effect of the time on the transition is captured by the
notion of the baseline rate. For each component i and pair
of states yi to y′i, we denote by riyi,y′i(t) the non-negative
time dependent functions. The effect of the joint state of
the covariates x and the context ypa(i) is mediated through
a set of weight vectors wi

yi,y′i
∈ RN . Combining these

elements, we define the conditional transition of the SCUP
model:

qi(t; yi, y
′
i|ypa(i),x) ≡ riyi,y′i(t)·exp{wi

yi,y′i
·φi(x,ypa(i))},

(2)
where φi(x,ypa(i)) is a mapping of the covariates and
parent states into an N -dimensional feature vector (where
in general N could depend on i). This representation
does not explicitly specify the dependency structure of the
components on x because it does not have a significant
effect on the inference computational complexity, as
shown in Section 4. Note that the time-dependent effect is
common to the entire population, meaning that it does not
depend on the covariates x and ypa(i). On the other hand,
the covariates, as well as the parent components, modulate
the transition rate between states yi and y′i through the
second element, independently of time.

To gain some insight into the assumptions encoded in this
model, we consider three examples. First, we note that

by setting the baseline rates to a constant value, removing
the background variables, and setting φi to be a vector of
indicators of the parents’ joint state, we obtain a CTBN.

The second example is the Cox proportional hazard model
(Cox, 1972). This model has a single binary outcome Y
where Y = 1 represents a base state and Y = 0 represents
a terminal failure state such as death. The rates in such a
system are:

q(t; 1, 0|x) ≡ r0(t)ew·x and q(t; 0, 1|x) ≡ 0 , (3)

where r0(t) is the baseline rate. In this model q(t; 1, 0|x) is
called the hazard function and the probability of surviving
for a time greater than t is

Pr(Y (t) = 1|x, Y (0) = 1) = e−
∫ t
0
q(s;1,0|x)ds .

In case the baseline is constant, the survival time
distribution is exponential. A monomial baseline,
r0(t) = λk(λt)k−1, gives a Weibull distribution. A
common approach is to model the baseline in a non-
parametric manner (see the seminal work of (Kaplan and
Meier, 1958)).

The Cox model encapsulates an assumption that the failure
rate proportion for two individuals with attributes x1

and x2 is time invariant as q(t; 1, 0|x1)/q(t; 1, 0|x2) =
ew·(x1−x2). This approach is generalized in multi-state-
models (Putter et al., 2007), which involve a single
component and define q(y, y′|x; t) = ry,y′(t)e

wy,y′ ·x,
resulting in a proportion of ewy,y′ ·(x1−x2).

The proportionality assumption in SCUP is conditional,
that is, if we fix Ypa(i)(t) = ypa(i) the proportion between
conditional rates is
exp{wi

yi,y′i
· (φi(x1,ypa(i))− φi(x2,ypa(i)))} for all

t. However, the proportion of the actual marginal
rate of moving from yi to y′i is time dependent
because it is marginalized with time dependent weights,
Pr(Ypa(i)(t)|x). A time invariance property also holds for
proportions between transition rates that are conditioned
on two different parent assignments for a fixed x .

The third example deals with an HIV patient model,
as shown in Figure 1. The proposed model contains
components corresponding to the viral load (VL), CD4
concentration, the status of a certain disease of interest,
and an absorbing survival component. The model topology
encodes the assumption that the VL and CD4 components
affect each other directly, whereas the effect of VL on
survival is mediated through CD4 and the disease.

As a concrete example, the disease state space can be
{“none’, “mild”, “severe”}, with the possible transitions
“none”↔“mild”, and “mild”↔“severe”, and the CD4 state
space can be {“high”, “low”}. The CD4→disease arc
encodes a parameter for each combination of the CD4
level and one of the four disease transitions. Notably, the
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Figure 2: A Piecewise linear approximation for a non-homogeneous process.

ratio between the transition rates given CD4=“high” and
given CD4=“low” is time independent, and determined
solely according to the mapping φdisease (CD4) and the
parameters wdisease for each transition.

3.1 REPRESENTATION OF BASELINE RATES

Time dependent baseline rates can either be represented
non-parametrically as in the classical Cox model, or
assume a parametric representation. Examples include
Weibull hazard function r(t) = λk(λt)k−1, log-logistic
hazard, r(t) = λktk−1

1+λtk
and more. In this work we will

adopt a piecewise constant representation, which can
approximate well behaved processes with a high degree of
accuracy.

To characterize such processes, we consider single-
component models with a time-dependent state Y (t)
(every model can be represented as a single-component
model whose state space is the Cartesian product of
the components state spaces). Denote by PQ(s, t)
the transition matrix whose y, y′ entry is Pr(Y (t) =
y |Y (s) = y′), and by µQ

y (t) ≡ PrQ(Y (t) = y) the
time-dependent marginal probability. We say that a matrix
P is embeddable if there exists a matrix A such that
P = eA. Let τ0 < τ1 < . . . < τK be an ordered set of
time points, and suppose that PQ(τk−1, τk) is embeddable
for every k = 1, . . . ,K. From the Markov property, it
follows that there exists a piecewise constant rate matrix
function Q̂(t) = Qk,∀τk−1 ≤ t < τk that satisfies
µQ
y (τk) = µQ̂

y (τk). Moreover, the following lemma
bounds the error for rate matrices with bounded transition
rates:

Lemma 3.1 :Let Y (t) be a non-homogeneous process
with bounded transition rates Q(t) and an embeddable
rate matrix. Denote ρk = maxy,τk−1≤t<τk |qy,y(t)|,
ρ̂k = maxy |q̂y,y|. Then, for all y and τk−1 ≤ t ≤ τk,
|µQ
y (t)− µQ̂

y (t)| < (ρ+ ρ̂) · (τk − τk−1).

This lemma, proven in the appendix, suggests that the

number of intervals required to bound the bias by ε
scales inversely linear with 1/ε. We note that tight
approximations exist in the case of non-embeddable
processes (Davies, 2010).

As an example, consider a two state model with time
dependent baseline rates depicted in Figure 2a. This
process induces a non-monotone marginal probability
µQ

1 (t) given an initial condition Y (0) = 2, as shown by
the smooth black line in Figure 2b. The initial rise follows
from the relation r2,1(t) > r1,2(t), and the subsequent
decline from the opposite relation. The colored lines
show estimated probabilities given by piecewise constant
models with 1, 5 and 20 intervals of constant rates that
were trained on 1000 simulated trajectories.

4 LEARNING

Generally, training data may include a mixture of point
observations on some components and full (complete)
trajectories of others. For example CD4 and viral load are
point observations measured periodically, whereas time of
death is usually exactly recorded resulting in a continuous
observation on survival. To learn from such data, we
will adapt the approach taken for CTBNs, which handles
unseen state trajectories between observations as missing
data and employs Expectation Maximization (EM). The
first step is to derive the likelihood of the model given
complete trajectories.

4.1 LIKELIHOOD FUNCTION

A fully observed trajectory is represented using the
sequence t0, . . . , tM and states y0, . . . , yM−1 such that
Y (t) = yk for t ∈ [tk, tk+1). We denote such a trajectory
by y[0,tM ]. The likelihood of a non-homogeneous process
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with a set of ratesM = {q(t; y, y′)}y,y′ is

l(M|y[0,tM ]) = exp

{∫ tM

tM−1

q(t; yM−1, yM−1)dt

}
(4)

·
M−2∏

k=0

[
exp

{∫ tk+1

tk

q(t; yk, yk)dt

}
q(tk+1; yk, yk+1)

]

where q(t;y,y) = −∑y′ 6=y q(t; y, y
′).

Let D be a data set that includes pairs of trajectories y[c]

and covariates xc, where c = 1, . . . , Nsequences and denote
by ll(M|D) be the log-likelihood.

The log-likelihood is unbounded if there are no constraints
on the baseline rate functions. Consider for example the
survival model described in Equation 3, and suppose that
no background variable is involved. In this case,

ll(r0(t)|D) =
∑

c

[
−
∫ tc

0

r0(t)dt+ log r0(tc)

]
.

One can construct a series of baseline rates such that
this term approaches infinity as r0(t)

∑
c acδ(t − tc),

implying that a naive maximum likelihood procedure
tends to overfit r0(t) to a function that imposes transitions
at the observed times if no constraints are put in place.
An alternative approach for non-parametric estimation of
a possibly arbitrary baseline is to use partial-likelihood
(Cox, 1972, 1975). However, this direction does not
generalize naturally to partially observed data. Two
possible approaches for placing constraints use either a
restricted parametric form or regularized baseline.

4.2 PARTIALLY OBSERVED DATA

To deal with partially observed data, we perform an EM
procedure. On each iteration we compute the expected
log-likelihood of a new model with respect to the posterior
distribution of the current model M0. The posterior
distribution of a Markov process M0 given a sequence
σc is characterized by a set of time-dependent functions
(Cohn et al., 2010)

µy(t|c) = Pr(Y (t) = y|c,M0)

γy,y′(t|c) = lim
∆t→0

Pr(Y (t) = y, Y (t+ ∆t) = y′|c,M0)

∆t
.

µy(t|c) is the singleton probability that the process is in
state y at time t. γy,y′(t|c) is the intensity of the pairwise
probability of being in state y and then moving to y′ at time
t.

Using this characterization, taking the expectation on the
log of the likelihood function in Equation 4 and plugging
in the decomposition of the conditional intensities depicted

in Equation 2, gives the expected log-likelihood of a multi-
component model:

EM0 [ll(M,D)] =
∑

c

∑

yi,ypa(i)

∑

y′

(5)

[
− exp{wi

yi,y′i
· φi(xc,ypa(i))}

∫

t

µyi,ypa(i)r
i
yi,y′i

dt

+

∫

t

γyi,y′i|ypa(i)

(
log riyi,y′i + wi

yi,y′i
· φi(xc,ypa(i))

)
dt

]

where we omit t and c from µ, γ and r, µyi,ypa(i)
is the marginalization of the posterior distribution
to the subset of components i, pa(i), and similarly
γyi,y′i|ypa(i) =

∑
{ŷ|ŷi=yiŷpa(i)=ypa(i)} γŷ,[ŷ\i,y′i] is

a marginalization of pairwise probability intensities.
Additional details are given in the Appendix. An exact
computation of these functions and their integrals is
feasible for systems with a small number of components.
Otherwise, a variety of approximate methods are available
(Saria et al., 2007; Cohn et al., 2010; El-Hay et al., 2010;
Celikkaya et al., 2011; Rao and Teh, 2011b; Opper and
Sanguinetti, 2007).

4.3 OPTIMIZATION

The gradient of the log-likelihood with respect to w is:

∂EM0 [ll(M,D)]

∂wi
yi,y′i

=

∑

c

∑

ypa(i)

φi(xc,ypa(i))(M
c
ypa(i)

−MP cypa(i))

where the first term M c
ypa(i)

=
∫
t
γyi,y′i|ypa(i)dt is the

expected number of transitions from yi to y′i given the state
of the parents ypa(i), M0 and the evidence in sequence c
(see (Cohn et al., 2010)). The second term

MP cypa(i) = exp{wi
yi,y′i
·φi(xc,ypa(i))}

∫

t

µiyi,ypa(i)r
i
yi,y′i

dt

is the integral of the probability of being in state [yi,ypa(i)],
multiplied by the transition rate. Hence, this term can be
interpreted as the expected number of potential transitions.
The gradient weighs the feature vectors φi(xc,ypa(i))
using the difference between the expected number of
actual and potential transitions.

Optimization of the baseline that assumes a parametric
form riyi,y′i

(t) = riyi,y′i
(t; θ) involves computation of its

gradient with respect to the parameters θ

∂EM0 [ll(M,D)]

∂θ
=

∑

c

∑

ypa(i)

∫

t

[
− exp{wi

yi,y′i
· φi(x,ypa(i))}µyi,ypa(i)

+
γyi,y′i|ypa(i)
riyi,y′i

]
∂riyi,y′i
∂θ

dt .
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In the simplest case, if the baseline is constant or piecewise
constant, the stationary point solution has a closed from.

A maximum likelihood estimator can be found using
an EM procedure iterating between expectation and
maximization steps. Expectation steps compute the
functions that represent the posterior distribution, µ and γ.
Maximization steps involve optimizing the covariate and
cross component influence weights wi

yi,y′i
using standard

optimization methods and the gradient derived in Equation
6, as well as optimizing the baseline rates using the
gradient in Equation 6. While the overall target function is
not convex, the optimization of wi

yi,y′i
is a convex problem

given fixed baselines and posterior distributions, and so is
the case for many choices of the baseline rates .

5 EXPERIMENTAL RESULTS

5.1 LEARNING EVALUATION

Our initial experiments test the validity of SCUP. To this
end, we created synthetic SCUP data sets. We then trained
SCUP using these data sets, and compared the similarity of
the learned models with the actual ones.

The topology for all data generating models was similar to
the HIV disease topology (Figure 1) with the exclusion of
the survival state. All models included a single randomly
drawn binary covariate. The baseline rates followed a
Weibull rate, with a shape parameter κ = 2 and a scale
parameter drawn from an inverse Gamma distribution
(the Weibull distribution conjugate prior), with shape and
scale parameters both equal to 2. For each component
with parents y1, y2, and a covariate x, we used the feature
mapping φ(x, y1, y2) = (x, 1y1=2,1y2=2) , with feature
coefficients drawn from N (0, 1).

We evaluated learning performance as a function of dataset
size and sampling rate. During the training, we divided
the time interval [0,1] into 5 equally sized intervals,
and learned piecewise-constant baseline rates for each
one. We considered both fully observed data and point
observations, with observation times for each trajectory
drawn uniformly from [0,1]. All trajectories were observed
at times t = 0 and t = 1. Our evaluation compared the
similarity of the learned models to the true generating
models through the root mean square error (RMSE) of the
learned coefficients. We also compared the integral of each
baseline rate across the time interval [0,1], to its true value.
The baseline integral was used because it does not depend
on parametric form, and because it is used in inference
and learning tasks, rather than the baseline itself. Figure
3 shows that learning accuracy increases with sample size
and sampling rate, as expected. As a further measure of
validity, we verified that log (RMSE) decreases linearly
with log dataset size, with slopes close to -0.5, indicating
consistency (data not shown).

5.2 THE EFFECT OF NON-HOMOGENEITY

To test the effect of non-homogeneity, we generated
data from homogeneous and non-homogeneous SCUP
models. We then trained the models with different levels of
non-homogeneity on the generated datasets, and evaluated
learning performance. The datasets were generated from
two SCUP architectures similar to those described in
the previous section, with the exception that the first
architecture used a homogeneous constant baseline rate
for all transitions, whereas the second one used baseline
rates as previously described. The baseline rates for
the first architecture were generated from a Gamma
distribution, with scale and shape parameters equal to
1.0. We generated five models from each architecture,
and generated a dataset of 500 trajectories using each
model. Every trajectory was observed at times t = 0 and
t = 1, and at three other uniformly drawn time-points.
We trained SCUP models with increasing numbers of
piecewise-constant baseline rate. Notably, models with
one baseline rate are equivalent to CTBNs. We evaluated
the learning performance via a five-fold cross validation of
out of sample (OOS) likelihood.

The results, shown in Figure 4, demonstrate that
homogeneous models cannot capture complex dynamics
that change over time. Increasing the number of baseline
rates leads to greater flexibility on the one hand, but to the
risk of overfitting on the other.

5.3 COMPARISON WITH OTHER METHODS

To assess the relative performance of SCUP, we compared
it to two competing methods, which can both be derived
as special instances of SCUP: A factored model and a
multi-state model. The factored model (FM) is a SCUP
model with several independent components. There are no
arcs between components, and thus transition probabilities
are affected only by covariates and baseline rates. The
multi-state model (MSTM) follows the implementation
of a package called MSM (Jackson, 2011). It can be
viewed as a SCUP model with a single component,
whose state space is the Cartesian product of the SCUP
components state spaces. We verified empirically that our
implementation yields the same results as MSM on a wide
variety of scenarios. SCUP can be seen as an intermediate
method between these two extremes, balancing between
compactness and expressiveness. Notably, all three
methods fully support non-homogeneous dynamics.

We generated five models for each of the three architectures,
each having a single binary covariate, with Weibull
baseline rates and randomly drawn coefficients, as
described in the previous section. The SCUP models were
generated and used as described in the previous sections.
The FM models contained three binary components, and
the MSM models contained a single eight-state component,
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Figure 3: Root mean square error of estimated parameters for various sampling rates, and the 75% confidence intervals
(confidence intervals for S=200 are omitted for clarity).
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Figure 4: Out of sample likelihood for models trained with
increasing number of piecewise-constant baseline rates.

Table 1: The number of parameters learned by FM, SCUP,
and MSM. The number of piecewise-constant baseline
rates is denoted by t.

FM SCUP MSM

Cov. coefficients 6 6 56
Parents coefficients 0 12 0

Baseline rates 6t 6t 56t
Total number 6+6t 18+6t 56+56t

with one state corresponding to each assignment of the
components’ states in the SCUP model. Both the MSM
and FM models used the feature mapping φ(x) = x.

We generated datasets of 1,000 trajectories using each of
the 15 models. We then examined how well a model from
each architecture can be trained on each dataset, via a three-
fold cross validation of OOS likelihood. The trajectories
were observed as described in the previous section. All
trained models used five piecewise constant baseline rates.
The number of parameters for the three models is shown in
Table 1, demonstrating that SCUP bridges between the two
extremes.

Figure 5 demonstrates that SCUP is more flexible than the
other two methods, allowing it to represent data generated

by different architectures, while retaining compactness.
MSM exhibits poor learning capabilities for smaller
datasets; this holds true even for data created by a model
with the same architecture, demonstrating overfitting due
to model complexity. The factored model does not suffer
from overfitting, but has limited expressiveness, and thus
cannot capture mutual influences between components.

5.4 ANALYSIS HIV DATA

We evaluated the performance of SCUP by analyzing
real data from a data set containing lab measurements
of HIV patients who took medication on a regular basis,
previously described in (Rosen-Zvi et al., 2008). We
defined models with two components corresponding
to the two main measures of HIV severity, viral load
(VL) and CD4 lymphocytes concentration, as well as
a continuously observed binary absorbing component,
representing survival. The resulting model is similar to the
one described in Figure 1, with the omission of the disease
component, and the addition of a VL→survival arc, which
was added to obtain a fully connected topology. Following
previous works, the CD4 level was dichotomized to have
2 states, using a threshold of 200 (D’Amico et al., 2011).
The VL level was also dichotomized to have 2 states, using
a threshold of 500, as previously done in analyses of this
data (Rosen-Zvi et al., 2008).

For the analysis, we randomly selected 2000 patients whose
VL and CD4 levels were both observed at each observation
point. The resulting dataset contained 5.14 observations
per patient on average (standard deviation 3.37). For every
patient, we included covariates corresponding to age, sex,
and whether the patient had undertaken a different therapy
in the past. Feature mappings consisted of a concatenation
of the covariates, with a binary 0/1 feature for each parent
component. The initial time t=0 was set as the therapy
start time. For patients who underwent several successive
therapies, only observations taken during the period of the
first one were included in the analysis. All patients had
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(b) SCUP generated data

100 200 300 400
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

Dataset Size

A
ve

ra
g

e 
T

es
t 

L
o

g
 L

ik
el

ih
o

o
d

(c) MSM generated data

Figure 5: Test likelihoods of data learned by different models.

an observation at time t=0, using the closest measurement
within a month from the therapy start date.

We computed the average OOS log likelihood obtained
via a five-fold cross validation, with increasing numbers
of piecewise constant baseline rates. The results, shown
in Figure 6, clearly demonstrate the powerful effect of
non-homogeneity, and the importance of modeling it
correctly. MSM has an advantage when using a small
number of baseline rates, owing to its richer model, which
can capture richer interaction patterns between the system
components. However, SCUP steadily improves as the
number of baseline rates increases, until it eventually
surpasses MSM. This increase indicates the presence
of strong non-homogeneous dynamics. MSM can also
capture non-homogeneous dynamics, but is hindered by
its large number of parameters. The FM model exhibits
weaker performance than the other methods for every
number of baseline rates tested. This is due to the fact
that it cannot capture the dynamics stemming from mutual
influences between the system components. The decrease
in OOS likelihood for FM when using 16 baseline rates
may stem from overfitting, which occurs because it is
trying to incorrectly capture mutual influences between the
system components via baseline rates.

5.5 ANALYSIS OF DATA FROM DIABETES
PATIENTS

We evaluated SCUP on a large cohort of diabetes patients,
previously described by (Neuvirth et al., 2011). Following
(Neuvirth et al., 2011), we define the main outcome of
interest as the glycated hemoglobin (HbA1c) blood test,
which is a reliable indicator of diabetes severity status.
A higher HbA1c indicates increased risk of developing
complications.

Our goal was to learn the interaction patterns between
the HbA1c level and other potential diabetes biomarkers
commonly measured in routine blood tests. The ability to
predict HbA1c levels from routine blood tests can improve
early detection of the disease progression. To this end,
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Figure 6: Performance of SCUP, FM, and MSM on the HIV
dataset.
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Figure 7: Performance of SCUP, FM, and MSM on the
diabetes dataset.

we defined a SCUP model with binary components for
HbA1c, low-density lipoprotein (LDL), and triglycerides
levels. The two states of each component correspond to
normal and abnormal clinical status, with the thresholds
for HbA1c, LDL, and triglycerides set to 7, 130 and 200,
respectively. We used a fully connected topology, and
included the age and sex of each patient as covariates.

For the analysis, we randomly chose 1,000 patients with
non-missing values for the components of interest at every
observation point. Every patient had 3.25 observations
on average (standard deviation 1.52). Feature mappings
consisted of a concatenation of the covariates, with a
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binary 0/1 feature for each parent component. The time
t = 0 for each patient was determined according to the
first observation time.

We computed the average OOS likelihood obtained via
a five-fold cross validation, with increasing numbers of
intervals. The results, shown in Figure 7, demonstrate
that SCUP can scale to rich models without overfitting.
The factored model, although scalable, does not capture
the interactions between components, leading to weaker
prediction power. The MSM model tends to suffer from
overfitting due to its complexity. The lack of increase
in OOS likelihood for increased numbers of intervals
indicates that the components tend to follow homogeneous
dynamics in this dataset. Nevertheless, SCUP does
not overfit when trained with a large number of intervals,
indicating its robustness to the type of underlying dynamics
in the data.

To further investigate the different methods, we examined
the coefficients describing mutual influence between
the system components; these were learned across the
different folds. We examined the models that assumed
one piecewise-constant interval, as they had the best fit for
this data. For every pair of components, we computed the
coefficient describing the influence of one on a transition of
the other. For MSM, we averaged the two corresponding
coefficients over the two possible states of the third
component. The results, shown in Table 2, demonstrate
that SCUP models learned across the different folds are
more consistent with each other, leading to substantially
smaller variance.

The results demonstrate rich interaction patterns across
the components. For example, increased triglycerides
levels are associated with an increase in HbA1C, whereas
increased HbA1C is associated with stabilization of the
triglycerides levels via a reduction of their transition rate.
Such observations cannot be performed directly in FM nor
MSM, due to their lack of modular structure.

6 DISCUSSION

We proposed a proportional modeling scheme for non-
homogeneous multi-component processes, by combing
factorizations of CTBNs with a decomposition dating
back to proportional hazard models. The key modeling
assumption is a decomposition of the process into a
time-dependent non-homogeneous component that does
not depend on the model topology, and a time-independent
component that depends on the model topology and
additional features. This is a natural extension of classic
hazard models, which can be considered as special
SCUP instances with no underlying topology. This
decomposition leads to compact models that can capture
complex dynamics, as well as an efficient learning scheme,
and easily interpretable results.

Table 2: The average coefficients of parent influence on
increase (↑) and decrease (↓) learned in the diabetes dataset,
and the minimum and maximum values obtained across the
five folds.

SCUP MSM

LDL→A1C↑ .17 (.08, .25) -.24 (-.73, .27)
Trig.→A1C↑ .31 (.09, .45) .12 (-.65, .62)
LDL→A1C↓ .09 (.04, .16) -.20 (-.50, .06)
Trig.→A1C↓ -.17 (-.23, .02) -.22 (-.42, .22)
A1C→LDL↑ .34 (.20, .45) 1.15 (.86, 1.31)
Trig.→LDL↑ .57 (.33, .79) .68 (.31, 1.14)
A1C→LDL↓ -.04 (-.23, .14) -.18 (-.98, .33)
Trig.→LDL↓ -.38 (-.49, -.25) .67 (.16, 1.46)
A1C→Trig.↑ -.28 (-.49, -.09) -.51 (-.90, -.37)
LDL→Trig.↑ .82 (.67, .92) -.54 (-1.13, .25)
A1C→Trig.↓ -.59 (-.71, -.50) -1.24 (-1.82, -.89)
LDL→Trig.↓ .63 (.40, .82) -.72 (-1.79, .09)

Our theoretical and empirical results demonstrate that non-
homogeneous dynamics can be captured accurately using
a piecewise homogeneous approximation. It would be
interesting to compare this baseline rates representation to
parametric forms. Learning such models is straightforward
and can be performed by plugging in the partial derivative
of a specific parametric form to the gradient in Equation 6.

Baseline rates can be regularized via spline approximations
(Commenges, 2002; Joly et al., 2009; Farewell and Tom,
2012) or Gaussian process priors (Rao and Teh, 2011a).
Splines can also be naturally adapted to regularize
piecewise constant rates. This can be done by bounding
the difference between rates in adjacent time intervals, or
the rate of change of this difference, which is analogous
to bounding the first and second derivative, respectively.
Regularization of other model parameters, such as the
covariate or parents coefficients, can potentially be handled
using standard regularization methods such as elastic nets,
as recently proposed for Cox regression (Simon et al.,
2011).

In this work we studied moderately sized systems.
Adapting approximate inference methods developed for
CTBNs that support non-homogeneity, such as (Rao and
Teh, 2011b) or (El-Hay et al., 2010), could scale up this
framework to arbitrarily large systems.
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Abstract

Picking the best alternative in a given set is a
well-studied problem at the core of social choice
theory. In some applications, one can assume that
there is an objectively correct way to compare
the alternatives, which, however, cannot be ob-
served directly, and individuals’ preferences over
the alternatives (votes) are noisy estimates of this
ground truth. The goal of voting in this case
is to estimate the ground truth from the votes.
In this paradigm, it is usually assumed that the
ground truth is a ranking of the alternatives by
their true quality. However, sometimes alterna-
tives are compared using not one but multiple
quality parameters, which may result in cycles
in the ground truth as well as in the preferences
of the individuals. Motivated by this, we provide
a formal model of voting with possibly intransi-
tive ground truth and preferences, and investigate
the maximum likelihood approach for picking
the best alternative in this case. We show that the
resulting framework leads to polynomial-time al-
gorithms, and also approximates the correspond-
ingNP-hard problems in the classic framework.

1 INTRODUCTION

Typically, voting rules are viewed as vehicles for aggre-
gating subjective preferences of individuals into a consen-
sus or societal preference. However, another paradigm
of voting theory, which dates back to Marquis de Con-
dorcet [11], became increasingly popular in recent years,
motivated in part by its relevance to the design of crowd-
sourcing platforms and human computation systems [14].
Condorcet suggested that votes cast by the individuals
should be viewed as noisy estimates of an underlying ob-
jective ground truth—a ranking of the available alternatives
by their true quality, and the aim of voting should be to
aggregate the votes in order to uncover the ground truth

and thereby pick the best alternative. He proposed a sim-
ple approach for modeling the noise present in individuals’
votes, which is known today as Mallows’ model [18]. In
this model, every voter compares each pair of alternatives
independently, and orders them correctly (as in the ground
truth) with a fixed probability p > 1/2, and incorrectly
with probability 1−p. If the generated vote contains cycles,
it is discarded and the process restarts, continuing until the
pairwise comparisons form a total order over the alterna-
tives. While this model is somewhat unrealistic [19], it is
widely used, in part because it provides control of the level
of noise in the votes through a single parameter.

However, in many applications, alternatives are compared
using not one, but multiple quality parameters [21, 28]. Un-
der multi-criteria decision making, the preference relation
that arises from the pairwise comparisons may contain cy-
cles. Such preferences are known as tournaments. Also,
when the number of alternatives is large (e.g., in many hu-
man computation systems), it is hard for voters to submit
a total order over the alternatives. Hence, most systems
employ vote elicitation techniques where the individuals it-
eratively submit parts of their preference, such as pairwise
comparisons or partial orders. Bounded rationality of vot-
ers may again lead to cyclic preferences in this case. There
are also settings where a voter may in fact be a meta-voter,
representing a group of individuals (e.g., a country or re-
gion). Synthesizing preferences of the people in a group
may also lead to cyclic preference for the meta-voter.

Motivated by this, we introduce a variant of Mallows’
model where both the ground truth and the noisy pref-
erences generated may be tournaments rather than rank-
ings of the alternatives. In this model, the vote genera-
tion process described above simplifies: there is no need to
restart the process if the generated vote has cycles. Con-
sequently, the pairwise comparisons are independent of
each other, resulting in a more tractable model: indeed,
it appears that Young [29, p. 1238] in his analysis of
Condorcet’s approach to choosing the most likely winner
uses the tournament-based model in his calculations, even
though his intention was to study the ranking-based model.
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Recently, Procaccia et al. [22] have formalized, corrected,
and extended Young’s analysis of the optimal rule to pick
the best alternative. They focused on the limiting case of
Mallows’ model where the noise is very high (p → 1/2),
as they were motivated by crowdsourcing settings, in which
this is often the case. As a side result, they have also ana-
lyzed the other extreme case of very low noise (p→ 1).

Our Contribution: We introduce the tournament variant
of Mallows’ model and show that the most likely winners
in our model can be identified in polynomial time for a
given value of the noise parameter, as well as in the lim-
iting cases of extremely high and low noise; this is in sharp
contrast with the ranking-based model. We then focus on
the limiting cases of the tournament-based model and show
empirically that they provide a good approximation for the
corresponding cases of the ranking-based model. As a
side result, we prove that Tideman’s rule [24, pp. 199-
201] (which is closely related to the high-noise setting in
the tournament-based model) is a 2-approximation of Ke-
meny’s rule (which is closely related to the high-noise set-
ting in the ranking-based model), a result that may be of
independent interest to the social choice community. Fi-
nally, we propose an agnostic voting rule that circumvents
the problem of not knowing the noise parameter and returns
the set of alternatives that are MLE at some value of the pa-
rameter. Using simulations, we show that this rule is quite
decisive, i.e., returns very few alternatives.

2 RELATED WORK

The maximum likelihood estimation (MLE) approach to
voting was proposed by Condorcet [11]. Young [29] for-
malized Condorcet’s ideas, and showed that Condorcet’s
approach to choosing the best ranking results in a voting
rule that is known as Kemeny’s rule. Young has also con-
sidered the problem of selecting the most likely winner,
focusing on the limit cases where the noise is extremely
high or extremely low. However, his analysis of this set-
ting is presented by means of an example and appears to be
flawed. Procaccia et al. [22] formalized Young’s analysis
and extended it to objectives other than picking the best al-
ternative. Recently, Caragiannis et al. [5] have further gen-
eralized this approach by focusing on the design of voting
rules that demonstrate robustness to noise originating from
a wide family of noise models. Such robustness is also a
feature of our agnostic rule, in that it returns a set of alter-
natives that is guaranteed to contain the most likely alter-
native irrespective of the value of the underlying parameter
of Mallows’ model from which votes are generated.

Other variants of the maximum likelihood approach have
been considered in the computational social choice litera-
ture [9, 8, 27]. Perhaps the closest to our work is that of
Xia et al. [28], who studied the MLE approach in multi-
issue domains, where alternatives represent combinations

of multiple issues. Xia et al. used CP-nets to represent the
(possibly cyclic) preferences of the voters. However, they
focused on dealing with the huge space of alternatives cre-
ated by an exponential number of combinations.

Finally, we show that Tideman’s rule provides a very sim-
ple and elegant deterministic 2-approximation to Kemeny’s
rule. Since Kemeny’s rule is NP-hard to compute [2], its
approximations have been studied extensively in the litera-
ture, varying from deterministic approximations [10, 26]
through randomized approximations [1] to a polynomial
time approximation scheme (PTAS) [13].

3 PRELIMINARIES

Let [k] = {1, . . . , k}. We consider a set of alternatives A
with |A| = m. Let L(A) denote the set of votes, where
a vote is a ranking (linear order) over the alternatives, de-
noted σ : {1, . . . ,m} → A. Thus, alternative σ(i) is the
i-th most preferred alternative in σ; σ(1) and σ(m) are,
respectively, the most and the least preferred alternatives
in σ. Note that |L(A)| = m!. A profile π ∈ L(A)n is a
collection of n votes. For alternatives a, b ∈ A, let nab de-
note the number of votes in π that rank a above b. Hence,
nab + nba = n for all a, b ∈ A. Let ∆ab = nab − nba; this
quantity can be thought of as the advantage of a over b.

Voting rules. A voting rule is a function that maps ev-
ery profile to a winning alternative, or a set of tied win-
ning alternatives. Formally, a voting rule is a mapping
f : L(A)n → P(A), where P(·) denotes the power set.1

We review three prominent voting rules that play a crucial
role in this paper.

• The Borda count. Under the Borda count, each voter
awards m− i points to the alternative she ranks in posi-
tion i, i.e., each alternative receives a number of points
equal to the number of alternatives it defeats. The scores
of the alternatives are tallied across the votes. That is,
the Borda score of an alternative a ∈ A in profile π is

SCBD(a) =
∑

σ∈π

∑

b∈A\{a}
I[a �σ b] =

∑

b∈A\{a}
nab,

where the second equality follows by switching the order
of summation. The winner(s) are the alternative(s) with
the highest score.

• Tideman’s rule. More commonly known as Tideman’s
simplified Dodgson rule,2 this rule was put forward by
Tideman [24, pp. 199-201] as a polynomial-time com-
putable approximation to Dodgson’s rule [12], which is
1Technically, such mappings are known as social choice func-

tions. In contrast, social welfare functions map every profile to a
ranking or a set of tied rankings over the alternatives.

2Tideman’s rule considered in this paper should not be con-
fused with the ranked pairs method, also proposed by Tideman.
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NP-hard to compute. Under Tideman’s rule, the score
of an alternative a is given by

SCTD(a) =
∑

b∈A\{a}
max(0,∆ba).

That is, the Tideman score of a is the cumulative ad-
vantage of all alternatives that have a positive advantage
over a. Importantly, the winners are the alternatives with
the minimum score.

• Kemeny’s rule. The Kendall tau distance between two
rankings is the number of pairs of alternatives on which
they disagree, i.e., for σ1, σ2 ∈ L(A), d(σ1, σ2) =
|{(a, b) | a �σ1

b, b �σ2
a}|. With slight abuse of no-

tation, for a profile π and a ranking σ, let d(π, σ) =∑
σ′∈π d(σ, σ′). Under Kemeny’s rule, the score of an

alternative a ∈ A is the minimum distance from the in-
put profile to any ranking that puts a first. Formally,

SCKM (a) = min
σ∈L(A):σ(1)=a

d(π, σ).

The winners are the alternatives with the minimum score.
Equivalently, the rankings with the smallest distance
from the profile are selected, and the winners are the al-
ternatives appearing first in these rankings.

Refinement of voting rules. We say that voting rule f̂ is
a refinement of voting rule f if f̂(π) ⊆ f(π) for every
profile π. That is, f̂ can be seen as a combination of f with
a (partial) tie-breaking rule.

4 MODEL

We begin by presenting the well-known ranking version
of Mallows’ model, and then we introduce a more general
tournament version of this model.

4.1 THE RANKING MODEL

Assume there is a hidden true ranking σ∗ ∈ L(A) over the
alternatives, which reflects the order of their true strengths.
We also make the standard assumption that σ∗ is selected
using a uniform prior over L(A). Thus, σ∗(1) denotes the
true best alternative. A noise model describes how votes
are generated given the true ranking. Votes in a profile are
then assumed to be iid samples from the noise model.

Specifically, in Mallows’ model [18] (also known as the
Condorcet noise model [11]), which was described infor-
mally in the introduction, the probability of generating a
vote σ when the true ranking is σ∗ is given by

Pr[σ | σ∗] =
ϕd(σ,σ∗)

Zmϕ
. (1)

Here, ϕ = 1−p
p ∈ (0, 1) is the noise parameter of the model

and p ∈ (1/2, 1) is the probability of making the correct

decision when comparing two alternatives. Thus, ϕ → 0
represents a distribution concentrated around σ∗, whereas
ϕ→ 1 converges to the uniform distribution, which has the
greatest noise. Finally, d is the Kendall tau distance, and
Zmϕ =

∑
σ∈L(A) Pr[σ | σ∗] is the normalization constant,

which turns out to be independent of the true ranking σ∗

(see, e.g., [16]).

Now, take a profile π ∈ L(A)n. Since individual votes are
sampled iid, the probability of generating π is

Pr[π | σ∗] =
∏

σ∈π

ϕd(σ,σ∗)

Zmϕ
∝ ϕd(π,σ∗).

Under the assumption of uniform prior over the true rank-
ing σ∗, and for given ϕ, the probability of an alternative
a ∈ A being the true best alternative is proportional to

∑

σ∗∈L(A):
σ∗(1)=a

Pr[π | σ∗] ∝
∑

σ∗∈L(A):
σ∗(1)=a

ϕd(π,σ∗). (2)

Let ΓRϕ (a) be the “likelihood polynomial” of a, as given
in the final expression of Equation (2). Then, the maxi-
mum likelihood estimator of the true best alternative, i.e.,
the set of alternatives having the highest probability of
being the true best alternative, is given by MLERϕ (π) =

arg maxa∈A ΓRϕ (a). Theorem 3.2 by Procaccia et al. [22]
shows the following.

Theorem 1 (Procaccia et al. [22]). Computing MLERϕ is
NP-hard.

4.2 THE TOURNAMENT MODEL

We now introduce a variant of Mallows’ model where both
the ground truth and the samples need not be total orders.
Rather, they can be tournaments, i.e., sets of pairwise com-
parisons (one for each pair of alternatives). A tournament
need not be transitive: it can be the case that a beats b, b
beats c, and c beats a. As argued in the introduction, this
is common when the alternatives are compared based on
multiple quality parameters instead of a single parameter,
and/or users are not required to submit total orders. Note
that every ranking can be seen as a tournament.

Let T (A) denote the set of all tournaments over alternatives
inA. We still use a �T b to denote that alternative a is pre-
ferred to alternative b in the tournament T . The Kendall tau
distance extends to T (A) in a natural way: given two tour-
naments T, T ′ ∈ T (A), d(T, T ′) is the number of pairs
of alternatives on which T and T ′ disagree. Further, the
quantities (nab)a,b∈A remain well-defined for a profile of
tournaments π ∈ T (A)n. As the three voting rules intro-
duced in Section 3 (the Borda count, Tideman’s rule, and
Kemeny’s rule) can be defined in terms of (nab)a,b∈A, these
rules are well-defined over profiles of tournaments as well.
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Let T ∗ ∈ T (A) denote the hidden true tournament over
the alternatives. We assume that T ∗ is selected using a uni-
form prior over T (A). That is, for each pair of alterna-
tives a, b ∈ A we independently decide whether a �T∗ b
or b �T∗ a, with both possibilities being equally likely.
When generating a vote, each pairwise comparison in T ∗ is
retained with a fixed probability 1/2 < p < 1 and flipped
with probability 1 − p. Unlike in the ranking model, the
pairwise comparisons in the samples are independent of
each other. Accordingly, the probability of generating a
tournament T when the true tournament is T ∗ is given by

Pr[T | T ∗] = p(
m
2 )−d(T,T∗)(1−p)d(T,T∗) = p(

m
2 )ϕd(T,T∗).

We consider profiles consisting on n tournaments, which
are sampled iid from the noise model. Let d(π, T ∗) =∑
T∈π d(T, T ∗). Then, the probability of generating a pro-

file π ∈ T (A)n is proportional to ϕd(π,T∗), similarly to the
ranking-based model.

Procaccia et al. [22] introduced the noisy choice model as
the generalization of Mallows’ model where the ground
truth was a ranking but the samples could be tournaments.
In that sense, our model is a further generalization where
even the ground truth may be a tournament.

However, this causes a potentially serious problem: The
best alternative in a ranking σ∗ is σ∗(1). But the definition
of the best alternative in a tournament T ∗ is unclear. Fol-
lowing Condorcet’s own definition of “Condorcet winners”
for cyclic majority preferences, we say that an alternative is
the winner in a tournament if it is preferred to every other
alternative. Note that not every tournament has a winner.
For a tournament T , define win(T ) to be the winner of T if
it exists, and ∅ otherwise.

Given a profile π ∈ T (A)n, we can now compute the
likelihood of an alternative a ∈ A being the best alter-
native in the unknown true tournament. Indeed, for every
T ∗ ∈ T (A) with win(T ∗) = a we have

d(π, T ∗) =
∑

b∈A\{a}
nba

+
∑

c,d∈A\{a}
(ncd · I[d �T∗ c] + ndc · I[c �T∗ d]) .

Further, for each possible combination of pairwise compar-
isons of the alternatives in A \ {a}, the set {T ∗ ∈ T (A) |
win(T ∗) = a} contains exactly one tournament that real-
izes this combination. Hence, we have

∑

T∗∈T (A):
win(T∗)=a

ϕd(π,T∗) = ϕ
∑
b∈A\{a} nba ·

∏

c,d∈A\{a}
(ϕncd + ϕndc)

∝
∏

b∈A\{a}

ϕnba

ϕnba + ϕnab
=

∏

b∈A\{a}

1

1 + ϕnab−nba
.

Now, for an alternative a ∈ A, define its likelihood poly-
nomial ΓTϕ(a) =

∏
b∈A\{a} (1 + ϕnab−nba). Technically,

ΓTϕ(a) is a Laurent polynomial, i.e., some of the pow-
ers of ϕ may be negative. Therefore, we will sometimes
work with the function Γ̂Tϕ(a) = ϕnmΓTϕ(a), which is a
polynomial of degree at most 2nm. Note that the like-
lihood polynomial of a is proportional to the inverse of
the likelihood, and is therefore to be minimized. Thus,
the maximum likelihood estimator for the best alternative
is given by MLETϕ(π) = arg mina∈A ΓTϕ(a), or, equiva-
lently, MLETϕ(π) = arg mina∈A Γ̂Tϕ(a). Since ΓTϕ(a) can
be computed for every alternative a ∈ A and every ϕ ∈ Q
in polynomial time, the following is trivial.
Theorem 2. Computing MLETϕ is in P .

5 LIMITING VOTING RULES

We will now study the extreme cases with very low and
very high noise in input votes, i.e., ϕ → 0 and ϕ → 1, re-
spectively. First, we observe that both for rankings and for
tournaments and in both limiting cases, the limiting rule is
well-defined, i.e., there exist α and β with 0 < α < β < 1
such that for P ∈ {R, T} MLEPϕ = MLEPα for all
0 < ϕ ≤ α and MLEPϕ = MLEPβ for all β ≤ ϕ < 1.
Indeed, fix a profile π. For each a ∈ A the degree of
the likelihood polynomials ΓRϕ (a) and Γ̂Tϕ(a) is finite, and
therefore we can pick απ, βπ ∈ (0, 1) so that no two of
these polynomials for π intersect in (0, απ) or in (βπ, 1).
Since the number of profiles with a fixed number of votes is
finite, taking the minimum of απ and the maximum of βπ

over all such profiles gives the desired values of α and β.
Note, however, that this argument breaks down if the num-
ber of votes may vary. For example, if ΓRϕ (a) and ΓRϕ (b)

for a profile π intersect at ϕ, then ΓRϕ (a) and ΓRϕ (b) for the
profile kπ intersect at k

√
ϕ (where kπ is the profile where

each entry of π is repeated k times). As k is unbounded,
we obtain β = supπ β

π = 1.

Notation. For the ranking model, let MLERAcc and
MLERInacc denote the limiting rules in the accurate case
(ϕ → 0) and in the inaccurate case (ϕ → 1), respec-
tively. Similarly, for the tournament model, let MLETAcc
and MLETInacc denote the limiting rules in the accurate case
and in the inaccurate case, respectively.

5.1 THE RANKING MODEL

The accurate case (ϕ→ 0): Procaccia et al. [22] showed
that when ϕ → 0, every MLE best alternative is first in
some Kemeny ranking. Further, they also showed that find-
ing even a single Kemeny winner is NP-hard.3 These re-
sults can be restated as follows.
Theorem 3 (Procaccia et al. [22]). MLERAcc is a refinement
of Kemeny’s rule, and is NP-hard to compute.

3Both results can be found in the proof of Theorem A.1 in
the appendix of the full version available at http://www.cs.
cmu.edu/˜arielpro/papers/mle.full.pdf.
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In fact, our tools enable us to describe MLERAcc in more
detail; see Appendix A of the full version of the paper.4

The inaccurate case (ϕ → 1): Procaccia et al. [22, The-
orem 4.1] proved that every MLE best alternative in this
case is also a Borda winner. However, they left open the
question of computational complexity. Despite significant
effort, we were unable to settle the computational com-
plexity either. We conjecture that MLERInacc is NP-hard
to compute.

Theorem 4 (Procaccia et al. [22]). MLERInacc is a refine-
ment of the Borda count.

Once again, the exact refinement is given in Appendix A
of the full version. While the computational complexity of
MLERInacc is unknown, we remark that computing its output
is easy whenever Borda’s rule produces a unique winner,
which is often the case.

See Section 5.3 for an example showing the computation
of MLERAcc and MLERInacc for a given profile.

5.2 THE TOURNAMENT MODEL

The accurate case (ϕ → 0): In this case we show the
following.

Theorem 5. MLETAcc is a refinement of Tideman’s rule,
and can be computed in polynomial time.

Proof. To determine the winner(s) under MLETAcc we
need to compare the likelihood polynomials ΓTϕ(a) =∏
b∈A\{a} (1 + ϕnab−nba) when ϕ → 0. Pick α ∈ (0, 1)

so that no two likelihood polynomials intersect in (0, α).
As ϕ → 0, the dominating term in ΓTϕ(a) is the smallest
power of ϕ, i.e.,

tϕ(a) =
∏

b∈A\{a},
nab≤nba

ϕnab−nba = ϕ−
∑
b∈A\{a}max{0,∆ba}

(where we take the product over the empty set to be 1).
Hence, for ϕ ∈ (0, α) we have ΓTϕ(a) < ΓTϕ(b) whenever
tϕ(a) < tϕ(b), or, equivalently, whenever SCTD(a) >
SCTD(b). Recall that we are interested in alternatives with
the smallest value of the likelihood polynomial on (0, α);
our calculation shows that every such alternative is a Tide-
man winner.

To show that MLETAcc is polynomial-time computable, it is
not sufficient to observe that the functions ΓTϕ(a), a ∈ A,
can be evaluated in polynomial time, as we also need to
find a small enough value of ϕ at which they should be
compared. Nevertheless, comparing likelihood polynomi-
als at ϕ → 0 is not difficult. We first multiply the terms
of Γ̂Tϕ(a) one-by-one, followed by expansion at each stage,

4The full version can be found at http://www.cs.cmu.
edu/˜nkshah/papers.html

to obtain the coefficients of this polynomial. Note that the
degree of Γ̂Tϕ(a) is at most 2mn, so this step can be imple-
mented efficiently. To compare two polynomials at ϕ→ 0,
it suffices to consider their coefficients lexicographically,
starting with the lowest-order terms. The details are given
in Appendix A of the full version of the paper.

The inaccurate case (ϕ→ 1): This case has striking sim-
ilarity with the inaccurate case of the ranking model.

Theorem 6. MLETInacc is a refinement of the Borda count,
and can be computed in polynomial time.

Proof. Note that Γ̂T1 (a) = ΓT1 (a) = 1 for all a ∈ A.
Therefore, to compare the likelihood polynomials as ϕ →
1, we will first compare their derivatives at ϕ = 1. We have

d

dϕ
ΓTϕ(a)

∣∣∣
ϕ=1

= 2m−2
∑

b∈A\{a}

d

dϕ

(
1 + ϕnab−nba

) ∣∣∣
ϕ=1

= 2m−2
∑

b∈A\{a}
(nab − nba).

As ϕ approaches 1 from the left, we have ΓTϕ(a) < ΓTϕ(b)

whenever d
dϕΓTϕ(a)|ϕ=1 > d

dϕΓTϕ(b)|ϕ=1. Using nba =
n−nab, we observe that the latter condition is equivalent to
SCBD(a) > SCBD(b). Thus, the winners under MLETInacc
must have the highest Borda score, i.e., MLETInacc is a re-
finement of the Borda rule.

In contrast with the ranking-based model, the rule
MLETInacc can be computed in polynomial time. Simi-
larly to the accurate case of the tournament model (see the
proof of Theorem 5), we multiply the terms of each Γ̂Tϕ(a),
a ∈ A, in order to obtain the coefficients of these polyno-
mials. Then, for each polynomial we compute its first 2nm
derivatives at ϕ = 1. As the degree of each of these poly-
nomials does not exceed 2nm, comparing two such poly-
nomials at ϕ→ 1 amounts to lexicographically comparing
these two lists of values.

Alternatively, we can show that MLETAcc and MLETInacc are
polynomial-time computable by using results on root sep-
aration of polynomials. A classic paper by Mahler [17]
proved the following.

Fact: Any two distinct roots of a polynomial are sepa-
rated by at leastH−k+1, whereH is the maximum absolute
value of any coefficient, and k is the degree.

See [3] for further explanation and improved results for
polynomials with integer coefficients. In our case, we can
consider the polynomial P =

∏
a,b∈A

(
Γ̂Tϕ(a)− Γ̂Tϕ(b)

)
;

its degree does not exceed 2nm3 and its coefficients are
at most exponential in poly(n,m). Thus, ∆ = H−k+1

has polynomially many bits. An exponential upper bound
on H (and hence the respective lower bound on ∆) can be
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computed without expanding P . Since no two likelihood
polynomials intersect on (0,∆) or on (1 − ∆, 1), the out-
puts of MLETAcc and MLETInacc can be computed by evalu-
ating and comparing ΓTϕ(a), a ∈ A, in their product form
at ϕ = ∆/2 and ϕ = 1−∆/2, respectively. We prefer the
approach presented in the proofs above because it seems to
work faster in practice, possibly due to the fact that it relies
only on integer arithmetic.

5.3 THE TOURNAMENT MODEL VERSUS THE
RANKING MODEL

The goal of this section is to compare the ranking-based
model and the tournament-based model. We begin by pre-
senting a profile on which the limiting voting rules for the
two models differ.

Example 1. Consider a profile π consisting of the follow-
ing 3 rankings over 4 alternatives.

a � b � c � d, d � a � b � c, c � d � b � a.

Recall that the likelihood polynomials ΓRϕ (a) (in the rank-
ing model) and ΓTϕ(a) (in the tournament model) of an al-
ternative a ∈ A are given by

ΓRϕ (a) =
∑

σ∗∈L(A):
σ∗(1)=a

ϕd(π,σ
∗),

ΓTϕ(a) =
∏

b∈A\{a}

(
1 + ϕnab−nba

)
.

For profile π, the likelihood polynomials are given below.

ΓRϕ (a) = ϕ8 + ϕ8 + ϕ8 + ϕ9 + ϕ9 + ϕ9,

ΓRϕ (b) = ϕ9 + ϕ9 + ϕ9 + ϕ10 + ϕ10 + ϕ10,

ΓRϕ (c) = ϕ8 + ϕ9 + ϕ9 + ϕ10 + ϕ10 + ϕ11,

ΓRϕ (d) = ϕ7 + ϕ8 + ϕ8 + ϕ9 + ϕ9 + ϕ10,

ΓTϕ(a) =
(
1 + ϕ1) (1 + ϕ1) (1 + ϕ−1) ,

ΓTϕ(b) =
(
1 + ϕ−1) (1 + ϕ1) (1 + ϕ−1) ,

ΓTϕ(c) =
(
1 + ϕ−1) (1 + ϕ−1) (1 + ϕ1) ,

ΓTϕ(d) =
(
1 + ϕ1) (1 + ϕ1) (1 + ϕ−1) .

Now, we can compute the limiting voting rules using
the likelihood polynomials as explained in Sections 5.1
and 5.2. The results of these rules along with those of the
Borda count, Kemeny’s rule, and Tideman’s rule are given
in Table 1.

While Example 1 shows that the accurate and the inaccu-
rate cases of the tournament model differ from the respec-
tive cases of the ranking model, we show that the tourna-
ment model serves as a satisfactory polynomial-time ap-
proximation of the ranking model, where computing the
limiting rules is non-trivial (and provably NP-hard in the

Ranking, Accurate MLERAcc(π) = {d}
Ranking, Inaccurate MLERInacc(π) = {d}
Tournament, Accurate MLETAcc(π) = {a, d}
Tournament, Inaccurate MLETInacc(π) = {a, d}
Borda count Borda(π) = {a, d}
Kemeny’s rule Kemeny(π) = {d}
Tideman’s rule Tideman(π) = {a, d}

Table 1: Various voting rules applied on π.

accurate case). While the tournament model—where both
the ground truth and the estimates may be cyclic—has its
intrinsic motivation (see Section 1), this offers an additional
strong motivation for the model. The similarity of both
models in the inaccurate case is evident: Both MLERInacc
and MLETInacc are refinements of Borda’s rule. However, as
seen in Example 1, these two rules are not identical. More-
over, we can show that neither of these rules is a refine-
ment of the other: Appendix C in the full version presents
an example with 8 rankings over 4 alternatives where both
MLERInacc and MLETInacc have unique winners that are dif-
ferent. We remark, however, that these two rules return the
same output most of the time (see Section 7), and always
when the Borda winner is unique.

Motivated by the similarity in the inaccurate case, we com-
pared Tideman’s rule and Kemeny’s rule, because the lim-
iting rules in the accurate case of the ranking and the tour-
nament models are refinements of Kemeny’s rule and Tide-
man’s rule, respectively. While the two rules were not pre-
viously thought to be connected, we show that Tideman’s
rule is a 2-approximation of Kemeny’s rule.

Theorem 7. The Kemeny score of a Tideman winner is at
most twice the Kemeny score of a Kemeny winner.

Proof. First, we describe an alternative interpretation of
Kemeny’s rule proposed by Conitzer et al. [7]. Given a pro-
file π over A, define a weighted pairwise majority (WPM)
graph for a set of alternatives A′ ⊆ A to be the directed
graphGA′ where the vertices are the alternatives inA′, and
there is an edge between every pair of alternatives a, b ∈ A′
with weight |∆ab| = |nab − nba|. The edge goes from a
to b if nab > nba and from b to a if nba > nab. When
nab = nba, the edge with zero weight may be drawn in
either direction.

The feedback of a ranking with respect to a WPM graph
GA′ is defined as the sum of the weights of edges of GA′
going in direction opposite to the ranking. Conitzer et
al. [7] showed that Kemeny’s rule is equivalent to first find-
ing the rankings with the smallest feedback with respect to
GA, and then returning their top alternatives.

Equivalently, we can say that in GA for every pair of alter-
natives a, b ∈ A there is an edge from a to b with weight
max(0,∆ab). Thus, the Tideman score of an alternative
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a ∈ A is the sum of weights of its incoming edges, and the
Tideman winners are the vertices that minimize this sum.
For a subset of alternatives S ⊆ A, let F (S) be the small-
est feedback with respect to GS , over all rankings of A.
To compute the Kemeny score of an alternative a ∈ A, we
consider the set of all rankings La that put a first, and find
a ranking in La that has the minimum feedback with re-
spect to GA. Note that the feedback of any ranking in La
contains all incoming edges of a. Thus, to minimize feed-
back over La, we order the alternatives in A \ {a} so as to
minimize the feedback over GA\{a}. Hence,

SCKM (a) = SCTD(a) + F (A \ {a}). (3)

Further, for every pair of alternatives a, b ∈ A, a 6= b, we
have

F (A \ {a}) ≤ SCTD(b) + F (A \ {a, b}). (4)

Indeed, the left-hand size of (4) is the feedback of the best
ranking with respect to GA\{a}, whereas the right-hand
side of (4) is the feedback of the best ranking with respect
to GA\{a} among those that put b first, plus max(0,∆ab).

Now, consider a profile π. Let a ∈ A be a Tideman winner
and let b ∈ A be a Kemeny winner. We want to show that
SCKM (a) ≤ 2SCKM (b). If a = b, this is trivial. Thus,
assume a 6= b. Combining (3) and (4), we obtain

SCKM (a) = SCTD(a) + F (A \ {a})
≤ SCTD(a) + SCTD(b) + F (A \ {a, b})
≤ SCTD(b) + SCTD(b) + F (A \ {b})
≤ 2
(

SCTD(b) + F (A \ {b})
)

= 2 · SCKM (b).

Hence, the Kemeny score of any Tideman winner is a 2-
approximation of the optimal Kemeny score.

It is easy to give an example using 4 alternatives where
the approximation factor is exactly 2. Hence, the result of
Theorem 7 is tight. Caragiannis et al. [4] show that Tide-
man’s rule, which was originally proposed as an approxi-
mation to Dodgson’s rule, is actually an asymptotically op-
timal approximation of Dodgson’s rule. Theorem 7 shows
that it is also a 2-approximation of Kemeny’s rule. Dodg-
son’s rule and Kemeny’s rule are deeply connected [23]:
While Dodgson’s rule makes the smallest number of pair-
wise swaps to reach a profile with a Condorcet winner (an
alternative preferred by a majority of voters to every other
alternative), Kemeny’s rule makes the swaps until the ma-
jority opinion becomes acyclic and then returns the first al-
ternative in the acyclic order. Tideman’s rule can now be
seen as a hybrid that provides a good approximation to both
Dodgson’s rule and Kemeny’s rule.

Kemeny’s rule admits a polynomial time approximation
scheme (PTAS) [13], which is, however, rather impracti-
cal. Constant approximations of Kemeny’s rule are studied

because they are fast and simple [10, 1, 26]. Tideman’s
rule, which admits an elegant closed-form expression (see
Section 3), is the simplest deterministic 2-approximation
of Kemeny’s rule that we are aware of. We believe that this
result, which originated from the observation that the tour-
nament model seems closely related to the ranking model,
may be of independent interest to the social choice com-
munity.

6 THE AGNOSTIC RULE

While the limiting cases of ϕ → 0 and ϕ → 1 may be
appropriate in some scenarios (and their analysis yields in-
teresting connections, e.g., Theorem 7), in most practical
settings the level of noise is unknown. We could include
ϕ as one of the unknown parameters and infer the best
possible values for the true ranking/tournament and ϕ (see,
e.g., [16]). However, this approach gives one specific value
(a “point estimate”) of ϕ. If the point estimate is wrong,
the estimate for the best alternative is also sub-optimal.

Consider instead an agnostic approach that refrains from
estimating the value of ϕ. Rather, given a profile, it returns
the set of all alternatives that are the most likely winners
for some value of ϕ. Let MLERAg and MLETAg denote the
agnostic rules in the ranking model and in the tournament
model, respectively. Then for a profile π,

MLERAg(π) =
⋃

ϕ∈(0,1)

MLERϕ (π),

MLETAg(π) =
⋃

ϕ∈(0,1)

MLETϕ(π).

There are three advantages of this approach over the in-
ference approach: First, as we show below, MLETAg can be
computed in polynomial time, and results presented in Sec-
tion 7 demonstrate that MLETAg is a good approximation of
MLERAg as well. Thus, it is easy to compute and use the
agnostic rule. Most inference problems, on the other hand,
are hard to solve [16]. Second, if the data is indeed gener-
ated from a Mallows’ (ranking or tournament) model, the
MLE best alternative is guaranteed to be in the set returned
by the agnostic rule, which is not the case for the inference
approach. Third, while the set of winners under the agnos-
tic rules contains the set of winners for any specific value of
ϕ, our simulations in Section 7 show that on average only
a few winning alternatives are returned.

Now, we show that the agnostic rule can be computed in
polynomial time for the tournament model. Note that this
is not obvious: While the limiting cases can be analyzed
by looking at the coefficients of the likelihood polynomi-
als or using a root separation approach, these methods do
not work for values of ϕ away from 0 and 1. We use an-
other result regarding polynomials, which is known as root
isolation (see, e.g., [6, 25]).
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Fact: Given a polynomial, one can compute, in time poly-
nomial in the input size, a set of disjoint intervals that iso-
late the roots of the polynomial, i.e., disjoint intervals that
collectively contain all roots of the polynomial but each in-
terval only contains a single distinct root.

Theorem 8. Computing MLETAg is in P .

Proof. Once again, consider the polynomial P =∏
a,b∈A

(
Γ̂Tϕ(a)− Γ̂Tϕ(b)

)
. We have argued that the de-

gree of P is at most 2nm3, and its coefficients can be com-
puted in polynomial time. Next, we use root isolation to
isolate the roots of P in polynomial time. Note that any
value of ϕ ∈ (0, 1) where some alternatives a, b, a 6= b,
have equal likelihood is a root of P . Hence, in any region
between two consecutive roots of P , the order of likeli-
hoods of different alternatives is fixed.

Therefore, computing MLETAg amounts to taking one value
of ϕ between each consecutive pair of isolating intervals,
evaluating MLETϕ at every such ϕ, and returning the set of
all MLE alternatives found. Note that the number of roots
of P and therefore the number of evaluations of MLETϕ is
polynomial in the input size, and we have already estab-
lished that evaluating MLETϕ itself can be done in polyno-
mial time (Theorem 2). Hence, the overall running time is
polynomial in the input size.

7 EXPERIMENTS

In this section, we complement our theoretical results by
two sets of experiments. The results of Section 5.3 es-
tablish that the tournament model can be thought of as a
polynomial-time approximation to the ranking model. The
first set of experiments analyzes how close the limiting
rules (and the agnostic rules) in the two models are to each
other on average. The second set of experiments aims to
check whether the agnostic rules return reasonably small
sets of winning alternatives. To this end, we compute the
average number of winning alternatives returned by the ag-
nostic rules in the two models.

For both sets of experiments, we generate profiles using iid
samples from Mallows’ (ranking) model with the noise pa-
rameter ϕ taking 10 different values from 0.1 to 1.5 In each
case, we average our results over 5000 sampled profiles. It
is easy to check that the Borda winner, the Tideman win-
ner, and the Kemeny winner always coincide in case of 3
alternatives. Hence, in our experiments we set the num-
ber of alternatives m to 5 or 7; the number of votes n is
also either 5 or 7. Thus, each of the graphs presented has
four lines; one for each of (n,m) = (5, 5), (5, 7), (7, 5),

5We use the ranking model to generate profiles so that the gen-
erated profiles consist of rankings, which are also tournaments.
This allows applying the rules for both models on the same pro-
files.

and (7, 7). In all the graphs, the x-axis shows the noise pa-
rameter ϕ used to generate profiles. Importantly, while the
tournament model admits polynomial-time algorithms, and
can therefore be used with a large number of alternatives,
we use a small number of alternatives to be able to compare
the associated voting rules with the exponential-time rules
of the ranking model.

For the first set of experiments, we measure the dissimilar-
ity between three pairs of rules in terms of the dissimilarity
between the sets of winning alternatives they return. As the
measure of dissimilarity between two setsA andB, we use
the Jaccard distance, which is defined as follows.

dJ(A,B) =
|A ∪B| − |A ∩B|

|A ∪B| .

Figures 1(a), 1(b), and 1(c) respectively show the dissimi-
larity between the limiting rules for the accurate case, the
limiting rules for the inaccurate case, and the agnostic rules
of the two models—the ranking model and the tournament
model—as a function of their noise parameter ϕ (note that,
while the limiting rules were derived for a specific range of
the noise parameter ϕ, we compare them at all values of ϕ).
An interesting observation is that while the dissimilarity is
quite low in both the accurate and the agnostic cases, it is
surprisingly low in the inaccurate case. This observation
holds true for all combinations of (n,m). This indicates
that the MLE rules of the tournament model are in gen-
eral good approximations of the MLE rules of the ranking
model, and the approximation becomes very good for the
rules derived under the assumption of very high noise.

Continuing our comparison of the two models, note
that Theorem 7 establishes that Tideman’s rule is a 2-
approximation of Kemeny’s rule in the worst case (in terms
of the Kemeny score of the winner). This is a significant
improvement over the Borda count, which is known to give
a 4-approximation in the worst case [10]. Thus, Tideman’s
rule improves over Borda’s rule by a factor of 2 in the worst
case. It is interesting to check if this relationship holds even
in the average case.
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Figure 2: Approximations of Kemeny’s rule.

Figures 2(a) and 2(b) show the average-case approxima-
tion factors of the Borda count and Tideman’s rule, respec-
tively, as a function of the noise parameter ϕ. It is evident
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Figure 1: The dissimilarity between the ranking model and the tournament model.

that for both rules their average-case approximation factors
are much better than their worst-case approximation fac-
tors. However, in the average case, the Borda count quickly
reaches an approximation ratio of 1.01, while the approx-
imation ratio of Tideman’s rule stays well below 1.003.
That is, the improvement of Tideman’s rule over the Borda
count is at least as good—in fact, slightly better—in the
average case as in the worst case.
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Figure 3: The average number of winning alternatives re-
turned by the agnostic rules.

In our second set of experiments, we analyze the average
number of winning alternatives returned by the agnostic
rules in the ranking and the tournament models, again as
a function of the noise parameter ϕ. Figures 3(a) and 3(b)
show the results for the ranking and the tournament models,
respectively. It can be seen that the agnostic rule—despite
returning a set of alternatives that is guaranteed to contain
the MLE best alternative for all values of ϕ ∈ (0, 1)—
outputs an average of less than 1.3 and 1.2 alternatives in
the ranking model and the tournament model, respectively.
In fact, in our simulations, the agnostic rules in both mod-
els return a single alternative, which is guaranteed to be the
MLE best alternative for all values of ϕ, more than 80% of
the time, for every ϕ ∈ (0, 1).

8 DISCUSSION

We have studied methods for picking the best alternative
given noisy estimates of an objective true comparison be-

tween the alternatives. Besides studying the standard Mal-
lows’ model where both the ground truth and the estimates
are acyclic total orders, we introduced and studied the set-
ting where both may contain cycles. Procaccia et al. [22]
studied the case where the ground truth is acyclic, but the
estimates may or may not be cyclic. The only case not
studied in the literature is that of possibly cyclic ground
truth and acyclic estimates. However, this setting does not
appear natural, and is also technically challenging: the de-
nominator Zmϕ in the probability expression of Mallows’
model (Equation 1) would not be independent of the ground
truth, rendering the analysis extremely difficult.

Generalizations of Mallows’ model have been proposed in
the literature [15, 20]. Some of these use critical informa-
tion regarding positions of the alternatives in the ground
truth ranking. Future work may also involve adapting such
models to the case of tournaments; for example, one can
use the number of alternatives defeated by a given alter-
native as a proxy for its rank, or one can develop distance
metrics over tournaments to replace the Kendall tau dis-
tance in Equation (1). It would be interesting to see if such
adaptations provide tractable approximations of the origi-
nal ranking model.

The maximum likelihood approach to voting focuses solely
on maximizing the likelihood of selecting the best alter-
native. This results in voting rules that can be difficult to
understand, but have performance guarantees nonetheless.
While simplicity is usually an important goal in the design
of voting rules, it is less of an issue in human computation
contexts, where the workers are paid for their input and do
not need to know or understand how their estimates would
be aggregated. Yet, in some practical applications, one may
wish to use rules with additional desirable properties, either
motivated by the application itself or as a safeguard in case
the assumptions about the nature of the noise fail. A very
exciting direction is to use Mallows’ model in order to in-
form the design of voting rules while trading off some of
the likelihood for axiomatic properties such as Condorcet
consistency or monotonicity.
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Abstract

Binary matrices and tensors are popular data
structures that need to be efficiently approxi-
mated by low-rank representations. A standard
approach is to minimize the logistic loss, well
suited for binary data. In many cases, the num-
ber m of non-zero elements in the tensor is much
smaller than the total number n of possible en-
tries in the tensor. This creates a problem for
large tensors because the computation of the lo-
gistic loss has a linear time complexity with n. In
this work, we show that an alternative approach is
to minimize the quadratic loss (root mean square
error) which leads to algorithms with a training
time complexity that is reduced from O(n) to
O(m), as proposed earlier in the restricted case
of alternating least-square algorithms. In addi-
tion, we propose and study a greedy algorithm
that partitions the tensor into smaller tensors,
each approximated by a quadratic upper bound.
This technique provides a time-accuracy trade-
off between a fast but approximate algorithm and
an accurate but slow algorithm. We show that
this technique leads to a considerable speedup in
learning of real world tensors.

1 INTRODUCTION

In multi-relational data factorization problems [20, 25],
many negative examples are implicitly created for rela-
tions that are not true. For example, in a knowledge
base of family relationships, the fact isFather(x,y)
can be considered as a positive example and automat-
ically induces m − 1 negative examples of the form
not(isFather(x,z)), for all m individuals z differ-
ent from y. In other words, for some relations, one pos-
itive example is always associated with several thousands
of negative examples. The focus of our work is to consider
algorithms that are independent of this number of negative

examples. In a different domain, state-of-the-art detection
systems in computer vision are based on a binary classifier
applied many times on a dense multi-resolution scan of an
image [7]. Here, most of the examples do not contain the
object to be detected and negative patches often overwhelm
the number of positive examples. Finally, another classi-
cal example of such problems with unbalanced categories
corresponds to recommender systems taking into account
implicit feedback: in this domain, it corresponds to the sig-
nal that if a user did not do some action, such as buying an
object in an online shopping web site or did not click on
an online advertisement, then a negative training example
is created to take into account the fact that the proposed
item or advert might not be appropriate. While these neg-
ative examples are sometimes subject to controversy since
one does not know whether the recommendation was cor-
rect or not, they are nevertheless considered as very useful
by practitioners and are key components of most of online
recommendation engines [9].

For a binary classification problem where the total number
n+ of positive examples is largely inferior to the total num-
ber n− of negative examples, the complexity of most of the
existing learning algorithms is at least linear in the num-
ber n = n+ + n− of training samples, since it is a general
belief that every training point needs to be loaded in mem-
ory at least once. In fact, the sparsity of the data can be
used to drastically reduce the computation time of square-
norm minimization problems, as proposed by [9] using a
alternating least square algorithm, where each least square
problem has a complexity linear in the number of positive
data only. We will give an alternative derivation of this
result and show that it is also valid for gradient-based algo-
rithms.

However, the squared loss is not always satisfactory. For
example, binary tensor decomposition with logistic loss
gives much better predictive performance than minimizing
the squared loss. The downside of it is that the compu-
tational cost increases significantly [14, 19], and one usu-
ally relies on heuristic rules to subsample the negative ex-
amples [11]. The time to minimize the logistic loss (or
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other non-quadratic loss) scales linearly in the total num-
ber n = n+ + n− of observations, which is a real issue in
these heavily unbalanced datasets for which n+ << n−.

In this work, the key contributions are:

• For matrix and tensor factorization models learned by
minimizing the squared loss, we show that all the al-
gorithms can benefit from this speedup, i.e. it is not re-
stricted to the alternating least square algorithm of [8],

• We propose a new algorithm to minimize non-
quadratic losses. It is based on the partitioning of the
tensor into blocks and the use of Jaakkola’s quadratic
upper bound to the logistic loss [10]. While Jaakkola’s
bound has already been used to factorize large ma-
trices, the case of unbalanced datasets was not ad-
dressed [24]. Our work can be viewed as a novel ap-
plication of these upper-bounding techniques, where
the incremental refinement of the approximation pro-
vides a natural way to correct the optimality gap intro-
duced by the bound.

2 PROBLEM FORMULATION

Let Ω := {(i1, · · · , iD) ; id ∈ {1, · · · , nd} ∀d =
1, · · · , D} denotes the set of D-uplets for the dimensions
n1, n2, · · · , nD. For each of these D-uplets, we observe
a noisy binary values yt ∈ {0, 1} indexed by t ∈ Ω.
These observations can also be represented as a noisy bi-
nary tensor Y ∈ {0, 1}n1×···×nD where n1, n2, · · · , nD
correspond to the tensor dimensions. Typically, D = 2
will correspond to binary matrices, and D = 3 to third-
order tensors as used in database factorization models such
as RESCAL [20]. Our objective is to predict the value of
some specific entries in the tensor, which can be understood
as detecting which entries in the tensor are outliers yt. To
do this, we estimate a tensor Z(θ) ∈ Rn1×···×nD of log-
odds parameterized by θ ∈ Θ.

We formulate the problem as an empirical loss minimiza-
tion. In the training phase, the empirical loss L is mini-
mized with respect to the parameter vector θ:

min
θ∈Θ
L(θ) L(θ) :=

∑

t∈Ω

`(yt, zt(θ)) (1)

where `(y, z) = −y log(σ(z))−(1−y) log(1−σ(z)) with
σ representing the sigmoid function: σ(z) := 1

1+e−z . The
predicted tensor Z(θ) := {zt(θ)}t∈Ω is assumed to be a
factored representation, i.e. it has a low rank structure. For
clarity, we consider only multi-linear models based on the
PARAFAC [6] tensor parametrization.1 The predictions zt
are obtained by the multilinear product of rank-K factors

1We can easily adapt this work to more general decomposi-
tions such as Tucker or RESCAL, or even to convex loss functions
using trace-norm regularization.

represented in the rows of matrices Θd ∈ Rnd×K , d ∈
{1, · · · , D}:

zt(θ) :=
K∑

k=1

D∏

d=1

θ
(d)
tdk

:=
〈
θ

(1)
t1 , · · · ,θ

(D)
tD

〉
.

For matrices (D = 2), this model is a special case of
exponential-family PCA [5] where the link function is
logistic. For D = 3, this model has been studied in
the context of multi-relational knowledge bases factoriza-
tion [14, 18]. To solve Equation (1), several optimization
methods have been proposed in the literature. Alternating
optimization, gradient descent and stochastic gradient de-
scent:

• The gradient descent algorithms are only based on
the minimization of L by doing small steps in the
direction of the gradients. Since the loss is differ-
entiable, we derive its gradient in closed form and
use a generic software to choose the optimal descent
direction. In the experiments below, we use Marc
Schmidt’s minFunc Matlab function.2

• The alternating optimization procedure, also called
block coordinate descent, consists in minimizing the
loss L with respect to the i-th component Θi, keeping
all the other components Θj , j 6= i fixed. This opti-
mization makes use of existing optimized linear logis-
tic regression algorithms. The optimization procedure
is obtained through a round-robin schedule. This ap-
proach is simple to implement, but it involves an in-
ner loop since linear logistic regression algorithms are
also based on gradient minimization.

• For large scale optimization, there is a growing in-
terest in stochastic gradient descent algorithms since
every gradient computation can potentially be too ex-
pensive. It consists in computing the gradients for a
subset of the observations.

For highly sparse matrices where the number of zeros is
much larger than the number of ones, these approaches do
not scale well with the dimension of the tensor. For each
of these algorithms, the time to make one function evalua-
tion is the key bottleneck. The gradient descent algorithm
requires to sum |Ω| elements (one per possible prediction).
One step of the alternating optimization procedure is com-
putationally costly because it requires to solve a linear lo-
gistic regression with |Ω| observations. The stochastic gra-
dient descent algorithm seems to be better as each itera-
tion is very fast, but it still requires |Ω| iterations to do one
pass through the data. For some problems, good predic-
tive performances are obtained even before the first pass

2Can be found at http://www.di.ens.fr/
˜mschmidt/Software/minFunc.html.

193



−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Figure 1: Comparison of the logistic function and the Gaus-
sian distribution. The Gaussian distribution (the mean is
-2.61 and the variance is 5.25) approximates well the lo-
gistic function in a range of values (gray area in the range
[-2,2]) that corresponds to probabilities between 0.12 and
0.88 (dotted lines). In most of recommender systems appli-
cations, the probability of correctly predicting user choice
is in this range, which explains that RMSE loss is reason-
able.

through the data has been completed, but this case is rel-
atively rare in practice. Our objective is to study methods
that have a sub-linear complexity in the number of training
sample, i.e. we can take into account all the |Ω| training
samples while having a complexity that scales only in the
number n+ = |Ω+| of non-zero elements. In the follow-
ing we show that this complexity can be obtained by using
a quadratic approximation to the logistic loss, leading to
considerable speedup in our experiments.

3 QUADRATIC LOSS: FAST BUT OFTEN
INACCURATE

As illustrated in Figure 1, the logistic loss can be reason-
ably approximated by a quadratic function, so the Root
Mean Square Error (RMSE) should be a a good surro-
gate function to minimize. A naive computation of the
square loss L(θ) =

∑
t∈Ω(yt − zt(θ))

2 would require
O(KD

∏
d nd) operations, since there are

∏
d nd possible

predictions, but simple algebra shows that it is equal to:

L(θ) =
∑

t∈Ω

(yt − zt)2 (2)

= n+ − 2
∑

t∈Ω+

zt(θ) +
K∑

k=1

K∑

k′=1

D∏

d=1

M
(d)
kk′ (3)

where the K × K matrices M (d) are defined by M (d)
kk′ :=∑d

j=1 θ
(d)
jk θ

(d)
jk′ . Hence, for tensors of high dimension, we

get a significant speedup as Equation (3) can be computed
in O(Kn+ + K2

∑
d nd) operations.As an example, as-

sume one wishes to compute the loss of a 1000 × 1000 ×
1000 tensor containing 105 entries and the low-rank ap-
proximation has rankK = 100. Then, we can see that there
are 3.1011 basic operations in the formula of Equation (2),

while the formula of Equation (3) contains 6.107 basic op-
erations. This means that it will be 5000 times faster to
compute exactly the same quantity!

If we minimize the loss L(θ) with respect to θ using block-
coordinate descent, the iterations end up being least squares
problem with a per-iteration complexity that scales linearly
with the number of positive examples only. This corre-
sponds exactly to the iTALS algorithm [22], which is the
tensor generalization of the alternating least squares algo-
rithm of [9]. In our experiments, we used gradient descent
to minimize the objective function, using Equation (3) to
compute the gradient efficiently (the complexity is the same
as the function evaluation).

4 SPEED-ACCURACY TRADE-OFF BY
BOUNDING SPLITS

4.1 UPPER BOUNDING THE LOSS

To speed-up computation, we minimize a quadratic upper
bound to the logistic loss. We use Jaakkola’s bound to the
logistic loss [10]:

log(1 + ez) ≤ λ(ξ)(z2 − ξ2) +
1

2
(z − ξ) + log(1 + eξ) ,

where λ(ξ) := 1
2ξ ( 1

1+eξ
− 1

2 ) and ξ is a variational param-
eter. We keep the same value for ξ for all the elements of
the tensor Z, so that the upper bound has exactly the form
required to apply the computational speedup described in
the previous section.

L̄(θ, ξ) = λ(ξ)
∑

t∈Ω

(
zt −

2yt
4λ(ξ)

)2

+ c(ξ)

where c(ξ) is a constant function that does not depend on θ:

c(ξ) = |Ω|
(

log(1 + eξ)− λ(ξ)ξ2 − 1

2
ξ − 1

16λ(ξ)

)

The optimization of this bound with respect to ξ gives ex-
actly the Frobenius norm of the tensor:

∑

t∈Ω

zt(θ)
2 = arg min

ξ
L̄(θ, ξ) . (4)

Note that Z(θ) is low rank in general. This means that
it can also be efficiently computed using the third term of
Equation (3). We have now an upper bound to the original
loss L that needs to be minimized:

L(θ) ≤ L̄Ω(θ, ξ) . (5)

As usual with bound optimization, we alternate between
two steps: 1) minimizing the bound with respect to the
variational parameter ξ using closed form updates (e.g.
when using Jaakkola’s bound) or dichotomic search where
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Figure 2: Illustration of the idea of bound refinement. The
main idea is that computing the integral of the quadratic
upper bound (such as b1 in the top graph) is much faster
than computing the integral of f directly. To improve the
accuracy, we use piecewise bounds. To choose the domain
of the pieces, we use a greedy algorithm that identifies the
partition that leads to the diminished upper bound (leading
to the upper bounds b2 and b3.

no closed form solution exists; and 2) minimizing the
bound with respect to θ using a standard gradient de-
scent algorithm. This algorithm is sometimes referred as
Majorization-Minimization algorithm in the literature [16].
The algorithm minimizes the loss with a complexity per
iteration equal to O

(
Kn+ +K2

∑
d nd

)
In the experi-

ments, this algorithm is called Quad-App. It is detailed in
Algorithm 2.

4.2 SPLIT THE DATA TO IMPROVE ACCURACY

The drawback of the previous approach, even with one or
two orders of magnitude speedups, the resulting quadratic
approximation can be quite loose for some data, and the
accuracy of the method can be too low. We give here a
family of approximation that interpolates between this fast
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Figure 3: Example of matrix split to improve upper bound
accuracy. Colors identify blocks. Numbers in the ma-
trix represent predictions. The block 1 is decomposed into
blocks 1 and 4, both having a small variance on the absolute
value of the predictions.

but inaccurate quadratic approximation and the slow but
exact minimization of the non-quadratic loss.

We propose to take advantage of the speedup due to the
quadratic upper bound by applying it on a partition of the
the original tensor: we select a set B = {B1, ·, B|B|} of
disjoint blocks that partitions the space of possible obser-
vation indices Ω. On each of these blocks, the bounding
technique described in the previous section is applied, the
main difference being that the minimization with respect to
θ is done jointly on all the blocks. This process is illustrated
in Figure 2. Formally, each block Bb, b ∈ {1, · · · , |B|} is
identified by D sets of indices which represent the dimen-
sions that are selected in the given block b. The split of
these indices are illustrated in a toy matrix example in Fig-
ure 3. Blocks for tensors are computed the same way as
matrices, but the depth indices are also splitted: At each
refinement step, we choose to partition the rows indices,
column indices or depth indices.

To select the blocks, we use a greedy construction of
the blocks: starting with a single block containing all
the indices, i.e. B = {Ω}, we iteratively refine the
blocks using the following two-step procedure, called
RefineBlocks:

1. select the block b to split that has the maximal variance
in the absolute values of the predictions |zt|;

2. split the block b into two block so that the variance
of the absolute values of the predictions |zt| is mini-
mized.

An example of such a split is shown in Figure 3. This
method is fully described in Algorithm 1, which uses Al-
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Algorithm 1 Iterative block splitting: minθ,B L̄(θ,B, Y )

1: θ̂ = UBAdaptiveMinimization(Y , θ(0), ε)
2: Inputs: tensor Y , initial θ(0), tolerance ε
3: Outputs: latent factors θ̂ = {Θ̂1, · · · , Θ̂D}
4: Initialize blocks B(0) = {Ω},
5: for i = 1, 2, · · · until improvement less than ε do
6: θ(i) = UBMinimization(Y , θ(i−1), ε/2, B(i−1))
7: B(i) ← RefineBlocks(B(i−1),θ(i))
8: end for
9: θ̂ = θ(i)

Algorithm 2 UBMinimization minθ L̄(θ,B, Y )

1: θ̂ = UBMinimization(Y , θ(0), ε, B)
2: Inputs: tensor Y , initial θ(0), tol. ε, blocks B
3: Outputs: latent factors θ̂ = {Θ̂1, · · · , Θ̂D}
4: for i = 1, 2, · · · until improvement less than ε do
5: for b = 1, 2, · · · , |B| do
6: ξ

(i)
b ← arg minξb L̄b(θ(i−1), ξb,Bb)

7: end for
8: θ(i) ← arg minθ

∑
b L̄b(θ, ξ

(i)
b ,Bb)

9: end for
10: θ̂ = θ(i)

gorithm 2 as a sub-program to learn the parameters for a
fixed set of blocks, following the approach described in the
previous section. There is a tradeoff between optimizing
the bound using Algorithm 2 and refining the partition B in
Algorithm 1. A simple strategy that worked well in prac-
tice was to refine the partition when the upper bound mini-
mization did not improve more than a given tolerance level
ε/2 in two successive iterations. This piecewise refinement
strategy is called PW Quad-App in the experimental sec-
tion.

We also introduced a slight variant of this basic algorithm,
where we compute the exact logistic loss in blocks that are
sufficiently dense, i.e. when computing Equation (3) re-
quires more iterations than computing the loss in the clas-
sical way (Equation (3)). This condition is verified when
n+(B) ≥ ∏D

d=1 n
(B)
d −K∑D

d=1 n
(B)
d , where n+(B) and

n
(B)
d correspond to the number of non-zero elements and

dimensions of the block tensor B. We call this variant
PW Quad-App + Logistic.

5 EXPERIMENTS AND RESULTS

In this section, to evaluate the performances of our frame-
work, we conducted experiments on both synthetic and real
datasets.

Synthetic Data Experiments To explore the speed-
accuracy tradeoff, we generated different binary matrices
Y by randomly sampling noisy low-rank matrices X =

UV + E where U ∈ Rn1×r and V ∈ Rr×n2 are gen-
erated using independent standard normal variables and
E ∈ Rn1×n2 is a normally distributed Gaussian noise
with standard deviation σ. To create the binary matrix
Y ∈ {0, 1}n1×n2 , we round the values of X using a high
percentile of X as a threshold to produce a heavy tendency
towards the negative class. We learn an estimation X̂ of the
original matrix X on the data matrix Y assumed to be fully
observed and compute the RMSE on the recovery of X ,
i.e. RMSE=‖X − X̂‖F . We measure the running time of
each of the methods to understand their scalability to large
datasets.
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Figure 4: Matrix recovery results on simulation data with
size 10000×5000, sparsity %0.1 and noise σ = 0.1. Mark-
ers are plotted at iterations 10, 17, 28, 35, 52, 63 and 73
(these times correspond to the refinement of the piecewise
bound).

The timing and accuracy performances of our methods on
simulation data with various dimensions, noise levels and
sparsity percentages are shown in Table 1. These results
are averaged over 10 runs and we choose rank r = 5 for
every simulation. Here, the baselines are logistic loss and
quadratic loss. The logistic loss gives much smaller error
rates than the quadratic loss (EUC-Full and EUC-Fast) and
quadratic approximation, especially when the noise level is
low. However, minimizing the logistic loss requires con-
siderably more time than the alternative approaches as the
problem size grows. These experiments highlight the fact
that our unified framework for quadratic loss gives a sig-
nificant improvement over logistic loss in terms of runtime
performance. We also observe that the piecewise quadratic
bounding technique has better predictive performance than
the quadratic approximation, along with a huge speedup
when we compare it to the time to train the model using
the logistic loss. On Figure 4, we plotted the test RMSE
with respect to the CPU time (each marker corresponds to
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Table 1: Evaluation results of the synthetic experiments in terms of seconds for runtime and RMSE for matrix recovery.

Methods

EUC-Full EUC-Fast Logistic Quad-App PW QuadApp

Noise Level Dimension Sparsity RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time

Low
Noise
σ = 0.1

n1 = 100
n2 = 50

10% 0.6970 60.45 0.6970 0.50 0.3561 103.13 0.6421 0.58 0.4377 6.16

1% 0.6792 55.57 0.6792 0.46 0.1095 90.65 0.4568 0.56 0.1918 3.19

n1 = 1000
n2 = 500

1% 0.7251 5295.7 0.7251 63.10 0.1563 7216.2 0.7054 75.49 0.3790 421.11

0.1% 0.7251 5248.3 0.7251 42.90 0.2126 6605.6 0.7067 62.90 0.5247 301.35

n1 = 10000
n2 = 5000

0.1% 0.4483 84950 0.4483 1289.2 0.0497 68199 0.2052 1353.8 0.0911 6683.9

0.01% 0.4217 86109 0.4217 803.2 0.0329 66482 0.1814 1049.3 0.0583 4271.4

High
Noise
σ = 2.0

n1 = 100
n2 = 50

10% 2.8989 59.06. 2.8989 0.48 1.2789 94.49 1.8639 0.73 1.3212 10.18

1% 2.8821 44.96 2.8821 0.37 0.2377 59.21 0.4589 0.54 0.2622 7.14

n1 = 1000
n2 = 500

1% 2.6705 7070.3 2.6705 110.87 0.3371 6592.0 0.4052 132.55 0.3659 943.67

0.1% 2.5116 7276.2 2.5116 109.99 0.0563 6503.1 0.1304 120.83 0.1078 783.91

n1 = 10000
n2 = 5000

0.1% 1.9990 97084 1.9990 1486.1 0.2312 66124 0.2604 1523.0 0.2374 7352.8

0.01% 1.7416 83846 1.7416 1183.0 0.1332 65664 0.1661 1589.6 0.1414 6613.1

an iteration). Because the error rate of quadratic loss is
considerably bigger than the other methods, we show the
results of logistic loss, quadratic approximation and piece-
wise methods in this figure. It is interesting to see that the
piecewise quadratic bound reaches its goal of interpolating
the performances between the fast but inaccurate quadratic
approximation, and the slow but accurate logistic loss min-
imization: On a wide range of times (from 2 minutes to
1 hour), the piecewise quadratic bound gives the best per-
formances. It is worth to note that the slight modification
that was introduced to perform exact logistic on the small-
est pieces improves performances when the methods have
nearly converged (after 60 iterations). Note that this exper-
iment was done on matrices, but the differences are even
bigger for tensors of high order.

Real Data Experiments In order to evaluate the perfor-
mances of our methods, we designed link-prediction ex-
periments on standard multi-relational datasets: Nations
that groups 14 countries (entities) with 56 binary relation
types (like ’economic aid’, ’treaties’ or ’rel diplomacy’)
representing interactions among them; Kinships which is
the complex relational structure of Australian tribes’ kin-
ship systems. In Kinships dataset, 104 tribe members were
asked to provide the kinship terms they used for one an-
other and this results in graph of 104 entities and 26 re-
lation types, each of them depicting a different kinship
term. And UMLS that contains data from the Unified Med-
ical Language System semantic work used in [11]. This
dataset consists in a graph with 135 entities (high-level
concepts like ’Disease or Syndrome’, ’Diagnostic Proce-
dure’) and 49 relation types (verbs depicting causal in-
fluence between concepts like ’affect’ or ’cause’). In the
end, these datasets results in tensors Y ∈ {0, 1}14×14×56,
Y ∈ {0, 1}104×104×26 and Y ∈ {0, 1}135×135×49 respec-

tively.

Then, we compared the Area Under the Receiver Operat-
ing Characteristic Curve (AUC) and runtime in seconds of
piecewise methods to the results of quadratic approxima-
tion and logistic loss and also the results of RESCAL [20],
SME [2] and LFM [11] that have the best published results
on these benchmarks in terms of AUC.

In addition, we test the performances of these methods on
three datasets in matrix form: MovieLens 3, Last FM 4 [4]
and Sushi Preference [12]. MovieLens dataset contains
movie ratings of approximately 1682 movies made by 943
MovieLens users and results in matrix Y ∈ {0, 1}943×1682.
The Last FM dataset consists of music artist listening
information from a set of 1892 users from Last.fm on-
line music system. We construct a binary matrix Y ∈
{0, 1}1892×17632 from this dataset that contains the artists
listened by each user. Lastly, the Sushi Preference Data Set
includes 4950 users’ responses of preference in 100 differ-
ent kinds of sushi. In this dataset, the most disliked kind of
sushi represented by 0 and the most preferred one is rep-
resented by 1. Eventually, sushi dataset results in matrix
Y ∈ {0, 1}100×4950.

For the results given in Table 2, we performed 10-
fold cross validation and averaged over 10 random splits
of the datasets. In addition, we select the optimal
regularization parameter λ∗ by searching over the set
{0.01, 0.05, 0.1, 0.5, 1} that maximizes the AUC and we
computed rank-20 decomposition of these datasets in or-
der to get comparable results to RESCAL, SME and LFM.
The time and accuracy comparisons are given in Table 2
in terms of seconds for time and AUC metric for predict-

3www.grouplens.org/node/73
4www.grouplens.org/datasets/hetrec-2011/
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Table 2: Evaluation results obtained by our approaches, RESCAL [20], SME [2] and LFM [11] on the given datasets.
Datasets

Methods Nations Kinships UMLS MovieLens Last FM Sushi

AUC

EUC-Full 0.7536 0.8193 0.8205 0.8511 0.8965 0.8199
EUC-Fast 0.7536 0.8193 0.8205 0.8511 0.8965 0.8199
Logistic 0.9253 0.9592 0.9795 0.9848 0.9454 0.9513

Quad-App 0.8635 0.9087 0.9169 0.8916 0.9042 0.9078
PW QuadApp 0.9038 0.9213 0.9387 0.9490 0.9272 0.9200

PW Quad+Logistic 0.9122 0.9416 0.9566 0.9781 0.9381 0.9373
RESCAL [20] 0.8400 0.9500 0.9800 0.9601 0.9257 0.9481

SME [2] 0.8830 0.9070 0.9830 0.9144 0.9328 0.9177
LFM [11] 0.9090 0.9460 0.9900 0.9790 0.9401 0.9598

Time
(sec)

EUC-Full 922.87 8793.8 81039 103454 701819 13490.8
EUC-Fast 18.37 80.95 167.67 344.81 3688.74 142.63
Logistic 1483.7 10374.2 75489 111257 721994 12704.6

Quad-App 18.07 97.13 187.1 431.35 1839.16 142.06
PieceQuadApp 32.52 169.35 922.65 1095.94 2792.18 643.56

PW Quad+Logistic 59.71 651.12 1035.47 1349.6 4065.12 755.72
RESCAL [20] 626.40 3714.6 4142.05 6786.23 9861.50 2632.1

SME [2] 32.11 135.9 513.03 749.07 1627.56 279.38
LFM [11] 64.63 1446.22 5097.5 8265.56 13058.1 3438.07

ing missing values. These results demonstrate that logis-
tic loss improves accuracy over RESCAL, SME and LFM
in Nations, Kinships, MovieLens and Last FM datasets
while it reaches almost the same score for UMLS and
Sushi datasets. On the other side, piecewise methods pro-
vide very close approximation to logistic loss on all these
datasets and they have a significant advantage in terms of
runtime over the other methods. They take a small fraction
of logistic loss’ running time, especially for large datasets.

6 RELATED WORK

In order to deal with learning on various forms of structured
data such as large-scale knowledge bases, time-varying net-
works or recommendation data, tensor factorizations have
become increasingly popular [3, 21, 23]. Recently, Nickel
et al presented RESCAL [20], an upgrade over previous
tensor factorization methods, which has been shown to
achieve state-of-the-art results for various relational learn-
ing tasks such as link prediction and entity resolution. In-
dependently, a similar logistic extension of the RESCAL
factorization has been proposed in [14]. [21] is an exten-
sion to the RESCAL algorithm on the YAGO ontology and
is based on alternating least-squares updates of the factor
matrices, has been shown to scale up to large knowledge
bases via exploiting the sparsity of relational data. Among
the existing works, [18] is the most similar work with our,
which is the logistic extension of RESCAL. It demonstrates
that the logistic loss improves the prediction results signif-
icantly but their algorithm requires to compute the dense
matrix and cannot scale to large data. In RESCAL, entities
are modeled by real-valued vectors and relations by matri-

ces. Bordes et al has further improved this idea in the Struc-
tured Embeddings (SE) framework [3] by learning a model
to represent elements of any knowledge base (KB) into a
relatively low dimensional embedding vector space by ten-
sor factorization method. Latent Factor Model (LFM) [11]
is based on a bilinear structure, which captures various or-
ders of interaction of the data, and also shares sparse la-
tent factors across different relations. In [2], they present
a new neural network designed to embed multi-relational
graphs into a flexible continuous vector space via a custom
energy function (SME) in which the original data is kept
and enhanced. In all of these studies [3, 11, 2], the data is
extremely skewed i.e., the number of negative examples�
the number of positive examples. To overcome the sparsity,
they first select a positive training triplet at random, then
create a negative triplet by sampling an entity from the set
of all entities. Unlike these approaches, we argue that it
is in general more appropriate to consider all the negative
examples.

Maaten et al [15] derive an upper bound to logistic loss
which can be minimized as surrogate loss for linear predic-
tors on binary labels. Khan et al [13] used Jaakkola’s bound
for binary observations and Bohning’s bound for multino-
mial observations [1]. Our work can be easily extended
to take into account Bohning’s bound. In addition, piece-
wise bounds have the important property: reducing the er-
ror as the number of pieces increase. Marlin et al. proposed
an improvement on the logistic-loss with piecewise linear
bounds, but this is a local approach and does not apply in
our setting since we need a global quadratic bound to apply
the squared norm trick [17].

198



7 CONCLUSION

There were several important techniques used in this paper:
1) the decomposition of the loss into a small positive part
and a large but structured negative space; 2) the use of the
squared norm trick that reduces the complexity of squared
loss computation and 3) the use of the partitioning tech-
nique to gradually reduce the gap introduced by the usage
of quadratic upper bounds for non-quadratic losses, par-
ticularly useful in the case of binary or count data. This
combination of techniques can be applied in a broad range
of other problems, such as probabilistic CCA, collective-
matrix factorization, non-negative matrix factorization, as
well as non-factorial models such as time series [7].
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Abstract

Several recent algorithms for learning Bayesian
network structures first calculate potentially op-
timal parent sets (POPS) for all variables and
then use various optimization techniques to find
a set of POPS, one for each variable, that con-
stitutes an optimal network structure. This pa-
per makes the observation that there is useful
information implicit in the POPS. Specifically,
the POPS of a variable constrain its parent can-
didates. Moreover, the parent candidates of all
variables together give a directed cyclic graph,
which often decomposes into a set of strongly
connected components (SCCs). Each SCC cor-
responds to a smaller subproblem which can be
solved independently of the others. Our results
show that solving the constrained subproblems
significantly improves the efficiency and scala-
bility of heuristic search-based structure learning
algorithms. Further, we show that by consider-
ing only the top p POPS of each variable, we
quickly find provably very high quality networks
for large datasets.

1 INTRODUCTION

Bayesian networks (BNs) are graphical models that rep-
resent uncertain relationships between random variables.
While BNs have become one of the most popular and well-
studied probabilistic model classes, a common bottleneck
lies in deciding upon their structure. Often, experts are un-
able to completely specify the structure; in these cases,
a good structure must be learned from expert knowledge
and available data. In this work, we consider the problem
of exact, score-based Bayesian network structure learning
(BNSL), which is known to be NP-hard (Chickering 1996).

Despite the difficulty of BNSL, though, a variety of al-
gorithms have been proposed which can solve modest-
sized learning problems. The first exact algorithms were

based on dynamic programming (Koivisto and Sood 2004;
Ott, Imoto, and Miyano 2004; Singh and Moore 2005;
Silander and Myllymäki 2006). Later algorithms have used
strategies such as integer linear programming (Jaakkola et
al. 2010; Cussens 2011; Bartlett and Cussens 2013) and
heuristic search (Yuan and Malone 2013; Malone et al.
2011; Malone and Yuan 2013). These algorithms generally
take as input the potentially optimal parent sets (POPS) for
each variable. They all improve upon dynamic program-
ming by, either implicitly or explicity, pruning the search
space and considering only promising structures.

In this paper, we focus on the heuristic search approach
first proposed by Yuan et al. (2011) in which BNSL is for-
mulated as a shortest-path finding problem. A state space
search strategy like A* or breadth-first branch and bound is
then used to solve the transformed problem. Previous work
in heuristic search for BNSL has focused on pruning un-
promising structures based on bounds derived from admis-
sible heuristic functions. In this work, we show that POPS
constraints, which are implicit in the problem input, sig-
nificantly improve the efficiency of the search by pruning
large portions of the search space.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an overview of BNSL and the shortest-path
finding formulation of the problem. Section 3 introduces
POPS constraints and shows how they can be used to prune
the search space. Additionally, we describe a pruning strat-
egy which uses the constraints to trade guaranteed bounded
optimality for more scalable performance in Section 4. The
POPS constraints also reduce the space required by the
heuristics used for pruning during search, as described in
Section 5. In Section 6, we compare POPS constraints to
related work. Section 7 gives empirical results on a set of
benchmark datasets, and Section 8 concludes the paper.

2 BACKGROUND

This section reviews BNSL and the shortest-path finding
formulation of the learning problem (Yuan and Malone
2013), which is the basis of our new algorithm.
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2.1 BAYESIAN NETWORK STRUCTURE
LEARNING

A Bayesian network (BN) consists of a directed acyclic
graph (DAG) in which the vertices correspond to a set of
random variables V = {X1, ..., Xn} and a set of condi-
tional probability distributions P (Xi|PAi), where all par-
ents of Xi are referred to as PAi. The joint probability
over all variables factorizes as the product of the condi-
tional probability distributions.

We consider the problem of learning a network structure
from a discrete dataset D = {D1, ..., DN}, where Di is an
instantiation of all the variables in V. A scoring function
s measures the goodness of fit of a network structure to
D (Heckerman 1998). The goal is to find a structure which
optimizes the score. We only require that the scoring func-
tion is decomposable (Heckerman 1998); that is, the score
of a network s(N) =

∑
i si(PAi). The si(PAi) values

are often called local scores. Many commonly used scor-
ing functions, such as MDL (Lam and Bacchus 1994) and
BDe (Buntine 1991; Heckerman, Geiger, and Chickering
1995), are decomposable.

2.2 LOCAL SCORES

While the local scores are defined for all 2n−1 possible par-
ent sets for each variable, this number is greatly reduced
by pruning parent sets that are provably never optimal (de
Campos and Ji 2011). We refer to this as lossless score
pruning because it is guaranteed to not remove the optimal
network from consideration. We refer to the scores remain-
ing after pruning as potentially optimal parent sets (POPS).

Other pruning strategies, such as restricting the cardinal-
ity of parent sets, are also possible, but these techniques
could eliminate parent sets which are in the globally opti-
mal network; we refer to pruning strategies which might
remove the optimal network from consideration as lossy
score pruning. Of course, these, and any other, score prun-
ing strategies can be combined.

Regardless of the score pruning strategies used, we still re-
fer to the set of unpruned local scores as POPS and denote
the set of POPS for Xi as Pi. The POPS are given as input
to the learning problem. We define the Bayesian network
structure learning problem (BNSL) as follows.

{ }

{ 2 } { 3 } { 4 }

{ 3,4 }{ 2,4 }{ 2,3 }

{ 1,2,3 }

{ 1 }

{ 1,4 }{ 1,3 }{ 1,2 }

{ 1,2,4 } { 1,3,4 } { 2,3,4 }

{ 1,2,3,4 }

Figure 1: An order graph for four variables.

The BNSL Problem
INPUT: A set V = {X1, . . . , Xn} of variables and a

set of POPS Pi for each Xi.

TASK: Find a DAG N∗ such that

N∗ ∈ argmin
N

n∑

i=1

si(PAi),

where PAi is the parent set of Xi in N and
PAi ∈ Pi.

2.3 SHORTEST-PATH FINDING FORMULATION

Yuan and Malone (2013) formulated BNSL as a shortest-
path finding problem. Figure 1 shows the implicit search
graph for four variables. The top-most node with the empty
variable set is the start node, and the bottom-most node
with the complete set is the goal node. An arc from U to
U ∪ {Xi} in the graph represents generating a successor
node by adding a new variable Xi as a leaf to an existing
subnetwork of variables U; the cost of the arc is equal to
the score of the optimal parent set for Xi out of U, which
is computed by considering all subsets of the variables in
PA ⊆ U, PA ∈ Pi, i.e.,

cost(U→ U ∪ {Xi}) = BestScore(Xi,U) (1)
= min
PAi⊆U,PAi∈Pi

si(PAi). (2)

In this search graph, each path from start to goal cor-
responds to an ordering of the variables in the order of
their appearance, so the search graph is also called as or-
der graph. Each variable selects optimal parents from the
variables that precede it, so combining the optimal parent
sets yields an optimal structure for that ordering. The short-
est path gives the global optimal structure.
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2.4 HEURISTIC SEARCH ALGORITHMS

This shortest path problem has been solved using sev-
eral heuristic search algorithms, including A* (Yuan, Mal-
one, and Wu 2011), anytime window A* (AWA*) (Malone
and Yuan 2013) and breadth-first branch and bound (BF-
BnB) (Malone et al. 2011).

In A* (Hart, Nilsson, and Raphael 1968), an admissible
heuristic function is used to calculate a lower bound on the
cost from a node U in the order graph to goal. An f-cost
is calculated for U by summing the cost from start to U
(called g(U)) and the lower bound from U to goal (called
h(U)). For BNSL, g(U) corresponds to the score of the
subnetwork over the variables U, and h(U) estimates the
score of the remaining variables. So f(U) = g(U)+h(U).
The f-cost provides an optimistic estimation on how good
a path through U can be. The search maintains a list of
nodes to be expanded sorted by f-costs called open and
a list of already-expanded nodes called closed. Initially,
open contains just start, and closed is empty. Nodes are
then expanded from open in best-first order according to f-
costs. Expanded nodes are added to closed. As better paths
to nodes are discovered, they are added to open. Upon ex-
panding goal, the shortest path from start to goal has been
found.

In AWA* (Aine, Chakrabarti, and Kumar 2007), a sliding
window search strategy is used to explore the order graph
over a number of iterations. During each iteration, the algo-
rithm uses a fixed window size, w, and tracks the layer l of
the deepest node expanded. For the order graph, the layer
of a node corresponds to the number of variables in its sub-
network. Nodes are expanded in best-first order as usual by
A*; however, nodes selected for expansion in a layer less
that l−w are instead frozen. A path to goal is found in each
iteration, which gives an upper bound solution. After find-
ing the path to goal, the window size is increased by 1 and
the frozen nodes become open. The iterative process con-
tinues until no nodes are frozen during an iteration, which
means the upper bound solution is optimal. Alternatively,
the search can be stopped early if a resource bound, such
as running time, is exceeded; the best solution found so far
is output.

In BFBnB (Zhou and Hansen 2006), nodes are expanded
one layer at a time. Before beginning the BFBnB search,
a quick search strategy, such as AWA* for a few iterations
or greedy hill climbing, is used to find a “good” network
and its score. The score is used as an upper bound. During
the BFBnB search, any node with an f-cost greater than the
upper bound can safely be pruned.

Yuan et al. (2011) gave a simple heuristic function. Later,
tighter heuristics based on pattern databases were devel-
oped (Yuan and Malone 2012). All of the heuristics were
shown to be admissible, i.e., to always give a lower bound
on the cost from U to goal. Furthermore, the heuristics

have been shown to be consistent, which is a property simi-
lar to non-negativity required by Dijkstra’s algorithm. Con-
sistent heuristics always underestimate the cost of the path
between any two nodes (Edelkamp and Schrodl 2012). Pri-
marily, in A*, consistency ensures that the first time a node
is expanded, the shortest path to that node has been found,
so no node ever needs to be re-expanded.

3 LEARNING UNDER POPS
CONSTRAINTS

The main contribtion of our current work focuses on taking
advantage of the implicit information encoded in the POPS.
We will first motivate our approach using a simple example
and then describe the technical details.

3.1 A SIMPLE EXAMPLE

Table 1 shows the POPS for six variables. Based on these
sets, we can see that not all variables can select all other
variables as parents. For example, X1 can only select X2

as its parent (due to score pruning). We collect all of the
potential parents for Xi by taking the union of all PA ∈
Pi. Figure 2 shows the resulting parent relation graph for
the POPS in Table 1. The parent relation graph includes an
edge from Xj to Xi if Xj is a potential parent of Xi.

Naively, the complete order graph for six variables contains
26 nodes. However, from the parent relation graph, we see
that none of {X3, X4, X5, X6} can be a parent of X1 or
X2. Consequently, we can split the problem into two sub-
problems as shown in Figure 3: first, finding the shortest
path from start to {X1, X2}, and then, finding the shortest
path from {X1, X2} to goal. Thus, the size of the search
space is reduced to 22 + 24.

3.2 ANCESTOR RELATIONS

This simple example shows that the parent relation graph
can be used to prune the order graph without bounds. In
general, we must consider ancestor relations to prune the
order graph. In particular, if Xi can be an ancestor of Xj ,
and Xj cannot be an ancestor of Xi (due to local score
pruning), then no node in the order graph which contains
Xj but not Xi needs to be generated.

As a proof sketch, we can consider a node U which in-
cludes neither Xi nor Xj . If we add Xi and then Xj , then
the cost from U to U∪ {Xi, Xj} is BestScore(Xi,U) +
BestScore(Xj ,U ∪ {Xi}). On the other hand, if we
add Xj first, then the cost from U to U ∪ {Xi, Xj}
is BestScore(Xj ,U) + BestScore(Xi,U ∪ {Xj}).
However, due to the ancestor relations, we know that
BestScore(Xi,U∪{Xj}) = BestScore(Xi,U). So, re-
gardless of the order we add the two variables,Xi will have
the same parent choices. If we addXj first, though, thenXj
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variable POPS
X1 {X2} {}
X2 {X1} {}
X3 {X1, X2} {X2, X6} {X1, X6} {X2} {X6} {}
X4 {X1, X3} {X1} {X3} {}
X5 {X4} {X2} {}
X6 {X2, X5} {X2} {}

Table 1: The POPS for six variables. The ith row shows Pi.

 

1 2 

4 6 

3 

5 

Figure 2: The parent relation graph constructed by aggre-
gating the POPS in Table 1. The strongly connected com-
ponents are surrounded by shaded shapes.

will have fewer choices. Therefore, addingXj as a leaf first
can never be better than adding Xi first (Yuan and Malone
2013).

3.3 POPS CONSTRAINTS PRUNING

We find the ancestor relations by constructing the parent
relation graph and extracting its strongly connected com-
ponents (SCCs). The SCCs of the parent relation graph
form the component graph, which is a DAG (Cormen et
al. 2001); each component graph node ci corresponds to an
SCC scci from the parent relation graph (which in turn cor-
responds to a set of variables in the Bayesian network). The
component graph includes a directed edge from ci to cj if
the parent relation graph includes an edge from a variable
Xi ∈ scci to Xj ∈ sccj .
The component graph gives the ancestor constraints: if cj is
a descendent of ci in the component graph, then variables in
sccj cannot be ancestors of variables in scci. Consequently,
the component graph gives POPS constraints which allow
the order graph to be pruned without considering bounds.
In particular, the POPS constraints allow us to prune nodes
in the order graph which do not respect the ancestor rela-
tions.

Tarjan’s algorithm (Tarjan 1972) extracts the SCCs from
directed graphs, like the parent relation graph. We chose to
use it because, in addition to its polynomial complexity, it
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{ 1,2,5,6 }{ 1,2,4,6 }{ 1,2,4,5 }
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{ 1,2,3,6 }{ 1,2,3,5 }{ 1,2,3,4 }
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{ 1,2,3,4,5 }

{ 1,2,3 }

{ 1,2,3,6 }{ 1,2,3,5 }{ 1,2,3,4 }

{ 1,2,3,4,6 } { 1,2,3,5,6 } { 1,2,4,5,6 }

{ 1,2,3,4,5,6 }

(b)

{  }

{ 1 } { 2 }

1st Subproblem 

2nd Subproblem 

Figure 3: Order graphs after applying the POPS constraints.
(a) The order graph after applying the POPS constraints
once. (b) The order graph after recursively applying the
POPS constraints on the second subproblem.

extracts the SCCs from the parent relation graph consistent
with their topological order in the component graph. Con-
sequently, all of the parent candidates of X ∈ scci appear
in PCi = ∪ik=1scck

1. After extracting the m SCCs, the
search can be split into m indepedent subproblems: one for
each SCC where starti is PCi−1 and goali is PCi. That
is, during the ith subproblem, we select the optimal par-
ents for the variables in scci. Of course, start0 = ∅ and
goalm = V. The worst-case complexity of subproblem i is
then O(2|scci|). Figure 3(a) shows the pruned order graph
resulting from the parent relation graph in Figure 2. In par-
ticular, it shows the first subproblem, from PC0 = ∅ to
PC1 = {X1, X2}, and the second subproblem, from PC1

to PC2 = V.

The (worst-case) size of the original order graph for n vari-
ables is as follows.

O(2|scc1|+...+|sccm|) = O(2n) (3)

The worst-case size of the search space after splitting into
subproblems using the SCCs is as follows.

O(2|scc1| + . . .+ 2|sccm|) = O(m ·max
|i|

2|scci|) (4)

That is, the complexity is at worst exponential in the size
of the largest SCC. Consequently, our method can scale to

1Depending on the structure of the component graph, this may
be a superset of the parent candidates for X .
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datasets with many variables if the largest SCC is of man-
ageable size.

3.4 RECURSIVE POPS CONSTRAINTS PRUNING

As described in Section 3.3, the size of the search space
for the ith subproblem is O(2|scci|), which can still be in-
tractable for large SCCs. However, recursive application
of the POPS constraints can further reduce the size of the
search space. We refer to the constraints added by this strat-
egy as recursive POPS constraints.

The intuition is the same as that behind the POPS con-
straints. As an example, consider the subproblem associ-
ated with scc2 in Figure 3, which includes variables X3,
X4, X5 and X6. Naively, the order graph associated with
this subproblem has O(24) nodes. However, suppose we
add variable X3 as a leaf first. Then, the remaining vari-
ables split into three SCCs, and their order is completely
determined. Similarly, selecting any of the other variables
as the first to add as a leaf completely determines the order
of the rest. Figure 3(b) shows the order graph after applying
recursive POPS constraints.

In general, selecting the parents for one of the variables has
the effect of removing that variable from the parent relation
graph. After removing it, the remaining variables may split
into smaller SCCs, and the resulting smaller subproblems
can be solved recursively. These SCC checks can be imple-
mented efficiently by again appealing to Tarjan’s algorithm.
In particular, after adding variable Xi as a leaf from U, we
remove all of those variables from the parent relation graph.
We then find the topologically first SCC and expand just the
variables in that component. As we recursively explore the
remaining variables, they will all eventually appear in the
first SCC of the updated parent relation graph.

4 TOP-p POPS CONSTRAINT

As shown in Equation 4, the complexity of the search
largely depends on the size of the largest strongly con-
nected component. The recursive splitting described in Sec-
tion 3.4 helps reduce this complexity, but for large, highly
connected SCCs, the subproblems may still be too large to
solve. For these cases, we can tradeoff between the com-
plexity of the search and a bound on the optimality of the
solution. In particular, rather than constructing the parent
relation graph by aggregating all of the POPS, we can in-
stead create the graph by considering only the best p POPS
for each variable. We consider the minimization version of
BNSL, so the best POPS are those with the lowest scores.
This yields a set of parent candidates for each variable, and
only POPS which are subsets of these parent candidates are
retained. The empty set is always a subset of the parent can-
didates, so some DAG (e.g., the DAG with no edges) is al-
ways consistent with the resulting pruned set of POPS. We

call this score pruning strategy the top-p POPS constraint.

By removing some of the POPS in this manner, though,
we can no longer guarantee to find the globally opti-
mal Bayesian network. That is, this score pruning strat-
egy is lossy. Despite losing the globally optimal guar-
antee, though, we can still offer a bounded suboptimal-
ity guarantee. In particular, suppose we apply the top-p
POPS constraint and learn a BN N with score s(N) in
which Xi selects parents PAi with score si(PAi). Ad-
ditionally, suppose the best pruned parent set PA′i for Xi

has score si(PA′i). Then, the most improvement we could
have in the score by including the pruned POPS for Xi

is δi = max(0, si(PAi) − si(PA′i)). The max is neces-
sary when the selected parent set is better than the best ex-
cluded parent set. Consequently, a suboptimality bound ε
on the score of the unconstrained optimal network relative
to s(N) is as follows.

ε =
s(N)∑

i (si(PAi)− δi)
(5)

When ε is 1, N is the globally optimal network.

5 REDUCING THE SPACE
REQUIREMENTS OF THE HEURISTIC

In this section we show that the POPS constraints can re-
duce the space requirements of the lower bound heuristc
used during search.

A simple heuristic function was introduced for comput-
ing lower bounds for the order graph (Yuan and Malone
2013) which allows each remaining variable to choose
optimal parents from all the other variables. This com-
pletely relaxes the acyclicity constraint on the BN struc-
ture. The heuristic was proven to be admissible, meaning
it never overestimates the distance to goal (Yuan and Mal-
one 2013). However, because of the complete relaxation of
the acyclicity constraint, the simple heuristic may generate
loose lower bounds.

5.1 THE k-CYCLE CONFLICT HEURISTIC

In (Yuan and Malone 2012), an improved heuristic func-
tion called k-cycle conflict heuristic was proposed which
reduces the amount of relaxation. The idea is to divide the
variables into multiple groups with a size up to k and en-
force acyclicity within each group while still allowing cy-
cles between the groups. Each group (subset of variables)
is called a pattern. One approach to creating the patterns
is to divide the variables V into l approximately equal-
sized static subsets Vi (typically l = 2, so k = n/2). For
each Vi, a pattern database hi is created by performing
a breadth-first search in a “reverse” order graph in which
start is V and goal is Vi. A node U′ in the graph is
expanded by removing each of the variables X ∈ Vi.
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An arc from U′ ∪ {X} to U′ corresponds to selecting
the best parents for X from among U′ and has a cost of
BestScore(X,U′). The optimal g cost for node U′ gives
the cost of the pattern V \ U′. The patterns from differ-
ent groups are guaranteed to be mutually exclusive, so the
heuristic value of a node U in the order graph is the sum of
the pattern costs for the variables remaining in each parti-
tion. That is, h(U) =

∑l
i hi(Vi∩(V\U)). This approach

is a statically-partitioned additive pattern database heuris-
tic (Felner, Korf, and Hanan 2004) referred to as static pat-
tern databases. Static pattern databases were shown to be
consistent (Yuan and Malone 2013).

5.2 CREATING PATTERN DATABASES FOR
SUBPROBLEMS

As described in Section 3, the search is split into an in-
dependent subproblem for each SCC. Furthermore, us-
ing Tarjan’s algorithm, the SCCs are ordered according
to their topological order in the component graph. Conse-
quently, we construct static pattern databases using a sim-
ilar strategy as before. Namely, each SCC is partitioned
into l groups scci = scci1 . . . sccil (typically l = 2).
For each partition, a pattern database hik is created. For
hik, the pattern costs are calculated using a breadth-first
search in a reverse order graph in which start is PCi−1 ∪
sccik and goal is PCi−1. The arc costs in this graph
are BestScore(X, (

⋃
j 6=k sccij) ∪U). Thus, the heuristic

value from U to PCi, referred to as h1, is as follows.

h1(U) =
l∑

k

hik(sccik ∩ (V \U)) (6)

The pattern databases are constructed at the beginning of
the search based on the parent relation graph. That is, new
pattern databases are not created for recursive subproblems.

The pattern databases based on the SCCs are typically
smaller than those previously proposed for the entire space.
The space complexity of pattern databases created based
on l balanced partitions is O(l · 2n/l). On the other hand,
the space complexity of pattern databases created based
on l balanced partitions separately for m SCCs of size
O(max|scci| 2

|scci|) is O(m ·max|scci| 2
|scci|/l). Thus, the

space complexity of the pattern databases based on the
SCCs is less than that based on the balanced partitions
alone, unless there is only one SCC. In that case, the space
complexity is the same.

5.3 CALCULATING THE HEURISTIC VALUE

The heuristic value for node U in the subproblem for
scci is calculated in two steps. We first calculate h1(U),
the heuristic value from U to PCi, using the the pattern
databases described in Section 5.2. Second, we calculate

h2(U), the estimated distance from PCi to V, as follows.

h2(U) =
m∑

j=i+1

h1(sccj) (7)

That is, the h2 value is the sum of h1 values for the start
nodes of the remaining subproblems. Due to the POPS
constraints, none of these variables will have been added
as leaves when considering the ith subproblem. The total
heuristic value is then h′(U) = h1(U) + h2(U). The h2
values are the same for all nodes in the ith subproblem, so
they can be precomputed.

Theorem 1. The new heuristic h′ is consistent.

Proof. We prove the theorem by showing that both h1 and
h2 are consistent. The consistency of h1 follows from the
consistency of the static pattern databases (Yuan and Mal-
one 2013). The h2 value is a sum of h1 values for mutually
exclusive patterns, so it is also consistent. Therefore, the
entire heuristic is consistent.

6 RELATED WORK

The parent relation graph is, in effect, a directed super-
structure. Consequently, the work presented in this paper
is quite related to the work dealing with superstructures. To
the best of our knowledge, Ordyniak and Szeider (2013) are
the only other authors to consider directed superstructures.
They prove that BNSL is solvable in polynomial time for
acyclic directed superstructures; our algorithm agrees with
this theoretical result because, if the parent relation graph
is acyclic, then it will have n SCCs of size 1. Thus, the
complexity of our algorithm would be O(n).

The work on undirected superstructures, e.g., (Perrier,
Imoto, and Miyano 2008), is also related to our work. Any
undirected superstructure can be translated into a parent re-
lation graph by replacing the undirected edges in the su-
perstructure with directed edges in both directions. How-
ever, edges directed in only one direction give an order to
the SCCs which further reduce the search space. So, our
algorithm leverages all of the information available from
the undirected superstructure, but further makes use of con-
straints those structures cannot express.

Recently, Parviainen and Koivisto (2013) explored prece-
dence constraints, which are similar to our POPS con-
straints. In their work, ideals of partial orders on the vari-
ables are used to reduce the search space of dynamic pro-
gramming for BNSL. This approach is similar in spirit to
our use of the component graph to reduce the search space.
In fact, the component graph could be used to reduce the
search space of dynamic programming. However, after se-
lecting the ideals, they are fixed. So the recursive decom-
position described in Section 3.4 is not compatible with
the ideals formulation. Experimentally, we show that the
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recursive application of constraints is important for some
datasets.

Integer linear programming (ILP) (Bartlett and Cussens
2013) is another successful strategy for BNSL. A recent
study (Malone et al. 2014) found that the performances of
ILP and heuristic search are largely orthogonal, particu-
larly with respect to the number of POPS. Consequently,
this work has focused on improvements to heuristic search.
Nevertheless, the component graph is readily applicable to
ILP by similarly creating subproblems and solving them
with independent ILP instances. Indeed, an interesting av-
enue for future research is to dynamically select between
ILP and heuristic search for each subproblem.

6.1 EXPERT KNOWLEDGE CONSTRAINTS

The formulation of BNSL as an optimization over POPS
gives a natural method for including expert knowledge in
the form of hard constraints on the structure to be learned,
such as those proposed by, e.g., (de Campos and Ji 2011).
In particular, given expert knowledge about required or for-
bidden parent relationships and maximum parent set car-
dinalities, we omit POPS which violate these constraints.
The POPS constraints automatically prune the parts of the
search space which violate the expert knowledge.

In general, hard expert knowledge constraints are lossy be-
cause they could disallow parent sets which would appear
in an optimal structure based solely on the data and scor-
ing function. Nevertheless, we still consider the network
learned under expert knowledge constraints as optimal. For
cases in which we use expert knowledge constraints and the
top-p POPS constraint, parent sets disallowed by the expert
knowledge constraints are not considered in the subopti-
mality bound calculation in Equation 5.

7 EMPIRICAL EVALUATION

In order to evaluate the efficacy of the POPS constraints
and top-p POPS constraint, we ran a set of experiments on
benchmark datasets from the UCI machine learning repos-
itory2 and the Bayesian network repository3. We gener-
ated 1, 000 records from the benchmark networks in the
repository using logic sampling. The experiments were per-
formed on an IBM System x3850 X5 with 16 2.67GHz In-
tel Xeon processors and 512G RAM; 1TB disk space was
used. Our code is available online4.

Several heuristic search algorithms have been adapted for
BNSL. We chose to evaluate A* (Yuan, Malone, and Wu
2011) because of its guarantee to expand a minimal num-
ber of nodes; AWA* (Malone and Yuan 2013) because it

2
http://archive.ics.uci.edu/ml

3
http://compbio.cs.huji.ac. il/Repository/

4
http://url.cs.qc.cuny.edu/software/URLearning.html

has been shown to find high quality, often optimal, solu-
tions very quickly; and breadth-first branch and bound (BF-
BnB) (Malone et al. 2011) because it has been shown to
scale to larger datasets by using external memory. We used
MDL as the scoring function. In all cases, we used static
pattern databases; the variable groups were determined by
partitioning the parent relation graph after applying the top-
p = 1 POPS constraint (Fan, Yuan, and Malone 2014).
Pattern database construction occurs only once after con-
structing the parent relation graph.

7.1 POPS CONSTRAINTS

We first tested the effect of the POPS constraints, which
always guarantee learning the globally optimal structure.
Table 2 compares the original version of each algorithm to
versions using the POPS constraints.

We first considered three variants of A*: a basic version
not using POPS constraints; a version using the POPS con-
straints but not applying them recursively as described in
Section 3.4; and a version which uses the recursive POPS
constraints. As the table shows, the versions of A* aug-
mented with the POPS constraints always outperform the
basic version. The improvement in running time ranges
from two times on several of the datasets to over an order
of magnitude on three of the datasets. Additionally, the ba-
sic version is unable to solve Mildew, Soybean and Barley
within the time limit (30 minutes); however, with the POPS
constraints, all of the datasets are easily solved within the
limit. The number of nodes expanded, and, hence, memory
requirements, are similarly reduced.

The recursive POPS constraints always reduce the number
of nodes expanded5. However, it sometimes increases the
running time. The overhead of Tarjan’s algorithm to recur-
sively look for SCCs is small; however, in some cases, such
as when the parent relation graph is dense, the additional
work yields minimal savings. In these cases, despite the re-
duction in nodes expanded, the running time may increase.

On the other hand, when the parent relation graph is sparse,
the advantages of the recursive POPS constraints are some-
times more pronounced. For example, the running time of
Mildew is reduced in half by recursively applying POPS
constraints. Most networks constructed by domain experts,
including those evaluated in this study, are sparse. Our anal-
ysis shows that these datasets also yield sparse parent re-
lation graphs. Thus, our results suggest that the recursive
constraints are sometimes effective when the generative
process of the data is sparse. The overhead of looking for
the recursive POPS constraints is minimal, and it some-
times offers substantial improvement for sparse generative
processes. So we always use it in the remaining experi-
ments.

5For some datasets, the precision shown in the table is too
coarse to capture the change.
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Dataset Results
Name n N POPS Density PD (s) A* A*, O A*,R AWA* AWA*,R BFBnB BFBnB,R
Mushroom 23 8124 13025 0.87 0.15 Time (s) 0.74 0.41 0.67 0.75 0.47 0.61 0.78

Nodes 0.05 0.04 0.04 0.06 0.05 0.06 0.04
Autos 26 159 2391 0.75 0.17 Time (s) 46.62 20.93 26.76 44.70 19.86 11.24 6.68

Nodes 3.26 1.63 1.63 4.92 2.47 3.26 1.63
Insurance* 27 1000 560 0.35 0.21 Time (s) 98.08 52.81 50.97 118.23 66.75 47.46 28.58

Nodes 7.83 3.92 3.77 14.51 6.51 8.16 3.77
Water* 32 1000 4022 0.24 0.49 Time (s) 14.10 0.03 0.03 14.10 0.03 32.82 0.80

Nodes 1.59 0.02 0.02 1.59 0.01 7.10 0.01
Mildew* 35 1000 360 0.16 0.50 Time (s) OT 5.20 2.33 OT 3.71 OT 3.18

Nodes OT 0.56 0.37 OT 0.44 OT 0.36
Soybean 36 307 5926 0.58 0.54 Time (s) OT 435.65 511.55 OT 526.13 OT 1230.41

Nodes OT 9.78 9.64 OT 11.36 OT 129.77
Alarm* 37 1000 672 0.16 1.39 Time (s) 76.51 6.47 4.06 46.98 4.80 22.32 3.83

Nodes 2.75 0.33 0.24 3.49 0.30 2.75 0.24
Bands 39 277 892 0.26 2.03 Time (s) 109.75 0.39 0.47 74.02 0.40 249.04 1.34

Nodes 3.63 0.03 0.03 3.99 0.03 41.81 0.03
Spectf 45 267 610 0.24 43.46 Time (s) 89.08 90.62 92.17 44.41 36.79 32.34 29.59

Nodes 2.26 2.26 2.17 3.17 3.17 2.53 2.44
Barley* 48 1000 634 0.1 0.73 Time (s) OT 2.51 1.28 OT 1.10 OT 1.85

Nodes OT 0.64 0.08 OT 0.21 OT 0.08

Table 2: The number of expanded nodes (in millions) and running time (in seconds) of A*, AWA* and BFBnB with/without the POPS constraints on a set of benchmark
datasets. “n” gives the number of variables in the dataset, “N” gives the number of records in the dataset, “POPS” gives the number of POPS after lossless pruning, “Density”
gives the density of the parent relation graph constructed from the POPS (defined as the number of edges divided by the number of possible edges), and “PD” gives the time
(in seconds) to construct the pattern database. “A*,O” gives the statistics for A* using the POPS constraints, but not applying them recursively. “A*,R” gives the statistics for
A* using the recursive POPS constraints. Similarly, “AWA*”, “AWA*, R”, “BFBnB” and “BFBnB, R” refer to the respective basic algorithms or the algorithm using recursive
POPS constraints. “*” indicates the dataset was generated from a repository network using logic sampling; all other datasets are from UCI. OT means out of time (30 minutes).

The anytime window A* algorithm enjoyed improvements
similar to those seen in A*. As the table shows, A* always
expanded fewer nodes than AWA*; nevertheless, the run-
times of AWA* are often shorter than those of A*. This is
because AWA* performs a series of iterations, and open
is cleared after each of those iterations. Consequently, the
associated priority queue operations are often faster for
AWA* than A*.

A key factor in the performance for BFBnB is the upper
bound it uses for pruning. Previous results (Malone and
Yuan 2013) have shown that AWA* is effective at finding
high quality solutions quickly, so we found the bound by
running AWA* for 5 seconds on datasets with less than 35
variables and 10 seconds for larger datasets. AWA* used
the POPS constraints when BFBnB used them. BFBnB ex-
hibited improvements in line with those for A* and AWA*.

7.2 TOP-p POPS CONSTRAINT

We tested AWA* on the dataset Hailfinder, which has 56
variables. Even when using the recursive POPS constraints,
though, AWA* was unable to prove optimality within the
30-minute time limit. Therefore, we used this dataset to test
the effect of the top-p POPS constraint by varying p from 1
to 13. The upper bound on p was set to 13 because AWA*
was unable to complete within the time limit for p = 13.

Primarily, we evaluated the running time and associated
suboptimality bound as we increased p (which has the ef-
fect of pruning fewer POPS). As Figure 4 (top) shows, the
recursive order constraints are quite effective under the top-
p POPS constraint; the constrained problems are solved in
under 15 seconds for p up to 12, and the provable subop-
timality bound calculated using Equation 5 decreases very

rapidly. This provable suboptimality between the learned
network and global optimum is less than 1% even when p
is only 7.

The suboptimality bound usually decreases as p increases.
From p = 7 to p = 8, though, it slightly increases; the
scores of the learned networks were the same (not shown).
This is a result of equivalence classes of Bayesian net-
works. The suboptimality bound calculation in Equation 5
focuses on parent sets of individual variables, so it is sensi-
tive to which member of an equivalence class the algorithm
learns. Future work could investigate tightening the bound
by considering all members in the same equivalence class
as the learned network.

As mentioned, AWA* was unable to find the provably opti-
mal network under the p = 13 constraint. Equation 4 sug-
gests that the size of the largest SCC in the parent relation
graph is a key factor in determining the difficulty of an in-
stance of BNSL. However, the recursive POPS constraints
offer the potential to split large SCCs after considering a
few of their variables. Figure 4 (middle) shows that the size
of the largest SCC does substantially increase from p = 12
to p = 13, which empirically confirms our theoretical re-
sult. Somewhat unexpectedly, though, the figure also shows
that the density of the parent relation graph does not signif-
icantly increase as more POPS are included. So, at least in
this case, despite the sparsity of the parent relation graph,
the recursive order constraints are unable to break the large
SCC into manageable subproblems. This result agrees with
those in Table 2 which show that sparsity does not necessar-
ily indicate the efficacy of the recursive POPS constraints.

In addition to the characterstics of the parent relation graph,
we also considered the number of POPS included as p in-
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creases. Figure 4 (bottom) shows that the number of in-
cluded POPS follows a similar trend to the density of the
parent relation graph. That is, even as p increases, more
POPS are not necessarily included for all variables. This is
because we already include all subsets of parent candidates
from the top p POPS at earlier iterations. Additionally, the
number of POPS (479 when p = 13) is quite small for this
dataset, although the number of variables is relatively large
(56). Previous studies (Malone and Yuan 2013) have shown
that basic heuristic search methods struggle with datasets
like this; however, when augmented with the POPS con-
straints, heuristic search very quickly finds a network that
is provably quite close to optimal. This result clearly shows
that the POPS constraints significantly expand the applica-
blility of heuristic search-based structure learning.

Despite the inability of AWA* to find the provably optimal
network under the top-p POPS constraint when p = 13,
we can nevertheless take advantage of its anytime behav-
ior to calculate a suboptimality bound. At each iteration,
AWA* produces an optimal network with respect to its cur-
rent window size. We can then use Equation 5 to bound
the suboptimality of the learned network. In principle, this
even suggests that we may be able to prove global opti-
mality before completing the AWA* search, although this
likely would require a tighter bound under the top-p POPS
constraint than the naive one proposed in this paper.

Even for very small values of p, though the top-p POPS
constraint results in networks provably very close to the
globally optimal solution. In order to more thoroughly un-
derstand why such constrained problems still give provably
very high quality solutions, we plotted the scores of the top
p POPS for variable X37 from Hailfinder in Figure 5. The
figure shows that the first 4 scores are much better than
the remaining ones; consequently, the globally optimal net-
work is more likely to include one of these parent sets for
X37 than the others, which are much worse. Most of the
other variables behaved similarly; consequently, p does not
need to be very large to still encompass most of the parent
selections in the globally optimal network.
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Figure 5: The POPS of variableX37 from Hailfinder, sorted
in ascending order
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Figure 4: The behavior of Hailfinder under the top-p POPS
constraint as p varies. (top) Running time and suboptimal-
ity (middle) Size of the largest SCC and density of the par-
ent relation graph (bottom) Number of POPS included

8 CONCLUSION

In this work, we have shown how POPS constraints, which
are implicit in the input to a BNSL instance, can signifi-
cantly improve the performance of heuristic search on the
problem. Other algorithms, such as integer linear program-
ming, can also benefit from the POPS constraints. We also
introduced the top-p POPS constraint and showed how it
can be used to further take advantage of the POPS con-
straints while still providing guaranteed error bounds. Em-
pirically, we showed that the POPS constraints are prac-
tically effective and that the top-p POPS constraint can
yield provably very high quality solutions very quickly. Fu-
ture work includes more thorough empirical evaluation and
comparison with other BNSL techniques as well as investi-
gation into conditions when the POPS constraints are most
effective.
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Montréal, Canada, H3A 0E7

Abstract

Bisimulation is a notion of behavioural equiva-
lence on the states of a transition system. Its defi-
nition has been extended to Markov decision pro-
cesses, where it can be used to aggregate states.
A bisimulation metric is a quantitative analog
of bisimulation that measures how similar states
are from a the perspective of long-term behavior.
Bisimulation metrics have been used to establish
approximation bounds for state aggregation and
other forms of value function approximation. In
this paper, we prove that a bisimulation metric
defined on the state space of a Markov decision
process is the optimal value function of an opti-
mal coupling of two copies of the original model.
We prove the result in the general case of con-
tinuous state spaces. This result has important
implications in understanding the complexity of
computing such metrics, and opens up the possi-
bility of more efficient computational methods.

1 INTRODUCTION

Markov decision processes (MDPs) are a popular mathe-
matical model for sequential decision-making under uncer-
tainty (Puterman, 1994; Sutton & Barto, 2012). Many stan-
dard solution methods are based on computing or learning
the optimal value function, which reflects the expected re-
turn one can achieve in each state by choosing actions ac-
cording to the optimal policy. In finite MDPs, the optimal
value function is guaranteed to be unique, and has at least
one deterministic optimal policy associated with it.

A major challenge is how to deal with large, possibly con-
tinuous, state spaces, known more colourfully as the curse
of dimensionality or the state-space explosion problem.

∗ Norm Ferns’ contribution was partially supported by the
AbstractCell ANR-Chair of Excellence.

†Doina Precup’s contribution was supported by NSERC.

Briefly, the number of parameters necessary to represent
the value function scales exponentially with the number
of state variables. In response to this issue, a number of
researchers have advocated the use of metrics, which can
be used to determine similarity between states, and cluster
them accordingly. Ideally, one would like such a cluster-
ing to reflect similarity among states in terms of the value
function, which reflects the long-term cumulative reward.

In the formal verification community, a similar problem
arises in the analysis of transition systems, in which one
wants to establish long-term properties (e.g., the probabil-
ity that the system may enter a faulty state, or that a cer-
tain trajectory would terminate). Many researchers advo-
cate tackling such problems by using approximation met-
rics based on strong probabilistic bisimulation. Bisimu-
lation is a conservative behavioural equivalence between
states: states that are bisimilar will have the same long-
term behaviour (Larsen & Skou, 1991; Givan et al., 2003).
Corresponding metrics are useful in order to measure state
similarity, and are used both to directly aggregate system
states and more generally to assess the quality of an approx-
imation. Abate (2012) surveys historical and more recent
developments in this area.

In the context of MDPs, such metrics - henceforth known
as bisimulation metrics - were developed in (Ferns et al.,
2004; Ferns et al., 2005; Ferns et al., 2011) based on
the work of Desharnais et al. (2002; 2001a) for a related
Markov transition system. In (Ferns et al., 2006), the au-
thors experimentally compared several methods for esti-
mating these metrics on small finite MDPs, with a Monte
Carlo approach outperforming the others. However, the
analyses therein were limited, lacking, for example, any
sample complexity results.

The purpose of this work is to strengthen and unify theo-
retical and practical results for bisimulation metrics on a
given MDP by showing that they are in fact the optimal
value functions of an optimal coupling of that MDP with
itself (Theorem 3.3). We establish this result in the gen-
eral setting of continuous-state MDPs. To our knowledge,
this is an original result, which both improves our under-
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standing of bisimulation metrics in general, and opens up
avenues of attack for more efficient computation.

The paper is organized as follows. In Section 2, we pro-
vide a brief summary of MDPs, optimal control theory, and
bisimulation metrics on continuous spaces. In Section 3,
we use a measurable selection theorem to prove the main
result, and in Section 4 we relate the results we present to
existing work within the artificial intelligence and formal
verification communities. Finally, in Section 5, we discuss
the implications of our result and directions for future re-
search.

2 BACKGROUND

Since we deal primarily with uncountably infinite state
spaces, we must take into account the tension between im-
posing the right amount of structure on a space for gen-
eral theoretical usefulness and imposing the right amount
of structure for useful practical applications. For that rea-
son, much of the work on Markov processes has been cast
in the setting of Polish spaces. The introductory chapter
of (Doberkat, 2007) contains a self-contained exposition of
probabilities on Polish spaces in the context of computer
science. A more comprehensive mathematical description
can be found in (Srivastava, 2008). By contrast, a gentler
introduction to probabilities on continuous spaces can be
found in the first four chapters of (Folland, 1999). We refer
the reader to these three sources for the basic mathematical
definitions that we present throughout.

2.1 PROBABILITIES ON METRIC SPACES

A Polish metric space is a complete, separable metric
space. A Polish space is a topological space that is homeo-
morphic to a Polish metric space. A standard Borel space
is a measurable space that is Borel isomorphic to a Polish
space.

If (X, τ) is a topological space, then Cb(X) is the set
of continuous bounded real-valued functions on X . If
(X,BX) is a standard Borel space then we denote by
Bb(X) the space of bounded measurable real-valued func-
tions onX , and by P(X) the set of probability measures on
X; note that the latter is also a standard Borel space (Giry,
1982).

2.2 DISCOUNTED MARKOV DECISION
PROBLEMS

Let (X,BX) and (Y,BY ) be standard Borel spaces. A
Markov kernel is a Borel measurable map from (X,BX) to
(P(Y ),BP(Y )). Equivalently, K is a Markov kernel from
X to Y iff K(x) is a probability measure on (Y,BY ) for
each x ∈ X , and x 7→ K(x)(B) is a measurable map for
each B ∈ BY .

Remark 1. The use of the term kernel here should not
be confused with the usual meaning, that being the set of
points in the domain of a real-valued function that send
the function to 0. We will refer to kernel in both senses
throughout, with the meaning clear from the context.

We will denote the set of all Markov kernels from X to
Y by [[X → P(Y )]] and simply write “K is a Markov ker-
nel on X” when it is implicitly assumed that Y = X . If
I is an index set and K = (Ki)i∈I is an I-indexed col-
lection of Markov kernels on X , we will say that “K is a
labelled Markov kernel on X”. Such kernels play the role
of transition relations in stochastic transition systems with
continuous state spaces.

A Markov decision process (MDP) is a tuple
(S,BS , A, (Pa)a∈A, r), where (S,BS) is a standard
Borel space, A is a finite set of actions, r : A × S → R is
a bounded measurable reward function, and for a ∈ A, Pa
is a Markov kernel on S.

For each a ∈ A, we denote by ra : S → R the function
defined by ra(s) = r(a, s), and for each a ∈ A and s ∈ S.
We use functional notation for integration with respect to
Pa(s), i.e. the integral of f ∈ Bb(S) with respect to Pa(s)
will be written as Pa(s)(f).

A Markov decision process along with an optimality crite-
rion is known as a Markov decision problem. In this work,
we focus on Markov decision problems with the expected
total discounted reward optimality criterion, which we now
briefly describe based on (Hernández-Lerma & Lasserre,
1996) and especially Section 8.3 of (Hernández-Lerma &
Lasserre, 1999). We rely on these sources instead of oth-
ers who may be more familiar to the AI audience because
they treat the infinitely uncountable state space setting. We
direct the reader to these sources for full details.

Fix an MDP M = (S,BS , A, (Pa)a∈A, r) and a dis-
count factor γ ∈ (0, 1). Let t ∈ N. Then Ht, the
family of histories up to time t, is defined by H0 = S
and Ht+1 = Ht × (A × S) for t ∈ N. An element
ht = (s0, a0, . . . , st−1, at−1, st) ∈ Ht is called a t-history.
A randomized control policy is a sequence of Markov ker-
nels π = (πt)t∈N such that πt ∈ [[Ht → P(A)]] for all
t ∈ N. The set of all policies is denoted by Π. A policy
π = (πt)t∈N is said to be a randomized stationary policy
if there exists a Markov kernel ϕ ∈ [[S → P(A)]] such that
πt(ht) = ϕ(st) for all ht ∈ Ht, t ∈ N, and a determin-
istic stationary policy if there exists a measurable selector
f for S × A such that πt(ht) is the Dirac measure at the
point f(st) ∈ A for all ht ∈ Ht, t ∈ N. We denote the sets
of randomized stationary policies and deterministic station-
ary policies by ΠRS and ΠDS respectively and note that
ΠDS ⊆ ΠRS ⊆ Π.

Let π ∈ Π be a policy on M. The γ-discounted
value function for π, Vγ(π), is defined by Vγ(π)(s) =
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Eπs [
∑∞
t=0 γ

tr(at, xt)] for all s ∈ S, where Eπs is the ex-
pectation taken with respect to the system dynamics when
starting in state s and following policy π. The goal of
this Markov decision problem is to find a policy whose
value function dominates all others. Toward that end, one
defines the γ-discounted optimal value function, V ∗γ , by
V ∗γ (s) = supπ∈Π Vγ(π)(s) for all s ∈ S, and the Bell-
man operator with respect to γ, Tγ : Bb(S) → Bb(S), by
Tγ(v)(s) = maxa∈A[ra(s) + γ · Pa(s)(v)] for all s ∈ S.
The following can be found within Theorem 8.3.6 and
its preceding remarks in (Hernández-Lerma & Lasserre,
1999).

Theorem 2.1 (Value Iteration). Define (vn)n∈N ⊆ Bb(S)
by v0(s) = 0 for all s ∈ S and vn+1 = Tγ(vn) for
all n ∈ N. Then the optimal value function V ∗γ is the
unique solution in Bb(S) to the Bellman optimality equa-
tion v = Tγ(v); (vn)n∈N converges uniformly to V ∗γ with
‖vn − V ∗γ ‖ ≤ γ−n(1− γ) for all n ∈ N and where ‖ · ‖ is
the uniform norm; and there exists a deterministic station-
ary optimal policy π∗ ∈ ΠDS such that V ∗γ = Vγ(π∗).

We note that although Theorem 2.1 implies it is sufficient
to search ΠDS for an optimal policy, in practice it is often
useful to work with the larger class ΠRS . On the other
hand, for more general theoretical considerations, e.g. other
optimality criteria, we may need to consider all of Π.

2.3 BISIMULATION

We present bisimulation for MDPs as outlined in (Ferns
et al., 2011).

Given an equivalence relation R on a measurable space
(S,Σ), a subset X of S is said to be R-closed if X is a
union of R-equivalence classes. We write Σ(R) for the set
of those Σ-measurable sets that are also R-closed.

Let (S,BS , A, (Pa)a∈A, r) be an MDP. An equivalence
relation R on S is a bisimulation relation if it satisfies
sRs′ ⇐⇒ for every a ∈ A, ra(s) = ra(s′) and for
every X ∈ Σ(R), Pa(s)(X) = Pa(s′)(X). Bisimilarity is
the largest of the bisimulation relations.

2.4 THE KANTOROVICH METRIC

In order to define bisimulation metrics for MDPs, we first
need to recall the definition and properties of the Kan-
torovich metric between distributions, which can be found
in (Villani, 2003).

Definition 1 (Kantorovich Metric). Let S be a Polish
space, h a bounded pseudometric on S that is lower semi-
continuous on S × S with respect to the product topology,
and let Lip(h) be the set of all f ∈ Bb(S) that satisfy the
Lipschitz condition f(x)− f(y) ≤ h(x, y) for every x, y ∈
S. Let P,Q ∈ P(S). Then the Kantorovich metric K(h) is
defined by K(h)(P,Q) = supf∈Lip(h)(P (f)−Q(f)).

The Kantorovich metric is an infinite linear program and
has a dual described in terms of couplings of probability
measures.

Definition 2 (Coupling). Let (X,BX) and (Y,BY ) be
standard Borel spaces, and let (X × Y,BX ⊗ BY ) be
the product space. Let µ ∈ P(X), ν ∈ P(Y ), and
λ ∈ P(X×Y ). Then λ is a coupling of µ and ν if and only
if its marginals on X and Y are µ and ν, respectively. We
denote the set of all couplings of µ and ν by Λ(µ, ν), i.e.,
λ ∈ Λ(µ, ν) ⇐⇒ λ(E × Y ) = µ(E) and λ(X × F ) =
ν(F ) for all E ∈ BX , F ∈ BY .

The following is found within Section 1.1.1 of (Villani,
2003).

Lemma 2.2. LetX and Y be Polish spaces and let µ and ν
belong to P(X) and P(Y ), respectively. Then λ ∈ Λ(µ, ν)
if and only if for every (ϕ,ψ) ∈ Cb(X)× Cb(Y )

∫

X×Y
[ϕ(x) + ψ(y)]λ(dx, dy)

=

∫

X

ϕ(x)µ(dx) +

∫

Y

ψ(y)ν(dy).

In Section 3, we’ll make use of the following simple
lemma.

Lemma 2.3. Let X and Y be Polish spaces and let µ and
ν belong to P(X) and P(Y ), respectively. Then Λ(µ, ν) is
a closed subset of P(X × Y ).

Proof. Let (λn)n∈N ⊆ Λ(µ, ν) be a sequence converging
to some λ ∈ P(X×Y ) in the weak topology. Let (ϕ,ψ) ∈
Cb(X)× Cb(Y ). Then

∫

X×Y
[ϕ(x) + ψ(y)]λ(dx, dy)

= lim
n→∞

(∫

X×Y
[ϕ(x) + ψ(y)]λn(dx, dy)

)

= lim
n→∞

(

∫

X

ϕ(x)µ(dx) +

∫

Y

ψ(y)ν(dy))

=

∫

X

ϕ(x)µ(dx) +

∫

Y

ψ(y)ν(dy).

Here we have used the definition of weak convergence, as
well as Lemma 2.2 for each λn. It follows from the same
lemma that λ ∈ Λ(µ, ν).

The following can be found in Theorem 1.3 and the proof
of Theorem 1.14 in (Villani, 2003).

Theorem 2.4 (Kantorovich-Rubinstein Duality Theorem).
Assume the conditions of Definition 1. Then K(h)(P,Q) is
equal to

sup
f∈Lip(h,Cb(S))

(P (f)−Q(f)) = inf
λ∈Λ(P,Q)

λ(h)
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where Lip(h,Cb(S)) denotes functions on S that are con-
tinuous and bounded, 1-Lipschitz with respect to h, and
have range [0, ‖h‖]. Moreover, the supremum and infimum
are attained.

2.5 BISIMULATION METRICS

The following can be found in Theorem 3.12 of (Ferns
et al., 2011) and Corollary 3 of (Ferns et al., 2014).
Theorem 2.5. Let M = (S,BS , A, (Pa)a∈A, r) be an
MDP and let c ∈ (0, 1) be a discount factor. Assume that
the image of r is contained in [0, 1]. Then there exists a
Polish topology τ generating BS such that for all a ∈ A,
ra is continuous with respect to τ and Pa is weakly contin-
uous with respect to τ . Define θc : A× (S×S)→ [0, 1] by
θca(x, y) = (1 − c)|ra(x) − ra(y)|. Furthermore, let lscm
be the set of bounded pseudometrics on S that are lower
semicontinuous on S × S endowed with the product topol-
ogy induced by τ . Define Fc : lscm → lscm by setting
Fc(ρ)(s, s′) equal to

max
a∈A

[
θca(s, s′) + c · K(ρ)(Pa(s), Pa(s′))

]

Then Fc has a unique 1-bounded fixed-point pseudometric
ρ∗c ∈ Cb(S × S) whose kernel is bisimilarity.

We call such a metric a bisimilarity metric, and more gen-
erally a bisimulation metric if its kernel is a bisimulation
relation (but not necessarily the largest). The following re-
sult, Theorem 3.20 in (Ferns et al., 2011), relates the opti-
mal values of states to their similarity as measured by the
bisimulation metric.
Theorem 2.6. Assume the setup and result of Theorem 2.5.
Let γ ∈ (0, c] be a reward discount factor and let V ∗γ be the
optimal value function defined in Theorem 2.1. Then V ∗γ
is Lipschitz continuous with respect to ρ∗c with Lipschitz
constant (1− c)−1, i.e., for all s, s′ ∈ S,

|V ∗γ (s)− V ∗γ (s′)| ≤ (1− c)−1ρ∗c(s, s
′)

Since bisimulation is a behavioural equivalence, this result
implies that the closer two states are in bisimilarity dis-
tance, the more likely they are to share the same optimal
actions, and hence optimal policies, for achieving the same
optimal values.

3 A BISIMULATION VALUE FUNCTION

LetM = (S,BS , A, (Pa)a∈A, r) be an MDP with the im-
age of r contained in [0, 1] and let c ∈ (0, 1) be a discount
factor. The goal of this section is to show that the bisimilar-
ity metric ρ∗c given by Theorem 2.5 can be expressed as the
optimal value function of some MDP. In order to do so, let
us first extend the definition of a coupling of two probabil-
ity measures to a coupling of two labelled Markov kernels
in the obvious way.

Definition 3. Let (X,BX) and (Y,BY ) be standard Borel
spaces, and let (X×Y,BX⊗BY ) be the product space. Let
I be an index set, and let K = (Ki)i∈I , L = (Li)i∈I , and
M = (Mi)i∈I be labelled Markov kernels on X , Y , and
X × Y , respectively. Then M is a coupling of K and L if
and only if for each i ∈ I , x ∈ X , and y ∈ Y , Mi(x, y) is
a coupling of Ki(x) and Li(y) in the sense of Definition 2.
We denote the set of all couplings of K and L by Λ(K,L).

Recall that ρ∗c is the unique solution to the fixed-point equa-
tion

ρ∗c(x, y) = max
a∈A

[θca(s, s′) + c · K(ρ∗c)(Pa(x), Pa(y))].

Here is the crucial fact: Theorem 2.4 remarkably not
only provides a statement of duality for each Kantorovich
linear program K(ρ∗c)(Pa(x), Pa(y)), but guarantees the
existence of minimizers in the minimization linear pro-
gram as well. Therefore, for every a ∈ A and
x, y ∈ S there exists λaxy ∈ Λ(Pa(x), Pa(y)) such that
K(ρ∗c)(Pa(x), Pa(y)) = λaxy(ρ∗c). Suppose for every
a ∈ A the map from S × S to P(S × S) that sends (x, y)
to λaxy is measurable. Then ρ∗c would satisfy the Bell-
man optimality equation defined in Theorem 2.1 for the
optimal value function with discount factor c for the MDP
(S × S,BS×S , A, (λa)a∈A, θc) where λa(x, y) = λaxy .
Remark that such a λ = (λa)a∈A is a coupling of P with
P , where P = (Pa)a∈A. Thus, if we can find a mea-
surable way of selecting the minimizers amongst all the
Kantorovich linear programs appearing in the definition of
ρ∗c , we will have shown that the bisimilarity metric is actu-
ally the optimal value function of an MDP whose labelled
Markov kernel is a coupling of two copies of the labelled
Markov kernel of the original model. This is our goal.

3.1 MEASURABLE SELECTORS AND SECTIONS

The following results can be found in Section 1.4
of (Doberkat, 2007) and Section 5 of (Srivastava, 2008).

Let X and Y be sets. A multifunction from X to Y is a set-
valued map R : X → 2Y such that for all x ∈ X , R(x) is
a nonempty subset of Y . A multifunction R from X to Y
can equivalently be viewed as a relation between X and Y .

Given a multifunction R between measurable spaces X
and Y , one usually seeks to measurably select a member
of R(x) for each x ∈ X . Here, we recount one way of
doing so.

Let R be a multifunction from X to Y , and let G ⊆
Y . The weak inverse of G with respect to R is the set
∃R(G) = {x ∈ X | ∃y ∈ G such that (x, y) ∈ R}
= {x ∈ X | R(x) ∩G 6= ∅}. The importance of the weak
inverse lies in trying to utilise the property of measurability
for a multifunction R. A measurable function requires the
preimage of every measurable set to be measurable. Here,
we need only consider the preimages of compact sets.
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Suppose R is a multifunction between a measurable space
X and a Polish space Y . Let G ⊆ Y . If ∃R(G) is
measurable whenever G is compact then R is called a C-
measurable relation on X × Y .

Assume X is a measurable space, Y is Polish, R is a mul-
tifunction from X to Y and for each x ∈ X , R(x) is a
non-empty closed subset of Y . Then a measurable map
f : X → Y is called a measurable selector for R if and
only if f(x) ∈ R(x) for all x ∈ X .

The following measurable selection result can be found as
Proposition 1.57 and Proposition 1.58 in (Doberkat, 2007).
Proposition 3.1. Assume that X is a measurable space,
Y is a Polish space, and R is a C-measurable relation on
X × Y . Then there exists a measurable selector f forR.

Finally, the following appears in Proposition 2.34 of (Fol-
land, 1999), and will be used in conjunction with the pre-
ceding measurable selection theorem to establish our main
result.
Proposition 3.2. Suppose that (X,BX), (Y,BY ), and
(Z,BZ) are measurable spaces and that f : X × Y → Z
is a product-measurable function. Let x ∈ X . Define the
X-section of f at x, fx : Y → Z, to be the function defined
by fx(y) = f(x, y) for all y ∈ Y . Then fx is measurable.

3.2 BISIMILARITY AS A VALUE FUNCTION

Theorem 3.3. Let us assume the setup and result of The-
orem 2.5. Let K = (Ka)a∈A ∈ Λ(P, P ), where P =
(Pa)a∈A. Define the coupling ofM with itself through K
to be the MDPM(K) = (S × S,BS×S , A, (Ka)a∈A, θc).
Let V ∗c (K) denote its optimal value function with respect
to c, as defined in Theorem 2.1. Then there exists a K∗ ∈
Λ(P, P ) such that ρ∗c = V ∗c (K∗) = minK∈Λ(P,P ) V

∗
c (K).

In order to prove Theorem 3.3, we will need to make use of
the following result, which can be found within the proof
of Lemma 3.14 in (Ferns et al., 2011).
Lemma 3.4. Assume the setup and result of Theorem 2.5.
Then for each a ∈ A, the map sending (s, s′) to
K(ρ∗c)(Pa(s), Pa(s′)) is continuous on S × S.

Proof of Theorem 3.3. In order to prove the existence of
K∗, we follow the method of part 3 of the proof of
Lemma 4.9 in (Doberkat, 2007). First, however, we appeal
to Theorem 2.5 to assert the existence of a Polish topology
τ on S making each ra continuous and each Pa weakly
continuous for all a ∈ A. Let X = A × S × S and
Y = P(S×S). The setA is a Polish space since it is finite,
and X is a Polish space since it is a finite product of Polish
spaces. Additionally, Y is also a Polish space (Giry, 1982).
Define R : X → 2Y by setting R(a, x, y) to be the set of
all λ ∈ Λ(Pa(x), Pa(y)) such thatK(ρ∗c)(Pa(x), Pa(y)) =
λ(ρ∗c). Theorem 2.4 implies that each R(a, x, y) is non-
empty. Suppose (λn)n∈N ⊆ R(a, x, y) converges to λ ∈

Y . By Lemma 2.3, λ ∈ Λ(Pa(x), Pa(y)). Theorem 2.5
implies that ρ∗c ∈ Cb(S × S), so that by weak convergence
λ(ρ∗c) = limn→∞ λn(ρ∗c) = K(ρ∗c)(Pa(x), Pa(y)). There-
fore, λ ∈ R(a, x, y), i.e.R(a, x, y) is closed.

Next, let G ⊆ Y be compact, hence, closed. We will
show that ∃R(G) is closed, and hence measurable. Let
(an, xn, yn)n∈N ⊆ ∃R(G) be a sequence converging to
some (a, x, y) ∈ X . So there exists (λn)n∈N ⊆ G such that
λn ∈ R(an, xn, yn) for all n ∈ N. SinceG is compact, it is
also sequentially compact and therefore there exists a sub-
sequence (λkn)n∈N converging to some λ ∈ G. Remark
that since A is finite, the sequence (an)n∈N is eventually
constant, i.e. there exists N ∈ N such that (an, xn, yn) =
(a, xn, yn) for all n ≥ N . Let (ϕ,ψ) ∈ Cb(S) × Cb(S).
Then

∫

S×S
[ϕ(s) + ψ(s′)]λ(ds, ds′)

= lim
n→∞

(∫

S×S
[ϕ(s) + ψ(s′)]λkn(ds, ds′)

)

= lim
n→∞

(

∫

S

ϕ(s)Pakn (xkn)(ds)

+

∫

S

ψ(s′)Pakn (ykn)(ds′))

= lim
n→∞

(

∫

S

ϕ(s)Pa(xkn)(ds)

+

∫

S

ψ(s′)Pa(ykn)(ds′))

=

∫

S

ϕ(s)Pa(x)(ds) +

∫

S

ψ(y)Pa(y)(ds′)

so that λ ∈ Λ(Pa(x), Pa(y)). Here we have used the
weak convergence of (λkn)n∈N to λ, (Pa(xkn))n∈N to
Pa(x), and of (Pa(ykn))n∈N to Pa(y), and the repeated
use of Lemma 2.2. Moreover, by weak convergence and
Lemma 3.4

λ(ρ∗c) = lim
n→∞

λkn(ρ∗c)

= lim
n→∞

K(ρ∗c)(Pa(xkn), Pa(ykn))

= K(ρ∗c)(Pa(x), Pa(y)),

whence it follows that λ ∈ R(a, x, y). Therefore,
R(a, x, y) ∩ G 6= ∅, (a, x, y) ∈ ∃R(G), and ∃R(G) is
closed and hence measurable. By definition, R is a C-
measurable relation on X × Y . Applying Proposition 3.1
there exists a measurable selector f : X → Y for R. Fi-
nally, set K∗ = (K∗a)a∈A where K∗a(x, y) = f(a, x, y) ∈
R(a, x, y) for all a ∈ A, x, y ∈ S. For each a ∈ A,
K∗a is simply the A-section of f at a, so that by Propo-
sition 3.2, each K∗a ∈ [[S × S → P(S × S)]]. Therefore,
ρ∗c = V ∗c (K∗), the optimal value function forM(K∗).

Clearly infK∈Λ(P,P ) V
∗
c (K) ≤ V ∗c (K∗). To establish the

reverse inequality, let K = (Ka)a∈A ∈ Λ(P, P ). Then for
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any a ∈ A and x, y ∈ S,

θca(x, y) + c ·K∗a(x, y)(ρ∗c)

= θca(x, y) + c · K(ρ∗c)(Pa(x), Pa(y))

= θca(x, y) + c · inf
λ∈Λ(Pa(x),Pa(y))

λ(ρ∗c)

≤ θca(x, y) + c ·Ka(x, y)(ρ∗c).

By taking the maximum over all a ∈ A and noting that
the result holds for all x, y ∈ S, we then obtain ρ∗c ≤
Tc(K)(ρ∗c), where Tc(K) is the Bellman optimality op-
erator for the MDP M(K). Therefore, it follows that
V ∗c (K∗) ≤ V ∗c (K) for any K ∈ Λ(P, P ), and finally that
V ∗c (K∗) ≤ infK∈Λ(P,P ) V

∗
c (K).

Thus, we can interpret every discounted bisimulation met-
ric as the optimal value function of some MDP; moreover,
that MDP is optimal in the sense that it is the best cou-
pling of the transition structure of the original MDP with
itself when one seeks to minimize the expected total dis-
counted absolute difference in rewards coming from the
original model.

An immediate consequence is that we can now interpret
the topology of convergence with respect to a bisimula-
tion metric in terms of MDP optimality criteria. Con-
versely, when examining behavioural equivalence for the
state space of a given MDP it no longer suffices to con-
sider the structural model alone; one must take into account
the full Markov decision problem, i.e. its intended use by
means of an optimality criterion. This is yet another ad-
vantage of the pseudometric approach over that of exact
equivalences. We discuss this further in Section ??.

Practical implications are less immediate, but no less im-
portant, particularly in regard to determining what might
be effective in attempting to calculate or estimate the dis-
tances. Consider a finite MDP. If we adjoin one new ab-
sorbing state with no immediate rewards then it is not hard
to show that the bisimulation distance from that state to an-
other state is the optimal value of the latter state. So com-
puting a bisimulation metric is at least as hard as comput-
ing an optimal value function. On the other hand, we have
just shown that computing a bisimulation metric amounts
to computing an optimal value function - albeit, with the
caveat that this amounts to a search over possibly infinitely
many couplings. If one could restrict this search to poly-
nomially many couplings, then it would follow that com-
puting bisimulation metrics and computing optimal value
functions belong to the same polynomial-time complexity
class - and we conjecture that this is so. At first glance,
this is a disappointing result; if one followed the naive ap-
proach, one would be attempting to solve for an optimal
value function by solving for another optimal value func-
tion over a quadratically larger MDP. However, comput-
ing a bisimulation metric is of interest in its own right;
the value function formulation allows for state-of-the-art

reinforcement learning techniques (Sutton & Barto, 2012;
Pazis & Parr, 2013) to be applied in its computation while
at the same time informing us of what methods are unlikely
to work well in practice for truly large systems.

A better practical approach would be to find more eas-
ily computable similarity metrics that are related in some
meaningful way to the bisimulation metric. In that case,
one would have a practical similarity measure with the
theoretical guarantees given by bisimulation, as in Theo-
rem 2.6. Our value function formulation permits a very
natural way to do this, through the use of couplings.

Definition 4. Let f : X × X → [0,∞) be a func-
tion on a set X . Define the function %(f) : X × X →
[0,∞) by %(f)(x, y) = inf{∑m

j=1 ω(f)(aj−1, aj)}, where
ω(f)(u, v) = min{f(u, v), f(v, u)} and the infimum is
taken over all m ∈ N and (aj)

m
j=0 ⊆ X such that a0 = x

and am = y. Then %(f) is the largest pseudometric less
than f .

Notice that ifX is finite and f is computable then the prob-
lem of computing %(f) is the All-Pairs Shortest Paths prob-
lem.

Corollary 3.5. Assume the setup and result of Theo-
rem 3.3. For π ∈ Π defined over S × S we let Vc(K)(π)
denote the value function ofM(K) with respect to π and
c and we let V ∗c (K) denote its optimal value function with
respect to c, as defined in Theorem 2.1. Then

1. ∀K ∈ Λ(P, P ), ρ∗c ≤ %(V ∗c (K)) ≤ V ∗c (K).

2. ∀π ∈ Π, %(Vc(K
∗)(π)) ≤ Vc(K∗)(π) ≤ ρ∗c .

Corollary 3.5 allows us to easily bound the bisimulation
metric from above for any coupling K ∈ Λ(P, P ). For ex-
ample, the product coupling P ⊗ P defined in the obvious
way (and assuming measurability) by (P ⊗ P )a(x, y) =
Pa(x)⊗Pa(y) should provide a trivial upper bound. Corol-
lary 3.5 also provides a lower bound but only in the case
where we know the optimal coupling K∗ beforehand. Po-
tentially more interesting is the case where we combine the
two, i.e. for an arbitrary coupling K ∈ Λ(P, P ) and an
arbitrary policy π ∈ Π defined onM(K), does the equiv-
alence induced by %(Vc(K)(π)) lead to something that is
more easily computable but that still provides good theo-
retical guarantees?

4 RELATED WORK

This work lies at the intersection of artificial intelligence
and formal verification, and owes much to both. The con-
cept of bisimulation has been in use within the uncer-
tainty in artificial intelligence community for some time
now. Indirectly in (Boutilier et al., 2000) and directly
in (Givan et al., 2003), the notion of bisimulation had
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been transferred from the theory of concurrent processes
to MDP model minimization and the reinforcement learn-
ing paradigm. These papers work directly with factored or
structured representations, which is an advantage over our
approach for problems where such structure in the environ-
ment exists and is known explicitly. On the other hand, they
deal only with discrete MDPs, exhibit the brittleness inher-
ent in using exact equivalences for numerical systems, and
lack theoretical guarantees on the size of a fully minimal
system. In earlier work, Dean et al. (1997) actually con-
sider an approximate version of bisimulation. For a small
positive parameter ε they consider equivalence relations
satisfying the property that immediate rewards and stochas-
tic transitions to equivalence classes differ by at most ε.
However, the disadvantages already mentioned still apply.
More generally, (Li et al., 2006) provide a comprehensive
survey and classification of various state abstractions for fi-
nite MDPs, including methods based on bisimulation (such
as our bisimulation metrics).

Bisimulation metrics have been more extensively studied
in the formal verification community. In that setting, the
work closest in spirit to our own is (Chen et al., 2012),
wherein the authors investigate the complexity of comput-
ing bisimilarity and metric bisimilarity for labelled Markov
chains. In particular, Theorem 8 in that work relates an
undiscounted bisimulation metric to optimal couplings of a
given labelled Markov chain. Aside from considering only
finite state systems, they allow for states to have differing
sets of permissible actions but omit the reward parameter;
hence, their work lies outside of the optimal control theory
framework on which we focus.

Abate (2012) surveys various approximation metrics for
probabilistic bisimulation over Markov processes with gen-
eral state and action spaces, though here too Markov reward
processes are mostly neglected. The author does conclude
that a bridge needs to be made between techniques based
on computing distances between Markov kernels and tech-
niques based on sampling trajectories from processes under
consideration; we believe the current work can help provide
that bridge.

A very promising approach appears in (Desharnais et al.,
2013) where the authors propose a general algorithm for
estimating divergences, distance functions that may fail
to satisfy the symmetry and triangle inequality axioms of
a pseudometric. They consider divergences that general-
ize equivalences on probabilistic systems based on tests
and observations. In particular, they define a new family
of testable equivalences called k-moment equivalences; 1-
moment equivalence is trace equivalence, as k grows larger
k-moment equivalence becomes finer, and all k-moment
equivalences as well as their limit equivalence are strictly
weaker than bisimilarity. The exciting feature of their work
is that the algorithm for estimating a divergence corre-
sponding to a fixed equivalence is based on defining an

MDP whose optimal value function is that divergence, and
then using reinforcement learning techniques (Sutton &
Barto, 2012) to solve for the optimal value function. While
conceptually similar in spirit to our value function repre-
sentation of bisimulation metrics, this approach differs sig-
nificantly in how the MDP representing the metric is de-
fined.

5 CONCLUSIONS AND FUTURE WORK

We have shown that the bisimulation metric defined
in (Ferns et al., 2011) for an MDP is actually the optimal
value function of an optimal coupling of the MDP with it-
self. This latter formulation is perhaps a more natural con-
ception of distance for MDPs. In any case, all theoretical
and practical results from optimal control theory concern-
ing optimal value functions for MDPs can be carried over
(based on this result)to the study of bisimulation metrics.

Perhaps the most intriguing implication of Theorem 3.3
is that examining other optimal control theory criteria
may lead to different classes of bisimulation metrics per-
haps better suited to those optimality tasks. Consider
the undiscounted case. What does ρ∗c represent when c
tends to 1? We could set c = 1 in Theorem 2.5, as in
Theorem 4 of (Chen et al., 2012). The resultant func-
tional F1 : lscm → lscm defined by F1(ρ)(s, s′) =
maxa∈AK(ρ)(Pa(s), Pa(s′)) has a least fixed-point ρ∗1
given by the Knaster-Tarski fixed-point theorem. In fact, in
this case the least fixed-point is the everywhere zero pseu-
dometric - unsurprising since in our current setup all ac-
tions are allowable in all states and the reward parameter
is the only feature that distinguishes states. But how might
we interpret such a result more generally? In fact, there is
some relation to the infinite-horizon average reward opti-
mality criterion.

Let M = (S,BS , A, (Pa)a∈A, r) be an MDP with the
image of r contained in [0, 1] and recall the terminology
of Section 2.2. The following definitions can be found
in Chapter 5 of (Hernández-Lerma & Lasserre, 1996).
Let π ∈ Π be a policy on M. Let n ∈ N. The
n-stage value function for π is defined by Jn(π)(s) =

Eπs [
∑n−1
t=0 r(at, xt)] for all s ∈ S, the average cost value

function for π by J(π)(s) = lim supn→∞
1
nJn(π)(s) for

all s ∈ S, and the average reward optimal value function
by J∗(s) = supπ∈Π J(π)(s) for all s ∈ S. The solution
to the average reward Markov decision problem is a policy
π∗ such that J(π∗) = J∗.

Let us assume that M is finite, i.e., S is finite. The fol-
lowing can be found in Chapter 8 of (Feinberg & Shwartz,
2002), in particular Theorem 8.1, listed below as Theo-
rem 5.1. A policy π ∈ Π is said to be Blackwell optimal if
and only if there exists γ0 ∈ (0, 1) such that π is γ-optimal
for all γ ∈ (γ0, 1).
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Remark 2. A stationary Blackwell optimality policy is
also average reward optimal, and for such a policy π∗,
limγ↑1(1− γ)Vγ(π∗) = J(π∗).

Theorem 5.1. In a finite MDP there exists a stationary
Blackwell optimal policy.

Let K ∈ Λ(P, P ) and V ∗c (K) be the optimal value func-
tion for the MDPM(K) defined in Section 3 with the re-
ward parameter θc scaled by (1 − c)−1. Then there ex-
ists a K∗c ∈ Λ(P, P ), depending on c, such that ρ∗c =
(1 − c)V ∗c (K∗c ). It follows that limc↑1 ρ∗c = limc↑1(1 −
c)V ∗c (K∗c ) ≤ limc↑1(1 − c)V ∗c (K) ≤ J∗(K) for any
K ∈ Λ(P, P ). Thus, limc↑1 ρ∗c ≤ infK∈Λ(P,P ) J

∗(K).
It remains to be seen whether or not the inequality is strict.

In the general case, the situation is much more complicated.
For example, under a variety of conditions not listed here,
Lemma 10.4.3 of (Hernández-Lerma & Lasserre, 1999)
states the following.

Lemma 5.2. There exists a constant α such that α =
lim supγ↑1(1− γ)V ∗γ ≤ J∗.

It follows that under the same conditions lim supc↑1 ρ
∗
c ≤

α ≤ infK∈Λ(P,P ) J
∗(K). If equality were to hold in

this case, then we would have for some x ∈ S, α =
lim supc↑1 ρ

∗
c(x, x) = 0, so that limc↑1 ρ∗c exists and is ev-

erywhere zero, i.e. the resulting equivalence would identify
all states. Aside from the unspecified conditions, the dis-
tinction with the finite case is that limc↑1 ρ∗c need not exist
to begin with.

Similarly, consider the expected total reward criterion.
Here we might take the set of lower semicontinuous pseu-
dometrics on S as in Theorem 2.5, but this time bounded
with respect to a weighted supremum norm ‖ · ‖w for some
weight function w : S × S → [1,∞). Thus, an unbounded
function f that has a bounded norm with respect to w has
its rate of growth bounded by w. Define the functional F
by

F (ρ)(s, s′) = max
a∈A

[θ0
a(s, s′) +K(ρ)(Pa(s), Pa(s′))].

Then if conditions are imposed so that the set ofw-bounded
lower semicontinuous pseudometrics on S is closed under
F , it will have a least fixed-point (extended) pseudometric
again corresponding to some expected total reward optimal
value function. This line of research is very preliminary.

The major concern of this work along with (Ferns et al.,
2014) is to clarify and unify results about the theory of
bisimulation metrics in order to provide new avenues of
attack for practical applications. An ongoing research goal
is to find a more easily computable equivalence than that
given by the current bisimulation metrics while maintain-
ing as much as possible the theoretical guarantees. As far
as estimating the given family of bisimulation metrics, the
current interpretation as optimal value functions suggests

that the most promising approaches involve Monte Carlo
techniques, as in (Ferns et al., 2006), (Ferns et al., 2011),
and most recently in (Comanici et al., 2012), or advanced
approximate linear programming techniques as in (Pazis &
Parr, 2013). More to the point, our strong intuition is that
state-of-the-art methods for efficient reinforcement learn-
ing can be leveraged to develop state-of-the-art methods for
efficient bisimulation metric computation, and vice versa.
Very interesting recent work in this direction have been
done by Bacci et al. (2013), who use greedy heuristics and
decomposition techniques to speed up the computation of
bisimulation metrics for MDPs. Computational approaches
of this flavour should be further investigated.

In order for this approach to be really useful in practice,
however, a few topics need to be further addressed by future
work.

First, this work is highly dependent on couplings and the
coupling method, though we have only just touched upon
the subject. The study of couplings in theory and in practice
is vast, and a proper discussion is beyond the scope of this
work. A good source for the theory of couplings is (Lind-
vall, 2002). Moreover, as noted in (Chen et al., 2012), it is
already known in the discrete case that the set of couplings
(called matchings in that work) for two probability func-
tions forms a polytope; and that optimizing a linear func-
tion over it amounts to optimizing over the finitely many
vertices of the polytope (as is done in computing the dis-
crete Kantorovich metric). We hope that this structure can
be exploited to improve our theoretical result.

Additionally, we mentioned that the initial applications of
bisimulation to MDPs exploited factored or structured rep-
resentations. It would be fruitful to explore whether or not
bisimulation metric reasoning principles can be applied to
factored representations without having to flatten the state
space. More generally, applying bisimulation metrics to the
problem of constructing function approximators for MDP
value functions is a very promising future direction, recent
work (Comanici & Precup, 2012) has leveraged such met-
rics to tackle the problem of automatically generating fea-
tures for function approximation.

Lastly, let us consider the problem of knowledge transfer
between MDPs. Suppose MX = (X,BX , A, PX , r(X))
andMY = (Y,BY , A, PY , r(Y )) are two MDPs with re-
wards in the unit interval and that c ∈ (0, 1) is a dis-
count factor. For K ∈ Λ(PX , PY ), consider the coupled
MDP M = (X × Y,BX×Y , A,K, θ) where θa(x, y) =
(1 − c)|ra(X)(x) − ra(Y )(y)| for all x ∈ X and y ∈ Y .
Does infK∈Λ(PX ,PY ) V

∗
c (K)(x, y) measure the bisimilar-

ity of states x and y? Clearly, there is much work to be
done to answer this question.
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Abstract

Statistical topic models such as latent Dirich-
let allocation have become enormously popu-
lar in the past decade, with dozens of learning
algorithms and extensions being proposed each
year. As these models and algorithms continue
to be developed, it becomes increasingly impor-
tant to evaluate them relative to previous tech-
niques. However, evaluating the predictive per-
formance of a topic model is a computationally
difficult task. Annealed importance sampling
(AIS), a Monte Carlo technique which operates
by annealing between two distributions, has pre-
viously been successfully used for topic model
evaluation (Wallach et al., 2009b). This tech-
nique estimates the likelihood of a held-out doc-
ument by simulating an annealing process from
the prior to the posterior for the latent topic as-
signments, and using this simulation as an im-
portance sampling proposal distribution.

In this paper we introduce new AIS annealing
paths which instead anneal from one topic model
to another, thereby estimating the relative perfor-
mance of the models. This strategy can exhibit
much lower empirical variance than previous ap-
proaches, facilitating reliable per-document com-
parisons of topic models. We then show how to
use these paths to evaluate the predictive perfor-
mance of topic model learning algorithms by effi-
ciently estimating the likelihood at each iteration
of the training procedure. The proposed method
achieves better held-out likelihood estimates for
this task than previous algorithms with, in some
cases, an order of magnitude less computation.

1 INTRODUCTION

Topic models such as latent Dirichlet allocation (Blei et al.,
2003) have become standard tools for analyzing text cor-

pora, with broad applications in areas such as political sci-
ence (Grimmer, 2010), sociology (McFarland et al., 2013),
conversational dialog (Nguyen et al., 2013), and more. A
multitude of extensions to the LDA model have been devel-
oped for finding meaningful latent structure in text, along
with a variety of strategies for fitting these models to in-
creasingly large corpora.

As these new ideas continue to be proposed in the literature
it becomes increasingly important to obtain accurate quan-
titative evaluations of the different approaches. Among
the techniques available for evaluating topic models, the
prediction of words in held-out documents (via test log-
likelihood or perplexity) is perhaps the single most widely-
used method for benchmarking the performance of new
topic models and inference algorithms. An important point
is that speedups for training these models do not necessar-
ily translate to speedups in evaluating them. For example,
there now exist very fast learning algorithms for training
topic models based on approximate inference techniques,
such as stochastic variational inference (Hoffman et al.,
2010, 2013; Foulds et al., 2013), making it possible to learn
topic models on corpora with millions of documents. Iron-
ically, however, the time taken to compute test-set metrics
for these algorithms can be orders of magnitude greater
than the time it takes to train them. The evaluation of the
predictive performance of topic models on held-out docu-
ments is still painfully slow, and relatively unreliable for
individual documents as we will see later in the paper.

More specifically, consider a held-out document d, with
word vector w(d), in the context of evaluating the quality of
an LDA topic model (or one its many extensions). Given
point estimates of topics Φ and a potentially document-
specific Dirichlet prior α (if learned), we wish to com-
pute the likelihood of the words in this held-out document,
Pr(w(d)|Φ, α).1 The direct computation of this quantity
involves either an intractable sum over the latent topic as-
signments z(d), or an intractable integral over the distri-
bution over topics θ(d). Moreover, this already difficult
computation must be performed for every document in

1Or perplexity, a function of this and document length.
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the held-out test set, which frequently contains hundreds
to thousands of documents. To address this challenge,
a wide variety of approximation strategies for estimating
Pr(w(d)|Φ, α) have been proposed in papers such as those
from Wallach et al. (2009b), Buntine (2009) and Scott &
Baldridge (2013). Although these methods can lead to sig-
nificantly more accurate results than naive approaches, the
reliable and efficient evaluation of topic models remains a
relatively open problem of practical significance.

In this paper we investigate new methods for evaluat-
ing topic models based on annealed importance sampling
(AIS) (Neal, 2001), a Monte Carlo integration technique
which was previously applied to topic model evaluation by
Wallach et al. (2009b). Given two probability distributions,
AIS produces an estimate of the ratio of their partition func-
tions by annealing between them. Wallach et al. leverage
this idea by annealing from the prior over the latent topic
assignments z(d) to the posterior, resulting in an estimate
of held-out document likelihood. AIS can be very accu-
rate given enough computation time, although the amount
of time needed may vary greatly between different choices
of annealing paths (Grosse et al., 2013).

The first contribution of this paper is to propose and eval-
uate an alternative annealing strategy, using two AIS paths
which anneal from one topic model to another. This strat-
egy (referred to as ratio-AIS) computes the ratio of the
likelihoods of two models instead of computing the like-
lihoods of each model separately. The result is an esti-
mate of the relative performance of the models, with signif-
icantly lower empirical variance across runs than previous
approaches.2 This in turn brings computational benefits, as
fewer samples or annealing temperatures may be required
to achieve reliable results. The reduced variance comes at
the cost of potentially increased bias when insufficient iter-
ations are performed to achieve convergence. However, we
also show how to detect such bias by annealing between the
topic models in both directions and comparing the results.
The consequence of this bias-variance trade-off is that the
proposed method is useful in cases where we would like
to perform in-depth analysis at the per-document level and
when the two topic models are similar to each other. The
previous high-variance low-bias methods may still be pre-
ferred for general full-corpus comparisons of topic models.

Finally, we show how to use the proposed AIS paths for
evaluating topic model learning algorithms by computing
held-out likelihood curves over the iterations of the learn-
ing procedure. This is achieved by annealing between the
topic models at each iteration of the learning algorithm in
turn, which allows all previous computation to be reused
in each of the likelihood estimates. The proposed method
outperforms previous algorithms, in some cases even when

2“Variance” here refers to variance across Monte Carlo es-
timates of the difference in log-likelihood between models, per
document.

it is given an order of magnitude less computation time.
Note that although we focus on topic models, the ideas pre-
sented here could potentially also be useful for other latent
variable models with intractable likelihoods.

2 BACKGROUND

When proposing a new topic model or learning algorithm,
it is important to evaluate its performance. When the model
is to be used for a certain task it may be possible to evaluate
it with respect to an extrinsic, task-specific metric. For ex-
ample one could evaluate the quality of topics being used
as features for a classification algorithm by measuring clas-
sification accuracy. More generally, however, given that
topic models are generally trained in an unsupervised man-
ner (with a few notable exceptions), a ground-truth evalua-
tion metric is typically not available.

Consequently, a number of intrinsic (i.e. task independent)
validation strategies for topic models have been developed
in the literature. For example, Chang et al. (2009) proposed
the use of elicitations of judgments from humans to evalu-
ate the quality of topic models. Given that obtaining these
judgments can be expensive and difficult, Newman et al.
(2010) and Mimno et al. (2011) proposed automatic sur-
rogate measures of topic coherence, and showed that these
measures, which are typically based on word co-occurrence
statistics, are correlated with human judgments.

However, as topic models are statistical models, we also
would like to be able evaluate them as such. In the context
of unsupervised machine learning, the standard approach
for evaluating a statistical model is to compute the prob-
ability of held-out data. Regardless of the utility of the
aforementioned methods, it is generally useful to demon-
strate good predictive performance in addition to any other
extrinsic or intrinsic validation results. Intuitively, as our
goal is to fit a statistical model to data, we would like to
know both how well we are able to fit the model, and how
well the model is able to explain unobserved data.

As in Wallach et al. (2009b), we therefore focus on the
computation of Pr(w(d)|Φ, α), the likelihood of the words
w(d) in a held-out document d (or equivalently, perplexity),
conditioned on point estimates of the topic-word distribu-
tions Φ and (possibly document-specific) priors α, where
Φ is a W ×K matrix consisting of K discrete distributions
Φ(k) over the W words in the dictionary, and α is a K-
dimensional Dirichlet parameter vector.3 This quantity can
be used to evaluate a point estimate of the topics, or in an
inner loop to evaluate Bayesian evaluation metrics such as
the posterior predictive probability of held-out documents.

3It is standard practice to learn an asymmetric Dirichlet prior
α in LDA models, following Wallach et al. (2009a), so we include
it as a parameter to evaluate. The prior may also be learned in a
document dependent way for models such as DMR (Mimno &
McCallum, 2008).
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It is in general infeasible to compute Pr(w(d)|Φ, α)
directly, as it involves an intractable sum∑(d)

z Pr(w(d), z(d)|Φ, α) or an intractable integral∫
θ Pr(w(d), θ(d)|Φ, α). The computational difficulty

arises because the topic assignments z(d) and distributions
over topics θ(d) for the held-out document are unknown,
and so all possible values must be considered. A variety of
approximation strategies were considered by Wallach et al.
(2009b), the number of which alone is a testament to the
difficulty of the problem. The most widely used of these
approaches is the “left-to-right” particle filtering algorithm.
In the algorithm, a number of particles are maintained,
representing topic assignments up to the current word
t in the document. In each iteration, these particles are
used to draw samples of the topic assignment for the next
word t + 1, conditioned on the previous words and topic
assignments. A resampling step is also performed, making
the algorithm’s run time quadratic in the length of the
document. The algorithm was analyzed more closely by
Buntine (2009), and a faster, but less accurate, variant of
the technique was proposed by Scott & Baldridge (2013).

Alternatively, a strategy for side-stepping some of the com-
putational difficulty is to instead estimate (or sample) z(d)

or θ(d) on a subset w(d,1) of the document, and predict only
the remaining portion of the document w(d,2), thus esti-
mating Pr(w(d,2)|w(d,1), Φ, α). This method is frequently
used in practice (e.g. Rosen-Zvi et al. (2004); Wallach et al.
(2009a)). However, this “document completion” scenario
changes the task somewhat, and is not the gold standard
prediction task we would like it to be. It measures the abil-
ity of the model to “orient” itself quickly when given par-
tial documents, rather than how likely the overall document
is under the model. The widespread use of the document
completion strategy may be largely due to its convenient
computational properties (leading in turn to its use as a sur-
rogate for fully held-out prediction), rather than being due
to any intrinsic benefit of the metric itself.

It is also unclear how the use of document completion as
a surrogate for full-document prediction might affect our
conclusions, particularly when using topic models which
learn the Dirichlet hyper-parameter α as in Wallach et al.
(2009a) and Mimno & McCallum (2008). Learning α may
help the model to recover θ(d) better on the training por-
tion of the document, thus increasing the performance of
the model for document completion more than in the fully
held-out case.

On the other hand, observing more of the document de-
creases the relative impact of the prior on the posterior dis-
tribution, which could reduce the observed improvement
due to learning α. Thus, we suspect that document com-
pletion may not always be a good surrogate for the full pre-
diction task. It should be noted that many methods for fully
held-out prediction can also be adapted for document com-
pletion (including those proposed here).

2.1 ANNEALED IMPORTANCE SAMPLING

One of the more accurate strategies investigated by Wallach
et al. (2009b) to estimate held-out likelihood was annealed
importance sampling (AIS) (Neal, 2001). AIS is a general
technique for estimating an expectation of a function of a
random variable x with respect to an intractable distribution
of interest p0. Consider a distribution pn (which is typically
easy to sample from) and a sequence of “intermediate” dis-
tributions pn−1, . . . , p1 leading from pn to p0. AIS works
by annealing from pn towards p0 by way of the intermedi-
ate distributions, and using importance weights to correct
for the fact that an annealing process was used instead of
sampling directly from p0.

Assume that for each intermediate distribution pj we have
a Markov chain with transition operator Tj(x, x′) which is
invariant to that distribution. We need to be able to sample
from these Markov chains, and for each pj be to able to
evaluate some function fj which is proportional to it. In a
manner similar to that of traditional importance sampling,
AIS produces a collection of samples x(1), . . . , x(S) with
associated importance weights w(1), . . . , w(S). As with im-
portance sampling, the expectation of interest is estimated
using the samples, weighted by the importance weights.

The strategy for drawing each sample x(i) is to begin by
drawing a sample xn−1 from pn, then drawing a sequence
of points xn−2, . . . , x0 which “anneal” towards p0. Each
of the remaining xj ’s in the sequence are generated from
xj+1 via Tj . Importance weights w(i) are computed by
viewing (x0, . . . , xn−1) as an augmented state space, and
performing importance sampling on this new state space.
The above procedure is used as a proposal distribution Q
for importance sampling from another distribution P :

Q(x0, . . . , xn−1) ∝ fn(xn−1)

1∏

j=n−1

Tj(xj , xj−1)

P (x0, . . . , xn−1) ∝ f0(x0)

n−1∏

j=1

T̃j(xj−1, xj) ,

where T̃j(x, x′) = Tj(x
′, x)

fj(x′)
fj(x) is the reversal of the

transition defined by Tj . This leads to importance weights
for each of the samples,

w(i) =
P (x0, . . . , xn−1)

Q(x0, . . . , xn−1)
=

n−1∏

j=0

fj(xj)

fj+1(xj)
. (1)

Note that the marginal probability of x0 under P is p0(x0),
so after letting x(i) = x0 the procedure correctly carries
out importance sampling from p0. AIS also provides an
estimate for the ratio of normalizing constants for f0 and
fn. The normalizing constant for P is the same as the nor-
malizing constant for f0, and the normalizing constant for
Q is the same as the normalizing constant for fn, and so
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the average of the importance weights,
∑

w(i)

N , converges

to
∫

f0(x)dx∫
fn(x)dx

.

2.2 AIS FOR TOPIC MODELS

Wallach et al. (2009b) showed how to apply the AIS proce-
dure to the problem of calculating LDA likelihoods. The
likelihood of a test document for a topic model can be
estimated by using AIS to estimate a normalization con-
stant, operating on the latent topic assignments z(d) for
the document.4 We can set f0 = Pr(w(d), z(d)|Φ, α),
fn = Pr(z(d)|α), with intermediate distributions fj =
Pr(w(d)|z(d), Φ, α)βj fn and the transition operators Tj

being the Gibbs sampler for fj . The ratio of normalizing
constants is

∑
w(i)

S
≈

∑
z(d) Pr(w(d), z(d)|Φ, α)∑

z(d) Pr(z(d)|α)

=
Pr(w(d)|Φ, α)

1
= Pr(w(d)|Φ, α) . (2)

The procedure for producing each importance sample,
then, is to draw an initial z(d) from the prior, and anneal
it towards f0 by performing rj ≥ 1 Gibbs iterations at each
intermediate distribution. After repeating this procedure
for each sample, the likelihood is estimated as the aver-
age of the importance weights. Note that in what follows
we define a run as the full procedure averaging over impor-
tance samples, while a sample refers to a single importance
sample.

3 ALTERNATIVE ANNEALING PATHS
FOR THE EVALUATION OF TOPIC
MODELS

The AIS method described above can be very accurate if
given enough computation time (Wallach et al., 2009b).
However, it is subject to several potentially avoidable
sources of variability. Firstly, the method estimates the
ratio of the desired quantity Pr(w(d)|Φ, α) and the de-
nominator

∑
z(d) Pr(z(d)|α) in Equation 2, which equals

one, introducing stochastic noise on behalf of the denom-
inator even though this is a constant. We would also ex-
pect that the prior may typically be very different from the
posterior, thereby requiring many annealing iterations to
prevent the importance weights w(i) from having a large
variance. This has consequences for the efficiency of the
sampler, which is reduced by a factor of approximately

4The derivation here differs slightly from that of Wallach et al.
(2009b). The present derivation suggests that the procedure de-
scribed in Wallach et al. produces just one importance sample.
This may be repeated, finally producing as output the average of
the resulting importance weights. In practice however, we found
that a single sample with a longer annealing run, as in Wallach et
al., may still be the best strategy on a computational budget.

1 + Varq[w(i)/Eq[w
(i)]] relative to direct sampling from

the target density (Neal, 2001).5

Making matters worse, we typically must perform the AIS
procedure many times across all held-out documents, and
therefore have a relatively limited computational budget
per document, preventing us from compensating for the
high variance by collecting many importance samples with
a large number of temperatures. In this section, we intro-
duce new AIS annealing paths for the evaluation of topic
models which can have lower variance than the standard
approach. We first introduce AIS paths which compare two
topic models by annealing between them. We then show
how to use these paths for evaluating topic model learn-
ing algorithms by computing per-iteration predictive per-
formance efficiently, reusing all previous computation.

3.1 COMPARING TOPIC MODELS BY
ANNEALING BETWEEN THEM

The most typical evaluation scenario is model
comparison—we want to determine whether a partic-
ular model (model 1) performs better at predicting held-out
documents than a baseline method (model 2) such as
vanilla LDA or a model trained using a previous learning
algorithm. Thus, in such situations, the quantity of interest
is the relative log-likelihood score of the model and the
baseline:

logPr(w(d)|Φ(1), α(1)) − log Pr(w(d)|Φ(2), α(2))

= log
Pr(w(d)|Φ(1), α(1))

Pr(w(d)|Φ(2), α(2))
. (3)

To compute this in the framework proposed by Wal-
lach et al., we must perform the AIS procedure once
for each model, incurring the stochastic error twice. To
avoid this and the aforementioned sources of variability
with that approach, and given that the procedure is al-
ready designed to compute a ratio, we propose to in-
stead use AIS to compute Equation 3 directly. Let
f0(z

(d)) = Pr(w(d), z(d)|Φ(1), α(1)) and fn(z(d)) =
Pr(w(d), z(d)|Φ(2), α(2)). Then the desired quantity can
be estimated via

∑ w(i)

N
≈

∑
z(d) Pr(w(d), z(d)|Φ(1), α(1))∑
z(d) Pr(w(d), z(d)|Φ(2), α(2))

=
Pr(w(d)|Φ(1), α(1))

Pr(w(d)|Φ(2), α(2))
. (4)

We will refer to this strategy as “ratio-AIS.” To im-
plement this method, it remains to choose the anneal-
ing path, i.e. the sequence of intermediate distribu-
tions. We first consider a geometric average fj(z

(d)) =

5Note that Eq[w
(i)] is equal to the ratio of normalizing con-

stants of the target and proposal densities, which in our case is the
quantity of interest, e.g. the likelihood.
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f0(z
(d))βj fn(z(d))1−βj of the initial and final distribu-

tions, a strategy suggested by Neal (2001) with analogy to
simulated annealing, where βj can be viewed as an “inverse
temperature.” To choose a transition operator Tj invariant
to fj , we straightforwardly select the Gibbs sampler. We
have importance weights

w(i) =
n−1∏

j=0

Pr(w(d), z
(d)
j |Φ(1), α(1))βj

Pr(w(d), z
(d)
j |Φ(1), α(1))βj+1

×
n−1∏

j=0

Pr(w(d), z
(d)
j |Φ(2), α(2))1−βj

Pr(w(d), z
(d)
j |Φ(2), α(2))1−βj+1

=

n−1∏

j=0

Pr(w(d), z
(d)
j |Φ(1), α(1))τ

Pr(w(d), z
(d)
j |Φ(2), α(2))τ

log w(i) =
1

n

n−1∑

j=0

log
Pr(w(d), z

(d)
j |Φ(1), α(1))

Pr(w(d), z
(d)
j |Φ(2), α(2))

, (5)

assuming βj − βj+1 = τ = n−1 ∀j, 0 ≤ j < n − 1.
Elegantly, the log importance weights are the average of the
log ratios of the probabilities of w(d) and z(d) according to
each model. Observe that the same z assignments are used
for the numerator and denominator in each of the ratios in
Equation 5, further reducing the variance of the estimate
relative to the standard AIS strategy.

Although geometric averages are the standard choice for an
annealing path, in many cases there exist annealing paths
which perform much better. Grosse et al. (2013) intro-
duced an alternative annealing path for exponential fami-
lies which converges much more quickly, constructed by
annealing averages of the moments of the sufficient statis-
tics. The Dirichlet-multinomial distribution Pr(z(d)|α) is
not an exponential family so their method does not directly
apply to LDA. Nevertheless, we consider an annealing path
inspired by their work, where intermediate distributions are
constructed by taking convex combinations of the parame-
ters:

fj(z
(d)) = Pr(w(d), z(d)|Φj = βjΦ

(1) + (1 − βj)Φ
(2),

αj = βjα
(1) + (1 − βj)α

(2)) . (6)

The intermediate distributions are topic models, so we set
Tj to be the corresponding Gibbs sampler. This Tj does not
require power operations, providing substantial execution
time savings over the geometric path and Equation 2. The
importance weights are

log w(i) =

n−1∑

j=0

(
logPr(w(d), z

(d)
j |Φj , αj)

− logPr(w(d), z
(d)
j |Φj+1, αj+1)

)
. (7)

To implement this method we need to draw initially from
fn(z(d)), which we accomplish via Gibbs sampling. These

initial samples from fn(z(d)) need not be independent for
the procedure to work, although we may choose to run in-
dependent chains if the cost of burn-in is deemed to be less
than the time wasted due to running the annealing on cor-
related samples. Finally, AIS will be more likely to con-
verge if the initial and target distributions are similar to
each other. We therefore align the topics before running
the algorithm, using the Hungarian algorithm to minimize
the L1 distances between topics. This operation, which is
O(K3), where K is the number of topics, is not a compu-
tational bottleneck (relative to performing AIS) and needs
only to be performed once per corpus. Pseudo-code for
ratio-AIS using the path from Equation 6 is given in Algo-
rithm 1.

Algorithm 1 Ratio-AIS, using the convex path
for i = 1 : S //importance samples

log ω[i] := 0

Φ(next) := Φ(2)

α(next) := α(2)

draw z(i) ∼ Pr(z|α(2))

for j = n − 1, n − 2, . . . , 0 //temperatures
Φ(curr) := Φ(next)

α(curr) := α(next)

Φ(next) := βjΦ
(1) + (1 − βj)Φ

(2)

α(next) := βjα
(1) + (1 − βj)α

(2)

for a = 1 : rj //rn−1 is large, for burn in
for l = 1 : length(w(d)) //words

//draw z
(i)
l

Pr(z
(i)
l = k|.) ∝ (n

(i)
k +α

(curr)
k )Φ

(curr)

w
(d)
l ,k

log ω[i] := log ω[i]
+ log Pr(w(d), z(i)|Φ(next), α(next))
− log Pr(w(d), z(i)|Φ(curr), α(curr))

return logSumExp(log ω) − log(S)

Detecting Convergence Failures

AIS can produce poor estimates if the annealing fails to
converge to a high-probability state in the target distribu-
tion within the given set of iterations. In general, this may
be very difficult to detect. However, in our case we can
interchange f0 and fn in our AIS strategy to compute the
reciprocal of the desired ratio, and compare the reciprocal
of this to our estimate. If these two values are wildly dif-
ferent, then we will know that the annealing has failed to
converge. This means that we are able to detect conver-
gence failures in many practical cases. In our experiments,
we were easily able to catch convergence failures by ob-
serving a systematic bias across documents in the results of
the different annealing directions (see Section 4).
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3.2 EFFICIENTLY EVALUATING TOPIC MODEL
LEARNING ALGORITHMS WITH
ITERATION-AIS

When evaluating algorithms for learning topic models (or
monitoring their convergence), we would ideally like to
compute and plot held-out log-likelihood scores per learn-
ing iteration (or unit of computation time) for each algo-
rithm under consideration. This is extremely expensive,
requiring |H | × I × M Monte Carlo approximations of
already intractable high-dimensional integrals, where H is
the held-out test set, I is the number of iterations of the
learning algorithms to evaluate at, and M is the number of
competing learning methods.

Fortunately, for many learning algorithms such as the col-
lapsed Gibbs sampler, the topics at successive iterations
are similar to each other, and the topics typically vary
smoothly from “high temperature” high entropy distribu-
tions at early iterations to more complicated later distribu-
tions. This suggests using a single AIS path to perform
the entire evaluation across all of the iterations, with the
topic models at each iteration (or a subset of them) as inter-
mediate distributions. We can accomplish this by anneal-
ing from the prior Pr(z(d)|α(1)) to the first topic model
Pr(w(d), z(d)|Φ(1), α(1)) as in Wallach et al. (2009b), and
then using ratio-AIS to anneal between successive topic
models Pr(w(d), z(d)|Φ(t), α(t)). For the topic model at
iteration t, the average S−1

∑
i w(i,t) of the importance

weights computed up to that point w(i,t) converges to the
ratio of normalizing constants,

∑
z(d) Pr(w(d), z(d)|Φ(t), α(t))∑

z(d) Pr(z(d)|α(1))
= Pr(w(d)|Φ(t), α(t)).

(8)

With n temperatures per learning iteration k, importance
weights can be written recursively as

log w(i,t) =
t∑

t′=1

n−1∑

j=0

log
ft′,j(zt′,j)

ft′,j+1(zt′,j)
(9)

= log w(i,t−1) +

n−1∑

j=0

log
ft,j(zt,j)

ft,j+1(zt,j)
.

This method, which we refer to as iteration-AIS, exploits
all of the computation for selecting z assignments and im-
portance weights from the likelihood estimates at previous
learning iterations, leading to successively longer anneal-
ing runs, and therefore potentially better likelihood esti-
mates, as k increases.

4 EXPERIMENTS

We explored the performance of the proposed techniques
using a corpora of scientific articles from the Association

of Computational Lingusitics (ACL) conference6 (Radev
et al., 2013), and another from the Neural Information Pro-
cessing Systems (NIPS) conference.7 The ACL dataset
consists of the 3286 articles from the years 1987 to 2011,
while the NIPS corpus contains the 1740 articles published
between 1987 and 1999. In each experiment, topic models
with 50 topics were fit to each corpus by performing 1000
iterations of collapsed Gibbs sampling using the MALLET
toolkit (McCallum, 2002). Roughly 10% of the documents
in each corpus were withheld for testing (130 NIPS ar-
ticles, and 300 ACL articles). Although cross-validation
would have been a preferable option to using a single hold-
out set, the computational expense of the experiments pre-
vented this. For example, across all algorithms and learn-
ing iterations, Figure 2 required a total of 6.6 million Gibbs
iterations for each one of the 300 test articles.

When using AIS we must select the number of tempera-
tures n, the number of importance samples S, and the tem-
perature schedule β0, β1, . . . , βn. The variability of an AIS
estimator can be reduced by increasing S (due to the law of
large numbers) or by increasing n (which reduces the vari-
ance of the w(i)). In the experiments, we focused on the
case where S = 1, as in Wallach et al. (2009b). We found
in preliminary experiments that S = 1 gave essentially ex-
actly the same answer as S = 100 importance samples for
Ratio-AIS with 10,000 temperatures. For simplicity, we
used a uniform spacing of the temperatures βj .8

We also compared to the left-to-right (LR) particle filter-
ing algorithm of Wallach et al. (2009b), using the imple-
mentation provided in MALLET. The left-to-right method
requires Nd(Nd + 1)/2 word-level Gibbs updates per par-
ticle for a document of length Nd. The execution of p =
2 × n/(Nd + 1) particles corresponds to the same number
of Gibbs updates as AIS with n temperatures and S = 1.
We select the number of LR particles by rounding p to the
nearest integer greater than zero.

Ratio-AIS was designed for reliable per-document com-
parisons. To explore this, we ran each algorithm twice
on each document, and reported results comparing the two
runs across documents. To remove the effect of document
length in the results, instead of reporting the differences
in log-likelihood scores for each model we consider in-
stead perplexity scores exp(− log Pr(w(d)|Φ,α)

Nd
). The ratio

of the perplexity of model 1 over the perplexity of model
2 for a document is easily computed from the output of
Ratio-AIS as exp(L2−L1

Nd
), where Lj is the log-likelihood

for model j. We considered two evaluation scenarios: com-
paring learned topics to perturbed versions of the same top-

6Available at http://clair.eecs.umich.edu/aan/
index.php .

7The NIPS dataset, due to Gregor Heinrich, is available at
http://www.arbylon.net/resources.html .

8Neal (2001) suggests that a geometric spacing of the βj ’s
may be beneficial, at least for the geometric annealing path.
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ics (Section 4.1), and comparing topic models learned with
symmetric and asymmetric Dirichlet priors (Section 4.2).
Finally, we evaluated iteration-AIS for estimation of per-
iteration likelihood (Section 4.3).

4.1 LEARNED TOPICS VERSUS PERTURBED
TOPICS

As the likelihoods we are trying to estimate are intractable,
we do not in general have access to ground truth. How-
ever, after learning topics Φ on a dataset and then creating
a noisy copy of them Φ′, we have good reason to believe
that the original topics Φ are better than the copy. This
style of experiment was previously performed by Wallach
et al. (2009b). We took the word-topic assignments learned
by MALLET, and created Φ′ by re-assigning 5% of them
to new word-topic assignments uniformly at random.9

Ratios of the perplexities for the two models were com-
puted with both cheap (100 temperatures) and expensive
runs (10,000 temperatures). Overall results are given in
Table 1, and per-document results for the ACL dataset are
plotted in Figure 1.10 The two ratio-AIS paths were both
the most accurate and the most consistent methods, in both
temperature regimes.

In the cheap regime, the ratio-AIS points are slightly off-
diagonal in Figure 1, with one annealing direction giving
systematically lower results, representing a detectable bias
due to convergence failure in at least one annealing direc-
tion. Nevertheless, these results have much lower vari-
ance, and the bias disappears in the expensive regime. Sur-
prisingly, the standard AIS method performed extremely
poorly, with most data points falling outside of the bound-
aries of the figure, which are tight around the results of
the other methods. Using many importance samples would
very likely mitigate this, at greater computational cost. It
should be noted that the task of comparing two very sim-
ilar topic models is difficult for standard methods, but is
relatively easy for ratio-AIS due to the distance to anneal
between the distributions being smaller.

4.2 SYMMETRIC VERSUS ASYMMETRIC
DIRICHLET PRIORS

Learning asymmetric α hyperparameters can improve the
predictive performance of topic models (e.g., Wallach et al.
(2009a)). To explore this, on each corpus we learned a topic
model with asymmetric α, and a model where α was fixed
to be flat but its concentration parameter was learned. The
AIS and LR algorithms were used to compare the result-
ing models, using runs with 1000 temperatures and 10,000
temperatures.

9MALLET’s left-to-right takes as input a count matrix, so the
perturbed topics must be representable as counts.

10Results for the NIPS corpus are similar, and are provided in
Foulds (2014).

It was found that in the “cheap” 1000 temperature regime,
the ratio-AIS estimates were the most closely correlated
with left-to-right estimates in the expensive regime, the best
available proxy for ground truth (Table 2, top).11 In all
cases the ratio-AIS paths had one to two orders of mag-
nitude lower empirical variances in the estimates of per-
document perplexity ratios than the previous methods, with
the convex path having the least variance (Table 2, mid-
dle). Ratio-AIS therefore achieves the original goal of
greatly reducing the variance of per-document comparisons
of topic models. This is particularly important if we want
to perform detailed analysis at a per-document level, such
as exploring the effect of covariates on topic model per-
formance. In such a scenario, the previous methods have
unacceptably high variance for a reasonable level of com-
putation (see also Figure 1), while the ratio-AIS estimates
of relative performance have very small empirical variance
with just one importance sample.

Unfortunately, this reduction comes at a price of potentially
increased bias in the estimated perplexity ratio when given
insufficient computation. Topic models which learn an
asymmetric α tend to perform better than those with a sym-
metric α (Wallach et al., 2009a), and the previous methods
detected a larger advantage for the asymmetric approach
(Table 2, bottom). The direction of the ratio-AIS annealing
path also made a difference to the outcome. In particular,
the forward direction of annealing did not detect an overall
advantage to the asymmetric hyper-parameter model. On
the other hand, the difference per direction allowed us to
detect a convergence failure, which is difficult to do in gen-
eral. Also note that for the task in Section 4.1, the overall
perplexity ratios were very consistent between annealing
directions, and showed a clearer difference between mod-
els than the baseline algorithms did – see Foulds (2014).

4.3 EVALUATING TOPIC MODELS PER
ITERATION

The iteration-AIS annealing path evaluates the perfor-
mance of topic model learning algorithms on a per-iteration
basis. We explored its performance using the convex path
with 1000 and 10,000 temperatures per learned model, an-
nealing between the models at every 10th learning itera-
tion. At the first learning iteration Φ(1), the algorithms
were given an extra 1000 temperatures to compensate for
the cold-start from the prior.

Results on ACL are shown in Figure 2. It was found that
iteration-AIS estimated higher log-likelihoods than left-to-
right and standard AIS in both temperature regimes (Fig-
ure 2, left). The main failure mode of these algorithms
is to underestimate the likelihood by failing to find high
probability regions, so higher values are likely to be better

11The standard AIS estimate of the perplexity ratios had too
high a variance to be used (see Table 2).
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% Correct Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS
to Right AIS Geometric Geom. (reverse) Convex Convex (reverse)

NIPS (cheap) 63.8 48.8 83.8 89.2 84.6 87.7
NIPS (expensive) 84.6 62.3 86.9 87.7 87.7 87.7

ACL (cheap) 80.2 50.8 88.3 92.0 88.3 92.3
ACL (expensive) 90.7 75.2 90.3 90.3 90.3 90.3

Table 1: Percentage of documents where the learned topics Φ were estimated to have higher likelihood than the perturbed
topics Φ′.
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Figure 1: Comparing learned topics with perturbed versions of them, on the ACL dataset. In the figures, every point
corresponds to a document. Each axis corresponds to estimated perp(Φ)

perp(Φ′) for a repeat of the experiment, with the ratio-
AIS repeats being performed in different annealing directions. Points in the lower left quadrant are those which (likely
correctly) predict the unperturbed topics as the winner in both trials. Points near the diagonal have consistent results across
the two trials. Left: 100 temperatures. Right: 10,000 temperatures. Missing Standard AIS results are outside of the bounds
of the plots. Figure best viewed in color.

Correlation with Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS
Long LR Run to Right AIS Geometric Geom. (reverse) Convex Convex (reverse)
NIPS (cheap) 0.947 0.619 0.973 0.975 0.976 0.981

NIPS (expensive) 0.993 0.852 0.981 0.982 0.981 0.982
ACL (cheap) 0.965 0.578 0.984 0.983 0.987 0.986

ACL (expensive) 0.995 0.892 0.989 0.989 0.990 0.989
Variance of Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS

Perplexity Ratio to Right AIS Geometric Geom. (reverse) Convex Convex (reverse)
NIPS (cheap) 2.6 ×10−4 2.6 ×10−3 2.0 ×10−5 1.5 ×10−5 8.2 × 10−6 9.8 ×10−6

NIPS (expensive) 1.7 ×10−5 6.0 ×10−4 1.4 ×10−6 1.2 ×10−6 6.9 ×10−7 5.8 × 10−7

ACL (cheap) 1.7×10−4 3.6 ×10−3 1.6×10−5 1.3×10−5 7.7×10−6 6.6 × 10−6

ACL (expensive) 1.4×10−5 5.6×10−4 1.1×10−6 9.4×10−7 7.4×10−7 5.1 × 10−7

Corpus-Level Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS
Perplexity Ratio to Right AIS Geometric Geom. (reverse) Convex Convex (reverse)

NIPS (cheap) 0.984 0.975 1.01 0.992 1.01 0.994
NIPS (expensive) 0.989 0.990 1.00 0.999 1.00 0.998

ACL (cheap) 0.984 0.980 1.00 0.985 1.00 0.988
ACL (expensive) 0.987 0.989 0.994 0.992 0.996 0.992

Table 2: Comparing asymmetric α and symmetric α topic models. Correlation coefficient with the perplexity ratio esti-
mates from a run of left-to-right in the expensive regime (top), average empirical variance (evaluated across two runs per
document) of the per-document perplexity ratio (middle), and the overall perplexity ratio for the entire corpus (bottom).
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Figure 2: Evaluating iteration-AIS on ACL. Jumps in log-likelihood are due to hyper-parameter optimization.
Figure best viewed in color.

(Wallach et al., 2009b). Consistent with this observation,
the iteration-AIS likelihood curve at 1000 temperatures co-
incided with the likelihood curves of the baselines when
they were given ten times more computation. The proposed
method also exhibited much lower variance in the likeli-
hood estimates (Figure 2, right). This is expected, as the ef-
fective number of annealing temperatures is higher, which
is known to reduce the variance of the importance weights
(Neal, 2001). Similar results were observed on NIPS (see
Foulds (2014) for these and other additional results).

The baselines reported decreasing held-out likelihood in
later iterations, while iteration-AIS did not. Such a de-
crease could be due to over-fitting, but is more likely to be
caused by convergence failures due to the topics becoming
more complex. As evidence for this, the dip in likelihood
was smaller with increased computation, and all methods
exhibited higher variance in the likelihood estimates for
later learning iterations (Figure 2, right, computed based on
two evaluations of the likelihood per document, and aver-
aged across documents). The prior probability of the topic
models also decreased from around iteration 300 (the same
point where standard AIS began to report a decrease in per-
formance), and this is likely to make inference more diffi-
cult (see Foulds (2014)).

5 CONCLUSIONS

We have introduced ratio-AIS, a strategy for comparing
topic models, and empirically evaluated its performance
relative to previous methods using two datasets. Ratio-AIS
was found to have low empirical variance, making it useful
for document-level analysis. It should be noted that impor-
tance sampling can suffer from bias with a finite number of

samples, e.g. approaches such as those described by Wal-
lach et al. (2009b) will typically underestimate the likeli-
hood. For ratio-AIS this results in the potential for a bias
that favors a particular model when an insufficient number
of samples or temperatures is used, due to the directional
nature of the approach. Such a convergence failure of a
Monte Carlo algorithm is in general very difficult to detect,
but in the proposed method the bias is frequently easily de-
tectable by comparing the results of two Monte Carlo runs.
When applied to the evaluation of the per-iteration perfor-
mance of topic model training algorithms (iteration-AIS),
the method outperforms traditional approaches even when
given an order of magnitude less computation. Based on
our results, we recommend ratio-AIS for document-level
analysis, or in cases where the topics are very similar to
each other. The method should be performed using both
annealing directions as a convergence sanity check, at least
for a subset of the held-out documents. Left-to-right is
still generally preferred for corpus-level perplexity compar-
isons, unless per-iteration curves are desired, in which case
we recommend that iteration-AIS be used.

For future work, it is straightforward to adapt ratio-AIS to
the document completion task. It may also be possible to
find other AIS paths with better mixing properties, and the
ideas in this work may be applicable to other latent vari-
able models such as RBMs. See Foulds (2014) for a dis-
cussion on these ideas, as well as on the use of ratio-AIS
with multiple topic models, and where the models differ in
the number of topics or in their parametric forms.
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72076 Tübingen, Germany
phennig@tue.mpg.de

Abstract

We propose an active learning method for
discovering low-dimensional structure in high-
dimensional Gaussian process (GP) tasks. Such
problems are increasingly frequent and impor-
tant, but have hitherto presented severe practical
difficulties. We further introduce a novel tech-
nique for approximately marginalizing GP hyper-
parameters, yielding marginal predictions robust
to hyperparameter misspecification. Our method
offers an efficient means of performing GP re-
gression, quadrature, or Bayesian optimization in
high-dimensional spaces.

1 INTRODUCTION

We propose a method to actively learn, simultaneously,
about a function and a low-dimensional embedding of its
input domain. High dimensionality has stymied the progress
of model-based approaches to many common machine learn-
ing tasks. In particular, although Bayesian nonparametric
modeling with Gaussian processes (GPs) (Rasmussen &
Williams, 2006) has become popular for regression, clas-
sification, quadrature (O’Hagan, 1991), and global opti-
mization (Brochu et al., 2010), such approaches remain
intractable for large numbers of input variables (with the
exception of local optimization (Hennig & Kiefel, 2012)).
An old idea for the solution to this problem is the exploita-
tion of low-dimensional structure; the most tractable such
case is that of a linear embedding. Throughout this text, we
consider a function f(x)∶RD → R of a high-dimensional
variable x ∈ RD (for notational simplicity, x will be as-
sumed to be a row vector). The assumption is that f , in
reality, only depends on the variable u ∶= xR⊺, of much
lower dimensionality d≪ D, through a linear embedding
R ∈ Rd×D. We are interested in an algorithm that simul-
taneously learns R and f , and does so in an active way.
That is, it iteratively selects informative locations x∗ in a
box-bounded region X ⊂ RD, and collects associated obser-

vations y∗ of f∗ ∶= f(x∗) corrupted by i.i.d. Gaussian noise:
p(y∗ ∣ f∗) = N (y∗; f∗, σ2).

The proposed method comprises three distinct steps (Algo-
rithm 1): constructing a probability distribution over pos-
sible embeddings (learning the embedding R); using this
belief to determine a probability distribution over the func-
tion itself (learning the function f ), and then choosing eval-
uation points to best inform these beliefs (active selection).
To learn the embedding, we use a Laplace approximation
on the posterior over R to quantify the uncertainty in the
embedding (Section 2). To learn the function, we develop a
novel approximate means of marginalizing over Gaussian
process hyperparameters (including those parameterizing
embeddings), to provide predictions robust to hyperparam-
eter misspecification (Section 3). This sub-algorithm is
more generally applicable to many Gaussian process tasks,
and to the marginalization of hyperparameters other than
embeddings, and so represents a core contribution of this
paper. Finally, for active selection, we extend previous work
(Houlsby et al., 2011) to select evaluations that maximize
the expected reduction in uncertainty about R (Section 4).

Estimators for R in wide use include LASSO (Tibshirani,
1996) and the Dantzig selector (Candes & Tao, 2007), both
of which assume d = 1. These are passive methods estimat-
ing the linear embedding from a fixed dataset. This paper
develops an algorithm that actively learns R for the domain
of a Gaussian process. The goal is to use few function eval-
uations to intelligently explore and identify R. Notice that
although the embedding is assumed to be linear, the function
f itself will be allowed to be nonlinear via the GP prior.

This problem is related to, but distinct from, dimensional-
ity reduction (Lawrence, 2012), for which active learning
has recently been proposed (Iwata et al., 2013). Dimen-
sionality reduction is also known as visualization or blind
source separation, and is solved using, e.g., principal com-
ponent analysis (PCA), factor analysis, or latent variable
models. As in dimensionality reduction, we consider the
problem of finding a low-dimensional representation of an
input or feature matrix X ∈ RN×D; unlike dimensionality
reduction, we do so given an associated vector of training
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Algorithm 1 Simultaneous active learning of functions and
their linear embeddings (pseudocode)
Require: d,D; kernel κ, mean function µ; prior p(R)
X ← ∅; y ← ∅
repeat
q(R)← LAPLACEAPPROX(p(R ∣X,y, κ, µ))

// approximate posterior on embedding R
q(f) ← APPROXMARGINAL(p(f ∣ R), q(R))

// approximate marginal on function f
x∗ ← OPTIMIZEUTILITY(q(f), q(R))

// find approximate optimal evaluation point x∗
y∗ ← OBSERVE(f(x∗)) // act
X ← [X;x∗]; y ← [y; y∗] // store data

until budget depleted
return q(R), q(f).

outputs or labels y ∈ RN , containing information about
which inputs are most relevant to a function. The problem
of discovering linear embeddings of GPs was discussed by
Snelson & Ghahramani (2006) for the passive case. Active
supervised learning has been widely investigated (MacKay,
1992b; Guestrin et al., 2005; Houlsby et al., 2011); our work
hierarchically extends this idea to additionally identify the
embedding. A special case of our method (the case of a
diagonal R) is the hitherto unconsidered problem of active
automatic relevance determination (MacKay, 1992a; Neal,
1995; Williams & Rasmussen, 1996).

Identifying embeddings is relevant for numerous Gaus-
sian process applications, notably regression, classification,
and optimization. Within Bayesian optimization, much re-
cent work has focused on high-dimensional problems (Hut-
ter et al., 2011; Chen et al., 2012; Carpentier & Munos,
2012; Bergstra & Bengio, 2012; Hutter, 2009). Recently,
Wang et al. (2013) proposed using randomly generated lin-
ear embeddings. In contrast, our active learning strategy
can provide an initialization phase that selects objective
function evaluations so as to best learn low-dimensional
structure. This permits the subsequent optimization of
high-dimensional objectives over only the learned low-
dimensional embedding.

Alongside this paper, we are releasing open-source software
implementing our contributions. A simple MATLAB imple-
mentation of Algorithm 1, built on the Gaussian Process for
Machine Learning (GPML) Toolbox,1 is freely available.2

An independent, GPML-compatible implementation of the
MGP (Section 3) is also available.3

1http://www.gaussianprocess.org/gpml/code
2https://github.com/rmgarnett/active_gp_

hyperlearning
3https://github.com/rmgarnett/mgp
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Figure 1: A function f with a one-dimensional linear em-
bedding and its box-bounded domain X Searching over the
thick black lines captures all variation of the function. Our
aim is to learn this embedding, represented by embedding
matrix R ∈ R1×2, by selecting evaluations of f in some
search space.

2 LINEAR EMBEDDINGS OF GAUSSIAN
PROCESSES

In many applications, like image analysis, D can be in the
order of thousands or millions. But even D = 10 is a high
dimensionality for common Gaussian process models, not
only from a computational, but also from an informational,
perspective. Because standard GP covariance functions stip-
ulate that function values separated by more than a few input
length scales are negligibly correlated, for high D, almost
all of X is uncorrelated with observed data. Hence data is
effectively ignored during most predictions, and learning
is impossible. Practical experience shows, however, that
many functions are insensitive to some of their inputs (Wang
et al., 2013), thus have low effective dimensionality (Fig-
ure 1). Our goal is to discover an R ∈ Rd×D such that, for
low-dimensional U ⊂ Rd, u = xR⊺, ∀u ∈ U , x ∈ X and
f(x) = f̃(u) for a new function, f̃ ∶U → R. The discussion
here will be restricted to predefined d; in reality, this is
likely to be defined as the maximum number of dimensions
that can be feasibly considered in light of computational
constraints. If the actual d is lower than this limit, R can be
padded with rows of zeros.

We adopt a GP prior on f̃ with mean and covariance func-
tions µ̃ and κ̃, respectively. The linear embedding in-
duces another GP prior p(f) = GP(f ;µ,κ), where µ(x) =
µ̃(xR⊺) and κ(x,x′) = κ̃(xR⊺, x′R⊺). For example,
if κ̃ is the well-known isotropic exponentiated-quadratic
(squared-exponential, radial basis function, Gaussian) co-
variance, κ̃(u,u′) ∶= γ2 exp [− 1

2
(u − u′)(u − u′)⊺] with

output scale γ, κ on f is the Mahalanobis exponentiated-
quadratic covariance

κ(x,x′) = γ2 exp [−1

2
(x − x′)R⊺R(x − x′)⊺] . (1)

If d = D = 1, then R ∈ R is an inverse length scale. We
will return to this one-dimensional example later to build
intuition. A further special case is a diagonal R (assuming
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d = D), in which case κ is the automatic relevance deter-
mination (ARD) covariance (Neal, 1995), widely used to
identify the most-important inputs.

Given an appropriate R with acceptably small d, learning
about f is possible even for large D, because the regres-
sion problem is reduced to the manageable space Rd. This
can remain true even in the case of an uncertain R: in
particular, assume a prior p(R) = N (R; R̂,Σ). Thus, re-
calling that u = xR⊺, and using standard Gaussian identi-
ties, if d = 1, p(u ∣ x) = N (u;xR̂⊺, xΣx⊺). If d > 1, Σ
is Cov[vectR], resulting in another Gaussian for p(u ∣ x)
that is only slightly more involved than in the d = 1 case.
As such, regression on f reduces to GP regression on f̃ ,
whose domain is the much smaller U ⊂ Rd, but with un-
certain, Gaussian-distributed, inputs. Unlike the work of
McHutchon & Rasmussen (2011), giving an existing ap-
proach to GP regression with uncertain inputs, the Gaussian
over the inputs here is correlated; the location of a point is
correlated with all others via mutual dependence on R. And
unlike the setting considered by Girard & Murray-Smith
(2005), there is no natural ordering of this domain enabling
an iterative procedure. The following section describes a
novel means of regression with uncertain embedding R.

2.1 APPROXIMATING THE POSTERIOR ON R

The log-likelihood of R, after N observations forming a
dataset D ∶= (X,y) ∈ RN×D ×RN , is

log p(y ∣X,R) = logN (y;µX ,KXX + σ2I) (2)

= −1/2[(y − µX)⊺(KXX + σ2I)−1(y − µX)
+ log∣KXX + σ2I∣ +N log 2π].

As µX ∶= µ(X) and KXX ∶= κ(X,X) have nonlinear de-
pendence upon R, so does p(y ∣ X,R). Even a simplistic
prior on the elements of R thus gives a complicated pos-
terior. We will use a Laplace approximation for p(R ∣ D)
to attain a tractable algorithm. To construct a Gaussian ap-
proximation, N (R; R̂,Σ) ≃ p(R ∣ D), we find a mode of
the posterior of p(R ∣ D) and set this mode as the mean
R̂ of our approximate distribution. The covariance of the
Gaussian approximation is taken as the inverse Hessian of
the negative logarithm of the posterior evaluated at R̂,

Σ−1 = −∇∇⊺ log p(R ∣ D)∣
R=R̂. (3)

2.1.1 Computational Cost

How costly is it to construct the Laplace approximation
of Equation (3)? Since D may be a large number, active
learning should have low cost in D. This section shows that
the required computations can be performed in time linear
in D, using standard approximate numerical methods. It is
a technical aspect that readers not interested in details may
want to skip over.

Up to normalization, the log posterior is the sum of log
prior and log likelihood (2). The former can be chosen very
simplistically; the latter has gradient and Hessian given by,
defining G ∶= κXX + σ2I and Γ ∶= G−1(y − µX),

−2
∂ log p(y ∣X,R)

∂θ
= −Γ⊺

∂κXX
∂θ

Γ +Tr [G−1 ∂κXX
∂θ

] ;

−2
∂2 log p(y ∣X,R)

∂θ∂η
= 2Γ⊺

∂κXX
∂η

G−1 ∂κXX
∂θ

Γ (4)

−Tr [G−1 ∂κXX
∂η

G−1 ∂κXX
∂θ

]

− Γ⊺
∂2κXX
∂θ∂η

Γ +Tr [G−1 ∂
2κXX
∂θ∂η

] .

Together with the analogous expressions for a prior p(R),
these expressions can be used to find a maximum of the pos-
terior distribution (e.g., via a quasi-Newton method), and
the Hessian matrix required for the Laplace approximation
to p(R ∣ D). The computational cost of evaluating these
expressions depends on the precise algebraic form of the
kernel κ. For the exponentiated quadratic kernel of Equa-
tion (1), careful analysis shows that the storage cost for the
Hessian of (2) isO(N2dD), and its structure allows its mul-
tiplication with a vector in O(N2dD). The corresponding
derivations are tedious and not particularly enlightening. To
give an intuition, consider the most-involved term in (4):
Using the short-hand ∆ij

` ∶= xi` − xj`, a straightforward
derivation gives the form

H1
k`,ab ∶ = −∑

ij

Γi
∂2κ(xi, xj)
∂Rk`∂Rab

Γj

= ∑
ijop

Rko∆
ij
o ∆ij

` Γiκ(xi, xj)ΓjRap∆ij
p ∆ij

b

−∑
ij

δka∆ij
b Γiκ(xi, xj)Γj∆ij

` .

Multiplication of this term with some vector gab (resulting
from stacking the elements of the D × d matrix g into a
vector) requires storage of the d ×N ×N array R∆ with
elements (R∆)ijk , the D ×N ×N array ∆ with elements
∆ij
` , and the N ×N matrix ΓΓ⊺ ⊗K. Multiplication then

takes the form

[H1g]k` =
N

∑
j=1

N

∑
i=1

(R∆)ijk ∆ij
` ΓiΓjκxixj (5)

× [
d

∑
a=1

(R∆)ija [
D

∑
b=1

∆ij
b gab]]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
compute once inO(N2dD), store inO(N2).

Since the N ×N matrix in the square brackets is indepen-
dent of k`, it can be reused in the dD computations required
to evaluate the full matrix–vector product, so the overall
computation cost of this product is O(N2dD). The other
required terms are of similar form. This means that approxi-
mate inversion of the Hessian, using an iterative solver like
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the Lanczos or conjugate gradient methods, is achievable in
time linear in D. The methods described here are computa-
tionally feasible even for high-dimensional problems. Our
implementation of the active method, released along with
this text, does not yet allow this kind of scalability, but the
derivations above show that it is feasible in principle.

3 APPROXIMATE MARGINALIZATION
OF GAUSSIAN PROCESS
HYPERPARAMETERS

To turn the approximate Gaussian belief on R into an ap-
proximate Gaussian process belief on f , the active learning
algorithm (constructed in Section 4) requires an (approxi-
mate) means of integrating over the belief on R. The ele-
ments of R form hyperparameters of the GP model. The
problem of dealing with uncertainty in Gaussian process
hyperparameters is a general one, also faced by other, non-
active, Gaussian process regression models. This section
presents a novel means of approximately integrating over the
hyperparameters of a GP. The most widely used approach
to learning GP hyperparameters is type-II maximum likeli-
hood estimation (evidence maximization), or maximum a
posteriori (MAP) estimation, which both approximate the
likelihood as a delta function. However, ignoring the un-
certainty in the hyperparameters in this way can lead to
pathologies (MacKay, 2003).

For compact notation, all hyperparameters to be marginal-
ized will be subsumed into a vector θ. We will denote as
mf ∣D,θ(x) the GP posterior mean prediction for f(x) con-
ditioned on data D and θ, and similarly as Vf ∣D,θ(x) the
posterior variance V of f(x) conditioned on D and θ.

We seek an approximation to the intractable posterior for
f∗ = f(x∗), which requires marginalization over θ:

p(f∗ ∣ D) = ∫ p(f∗ ∣ D, θ)p(θ ∣ D)dθ. (6)

Assume a Gaussian conditional, p(θ∣D) = N (θ; θ̂,Σ), on
the hyperparameters, such as the approximate distribution
over R constructed in the preceding section. To make the
integral in (6) tractable, we seek a linear approximation

p(f∗∣D, θ) = N (f∗;mf ∣D,θ(x∗), Vf ∣D,θ(x∗)) (7)

≃ q(f∗; θ) ∶= N (f∗;a⊺θ + b, ν2), (8)

using free parameters a, b, ν2 to optimize the fit. The mo-
tivation for this approximation is that it yields a tractable
marginal, p(f∗∣D) ≃ N (f∗;a⊺θ̂ + b, ν2 + a⊺Σa). Further,
the posterior for θ typically has quite narrow width, over
which p(f∗∣D, θ)’s dependence on θ can be reasonably ap-
proximated. We choose the variables a, b, ν2 by matching a
local expansion of q(f∗ ∣ θ) to p(f∗∣D, θ). The expansion
will be performed at θ = θ̂, and at a f⋆ = f̂⋆ to be determined.

Specifically, we match as

∂

∂f∗
q(f∗; θ)∣

θ̂,f̂⋆

= ∂

∂f∗
p(f∗∣D, θ)∣

θ̂,f̂⋆

; (9)

∂

∂θi
q(f∗; θ)∣

θ̂,f̂⋆

= ∂

∂θi
p(f∗∣D, θ)∣

θ̂,f̂⋆

; (10)

∂2

∂f2∗
q(f∗; θ)∣

θ̂,f̂⋆

= ∂2

∂f2∗
p(f∗∣D, θ)∣

θ̂,f̂⋆

; (11)

∂2

∂f∗∂θi
q(f∗; θ)∣

θ̂,f̂⋆

= ∂2

∂f∗∂θi
p(f∗∣D, θ)∣

θ̂,f̂⋆

. (12)

An alternative set of constraints could be constructed by in-
cluding second derivatives with respect to θ. But this would
require computation scaling as O((#θ)2), prohibitive for
large numbers of hyperparameters, such as the D × d re-
quired to parameterize R for large D. We define

m̂ ∶=mf ∣D,θ̂ and
∂m̂

∂θi
∶=
∂mf ∣D,θ
∂θi

∣
θ=θ̂, (13)

along with analogous expressions for V̂ and ∂V̂
∂θi

. Turning to
solving for a, b, ν2 and f⋆, note that, firstly, (9) implies that
a⊺θ̂+ b = m̂, and that (11) implies that ν2 = V̂ . Rearranging
(10) and (12), respectively, we have

2ai =
∂V̂

∂θi

⎛
⎝

1

f̂⋆ − m̂
− f̂⋆ − m̂

V̂

⎞
⎠
+ 2

∂m̂

∂θi
; (14)

2ai = 2
∂V̂

∂θi

f̂⋆ − m̂
V̂

+ 2
∂m̂

∂θi
. (15)

(14) and (15) can be solved only for

ai = ai± ∶= ±
1√
3V̂

∂V̂

∂θi
+ ∂m̂
∂θi

; (16)

f∗ = f̂∗± ∶= m̂(x∗) ±
√

V̂ (x∗)
3

. (17)

In particular, note that the intuitive choice f∗ = m̂(x∗), for
which ∂

∂f∗
p(f∗∣D, θ) = 0, gives q inconsistent constraints

related to its variation with θ. Introducing the separation
of (V̂ (x∗)/3)1/2 provides optimal information about the cur-
vature of p(f∗∣D, θ) with θ. Hence there are two possible
values, f̂∗±, to expand around, giving a separate Gaussian
approximation for each. We average over the two solu-
tions, giving an approximation that is a mixture of two
Gaussians. We then further approximate this as a single
moment-matched Gaussian.

The consequence of this approximation is that

p(f∗ ∣ D) ≃ N (f∗; m̃f ∣D(x∗), Ṽf ∣D(x∗)), (18)

where the marginal mean for f∗ is m̃f ∣D(x∗) ∶= m̂(x∗),
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and the marginal variance is

Ṽf ∣D(x∗) ∶=
4

3
V̂ (x∗) +

∂m̂(x∗)
∂θ

⊺
Σ
∂m̂(x∗)
∂θ

+ 1

3V̂ (x∗)
∂V̂ (x∗)
∂θ

⊺
Σ
∂V̂ (x∗)
∂θ

. (19)

Figure 2 provides an illustration of our approximate
marginal GP (henceforth abbreviated as MGP).

Our approach is similar to that of Osborne et al. (2012)
(BBQ), for which Ṽf ∣D = Vf ∣D,θ̂ +

∂m̂
∂θ

⊺
Σ∂m̂
∂θ

. However, BBQ
ignores the variation of the predictive variance with changes
in hyperparameters.

To compare the two methods, we generated (from a GP)
10 ×D random function values, D, where D is the prob-
lem dimension. We then trained a GP with zero prior mean
and ARD covariance on that data, and performed prediction
for 10 × D test data. Test points, (x∗, y∗), were gener-
ated a small number (drawn from U(1,3)) of input scales
away from a training point in a uniformly random direction.
The MGP and BBQ were used to approximately marginal-
ize over all GP hyperparameters (the output scale and D
input scales), computing posteriors for the test points. We
considered D ∈ {5,10,20} and calculated the mean sym-
metrized Kullback–Leibler divergence (SKLD) over fifty
random repetitions of each experiment. We additionally
tested on two real datasets:4 yacht hydrodynamics (Ger-
ritsma et al., 1981) and (centered) concrete compressive
strength (Yeh, 1998). In these two, a random selection of
50 and 100 points, respectively, was used for training and
the remainder for testing. All else was as above, with the
exception that ten random partitions of each dataset were
considered.

We evaluate performance using the SKLD between approxi-
mate posteriors and the “true” posterior (obtained using a
run of slice sampling (Neal, 2003) with 105 samples and
104 burn-in); the better the approximate marginalization,
the smaller this divergence. We additionally measured the
average negative predictive log-likelihood, −E[log p(y∗ ∣
x∗,D)], on the test points (x∗, y∗). Results are displayed in
Table 1; it can be seen that the MGP provides both superior
predictive likelihoods and posteriors closer to the “true” dis-
tributions. The only exception is found on the yacht dataset,
where the MGP’s SKLD score was penalized for having pre-
dictive variances that were consistently slightly larger than
the “true” variances. However, these conservative variances,
in better accommodating test points that were unexpectedly
large or small, led to better likelihoods than the consistently
over-confident MAP and BBQ predictions.

4http://archive.ics.uci.edu/ml/datasets.

4 ACTIVE LEARNING OF GAUSSIAN
PROCESS HYPERPARAMETERS

Now we turn to the question of actively selecting observa-
tion locations to hasten our learning of R. We employ an
active learning strategy due to Houlsby et al. (2011), known
as Bayesian active learning by disagreement (BALD). The
idea is that, in selecting the location x of a function evalu-
ation f to learn parameters θ, a sensible utility function is
the expected reduction in the entropy of θ,

υ(x) ∶=H(Θ) −H(Θ ∣ F ) =H(F ) −H(F ∣ Θ), (20)

also equal to the mutual information I(Θ;F ) between f
and θ. Mutual information, unlike differential entropies, is
well-defined: the BALD objective is insensitive to changes
in the representation of f and θ. The right-hand side of (20),
the expected reduction in the entropy of f given the provi-
sion of θ, is particularly interesting. For our purposes, θ will
parameterize R ∈ Rd×D; that is, θ is very high-dimensional,
making the computation of H(Θ) computationally demand-
ing. In contrast, the calculation of the entropy of f ∈ R is
usually easy or even trivial. The right-hand side of (20) is
particularly straightforward to evaluate under the approxi-
mation of Section 3, for which p(f ∣ D, θ) and the marginal
p(f ∣ D) are both Gaussian. Further, under this approxima-
tion, p(f ∣ D, θ) has variance ν2 = V̂ that is independent
of θ, hence, H(F ∣ Θ) = H(F ∣ Θ = θ̂). We henceforth
consider the equivalent but transformed utility function

υ′(x) = Ṽf ∣D(x) (Vf ∣D,θ̂(x))
−1
. (21)

The MGP approximation has only a slight influence on this
objective – Figure 2 compares it to a full MCMC-derived
marginal. With reference to (19), (21) encourages evalua-
tions where the posterior mean and covariance functions are
most sensitive to changes in θ (Figure 3), normalized by the
variance in f : such points are most informative about the
hyperparameters. An alternative to BALD is found in uncer-
tainty sampling. Uncertainty sampling selects the location
with highest variance, that is, its objective is simply H(F ),
the first term in the BALD objective. This considers only
the variance of a single point, whereas the BALD objective
rewards points that assist in the learning of embeddings,
thereby reducing the variance associated with all points. An
empirical comparison of our method against uncertainty
sampling follows below.

4.1 ACTIVE LEARNING OF LINEAR
EMBEDDINGS FOR GAUSSIAN PROCESSES

To apply BALD to learning the linear embedding of a Gaus-
sian process, we consider the case R ⊂ θ; the GP hyper-
parameters define the embedding described in Section 2.
Figure 4 demonstrates an example of active learning for the
embedding of a two-dimensional function.
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Figure 2: Approximate marginalization (MGP) of covariance hyperparameters θ increases the predictive variance to closely
match the “true” posterior (obtained using slice sampling with 105 samples). BBQ (Osborne et al., 2012) provides a standard
deviation differing from the MAP standard deviation by less than 3.1% everywhere, and would hence be largely invisible on
this plot. The bottom of the figure displays the (normalized) mutual information I(Θ;F (x)) (equal to the BALD utility
function υ(x)) for the various methods, and their maxima, giving the optimal positions for the next function evaluations.
The MGP position is very close to the true position.

Table 1: Mean negative log-likelihood for test points and mean SKLD (nats) between approximate and true posteriors. Both
metrics were averaged over test points, as well as over fifty and ten random repeats for synthetic and real experiments,
respectively.

−E[log p(y∗ ∣ x∗,D)] SKLD

problem dim MAP BBQ MGP MAP BBQ MGP

synthetic 5 3.58 2.67 1.73 0.216 0.144 0.0835
synthetic 10 3.57 3.10 1.86 0.872 0.758 0.465
synthetic 20 1.46 1.41 0.782 1.01 0.947 0.500
yacht 6 123.0 97.8 56.8 0.0322 0.0133 0.0323
concrete 8 2.96 ⋅ 109 2.96 ⋅ 109 1.67 ⋅ 109 0.413 0.347 0.337

The latent model of lower dimension renders optimizing an
objective with domain X (e.g., f(x), or the BALD objective)
feasible even for high-dimensional X . Instead of direct
search over X , one can choose a u ∈ U , requiring search
over only the low-dimensional U , and then evaluate the
objective at an x ∈ X for which u = xR⊺. A natural choice
is the x which is most likely to actually map to u under
R, that is, the x for which p(u ∣ x) is as tight as possible.
For example, we could minimize log det cov[u ∣ x], subject
to E[u ∣ x] = x R̂⊺, by solving the appropriate program.
For d = 1, this is a quadratic program that minimizes the
variance xΣx⊺ under the equality constraint. Finally, we
evaluate the objective at the solution.

For simplicity, we will henceforth assume X = [−1,1]D.
For any box-bounded problem, there is an invertible affine
transformation mapping the box to this X ; this then re-
quires only that R is composed with this transformation.
Further, define the signature of the ith row of R to be
[sign(Ri1), sign(Ri2), . . .]. Then, for the ith coordinate,
the maximum and minimum value obtained by mapping the
corners of X throughR are achieved by the corner matching
this signature and its negative. This procedure defines the
extreme corners of the search volume U .

Consider the typical case in which we take µ̃ as constant and
κ̃ as isotropic (e.g., the exponentiated quadratic (1)). Since
p(f ∣X,R) is then invariant to orthogonal transformations
of R in Rd, there is no unique embedding. In the special
case d = 1, R and −R are equivalent. For most means and
covariances there will be similar symmetries, and likely ever
more of them as d increases.5 We therefore evaluate the
performance of our algorithms not by comparing estimated
to true Rs, which is difficult due to these symmetries, but
rather in the direct predictive performance for f .

4.2 ACTIVE LEARNING OF LINEAR
EMBEDDINGS EXPERIMENTS

We now present the results of applying our proposed method
for learning linear embeddings on both real and synthetic
data with dimension up to D = 318. Given a function
f ∶X → R with a known or suspected low-dimensional em-
bedding, we compare the following methods for sequentially

5An alternative would be to place a prior on the Stiefel manifold
rather than directly on R; the Stiefel manifold accounts for most
of these symmetries Minka (2000). This would require the rows of
R to be orthogonal.
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Figure 3: Active learning of the length scale of a one-dimensional GP (beginning at the top left and continuing across and
then down): the next sample is taken where the MAP and approximate variances maximally disagree, normalized by the MAP
variance. Samples are taken at a variety of separations to refine belief about the length scale. The inset plots (all of which
share axes) display the approximate posteriors over log-length scales, which tighten with increasing numbers of samples.
The legend is identical to that of Figure 2.

selecting N = 100 observations from the domain [−1,1]D:
random sampling (RAND), a Latin hypercube design (LH),
uncertainty sampling (UNC), and BALD. UNC and BALD use
identical models (Laplace approximation on R followed by
MGP) and hyperparameter priors. We also compare with
LASSO, choosing the regularization parameter by minimiz-
ing squared loss on the training data. The functions that
these methods are compared on are:

• Synthetic in-model data drawn from a GP matching our
model with an embedding drawn from our prior, for
d ∈ {2,3} and D ∈ {10,20}.

• The Branin function, a popular test function for global
optimization (d = 2), embedded in D ∈ {10,20} via an
embedding drawn from our prior.

• The temperature data6 described in Snelson & Ghahra-
mani (2006) (D = 106), with d = 2. The associated
prediction problem concerns future temperature at a
weather station, given the output of a circulation model.
The training and validation points were combined to
form the dataset, comprising 10 675 points.

• The normalized “communities and crime” (C&C)

6http://theoval.cmp.uea.ac.uk/˜gcc/
competition.

dataset from the UCI Machine Learning Repository7

(D = 96), with d = 2. The task here is to predict the
number of violent crimes per capita in a set of US com-
munities given historical data from the US Census and
FBI. The LEMAS survey features were discarded due
to missing values, as was a single record missing the
“AsianPerCap” attribute, leaving 1 993 points.

• The “relative location of CT slices on axial axis” dataset
from the UCI Machine Learning Repository8 (D =
318), with d = 2. The task is to use features extracted
from slices of a CT scan to predict its vertical location
in the human body. Missing features were replaced
with zeros. Only axial locations in the range [50,60]
were used. Features that did not vary over these points
were discarded, leaving 3 071 points.

The CT slices and communities and crime datasets are, re-
spectively, the highest- and third-highest-dimensional re-
gression datasets available in the UCI Machine Learning
Repository with real attributes; in second place is an unnor-
malized version of the C&C dataset.

7http://archive.ics.uci.edu/ml/datasets/
Communities+and+Crime.

8http://archive.ics.uci.edu/ml/datasets/
Relative+location+of+CT+slices+on+axial+
axis.
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Figure 4: Left: Twenty samples selected by uncertainty sampling and BALD for a function f with a one-dimensional linear
embedding. Note that uncertainty sampling prefers corner locations, to maximize the variance in u, xΣx⊺, and hence the
variance in f ; these points are less useful for learning f and its embedding than those selected by BALD. Right: the posterior
over embeddings returned by the BALD samples, concentrated near the true embedding (equivalent under negation).

Table 2: The combination of MGP and BALD actively learns embeddings whose predictive performance improves on
alternatives. Average negative log predictive probability and average RMSE on test functions for various D and d.

−E[log p(y∗ ∣ x∗, R̂)] RMSE

dataset D/d RAND LH UNC BALD RAND LH UNC BALD LASSO

synthetic 10/2 0.272 0.224 −0.564 −0.649 0.412 0.371 0.146 0.138 0.842
synthetic 10/3 0.711 0.999 0.662 0.465 0.553 0.687 0.557 0.523 0.864
synthetic 20/2 0.804 0.745 0.749 0.470 0.578 0.549 0.551 0.464 0.853
synthetic 20/3 1.07 1.10 1.04 0.888 0.714 0.740 0.700 0.617 0.883
Branin 10/2 3.87 3.90 1.58 0.0165 18.2 17.8 3.63 2.29 40.0
Branin 20/2 4.00 3.70 3.55 3.63 18.3 14.8 13.4 15.0 39.1
communities & crime 96/2 1.09 — 1.17 1.01 0.720 — 0.782 0.661 1.16
temperature 106/2 0.566 — 0.583 0.318 0.423 — 0.427 0.328 0.430
CT slices 318/2 1.30 — 1.26 1.16 0.878 — 0.845 0.767 0.900

For the synthetic and Branin problems, where the true em-
bedding R was chosen explicitly, we report averages over
five separate experiments differing only in the choice of
R. On these datasets, the UNC and BALD methods selected
points by successively maximizing their respective objec-
tives on a set of 20 000 fixed points in the input domain,
10 000 selected uniformly in [−1,1]D and 10 000 selected
uniformly in the unit D-sphere. For a given D, these points
were fixed across methods and experimental runs. This
choice allows us to compare methods based only on their
objectives and not the means of optimizing them.

For the real datasets (temperature, communities and crimes,
and CT slices), each method selected from the available
points; LH is incapable of doing so and so is not considered
on these datasets. The real datasets were further processed
by transforming all features to the box [−1,1]D via the
“subtract min, divide by max” map and normalizing the
outputs to have zero mean and unit variance. For the syn-
thetic problems, we added i.i.d. Gaussian observation noise
with variance σ2 = (0.1)2. For the remaining problems,
the datapoints were used directly (assuming that these real
measurements already reflect noise).

After each method selected 100 observations, we compare
the quality of the learned embeddings by fixing the hyper-

parameters of a GP to the MAP embedding at termination
and measuring predictive performance. This is intended to
emulate a fixed-budget embedding learning phase followed
by an experiment using only the most likely R. We chose
N = 100 training points and 1 000 test points uniformly at
random from those available; these points are common to
all methods. We report root-mean-square error (RMSE) and
the average negative predictive log-likelihood on the test
points. The RMSE measures predictive accuracy, whereas
the log-likelihood additionally captures the accuracy of vari-
ance estimates. This procedure was repeated 10 times for
each experiment; the reported numbers are averages.

The embedding prior p(R) was set to be i.i.d. zero-mean
Gaussian with standard deviation 5/4D−1. This choice
roughly implies that we expect [−1,1]D to map approx-
imately within [−2.5,2.5]d, a box five length scales on each
side, under the unknown embedding. This prior is extremely
diffuse and does not encode any structure of R beyond pre-
ferring low-magnitude values. At each step, the mode of the
log posterior overR was found using using L-BFGS, starting
from both the previous best point and one random restart
drawn from p(R).

The results are displayed in Table 2. The active algorithm
achieves the most accurate predictions on all but one prob-
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lem, including each of the real datasets, according to both
metrics. These results strongly suggest an advantage for
actively learning linear embeddings.

5 CONCLUSIONS

Active learning in regression tasks should include hyperpa-
rameters, in addition to the function model itself. Here we
studied simultaneous active learning of the function and a
low-dimensional linear embedding of its input domain. We
also developed a novel means of approximately integrating
over the hyperparameters of a GP model. The resulting al-
gorithm addresses needs in a number of domains, including
Bayesian optimization, Bayesian quadrature, and also the
underlying idea of nonparametric Gaussian regression it-
self. Empirical evaluation demonstrates the efficacy of the
resulting algorithm on both synthetic and real problems in
up to 318 dimensions, and an analysis of computational cost
shows that the algorithm can, at least in principle, be scaled
to problems of much larger dimensionality as well.
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Abstract

Assessing the causal effect of a treatment
variable X on an outcome variable Y is
usually difficult due to the existence of un-
observed common causes. Without further
assumptions, observed dependences do not
even prove the existence of a causal effect
from X to Y . It is intuitively clear that
strong statistical dependences between X
and Y do provide evidence for X influenc-
ing Y if the influence of common causes is
known to be weak. We propose a framework
that formalizes effect versus confounding in
various ways and derive upper/lower bounds
on the effect in terms of a priori given bounds
on confounding. The formalization includes
information theoretic quantities like informa-
tion flow and causal strength, as well as other
common notions like effect of treatment on
the treated (ETT). We discuss several sce-
narios where upper bounds on the strength of
confounding can be derived. This justifies to
some extent human intuition which assumes
the presence of causal effect when strong (e.g.
close to deterministic) statistical relations are
observed.

1 INTRODUCTION

In many situations one wants to estimate the causal
effect from an observable X to an observable Y , e.g.
if/to what extent smoking causes lung cancer. It is
widely agreed that randomized experiments constitute
the gold standard for inferring the causal effect. The
reason for this is that an ideal randomized experi-
ment excludes the possibility of a (partially) unob-
served confounding cause U . However, in many cases
conducting randomized experiments would be very ex-
pensive or impossible. In these cases, if we do not have

any additional knowledge on the setting, then infer-
ence of the (precise or approximate) causal effect is
generally deemed impossible. In case we have addi-
tional knowledge however, it may be possible to esti-
mate the causal effect, i.e. derive (upper and/or lower)
bounds for it. For instance it is well known that if we
observe an instrumental variable Z together with X
and Y , those bounds can be derived (see e.g. [Pearl,
2000]).

1.1 THE FORMAL FRAMEWORK

To make our discussion as precise as possible we will
from this point on use the framework for causality de-
veloped in [Pearl, 2000]. Particularly we will make use
of the do-calculus formalizing interventions on vari-
ables. (It should be mentioned though that we slightly
deviate from Pearl’s definition of the do-operator as we
will further explicate in Section 2.1.)

YX

U

Figure 1: Causal DAG for the confounding scenario
(gray means unobserved).

The causal DAG in Figure 1 formalizes the causal
structure underlying U,X, Y . Note that we allow U
and in some cases also X,Y to be multivariate. Fur-
thermore keep in mind that in some scenarios discussed
in the paper we assume U to be partially observed.
Our general goal is to estimate the causal effect from
X to Y . Formally, this means that we want to esti-
mate P (Y |doX=x) or related quantities such as the
effect of treatment on the treated (ETT) [Pearl, 2000]
or the causal strength from X to Y [Janzing et al.,
2013]. Without further assumptions, these quantities
are impossible to estimate. To give an extreme ex-
ample, one can imagine observing the deterministic
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relationship P (y|x) = δyx, with δyx denoting the Kro-
necker delta. This observation can be induced by two
completely different underlying causal structures, the
first one being that Y in fact is produced by copying
X, the second one being that both X and Y are copied
from U without X having any causal effect on Y .

1.2 RELATED WORK

Several approaches have been developed to identify or
estimate causal effects in spite of hidden confounders.

Back-door/front-door criterion (see [Pearl, 2000,
2009]): This approach applies for the case where some
variables on the confounding path or between X and Y
are measured and we know the causal structure under-
lying all variables together. There are several criteria
that allow to decide whether the causal effect from X
to Y is identifiable. Furthermore, formulas are avail-
able to calculate the effect in these cases. Besides the
natural limitation namely requiring a lot of informa-
tion on additional variables and structures, one draw-
back of this method is that it cannot be used if X is
deterministically coupled to the back-door variable.

Instrumental variables (see e.g. [Pearl, 2000, Angrist
et al., 1996, Efron and Feldman, 1991]): In the sim-
plest case, the causal DAG in Figure 1 is augmented
by a parentless node Z with an arrow to X. An im-
portant example are clinical trials with partial compli-
ance. The additional Z allows to infer bounds on the
average causal effect. One drawback of this method is
that it yields a convex optimization problem with the
number of equations growing exponentially with the
cardinality of X. Furthermore, to apply this method
one needs to know p(X,Y |Z) while in Section 4.2 we
present a scenario where p(Z) (additional to p(X,Y ))
helps to estimate the causal effect.

Regression discontinuity design (see e.g. [Thistlewaite
and Campbell, 1960, Imbens and Lemieux, 2008, Lee
and Lemieux, 2010]): This framework is applicable to
cases where an additional observable Z mediating be-
tween U and X is measured and X is a determinis-
tic function of Z that contains a discontinuity. Under
the assumption of linearity of the remaining structural
equations, the effect from X to Y , i.e. the linear coeffi-
cient, can be identified. One limitation of this method
is that it needs the discontinuity and a high slope alone
does not suffice.

1.3 OUR APPROACH

The approach we suggest to estimate causal effects in
spite of confounding consists of two parts: In the first
part (Section 3) we propose various possibilities to for-
malize the following notions:

• Observed dependence: the dependence of Y on X
that we can observe based on p(X,Y ).

• Back-door dependence: the “spurious association”
[Pearl, 2000] between X and Y due to the con-
founder U .

• Causal effect: what happens to Y upon inter-
vening on X; this includes notions of conditional
causal effect such as the ETT.

For all formalizations we present inequalities (see Ta-
ble 1 for an overview) which turn out to always have
the following prototypical form:

[
back-door
dependence

]
≥ d

([
observed
dependence

]
,

[
causal
effect

])

(where the d(·, ·) stands for deviation measure). In
some of these results, observed dependence, back-door
dependences, and causal effect are real numbers and
d(·, ·) simply stands for the usual difference which al-
lows us to convert the prototypical form into

[
causal
effect

]
≥
[

observed
dependence

]
−
[

back-door
dependence

]
,

which may be more convenient for applications.

In order to draw conclusions on the true causal ef-
fect using the inequalities from the first part, one
needs to have knowledge on the back-door dependence.
Therefore, in the second part (Section 4), we demon-
strate how in various situations one can come up with
bounds on the back-door dependence. Based on these
together with the observed dependence one can then
infer bounds on the true causal effect.

Before getting started, in Section 2, we present several
definitions which are needed throughout the paper.

2 PREREQUISITES

Keep in mind the following definitions and results
throughout the paper.

2.1 DEFINITION OF CAUSAL MODEL
AND do-OPERATOR

As already mentioned we essentially use the framework
developed in [Pearl, 2000] to discuss causal relations.
Let V = {X1, . . . , Xn} be a set of random variables.
A causal model M w.r.t. V consists of a DAG G, noise
variables Ni for each i with a joint distribution P that
makes them jointly independent, and structural equa-
tions Xi := fi(PAG

i , Ni) for each i, where PAG
i denotes

the parents of Xi in G.
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Table 1: Formalizing observed dependence (O), back-
door dependence (B), causal effect (C) and deviation
measure (d). CX→Y denotes the strength of the influ-
ence of X on Y in the sense of [Janzing et al., 2013],
I(X → Y |doU) is the information flow by [Ay and
Polani, 2008], D[·‖·] denotes Kullback-Leibler diver-
gence [Cover and Thomas, 1991]. The symbol do is
the do-operator defined by [Pearl, 2000].

Sec. O/B/C/d formalized by ...

3.1 O I(X : Y )
B I(U : X), CU→X
C CX→Y
d difference

3.2 O I(X : Y )
B I(U : X)
C I(X → Y |doU)
d difference

3.3 O p(Y |X=x)
B I(X : U), min{CU→X ,CU→Y }
C p(Y |doX=x)
d D[·‖·]

3.4 O E[dx log p(Y |X=x)2]
B E[∂2 log p(Y |X=x,doX=x))2]
C E[∂1 log p(Y |X=x,doX=x))2]
d difference

3.5 O E[Y |X=x′]− E[Y |X=x]
B E[Y |X=x′,doX=x]
−E[Y |X=x, doX=x]

C E[Y |X=x′,doX=x′]
−E[Y |X=x′,doX=x]

d difference
3.6 O dxE[Y |X=x]

B ∂1E[Y |X = x, doX=x]
C ∂2E[Y |X = x, doX=x]
d difference

Now we define the do-operator. Given any Xi ∈ V
the post-intervention causal model MdoXi=x′ is ob-
tained from M in the following way: For each child
Xj of Xi, we replace the structural equation Xj =

fj(PAG
j \Xi, Xi, Nj) by Xj = fj(PAG

j \Xi, x
′, Nj). Note

that the random variable Xi stays in the model it just
no longer has children. (This is the point where we de-
viate from [Pearl, 2000]. Note the analogy to the split-
ting of nodes in [Richardson and Robins, 2013, Robins
et al., 2007], where Xi is replaced with two determin-
istically coupled variables, one being adjacent to the
parents of Xi and one to the children of Xi. Then we
refer to an intervention on the latter one while the first
one is kept.)

The new set of structural equations of MdoXi=x′

together with the noise variables Ni for all i in-
duce a new joint distribution on X1, . . . , Xn which
we denote by P (X1, . . . , Xn|doX=x′). In particular,
given M contains the variables X and Y , quantities
such as P (Y |X=x, doX=x′) are well defined. (Note
that P (Y |X=x, doX=x′), based on our definition of
MdoX=x′ , coincides with the counterfactual distribu-
tion P (Yx′ |X=x) as defined in [Pearl, 2000].)

2.2 DISTRIBUTIONS AND DENSITIES

Throughout the paper we will work with U,X, Y with
discrete as well as with continuous ranges.

Unless noted otherwise we make the following funda-
mental assumption regarding the distributions of the
random variables in a causal model M with causal
DAG G: for each Xj ∈ V , the random variable
fj(paj , Nj) has a density w.r.t. the Lebesgue measure
(in the continuous case) or w.r.t. the counting mea-
sure (in the discrete case) respectively, denoted by
qj(xj ; paj) for each value paj of PAj (note that we
have to slightly deviate from this assumption in Sec-
tion 4.1 though). This assumption implies the follow-
ing simple lemma, which is only formulated for the
case n = 3, since we only need this case in the present
paper. A proof can be found in the supplement.

Lemma 1. Under the assumption made above, the
joint distribution of X1, X2, X3 induced by a causal
model M or any post-interventional model MdoXi=x

has a density w.r.t. the Lebesgue measure (in the con-
tinuous case) or counting measure (in the discrete
case), respectively. Moreover, this density factorizes
according to the causal DAG belonging to the respec-
tive model.

Regarding any causal model M with causal DAG as
depicted in Figure 1, also the following simple state-
ment holds true. The proof is obvious but we present
it in the supplement anyway. Note that the lemma
is similar to [Pearl, 2000, Corollary 7.3.2], but better
tailored for our definition of MdoX=x.

Lemma 2. For all x we have

p(Y |X = x, doX=x) = p(Y |X = x),

E[Y |X = x, doX=x] = E[Y |X = x].

3 THE RELATION BETWEEN
OBSERVED DEPENDENCE,
BACK-DOOR DEPENDENCE
AND CAUSAL EFFECT

In this section we present various possibilities to for-
malize the notions of observed dependence, back-door
dependence and causal effect. For all formalizations
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we prove that the back-door dependence is equal to
or upper bounds the deviation between the observed
dependence and the actual causal effect.

Subsections 3.1, 3.2 apply to X,Y, U with finite range.
Subsections 3.3, 3.5 apply to X,Y, U with arbitrary
range. Subsections 3.4 and 3.6 apply to X with con-
tinuous range.

Keep in mind that H(·) denotes the Shannon entropy,
I(· : ·) (I(· : ·|·)) the (conditional) mutual information,
and D[·‖·] the Kullback-Leibler divergence, all based
on logarithms with base 2. For details see [Cover and
Thomas, 1991].

3.1 ESTIMATING THE CAUSAL
STRENGTH FROM X TO Y

The basic quantities in this section are:
- observed dep.: I(X : Y ),
- back-door dep.: I(X : U), CU→X ,
- causal effect: CX→Y .

We consider the case of U,X, Y having finite range.
[Janzing et al., 2013] proposed a definition for the
causal strength of a set of arrows in a causal DAG.

We briefly want to repeat this definition for the special
case of measuring the strength of a single arrow. For
a set of observables V = {X1, . . . , Xn}, a DAG G′

with V as the set of nodes and a joint distribution
p(X1, . . . , Xn) and for any arrow Xi → Xj in G′ we
first define the distribution pXi→Xj corresponding to
deleting Xi → Xj from the graph and feeding Xj with
an independent copy of Xi instead, see also [Ay and
Krakauer, 2007]:

pXi→Xj (xj |pa
Xi→Xj
Xj

) :=
∑

x′
i

p(x′i)p(y|x′i,pa
Xi→Xj
Xj

),

pXi→Xj (xk|pa
Xi→Xj
Xk

) := p(xk|paXk), for all k 6= j,

pXi→Xj (x1, . . . , xn) :=

n∏

k=1

pXi→Xj (xk|pa
Xi→Xj
Xk

),

where pa
Xi→Xj
Xk

denotes (values of) the set of parents of
Xk in the modified graph G′ without arrow Xi → Xj

(obviously this actually only makes a change for paXj ).
Now we are able to define the causal strength CXi→Xj
by the impact of the edge deletion:

CXi→Xj := D[p(X1, . . . , Xn)‖pXi→Xj (X1, . . . , Xn)].

Let us get back to our specific confounding scenario
(the causal DAG in Figure 1). For general DAGs,
[Janzing et al., 2013] shows CX→Y ≥ I(X : Y |PAY \
X), that is, the information Y contains about X
given its other parents is a lower bound for causal

strength (they argue that this property would be desir-
able for other information-theoretic measures of causal
strength as well). Hence in our confounding scenario
(Figure 1) we have CX→Y ≥ I(X : Y |U). Also keep in
mind that CU→X = I(U : X) in our setting.

Lemma 3. We have

I(X : Y |U) ≥ I(X : Y )− I(X : U). (1)

Proof. The statement follows from the fact that
I(X : Y |U) + I(X : U) = I(X : U, Y ) ≥ I(X : Y ).

We consider I(X : Y ) as a measure of observed depen-
dence between X and Y . The following theorem shows
that the back-door dependence CU→X bounds the dif-
ference between the observed dependence and the true
causal effect CX→Y .

Theorem 1. We have

CU→X ≥ I(X : Y )− CX→Y . (2)

Proof. This follows from Lemma 3 together with the
fact that CX→Y ≥ I(X : Y |U) and CU→X = I(X : U)
in our confounding scenario (i.e. the DAG in Figure
1).

3.2 ESTIMATING THE INFORMATION
FLOW FROM X TO Y

The basic quantities in this section are:
- observed dep.: I(X : Y ),
- back-door dep.: I(X : U),
- causal effect: I(X → Y |doU).

Another information theoretic quantity to measure the
causal effect of X on Y is the information flow pro-
posed by [Ay and Polani, 2008]. In our setting (the
causal DAG in Figure 1) it is defined as

I(X → Y |doU) :=
∑

u

p(u)
∑

x

p(x|doU=u)
∑

y

p(y|doX=x, doU=u)

× log
p(y|doX=x, doU=u)∑

x′ p(y|doX=x′,doU=u)p(x′|doU=u)
.

Since p(y|doX=x, doU=u) = p(y|x, u) in our setting,
we simply have I(X → Y |doU) = I(X : Y |U).

So we can establish a theorem for the information flow
similar to the one for the causal strength. it follows
immediately from Lemma 3.

Theorem 2. We have

I(X : U) ≥ I(X : Y )− I(X → Y |doU). (3)
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3.3 BOUNDING THE
KULLBACK-LEIBLER DIVERGENCE
BETWEEN p(Y |X=x) AND p(Y |doX=x)

The basic quantities in this section are:
- observed dep.: p(Y |X=x),
- back-door dep.: I(X : U), min{CU→X ,CU→Y },
- causal effect: p(Y |doX=x).

In some sense, p(Y |doX=x) is the most fundamental
characterization of the causal effect fromX to Y , while
p(Y |X=x) can be seen as the corresponding character-
ization of their observed dependence. In this section we
show that the deviation between these two objects can
be bounded by quantities which measure the back-door
dependence, I(X : U) and min{CU→X ,CU→Y }. We
formalize the notion of deviation here by

D[p(Y |X)‖p(Y |doX)]

:=
∑

x

p(x)D[p(Y |x)‖p(Y |doX=x)].

Theorem 3. We have

D[p(Y |X)‖p(Y |doX)] ≤ min{CU→X ,CU→Y }
≤ I(X : U).

Proof. First note that
pU→X(u, x, y) = p(u)p(x)p(y|u, x) and
pU→Y (u, x, y) = p(u)p(x|u)

∑
u′ p(y|u, x)p(u′).

This implies
p(y|doX=x) = pU→X(y|X=x) and
p(y|doX=x) = pU→Y (y|X=x).

Therefore, using the chain rule for Kullback-Leibler
divergence,

D[p(Y |X)‖p(Y |doX)] = D[p(Y |X)‖pU→X(Y |X)]

≤ D[p(X,Y )‖pU→X(X,Y )] = CU→X(= I(U : X)).

Similarly one can derive D[p(Y |X)‖p(Y |doX)] ≤
CU→Y .

The above theorem makes a statement w.r.t. the di-
vergence between p(Y |x) and p(Y |doX=x) averaged
over all values x of X. But it is also possible to derive
a pointwise version:

Theorem 4. For all x

D[p(Y |x)‖p(Y |dox)] ≤ D[p(U |x)‖p(U)],

with equality iff p(u|x) = p(u) for all u.

Proof. By the log sum inequality we have

p(y|x) log
p(y|x)

p(y|dox)

=

(∑

u

p(y|x, u)p(u|x)

)
log

∑
u p(y|x, u)p(u|x)∑
u p(y|x, u)p(u)

≤
∑

u

p(y|x, u)p(u|x) log
p(y|x, u)p(u|x)

p(y|x, u)p(u)
(4)

=
∑

u

p(y, u|x) log
p(u|x)

p(u)
.

Equality holds in (4) iff p(y|x, u)p(u|x) =
cp(y|x, u)p(u) for all u and some constant c, i.e.
iff p(u|x) = p(u) for all u. Summing over all y yields
the claimed inequality.

Note that taking the average w.r.t. X in Theorem 4
is another way to prove the first part of Theorem 3.
With a similar proof we can also derive the follow-
ing inequality w.r.t. the “inverse mutual information”
D[p(U)p(X)‖p(U,X)] (as opposed to the usual mutual
information I(U : X) = D[p(U,X)‖p(U)p(X)]). For
this purpose let us define

D[p(Y |doX)‖p(Y |X)]

:=
∑

x

p(x)
∑

y

p(y|doX=x) log
p(y|doX=x)

p(y|X=x)
.

Corollary 1. We have

D[p(Y |doX)‖p(Y |X)] ≤ D[p(U)p(X)‖p(U,X)].

To assess which bound is relevant for a scenario, we re-
call that for two distributions p and q, D[p‖q] diverges
when q = 0 and p > 0 on a set of Lebesgue measure
greater than 0. If the observed dependence p(Y |X) is
deterministic, p(Y |doX) needs to be deterministic if
D[p(Y |doX)‖p(Y |X)] is finite.

3.3.1 An example for bounding the average
causal effect from X to Y

Often one is interested in estimating the average causal
effect E[Y |doX=x′]−E[Y |doX=x] for two values x, x′

of X [Pearl, 2000], in particular because this quantity
is easy to interpret. In what follows, we want to give
an example how one can derive bounds on this quan-
tity based on Theorem 3. It is important to mention
however, that the assumptions we make are very re-
strictive. The purpose of the example is only to show
that information theoretic bounds on the back-door
dependence can, under appropriate assumptions, im-
ply bounds for the average causal effect.
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Let X be binary, p(Y |x) = N (µx, σ
2), and

p(Y |doX=x) = N (µdo x, σ
2
do ), for x = 0, 1 (hence par-

ticularly E[Y |doX=x] = µdo x).1

In this case we can calculate (have in mind that ln is
the natural logarithm)

p(X=0)(µ0 − µdo 0)2 + p(X=1)(µ1 − µdo 1)2

= 2σ2
do

(
D[p(Y |X)‖p(Y |doX)]− ln

σ2
do

σ2
− σ2

2σ2
do

+
1

2

)

≤ 2σ2
do

(
min{CU→X ,CU→Y } − ln

σ2
do

σ2
− σ2

2σ2
do

+
1

2

)
.

(5)

Now assume we fix min{CU→X ,CU→Y } and σ2
do . Keep

in mind that µ0, µ1, σ
2 are observed. Then we can de-

rive upper and lower bounds on the average causal
effect µdo 1 − µdo 0 by maximizing and minimizing
it, respectively, under the constraints on the pair
(µdo 1, µdo 0) imposed by inequality (5).

3.4 ESTIMATING THE FISHER
INFORMATION

The basic quantities in this section are:
- observed dep.: FY |X(x),
- back-door dep.: F1

Y |X,doX(x, x),

- causal effect: F2
Y |X,doX(x, x).

In the following, ∂if(x, x′), i = 1, 2, denotes the par-
tial derivative w.r.t. the ith argument of f evaluated
at position (x, x′). And dxg(x) denotes the total
derivative of g(x) w.r.t. x at position x, in particu-
lar dxf(x, x) = dxg(x) for g(x) := f(x, x).

Given a family of distributions depending on continu-
ous parameters, Fisher information provides a natural
way to quantify the sensitivity of a probability distri-
bution to infinitesimal parameter changes. It plays an
important role for the error made when estimating the
true parameter value from empirical data [Rao, 1945].
Here we quantify causal influence by the sensitivity
of p(Y |dox) to small changes of x. This can be con-
sidered as a “local” measure of causal strength in the
neighborhood of x. We introduce the following nota-
tion:

FY |X(x) :=

∫
(dx log p(y|X=x))2p(y|X=x)dy,

F iY |X,doX(x, x′) :=
∫

(∂i log p(y|X=x,doX=x′))2p(y|X=x,doX=x′)dy,

1Note, however, that both p(Y |X=0) and p(Y |X=1)
being Gaussian actually provides some evidence for the ab-
sence of confounding since a confounder will often destroy
this simple structure of P (Y |X) [Janzing et al., 2011].

for i = 1, 2.

Theorem 5. For all x

√
FY |X(x)−

√
F2
Y |X,doX(x, x) ≤

√
F1
Y |X,doX(x, x).

A proof can be found in the supplement.

3.5 ESTIMATING THE EFFECT OF
TREATMENT ON THE TREATED
FROM X TO Y

The basic quantities in this section are:
- observed dep.:
E[Y |X=x′]− E[Y |X=x],

- back-door dep.:
E[Y |X=x′,doX=x]− E[Y |X=x,doX=x],

- causal effect:
E[Y |X=x′,doX=x′]− E[Y |X=x′,doX=x].

Following [Pearl, 2000], we define the quantity

E[Y |X=x′,doX=x′]− E[Y |X=x′,doX=x]

as the effect of treatment on the treated. As the name
already suggests, the idea behind this quantity is to
measure the deviation between the average response
of the treated subjects and the average response of
these same subjects had they not been treated. The
following result w.r.t. the effect of treatment on the
treated follows from Lemma 2.

Theorem 6. We have for all x, x′

E[Y |X=x′]− E[Y |X=x]

= E[Y |X=x′,doX=x′]− E[Y |X=x′,doX=x]

+ E[Y |X=x′,doX=x]− E[Y |X=x,doX=x].

Note that in mediation analysis [Pearl, 2001, Avin
et al., 2005, Robins and Greenland, 1992] a similar
splitting into direct and indirect effect is used. How-
ever mediation analysis addresses the problem of defin-
ing direct and indirect causal effects and not back-door
dependences.

We briefly want to discuss the other quantities that
appear in the theorem. Obviously, E[Y |X=x′] −
E[Y |X=x] measures the observed dependence of Y on
X. Now keep in mind that in MdoX=x, X has no
causal effect on Y anymore and hence Y statistically
depends on X solely via U . Therefore the difference

E[Y |X=x′,doX=x]− E[Y |X=x,doX=x]

measures the strength of the back-door dependence of
Y on X.
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3.6 ESTIMATING THE DIFFERENTIAL
EFFECT OF TREATMENT ON THE
TREATED FROM X TO Y

The basic quantities in this section are:
- observed dep.: dxE[Y |X=x],
- back-door dep.: ∂1E[Y |X = x, doX=x],
- causal effect: ∂2E[Y |X = x, doX=x].

First note that by ∂iE[Y |X=x, doX=x′] we mean
∂if(x, x′) for f(x, x′) := E[Y |X=x,doX=x′] (recall
that ∂i denotes the partial derivative w.r.t. the ith ar-
gument). In the case of continuous random variables
U,X, Y we want to consider the following quantity (if
it exists i.e. if the conditional expectation is differen-
tiable)

∂2E[Y |X=x, doX=x],

which we call differential effect of treatment on the
treated or simply differential effect in cases where this
does not lead to confusions. It is the analog to the
discrete effect of treatment on the treated (see Section
3.5) for the case of infinitesimal interventional changes
on X; we simply replaced a difference by a derivative.

Similar to Theorem 6 we can establish the following
result. It follows from the chain rule for derivatives
together with Lemma 2.

Theorem 7. For all x

dxE[Y |X=x] = ∂1E[Y |X=x, doX=x]

+ ∂2E[Y |X=x, doX=x].

The interpretation of this theorem is similar to the
one for Theorem 6. Obviously, dxE[Y |X=x] is the
observed dependence, whereas the quantity ∂1E[Y |X =
x, doX=x] measures the back-door dependence of Y on
X. So the observed dependence of Y on X splits into
the causal effect plus the back-door dependence.

4 PROTOTYPICAL SCENARIOS
WITH BOUNDS ON THE
BACK-DOOR DEPENDENCE

In this section we present several prototypical scenar-
ios where bounds on the back-door dependence be-
tween X and Y can be derived. Together with our
results from Section 3 these bounds help to estimate
causal effect from X to Y .

4.1 A QUALITATIVE TOY EXAMPLE

We want to give an example that demonstrates how
human intuition concerning observed dependence and
causal effect relates to the theorems from Section 3.

Assume there is a drug that is indicated for a spe-
cific disease. We observe some not too small number
of people with the disease and see that some of them
take the drug and some do not. We find that all per-
sons who took the drug recovered on the same day
whereas none of the persons not taking the drug re-
covered that fast. For each sick person let X denote
the date he or she takes the drug and Y the date he
or she recovers. Since these are only observations, we
cannot exclude that there is a confounder U , i.e. we
assume the usual causal DAG (Figure 1). We esti-
mate the distribution of Y given X by the empirical
distribution, i.e. p(y|x) = δyx, where δyx denotes the
Kronecker delta.

Given the above setting probably most people would
argue that there has to be some effect from the drug
to the immediate healing of those people who took
it. However, formally and without further assump-
tions p(Y |x) alone does not even tell us if there is a
causal link from X to Y at all. With the help of The-
orem 3 though, we can formally reason as follows. We
make the weak additional assumption that X cannot
be completely determined by U which we formalize by
I(U : X) < H(X). It seems implausible that there
exists a common cause of X and Y that determines
both, the exact date X a person takes the drug and
the recovering date Y . E.g. the wealth of a person
may strongly influence both, the treatment he or she
takes and how quickly he or she recovers (via the gen-
eral health condition), however it seems not plausible
that the wealth determines the exact day of taking the
drug and of recovering.

For a proof by contradiction we may assume that there
is no causal effect from X to Y , i.e. p(Y |doX=x) =
p(Y |doX=x′) for all x, x′. Then

D[p(Y |X)‖p(Y |doX=x)]

=
∑

x

p(x)D[p(Y |X=x)‖p(Y |doX=x)]

=
∑

x

p(x)
∑

y

δyx log
δyx

P (Y = y|doX=x)

=
∑

x

p(x) log
1

p(Y=x|doX=0)
≥ H(X),

where the last inequality is due to Gibb’s inequality
[Cover and Thomas, 1991].

On the other hand, due to Theorem 3 we have

D[p(Y |X)‖p(Y |doX)] ≤ I(X : U) < H(X),

which yields the contradiction. Hence we could for-
mally show that there has to be some causal effect
from X to Y , p(Y |doX=x) 6= p(Y |doX=x′) for some
x, x′. Note that the above argumentation completely
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transfers to any other situation where p(y|x) = δyx,
particularly any other range of X and Y .

4.2 PARTIAL RANDOMIZATION
SCENARIO

We first discuss a formal scenario, then an application
example, and afterwards we discuss how the scenario
and our result is related to the instrumental variable
design [Pearl, 2000].

YX

UW

Figure 2: The partial randomization causal DAG.

4.2.1 THE FORMAL PROTOTYPE

We consider a scenario where we have measured X and
Y , and where hidden variables U and W are present
and we know the distribution of W . The underlying
causal structure of all variables looks like the causal
DAG depicted in Figure 2. We assume that W is bi-
nary. Furthermore we assume that in this scenario
I(U : X|W = 0) = 0. The intuition behind this as-
sumption is that W decides whether X is influenced by
U (W = 1) or not. This scenario implies the following
inequality. A proof can be found in the supplement.

Proposition 1. In the given scenario we have
I(U : X) ≤ H(X)p(W=1).

Now we can employ our results from Sections 3.1
through 3.3. We obtain the following bounds:

I(X : Y )− CX→Y ≤ H(X)p(W=1), (6)

I(X : Y )− I(X → Y |doU) ≤ H(X)p(W=1), (7)

D[p(Y |X)‖p(Y |doX)] ≤ H(X)p(W=1). (8)

Note that under strong assumptions, one can also ap-
ply the result from Section 3.3.1 to estimate the aver-
age causal effect E[Y |doX=x′]−E[Y |doX=x] for two
values x, x′ of X.

4.2.2 ADVERTISEMENT LETTER
EXAMPLE

Assume we are managers of a mail order company,
and want to know the effect of sending advertise-
ment letters on the ordering behavior of the recipients.
We have a data set of (X,Y ) pairs with X denoting
whether a letter was sent to a specific person and let Y
denote the total costs of the products ordered by this

person afterwards (within some fixed time span). As-
sume we have enough data to estimate p(X,Y ). Fur-
thermore, assume that so far there were already im-
perfect guidelines based on rough intuition on whom
to send letters and whom not. These guidelines in-
troduce a potential confounder U since letters were
more likely send to potential customers with proper-
ties that made them also more likely to order some-
thing (if the guidelines were not complete nonsense).
It is known however that only some employees sticked
to these guidelines. Let W denote whether a letter was
sent out in compliance with these guidelines (W = 1)
or not.

Based on an estimate of how many employees com-
plied with the guidelines, we also have an estimate of
p(W = 1), i.e. the fraction of letters that was sent out
in compliance with the guidelines. Based on Proposi-
tion 1, we know that I(U :X) ≤ H(X)p(W=1). Hence
we have an upper bound on the back-door dependence
of Y on X. Particularly we can apply inequalities
(6) to (8) and, under strong additional assumptions,
the result w.r.t. the average causal effect from Section
3.3.1.

For example by (6) we have I(X:Y )−H(X)p(W=1) ≤
CX→Y . Now assume H(X)≈1 (we sent a letter to
roughly every second person in our register) and
p(W=1)≈0.5 (only half the employees sticked to the
guidelines). Then if we observe a strong dependence
of Y on X, say I(X:Y )≈0.75, then we can conclude
that CX→Y&0.25, i.e. our advertisement letters have
a significant effect on the potential customers.

4.2.3 DIFFERENCE TO INSTRUMENTAL
VARIABLE DESIGN

We already mentioned the instrumental variable de-
sign [Pearl, 2000] in Section 1. In this design it is as-
sumed that an additional variable W is observed such
that the causal structure of all variables together is
as depicted in Figure 2, except that W is not hid-
den. The prototypical application scenario for this de-
sign are clinical trials with partial compliance. [Pearl,
2000] describes a method to derive bounds on the av-
erage causal effect E[Y |doX=1]−E[Y |doX=0]. This
analysis heavily depends on the range of X, Y , and
W and involves convex optimization in 15-dimensional
space already for the case where all variables are bi-
nary (since U can be assumed to attain 16 different
values).

The advantage of our approach lies in the fact that
the ranges of the variables may be arbitrary with-
out increasing the complexity – for the cost of getting
less tight bounds than an explicit modeling, of course.
One can get bounds for the case where neither X nor
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Y are binary, e.g., in a drug testing scenario with
different doses and descriptions of health conditions
that are more complex than just reporting recovery or
not. Moreover, we do not need complete knowledge of
p(Y,X|W ) provided that we have some knowledge on
W that provides upper bounds on I(X:U).

4.3 A VARIANT OF THE REGRESSION
DISCONTINUITY DESIGN

We already mentioned the regression discontinuity de-
sign (RDD) [Thistlewaite and Campbell, 1960, Imbens
and Lemieux, 2008, Lee and Lemieux, 2010] in Section
1. It is a quasi-experimental design that can help to
estimate the causal effect from X to Y in cases where
an additional variable Z is measured and the underly-
ing causal DAG of all variables together is as depicted
in Figure 3. The design usually requires that X is a
deterministic function of Z that contains a discontinu-
ity, that all remaining structural equations are linear,
and that E[U |Z = z] is continuous in z. (Note that the
causal DAG in Figure 3 is a special case of the general
confounding scenario depicted in Figure 1, which can
be seen by replacing U in Figure 1 by U ′ := (U,Z).)

YXZ

U

Figure 3: The causal DAG for the RDD and our vari-
ant of it.

We now want to consider a scenario inspired by the
RDD, which allows to bound the back-door depen-
dence in the sense of Section 3.6 and thus makes
Theorem 7 applicable to estimate the causal effect
∂2E[Y |X=x, doX=x], i.e. the differential effect of
treatment on the treated. The scenario differs from
the RDD in that neither a discontinuity in the struc-
tural equation for X, nor linearity of the remaining
structural equations is required.

Assume the causal DAG in Figure 3. Furthermore
assume that X = fX(Z) for a function fX that is
differentiable. (This is the point where our scenario
differs from RDD.) Suppose fX is invertible, g := f−1X .
It can easily be seen that this implies

∂1E[Y |X=x, doX=x]

= ∂1E[Y |Z=g(x),doX=x]g′(x).

Note that ∂1E[Y |Z=g(x),doX=x] means the deriva-

tive of E[Y |Z=z,doX=x] w.r.t. z at position (g(x), x).
Applying Theorem 7 yields

dxE[Y |X=x]− ∂2E[Y |X=x, doX=x]

= ∂1E[Y |Z=g(x),doX=x]g′(x).

Hence if for any position x0 ofX we assume a bound on
the strength of the “back-door” dependence of Y on Z,
∂1E[Y |Z=g(x0),doX=x0], and if |g′(x0)| is compara-
bly small (which is the case when |f ′X(g(x0))| is big),
then we can bound the difference between observed
dependence and causal effect at position x0.

For instance, if we consider the observed dependence
dxE[Y |X=x] as a realistic scale based on which one
can constrain ∂1E[Y |Z=g(x),doX=x], formally

|∂1E[Y |Z=g(x),doX=x]| ≤ c|dxE[Y |X=x]|,
for some c, then one can bound the modulus of the
causal effect from below:

|∂2E[Y |Z=g(x),doX=x]|
≥ (1− c|g′(x)|)|dxE[Y |X=x]|.

Obviously one weakness of the above argument is that
the estimation of the causal effect heavily depends on
the bound that we assume w.r.t. the “back-door” de-
pendence of Y on Z, ∂1E[Y |Z=g(x),doX=x]. How-
ever, this can be seen as a quantitative analogon to the
qualitative assumption of the RDD that E[U |Z = z] is
continuous in z.

Keep in mind that our results on Fisher information
(Section 3.4) can be used in the case where X is not
a deterministic function of Z that changes rapidly but
instead the conditional probability p(X|z) changes fast
at some z = z0.

5 CONCLUSIONS

In this paper, we analyzed a simple intuition linking
observation and causation: if the observed dependence
is strong and the effect of confounding is known to be
weak, then we can infer a causal effect. We did this
by employing a number of different notions for mea-
suring dependence and causation, leading to different
theoretical bounds. We do not argue that at present,
there is a single formalization that best captures all as-
pects of this intuition, rather, we try to shed light on
properties of the various notions by applying them to
the same fundamental problem. While bounding con-
founding appears easier based on information theoretic
quantities, expressing the influence from the treatment
to the outcome variable by e.g. the effect of treatment
on the treated (ETT) seems more relevant for practical
purposes. We discussed several prototypical scenarios
where bounds on confounding can be derived.

248



References

J. Angrist, G. Imbens, and D. Rubin. Identification of
Causal Effects Using Instrumental Variables. Jour-
nal of the American Statistical Association, 91(434):
444–455, 1996.

C. Avin, I. Shpitser, and J. Pearl. Identifiability of
path-specific effects. In Proceedings of the Inter-
national Joint Conference in Artificial Intelligence,
pages 357–363, Edinburgh, Scotland, 2005.

N. Ay and D. Krakauer. Geometric robustness and
biological networks. Theory in Biosciences, 125:93–
121, 2007.

N. Ay and D. Polani. Information flows in causal net-
works. Advances in Complex Systems, 11(1):17–41,
2008.

T. Cover and J. Thomas. Elements of Information
Theory. Wileys Series in Telecommunications, New
York, 1991.

B. Efron and D. Feldman. Compliance as an Explana-
tory Variable in Clinical Trials. Journal of the Amer-
ican Statistical Association, 86(413):9–17, 1991.

G. Imbens and T. Lemieux. Regression discontinuity
designs: A guide to practice. Journal of Economet-
rics, 142:615–635, 2008.

D. Janzing, E. Sgouritsa, O. Stegle, P. Peters, and
B. Schölkopf. Detecting low-complexity unobserved
causes. In Proceedings of the 27th Conference on Un-
certainty in Artificial Intelligence (UAI 2011), 2011.

D. Janzing, D. Balduzzi, M. Grosse-Wentrup, and
B. Schölkopf. Quantifying causal influences. Annals
of Statistics, 41(5):2324–2358, 2013.

D. Lee and T. Lemieux. Regression Discontinuity De-
signs in Economics. Journal of Economic Literature,
48:281–355, 2010.

J. Pearl. Causality. Cambridge University Press, 2000.

J. Pearl. Direct and indirect effects. In Proceedings of
the Seventh Conference on Uncertainty in Artificial
Intelligence (UAI), pages 411–420, San Francisco,
CA, 2001. Morgan Kaufmann.

J. Pearl. Causal inference in statistics: An overview.
Statistics Surveys, 3:96–146, 2009.

R. C. Rao. Information and the accuracy attainable
in the estimation of statistical parameters. Bull.
Calcutta Math. Soc., 37:81–91, 1945. ISSN 0008-
0659.

T. Richardson and J. Robins. Single world interven-
tion graphs (swigs). Technical report, University of
Washington, 2013.

J. Robins and S. Greenland. Identifiability and ex-
changeability for direct and indirect effects. Epi-
demiology, 3(2):143–155, 1992.

J. Robins, T. VanderWeele, and T. Richardson. Dis-
cussion of ”causal effects in the presence of non com-
pliance a latent variable interpretation” by forcina,
a. Metron, LXIV(3):288–298, 2007.

D. Thistlewaite and D. Campbell. Regression-
discontinuity analysis: an alternative to the ex-post
facto experiment. Journal of Educational Psychol-
ogy, 51:309–317, 1960.

249



Bayesian Optimization with Unknown Constraints

Michael A. Gelbart
Harvard University

Cambridge, MA

Jasper Snoek
Harvard University

Cambridge, MA

Ryan P. Adams
Harvard University

Cambridge, MA

Abstract

Recent work on Bayesian optimization has
shown its effectiveness in global optimization of
difficult black-box objective functions. Many
real-world optimization problems of interest also
have constraints which are unknown a priori.
In this paper, we study Bayesian optimization
for constrained problems in the general case that
noise may be present in the constraint func-
tions, and the objective and constraints may be
evaluated independently. We provide motivating
practical examples, and present a general frame-
work to solve such problems. We demonstrate
the effectiveness of our approach on optimizing
the performance of online latent Dirichlet allo-
cation subject to topic sparsity constraints, tun-
ing a neural network given test-time memory
constraints, and optimizing Hamiltonian Monte
Carlo to achieve maximal effectiveness in a fixed
time, subject to passing standard convergence di-
agnostics.

1 INTRODUCTION

Bayesian optimization (Mockus et al., 1978) is a method
for performing global optimization of unknown “black
box” objectives that is particularly appropriate when objec-
tive function evaluations are expensive (in any sense, such
as time or money). For example, consider a food company
trying to design a low-calorie variant of a popular cookie.
In this case, the design space is the space of possible recipes
and might include several key parameters such as quantities
of various ingredients and baking times. Each evaluation of
a recipe entails computing (or perhaps actually measuring)
the number of calories in the proposed cookie. Bayesian
optimization can be used to propose new candidate recipes
such that good results are found with few evaluations.

Now suppose the company also wants to ensure the taste of
the cookie is not compromised when calories are reduced.

Therefore, for each proposed low-calorie recipe, they per-
form a taste test with sample customers. Because different
people, or the same people at different times, have differing
opinions about the taste of cookies, the company decides to
require that at least 95% of test subjects must like the new
cookie. This is a constrained optimization problem:

min
x

c(x) s.t. ρ(x) ≥ 1− ε ,

where x is a real-valued vector representing a recipe, c(x)
is the number of calories in recipe x, ρ(x) is the fraction of
test subjects that like recipe x, and 1− ε is the minimum
acceptable fraction, i.e., 95%.

This paper presents a general formulation of constrained
Bayesian optimization that is suitable for a large class of
problems such as this one. Other examples might include
tuning speech recognition performance on a smart phone
such that the user’s speech is transcribed within some ac-
ceptable time limit, or minimizing the cost of materials for
a new bridge, subject to the constraint that all safety mar-
gins are met.

Another use of constraints arises when the search space
is known a priori but occupies a complicated volume that
cannot be expressed as simple coordinate-wise bounds on
the search variables. For example, in a chemical synthe-
sis experiment, it may be known that certain combinations
of reagents cause an explosion to occur. This constraint
is not unknown in the sense of being a discovered prop-
erty of the environment as in the examples above—we do
not want to discover the constraint boundary by trial and
error explosions of our laboratory. Rather, we would like
to specify this constraint using a boolean noise-free oracle
function that declares input vectors as valid or invalid. Our
formulation of constrained Bayesian optimization naturally
encapsulates such constraints.

1.1 BAYESIAN OPTIMIZATION

Bayesian optimization proceeds by iteratively developing a
global statistical model of the unknown objective function.
Starting with a prior over functions and a likelihood, at each
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iteration a posterior distribution is computed by condition-
ing on the previous evaluations of the objective function,
treating them as observations in a Bayesian nonlinear re-
gression. An acquisition function is used to map beliefs
about the objective function to a measure of how promis-
ing each location in input space is, if it were to be evaluated
next. The goal is then to find the input that maximizes the
acquisition function, and submit it for function evaluation.

Maximizing the acquisition function is ideally a relatively
easy proxy optimization problem: evaluations of the ac-
quisition function are often inexpensive, do not require the
objective to be queried, and may have gradient informa-
tion available. Under the assumption that evaluating the
objective function is expensive, the time spent computing
the best next evaluation via this inner optimization problem
is well spent. Once a new result is obtained, the model is
updated, the acquisition function is recomputed, and a new
input is chosen for evaluation. This completes one iteration
of the Bayesian optimization loop.

For an in-depth discussion of Bayesian optimization, see
Brochu et al. (2010b) or Lizotte (2008). Recent work has
extended Bayesian optimization to multiple tasks and ob-
jectives (Krause and Ong, 2011; Swersky et al., 2013; Zu-
luaga et al., 2013) and high dimensional problems (Wang
et al., 2013; Djolonga et al., 2013). Strong theoretical
results have also been developed (Srinivas et al., 2010;
Bull, 2011; de Freitas et al., 2012). Bayesian optimiza-
tion has been shown to be a powerful method for the
meta-optimization of machine learning algorithms (Snoek
et al., 2012; Bergstra et al., 2011) and algorithm configura-
tion (Hutter et al., 2011).

1.2 EXPECTED IMPROVEMENT

An acquisition function for Bayesian optimization should
address the exploitation vs. exploration tradeoff: the idea
that we are interested both in regions where the model be-
lieves the objective function is low (“exploitation”) and re-
gions where uncertainty is high (“exploration”). One such
choice is the Expected Improvement (EI) criterion (Mockus
et al., 1978), an acquisition function shown to have strong
theoretical guarantees (Bull, 2011) and empirical effective-
ness (e.g., Snoek et al., 2012). The expected improve-
ment, EI(x), is defined as the expected amount of improve-
ment over some target t, if we were to evaluate the objective
function at x:

EI(x) = E[(t− y)+] =

∫ ∞

−∞
(t− y)+p(y |x) dy , (1)

where p(y |x) is the predictive marginal density of the ob-
jective function at x, and (t− y)+ ≡ max(0, t− y) is the
improvement (in the case of minimization) over the target t.
EI encourages both exploitation and exploration because it
is large for inputs with a low predictive mean (exploita-
tion) and/or a high predictive variance (exploration). Of-

ten, t is set to be the minimum over previous observations
(e.g., Snoek et al., 2012), or the minimum of the expected
value of the objective (Brochu et al., 2010a). Following our
formulation of the problem, we use the minimum expected
value of the objective such that the probabilistic constraints
are satisfied (see Section 1.5, Eq., 6).

When the predictive distribution under the model is Gaus-
sian, EI has a closed-form expression (Jones, 2001):

EI(x) = σ(x) (z(x)Φ (z(x)) + φ (z(x))) (2)

where z(x) ≡ t−µ(x)
σ(x) , µ(x) is the predictive mean

at x, σ2(x) is the predictive variance at x, Φ(·) is the stan-
dard normal CDF, and φ(·) is the standard normal PDF.
This function is differentiable and fast to compute, and can
therefore be maximized with a standard gradient-based op-
timizer. In Section 3 we present an acquisition function for
constrained Bayesian optimization based on EI.

1.3 OUR CONTRIBUTIONS

The main contribution of this paper is a general formula-
tion for constrained Bayesian optimization, along with an
acquisition function that enables efficient optimization of
such problems. Our formulation is suitable for addressing
a large class of constrained problems, including those con-
sidered in previous work. The specific improvements are
enumerated below.

First, our formulation allows the user to manage uncer-
tainty when constraint observations are noisy. By reformu-
lating the problem with probabilistic constraints, the user
can directly address this uncertainty by specifying the re-
quired confidence that constraints are satisfied.

Second, we consider the class of problems for which the
objective function and constraint function need not be eval-
uated jointly. In the cookie example, the number of calories
might be predicted very cheaply with a simple calculation,
while evaluating the taste is a large undertaking requiring
human trials. Previous methods, which assume joint evalu-
ations, might query a particular recipe only to discover that
the objective (calorie) function for that recipe is highly un-
favorable. The resources spent simultaneously evaluating
the constraint (taste) function would then be very poorly
spent. We present an acquisition function for such prob-
lems, which incorporates this user-specified cost informa-
tion.

Third, our framework, which supports an arbitrary number
of constraints, provides an expressive language for speci-
fying arbitrarily complicated restrictions on the parameter
search spaces. For example if the total memory usage of a
neural network must be within some bound, this restriction
could be encoded as a separate, noise-free constraint with
very low cost. As described above, evaluating this low-cost
constraint would take priority over the more expensive con-
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straints and/or objective function.

1.4 PRIOR WORK

There has been some previous work on constrained
Bayesian optimization. Gramacy and Lee (2010) propose
an acquisition function called the integrated expected con-
ditional improvement (IECI), defined as

IECI(x) =

∫

X
[EI(x′)− EI(x′|x)]h(x′)dx′ . (3)

In the above, EI(x′) is the expected improvement
at x′, EI(x′|x) is the expected improvement at x′ given that
the objective has been observed at x (but without making
any assumptions about the observed value), and h(x′) is
an arbitrary density over x′. In words, the IECI at x is
the expected reduction in EI at x′, under the density h(x′),
caused by observing the objective at x. Gramacy and Lee
use IECI for constrained Bayesian optimization by set-
ting h(x′) to the probability of satisfying the constraint.
This formulation encourages evaluations that inform the
model in places that are likely to satisfy the constraint.

Zuluaga et al. (2013) propose the Pareto Active Learning
(PAL) method for finding Pareto-optimal solutions when
multiple objective functions are present and the input space
is a discrete set. Their algorithm classifies each design can-
didate as either Pareto-optimal or not, and proceeds itera-
tively until all inputs are classified. The user may specify a
confidence parameter determining the tradeoff between the
number of function evaluations and prediction accuracy.
Constrained optimization can be considered a special case
of multi-objective optimization in which the user’s utility
function for the “constraint objectives” is an infinite step
function: constant over the feasible region and negative in-
finity elsewhere. However, PAL solves different problems
than those we intend to solve, because it is limited to dis-
crete sets and aims to classify each point in the set versus
finding a single optimal solution.

Snoek (2013) discusses constrained Bayesian optimization
for cases in which constraint violations arise from a fail-
ure mode of the objective function, such as a simulation
crashing or failing to terminate. The author introduces
the weighted expected improvement acquisition function,
namely expected improvement weighted by the predictive
probability that the constraint is satisfied at that input.

1.5 FORMALIZING THE PROBLEM

In Bayesian optimization, the objective and constraint
functions are in general unknown for two reasons. First, the
functions have not been observed everywhere, and there-
fore we must interpolate or extrapolate their values to new
inputs. Second, our observations may be noisy; even after
multiple observations at the same input, the true function is

not known. Accounting for this uncertainty is the role of
the model, see Section 2.

However, before solving the problem, we must first de-
fine it. Returning to the cookie example, each taste test
yields an estimate of ρ(x), the fraction of test subjects
that like recipe x. But uncertainty is always present, even
after many measurements. Therefore, it is impossible to
be certain that the constraint ρ(x) ≥ 1− ε is satisfied for
any x. Likewise, the objective function can only be eval-
uated point-wise and, if noise is present, it may never be
determined with certainty.

This is a stochastic programming problem: namely, an opti-
mization problem in which the objective and/or constraints
contain uncertain quantities whose probability distributions
are known or can be estimated (see e.g., Shapiro et al.,
2009). A natural formulation of these problems is to mini-
mize the objective function in expectation, while satisfying
the constraints with high probability. The condition that
the constraint be satisfied with high probability is called a
probabilistic constraint. This concept is formalized below.

Let f(x) represent the objective function. Let C(x) rep-
resent the the constraint condition, namely the boolean
function indicating whether or not the constraint is sat-
isfied for input x. For example, in the cookie prob-
lem, C(x) ⇐⇒ ρ(x) ≥ 1− ε. Then, our probabilistic
constraint is

Pr(C(x)) ≥ 1− δ , (4)

for some user-specified minimum confidence 1− δ.

If K constraints are present, for each con-
straint k ∈ (1, . . . ,K) we define Ck(x) to be the constraint
condition for constraint k. Each constraint may also
have its own tolerance δk, so we have K probabilistic
constraints of the form

Pr(Ck(x)) ≥ 1− δk . (5)

All K probabilistic constraints must ultimately be satisfied
at a solution to the optimization problem.1

Given these definitions, a general class of constrained
Bayesian optimization problems can be formulated as

min
x

E[f(x)] s.t. ∀k Pr(Ck(x)) ≥ 1− δk . (6)

The remainder of this paper proposes methods for solving
problems in this class using Bayesian optimization. Two
key ingredients are needed: a model of the objective and
constraint functions (Section 2), and an acquisition func-
tion that determines which input x would be most benefi-
cial to observe next (Section 3).

1Note: this formulation is based on individual constraint sat-
isfaction for all constraints. Another reasonable formulation re-
quires the (joint) probability that all constraints are satisfied to be
above some single threshold.
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2 MODELING THE CONSTRAINTS

2.1 GAUSSIAN PROCESSES

We use Gaussian processes (GPs) to model both the ob-
jective function f(x) and the constraint functions. A GP
is a generalization of the multivariate normal distribution
to arbitrary index sets, including infinite length vectors or
functions, and is specified by its positive definite covari-
ance kernel function K(x,x′). GPs allow us to condition
on observed data and tractably compute the posterior distri-
bution of the model for any finite number of query points.
A consequence of this property is that the marginal dis-
tribution at any single point is univariate Gaussian with a
known mean and variance. See Rasmussen and Williams
(2006) for an in-depth treatment of GPs for machine learn-
ing.

We assume the objective and all constraints are indepen-
dent and model them with independent GPs. Note that
since the objective and constraints are all modeled inde-
pendently, they need not all be modeled with GPs or even
with the same types of models as each other. Any combi-
nation of models suffices, so long as each one represents its
uncertainty about the true function values.

2.2 THE LATENT CONSTRAINT FUNCTION, g(x)

In order to model constraint conditions Ck(x), we intro-
duce real-valued latent constraint functions gk(x) such
that for each constraint k, the constraint condition Ck(x)
is satisfied if and only if gk(x) ≥ 0.2 Different obser-
vation models lead to different likelihoods on g(x), as
discussed below. By computing the posterior distribu-
tion of gk(x) for each constraint, we can then com-
pute Pr(Ck(x)) = Pr(gk(x) ≥ 0) by simply evaluating the
Gaussian CDF using the predictive marginal mean and
variance of the GP at x.

Different constraints require different definitions of the
constraint function g(x). When the nature of the problem
permits constraint observations to be modeled with a Gaus-
sian likelihood, the posterior distribution of g(x) can be
computed in closed form. If not, approximations or sam-
pling methods are needed (see Rasmussen and Williams,
2006, p. 41-75). We discuss two examples below, one of
each type, respectively.

2.3 EXAMPLE I: BOUNDED RUNNING TIME

Consider optimizing some property of a computer pro-
gram such that its running time τ(x) must not exceed some

2Any inequality constraint g(x) ≤ g0 or g(x) ≥ g1 can
be represented this way by transforming to a new variable
ĝ(x) ≡ g0 − g(x) ≥ 0 or ĝ(x) ≡ g(x)− g1 ≥ 0, respectively,
so we set the right-hand side to zero without loss of generality.

value τmax. Because τ(x) is a measure of time, it is non-
negative for all x and thus not well-modeled by a GP prior.
We therefore choose to model time in logarithmic units. In
particular, we define g(x) = log τmax − log τ , so that the
condition g(x) ≥ 0 corresponds to our constraint condi-
tion τ ≤ τmax, and place a GP prior on g(x). For every
problem, this transformation implies a particular prior on
the original variables; in this case, the implied prior on τ(x)
is the log-normal distribution. In this problem we may
also posit a Gaussian likelihood for observations of g(x).
This corresponds to the generative model that constraint
observations are generated by some true latent function cor-
rupted with i.i.d. Gaussian noise. As with the prior, this
choice implies something about the original function τ(x),
in this case a log-normal likelihood. The basis for these
choices is their computational convenience. Given a Gaus-
sian prior and likelihood, the posterior distribution is also
Gaussian and can be computed in closed form using the
standard GP predictive equations.

2.4 EXAMPLE II: MODELING COOKIE
TASTINESS

Recall the cookie optimization, and let us assume that con-
straint observations arrive as a set of counts indicating the
numbers of people who did and did not like the cookies.
We call these binomial constraint observations. Because
these observations are discrete, they are not modeled well
by a GP prior. Instead, we model the (unknown) bino-
mial probability ρ(x) that a test subject likes cookie x,
which is linked to the observations through a binomial like-
lihood.3 In Section 1.5, we selected the constraint condi-
tion ρ(x) ≥ 1− ε, where 1− ε is the user-specified thresh-
old representing the minimum allowable probability that a
test subject likes the new cookie. Because ρ(x) ∈ (0, 1)
and g(x) ∈ R, we define g(x) = s−1(ρ(x)), where s(·)
is a monotonically increasing sigmoid function map-
ping R→ (0, 1) as in logistic or probit regression.4 In our
implementation, we use s(z) = Φ(z), the Gaussian CDF.
The likelihood of g(x) given the binomial observations is
then the binomial likelihood composed with s−1. Because
this likelihood is non-Gaussian, the posterior distribution
cannot be computed in closed form, and therefore approxi-
mation or sampling methods are needed.

2.5 INTEGRATING OUT THE GP
HYPERPARAMETERS

Following Snoek et al. (2012), we use the Matérn 5/2 ker-
nel for the Gaussian process prior, which corresponds to the

3We use the notation ρ(x) both for the fraction of test sub-
jects who like recipe x and for its generative interpretation as the
probability that a subject likes recipe x.

4When the number of binomial trials is one, this model is
called Gaussian Process Classification.
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assumption that the function being modeled is twice differ-
entiable. This kernel has D + 1 hyperparameters in D di-
mensions: one characteristic length scale per dimension,
and an overall amplitude. Again following Snoek et al.
(2012), we perform a fully-Bayesian treatment by integrat-
ing out these kernel hyperparameters with Markov chain
Monte Carlo (MCMC) via slice sampling (Neal, 2000).

When the posterior distribution cannot be computed in
closed form due to a non-Gaussian likelihood, we use ellip-
tical slice sampling (Murray et al., 2010) to sample g(x).
We also use the prior whitening procedure described in
Murray and Adams (2010) to avoid poor mixing due to the
strong coupling of the latent values and the kernel hyperpa-
rameters.

3 ACQUISITION FUNCTIONS

3.1 CONSTRAINT WEIGHTED EXPECTED
IMPROVEMENT

Given the probabilistic constraints and the model for a par-
ticular problem, it remains to specify an acquisition func-
tion that leads to efficient optimization. Here, we present
an acquisition function for constrained Bayesian optimiza-
tion under the Expected Improvement (EI) criterion (Sec-
tion 1.2). However, the general framework presented here
does not depend on this specific choice and can be used in
conjunction with any improvement criterion.

Because improvement is not possible when the constraint
is violated, we can define an acquisition function for con-
strained Bayesian optimization by extending the expecta-
tion in Eq. 1 to include the additional constraint uncer-
tainty. This results in a constraint-weighted expected im-
provement criterion, a(x):

a(x) = EI(x) Pr(C(x)) (7)

= EI(x)
K∏

k=1

Pr(Ck(x)) (8)

where the second line follows from the assumed indepen-
dence of the constraints. The gradient of this acquisition
function is readily computed and therefore this acquisition
function can be maximized in the same manner as stan-
dard EI. In practice we maximize it following the method
in Snoek et al. (2012).

Then, the full acquisition function a(x), after integrating
out the GP hyperparameters, is given by

a(x) =

∫
EI(x|θ)p(θ|D)p(C(x)|x,D′, ω)p(ω|D′)dθdω,

where θ is the set of GP hyperparameters for the objec-
tive function model, ω is the set of GP hyperparameters for
the constraint model(s), D = {xn, yn}Nn=1 are the previous

objective function observations, and D′ are the constraint
function observations.

3.2 FINDING THE FEASIBLE REGION

The acquisition function given above is not defined when
at least one probabilistic constraint is violated for all x, be-
cause in this case the EI target does not exist and therefore
EI cannot be computed. In this case we take the acquisition
function to include only the second factor,

a(x) =
K∏

k=1

Pr(gk(x) ≥ 0) (9)

Intuitively, if the probabilistic constraint is violated every-
where, we ignore the objective function and try to satisfy
the probabilistic constraint until it is satisfied somewhere.
This acquisition function may also be used if no objec-
tive function exists, i.e., if the problem is just to search
for any feasible input. This feasibility search is purely ex-
ploitative: it searches where the probability of satisfying
the constraints is highest. This is possible because the true
probability of constraint satisfaction is either zero or one.
Therefore, as the algorithm continues to probe a particu-
lar region, it will either discover that the region is feasible,
or the probability will drop and it will move on to a more
promising region.

3.3 DECOUPLED OBSERVATIONS

In some problems, the objective and constraint functions
may be evaluated independently. We call this property
the decoupling of the objective and constraint functions.
In decoupled problems, we must choose to evaluate ei-
ther the objective function or one of the constraint func-
tions at each iteration of Bayesian optimization. As dis-
cussed in Section 1.3, it is important to identify problems
with this decoupled structure, because often some of the
functions are much more expensive to evaluate than oth-
ers. Bayesian optimization with decoupled constraints is a
form of multi-task Bayesian optimization (Swersky et al.,
2013), in which the different black-boxes or tasks are the
objective and decoupled constraint(s), represented by the
set {objective, 1, 2, . . . ,K} for K constraints.

3.3.1 Chicken and Egg Pathology

One possible acquisition function for decoupled constraints
is the expected improvement of individually evaluating
each task. However, the myopic nature of the EI crite-
rion causes a pathology in this formulation that prevents
exploration of the design space. Consider a situation, with
a single constraint, in which some feasible region has been
identified and thus the current best input is defined, but a
large unexplored region remains. Evaluating only the ob-
jective in this region could not cause improvement as our
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Figure 1: Constrained Bayesian optimization on the 2D Branin-Hoo function with a disk constraint, after 50 iterations
(33 objective evaluations and 17 constraint evaluations): (a) Branin-Hoo function, (b) true constraint, (c) mean of ob-
jective function GP, (d) variance of objective function GP, (e) probability of constraint satisfaction, (f) probabilistic con-
straint, Pr(g(x) ≥ 0) ≥ 0.99, (g) acquisition function, a(x), and (h) probability distribution over the location of the mini-
mum, pmin(x). Lighter colors indicate lower values. Objective function observations are indicated with black circles in (c)
and (d). Constraint observations are indicated with black ×’s (violations) and o’s (satisfactions) in (e). Orange stars: (a)
unique true minimum of the constrained problem, (c) best solution found by Bayesian optimization, (g) input chosen for
the next evaluation, in this case an objective evaluation because ∆So(x) > ∆Sc(x) at the next observation location x.

belief about Pr(g(x) ≥ 0) will follow the prior and not ex-
ceed the threshold 1− δ. Likewise, evaluating only the
constraint would not cause improvement because our belief
about the objective will follow the prior and is unlikely to
become the new best. This is a causality dilemma: we must
learn that both the objective and the constraint are favorable
for improvement to occur, but this is not possible when
only a single task is observed. This difficulty suggests
a non-myopic aquisition function which assesses the im-
provement after a sequence of objective and constraint ob-
servations. However, such a multi-step acquisition function
is intractable in general (Ginsbourger and Riche, 2010).

Instead, to address this pathology, we propose to use the
coupled acquisition function (Eq. 7) to select an input x
for observation, followed by a second step to determine
which task will be evaluated at x. Following Swersky et al.
(2013), we use the entropy search criterion (Hennig and
Schuler, 2012) to select a task. However, our framework
does not depend on this choice.

3.3.2 Entropy Search Criterion

Entropy search works by considering pmin(x), the proba-
bility distribution over the location of the minimum of the
objective function. Here, we extend the definition of pmin
to be the probability distribution over the location of the
solution to the constrained problem. Entropy search seeks

the action that, in expectation, most reduces the relative en-
tropy between pmin(x) and an uninformative base distribu-
tion such as the uniform distribution. Intuitively speaking,
we want to reduce our uncertainty about pmin as much as
possible at each step, or, in other words, maximize our in-
formation gain at each step. Following Hennig and Schuler
(2012), we choose b(x) to be the uniform distribution on
the input space. Given this choice, the relative entropy of
pmin and b is the differential entropy of pmin up to a con-
stant that does not affect the choice of task. Our decision
criterion is then

T ∗ = arg min
T

Ey
[
S
(
p
(yT )
min

)
− S(pmin)

]
, (10)

where T is one of the tasks in {objective, 1, 2, . . . ,K}, T ∗
is the selected task, S(·) is the differential entropy func-
tional, and p(yT )min is pmin conditioned on observing the value
yT for task T . When integrating out the GP covariance hy-
perparameters, the full form is

T ∗ = arg min
T

∫
S
(
p
(yT )
min

)
p (yT |θ, ω) dyT dθ dω (11)

where yT is a possible observed outcome of selecting task
T and θ and ω are the objective and constraint GP hyper-
parameters respectively.5

5For brevity, we have omitted the base entropy term (which
does not affect the decision T ∗) and the explicit dependence of
pmin on θ and ω.
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3.3.3 Entropy Search in Practice

Solving Eq. 11 poses several practical difficulties, which
we address here in turn. First, estimating pmin(x) requires
a discretization of the space. In the spirit of Hennig and
Schuler (2012), we form a discretization of Nd points by
taking the top Nd points according to the weighted ex-
pected improvement criterion. Second, pmin cannot be
computed in closed form and must be either estimated or
approximated. Swersky et al. (2013) use Monte Carlo sam-
pling to estimate pmin by drawing samples from the GP on
the discretization set and finding the minimum. We use the
analogous method for constrained optimization: we sample
from the objective function GP and all K constraint GPs,
and then find the minimum of the objective for which the
constraint is satisfied for all K constraint samples.

3.3.4 Incorporating cost information

Following Swersky et al. (2013), we incorporate informa-
tion about the relative cost of the tasks by simply scaling
the acquisition functions by these costs (provided by the
user). In doing so, we pick the task with the most informa-
tion gain per unit cost. If λA is the cost of observing task
A, then Eq. 10 becomes

A∗ = arg min
A

1

λA
Ey
[
S
(
p
(yA)
min

)
− S(pmin)

]
. (12)

4 EXPERIMENTS

4.1 BRANIN-HOO FUNCTION

We first illustrate constrained Bayesian optimization on
the Branin-Hoo function, a 2D function with three global
minima (Fig. 1(a)). We add a decoupled disk constraint
(x1 − 2.5)2 + (x2 − 7.5)2) ≤ 50, shown in Fig. 1(b). This
constraint eliminates the upper-left and lower-right solu-
tions, leaving a unique global minimum at x = (π, 2.275),
indicated by the orange star in Fig. 1(a). After 33 objective
function evaluations and 17 constraint evaluations, the best
solution is (3.01, 2.36), which satisfies the constraint and
has value 0.48 (true best value = 0.40).

4.2 ONLINE LDA WITH SPARSE TOPICS

Online Latent Dirichlet Allocation (LDA, Hoffman et al.,
2010) is an efficient variational formulation of a popular
topic model for learning topics and corresponding word
distributions given a corpus of documents. In order for top-
ics to have meaningful semantic interpretations, it is de-
sirable for the word distributions to exhibit sparsity. In
this experiment we optimize the hyperparameters of on-
line LDA subject to the constraint that the entropy of the
per-topic word distribution averaged over topics is less than
log2 200 bits, which is achieved, for example by allocating
uniform density over 200 words. We used the online LDA

implementation from Agarwal et al. (2011) and optimized
five hyperparameters corresponding to the number of top-
ics (from 2 to 100), two Dirichlet distribution prior base
measures (from 0 to 2), and two learning rate parameters
(rate from 0.1 to 1, decay from 10−5 to 1). As a baseline,
we compare with unconstrained Bayesian optimization in
which constraint violations are set to the worst possible
value for this LDA problem. Fig. 2(a) shows that con-
strained Bayesian optimization significantly outperforms
the baseline and the IECI method from Gramacy and Lee
(2010) (see Section 1.4). Intuitively, the baseline is poor
because the GP has difficulty modeling the sharp disconti-
nuities caused by the large values.

4.3 MEMORY-LIMITED NEURAL NET

In the final experiment, we optimize the hyperparameters
of a deep neural network on the MNIST handwritten digit
classification task in a memory-constrained scenario. We
optimize over 11 parameters: 1 learning rate, 2 momen-
tum parameters (initial and final), the number of hidden
units per layer (2 layers), the maximum norm on model
weights (for 3 sets of weights), and the dropout regular-
ization probabilities (for the inputs and 2 hidden layers).
We optimize the classification error on a withheld vali-
dation set under the constraint that the total number of
model parameters (weights in the network) must be less
than one million. This constraint is decoupled from the
objective and inexpensive to evaluate, because the number
of weights can be calculated directly from the parameters,
without training the network. We train the neural network
using momentum-based stochastic gradient descent which
is notoriously difficult to tune as training can diverge un-
der various combinations of the momentum and learning
rate. When training diverges, the objective function can-
not be measured. Reporting the constraint violation as a
large objective value performs poorly because it introduces
sharp discontinuities that are hard to model (Fig. 2). This
necessitates a second noisy, binary constraint which is vi-
olated when training diverges, for example when the both
the learning rate and momentum are too large. The network
is trained6 for 25,000 weight updates and the objective is
reported as classification error on the standard validation
set. Our Bayesian optimization routine can thus choose be-
tween two decoupled tasks, evaluating the memory con-
straint or the validation error after a full training run. Eval-
uating the validation error can still cause a constraint viola-
tion when the training diverges, which is treated as a binary
constraint in our model. Fig. 2(b) shows a comparison
of our constrained Bayesian optimization against a base-
line standard Bayesian optimization where constraint vio-
lations are treated as resulting in a random classifier (90%
error). Only the objective evaluations are presented, since

6We use the Deepnet package: https://github.com/
nitishsrivastava/deepnet.
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Figure 2: Empirical performance of constrained Bayesian optimization for (a) Online Latent Dirichlet Allocation and (b)
turning a deep neural network. Blue curves: our method. Red curves: unconstrained Bayesian optimization with constraint
violations as large values. Purple curve: Integrated Expected Conditional Improvement method from Gramacy and Lee
(2010). Errors bars indicate standard error from 5 independent runs.
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Figure 3: Tuning Hamiltonian Monte Carlo with constrained Bayesian optimization: (a) objective function model, (b-
e) constraint satisfaction probability surfaces for (b) Geweke test, (c) Gelman-Rubin test, (d) stability of the numerical
integration, (d) overall, which is the product of the preceding three probability surfaces. In (a), lighter colors correspond to
more effective samples, circles indicate function evaluations, and the orange star indicates the best solution. Vertical axis
label at left is for all subplots. Probability colormap at right is for (b-d).

constraint evaluations are extremely inexpensive compared
to an entire training run. In the event that training diverges
on an objective evaluation, we report 90% error. The opti-
mized net has a learning rate of 0.1, dropout probabilities of
0.17 (inputs), 0.30 (first layer), and 0 (second layer), initial
momentum 0.86, and final momentum 0.81. Interestingly,
the optimization chooses a small first layer (size 312) and
a large second layer (size 1772).

4.4 TUNING MCMC

Hamiltonian Monte Carlo (HMC) is a popular MCMC
sampling technique that takes advantage of gradient infor-
mation for rapid mixing. However, HMC contains several
parameters that require careful tuning. The two basic pa-
rameters are the number of leapfrog steps τ , and the step
size ε. HMC may also include a mass matrix which in-
troduces O(D2) additional parameters in D dimensions,
although the matrix is often chosen to be diagonal (D pa-
rameters) or a multiple of the identity matrix (1 parameter)
(Neal, 2011). In this experiment, we optimize the perfor-
mance of HMC using Bayesian optimization; see Mahen-
dran et al. (2012) for a similar approach. We optimize the
following parameters: τ , ε, a mass parameter, and the frac-

tion of the allotted computation time spent burning in the
chain.

Our experiment measures the number of effective sam-
ples (ES) in a fixed computation time; this corresponds to
finding chains that minimize estimator variance. We im-
pose the constraints that the generated samples must pass
the Geweke (Geweke, 1992) and Gelman-Rubin (Gelman
and Rubin, 1992) convergence diagnostics. In particular,
we require the worst (largest absolute value) Geweke test
score across all variables and chains to be at most 2.0,
and the worst (largest) Gelman-Rubin score between chains
and across all variables to be at most 1.2. We use PyMC
(Patil et al., 2010) for the convergence diagnostics and the
LaplacesDemon R package to compute effective sample
size. The chosen thresholds for the convergence diagnos-
tics are based on the PyMC and LaplacesDemon documen-
tation. The HMC integration may also diverge for large
values of ε; we treat this as an additional constraint, and set
δ = 0.05 for all constraints. We optimize HMC sampling
from the posterior of a logistic regression binary classifi-
cation problem using the German credit data set from the
UCI repository (Frank and Asuncion, 2010). The data set
contains 1000 data points, and is normalized to have unit
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Table 1: Tuning Hamiltonian Monte Carlo.

Experiment burn-in # steps, τ step size, ε mass # samples accept rate effective samples

Baseline 10% 100 0.047 1 8.3× 103 85% 1.1× 103

BayesOpt 3.8% 2 0.048 1.55 3.3× 105 70% 9.7× 104

variance. We initialize each chain randomly with D inde-
pendent draws from a Gaussian distribution with mean zero
and standard deviation 10−3. For each set of inputs, we
compute two chains, each with 5 minutes of computation
time on a single core of a compute node.

Fig. 3 shows constraint surfaces discovered by Bayesian
optimization for a simpler experiment in which only τ and
ε are varied; burn-in is fixed at 10% and the mass is fixed
at 1. These diagrams yield interpretations of the feasible
region; for example, Fig. 3(d) shows that the numerical
integration diverges for values of ε above ≈ 10−1. Table
1 shows the results of our 4-parameter optimization after
50 iterations, compared with a baseline that is reflective of
a typical HMC configuration: 10% burn in, 100 leapfrog
steps, and the step size chosen to yield an 85% proposal
accept rate. Each row in the table was produced by aver-
aging 5 independent runs with the given parameters. The
optimization chooses to perform very few (τ = 2) leapfrog
steps and spend relatively little time (3.8%) burning in the
chain, and chooses an acceptance rate of 70%. In contrast,
the baseline spends much more time generating each pro-
posal (τ = 100), which produces many fewer total samples
and, correspondingly, significantly fewer effective samples.

5 CONCLUSION

In this paper we extended Bayesian optimization to con-
strained optimization problems. Because constraint ob-
servations may be noisy, we formulate the problem using
probabilistic constraints, allowing the user to directly ex-
press the tradeoff between cost and risk by specifying the
confidence parameter δ. We then propose an acquisition
function to perform constrained Bayesian optimization, in-
cluding the case where the objective and constraint(s) may
be observed independently. We demonstrate the effective-
ness of our system on the meta-optimization of machine
learning algorithms and sampling techniques. Constrained
optimization is a ubiquitous problem and we believe this
work has applications in areas such as product design (e.g.
designing a low-calorie cookie), machine learning meta-
optimization (as in our experiments), real-time systems
(such as a speech recognition system on a mobile device
with speed, memory, and/or energy usage constraints), or
any optimization problem in which the objective function
and/or constraints are expensive to evaluate and possibly
noisy.
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Abstract

The distance dependent Chinese restaurant pro-
cess (ddCRP) provides a flexible framework for
clustering data with temporal, spatial, or other
structured dependencies. Here we model mul-
tiple groups of structured data, such as pixels
within frames of a video sequence, or paragraphs
within documents from a text corpus. We pro-
pose a hierarchical generalization of the ddCRP
which clusters data within groups based on dis-
tances between data items, and couples clusters
across groups via distances based on aggregate
properties of these local clusters. Our hddCRP
model subsumes previously proposed hierarchi-
cal extensions to the ddCRP, and allows more
flexibility in modeling complex data. This flexi-
bility poses a challenging inference problem, and
we derive a MCMC method that makes coordi-
nated changes to data assignments both within
and between local clusters. We demonstrate the
effectiveness of our hddCRP on video segmenta-
tion and discourse modeling tasks, achieving re-
sults competitive with state-of-the-art methods.

1 INTRODUCTION

The recent explosive growth of image and video reposito-
ries, and of structured data collections more broadly, moti-
vates methods for the unsupervised discovery of informa-
tive latent structures. Image sequences of course exhibit
strong spatio-temporal dependencies: objects typically oc-
cupy blocks of spatially contiguous pixels, and their move-
ments induce strong dependencies among video frames.
Nevertheless, many previous nonparametric models for vi-
sual data have mostly ignored such relationships, relying
on careful feature engineering to make local likelihoods in-
formative (Sudderth et al., 2008; Haines & Xiang, 2012).
While accounting for spatial dependencies can be techni-
cally challenging, it produces image partitions which much
more accurately reflect real-world scene structure (Orbanz

& Buhmann, 2008; Sudderth & Jordan, 2008). However,
these methods treat images as an unordered, or exchange-
able, collection; they thus fail to capture the strong tempo-
ral dependencies found in video sequences.

Blei & Frazier (2011) proposed the distance dependent
Chinese restaurant process (ddCRP) as a flexible distribu-
tion over partitions of data with temporal, spatial, or other
non-exchangeable structure. The ddCRP represents parti-
tions via links between data instances: each observation
links to one other, and the probability of linking to nearby
instances is higher. Closeness is measured according to a
distance which may be arbitrarily specified to capture do-
main knowledge. The connected components of the in-
duced link graph then partition the dataset into clusters.
Previous work has used the ddCRP to effectively cluster
data with sequential, temporal, or spatial structure (Ghosh
et al., 2011; Socher et al., 2011; Ghosh et al., 2012).

In this paper, we propose a hierarchical ddCRP (hddCRP)
that captures local relationships like these, but also uses
distances among latent clusters to extract further global de-
pendencies. After an initial ddCRP partitioning, local clus-
ters are grouped via additional links that depend on a user-
specified measure of cluster similarity. This framework al-
lows the hddCRP to model relationships that depend on ag-
gregate properties of clusters such as size and shape, which
may be difficult to capture with likelihoods alone. Given
arbitrary cluster and data affinity functions, which need not
arise from true distance metrics, the hddCRP always de-
fines a valid joint probability distribution on partitions.

The hddCRP is a hierarchical generalization of the ddCRP
which unifies and generalizes existing models. Simpler hi-
erarchical extensions of the ddCRP employing restricted
distance functions (Ghosh et al., 2011; Kim & Oh, 2011),
as well as the “Chinese restaurant franchise” representa-
tion of the hierarchical Dirichlet process (HDP, Teh et al.
(2006)), are special cases of the hddCRP. The HDP and
related dependent Dirichlet process models (MacEachern,
1999) define dependent random measures from which al-
locations of data to clusters are sampled, indirectly induc-
ing dependencies in the resulting partitions. For example,
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Griffin & Steel (2006), Dunson & Park (2008), Rao & Teh
(2009), and Lin et al. (2010) define priors which encourage
“close” data points to have similar allocation distributions.

In contrast, the hddCRP directly specifies distributions over
partitions via a flexible set of user-specified affinity func-
tions. This allows structural constraints on clusters, such as
connectivity (Ghosh et al., 2011), to be directly enforced.
The hddCRP does not require its “distance” functions to be
true metrics or have any special properties, and thus pro-
vides an extremely flexible framework for modeling com-
plex data. Alternative models based on latent Gaussian pro-
cesses (Duan et al., 2007; Sudderth & Jordan, 2008) require
appropriate positive-definite kernel functions, whose spec-
ification can be challenging in non-Euclidean spaces (e.g.,
of object shapes). By working directly with discrete parti-
tions, rather than latent continuous measures, the hddCRP
also allows more computationally efficient inference.

The hddCRP generative process defined in Section 2 is sim-
ple, but the data-level and cluster-level link variables are
strongly coupled in the posterior. Section 3 develops a
Markov chain Monte Carlo (MCMC) method that makes
coordinated changes to links at both levels, and thus more
effectively explores clustering hypotheses. This sampler is
also a novel inference algorithm for the HDP that makes
large changes to the partition structure, without needing to
explicitly craft split or merge proposals (Jain & Neal, 2004;
Wang & Blei, 2012). By reasoning about data and cluster
links, our sampler changes cluster allocations at varying
resolutions, perturbing both memberships of data instances
to local clusters and clusters to global components.

In Section 4, we demonstrate the versatility of the hdd-
CRP by applying it to the problems of video segmenta-
tion and discourse analysis. In addition to having diverse
data types (video sequences versus text documents), these
two problems exhibit very different kinds of relationships
among data instances and latent clusters. Nevertheless, our
hddCRP model and inference framework easily applies to
both domains by selecting appropriate data and cluster-
level affinity functions. In both domains, explicit model-
ing of dependencies between latent clusters boosts perfor-
mance over models that ignore such relationships.

2 HIERARCHICAL DISTANCE
DEPENDENT CLUSTERS

The distance-dependent CRP (Blei & Frazier, 2011) de-
fines a distribution over partitions indirectly via distribu-
tions over links between data instances. A data point i has
an associated link variable ci which links to another data
instance j, or itself, according to the following distribution:

p (ci = j | A,α) ∝
{

Aij i ̸= j,
α i = j.

(1)

The affinity Aij = f(d(i, j)) depends on a user-specified
distance d(i, j) between pairs of data points, and a mono-

tonically decreasing decay function f(d) which makes
links to nearby data more likely. The resulting link struc-
ture induces a partition, where two data instances are as-
signed to the same cluster if and only if one is reachable
from the other by traversing the link edges. Larger self-
affinity parameters α favor partitions with more clusters.

2.1 THE HIERARCHICAL ddCRP

We propose a novel generative model that applies the dd-
CRP formalism twice, first for clustering data within each
group into local clusters, and then for coupling the local
clusters across groups. Like the ddCRP, our hddCRP de-
fines a valid distribution over partitions of a dataset. It
places higher probability mass on partitions that group
nearby data points into latent clusters, and couple similar
local clusters into global components. Examples of these
data and cluster links are illustrated in Figure 1.

Consider a collection of G groups, where group g contains
Ng observations. We denote the ith data point of group g
by xgi, and the full dataset by x. The data link variable cgi

for xgi is sampled from a group-specific ddCRP:

p(cgi = gj | αg, A
g) ∝

{
Ag

ij i ̸= j,

αg i = j.
(2)

At this first level of link variables, we set the probability of
linking observations in different groups to zero. The con-
nected components of the links cg = {cgi | i = 1, . . . , Ng}
then determine the local clustering for group g.

Data links c = {c1, . . . , cG} across all groups divide
the dataset into group-specific local clusters T (c). The
hddCRP then associates each cluster t ∈ T (c) with a clus-
ter link kt drawn from a global ddCRP distribution:

p(kt = s | α0, A
0(c)) ∝

{
A0

ts(c) t ̸= s,
α0 t = s.

(3)

Here α0 is a global self-affinity parameter, and A0(c) is
the set of pairwise affinities between the elements of T (c).
We let A0

ts(c) = f0(d0(t, s, c)), where d0(t, s, c) is a “dis-
tance” based on arbitrary properties of clusters t and s, and
f0(d0) a decreasing decay function. The connected compo-
nents of k = {kt | t ∈ T (c)} then couple local clusters into
global components shared across groups. Let zgi denote the
component associated with observation i in group g, and
z = {zgi | g = 1, . . . , G; i = 1, . . . , Ng}. Data instances
xgi and xhj are clustered (zgi = zhj) if and only if they are
reachable via some combination of data and cluster links.

Given this partition structure, we endow component m with
likelihood parameters ϕm ∼ G0(λ), and generate observa-
tions xgi ∼ p(xgi | ϕzgi). Let M(c,k) equal the number of
global components induced by the cluster links k and data
links c. Because data links c are conditionally independent
given A1:G, and cluster links k are conditionally indepen-
dent given c and the cluster affinities A0(c), the hddCRP
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Figure 1: An example link variable configuration for a hierarchical ddCRP model of three groups (rectangles). Observed data points
(customers, depicted as diamonds) link to other data points in the same group (black arrows), producing local clusters (dashed circles,
labeled A through I). Cluster links (colored arrows) then join clusters to produce (in this case, four) global mixture components.

joint distribution on partitions and observations equals

p(x,k, c | α1:G, α0, A
1:G, A0, λ) =

M(c,k)∏

m=1

p(xz=m | λ)

G∏

g=1

Ng∏

i=1

p(cgi | αg, A
g)

∏

kt∈k

p(kt | c, α0, A
0(c)) (4)

The set of data in component m is denoted by xz=m, and

p(xz=m | λ) =

∫ ∏

gi|zgi=m

p(xgi | ϕm) dG0(ϕm | λ), (5)

where λ are hyperparameters specifying the prior distribu-
tion G0. Our inference algorithms assume this integral is
tractable, as it always is when an exponential family like-
lihood is coupled with an appropriate conjugate prior. We
emphasize that for arbitrary data and cluster affinities, the
sequential hddCRP generative process defines a valid joint
distribution p(x,k, c) = p(c)p(k | c)p(x | k, c).

2.2 RELATED HIERARCHICAL MODELS

The hddCRP subsumes several recently proposed hierar-
chical extensions to the ddCRP, as well as the HDP itself,
by defining appropriately restricted data affinities and lo-
cal cluster affinities. Blei & Frazier (2011) show that the
CRP is recovered from the ddCRP by arranging data in an
arbitrary sequential order, and defining affinities as

Aij =

{
1 if i < j,

0 if i > j.
(6)

Data points link to all previous observations with equal
probability, and thus the probability of joining any existing
cluster is proportional to the number of other data points
already in that cluster. The probability of creating a new

cluster is proportional to the self-connection weight α. The
resulting distribution on partitions can be shown to be in-
variant to the chosen sequential ordering of the data, and
thus the standard CRP is exchangeable (Pitman, 2002).

Hierarchical Chinese Restaurant Process (hCRP) The
hCRP representation of the HDP, which Teh et al. (2006)
call the “Chinese restaurant franchise”, is recovered from
the hddCRP by first defining group-specific affinities as
in Eq. (6). We then arrange local clusters (tables, in the
CRF metaphor) t sequentially with distances A0

ts(c) = 1
if t < s, and A0

ts(c) = 0 if t > s. Just as the two-level
hCRP arises from a sequence of CRPs, the hddCRP is de-
fined from a sequence of two ddCRP models.

Naive Hierarchical ddCRP (naive-hddCRP) The im-
age segmentation model of Ghosh et al. (2011) clusters
data within each group via a ddCRP based on an informa-
tive distance (in their experiments, spatial distance between
image pixels). A standard CRP, as in the upper level of the
HDP, is then used to combine these clusters into larger seg-
ments. Inference is substantially simpler for this special
case, because cluster distances do not depend on properties
of the data assigned to those clusters.

Distance Dependent Chinese Restaurant Franchise
An alternate approach to capturing group-specific metadata
uses a standard CRP to locally cluster data, but then uses
the group labels to define affinities between clusters. Kim
& Oh (2011) use this model to learn topic models of time-
stamped documents. By constraining cluster affinities to
depend on group labels, but not properties of the data as-
signed to within-group clusters, inference is simplified.
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3 MCMC INFERENCE

The posterior distribution over the data and cluster links
p(c,k | x, α1:G, α0, A

1:G, A0, λ) is intractable, and we
thus explore it via a Metropolis-Hastings MCMC method.
Our approach generalizes the non-hierarchical ddCRP
Gibbs sampler of Blei & Frazier (2011), which iteratively
samples single data links conditioned on the observations
and other data links. Evolving links lead to splits, merges,
and other large changes to the partition structure. In the
hddCRP, local clusters belong to global components, and
these component memberships must be sampled as well.

3.1 MARKOV CHAIN STATE SPACE

The number of possible non-empty subsets (clusters) of N
data points is 2N − 1. The state space of our Markov chain
consists of the data links c, and the set of all possible clus-
ter links K, one for each candidate non-empty cluster. For
instance, given three observations {h, i, j} the set of non-
empty subsets is T = {[h], [i], [j], [hi], [ij], [jh], [hij]},
and the corresponding set of possible cluster links is
K = {kh, ki, kj , khi, kij , kjh, khij}, where |K| = 23 − 1.

For any configuration of c, a strict subset of T will have
data associated with it. We call this the active set. For
instance, if ch = h, ci = i, cj = j, then only the clusters
{[h], [i], [j]} and the corresponding links {kh, ki, kj} are
active. Given c, we split K into the active set k, and the
remaining inactive cluster links k̃ = K \k. We account for
the inactive clusters by augmenting A0(c) as follows:

Ã0(c) =

[
A0(c) 0

0 α0I

]
. (7)

Here, we have sorted the links so that affinities among
the active clusters are listed in the upper-left quadrant of
Ã0(c). As indicated by the identity matrix I, inactive clus-
ters have zero affinity with all other clusters, and link to
themselves with probability one. Under this augmented
model, the joint probability factorizes as follows:

p(x,k, k̃, c) = p(c)p(k | c)p(k̃ | c)p(x | c,k, k̃) =

p(c)p(k | c)p(k̃ | c)p(x | c,k) = p(x,k, c)p(k̃ | c). (8)
Here, we have recovered the joint distribution of Eq. (4)
because given c, the observations x are conditionally inde-
pendent of the inactive links k̃. Crucially, because inactive
cluster links have no uncertainty, we must only explicitly
represent the active clusters at each MCMC iteration.

As the Markov chain evolves, clusters are swapped in and
out of the active set. Although the number of active clus-
ters varies with the state of the chain, the dimensionality
of the augmented state space (c,k, k̃) remains constant, al-
lowing us to ignore complications that arise when dealing
with chains whose state spaces have varying dimensional-
ity. In particular, we employ standard Metropolis-Hastings
(MH) proposals to change data and cluster links, and need
not resort to reversible jump MCMC (Green, 1995).
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Figure 2: Illustration of changes induced by a data link proposal.
Changing c22 (in the left configuration) splits cluster C into two
clusters C′ and C′′. The cluster links associated with C (shown
in red) must also be resampled. The MH step of the sampler pro-
poses a joint configuration of the links {c22, kC′ , kC′′ , kD, kE}.
The dashed red arrows illustrate the possible values the resam-
pled cluster links could take. A single data link can create large
changes to the partition structure, with local clusters splitting or
merging, and groups of clusters shifting between components.

3.2 LINK PROPOSAL DISTRIBUTIONS

In samplers previously developed for the hCRP (Teh et al.,
2006) and the naive-hddCRP (Ghosh et al., 2011), local
clusters directly sample their global component member-
ships. However for the hddCRP, cluster links indirectly de-
termine global component memberships. This complicates
inference, as any change to the cluster structure necessi-
tates coordinated changes to the cluster links. As illustrated
in Figure 2, consider the case where a data link proposal
causes a cluster to break into two components. The new
cluster must sample a cluster (outgoing) link, and cluster
links pointing to the old cluster (incoming links) must be
divided among the newly split clusters. Thus, we use a MH
proposal to jointly resample data and affected cluster links.

To simplify the exposition, we focus on a particular group
g and denote cgi as ci. Let the current state of the sampler
be k(c) and c = {c−i, ci = j}, so that i and j are members
of the same cluster tij . Let Ktij = {ks | ks = tij , s ̸= tij}
denote the set of other clusters linking to tij .

Split? To construct our link proposal, we first set ci = i.
This may split current cluster tij into two new clusters, in
which case we let ti denote the cluster containing data i,
and tj the cluster containing formerly linked data j. Or, the
partition structure may be unchanged so that ti = tij .
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Incoming links ks ∈ Ktij to a split cluster are indepen-
dently assigned to the new clusters with equal probability:

qin(Ktij ) =
∏

ks∈Ktij

(
1

2

)δ(ks,ti)(1

2

)δ(ks,tj)

. (9)

The current outgoing link is retained by one of the split
clusters, ktj = ktij . To allow likelihood-based link pro-
posals, we temporarily fix the other cluster link as kti = ti.

Propose Link We compare two proposals for ci, the
ddCRP prior distribution q(ci) = p(ci | α,A), and a data-
dependent “pseudo-Gibbs” proposal distribution:

q(ci) ∝ p(ci | α,A)Γ(x, z(ci, c−i,k)), (10)
Γ(x, z(ci, c−i,k))

=





p(xz=ma ∪ xz=mb
| λ)

p(xz=ma | λ)p(xz=mb
| λ)

if ci merges ma, mb,

1 otherwise.

The prior proposal, although naı̈ve, can perform reasonably
when A is sparse. The pseudo-Gibbs proposal is more so-
phisticated, as data links are proposed conditioned on both
the observations x and the current state of the sampler. Our
experiments in Sec. 4 show it is much more effective.

Merge? Let ci = j∗ denote the new data link sampled
according to either the ddCRP prior or Eq. (10). Relative
to the reference configuration in which ci = i, this link
may either leave the partition structure unchanged, or cause
clusters ti and tj∗ to merge into tij∗ . In case of a merge, the
new cluster retains the current outgoing link ktij∗ = ktj∗ ,
and inherits the incoming links Ktij∗ = Kti

∪ Ktj∗ .

If a merge does not occur, but tij was previously split into
ti and tj , the outgoing link ktj = ktij is kept fixed. For
newly created cluster ti, we then propose a corresponding
cluster link kti from its full conditional distribution:

qout(kti) = p(kti | α0, A
0(c),x,k−ti , c). (11)

Note that the proposal ci = j∗ may leave the original par-
tition unchanged if ci = i does not cause tij to split, and
ci = j∗ does not result in a merge. In this case, the corre-
sponding cluster links are also left unchanged.

Accept or Reject Combining the two pairs of cases
above, our overall proposal distribution equals

q(c∗,k∗|c,k,x)=





q(c∗
i )qin(K∗

tij
) split, merge,

q(c∗
i ) no split, merge,

q(c∗
i )qout(k

∗
ti

)qin(K∗
tij

) split, no merge,

p(c∗
i | α, A) otherwise.

Here, c∗ and k∗ denote the proposed values, which are
then accepted or rejected according to the MH rule. For
acceptance ratio derivations and further details, please see
the supplemental material. After cycling through all data
links c, we use the Gibbs update of Eq. (11) to resample
the cluster links k, analogously to a standard ddCRP.

Figure 3: Experiments on synthetic data. Top: Ground truth
partitions of a toy dataset containing four groups. Each group
contains four objects exhibiting motion and color gradients. Mid-
dle: MAP partitions inferred by an hddCRP using size and optical
flow-based cluster affinities. Bottom: MAP partitions discovered
by a baseline hCRP using only color-based likelihoods.

4 EXPERIMENTS

In this section we present a series of experiments investi-
gating the properties of the hddCRP model and our pro-
posed MCMC inference algorithms. We examine a pair
of challenging real-world tasks, video and discourse seg-
mentation. We quantify performance by measuring agree-
ment with held-out human annotations via the Rand in-
dex (Rand, 1971) and the WindowDiff metric (Pevzner &
Hearst, 2002), demonstrating competitive performance.

To provide intuition, we first compare the hddCRP with the
hCRP on a synthetic dataset (Figure 3) with four 30 × 30
frames (groups). Each frame contains four objects mov-
ing from top to bottom at different rates, and object ap-
pearances exhibit small color gradients. The hddCRP uti-
lizes data link affinities that allow pixels (data instances) to
connect to one of their eight spatial neighbors with equal
probability. To exploit the differing motions of the objects,
we define optical flow-based cluster affinities (Sun et al.,
2010). Letting w(t) denote the spatial positions occupied
by cluster t after being warped by optical flow, and w(s) the
corresponding support of cluster s, the affinity is defined as
A0

ts(c) = (w(t)∩w(s))/(w(t)∪w(s)), t ̸= s, encouraging
clusters to link to other clusters with similar spatial support.
Given this affinity function, hddCRP was able to robustly
disambiguate the four uniquely moving objects, while the
hCRP produced noisy segmentations and consistently con-
fused objects with local similarity but distinct motion.

4.1 VIDEO SEGMENTATION

Likelihood As a preprocessing step, we divide each
frame into approximately 1200 superpixels using the
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Figure 4: Data link proposal comparisons. Left: Two frames from the “garden” sequence, and partitions corresponding to the best and
worst MAP samples using prior or pseudo-Gibbs proposals. Right: Joint log-likelihood trace plots for 25 trials of each proposal.

method proposed by Chang et al. (2013).1 Each super-
pixel is described by L2 unit-normalized 120-bin HSV
color and 128-bin local texton histograms. Unit normal-
ization projects raw histograms to the surface of a hyper-
sphere, where we use von-Mises Fisher (vMF) distribu-
tions (Mardia & Jupp, 2009) shared across all clusters of
a global component. In preliminary experiments, we found
that the vMF produced more accurate segmentations than
multinomial models of raw histograms; similar L2 normal-
izations are useful for image retrieval (Arandjelović & Zis-
serman, 2012). We also extracted optical flow using the
“Classic+NL” algorithm (Sun et al., 2010), and associated
a two-dimensional flow vector to each super-pixel, the me-
dian flow of its constituent pixels.

The color, texture, and flow features for super-pixel i in
video frame g are denoted by xgi = {xc

gi, x
t
gi, x

f
gi}, where

xc
gi ∼ vMF(µc

zgi
, κc), µc

zgi
∼ vMF(µc

0, κ
c
0), (12)

where κc, µc
0, and κc

0 are hyper-parameters controlling the
concentration of color features around the direction µc

zgi
,

the mean color direction µc
0, and the concentration of µc

zgi

around µc
0. Texture features are generated similarly. Flow

features are modeled via Gaussian distributions with con-
jugate, normal-inverse-Wishart priors:

xf
gi ∼ N (µfg

zgi
, Σfg

zgi
), Σfg

zgi
∼ IW(n0, S0),

µfg
zgi

| Σfg
zgi

∼ N (µ0, τ0Σ
fg
zgi

).
(13)

Requiring all clusters in a global component, which may
span several video frames, to share a single flow model is
too restrictive. Instead we model the flow for each frame
independently, requiring only that clusters in frame g as-
signed to the same component share a common flow model.
Our model requires motion of a component to be locally
(within a frame) coherent, but allows for large deviations
between frames.2 This assumption more closely reflects
the motion statistics of objects in real videos.

Prior We used data affinities that encourage spatial
neighbors not separated by strong intervening contours to

1Chang et al. (2013) also estimate temporal correspondences
between superpixels, but we do not utilize this information.

2See the supplement for specific hyper-parameter settings.

connect to one another. We computed them by indepen-
dently running the Pb edge detector (Martin et al., 2004) on
each video frame and computing Aij = (1− bij)

3 ×1[i, j]
for each superpixel pair. Here, 0 ≤ bij ≤ 1 is the maximum
edge response along a straight line segment connecting the
centers of superpixels i, j, and 1[i, j] takes a value of 1 if i
and j are spatial neighbors, and 0 otherwise.

Flow-based affinities, as in the earlier toy example, were
used to specify the cluster affinity functions. All α1:G

and α0 were set to 10−8. The naive-hddCRP used iden-
tical data affinities and hyper-parameters, but used sequen-
tial distances between clusters (see Sec. 2.2). The hCRP
used sequential affinities to govern both the data and clus-
ter links. For a CRP, the expected number of clusters given
N data points is roughly αlog(N). We set α1:G such that
the expected number of clusters in a video frame matches
the number of observed ground truth clusters, and α0 = 1.

Data link proposals We compare the two data link pro-
posals on 10 frames from the classic “garden” sequence.
For each proposal, we ran 3000 iterations of 25 MCMC
chains. The results, including MAP samples from the high-
est and lowest probability chains and log-likelihood trace
plots, are summarized in Figure 4. The visualized MAP
partitions demonstrate that all chains eventually reach rea-
sonable configurations, but segmentations nevertheless im-
prove qualitatively with increasing model likelihood. This
suggests a correspondence between the biases captured by
the hddCRP and the statistics of video partitions.

We find that pseudo-Gibbs proposals reach higher proba-
bility states more rapidly than prior proposals, and have
much lower sensitivity to initialization. Overall, 24 of the
25 pseudo-Gibbs chains reach states that are more probable
than the best prior proposal trial. Subsequent experiments
thus focus solely on the superior pseudo-Gibbs proposal.

Empirical evaluation We compare our performance
against a popular non-probabilistic hierarchical graph-
based video segmentation (HGVS) algorithm (Grundmann
et al., 2010), against the naive-hddCRP variant that was
recently used for video co-segmentation (Chiu & Fritz,
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discovered by the naive-hddCRP and the corresponding segments
discovered by hddCRP. Dashed red horizontal lines indicate dif-
ferent segments, and numbers indicate video frame numbers.

2013), and against the hCRP (Teh et al., 2006). For a
controlled comparison, all three CRP models use identical
likelihoods and hyperparameters. We use the MIT human
annotated video dataset (Liu et al., 2008), which contains
9 human annotated videos, to quantitatively measure seg-
mentation performance. We benchmark performance using
the first 10 frames of each sequence.

Figure 6 summarizes this experiment. For HGVS the dis-
played segmentations were produced at 90 percent of the
highest hierarchy level, which appears to produce the best
visual and quantitative results. For the hddCRP variants,
the segmentations correspond to the MAP sample of five
MCMC chains, each run for 400 iterations3. We decided
to run the samplers for 400 iterations based on the results
shown in Figure 4, where a large majority of the pseudo-
Gibbs chains converged within the first 300 iterations.

The Rand index was computed by treating the entire video
sequence as one spatio-temporal block. This penalizes spa-
tially coherent, but temporally inaccurate, segmentations
that exhibit frequent “label switching” between frames.
HGVS operates on pixels rather than superpixels and con-
sequently produces finer-scale segmentations. However,
these segmentations exhibit large segmentation errors (for
instance, the neck and face regions get merged with the
background in the second sequence). The hddCRP pro-
duces more coherent segmentations and in terms of Rand
index, outperforms HGVS on all but one video sequence.
The hddCRP also performs substantially better than the
hCRP which ignores both superpixel and segment-level
correlations; “bag of feature” assumptions are insufficient
for this task. The gains over the naive-hddCRP appear to
be more modest. However, a closer inspection (Figure 5)

3Roughly 6 hours on a 2.3 GHz intel core i7.

reveals that the hddCRP segments are visually cleaner and
more coherent. Additionally, naive-hddCRP often falsely
merges visually similar but distinctly moving objects to-
gether, while the hddCRP recognizes them as distinct seg-
ments. The videos in our dataset have large background re-
gions with no significant motion. Both the hddCRP and the
naive-hddCRP models tend to agree on such regions, while
disagreeing on smaller foreground objects with distinct mo-
tions. Large regions dominate the Rand index, which ex-
plains the similar global performance by that metric.

4.2 DISCOURSE SEGMENTATION

Next we consider the problem of discourse segmentation.
Given a collection of documents, the goal is to partition
each document into a sequence of topically coherent non-
overlapping discourse fragments. Previous work by Riedl
& Biemann (2012) found that sharing information across
documents tends to produce better segmentations, moti-
vating the development of several text segmentation algo-
rithms that exploit document relationships.

We conducted experiments on the wikielements
dataset (Chen et al., 2009), which consists of 118
Wikipedia articles (at paragraph resolution) describing
chemical elements. Although not explicitly made available
in the dataset, each article corresponds to a chemical
element that is characterized by its chemical properties
and has a unique location in the periodic table. Our
distance-dependent models are capable of exploiting
this additional information to produce better discourse
segmentations. As an illustration, consider the alternative
problem of clustering articles. Figure 7 illustrates such
a clustering where we leverage element properties by
defining distances between documents as the Manhattan
distance between corresponding element locations in the
periodic table. The discovered clustering corresponds well
with known element groupings. Discourse segmentation
requires clustering the paragraphs describing documents,
instead of the documents themselves. Nonetheless, we
find that exploiting the periodic table location of each
document’s element leads to noticeable performance gains.

We compare two versions of the hddCRP to the naive-
hddCRP and hCRP. To encourage topic contiguity, naive-
hddCCRP and hddCRP allowed paragraphs to either link
to themselves or to other paragraphs immediately preced-
ing or succeeding them. We experimented with two affinity
functions to capture the intuitions that similar documents
tend to present similar topics in similar orders, and that
clusters are more likely to be shared among articles about
similar elements. The first function (hddCRP1) biased
clusters of paragraphs to connect to those that occur at simi-
lar locations within other documents. Further, clusters were
constrained to connect to only those that were contained in
documents with lower atomic numbers. A second variant
(hddCRP2) modeled distances between articles using the
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Figure 6: Video segmentation results. The top eight rows show the first and tenth frames of four videos from the MIT human
annotated video dataset. Left to right: original video frames, segmentations produced by HGVS, hCRP, naive-hddCRP, and hddCRP,
and the ground truth segmentations. Bottom row: Scatter plots comparing hddCRP, HGVS, naive-hddCRP, and hCRP in terms of Rand
index achieved on all nine human annotated videos. Higher scores are better, and more points above the diagonal indicate favorable
performance of hddCRP over competitors.
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Figure 7: Discourse segmentation results on the wikielements dataset. Left: A partial visualization of the inferred customer links when
clustering Wikipedia articles describing 118 chemical elements. The distance between articles equals the Manhattan distance between
their locations in the periodic table. Only three of the nine discovered clusters have been visualized. Right: windowDiff scores achieved
by competing methods, where lower scores indicate better performance. Asterisks indicate numbers reproduced from Chen et al. (2009).

Manhattan distance between the corresponding element lo-
cations in the periodic table, and defined cluster affinities
as the logistic decay f(d) = (1 + exp(d))−1 of distances
between their corresponding documents. In all cases, we
model observed word counts using cluster-specific multi-
nomial distributions with Dirichlet priors. The reported re-
sults correspond to the MAP sample of 5 MCMC chains,
each run for 400 iterations.

We also compared against established text segmentation
methods (Chen et al., 2009; Eisenstein & Barzilay, 2008;
Utiyama & Isahara, 2001), and a naı̈ve baseline that groups
the entire dataset into one segment. We quantified perfor-
mance using the windowDiff metric, which slides a win-
dow through the text incurring a penalty on discrepancies
between the number of segmentation boundaries in the in-
ferred segmentation and a gold standard segmentation. Fig-
ure 7 summarizes the performance of the competing mod-
els 7. Both hddCRP1 and hddCRP2 outperform naive-
hddCRP and hCRP, showing that our cluster-level affini-
ties capture important additional dataset structure. The hd-
dCRP2 model was superior to all other hddCRP variants,
as well as to the specialized text segmentation algorithms
of Eisenstein & Barzilay (2008) and Utiyama & Isahara
(2001). However, the generalized Mallows model (Chen
et al., 2009) achieved the best performance; it is able to
both globally bias segment orderings to be similar across
related documents, while guaranteeing spatially connected
topics. In contrast, the hddCRP weakly constrains segment
order through local cluster affinities and while it encour-
ages contiguity, the likelihood may prefer disconnected
segments, resulting in a poorer match with the reference
segmentation. We nevertheless find it encouraging that the
general hddCRP framework, with appropriate affinities, is
competitive with specialized text segmentation methods.

5 DISCUSSION AND FUTURE WORK

We have developed a versatile probabilistic model for clus-
tering groups of data with complex structure. Applying it
to diverse domains is straightforward: one need only spec-
ify appropriate distance functions. Our hierarchical ddCRP
defines a valid joint probability distribution for any choice
of “distances”, which need not be metrics or have any spe-
cial properties. Using distances based on pixel locations
and optical flow estimates, the hddCRP compares favor-
ably to contemporary video segmentation methods. Using
distances based on paragraph order and element positions
in the periodic table, it outperforms several established tex-
tual discourse segmentation techniques.

While our MCMC inference methods are highly effective
for moderate-sized datasets, further innovations will be
needed for computational scaling to very large datasets. In
cases where training examples of appropriate clusterings
are available, we would also like to automatically learn ef-
fective hddCRP distance functions.
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Abstract
One of the common problems with clustering is
that the generated clusters often do not match
user expectations. This paper proposes a novel
probabilistic framework that exploits supervised
information in a discriminative and transferable
manner to generate better clustering of unlabeled
data. The supervision is provided by revealing
the cluster assignments for some subset of the
ground truth clusters and is used to learn a trans-
formation of the data such that labeled instances
form well-separated clusters with respect to the
given clustering objective. This estimated trans-
formation function enables us to fold the remain-
ing unlabeled data into a space where new clus-
ters hopefully match user expectations. While
our framework is general, in this paper, we fo-
cus on its application to Gaussian and von Mises-
Fisher mixture models. Extensive testing on 23
data sets across several application domains re-
vealed substantial improvement in performance
over competing methods.

1 INTRODUCTION

Presenting structured and organized views of data to users
is crucial for efficient browsing and locating relevant in-
formation. Unsupervised clustering techniques have been
widely used for discovering latent structures in unlabeled
data. Generative clustering models based on Gaussian,
von-Mises and Multinomial distributions have emerged as
the defacto methods for performing probabilistic cluster-
ing.
However, such clustering methods have a fundamental lim-
itation that they do not take into account the user expecta-
tions or preferences over different views of data. For ex-
ample, given a collection of news-stories, one user might
prefer to organize them by subject topics such as Politics,
Sports, Business, etc, while another user might prefer to
see the news-stories grouped by regions such as U.S., India,
China, etc. As another example, in a collection of speech

recordings, it is perfectly reasonable to cluster the record-
ings either by the content of the recording or by the speaker.
In both cases, clustering algorithms cannot tell which type
of clustering is preferable unless the user’s expectation is
effectively communicated to the system. This leads to two
challenging problems in clustering:

1. How can we effectively inject supervised information to
steer the clustering process towards user expectations?

2. If only some clusters identified by the user are available
as supervision, can the learned user expectations be ef-
fectively transferred from the observed clusters to aid in
the discovery of unobserved (new) clusters in data?

The first problem has been partially addressed by some
work in constrained clustering and distance metric learn-
ing, although not in sufficient depth (see Section 2). The
second problem, to our knowledge, has not been addressed
by any work so far. The second problem is particularly
important from a practical point of view because realisti-
cally users can only label a small set of clusters, whereas
the data keeps growing and new clusters are bound to show
up. Using a collection of news-stories as a concrete ex-
ample, if the user identifies three clusters U.S., India, and
China as the supervision, the system should learn that the
user is interested in region-based clustering and partition
the incoming unlabeled data by regions and discover other
new clusters such as Iraq, Japan, etc. In other words, we
want the system to generalize the learned user expectation
by modeling shared properties between the observed and
unobserved clusters.
This paper addresses both challenges by proposing a novel
probabilistic framework that assumes the existence of an
underlying transformation of data (that is common to the
observed and unobserved clusters) which reveals the true
user expectations on clustering. Using the supervision in
the form of labeled instances and true cluster labels for
some subset of groundtruth clusters, we estimate such a
transformation. Specifically, we define the transformation
function G in a discriminative manner that maximizes the
conditional probability of the cluster label given the trans-
formed instance. Once G is learned, we apply it to un-
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labeled data for clustering in the next step. Because the
supervised information is propagated by means of a data
transformation we call our framework Transformation-
based Clustering with Supervision (TCS).
Our framework is flexible and can be applied to any proba-
bilistic clustering model as long as an appropriate transfor-
mation function G can be defined. In this paper, we explore
our framework with two widely used probabilistic cluster-
ing models which have different clustering objectives, the
Gaussian Mixture model (GM) (Bishop, 2006) and the von
Mises-Fisher Mixture model (VM) (Banerjee et al., 2006).
For GM, we define G to be a linear transformation whereas
for VM, G is a linear transformation followed by unit nor-
malization. For both the models we develop efficient opti-
mization algorithms to estimate G and related parameters.
We conducted thorough evaluations and tested our frame-
work on 23 data sets from different application domains
such as time-series, text, handwriting recognition, face
recognition, etc. We have observed substantial and consis-
tent improvement in performance (in five clustering met-
rics) over other competing methods.

2 RELATED WORK

There are two primary areas of related work that use su-
pervision to improve clustering of unlabeled data - Proba-
bilistic Constrained Clustering (PCC) and Distance Metric
Learning (DML).
PCC methods (Wagstaff et al., 2001; Basu et al., 2002) try
to inject supervision using a probabilistic generative model
for the instances. The instances X consists of both the la-
beled part XL,the unlabeled part XU and the cluster assign-
ments Z = {ZU ∪ ZL}. The observed cluster assignments
ZL ⊂ Z is used as supervision, i.e., the constraints. The
model parameters θ and the latent cluster assignments ZU
are estimated by maximizing the likelihood under the con-
straints as:

max
θ,ZU

logP (X|ZL,ZU ,θ) (1)

However, when the task is to detect previously unobserved
cluster, this optimization reduces to plain clustering. This
can be seen by rewriting the objective as a sum of the la-
beled objective (which is constant) and the unlabeled ob-
jective (which is just standard clustering) as:

max
θL

logP (XL|ZL,θL) + max
θU ,ZU

logP (XU |ZU ,θU )

Clearly, there is no learning nor transfer of information
from the observed clusters to the unobserved clusters.
There are other works in PCC where supervision is rep-
resented in the form of pairwise constraints instead of clus-
ter labels, i.e. the constraints are defined as whether two
instances should be put in the same cluster or not. These
methods optimize eq (1) with an additional penalty term
if the constraints are not obeyed. The penalty is intro-
duced in the form of priors (Lu and Leen, 2005), (Basu

et al., 2006) or explicitly modeled using some loss function
(Basu et al., 2004), (Bilenko et al., 2004). Despite the dif-
ferent variations in formulating the constraints, PCC meth-
ods (Wagstaff et al., 2001; Basu et al., 2002, 2004, 2006;
Lu and Leen, 2005) have the same fundamental limitation,
i.e., the supervised information from the observed clusters
is not used to reshape the discovery of unobserved clusters.
The clustering of the unlabeled part of the data reduces to
standard unsupervised clustering.
A natural extension of PCC that addresses some of its lim-
itations is to use a more Bayesian approach of sharing pa-
rameters across clusters. For example, one could use a
Gaussian mixture model where each cluster k has its own
mean parameter θk, but all clusters share a common covari-
ance matrix Σ. Here the covariance matrix serves as the
bridge to transfer information from the observed clusters
to the unobserved clusters. One can envision more sophis-
ticated models with common hyperpriors, e.g. a Gaussian
hyperprior for the means and an Inverse Wishart hyperprior
for the covariances. To our knowledge, such Bayesian re-
visions of PCC have not been studied in the context of dis-
covering new clusters in unlabeled data (which is the focus
of this paper). As we will show in our experiments (where
we implemented such a Bayesian PCC model as a base-
line), this way of sharing information is not as effective
as directly fitting for the cluster labels in the transformed
space, which we propose in the TCS framework.
In DML (Blitzer et al., 2005; Xing et al., 2002; Goldberger
et al., 2004) the objective is to learn a distance metric that
respects the supervision which is provided in the form pair-
wise constraints. More specifically, given a set of labeled
clusters, the distance metric is estimated such that it pulls
the within-cluster pairs towards each other and pushes the
cross-cluster pairs away from each other. DML methods
differ from each other in how the loss functions are de-
fined over the pairwise constraints, such as the hinge loss
(Blitzer et al., 2005), Euclidean-distance loss (Xing et al.,
2002), log loss (Goldberger et al., 2004), etc. DML has
been typically used in the context of nearest-neighbor clas-
sification but not in the context of discovering unobserved
clusters. We argue that existing DML methods have two
problems w.r.t to discovering unobserved clusters: Firstly,
DML optimizes for pairwise distances and is therefore ‘un-
aware’ of the clustering criterion (the objective function for
clustering) used. This can lead to overfitting, for example,
even if the data is optimally clustered, DML would still try
to increase inter-cluster distances and decrease intra-cluster
distances. Secondly, optimizing for different loss functions
(e.g., hinge loss or Euclidean loss) do not necessarily yield
a metric that is also optimal for clustering. Explicitly fitting
for the cluster-labels that also achieves the optimal cluster-
ing objective without resorting to surrogate measures like
pairwise constraints is the fundamental difference between
our TCS models and other DML methods.
Indirectly related to this paper are a few works in discrim-
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Table 1: Likelihood at Local optimum reached by EM vs Likeli-
hood of ground-truth. The Local optimum is better !

Algorithm→ GM VM

Local optimum -18115 4.09965e+09
Groundtruth -18168 4.09906e+09

inative clustering (Krause et al., 2010), (Xu et al., 2004)
and constrained spectral clustering (Rangapuram and Hein,
2012), (Wang and Davidson, 2010), (Lu and Carreira-
Perpinán, 2008). These former methods use a discrimina-
tive objective like that of SVM for clustering, however, can-
not handle supervision. The latter methods incorporate su-
pervision in a spectral clustering framework, but however,
cannot scale beyond a few thousands of instances, cannot
produce probabilistic cluster memberships and do not di-
rectly optimize for the class-labels. A thorough discussion
of the drawbacks of spectral clustering framework is how-
ever beyond the scope of this paper (see (Nadler and Galun,
2007) and reference therein). It is also worth mentioning
that some other work like (Joulin et al., 2010), (Finley and
Joachims, 2005) reformulate the classification problem as
a clustering one, but however cannot discover previously
unobserved clusters in data.

3 PROPOSED MODEL (TCS)

Any typical clustering task involves making at the least two
assumptions - number of clusters (or the prior parameters
if using Bayesian non-parameterics) and the distance mea-
sure, both of which determine the type of clusters gen-
erated. The distance measure in a probabilistic cluster-
ing framework is determined by the choice of the distri-
bution for e.g. Euclidean corresponds to Gaussian, cosine-
similarity corresponds to von Mises-Fisher etc. Typically,
the user’s subjective choice of the probability distribution
does not match the ground-truth and the generated clusters
do not match user expectations.
To demonstrate this, we ran two popular clustering algo-
rithms - the Gaussian Mixture model (GM) and the von
Mises-Fisher mixture model (VM), which use different
probability distributions and optimize different likelihoods,
on the 20newsgroups dataset 1 with 20 clusters using the
EM algorithm. We compared the likelihoods (the cluster-
ing objective) of the algorithms under two settings,

1. The likelihood at a local optimum reached by EM 2.

2. The likelihood when the true labels are given, i.e.
cluster assignments fixed to the ground-truth.

As table 1 shows, the likelihood obtained at a local opti-
mum is better than groundtruth - the groundtruth is subop-
timal ! The clustering algorithm is optimizing for some-
thing else other than groundtruth. This means that the user
1qwone.com/ jason/20Newsgroups/
2The EM algorithm was intialized with the ground-truth cluster
assignments

expected clusters can never be recovered. This is a clear
case of mismatch between what the user expects and the
user specified probability distribution.
To address this issue, we propose to transform the data into
another space where the instances are indeed distributed ac-
cording to user expectations. We use the supervised infor-
mation to estimate such a transformation i.e. we estimate a
transformation function G in a discriminative manner that
maximizes the likelihood of observing the given labels (not
the data) in the transformed space.
More formally, we are provided supervised training data
from K clusters, S = {xi, ti}Ni=1 where xi ∈ X , ti ∈
{1, 2...K} and unlabeled examples U . For convenience de-
fine yik = I(ti = k). Given a probabilistic generative model
using a mixture of K distributions {f(x|Ck)}Kk=1 where Ck
denotes the parameters of cluster K , we estimate G as,

argmax
G

logP (Y|Cmle(G), G(X))

where Cmle(G) = argmax
C

P (G(X)|C,Y),

P (Y|G(X),Cmle(G)) =

N∏

i=1

K∏

k=1




f(G(xi)|Cmlek (G))
K∑
k′=1

f(G(xi)|Cmlek′ (G))




yik

Here Cmle denotes the maximum likelihood estimates of
the cluster parameters in the transformed space i.e the clus-
ter parameters that best explain the transformed data. G on
the other hand is estimated by maximizing the conditional
likelihood of the cluster-labels given Cmle i.e. the transfor-
mation that best explains the cluster-labels. Together this
ensures that we learn G such that the optimal cluster pa-
rameters Cmle also optimally fit the cluster-labels Y. The
transformation G is then applied to U thereby folding it
into a space where hopefully the user specified distribution
f(x|C) matches user expectations.
Unlike typical clustering algorithms, our TCS framework
has a learning component as well i.e. we learn how to
discover unobserved clusters from supervision. Since any
learning algorithm has chances of overfitting, we add an
additional regularization term. Together,

[OPT1] max
G,C

logP (Y|C(G), G(X))− γλ(G)

s.t ∂ logP (G(X)|C,Y)

∂C = 0

where γ is the regularization parameter and λ is the regular-
ization function. Note that the second constraint is another
way to say C is the MLE estimate of G(X). In the fol-
lowing subsections, we discuss how to estimate G with two
choices for f(x|Ck) - Gaussian and von Mises-Fisher 3.

3The supplementary material also discusses the extension to
Gamma distributions
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3.1 TCS WITH GAUSSIAN MIXTURES

We define a simple mixture of K Gaussians with unit vari-
ance and cluster means {θk}Kk=1 over RP where

f(x|θk) = 1√
2π

exp(−‖x− θk‖2)

The transformation function is defined as G(x) = Lx, a
linear transformation using matrix L ∈ RP×P . The param-
eters {θk}Kk=1 and transformation L is estimated by solving
OPT1. Note that the constraint in OPT1 can be written in
closed form,

[OPT1] max
G,C

logP (Y|θ, LX)− γλ(G)

s.t θk =
1

nk

N∑

i=1

yikLxi ∀k

where nk denotes the number of instances assigned to clus-
ter k. If mk denotes the mean of instances assigned to clus-
ter k, then OPT1 can be rewritten as,

[OPT1] max
G,C

logP (Y|θ, LX)− γλ(G)

s.t θk = Lmk ∀k

The conditional probability of yik given the transformed
instance Lxi is,

P (yik = 1|θk, Lxi) = e−
1
2
(Lxi−θk)>(Lxi−θk)

K∑
k′=1

e−
1
2
(Lxi−Lθk′ )>(Lxi−Lθk′ )

Letting θk = Lmk and defining dik = xi −mk,

P (yik = 1|θk, Lxi) = e−
1
2
dikL

>Ldik

K∑
k′=1

e−dik′L
>Ldik′

By reformulating OPT14 as an optimization problem in
terms of A = L>L, we have a convex semidefinite pro-
gram,

min
A

F (A) = γλ(A) +

N∑

i=1

K∑

k=1

yik
2
d>ikAdik +

N∑

i=1

log

(∑

k′
e−

1
2
d>
ik′Adik′

)

s.t A � 0 where dik = (xi −mk)

We tried different choices for λ(A),

1. ‖A− I‖2 (Frobenius Norm from Identity)

2. ‖A‖22 (Frobenius Norm from zero)

3. ‖A‖∗ (Nuclear Norm)

4. trace(A)− log(det(A)) (Log-det divergence)

5. ‖A− I‖1 (Entrywise-L1 Norm)

4Due to the lack of space, we defer the detailed derivations to the
supplementary material.

Algorithm 1 Accelerated gradient descent for TCS-GM.
1: Input: {X,Y}, step-length sequence St
2: Initialize: Define Ht = I, βt = 1

3: while not converged do
4: At = PSD(Ht − st∇F (Ht))

5: βt+1 =
1+
√

1+4β2
t

2

6: Ht+1 = At +
βt−1
βt

(At −At−1)

7: end while
8: Output: At
9: PSD denotes projection to the positive semidefinite

cone

Different regularizers favor different kinds of linear trans-
formations, for e.g., Nuclear norm (Ma et al., 2011) favours
lower rank solutions, Entrywise-L1 norm favours sparser
transformations, the log-det regularlizer also prefers lower
rank solutions but penalizes sum of log of eigenvalues in-
stead (Davis et al., 2007) etc.
For differentiable regularizers, the optimization can be
solved using projected gradient descent where we take
a step along the direction of the negative gradient (with
the stepsize determined by backtracking line search) and
then project the update back into the positive semidefinite
cone. We observed that we could significantly improve
the speed by using accelerated gradient descent (Beck
and Teboulle, 2009) instead (Algorithm 1). For the non-
differentiable regularizers we can use projected subgradi-
ent instead. These algorithms provably converge to the op-
timal solution if the step size is appropriately set (Boyd and
Vandenberghe, 2004). The gradient of the objective can be
succintly written as,

∇F (A) = γλ′(A) +
N∑

i=1

K∑

k=1

(yik − pik(A))dikd>ik

where pik(A) = P (yik|Lxi, θk)

We found that our customized parallel solver using accel-
erated projected gradient descent worked much faster than
existing SDP solvers. The solution in A recovers L upto
any rotation matrix. This is because A = L>L can always
be rewritten using A = L>(Q>Q)L, for any rotation ma-
trix Q−1 = Q>. However rotating the data corresponds to
changing the basis and does not affect the clustering algo-
rithm.
Note that A is very different from the seemingly similar
covariance matrix of a Gaussian distribution. Firstly, unlike
the covariance matrix, A is not parameter of the distribution
and does not make the distribution sum to 1. Secondly,
covariance matrices are typically estimated by maximizing
P (X|Y), this includes supervised versions such as linear
discriminant analysis (LDA) and Fisher LDA (Hastie et al.,
2009). The transformation matrix A on the other hand, is
optimized to fit the labels P (Y|LX, θ). Unlike LDA,A does
not have a closed form solution.
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Algorithm 2 Optimizing L, {µk}Kk=1 for TCS-VM.
1: Input: {X,Y}, T iterations
2: Initialize: L
3: for t = 1, ..T do

4: update µk =

N∑
i=1

yikni

‖
N∑
i=1

yikni‖
where ni =

Lxi
‖Lxi‖

5: update L = argminL

γλ(L)+
N∑
i=1

K∑
k

yik

[
x>i L

>µk
‖Lxi‖ − log

(
K∑
j=1

exp(
x>i L

>µj
‖L>xi‖

)

)]

6: end for

3.2 TCS WITH VON-MISES FISHER MIXTURES

The von Mises-Fisher (vMF) distribution defines a proba-
bility density over points on a unit-sphere. It is parameter-
ized by mean parameter µ and concentration parameter κ,
the former defines the direction of the mean and the latter
determines the spread of the probability mass around the
mean. The density function over X ≡ {x : ‖x‖ = 1, x ∈
RP }, is given by

f(x|µ, κ) = κ(.5P−1)

(2π).5P I.5P−1(κ)
exp(κµ>x)

where Iν(a) is the modified bessel function of first kind
with order ν and argument a.
As in the Gaussian mixtures case, we consider a mixture of
K vMF distributions with mean parameters {µk}Kk=1 and a
single concentration parameter κ. Since the support of vMF
is only over the unit-sphere, any transformation function
should ensure the transformed space still lies on the unit-
sphere. Therefore we define the transformation function
G as a linear transformation with matrix L ∈ RP×P with
normalization,

G(x) =
Lx

‖Lx‖

With this transformation function, the optimization prob-
lem OPT1 is a non-convex function in L. Note that the clus-
ter mean parameters {µk}Kk=1 have a closed form expres-
sion for the MLE estimate in terms of L and X. However
unlike the GM case, we do not recommend substituting it
into the objective of OPT1 as it leads to computationally
intensive expressions. We instead resort to an alternating
optimization between µk’s and L as shown in Algorithm 2.
The optimization step in line 5 is nonconvex in L and can
solved using gradient descent to converge to a locally op-
timal solution. We found that in practice it worked fine.

4 EXPERIMENTS

4.1 METHODS FOR COMPARISON

We conducted an extensive empirical study of our proposed
framework against several competing methods. We tested,

1. GM The simple Gaussian Mixture where the data is as-
sumed to be generated from a mixture of K Gaussians
with individual means and a single common variance
parameter. All parameters are estimated using EM algo-
rithm. Note that this model is unsupervised and cannot
use supervision.

2. TCS-GM Our proposed TCS using Gaussian mixture
model (section 3.1) and ‖A − I‖2 regularization, fol-
lowed by GM on the linearly transformed unlabeled
data.

3. TCS-GM-L2 Our proposed TCS using Gaussian mix-
ture model and plain ‖A‖2 regularization, followed by
GM on the linearly transformed unlabeled data.

4. LMNN (Weinberger and Saul, 2009) One of the most
popular local distance metric learning methods that uses
hingeloss to push and pull target neighbors. To ensure
competitive performance, the number of target neigh-
bors was set to high value - 50. This is followed by GM
on the linearly transformed unlabeled data. Note that
LMNN is a stronger baseline than other DML methods
like Relevant Component Analysis (Shental et al., 2006),
Neighborhood Component Analysis (Goldberger et al.,
2004), Linear Discriminant Analysis (Fisher, 1936), etc.

5. PCC (Bilenko et al., 2004) A popular probabilistic con-
strained clustering framework. We used a common co-
variance matrix for all clusters to ensure transfer of in-
formation from known to unknown clusters.

6. Bayesian We implemented a Bayesian Gaussian mix-
ture model as an additional baseline, where all the clus-
ter means are drawn from a Normal hyperprior and all
clusters share a single covariance matrix. We also tried
other variants such as cluster-specific covariance matri-
ces with a shared Inverse Wishart hyperprior, but it did
not yield any appreciable improvements. We used the
familiar constrained EM algorithm (Basu et al., 2002) to
derive point estimates for the unknown parameters.

7. CSP (Wang and Davidson, 2010) A representative spec-
tral clustering method that can handle supervision in the
form of constraints. We use the author recommended
method of representing the unlabeled instances with top
k (where k is the number of clusters) dimensions gener-
ated by the algorithm followed by GM.

We also tested the vMF-based models but due to lack of
space we discuss only a part of the results in Section 5.2.1.
We defer the complete set of vMF-based results to the sup-
plementary material.

4.2 DATASETS

We tested our framework on 23 datasets (Table 2) from var-
ious application domains including timeseries, text, speech,
images,etc. A thorough description of the datasets and the
details of the feature extraction process is given in the sup-
plementary material.
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Table 2: A list of datasets used along with their characteristics.
Domain Dataset #Instances #Dimension #Classes

Time-series Australian Signs (Aussign) 2565 352 95
Character Trajectory (Char) 2858 192 20
Digital Sports Activity (DSPA) 152 1440 19
Libras 360 90 15

Text CNAE 1079 856 9
K9 2340 21839 20
TDT4 622 8895 34
TDT5 6355 20733 125

Handwritten Characters Penbased Recognition (Penbased) 10992 16 10
Letter Recognition (Letter) 20000 16 26
USPS 9298 1984 10
Binary Alpha Digits (Binalpha) 1404 2480 36
Optical Recognition (Optrec) 5620 496 10
MNIST 70000 6076 10

Faces AT&T faces 400 19964 40
UMIST 575 10304 20
Faces96 3016 19375 151
Labeled Faces in Wild (LFW) 29791 4324 158

Speech Isolet 7797 617 26
Wall Street Journal (WSJ) 34942 25 131

Other datasets Image 2310 18 7
Vowel 990 10 11
Leaves 1599 192 100

As in any matrix learning method, for high dimensional
datasets, learning (or even storing) a full matrix L is com-
putationally intensive. Previous literature have identified
three ways to tackle this issue,

1. Learn a diagonal L instead of full matrix L. This drasti-
cally improves the scalability, but at the cost of flexibil-
ity in the set of transformations (Weinberger and Saul,
2009).

2. Directly learn a low rank transformation, i.e. L ∈ Rr×P
where r � P instead of a full rank matrix. However, the
optimization problem now becomes nonconvex in terms
of this low rank L (see (Journée et al., 2010)).

3. Reduce the dimension of the data using Singular Value
Decomposition (SVD), followed by learning a full rank
matrix on the low dimensional data.

In our experiments, we found that solution (3) worked best.
Specifically, dimension reduction using SVD actually im-
proved the clustering performance on multiple datasets
since it removes the intrinsic noise in the data. This is
agreement with several observations in practice (Zha et al.,
2001), (Drineas et al., 2004) and in theory (Ding and He,
2004),(Kannan et al., 2004). Therefore, on datasets with
more than 200 dimensions, we used SVD to fold the data
into a 30 dimensional space. Refer supplementary material
(sec 9.1) for detailed experiments on how SVD improves
clustering.

4.3 EXPERIMENTAL SETTINGS

For all the experiments, we consider the class-labels as-
sociated with the data to be the user expected groundtruth
clusters. We randomly partitioned the classes into three sets
- training, validation and testing. The methods TCS-GM,
TCS-GM-L2 and LMNN use the validation set for tuning
the regularization parameter. Note that CSP could not scale
on datasets with more than 5000 instances. All the results
are reported only on the test-set.
We assume the number of clusters in the unlabeled data is
always known, if not, well established techniques like AIC
or BIC can be used (finding the right number of clusters is
a separate problem that we will not focus on).
We used five clustering metrics for evaluations - Normal-
ized Mutual Information (NMI), Mutual Information (MI),
Rand Index (RI), Adjusted Rand Index (ARI) and Purity
(refer supplementary material for definitions). All results
are averaged over 50 different restarts with Kmeans++ ini-
tialization (Arthur and Vassilvitskii, 2007).

5 RESULTS

We present three sets of results that answer the following
questions,

1. Does supervision help in clustering better ?
2. By how much do the different methods exploit this

supervision ?
3. How does the amount of supervision affect the quality
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Figure 1: (a) Data from of a mixture of six bimodal Gaussians, (b) Clusters generated by GM on raw data. The generated
clusters do not match ground-truth. (c) Clusters generated by TCS-GM. The generated clusters match ground-truth

of clusters generated ?

5.1 ANALYSIS ON SYNTHETIC DATA

First, we show how supervision can be helpful using a
small synthetic dataset. We generated data from a mix-
ture of six clusters, where each cluster is a bimodal Gaus-
sian distribution. The clusters lie along the x-axis, where as
the modes of the Gaussians are stretched out on the Y-axis
(Figure 1a). These are the clusters the user expects to see
in the data.
Consider the task of clustering the raw data from first 3
clusters - the darkblue, cyan and purple clusters. Without
any supervision, using unsupervised GM results in a clus-
tering show in Figure 1b. Clearly there is confusion be-
tween clusters 2 and 3 and the user expectations are not
met. On the other hand, if we use TCS-GM with clusters
4, 5, 6 as supervision, we learn a transformation that suc-
cessfully captures user expectations i.e. the transformation
simply collapses all points to the X-axis. When we apply
this learnt transformation to the raw data and cluster using
GM, we can accurately recover the ground-truth (Fig 1c)

5.2 PERFORMANCE ON REAL-WORLD DATA

Due to lack of space, we report the results only using the
NMI metric (the supplementary material contains detailed
results using all metrics). Table 3 reports the results of the
all supervised and unsupervised models. We defer the re-
sults of the vMF-based methods to Section 5.2.1. The re-
sults show that our proposed TCS-GM and TCS-GM-L2
achieve the best performance in 19 out of the 23 datasets.
We now discuss the results from each domain.
In the time-series domain, Aussign and Libras are sign-
language datasets where each instance represents hand-
movement over time, DSPA is a human activity recogni-
tion dataset where each instance is a human performing
one of many predefined actions such as walking, running,
etc, Char is a handwriting recognition dataset where the
instances are (x, y) co-ordinates of pen-tip velocity over
time. For all these datasets, the instances are represented
as a sequence of vectors (sensor measurements) over time

and the goal is to cluster the instances by the associated
classes i.e. handsign (Aussign, Libras) or activity (DSPA)
or character (Char). To represent each instance as a fixed
dimesional vector, we used fast fourier transform to extract
the first several high-frequency components of each feature
and concatenated them. In this domain TCS-GM-L2 per-
forms the best by showing a 14.2% average improvement
over unsupervised GM, followed by TCS-GM with a 9.6%

average improvement.
CNAE, K9, TDT4, TDT5 are popular text datasets for clas-
sification and clustering (Banerjee et al., 2006). We used
the standard bag-of-words with ‘ltc’ term-weighting 5. On
all datasets, only TCS-GM and CSP show any improve-
ment at all. The rest are mostly negatively impacted by
supervision. The improvement of TCS-GM is higher than
that of CSP.
In the handwritten characters domain (Penbased, Letter,
USPS, Binalpha, Optrec and MNIST) each instance is an
image-representation of a single character and the task is
to cluster the instances characterwise. For feature repre-
sentation, on the latter four datasets, we used histogram
of oriented gradients (HOG) (Srikantan et al., 1996) rep-
resentation with a patchsize of 2 across 9 different ori-
entations. Penbased and Letter datasets have predefined
set of features such as mean pixel value, edgewise mean,
etc. Performance wise, TCS-GM and TCS-GM-L2 achieve
the best performance, TCS-GM seems to be more suited
to HOG-based features whereas TCS-GM-L2 works better
with pixel-based statistical features.
In the face clustering tasks (AT & T, Umist, Faces96 and
LFW) each instance is an image of a single person’s face
and the task is to cluster the instances by faces. We rep-
resented each instance using HOG features extracted from
the image in 9 orientations and varying patchsizes. Both
TCS-GM-L2 and LMNN show competitive performance in
this task. However, we believe that all datasets except LFW
are highly contrived - the images on these other datasets
were taken in ideal lighting and posing conditions. The

5http://nlp.stanford.edu/IR-book/html/htmledition/
document-and-query-weighting-schemes-1.html
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Table 3: The NMI of the various supervised and unsupervised methods on unnormalized data. The percentage improvement
over the unsupervised GM baseline is given in paranthesis. The results of the significance tests between the best method
against the other methods on each dataset is denoted by a † for significance at 1% level. NS denotes the method could not
be scaled to the dataset.
Domain Dataset Supervised Learning Method Unsupervised

TCS-GM TCS-GM-L2 LMNN PCC BP CSP GM
Time series Aussign 0.89† (8.9%) 0.93† (13.2%) 0.94 (14.7%) 0.78† (-5.1%) 0.84† (2.6%) 0.71† (-13.5%) 0.82†

Char 0.75† (9.5%) 0.75 (9.8%) 0.67† (-2.3%) 0.69† (0.4%) 0.74† (7.3%) 0.59† (-14.5%) 0.69†

DSPA 0.69† (1.0%) 0.73 (8.3%) 0.60† (-11.9%) 0.67† (-1.5%) 0.64† (-5.3%) 0.71† (4.6%) 0.68†

Libras 0.61† (18.7%) 0.64 (25.4%) 0.50† (-2.7%) 0.60† (17.0%) 0.59† (15.6%) 0.45† (-11.7%) 0.51†

Avg Improvement 9.5% 14.2% -0.6% 2.7% 5.0% -8.04%

Text CNAE 0.61 (25.4%) 0.24† (-50.7%) 0.31† (-35.3%) 0.43† (-11.1%) 0.48† (-0.8%) 0.59† (21.7%) 0.48†

K9 0.58 (3.6%) 0.41† (-27.8%) 0.38† (-33.2%) 0.56† (0.2%) 0.51† (-9.1%) 0.58 (3.4%) 0.56†

TDT4 0.91 (0.8%) 0.69† (-23.3%) 0.90 (0.2%) 0.89† (-0.8%) 0.89† (-0.4%) 0.87† (-2.7%) 0.90†

TDT5 0.70 (0.6%) 0.69 (0.4%) 0.68† (-2.5%) 0.69† (0.0%) 0.69 (0.3%) NS 0.69

Avg Improvement 7.6% -25.3% -17.7% -2.9% -2.5% -

Handwritten Penbased 0.56† (6.5%) 0.60 (15.7%) 0.57† (9.4%) 0.40† (-23.2%) 0.49† (-6.7%) NS 0.52†

Characters Letter 0.48† (36.2%) 0.50 (43.6%) 0.43† (23.6%) 0.27† (-24.5%) 0.37† (6.3%) NS 0.35†

USPS 0.84 (3.7%) 0.46† (-44.2%) 0.79† (-3.7%) 0.81† (-1.0%) 0.79† (-3.6%) NS 0.81†

Binalpha 0.79 (10.4%) 0.70† (-2.2%) 0.70† (-2.2%) 0.72† (0.8%) 0.68† (-5.4%) 0.67† (-7.2%) 0.72†

Optrec 0.94 (2.6%) 0.73† (-20.3%) 0.91† (-0.8%) 0.86† (-5.3%) 0.91† (0.2%) NS 0.91†

MNIST 0.84 (1.4%) 0.70† (-15.5%) 0.72† (-13.6%) 0.55† (-33.4%) 0.74† (-10.7%) NS 0.83†

Avg Improvement 10.1% -3.8% 2.1% -14.4% -3.3% -

Faces AT & T 0.84† (1.1%) 0.88 (5.4%) 0.84† (1.0%) 0.82† (-1.4%) 0.85† (2.2%) 0.78† (-6.1%) 0.83†

Umist 0.59† (6.1%) 0.74† (33.4%) 0.79 (43.0%) 0.57† (2.7%) 0.56† (1.6%) 0.48† (-13.2%) 0.55†

Faces96 0.92† (4.1%) 0.93† (4.9%) 0.94 (6.0%) 0.89† (0.1%) 0.89† (0.9%) 0.81† (-8.4%) 0.89†

LFW 0.39† (36.1%) 0.41 (45.6%) 0.33† (16.1%) 0.31† (9.5%) 0.30† (4.2%) NS 0.28†

Avg Improvement 11.9% 22.3% 16.5% 2.7% 2.2% -

Speech Isolet 0.83 (2.2%) 0.80† (-2.5%) 0.81† (-0.5%) 0.75† (-8.5%) 0.83† (1.6%) NS 0.82†

WSJ 0.81 (46.5%) 0.81† (46.1%) 0.81† (45.9%) 0.52† (-6.1%) 0.71† (27.4%) NS 0.56†

Avg Improvement 24.3% 21.8% 22.7% -7.3% 14.5% -

Other datasets Image 0.84 (7.2%) 0.40† (-48.8%) 0.49† (-36.5%) 0.60† (-22.9%) 0.70† (-10.4%) 0.75† (-4.5%) 0.78†

Vowel 0.41 (63.6%) 0.39† (55.7%) 0.35† (36.8%) 0.14† (-46.6%) 0.23† (-7.1%) 0.22† (-13.2%) 0.25†

Leaves 0.82† (5.9%) 0.82† (5.7%) 0.85 (9.5%) 0.77† (-1.4%) 0.81† (4.8%) 0.73† (-6.4%) 0.78†

Avg Improvement 25.6% 4.2% 3.2% -23.7% -4.2% -4.2%

LFW dataset, on the other hand, represents a more realistic
distribution of images as found on the web. On this dataset,
TCS-GM-L2 works best with a 45.6% improvement.
In the speech domain, we tested on two datasets Isolet,
WSJ. In Isolet the task is to cluster the instances by the con-
tent of the speech (more specifically the letter uttered) and
in WSJ the task is to cluster by the speaker. The instances
are represented using well known audio features such as
MFCC’s. On both datasets TCS-GM achieves the best per-
formance. The results on WSJ particularly highlight the
importance of having supervision with a 46% improvement
over unsupervised GM.
Image, Vowel and Leaves are other popularly used classi-

fication datasets. The instances in Image and Leaves are
pictures of outdoor scenes and leaves, whereas in Vowel
the instances are various utterances of different vowels. On
two out of the three datasets, TCS-GM achieves the best
results.
To further validate our results, we conducted two-sided
significance tests using paired t-test between the best-
performing method against the rest of the methods on each
dataset. The NMI on the 50 different restarts are consid-
ered as observed samples. The null hypothesis is that there
is no significance difference between the methods. The re-
sults of the testing (Table 3) show that almost all the results
are significant.
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Table 4: The NMI of TCS-VM with other supervised and unsupervised methods on normalized data. The results of the
significance tests between the best method against the other methods on each dataset is denoted by a † for significance at
1% level.
Domain Dataset Supervised Learning Method Unsupervised

TCS-VM TCS-GM TCS-GM-L2 LMNN PCC BP CSP VM GM
Text CNAE 0.905 0.678† 0.678† 0.692† 0.557† 0.462 † 0.588† 0.857† 0.669†

K9 0.638 0.621† 0.443† 0.485† 0.617† 0.584† 0.589† 0.615† 0.616†

TDT4 0.933 0.916† 0.755† 0.929† 0.914† 0.911† 0.870† 0.930† 0.915†

TDT5 0.781 0.750† 0.746† 0.707† 0.750† 0.756† - 0.766 † 0.755 †
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Figure 2: Effect of amount of supervision on the quality
of clusters. We plot the improvement in NMI achieved by
TSC-GM over baseline GM as we increase the number of
training clusters.

5.2.1 PERFORMANCE OF vMF-BASED
METHODS

Due to lack of space we present the results of vMF-based
models only in the text domain. Normalization to a unit
sphere has often shown to work very well for text data, es-
pecially vMF-based models have been particularly effec-
tive in generating good clusters (Banerjee et al., 2006). We
compare the following vMF-based methods on text data,

1. VM A mixture ofK vMF distributions with individual
means and a single common concentration parame-
ter. All parameters are estimated using EM algorithm.
Note that this model like GM is unsupervised and can-
not use supervision.

2. TCS-VM Our proposed TCS using vMF mixture
model (section 3.2) and ‖A − I‖2 regularization, fol-
lowed by VM on the transformed unlabeled data.

For data representation, we used the bag-of-words with
‘ltc’ term-weighting and svd-based dimension reduction to
30 dimensions, followed by a normalization to unit-sphere.
The results are shown in Table 4. For an informative com-
parison we also included the results of the other methods -
TCS-GM, TCS-GM-L2, LMNN, PCC, BP, CSP and GM.
On all text datasets the proposed TCS-VM model performs
best. In the complete set of results for all domains for nor-
malized data (presented in the supplementary material), our

proposed TCS models achieve the best performance in 20
out of the 23 datasets.

5.3 EFFECT OF AMOUNT OF SUPERVISION

We analyze how the quality of clusters generated depend
on the amount of supervision provided. We used a subset
of the WSJ dataset with 25 training and 25 testing clusters
for this task.
Figure 2 plots the improvement in NMI achieved by TCS-
GM over baseline GM as we increase the number of train-
ing clusters. Initially there is no improvement in perfor-
mance, but as training clusters increase, there is a gradual
improvement in performance, until it reaches a saturation
level. This shows that (a) there is some minimum amount
of supervision needed to see any improvement (b) provid-
ing more supervision does not increase performance indef-
initely but saturates at certain level. This kind of curve is
typical of most machine learning algorithms.

6 CONCLUSION

In this paper we proposed a novel framework that can ex-
ploit supervision to generate better clustering of unlabeled
data. By learning a common underlying transformation
function, our framework is able to successfully generalize
the observed clusters to discover new clusters that match
user expectations. We explored two instantiations of our
framework with Gaussian and von Mises-Fisher mixture
models. For both the models we developed fast optimiza-
tion alorithms to estimate the model parameters. Our ex-
tensive testing on 23 datasets provide strong empirical sup-
port in favour of our proposed framework. In future, we
would like to adapt our framework to spectral clustering
based methods.
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Abstract

In this paper we study lifted inference for
the Weighted First-Order Model Counting prob-
lem (WFOMC), which counts the assignments
that satisfy a given sentence in first-order
logic (FOL); it has applications in Statisti-
cal Relational Learning (SRL) and Probabilis-
tic Databases (PDB). We present several results.
First, we describe a lifted inference algorithm
that generalizes prior approaches in SRL and
PDB. Second, we provide a novel dichotomy
result for a non-trivial fragment of FO CNF
sentences, showing that for each sentence the
WFOMC problem is either in PTIME or #P-
hard in the size of the input domain; we prove
that, in the first case our algorithm solves the
WFOMC problem in PTIME, and in the second
case it fails. Third, we present several proper-
ties of the algorithm. Finally, we discuss limi-
tations of lifted inference for symmetric proba-
bilistic databases (where the weights of ground
literals depend only on the relation name, and
not on the constants of the domain), and prove
the impossibility of a dichotomy result for the
complexity of probabilistic inference for the en-
tire language FOL.

1 INTRODUCTION

Weighted model counting (WMC) is a problem at the core
of many reasoning tasks. It is based on the model count-
ing or #SAT task (Gomes et al., 2009), where the goal is
to count assignments that satisfy a given logical sentence.
WMC generalizes model counting by assigning a weight to
each assignment, and computing the sum of their weights.
WMC has many applications in AI and its importance is
increasing. Most notably, it underlies state-of-the-art prob-
abilistic inference algorithms for Bayesian networks (Dar-
wiche, 2002; Sang et al., 2005; Chavira and Darwiche,

2008), relational Bayesian networks (Chavira et al., 2006)
and probabilistic programs (Fierens et al., 2011).

This paper is concerned with weighted first-order model
counting (WFOMC), where we sum the weights of assign-
ments that satisfy a sentence in finite-domain first-order
logic. Again, this reasoning task underlies efficient algo-
rithms for probabilistic reasoning, this time for popular rep-
resentations in statistical relational learning (SRL) (Getoor
and Taskar, 2007), such as Markov logic networks (Van
den Broeck et al., 2011; Gogate and Domingos, 2011) and
probabilistic logic programs (Van den Broeck et al., 2014).
Moreover, WFOMC uncovers a deep connection between
AI and database research, where query evaluation in prob-
abilistic databases (PDBs) (Suciu et al., 2011) essentially
considers the same task. A PDB defines a probability, or
weight, for every possible world, and each database query
is a sentence encoding a set of worlds, whose combined
probability we want to compute.

Early on, the disconnect between compact relational repre-
sentations of uncertainty, and the intractability of inference
at the ground, propositional level was noted, and efforts
were made to exploit the relational structure for inference,
using so-called lifted inference algorithms (Poole, 2003;
Kersting, 2012). SRL and PDB algorithms for WFOMC all
fall into this category. Despite these commonalities, there
are also important differences. SRL has so far considered
symmetric WFOMC problems, where relations of the same
type are assumed to contribute equally to the probability
of a world. This assumption holds for certain queries on
SRL models, such as single marginals and partition func-
tions, but fails for more complex conditional probability
queries. These break lifted algorithms based on symmetric
WFOMC (Van den Broeck and Darwiche, 2013). PDBs, on
the other hand, have considered the asymmetric WFOMC
setting from the start. While there are many semantics
for PDBs, the most common models are tuple-independent
PDBs, which assign each tuple a distinct probability, many
tuples have probability zero, and no symmetries can be ex-
pected. However, current asymmetric WFOMC algorithms
(Dalvi and Suciu, 2012) suffer from a major limitation of
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their own, in that they can only count models of sentences
in monotone disjunctive normal form (MDNF) (i.e., DNF
without negation). Such sentences represent unions of con-
junctive database queries (UCQ). WFOMC encodings of
SRL models almost always fall outside this class.

The present work seeks to upgrade a well-known PDB al-
gorithm for asymmetric WFOMC (Dalvi and Suciu, 2012)
to the SRL setting, by enabling it to count models of ar-
bitrary sentences in conjunctive normal form (CNF). This
permits its use for lifted SRL inference with arbitrary soft
or hard evidence, or equivalently, probabilistic database
queries with negation. Our first contribution is this algo-
rithm, which we call LiftR, and is presented in Section 3.

Although LiftR has clear practical merits, we are in fact
motivated by fundamental theoretical questions. In the
PDB setting, our algorithm is known to come with a sharp
complexity guarantee, called the dichotomy theorem (Dalvi
and Suciu, 2012). By only looking at the structure of the
first-order sentence (i.e., the database query), the algorithm
reports failure when the problem is #P-hard (in terms of
data complexity), and otherwise guarantees to solve it in
time polynomial in the domain (i.e., database) size. It can
thus precisely classify MDNF sentences as being tractable
or intractable for asymmetric WFOMC. Whereas several
complexity results for symmetric WFOMC exist (Van den
Broeck, 2011; Jaeger and Van den Broeck, 2012), the com-
plexity of asymmetric WFOMC for SRL queries with evi-
dence is still poorly understood. Our second and main con-
tribution, presented in Section 4, is a novel dichotomy result
over a small but non-trivial fragment of CNFs. We com-
pletely classify this class of problems as either computable
in polynomial time or #P-hard. This represents a first step
towards proving the following conjecture: LiftR provides
a dichotomy for asymmetric WFOMC on arbitrary CNF
sentences, and therefore perfectly classifies all related SRL
models as tractable or intractable for conditional queries.

As our third contribution, presented in Section 5, we illus-
trate the algorithm with examples that show its application
to common probabilistic models. We discuss the capabil-
ities of LiftR that are not present in other lifted inference
techniques.

As our fourth and final contribution, in Section 6, we dis-
cuss extensions of our algorithm to symmetric WFOMC,
but also show the impossibility of a dichotomy result for
arbitrary first-order logic sentences.

2 BACKGROUND

We begin by introducing the necessary background on re-
lational logic and weighted model counting.

2.1 RELATIONAL LOGIC

Throughout this paper, we will work with the relational
fragment of first-order logic (FOL), which we now briefly
review. An atom P (t1, . . . , tn) consists of predicate P /n
of arity n followed by n arguments, which are either con-
stants or logical variables {x, y, . . .}. A literal is an atom
or its negation. A formula combines atoms with logical
connectives and quantifiers ∃ and ∀. A substitution [a/x]
replaces all occurrences of x by a. Its application to for-
mula F is denoted F [a/x]. A formula is a sentence if each
logical variable x is enclosed by a ∀x or ∃x. A formula
is ground if it contains no logical variables. A clause is a
universally quantified disjunction of literals. A term is an
existentially quantified conjunction of literals. A CNF is a
conjunction of clauses, and a DNF is a disjunction of terms.
A monotone CNF or DNF contains no negation symbols.
As usual, we drop the universal quantifiers from the CNF
syntax.

The semantics of sentences are defined in the usual
way (Hinrichs and Genesereth, 2006). An interpretation, or
world, I that satisfies sentence ∆ is denoted by I ⊧ ∆, and
represented as a set of literals. Our algorithm checks prop-
erties of sentences that are undecidable in general FOL, but
decidable, with the following complexity, in the CNF frag-
ment we investigate.

Theorem 2.1. (Sagiv and Yannakakis, 1980) (Farré et al.,
2006) Checking whether logical implication Q ⇒ Q′ or
equivalence Q ≡ Q′ holds between two CNF sentences is
Πp

2-complete.

2.2 WEIGHTED MODEL COUNTING

Weighted model counting was introduced as a proposi-
tional reasoning problem.

Definition 2.2 (WMC). Given a propositional sentence ∆
over literals L, and a weight function w ∶ L → R≥0, the
weighted model count (WMC) is

WMC(∆,w) = ∑
I⊧∆

∏
`∈I

w(`).

We will consider its generalization to weighted first-order
model counting (WFOMC), where ∆ is now a sentence in
relational logic, and L consists of all ground first-order lit-
erals for a given domain of constants.

The WFOMC task captures query answering in probabilis-
tic database. Take for example the database

Prof(Anne) ∶ 0.9 Prof(Charlie) ∶ 0.1
Student(Bob) ∶ 0.5 Student(Charlie) ∶ 0.8

Advises(Anne,Bob) ∶ 0.7 Advises(Bob,Charlie) ∶ 0.1
and the UCQ (monotone DNF) query

Q = ∃x,∃y, Prof(x) ∧ Advises(x, y) ∧ Student(y).
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If we set ∆ = Q and w to map each literal to its probability
in the database, then our query answer is

Pr(Q) = WFOMC(∆,w) = 0.9 ⋅ 0.7 ⋅ 0.5 = 0.315.

We refer to the general case above as asymmetric WFOMC,
because it allows w(Prof(Anne)) to be different from
w(Prof(Charlie)). We use symmetric WFOMC to refer to
the special case where w simplifies into two weight func-
tions w⋆, w̄⋆ that map predicates to weights, instead of lit-
erals, that is

w(`) =
⎧⎪⎪⎨⎪⎪⎩

w⋆(P ) when ` is of the form P (c)
w̄⋆(P ) when ` is of the form ¬P (c)

Symmetric WFOMC no longer directly captures PDBs.
Yet it can still encode many SRL models, including
parfactor graphs (Poole, 2003), Markov logic networks
(MLNs) (Richardson and Domingos, 2006) and probabilis-
tic logic programs (De Raedt et al., 2008). We refer to
(Van den Broeck et al., 2014) for the details, and show here
the following example MLN.

2 Prof(x) ∧ Advises(x, y)⇒ Student(y)
It states that the probability of a world increases by a fac-
tor e2 with every pair of people x, y for which the formula
holds. Its WFOMC encoding has ∆ equal to

∀x,∀y, F(x, y)⇔
[Prof(x) ∧ Advises(x, y)⇒ Student(y)]

and weight functions w⋆, w̄⋆ such that w⋆(F) = e2 and all
other predicates map to 1.

Answering an SRL query Q given evidence E, that is,
Pr(Q ∣E), using a symmetric WFOMC encoding, gener-
ally requires solving two WFOMC tasks:

Pr(Q ∣E) = WFOMC(Q ∧E ∧∆,w)
WFOMC(E ∧∆,w)

Symmetric WFOMC problems are strictly more tractable
than asymmetric ones. We postpone the discussion of this
observation to Section 5, but already note that all theories
∆ with up to two logical variables per formula support
domain-lifted inference (Van den Broeck, 2011), which
means that any WFOMC query runs in time polynomial in
the domain size (i.e, number of constants). For conditional
probability queries, even though fixed-parameter complex-
ity bounds exist that use symmetric WFOMC (Van den
Broeck and Darwiche, 2013), the actual underlying reason-
ing task is asymmetric WFOMC, whose complexity we in-
vestigate for the first time.

Finally, we make three simplifying observations. First,
SRL query Q and evidence E typically assign values to
random variables. This means that the query and evidence
can be absorbed into the asymmetric weight function, by
setting the weight of literals disagreeing with Q or E to

zero. We hence compute:

Pr(Q ∣E) = WFOMC(∆,wQ∧E)
WFOMC(∆,wE)

This means that our complexity analysis for a given en-
coding ∆ applies to both numerator and denominator for
arbitrary Q and E, and that polytime WFOMC for ∆ im-
plies polytime Pr(Q ∣E) computation. The converse is not
true, since it is possible that both WFOMC calls are #P-
hard, but their ratio is in PTIME. Second, we will from
now on assume that ∆ is in CNF. The WFOMC encod-
ing of many SRL formalisms is already in CNF, or can
be reduced to it (Van den Broeck et al., 2014). For PDB
queries that are in monotone DNF, we can simply compute
Pr(Q) = 1 − Pr(¬Q), which reduces to WFOMC on a
CNF. Moreover, by adjusting the probabilities in the PDB,
this CNF can also be made monotone. Third, we will as-
sume that w(`) = 1−w(¬`), which can always be achieved
by normalizing the weights.

Under these assumptions, we can simply refer to
WFOMC(Q,w) as Pr(Q), to Q as the CNF query, to
w(`) as the probability Pr(`), and to the entire weight
function w as the PDB. This is in agreement with notation
in the PDB literature.

3 ALGORITHM LiftR

We present here the lifted algorithm LiftR (pronounced lift-
ER), which, given a CNF formula Q computes Pr(Q) in
polynomial time in the size of the PDB, or fails. In the next
section we provide some evidence for its completeness: un-
der certain assumptions, if LiftR fails on formula Q, then
computing Pr(Q) is #P-hard in the PDB size.

3.1 DEFINITIONS

An implicate of Q is some clause C s.t. the logical impli-
cation Q ⇒ C holds. C is a prime implicate if there is no
other implicate C ′ s.t. C ′ ⇒ C.

A connected component of a clause C is a minimal subset
of its atoms that have no logical variables in common with
the rest of the clause. If some prime implicate C has more
than one connected component, then we can write it as:

C =D1 ∨D2 ∨⋯ ∨Dm

where eachDi is a clause with distinct variables. Applying
distributivity, we write Q in union-CNF form:

Q = Q1 ∨Q2 ∨⋯ ∨Qm
where each Qi is a CNF with distinct variables.

We check for disconnected prime implicatesD1∨D2 where
both D1 and D2 subsume some clause of Q. Intuitively,
this means that when we apply inclusion/exclusion to the
union-CNF, the resulting queries are simpler. The search
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for D1, D2 can proceed using some standard inference al-
gorithm, e.g. resolution. By Theorem 2.1, this problem is
Πp

2-complete in the size of the query Q, but independent of
the PDB size.

A set of separator variables for a queryQ = ⋀ki=1Ci is a set
of variables xi, i = 1, k such that, (a) for each clause Ci, xi
occurs in all atoms of Ci, and (b) any two atoms (not nec-
essarily in the same clause) referring to the same relation
R have their separator variable on the same position.

3.2 PREPROCESSING

We start by transforming Q (and PDB) such that:

1. No constants occur in Q.
2. If all the variables in Q are x1, x2, . . . , xk, then ev-

ery relational atom in Q (positive or negated) is of the
form R(xi1 , xi2 , . . . ) such that i1 < i2 < . . .

Condition (1) can be enforced by shattering Q w.r.t. its
variables. Condition (2) can be enforced by modifying both
the query Q and the database, in a process called ranking
and described in the appendix. Here, we illustrate ranking
on an example. Consider the query:

Q = (R(x, y) ∨ S(x, y)) ∧ (¬R(x, y) ∨ ¬S(y, x))
Define R1(x, y) ≡ R(x, y) ∧ (x < y); R2(x) ≡ R(x,x);
R3(y, x) ≡ R(x, y) ∧ (x > y). Define similarly S1, S2, S3.
Given a PDB with relations R, S, we define a new
PDB′ over the six relations by setting Pr(R1(a, b)) =
Pr(R(a, b)) when a < b, Pr(R1(a, b)) = 0 when a > b,
Pr(R2(a)) = Pr(R(a, a)), etc. Then, the query Q over
PDB is equivalent to the following query over PDB′:

(R1(x, y) ∨ S1(x, y)) ∧ (¬R1(x, y) ∨ ¬S3(x, y))∧
(R2(x) ∨ S2(x)) ∧ (¬R2(x) ∨ ¬S2(x))∧
(R3(x, y) ∨ S3(x, y)) ∧ (¬R3(x, y) ∨ ¬S1(x, y))

3.3 ALGORITHM DESCRIPTION

Algorithm LiftR, given in Figure 1, proceeds recursively on
the structure of the CNF query Q. When it reaches ground
atoms, it simply looks up their probabilities in the PDB.
Otherwise, it performs the following sequence of steps.

First, it tries to express Q as a union-CNF. If it succeeds,
and if the union can be partitioned into two sets that do not
share any relational symbols, Q = Q1 ∨Q2, then it applies
a Decomposable Disjunction:

Pr(Q) = 1 − (1 −Pr(Q1)(1 −Pr(Q2))
Otherwise, it applies the Inclusion/Exclusion formula:

Pr(Q) = − ∑
s⊆[m]

(−1)∣s∣ Pr(⋀
i∈s
Qi)

However, before computing the recursive probabilities, our
algorithm first checks for equivalent expressions, i.e. it

Algorithm LiftR

Input: Ranked and shattered queryQ
Probabilistic DB with domainD

Output: Pr(Q)

1 S tep 0 : I f Q i s a s i n g l e ground l i t e r a l ` , r e t u r n
i t s p r o b a b i l i t y Pr(`) i n PDB

2 S tep 1 : Wr i t e Q as a union−CNF : Q = Q1 ∨Q2 ∨⋯ ∨Qm
3 S tep 2 : I f m > 1 and Q can be p a r t i t i o n e d i n t o two

s e t s Q = Q′ ∨Q′′ wi th d i s j o i n t r e l a t i o n s y m b o l s ,
r e t u r n 1 − (1 −Pr(Q1)) ⋅ (1 −Pr(Q2))

4 / * Decomposable D i s j u n c t i o n * /
5 S tep 3 : I f Q c a n n o t be p a r t i t i o n e d , r e t u r n

∑s⊆[m](−1)∣s∣ Pr(⋀i∈sQi)
6 / * I n c l u s i o n / E x c l u s i o n − pe r fo rm c a n c e l l a t i o n s

b e f o r e r e c u r s i o n * /
7 S tep 4 : Wr i t e Q i n CNF: Q = C1 ∧C2 ∧⋯ ∧Ck
8 S tep 5 : I f k > 1 , and Q can be p a r t i t i o n e d i n t o two

s e t s Q = Q′ ∧Q′′ wi th d i s j o i n t r e l a t i o n s y m b o l s ,
r e t u r n Pr(Q1) ⋅Pr(Q2)

9 / * Decomposable Conjunct ion * /
10 S tep 6 : I f Q has a s e p a r a t o r v a r i a b l e , r e t u r n

∏a∈D Pr(C1[a/x1] ∧⋯ ∧Ck[a/xk])
11 / * Decomposable U n i v e r s a l Q u a n t i f i e r * /
12 O t h e r w i s e FAIL

Figure 1: Algorithm for Computing Pr(Q)

checks for terms s1, s2 in the inclusion/exclusion formula
such that ⋀i∈s1 Qi ≡ ⋀i∈s2 Qi: in that case, these terms
either cancel out, or add up (and need be computed only
once). We show in Section 5.4 the critical role that the can-
cellation step plays for the completeness of the algorithm.
To check cancellations, the algorithm needs to check for
equivalent CNF expressions. This can be done using some
standard inference algorithm (recall from Theorem 2.1 that
this problem is Πp

2-complete in the size of the CNF expres-
sion).

If neither of the above steps apply, then the algorithm
checks if Q can be partitioned into two sets of clauses that
do not share any common relation symbols. In that case,
Q = Q′ ∧Q′′, and its probability is computed using a De-
composable Conjunction:

Pr(Q) = Pr(Q′) ⋅Pr(Q′′)
Finally, if none of the above cases apply to the CNF query
Q = C1 ∧C2 ∧⋯∧Ck, then the algorithm tries to find a set
of separator variables x1, . . . , xk (one for each clause). If it
finds them, then the probability is given by a Decomposable
Universal Quantifier:

Pr(Q) = ∏
a∈Domain

Pr(C1[a/x1] ∧⋯ ∧Ck[a/xk])

We prove our first main result:

Theorem 3.1. One of the following holds: (1) either LiftR
fails onQ, or (2) for any domain size n and a PDB consist-
ing of probabilities for the ground tuples, LiftR computes
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Pr(Q) in polynomial time in n.

Proof. (Sketch) The only step of the algorithm that de-
pends on the domain size n is the decomposable universal
quantifier step; this also reduces by 1 the arity of every re-
lation symbol, since it substitutes it by the same constant
a. Therefore, the algorithm runs in time O(nk), where k
is the largest arity of any relation symbol. We note that the
constant behind O(⋯) may be exponential in the size of
the query Q.

4 MAIN COMPLEXITY RESULT

In this section we describe our main technical result of the
paper: that the algorithm is complete when restricted to a
certain class of CNF queries.

We first review a prior result, to put ours in perspective.
(Dalvi and Suciu, 2012) define an algorithm for Monotone
DNF (called Unions Of Conjunctive Queries), which can
be adapted to Monotone CNF; that adaptation is equivalent
to LiftR restricted to Monotone CNF queries. (Dalvi and
Suciu, 2012) prove:

Theorem 4.1. If algorithm LiftR FAILS on a Monotone
CNF query Q, then computing Pr(Q) is #P-hard.

However, the inclusion of negations in our query language
increases significantly the difficulty of analyzing query
complexities. Our major technical result of the paper ex-
tends Theorem 4.1 to a class of CNF queries with negation.

Define a Type-1 query to be a CNF formula where each
clause has at most two variables denoted x, y, and each
atom is of one of the following three kinds:

– Unary symbols R1(x),R2(x),R3(x), . . .
– Binary symbols S1(x, y), S2(x, y), . . .
– Unary symbols T1(y), T2(y), . . .

or the negation of these symbols.

Our main result is:

Theorem 4.2. For every Type-1 queryQ, if algorithm LiftR
FAILS then computing Pr(Q) is #P-hard.

The proof is a significant extension of the techniques used
by (Dalvi and Suciu, 2012) to prove Theorem 4.1; we give
a proof sketch in Section 7 and include the full proof in the
appendix.

5 PROPERTIES OF LiftR

We now describe several properties of LiftR, and the rela-
tionship to other lifted inference formalisms.

5.1 NEGATIONS CAN LOWER THE
COMPLEXITY

The presence of negations can lower a query’s complexity,
and our algorithm exploits this. To see this, consider the
following query

Q = (Tweets(x) ∨ ¬Follows(x, y))
∧ (Follows(x, y) ∨ ¬Leader(y))

The query says that if x follows anyone then x tweets, and
that everybody follows the leader1.

Our goal is to compute the probability Pr(Q), knowing the
probabilities of all atoms in the domain. We note that the
two clauses are dependent (since both refer to the relation
Follow), hence we cannot simply multiply their proba-
bilities; in fact, we will see that if we remove all negations,
then the resulting query is #P-hard; the algorithm described
by (Dalvi and Suciu, 2012) would immediately get stuck on
this query. Instead, LiftR takes advantage of the negation,
by first computing the prime implicate:

Tweets(x) ∨ ¬Leader(y)
which is a disconnected clause (the two literals use disjoint
logical variables, x and y respectively). After applying dis-
tributivity we obtain:

Q ≡(Q ∧ (Tweets(x))) ∨ (Q ∧ (¬Leader(y)))
≡Q1 ∨Q2

and LiftR applies the inclusion-exclusion formula:

Pr(Q) =Pr(Q1) +Pr(Q2) −Pr(Q1 ∧Q2)
After simplifying the three queries, they become:

Q1 =(Follows(x, y) ∨ ¬Leader(y))
∧ (Tweets(x))

Q2 =(Tweets(x) ∨ ¬Follows(x, y))
∧ (¬Leader(y))

Q1 ∧Q2 =(Tweets(x)) ∧ (¬Leader(y))
The probability of Q1 can now be obtained by multiply-
ing the probabilities of its two clauses; same for the other
two queries. As a consequence, our algorithm computes
the probability Pr(Q) in polynomial time in the size of the
domain and the PDB.

If we remove all negations from Q and rename the predi-
cates we get the following query:

h1 =(R(x) ∨ S(x, y)) ∧ (S(x, y) ∨ T (y))
(Dalvi and Suciu, 2012) proved that computing the prob-
ability of h1 is #P-hard in the size of the PDB. Thus, the
query Q with negation is easy, while h1 is hard, and our
algorithm takes advantage of this by applying resolution.

1To see this, rewrite the query as (Follows(x, y) ⇒
Tweets(x)) ∧ (Leader(y)⇒ Follows(x, y)).
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5.2 ASYMMETRIC WEIGHTS CAN INCREASE
THE COMPLEXITY

(Van den Broeck, 2011) has proven that any query with at
most two logical variables per clause is domain-liftable.
Recall that this means that one can compute its probabil-
ity in PTIME in the size of the domain, in the symmetric
case, when all tuples in a relation have the same probabil-
ity. However, queries with at most two logical variables per
clause can become #P-hard when computed over asymmet-
ric probabilities, as witnessed by the query h1 above.

5.3 COMPARISON WITH PRIOR LIFTED
FO-CIRCUITS

(Van den Broeck et al., 2011; Van den Broeck, 2013)
introduce FO d-DNNF circuits, to compute symmetric
WFOMC problems. An FO d-DNNF is a circuit whose
nodes are one of the following: decomposable conjunction
(Q1 ∧ Q2 where Q1,Q2 do not share any common pred-
icate symbols), deterministic-disjunction (Q1 ∨ Q2 where
Q1 ∧ Q2 ≡ false), inclusion-exclusion, decomposable
universal quantifier (a type of ∀x,Q(x)), and determinis-
tic automorphic existential quantifier. The latter is an op-
eration that is specific only to structures with symmetric
weights, and therefore does not apply to our setting. We
prove that our algorithm can compute all formulas that ad-
mit an FO d-DNNF circuit.

Fact 5.1. IfQ admits an FO d-DNNF without a determinis-
tic automorphic existential quantifier, then LiftR computes
Pr(Q) in PTIME in the size of the PDB.

The proof is immediate by noting that all other node
types in the FO d-DNNF have a corresponding step in
LiftR, except for deterministic disjunction, which our algo-
rithm computes using inclusion-exclusion: Pr(Q1 ∨Q2) =
Pr(Q1)+Pr(Q2)−Pr(Q1 ∧Q2) = Pr(Q1)+Pr(Q2) be-
cause Q1 ∧Q2 ≡ false.

5.4 CANCELLATIONS IN
INCLUSION/EXCLUSION

We now look at a more complex query. First, let us denote
four simple queries:

q0 = (R(x0) ∨ S1(x0, y0))
q1 = (S1(x1, y1) ∨ S2(x1, y1))
q2 = (S2(x2, y2) ∨ S3(x2, y2))
q3 = (S3(x3, y3) ∨ T (y3))

(Dalvi and Suciu, 2012) proved that their conjunction, i.e.
the query h3 = q0∧q1∧q2∧q3, is #P-hard in data complexity.
Instead of h3, consider:

QW = (q0 ∨ q1) ∧ (q0 ∨ q3) ∧ (q2 ∨ q3)
There are three clauses sharing relation symbols, hence we
cannot apply a decomposable conjunction. However, each

clause is disconnected, for example q0 and q1 do not share
logical variables, and we can thus write QW as a disjunc-
tion. After removing redundant terms:

QW = (q0 ∧ q2) ∨ (q0 ∧ q3) ∨ (q1 ∧ q3)
Our algorithm applies the inclusion/exclusion formula:

Pr(QW ) = Pr(q0 ∧ q2) +Pr(q0 ∧ q3) +Pr(q1 ∧ q3)
−Pr(q0 ∧ q2 ∧ q3) −Pr(q0 ∧ q1 ∧ q3) −Pr(q0 ∧⋯ ∧ q3)
+Pr(q0 ∧⋯ ∧ q3)

At this point our algorithm performs an important step: it
cancels out the last two terms of the inclusion/exclusion
formula. Without this key step, no algorithm could com-
pute the query in PTIME, because the last two terms are
precisely h3, which is #P-hard. To perform the cancella-
tion the algorithm needs to first check which FOL formulas
are equivalent, which, as we have seen, is decidable for our
language (Theorem 2.1). Once the equivalent formulas are
detected, the resulting expressions can be organized in a lat-
tice, as shown in Figure 2, and the coefficient of each term
in the inclusion-exclusion formula is precisely the lattice’s
Möbius function (Stanley, 1997).

6 EXTENSIONS AND LIMITATIONS

We describe here an extension of LiftR to symmetric
WFOMC, and also prove that a complete characterization
of the complexity of all FOL queries is impossible.

6.1 SYMMETRIC WFOMC

Many applications of SRL require weighted model count-
ing for FOL formulas over PDBs where the probabilities
are associated to relations rather than individual tuples.
That is, Friend(a, b) has the same probability, indepen-
dently of the constants a, b in the domain. In that symmet-
ric WFOMC case, the model has a large number of sym-
metries (since the probabilities are invariant under permu-
tations of constants), and lifted inference algorithms may
further exploit these symmetries. (Van den Broeck, 2013)
employ one operator that is specific to symmetric proba-
bilities, called atom counting, which is applied to a unary
predicate R(x) and iterates over all possible worlds of that
predicate. Although there are 2n possible worlds for R,
by conditioning on any world, the probability will depend
only on the cardinality k of R, because of the symmetries.
Therefore, the system iterates over k = 0, n, and adds the
conditional probabilities multiplied by (n

k
). For example,

consider the following query:

H = (¬R(x) ∨ S(x, y) ∨ ¬T (y)) (1)

Computing the probabilities of this query is #P-hard (The-
orem 4.2). However, if all tuplesR(a) have the same prob-
ability r ∈ [0,1], and similarly tuples in S,T have proba-

285



1̂

q0 ∧ q2 q0 ∧ q3 q1 ∧ q3

q0 ∧ q2 ∧ q3 q0 ∧ q1 ∧ q3

q0 ∧ q1 ∧ q2 ∧ q3

Figure 2: Lattice for Qw. The bottom query is #P-hard, yet all terms in the inclusion/exclusion formula that contain this
term cancel out, and Pr(QW ) is computable in PTIME.

bilities s, t, then one can check that2

Pr(H) = ∑
k,l=0,n

rk ⋅ (1 − r)n−k ⋅ tl ⋅ (1 − t)n−l ⋅ (1 − skl)

Denote Sym-LiftR the extension of LiftR with a determin-
istic automorphic existential quantifier operator. The ques-
tion is whether this algorithm is complete for computing the
probabilities of queries over PDBs with symmetric proba-
bilities. Folklore belief was that this existential quantifier
operator was the only operator required to exploit the extra
symmetries available in PDBs with symmetric probabili-
ties. For example, all queries in (Van den Broeck et al.,
2011) that can be computed in PTIME over symmetric
PDBs have the property that, if one removes all unary pred-
icates from the query, then the residual query can be com-
puted in PTIME over asymmetric PDBs.

We answer this question in the negative. Consider the fol-
lowing query:

Q =(S(x1, y1) ∨ ¬S(x1, y2) ∨ ¬S(x2, y1) ∨ S(x2, y2))
Here, we interpret S(x, y) as a typed relation, where the
values x and y are from two disjoint domains, of sizes
n1, n2 respectively, in other words, S ⊆ [n1] × [n2].

Theorem 6.1. We have that

– Pr(Q) can be computed in time polynomial in the size
of a symmetric PDB with probability p as Pr(Q) =
f(n1, n2) + g(n1, n2) where:

f(0, n2) =1 f(n1, n2) =
n1

∑
k=1

pkn2g(n1 − k,n2)

g(n1,0) =1 g(n1, n2) =
n2

∑
`=1

(1 − p)n1`f(n1, n2 − `)

– Sym-LiftR fails to compute Q.

The theorem shows that new operators will be required
for symmetric WFOMC. We note that it is currently open
whether computing Pr(Q) is #P-hard in the case of asym-
metric WFOMC.

2Conditioned on ∣R∣ = k and ∣T ∣ = l, the query is true if S
contains at least one pair (a, b) ∈ R × T .

Proof. Denote Dx,Dy the domains of the variables x
and y. Fix a relation S ⊆ D1 × D2. We will denote
a1, a2, . . . ∈ D1 elements from the domain of the variable
x, and b1, b2, . . . ∈ D2 elements from the domain of the
variable y. For any a, b, define a ≺ b if (a, b) ∈ S, and a ≻ b
if (a, b) /∈ S; in the latter case we also write b ≺ a. Then,
(1) for any a, b, either a ≺ b or b ≺ a, (2) ≺ is a partial or-
der on the disjoint union of the domains D1 and D2 iff S
satisfies the query Q. The first property is immediate. To
prove the second property, notice that Q states that there is
no cycle of length 4: x1 ≺ y2 ≺ x2 ≺ y1 ≺ x1. By repeat-
edly applying resolution between Q with itself, we derive
that there are no cycles of length 6, 8, 10, etc. Therefore, ≺
is transitive, hence a partial order. Any finite, partially or-
dered set has a minimal element, i.e. there exists z s.t. ∀x,
x /≺ z. Let Z be the set of all minimal elements, and denote
X = D1 ∩ Z and Y = D2 ∩ Z. Then exactly one of X or
Y is non-empty, because if both were non-empty then, for
a ∈ X and b ∈ Y we have either a ≺ b or a ≻ b contra-
dicting their minimality. Assuming X ≠ ∅, we have (a) for
all a ∈ X and b ∈ D2, (a, b) ∈ S, and (b) Q is true on the
relation S′ = (D1 −X) ×D2. This justifies the recurrence
formula for Pr(Q).

6.2 THE COMPLEXITY OF ARBITRARY FOL
QUERIES

We conjecture that, over asymmetric probabilities (asym-
metric WFOMC), our algorithm is complete, in the sense
that whenever it fails on a query, then the query is prov-
ably #P-hard. Notice that LiftR applies only to a fragment
of FOL, namely to CNF formulas without function sym-
bols, and where all variables are universally quantified. We
present here an impossibility result showing that a com-
plete algorithm cannot exist for general FOL queries. We
use for that a classic result by Trakhtenbrot (Libkin, 2004):
Theorem 6.2 (Finite satisfiability). The problem: “given a
FOL sentence Φ, check whether there exists a finite model
for Φ” is undecidable.

From here we obtain:
Theorem 6.3. There exists no algorithm that, given any
FOL sentence Q checks whether Pr(Q) can be computed
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in PTIME in the asymmetric PDB size.

Proof. By reduction from the finite satisfiability problem.
Fix the hard query H in Eq.(1), for which the count-
ing problem is #P-hard. Recall that H uses the symbols
R,S,T . Let Φ be any formula over a disjoint relational vo-
cabulary (i.e. it doesn’t use R,S,T ). We will construct a
formula Q, such that computing Pr(Q) is in PTIME iff Φ
is unsatisfiable in the finite: this proves the theorem. To
construct Q, first we modify Φ as follows. Let P (x) be an-
other fresh, unary relational symbol. Rewrite Φ into Φ′ as
follows: replacing every (∃x.Γ) with (∃x.P (x) ∧ Γ) and
every (∀x.Γ) with (∀x.P (x)⇒ Γ) (this is not equivalent
to the guarded fragment of FOL); leave the rest of the for-
mula unchanged. Intuitively, Φ′ checks if Φ is true on the
substructure defined by the domain elements that satisfy P .
More precisely: for any database instance I , Φ′ is true on I
iff Φ is true on the substructure of I defined by the domain
elements that satisfy P (x). Define the queryQ = (H∧Φ′).
We now prove the claim.

If Φ is unsatisfiable then so is Φ′, and therefore Pr(Q) = 0
is trivially computable in PTIME.

If Φ is satisfiable, then fix any deterministic database in-
stance I that satisfies Φ; notice that I is deterministic, and
I ⊧ Φ. Let J be any probabilistic instance over the vo-
cabulary for H over a domain disjoint from I . Define
P (x) as follows: P (a) is true for all domain elements
a ∈ I , and P (b) is false for all domain elements b ∈ J .
Consider now the probabilistic database I ∪ J . (Thus,
P (x) is also deterministic, and selects the substructure I
from I ∪ J ; therefore, Φ′ is true in I ∪ J .) We have
Pr(Q) = Pr(H ∧ Φ′) = Pr(H), because Φ′ is true on
I ∪ J . Therefore, computing Pr(Q) is #P-hard. Notice
the role of P : while I satisfies Φ, it is not necessarily the
case that I ∪ J satisfies Φ. However, by our construction
we have ensured that I ∪ J satisfies Φ′.

7 PROOF OF THEOREM 4.2

The proof of Theorem 4.2 is based on a reduction from the
#PP2-CNF problem, which is defined as follows. Given
two disjoint sets of Boolean variables X1, . . . ,Xn and
Y1, . . . , Yn and a bipartite graph E ⊆ [n] × [n], count the
number of satisfying truth assignments #Φ to the formula:
Φ = ⋀(i,j)∈E(Xi ∨ Yj). (Provan and Ball, 1983) have
shown that this problem is #P-hard.

More precisely, we prove the following: given any Type-1
query Q on which the algorithm LiftR fails, we can reduce
the #PP2-CNF problem to computing Pr(Q) on a PDB
with domain size n. The reduction consists of a combi-
natorial part (the construction of certain gadgets), and an
algebraic part, which makes novel use of the concepts of al-
gebraic independence (Yu, 1995) and annihilating polyno-
mials (Kayal, 2009). We include the latter in the appendix,

and only illustrate here the former on a particular query of
Type-1.

We illustrate the combinatorial part of the proof on the fol-
lowing query Q:

(R(x) ∨ ¬S(x, y) ∨ T (y)) ∧ (¬R(x) ∨ S(x, y) ∨ ¬T (y))
To reduce Φ to the problem of computing Pr(Q), we con-
struct a structure with unary predicates R and T and binary
predicate S, with active domain [n].
We define the tuple probabilities as follows. Letting
x, y, a, b ∈ (0,1) be four numbers that will be specified
later, we define:

Pr(R(i)) = x
Pr(T (j)) = y

Pr(S(i, j)) = { a if (i, j) ∈ E
b if (i, j) /∈ E

Note this PDB does not have symmetric probabilities: in
fact, over structures with symmetric probabilities one can
compute Pr(Q) in PTIME.

Let θ denote a valuation of the variables in Φ. Let Eθ de-
note the event ∀i.(R(i) = true iff θ(Xi) = true)
∧ ∀j.(T (j) = true iff θ(Yj) = true).

Eθ completely fixes the unary predicates R and T and
leaves S unspecified. Given Eθ, each Boolean variable
corresponding to some S(x, y) is now independent of ev-
ery other S(x′, y′). In general, given an assignment of
R(i) and T (j), we examine the four formulas that de-
fine the probability that the query is true on (i, j): F1 =
Q[R(i) = 0, T (j) = 0], F2 = Q[R(i) = 0, T (j) = 1],
F3 = Q[R(i) = 1, T (j) = 0], F4 = Q[R(i) = 1, T (j) = 1].
For Q, F1, F2, F3, F4 are as follows:

F1 = ¬S(i, j) F2 = F3 = true F4 = S(i, j)
Denote f1, f2, f3, f4 the arithmetization of these Boolean
formulas:

f1 = { 1 − a if (i, j) ∈ E
1 − b if (i, j) /∈ E

f4 = { a if (i, j) ∈ E
b if (i, j) /∈ E

Note that f2 = f3 = 1 and do not change Pr(Q).

Define the parameters k, l, p, q of Eθ as k = number of i’s
s.t. R(i) = true, l = number of j’s s.t. T (j) = true, p =
number of (i, j) ∈ E s.t. R(i) = T (j) = true, q = number
of (i, j) ∈ E s.t. R(i) = T (j) = false.

Let N(k, l, p, q) = the number of θ’s that have pa-
rameters k, l, p, q. If we knew all (n + 1)2(m + 1)2

values of N(k, l, p, q), we could recover #Φ by sum-
ming over N(k, l, p, q) where q = 0. That is, #Φ =
∑k,l,pN(k, l, p,0).
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We now describe how to solve forN(k, l, p, q), completing
the hardness proof for Pr(Q).

We have Pr(Eθ) = xk(1 − x)n−kyl(1 − y)n−l and
Pr(Q∣Eθ) = ap(1−a)qbkl−p(1−b)(n−k)(n−l)−q . Combined,
these give the following expression for Pr(Q):

Pr(Q) =∑
θ

Pr(Q∣Eθ)Pr(Eθ)

= (1 − b)n
2

(1 − x)n(1 − y)n ∑
k,l,p,q

T (1)

where:

T =N(k, l, p, q) ∗ (a/b)p[(1 − a)/(1 − b)]q

[x/(1 − b)n(1 − x)]k[y/(1 − b)n

(1 − y)]l[b(1 − b)]kl

=N(k, l, p, q) ∗ApBqXkY lCkl (2)

Equations (1) and (2) express Pr(Q) as a polynomial in
X,Y,A,B,C with unknown coefficientsN(k, l, p, q). Our
reduction is the following: we choose (n + 1)2(m + 1)2

values for the four parameters x, y, a, b ∈ (0,1), consult
an oracle for Pr(Q) for these settings of the parameters,
then solve a linear system of (n + 1)2(m + 1)2 equa-
tions in the unknowns N(k, l, p, q). The crux of the proof
consists of showing that the matrix of the system is non-
singular: this is far from trivial, in fact had we started from
a PTIME query Q then the system would be singular. Our
proof consists of two steps (1) prove that we can choose
X,Y,A,B independently, in other words that the mapping
(x, y, a, b) ↦ (X,Y,A,B) is locally invertible (has a non-
zero Jacobian), and (2) prove that there exists a choice of
(n+1)2(m+1)2 values for (X,Y,A,B) such that the ma-
trix of the system is non-singular: then, by (1) it follows
that we can find (n+1)2(m+1)2 values for (x, y, a, b) that
make the matrix non-singular, completing the proof. For
our particular example, Part (1) can be verified by direct
computations (see Section A.3); for general queries this re-
quires Section A.12. Part (2) for this query is almost as
general as for any query and we show it in Section A.2.

8 RELATED WORK

The algorithm and complexity results of (Dalvi and Su-
ciu, 2012), which apply to positive queries, served as the
starting point for our investigation of asymmetric WFOMC
with negation. See (Suciu et al., 2011) for more back-
ground on their work. The tuple-independence assumption
of PDBs presents a natural method for modeling asymmet-
ric WFOMC. Existing approaches for PDBs can express
complicated correlations (Jha et al., 2010; Jha and Suciu,
2012) but only consider queries without negation.

Close in spirit to the goals of our work are (Van den Broeck,
2011) and (Jaeger and Van den Broeck, 2012). They intro-
duce a formal definition of lifted inference and describe a

powerful knowledge compilation technique for WFOMC.
Their completeness results for first-order knowledge com-
pilation on a variety of query classes motivate our explo-
ration of the complexity of lifted inference. (Cozman and
Polastro, 2009) analyze the complexity of probabilistic de-
scription logics.

Other investigations of evidence in lifted inference include
(Van den Broeck and Davis, 2012), who allow arbitrary
hard evidence on unary relations, (Bui et al., 2012), who
allow asymmetric soft evidence on a single unary relation,
and (Van den Broeck and Darwiche, 2013), who allow evi-
dence of bounded Boolean rank. Our model allows entirely
asymmetric probabilities and evidence.

9 CONCLUSION

Our first contribution is the algorithm LiftR for counting
models of arbitrary CNF sentences over asymmetric prob-
abilistic structures. Second, we prove a novel dichotomy
result that completely classifies a subclass of CNFs as ei-
ther PTIME or #P-hard. Third, we describe capabilities of
LiftR not present in prior lifted inference techniques. Our
final contribution is an extension of our algorithm to sym-
metric WFOMC and a discussion of the impossibility of
establishing a dichotomy for all first-order logic sentences.
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Abstract

Interactive learning deals with the problem of
learning and solving tasks using human instruc-
tions. It is common in human-robot interac-
tion, tutoring systems, and in human-computer
interfaces such as brain-computer ones. In most
cases, learning these tasks is possible because
the signals are predefined or an ad-hoc calibra-
tion procedure allows to map signals to specific
meanings. In this paper, we address the problem
of simultaneously solving a task under human
feedback and learning the associated meanings of
the feedback signals. This has important practi-
cal application since the user can start controlling
a device from scratch, without the need of an ex-
pert to define the meaning of signals or carrying
out a calibration phase. The paper proposes an
algorithm that simultaneously assign meanings
to signals while solving a sequential task under
the assumption that both, human and machine,
share the same a priori on the possible instruc-
tion meanings and the possible tasks. Further-
more, we show using synthetic and real EEG data
from a brain-computer interface that taking into
account the uncertainty of the task and the signal
is necessary for the machine to actively plan how
to solve the task efficiently.

1 INTRODUCTION

Interactive learning [1, 2] aims at developing systems that
can learn by practical interaction with the user and finds
applications in a wide range of fields such as human-robot
interaction, tutoring systems or human-machine interfaces.
This type of learning combines ideas of learning from
demonstration [3], learning by exploration [4] and tutor
feedback [5]. Under this approach the human teacher in-
teracts with the machine and provides extra feedback or
guidance.

Approaches have considered: extra reinforcement signals
[6], action requests [7], disambiguation among actions [8],
preferences among states [9], iterations between practice
and user feedback sessions [10], and choosing actions that
maximize the user feedback [11].

A usual assumption in such systems is that the learner and
the teacher share a mutual understanding of the meaning of
each others’ signals, and in particular the learning agent is
usually assumed to know how to interpret teaching instruc-
tions from the human. In practice, this problem is solved
due to two simplifications. On the one hand, the range
of accepted instructions is limited to those predefined by
the system developer. This approach, commonly used in
human-robot interaction, lacks flexibility and adaptation to
user specificities and, consequently, may not be well ac-
cepted by non-experts users with different preferences. On
the other hand, sometimes it is not enough to predefine the
instruction sets and it is necessary to perform a calibration
phase to map raw signals such as speech or brain activity
to their meanings. This is usually done using an ad-hoc
protocol to collect labeled samples of the user instruction
signals. This process must be well controlled to ensure sig-
nals are associated to the true intended meaning of the user.

The previous engineering solution is needed due to the
chicken egg nature of the problem. In order to teach a sys-
tem a new skill, it needs to understand the human instruc-
tions. And, in order to understand this feedback, the system
must have some interaction with the human (e.g. through a
controlled task as done in the calibration process) to learn
what the instructions mean. Few works have studied and
developed interactive learning systems that can learn both
the meaning of signals and the task simultaneously. In
human-robot interaction Griffiths et al. [12] conducted an
experiment with humans learning the meaning of unknown
symbolic teaching signals. Lopes et al. [13] presented
sequential task experiments considering symbolic teach-
ing signals and requiring a bootstrap with known signals.
Grizou et al. [14] extended their system for non-symbolic
teaching signals while removing the need for bootstrapping
with known signals. Which they later extended to non-
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invasive brain-computer interfaces (BCIs), proposed an un-
certainty measure on both the task and the signal model for
efficient planning, and performed online experiments [15].
Also, for P300 spellers, Kindermans et al. have shown that
it is possible to exploit the repetition of signals [16] to-
gether with prior information (language models, informa-
tion from other subjects) [17] to calibrate the EEG decoder
while using the speller. They exploit the particular fact that
only one event out of six encodes a P300 potential in the
speller paradigm. BCIs usually require user-dependent cal-
ibration and have to deal with the EEG brain signals non-
stationarities. These facts, together with the poor signal-to-
noise ratio of the EEG, make the EEG self-calibration one
of the most challenging ones.

This paper aims at solving the general problem of devel-
oping machines that can execute a task from human in-
structions and simultaneously learn the communicative sig-
nals. Our approach is based on a discretization of the pos-
sible tasks into a finite number. Each task assigns differ-
ent expected meanings to the instruction provided by the
user. The machine solves the most likely task according
to a pseudo-likelihood function computed using the corre-
sponding task labels. The experimental results, both syn-
thetic and based on real EEG data, show that in order to
simultaneously recover the meanings and solve the task it
is of paramount importance to take into account the uncer-
tainty on both task and signal space.

Compared to the work of Grizou et al. [14,15], we improve
the algorithm formalism for both learning and planning, the
robustness to noisy high-dimensional signals (e.g. EEG),
and allow to seamlessly transition from task to task with-
out changing the algorithm paradigm. Grizou at al. meth-
ods in [14] and [15] required a different set of equations for
the first task than for the further ones where only a fixed
classifier, common for all hypothesis, was used. Compared
to the work of Kindermans et al. [16, 17], our approach is
more general and do not need to rely on specific patterns in
the signal occurrences, i.e. they exploit the fact that only
one event out of six encodes a P300 potential in the speller
paradigm. The setup considered in this paper can not guar-
antee a specific ratio of meanings between received feed-
back signals.

In the following section, we present the set of assumptions
and algorithmic details of our system. Then we introduce
the specificity of the uncertainty inherent to our problem
using an intuitive example and present the details of our ac-
tion selection method. Finally we present a set of simulated
experiment showing that a) our action selection method is
reliable and improve over other methods, b) our algorithm
scale to the use of high dimensional signals coming from
previously recorded brain signals, and c) by being opera-
tional from the first step, as opposed to calibration proce-
dure, we can estimate the correct task as soon as sufficient
evidence has been collected.

2 ALGORITHM

2.1 Problem definition

We consider interaction sessions where a machine can per-
form discrete actions from a set of available actions a ∈ A
in an either discrete or continuous state space s ∈ S . The
user, that wants to achieve a task ξ̂, is providing feedback
to the machine using some specific signal e, represented as
a feature vector. The task is sequential meaning it is com-
pleted by performing a sequence of actions. The machine
ignores the task the user has in mind, as well as the actual
meaning of each user’s signal. Its objective is to simultane-
ously solve the task and learn a model for the user’s signals.
To achieve this, it has access to a sequence of triplets in the
form DM = {(si, ai, ei), i = 1, . . . ,M}, where si, ai
and ei represent, respectively, the state, action and instruc-
tion signals at time step i. The behavior of the machine is
determined by the actions a ∈ A and the corresponding
transition model p(s′ | s, a).

We make the following assumptions under this general
paradigm. First, the system has access to a set of tasks
ξ1, . . . , ξT which includes the task the user wants to solve.
We assume the instruction signals e have a finite and dis-
crete number of meanings l ∈ {l1, l2, . . . , lL} which we
call labels and this is known by the user and the machine.
In this work we will consider two possible meanings for
the signals: correct or incorrect; but more complex mean-
ings could be used, such as guidance instructions (go up,
go left, ...). We assume that given these labels, it is possi-
ble to compute a model that generates or classifies signals
e into meanings l. The parameters of such a model will be
denoted by θ and we assume this mapping between signal
e and their label l to be fixed. However this mapping is
unknown to the agent at start.

2.2 Estimating Tasks Likelihoods

We start by assuming we are provided a signal decoder θ̂
and relax this assumption later on. As mentioned in the
introduction, knowing θ̂, we can compute the probability of
each task ξt after observation of a signal ewhen performing
action a in state s:

p(ξt|e, s, a, θ̂) ∝ p(e|s, a, θ̂, ξt)p(ξt) (1)

where p(e|s, a, θ̂, ξt) needs to take into account the prob-
ability of each possible meaning l given the target ξt, the
current state s and the action a executed by the machine:

p(e|s, a, θ̂, ξt) =
∑

k∈1,...,L
p(e|l = lk, θ̂)p(l = lk|s, a, ξt) (2)

This process can be repeated recursively for several inter-
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action steps i:

Lξti = p(ξt|Dξt
i , θ̂)

∝ p(ei|si, ai, θ̂, ξt)p(ξt|Dξt
i−1, θ̂) (3)

with p(ξt|Dξt
0 , θ̂) being the prior at time 0 (before the ex-

periment starts) for the task ξt, usually uniform over the
task distribution.

We now relax the assumption we are given a model θ̂.
The natural extension from the previous models is to com-
pute the posterior distribution over the task and the model,
p(ξ, θ|e, s, a). However, the resulting distribution does not
have a close form solution even when linear Gaussian like-
lihoods are used due to the combination of mixtures for
each possible task. Another alternative is to compute the θ
and ξ that maximize the data likelihood. This is prone to
fail in certain scenarios due to two reasons. First, it is com-
mon that different tasks share many labels (e.g. the policies
to reach neighboring cells on a grid world are almost iden-
tical and, therefore, share most of the labels l) and results
on large uncertainties in the task space that require multiple
actions to be disambiguated. Second, if the signals are not
well separated the meaning parameters θ of different tasks
will not differ much.

For instance, under Gaussian assumptions for p(e|l =
lk, θ) and deterministic task labels p(l = lk|s, a, ξ), it is
possible to integrate out θ to compute the marginal likeli-
hood p(DM | ξ). The resulting likelihood depends only
on the traces of each p(e|l = lk, θ). Empirical results with
synthetic and EEG data for a reaching task on a grid re-
vealed that, when the distributions over e overlap, the traces
were not enough to recover the most likely task and the cor-
responding meaning parameters.

To cope with these problems, we define the following
pseudo-likelihood function:

P (DM |ξ, θ) ≈
M∏

i=1

p(ei|si, ai, ξ, θ−i) (4)

=
M∏

i=1

∑

lc

∑

l

p(ei|lc, θ−i)p(lc|l, θ−i)p(l|si, ai, ξ)(5)

where l represents the meaning assigned by task ξ, action
ai and state si and lc is the label corrected based on what
we know about our classifier θ−i for a given label l.

The pseudo-likelihood is built using a leave-one-out
cross-validation strategy to evaluate the likelihood
p(ei|si, ai, ξ, θ−i) of each signal based on the meaning
parameters θ−i learned for each task using all the other
available signals. The use of θ−i indicates we use a leave
one out method. If we interpret p(ei|si, ai, ξ, θ−i) as
a classifier, its predicted labels should match the ones
provided by the task for different state-actions pairs. The
rationale behind it is that for the correct task, the signals

and labels will be more coherent than for other tasks,
which we measure as the predictive ability of a classifier
trained on the signal-label pairs. Note that wrong tasks
will assign wrong labels l to the signals e, therefore the
learned models will have larger overlaps (see Figure 1c).

Each term of the pseudo-likelihood is computed from three
terms. p(l|si, ai, ξ) represents the probability distributions
of the meanings according to a task, the executed action
and the current state. p(lc|l, θ−i) encodes which label will
be actually recovered by θ−i. Intuitively, it models the
quality of the model θ−i. p(ei|lc, θ−i) is the likelihood
of the signal given the meaning. The pseudo-likelihood
is maximized in two steps. First, the maximum a poste-
riori estimate θ−i of each task is computed. Then, the term
p(lc|l, θ−i) is approximated by the corresponding confu-
sion matrix of the classifier based on θ−i. It is the prob-
ability that the classifier itself is reliable in its prediction.
Finally, the best task ξ should be the one that maximizes
the pseudo-likelihood in Eq. 4.

2.3 Decision and Task Change

The machine must decide which task is the correct one. To
do so, we define W ξt the minimum of pairwise normalized
likelihood between hypothesis ξt and each other hypothe-
sis:

W ξt = min
x ∈ 1,...,Tr{t}

P (DM |ξt, θ)
P (DM |ξt, θ) + P (DM |ξx, θ)

(6)

When it exists a t such that W ξt exceeds a threshold β ∈
]0.5, 1] we consider task ξt is the one taught by the user.

Once a task is identified with confidence, the robot exe-
cutes it and prepares to receive instructions from the user
to execute a new task. Assuming the user starts teaching a
new task using the same kind of signals, we now have much
more information about the signal model. Indeed, we are
confident that the user was providing instructions related
to the previously identified task; therefore we can infer the
true labels of the past signals. We can now assign such
labels to all hypothesis and by using the same algorithm
we can start learning the new task faster as all hypothesis
now share a common set of signal-label pairs. The meaning
models for each hypothesis are still updated step after step
until the new task is identified and labels reassigned.

3 PLANNING UNDER UNCERTAINTY

To solve our problem we need to identify simultaneously
the task and how to interpret teaching signals. To do so the
system has to explore regions that allow to disambiguate
among hypothesis. There are several efficient model-based
reinforcement learning exploration methods that add an ex-
ploration bonus for states that might provide more learn-
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ing gains. Several theoretical results show that these ap-
proaches allow to learn tasks efficiently [18, 19]. We de-
fine an uncertainty measure and use model-based planning
to select sequences of actions that guide the agent toward
states that better identify the desired task.

In order to exemplify the specificity of our problem in terms
of planning we present a simple experiment and compare
the effect of different action selection strategies. In this
scenario, the agent is in a T world with 7 states and can
perform 4 actions (right, left, up, and down). The user
wants the robot to reach the left edge (marked by G1) of
the T, (see Figure 1 top). The agent knows the users wants
it to go to one of the two edges (G1 or G2) but not which
one. The agent will perform some actions, and the user
will assess the correctness of each agent’s action by pro-
viding a two dimensional teaching signal. The agent does
not known which signal means “correct” and which signal
means “incorrect”. As there is two possible tasks, the agent
will assign labels to every user’s signals according to each
hypothesis. The result of the labeling process is displayed
as colored dots (green for “correct”and red for “incorrect”)
in Figure 1 (a, b, and c), where the left part corresponds to
hypothesis 1 (G1) and the right part to hypothesis 2 (G2).

If the agent knew how to interpret the signal, i.e. which
signal corresponds to correct or incorrect feedback, the op-
timal action to differentiate between the two hypothesis
would be to perform right and left actions in the top part
of the T. However in our problem the classifier is not given
and the agent is building a different model for each hy-
pothesis. As a results, we end up with two opposite inter-
pretations of the user signal, which are both as valid (see
Figure 1a) and do not allow to differentiate between hy-
pothesis.

Considering that the agent does not know the signal to
meaning classifier, a sensitive option is to select actions
that allow to unequivocally identify the model. In our sce-
nario taking only up and down actions in the trunk of the
T leads to identical interpretation for each hypothesis (see
Figure 1b). However this method do not allow to disam-
biguate between hypothesis and in most setting, such as
the grid world we consider later, there is no state-action
pair leading to unequivocal interpretations.

However performing all the four actions allow to disam-
biguate between hypothesis. As shown in Figure 1c, hy-
pothesis 1 stands out by the nice coherence between the la-
bels and the spacial organization of the data. This informs
us that hypothesis 1 is the task the user has in mind and
that feedback signals in the right and left part of the feature
space means “correct” and “incorrect” respectively.

For our kind of problem the agent can not just try to dif-
ferentiate hypothesis by finding state-action pair where ex-
pected feedback differs but should also collect data to build
a good model or at least invalidate other models. Can we

Figure 1: A “T world” scenario and the interpretation re-
sults for different planning strategies. The agent knows it
should reach either of the two edges of the T world (marked
with the letter G). The arrows represent the optimal policy.
For each move the agent receives an unlabeled two dimen-
sional teaching signal, corresponding to user’s assessments
on the agent’s actions. The teacher’s goal is to have the
agent reach G1. As the agent do not have access to this
information, it interprets the signal according to each hy-
pothesis (G1 and G2). a) shows the interpretation results
if the agent only perform right and left actions in the top
of the T world, b) shows the interpretation results when the
agent only performs up and down actions in the trunk of
the T, and c) shows the interpretation results for an agent
performing all possible actions. Only the method c) allow
to differentiate between hypothesis.
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find a measure of uncertainty that account for both? Going
back to Figure 1 (a and b), we understand that, to differen-
tiate hypothesis in situation a) the best actions to perform
are up and down in the T trunk while in situation b) the best
actions to perform are right and left in the top part of the
T. This corresponds to the uncertainty in the signal space.
In the case of a) when going left both hypothesis agree that
they will receive a signal in the right part of the feature
space even if they disagree on its meaning. However for
action down, both hypothesis agree they should receive a
signal of meaning “incorrect” but disagree on the expected
location of such signal in the feature space. In the case of
b) when going up both hypothesis agree they will receive a
signal in the right part of the feature space and agree on its
meaning. However for action left, both hypothesis disagree
about the meaning of the signal they should receive and as
both share the same signal model they expect a signal in
different locations of the feature space.

Estimating uncertainty in the signal space is in practice too
costly as it requires to compute, for every state-action pair,
the overlap between many continuous probability distribu-
tions weighted by their respective expected contribution.
Following the discussion presented in previous section, we
will rely on our pseudo-likelihood metric. As we cannot
predict, neither control, the signal we will receive for a
particular state-action, we will rely on our past history of
signal and compute the expected joint probability based on
previously experienced signals.

We note:

Jξt(s, a, e) =
∑

lc

∑

l

p(e|lc, θ)p(lc|l, θ)p(l|s, a, ξt)

which is Eq. 5 for only one new expected observation e, so
the product over iterations disappears. And Jξ(s, a, e) the
vector [Jξ1(s, a, e), . . . , JξT (s, a, e)].

The uncertainty of one state-action pair given a signal e is
computed as the weighted variance of the joint probabil-
ity predictions with weights W ξ = [W ξ1 , . . . ,W ξT ] (see
Eq. 6):

U(s, a|e) = weightedV ariance(Jξ(s, a, e),W ξ) (7)

The uncertainty for a state-action pair is given by:

U(s, a) =

∫

e

U(s, a|e)p(e)de (8)

which we approximate by summing values of U(s, a|e) for
different signals e:

U(s, a) ≈
∑

e

U(s, a|e)p(e) (9)

with p(e) assumed uniform.

Our measure of global uncertainty U(s, a) will be higher
when, for a given state-action there is a high incongruity of
expectation between each hypothesis and according to each
hypothesis current probability.

This measure is then used as a classical exploration bonus
method. We will switch to a pure exploitation of the task
after reaching the desired confidence level.

Interestingly this approach generalizes over other active
sampling method [7], if the classifier is known, equation
7 reduces to the one presented in [13] and is no longer de-
pendent on signal e. As our uncertainty function combines
uncertainty on both signal and task space, when the former
is known, the latter becomes the sole source of ambiguity.

4 METHOD

In the subsequent analysis, we assume that a trainer pro-
vides feedback for the actions taken by a learner. Specifi-
cally, we consider the user is delivering signals that can be
mapped into binary feedback: correct c and incorrect w.

4.1 World and Task

We consider a 5x5 grid world, where an agent can per-
form five different discrete actions: move up, down, left,
right, or a “no move” action. The user goal is to teach the
agent to reach one (unknown to the agent) of the 25 dis-
crete positions which represent the set of possible tasks.
We thus consider that the agent has access to 25 different
task hypothesis (one with goal location at each of the cells).
We use Markov Decision Processes (MDP) to represent the
problem [4]. From a given task ξ, represented as a reward
function, we can compute the corresponding policy πξ us-
ing, for instance, Value Iteration [4]. The policies allow
us to interpret the teaching signals with respect to the in-
teraction protocol defined. For the current work we will
consider the user is providing feedback on the agent action.
We define p(l|s, a, ξ) as:

p(l|s, a, ξ) =

{
1− α if a = argmaxa π

ξ(s, a)

α otherwise

with α modeling the expected error rate of the user.

4.2 Signal properties and classifier

We aim at applying this algorithm to error-related poten-
tials (ErrPs) for EEG-based BCI applications. These sig-
nals are generated in the user’s brain after s/he assesses ac-
tions performed by an external agent [20], where correct
and erroneous assessments will elicit different brain sig-
nals. Past approaches have already demonstrated that these
signals can be classified online with accuracies of around
80% and translated into binary feedback, thanks to a prior
calibration session that lasts for 30-40 minutes [20, 21].
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Following the literature [22], we will model the signals us-
ing independent multivariate normal distributions for each
class, N (µc,Σc),N (µw,Σw). With θ the set of parame-
ters {µc,Σc, µw,Σw}. Given the high dimensionality of
the problem we will also need to regularize. For this we
apply shrinkage to the covariance matrix (λ = 0.5) and
compute the value of the marginal pdf function using a non-
informative (Jeffreys) prior [ [23], p88]:

p(e|l, θ) = tn−d(e|µl,
Σl(n+ 1)

n(n− d)
) (10)

where θ represents the ML estimates (mean µl and covari-
ance Σl for each class l) required to estimate the marginal
under the Jeffreys prior, n is the number of signals, and d
is the dimensionality of a signal feature vector.

4.3 Task Achievement

A task is considered completed when the confidence level
β as been reached for this task and the agent is located at
the task associated goal state. If the state is the one intended
by the user it is a success. Whatever the success or failure
of the first task, the user selects a new goal state randomly,
the agent resets task likelihoods, propagates the believed
labels, and teaching starts again. At no point the agent has
access to a measure of its performance, it can only refer to
the unlabeled feedback signals from the user.

4.4 Evaluation scenarios

Two different evaluation scenarios were tested with two
different types of signals: artificial datasets, and real ErrP
datasets recorded from previous experiments [21].

Artificial datasets The goal of this evaluation was to an-
alyze the feasibility of learning a task from scratch in a
5x5 grid world. The artificial dataset was composed of
two classes, with 1000 examples per class. Each example
was generated by sampling from a normal distribution with
a covariance matrix of diagonal 1 and mean selected ran-
domly. The datasets were generated while varying two fac-
tors: (i) the dimensionality of the data, where 2, 5, 10 and
30 features were tested; and (ii) the quality of the dataset,
measured in terms of the ten-fold accuracy the classifier
would obtain.

Once the datasets were generated, two different evaluations
were performed: (i) the goodness of our proposed planning
strategy versus a) random action selection, b) greedy action
selection, and c) a task-only uncertainty based method; (ii)
the time required by the agent to learn the first task (i.e. to
reach the first target), and (iii) the number of tasks that can
be learned in 500 iterations.

EEG datasets Once the algorithm was evaluated with ar-
tificial datasets, we tested the feasibility of the proposed

self-calibration approach using real ErrP datasets. The ob-
jective of this analysis is to study the scalability of our
method to EEG data, which may have different properties
than our artificial dataset.

The EEG data were recorded in a previous study [21] where
participants monitored on a screen the execution of a task
where a virtual device had to reach a given goal. The mo-
tion of the device could be correct (towards the goal) or er-
roneous (away from the goal). The subjects were asked to
mentally assess the device movements as erroneous or non-
erroneous. The EEG signals were recorded with a gTec
system with 32 electrodes distributed according to an ex-
tended 10/20 international system with the ground on FPz
and the reference on the left earlobe. The ErrP features
were extracted from two fronto-central channels (FCz and
Cz) within a time window of [200, 700] ms (being 0 ms the
action onset of the agent) and downsampled to 32 Hz. This
leaded to a vector of 34 features.

Comparison with calibration methods In order to show
the benefit of learning without explicit calibration, we com-
pare our method with the standard supervised BCI cali-
bration procedure. In this calibration procedure, which
can last for up to 40 minutes, the experimenter needs to
record enough data from the user from several offline runs,
where the user is not controlling the agent but just pas-
sively assessing its actions. Following the literature on Er-
rPs [20, 21] our training data will consist of 80 percent of
positive examples (associated to a correct feedback) and
20 percent of negative examples (associated to an incorrect
feedback). Our proposed algorithm is compared with dif-
ferent (but standard) sizes of calibration datasets: 200, 300
and 400 examples.

4.5 Settings

We used α = 0.1, β = 0.9. For dataset of dimension d, we
started computing likelihoods after d+10 steps as equation
10 requires at least d + 1 samples and to allow for cross
validation. For the planning (Eq. 9) we selected randomly
20 signals from DM .

5 RESULTS

We present most of the results in terms of the quality of
the dataset, measured as the ten-fold classification accuracy
that a calibrated signal classifier would obtain. Each simu-
lation was run 100 times using different sampled datasets,
and their associated box plots were computed. For each
boxplot, colored bars show the interquartile range (between
25th and 75th percentile), and the median and the mean
are marked as a horizontal line and a colored dot respec-
tively. Additionally, the two “whiskers” show the 5th and
95th percentiles, black crosses are outliers.
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5.1 Artificial Datasets

The first objective is to study the impact of the exploration
approach proposed in Section 3. The second is to evaluate
performances and robustness with respect to the dimension
and the quality of each dataset.

Planning Methods Figure 2 compares the number of
steps (with maximum values of 500 steps) needed to iden-
tify the first task when learning from scratch with different
planning methods. Following the most probable task (i.e.
going greedy) does not allow the system to explore suffi-
ciently. On the contrary, our proposed planning method
leads the system towards regions that maximize disam-
biguation among hypotheses. Furthermore, it also performs
better than assessing uncertainty on the task space only.
Given these results, the remainder of this section will only
consider our planning method.
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Figure 2: Number of steps to complete first task, compar-
ison of different exploration methods with 30 dimensional
artificial data. When learning from scratch, planning upon
uncertainty in both task and signal space performs better
than relying only on task uncertainty. Greedy action selec-
tion rarely disambiguates between hypothesis.

As depicted in Figure 1, the system needs to collect two
types of information, some about the true underlying model
(Fig. 1b) and some to differentiate between hypotheses
(Fig. 1a). The properties of the grid world make the ran-
dom strategy quite efficient at collecting those two types
of information. The differences between planning meth-
ods should be more evident when navigating a complex
maze since our method allows to plan in order to collect
the type of information we need. Studying how different
world properties affect the learning efficiency is part of our
future work. Also, we note that all planning methods were
switched to pure exploitation (greedy) once the confidence
level was reached. Therefore the performance in Figure 2

compares the ability of the different methods to discrimi-
nate between different task hypotheses, not their ability to
solve the task itself.

Dimensionality Figure 3 compares the number of steps
(with maximum values of 500 steps) needed to identify
the first task when learning from scratch with different di-
mensionality of datasets. The convergence speed is only
slightly affected by the features dimensionality. On the
other hand, the dataset quality (measured in terms of it
associated ten-fold accuracy) is the main cause of perfor-
mances decay. Furthermore, for those datasets with ac-
curacies between 50% and 60%, the system is not able to
identify a task with confidence after 500 steps.
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Figure 3: Number of steps to complete first task using ar-
tificial data. Under 60 percent accuracy, the confidence
threshold cannot be reached in 500 steps. The dataset qual-
ities, more than their dimensionality, impact the learning
time.

Once one task is completed, a new one is selected ran-
domly. Figure 4 compares the number of tasks that can be
achieved in 500 steps. As expected, the lower the quality
of the data, the less number of task can be completed. With
dataset accuracies higher than 90% we can achieve more
than 30 tasks on average.

An important aspect of the proposed learning approach
was that the first task learned was always the correct one.
We reported only 9 erroneous estimations across all simu-
lated experiments (5 in the 70-80 group and 4 in the 80-90
group).

5.2 EEG datasets and comparison with calibration
method

Example Figure 5 shows one particular run of 500 steps
comparing our self-calibration method with a calibration
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Figure 4: Number of tasks correctly achieved in 500 steps,
artificial data. Quality of dataset impacts the number of
task identified in 500 steps as more evidence should be col-
lected to reach the confidence threshold.

procedure of 400 steps. The two independent runs use as
real EEG dataset with 80% ten-fold classification accuracy.
As our algorithm is operational from the first step, it can
estimate the real task when sufficient evidence has been
collected. On the other hand, a calibration approach col-
lects signal-label pairs for a fixed number of steps and use
the resulting classifier without updating it. This provokes
that, during the calibration phase, no tasks can be learned,
substantially delaying the user’s online operation.

Figure 5: Time-line of one run from EEG dataset of 80 per-
cent ten-fold classification accuracy, self-calibration (top)
versus 400 steps calibration (bottom). Green (filled) and
red (dashed) bars represents respectively correct and in-
correct task achievement. The proposed self-calibration
method allow to reach a first task faster than would take
a calibration procedure.

Figure 6 shows the evolution of classification rate between
our self-calibration method with a calibration procedure of
400 steps. As our method assigns different labels to each
new teaching signal, the resulting classifiers have differ-
ent performances, which help identifying the correct task.

Once a task is identified (e.g. step 85 and 134), the corre-
sponding labels are taken as ground truth, and all classifiers
will have the same accuracies. As the agent starts exploring
again to estimate the new tasks, all the classifiers except the
true one will start to have worse accuracies again.
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Figure 6: Evolution of classification rate of one run from
EEG data, self-calibration (top) versus 400 steps calibra-
tion (bottom). On top, the red line represents the classifier
corresponding to the successive tasks taught by the user,
the dashed blue lines represent all others tasks. Our method
updates classifiers every steps.

Time to first task Figure 7 shows the results per group
of dataset. Our algorithm allows to complete the first task
without errors and in a fair amount of iteration. For our
method, the learning time is strongly correlated with the
dataset quality. However calibration methods, which do not
update their classifier once calibrated, identify more tasks
incorrectly.
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Figure 7: Number of steps to complete first task with EEG
data. The method scale well to EEG data. Contrary to the
standard calibration approaches, we do not make mistakes
with low quality datasets.

297



Cumulative performances Figure 8 compares the num-
ber of tasks that can be achieved in 500 steps. With 90%
and more dataset quality we can achieve about 20 tasks on
average. The results are consistent with artificial dataset
analysis.
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Figure 8: Number of task correctly achieved in 500 steps
with EEG data. Calibration methods can not complete a
significant number of task as most of the time is spent on
calibration.

The calibration methods can not complete many task as a
significant amount of iteration was used for calibrating the
system. A calibration of 200 steps makes as many good
estimation than our method, but it also makes many wrong
estimation, see Figure 9. For calibration methods, the less
time spent on calibration, the poorer the classifier which
implies more mistakes.
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Figure 9: Number of task incorrectly achieved in 500 steps
with EEG data. Calibration methods, which do not update
their models once calibrated, make more errors.

6 CONCLUSION

In this paper we have shown that, given a limited number
of possible tasks, it is possible to solve sequential tasks us-
ing human feedback without defining a map between feed-
back signals and their meaning beforehand. The proposed
algorithm optimizes a pseudo-likelihood function and per-
forms active planing according to the uncertainty in the task

and meaning spaces. Indeed, taking into account this un-
certainty is crucial to solve the task efficiently and to re-
cover the actual meanings. This combination allows: a) a
human to start interacting with a system without calibra-
tion; b) to automatically adapt calibration time to the user
needs which can even outperform fixed calibration proce-
dures; c) to adapt to the uncertainty of the information
source from scratch. We showed the applicability of the
approach to brain-machine interfaces based on error poten-
tials which could work out of the box without calibration,
a long-desired property of this type of systems.

A number of open questions remain to be addressed:

• How the task properties (symmetries, size, . . . ) affect
the learning properties?

• How to leverage from the finite set of hypothesis con-
straint? A potential avenue is to use a combination of
particle filter and regularization on the task space.

• In real-world applications, users are usually told how
to interact with machines. Do people want to have an
open-ended choice about what signal to use? Would
they be more efficient? When is it better to use a cali-
bration procedure?

• Only prerecorded datasets have been used. However,
signals may change during the learning. For instance,
people can try to adapt themselves to a robot if they
believe the latter is not understanding properly. Or,
brain signals are sensitive to the protocol, the dura-
tion of the experiment or even the percentage of errors
made by the agent [20]. To which extend the behav-
ior of our agent changes the properties of the teaching
signal? Can we adapt to such changes online?

Finally, while we only considered correct/incorrect labels,
in other works we have considered the use of guidance in-
structions (go up, go left, ...) in human-robot interaction
scenario [14]. But increasing the set of possible labels log-
ically requires collecting more examples to obtain a good
enough representation of the different signals. Hence, for
BCI domains, it is reasonable to keep a limited number of
labels.
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Abstract

Active learning has been proven to be quite effec-
tive in reducing the human labeling efforts by ac-
tively selecting the most informative examples to
label. In this paper, we present a batch-mode ac-
tive learning method based on logistic regression.
Our key motivation is an out-of-sample bound on
the estimation error of class distribution in lo-
gistic regression conditioned on any fixed train-
ing sample. It is different from a typical PAC-
style passive learning error bound, that relies on
the i.i.d. assumption of example-label pairs. In
addition, it does not contain the class labels of
the training sample. Therefore, it can be imme-
diately used to design an active learning algo-
rithm by minimizing this bound iteratively. We
also discuss the connections between the pro-
posed method and some existing active learn-
ing approaches. Experiments on benchmark UCI
datasets and text datasets demonstrate that the
proposed method outperforms the state-of-the-art
active learning methods significantly.

1 INTRODUCTION

In a typical supervised learning problem, one often re-
quires sufficient labeled data to train an accurate classifier,
whereas the labeling process may be expensive and time
consuming. This motivates Active Learning [11], which
has been proven to be effective in reducing the human la-
beling efforts by actively selecting the most informative ex-
amples for labeling. The goal of active learning is to learn
a classifier which accurately predicts the labels of new ex-
amples, while requesting as few labels as possible.

In the past decades, many active learning methods have
been proposed. Depending on the label query strategy,
active learning can be roughly categorized into fully se-
quential active learning [13, 27, 30, 5, 24, 7, 22], batch-

mode active learning [20, 17, 21] and one-shot active learn-
ing [29, 15, 16, 14]. Fully sequential active learning algo-
rithms select only one example to query its label at one
time, and update the classifier. In contrast, batch-mode
active learning algorithms select multiple examples at one
time. It is more efficient since the classifier is trained fewer
times. More importantly, it is able to take into account the
information overlap among the multiple examples. Both
fully sequential and batch-model active learning are adap-
tive, as in the query process, the newly labeled data in an
earlier iteration can be used to guide the selection of unla-
beled data in a latter iteration (e.g., by updating the classi-
fier). In contrast, one-shot active learning is non-adaptive.
In this paper, we consider batch-mode active learning, be-
cause it is more general than the other two query strategies
both in theory and practice. It can be directly adapted to
fully sequential and one-short active learning, by simply
setting the batch-size to one or to a sufficient large number.

On the other hand, the most widely used criteria for ac-
tive learning include but not limited to uncertainty sam-
pling [27, 21], query by committee [13], mutual informa-
tion [24, 16], experimental design [29, 3], and expected
error minimization [15, 14]. Besides these practical algo-
rithms mentioned above, there are also several theoretical
studies [5, 12, 7, 18, 1], which provide bounds on the label
complexity. The method we are going to propose belongs
to the family of expected error minimization. The main ad-
vantage of the methods in this family is that the criteria are
minimizing certain kind of error bounds, which directly re-
late the label selection procedure with the prediction error.
As a result, we are particularly interested in designing such
kind of active learning algorithm.

With the above motivation, we present a batch-mode active
learning method, which is based on the well-known statis-
tical model of logistic regression [19]. One advantage of
logistic regression is that it has an inherent model assump-
tion and thus it is amenable to theoretical analysis. Further-
more, it is in nature a classification model and consequently
more suitable for active learning towards classification. We
perform a finite sample analysis on the logistic regression
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and derive an error bound on the class distribution condi-
tioned on any fixed training sample. This bound is essential
because it is different from a typical PAC-style error bound
for model-free passive learning [8], that relies on the i.i.d.
assumption of the example-class pairs. In contrast, our de-
rived bound allows the training examples to be dependent,
which meets the scenario of active learning. Furthermore,
the derived error bound does not contain the class labels of
the training sample, which allows us to do minimization by
choosing training examples without knowing their labels.
We propose an active learning criterion to select the exam-
ples by minimizing this upper bound iteratively. The result-
ing method is a combinatorial optimization problem, which
is relaxed and solved approximately by projected gradient
descent. It is worth noting that the derivation approach we
proposed is quite general and is applicable to other gener-
alized linear models beyond logistic regression.

As we mentioned before, although we mainly study batch-
mode active learning in this paper, our proposed method
supports fully sequential and one-short active learning as
well. Furthermore, unlike many active learning methods [5,
12, 7], which rely on sampling the hypothesis space, our
method is deterministic and easy to implement. Extensive
experiments on UCI datasets and text datasets show that
the proposed method significantly outperforms the state-
of-the-art active learning methods.

The remainder of this paper is organized as follows. In
Section 2, we analyze the logistic regression, and derive a
finite sample error bound on its response distribution. In
Section 3, we present an active learning criterion based on
minimizing the derived error bound, followed by its opti-
mization algorithm. We discuss some related methods in
Section 4. The experiments are demonstrated in Section 5.
Finally, we draw conclusions and point out the future work
in Section 6.

2 FINITE SAMPLE ANALYSIS OF
LOGISTIC REGRESSION

In this section, to keep this paper self-contained, we first
briefly review logistic regression [19]. Then we derive an
estimation error bound for the conditional class distribu-
tion based on finite-sample analysis. It is among the main
contributions of this paper, and is the theoretical underpin-
ning of the active learning approach proposed in the next
section.

2.1 NOTATION

Throughout this paper, we will use lower case letters to
denote scalars, lower case bold letters to denote vectors,
upper case letters to denote the elements of a matrix or
a set, and bold-face upper case letters to denote matri-
ces. I is an identity matrix with an appropriate size. We

use superscript ⊤ to denote the transpose of a vector or a
matrix. The ℓ2-norm of a vector x ∈ Rd is defined as

∥x∥2 =
√∑d

i=1 x2
i . The spectral norm of a matrix A

is defined as ∥A∥2 = max∥x∥2=1 ∥Ax∥2. In particular,
for a squared matrix A ∈ Rd×d, we denote its maximum
eigenvalue by λmax(A), and its minimum eigenvalue by
λmin(A). We use [n] to denote the index set {1, 2, . . . , n}.
Given a matrix X ∈ Rd×n, XL denotes a submatrix of X,
which consists of the columns of X indexed by L ⊂ [n].
xi denotes the i-th column of X. And for a symmetric ma-
trix D ∈ Rn×n, DLL denotes a submatrix of D, which
contains the rows and columns indexed by L.

2.2 LOGISTIC REGRESSION

Let us consider the binary classification case for simplic-
ity. Given a sample set S = {(xi, yi)}ni=1 where xi ∈ Rd

and yi ∈ {±1}, to have a simpler derivation without con-
sidering the bias term θ, one often augments each exam-
ple with an additional dimension: x⊤ ← [x⊤; 1] and
w⊤ ← [w⊤; θ]. In logistic regression [19], the conditional
class probability Pr(y|x) is given by

Pr(y|x;w) = σ(yw⊤x),

where σ(a) is the logistic sigmoid function, i.e., σ(a) =
1/(1 + exp(−a)). Note that σ(a) is a concave function
when a > 0.

To avoid over-fitting, we place a prior on w in the form of a
zero-mean Gaussian distribution with isotropic covariance,
i.e., N (0, 1/λI), and seek a w which maximizes the log-
likelihood of the posterior distribution given the training
data S, which is equivalent to

ŵ = arg min
w

λ∥w∥22 −
1

n

n∑

i=1

log σ(yiw
⊤xi), (1)

where λ is a positive regularization parameter. Eq. (1) is
also known as penalized logistic regression, or more pre-
cisely, ℓ2-regularized Logistic regression. It is worth not-
ing that although logistic regression is called “regression”,
it is in nature a classification model, because its response is
binary and it directly estimates the conditional class prob-
ability given the data. This is also the reason that we deem
that deriving an active learning algorithm based on logistic
regression is more natural and effective for classification
than inventing one from the real regression models [29, 14].

2.3 ERROR BOUNDS FOR LOGISTIC
REGRESSION

In the following, we will analyze ℓ2-regularized logistic re-
gression reviewed above. First of all, we assume that there
exists an unknown true parameter w∗ ∈ Rd, by which the
class label of an example is generated as follows

Pr(y|x) = σ(yw⊤
∗ x). (2)
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where ∥w∗∥2 ≤ R for some R > 0. This is our model as-
sumption. All the theoretical results we are going to present
are built up on this assumption.

Without loss of generality, we assume ∥xi∥2 ≤ 1 for ∀i.
Then it is easy to verify that

∥∥∥∥∥
1

n

n∑

i=1

xix
⊤
i

∥∥∥∥∥
2

≤ 1.

The following theorem provides a bound on the estimation
error of ŵ, which is central in our theoretical results. The
detailed proofs can be found in the supplementary material.

Theorem 1. For any fixed sample S = {(xi, yi)}ni=1,
where yi follows the conditional distribution as in Eq. (2),
and ∥xi∥2 ≤ 1 for ∀i. ŵ is the estimated weight vector by
logistic regression on S, then the estimation error of ŵ is
upper bounded as

EY |X [∥ŵ −w∗∥2]

≤C1λmax

((
λI +

1

n
XDX⊤

)−1
)

,

where EY |X is the shorthand for Ey1,...,yn|x1,...,xn
, C1 =

1 + 2λR, X = [x1, . . . ,xn], D is a diagonal matrix with
diagonal elements defined as follows

Dii =
(
1− σ(w⊤

∗ xi)
)
σ(w⊤

∗ xi). (3)

Proof. (Sketch of proof): We use a similar tech-
nique adopted in [25]. Define f(w) = λ∥w∥22 −
1/n

∑n
i=1 log σ(yiw

⊤xi). Let ŵ = arg minw f(w).

Define g(∆) as follows

g(∆) =EY |X [λ∥w∗ + ∆∥22 −
1

n

n∑

i=1

log σ(yi(w∗ + ∆)⊤xi)

−λ∥w∗∥22 +
1

n

n∑

i=1

log σ(yiw
⊤xi)],

where ∆ = w−w∗. It is easy to verify that g(0) = 0. Us-
ing the optimality of ŵ, we have f(ŵ) ≤ f(w∗), yielding

λ∥ŵ∥22 −
1

n

n∑

i=1

log σ(yiŵ
⊤xi)

≤λ∥w∗∥22 −
1

n

n∑

i=1

log σ(yiw
⊤
∗ xi).

Therefore, we have g(∆̂) ≤ 0 with ∆̂ = ŵ−w∗. Suppose
that we show for some radius B > 0, and for ∆ ∈ Rd with
∥∆∥2 = B, we have g(∆) > 0. We then can claim that
∥∆̂∥2 ≤ B. We prove it by contradiction: If ∆̂ lies outside
the ball of radius B, then by convexity of g(·), we have

g(t∆̂ + (1− t)0) ≤ tg(∆̂) + (1− t)g(0) ≤ 0,

for some appropriately chosen t ∈ (0, 1) such that t∆̂ +
(1− t)0 lies on the boundary of the ball. This is contradict
with the fact that g(t∆̂ + (1− t)0) > 0.

By some calculations, we have

g(∆) ≥ CminB2 −B − 2λRB + λB2,

where Cmin = λmin(1/n
∑n

i=1 σ(w⊤
∗ xi)(1 −

σ(w⊤
∗ xi))xix

⊤
i ).

It is easy to show that B = (1 + 2λR)/(Cmin + λ) makes
g(∆) > 0. Based on previous argument, since g(∆̂) ≤ 0,
we have

∥∆̂∥2 ≤
1 + 2λR

Cmin + λ

=
1 + 2λR

λmin

(
λI + 1

n

∑n
i=1 σ(w⊤∗ xi)(1− σ(w⊤∗ xi))xix⊤

i

)

=(1 + 2λR)λmax



(

λI +
1

n

n∑

i=1

Diixix
⊤
i

)−1

 .

Remark 1: The above bound is derived by analyzing the
second-order Taylor expansion of Eq. (1). If we simply
use the strongly convex property of Eq. (1), we cannot get
the desired bound, because the information of the second-
order derivative will not be fully utilized. Consequently, the
above bound is sharper than the bound derived by strong
convexity.

In logistic regression, the classification of a new example is
solely based on its estimated conditional class probability.
Therefore, we aim to bound the estimation error of the con-
ditional class probability rather than (ŵ⊤v−w⊤

∗ v)2 as in
linear regression. Based on Theorem 1, we can prove the
following theorem, which achieves our goal.
Theorem 2. For any fixed sample S = {(xi, yi)}ni=1 where
yi follows the conditional distribution as in Eq. (2), and
∥xi∥2 ≤ 1 for ∀i. ŵ is the estimated weight vector by lo-
gistic regression on S. Then the estimated conditional class
probability on a validation set {vj}mj=1 is upper bounded
as

EY |X




m∑

j=1

(Pr(y|vj ; ŵ)− Pr(y|vj ;w∗))
2




≤C2tr

((
λI +

1

n
XDX⊤

)−1

VΣV⊤
)

,

where C2 = (1+λR)2(λ+1)2/λ2, X = [x1, . . . ,xn] and
V = [v1, . . . ,vm], Σ is a diagonal matrix with diagonal
elements defined as follows

Σjj =
(
1− σ(w̃⊤vi)

)
σ(w̃⊤vi), (4)

with w̃ = w∗ + α(ŵ −w∗) for some α ∈ [0, 1].
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Proof. (Sketch of proof): Consider the second-order Tay-
lor expansion of σ(ŵ⊤vj), we have the following inequal-
ity,

σ(ŵ⊤vj) = σ(w⊤
∗ vj) + σ(w̃⊤vj)

(
1− σ(w̃⊤vj)

)
vj · ∆̂,

where w̃ = w∗ + α(ŵ − w∗) = w∗ + α∆̂ for some
α ∈ [0, 1].

Then we have

EY |X




m∑

j=1

(Pr(y|vj , ŵ)− Pr(y|vj ,w
∗))2




=
m∑

j=1

(
σ(ŵ⊤vj)− σ(w⊤

∗ vj)
)2

=
m∑

j=1

(
σ(w̃⊤vj)

(
1− σ(w̃⊤vj)

)
vj · ∆̂

)2

=
m∑

j=1

(
Σjjvj · ∆̂

)2

,

which can be further bounded by Theorem 1.

Remark 2: All the above theoretical results hold under
the conditional expectation with respect to the conditional
class distribution Pr(Y |X), given any fixed design matrix
X. They do not require either {(xi, yi)}ni=1 or {xi}ni=1 to
be i.i.d., which is the common assumption in passive learn-
ing. In addition, the derived bounds do not depend on the
class labels of the training sample explicitly.

It can be observed from Theorem 2 that, the expected es-
timation error of the conditional class probability P (Y |X)
on a validation set is upper bounded by a term which can be
approximately computed based on the training set together
with the validation set without their labels. Therefore, they
can be used to guide the design of active learning algo-
rithms, because the examples in the pool are not only de-
pendent (starting from the second round of label query) in
active learning, but also unlabeled. It also explains why we
need to derive such a kind of bounds to design active learn-
ing algorithms rather than using existing PAC-style bounds
for model-free learning [8]. In a nutshell, we can minimize
this bound by choosing a subsample of the training set. We
will discuss this in details in the next section.

3 ACTIVE LEARNING BASED ON
ERROR BOUND MINIMIZATION

Before presenting the new active learning method, let
us recall the basic setting of batch-mode active learn-
ing as follows. Given a training data matrix, i.e., X =
[x1, . . . ,xn] ∈ Rd×n, and an initial labeled set L, together
with a set of unlabeled examples, i.e., U . Batch-mode ac-
tive learning operates in T iterations. In each iteration, the

learner will choose b examples (denoted by B) from the un-
labeled set U to label, and add these labeled examples into
the existing labeled set L (also remove B from the unla-
beled set U). The goal of batch-mode active learning is to
find bT examples in total, which are the most informative
examples, namely selected subsample set, to query their la-
bels.

3.1 THE CRITERION

The proposed active learning method is motivated by The-
orem 2. In Theorem 2, we can see that the estimation er-
ror of the conditional class probability is upper bounded by
tr(Σ

1
2 V⊤(λI + 1/nXDX⊤)−1V⊤Σ

1
2 ), where D and Σ

are depending on w∗ and w̃. Since w∗ and w̃ are unknown,
we cannot calculate D and Σ exactly. Instead, we use the
current ŵ to approximate w∗ and w̃. Based on the approx-
imate D and Σ, we can choose b examples from U which
minimizes the upper bound. Then we will use these newly
labeled b examples together with existing labeled examples
to update the classifier. After that, we may get better ap-
proximations to D and Σ. This process is repeated until
the label budget is used out.

More specifically, in the t-th iteration, we have labeled set
L and unlabeled set U . We also have the classifier ŵt,
based on which we can get approximations of D and Σ.
Then we are going to choose the next b examples by mini-
mizing the following criterion,

arg min
B⊂U

tr
(
Σ

1
2 V⊤ (λI + XBDBBX⊤

B
)−1

VΣ
1
2

)
,

where we absorb 1/n into λ. By introducing ṽj =√
Σjjvj and x̃i =

√
Diixi, the above optimization prob-

lem can be simplified as

arg min
B⊂U

tr
(
Ṽ⊤

(
λI + X̃BX̃⊤

B
)−1

Ṽ

)
. (5)

It is a combinatorial optimization problem. Similar prob-
lems have been encountered in previous work [29]. One
way to solve it is applying the sequential minimization al-
gorithm derived in [29] b times, to get a batch B. However,
this sacrifices the advantage of batch-mode active learning,
because it neglects the information overlap among exam-
ples. Another way is formulating it as a semi-definite pro-
gramming [9], which is computationally very expensive.
Here, we do some relaxation and use the projected gradient
descent to solve it, following the idea adopted in [14].

3.2 OPTIMIZATION

We introduce a selection matrix S ∈ R|U|×b, which is de-
fined as

Sij =





1, if the i-th example in U is selected
as the j-point in B

0, otherwise.
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It is easy to check that each column of S has one and only
one 1, and each row has at most one 1. We denote the
constraint set for S by S1 = {S|S ∈ {0, 1}|U|×b,S⊤S =
I}.
With S, we have X̃B = X̃S. Then Eq. (5) can be simplified
as

arg min
S∈S1

tr
(
Ṽ⊤(λI + X̃SS⊤X̃⊤)−1Ṽ

)
.

The above optimization problem is almost continuous, ex-
cept the constraint set S1. In order to apply continuous
optimization algorithms, we relax it into the following con-
tinuous domain, i.e., S2 = {S|S ≥ 0,S⊤S = I}.
Since the projection onto {S : S⊤S = I} is computa-
tionally expensive, we would like to design an algorithm
in which the constraint S⊤S = I is automatically satisfied
after each gradient descent. To cope with S⊤S = I, we in-
troduce a Lagrange multiplier Λ ∈ Rb×b, and write down
the Lagrangian function as

L(S) =tr
(
Ṽ⊤(λI + X̃SS⊤X̃⊤)−1Ṽ

)

+tr
(
Λ(S⊤S− I)

)
.

The derivative of L(S) with respect to S is

∂L

∂S
= −2X̃⊤BX̃S + 2SΛ, (6)

where B = A−1(ṼṼ⊤)A−1 and A = λI + X̃SS⊤X̃⊤.
Using the fact that S⊤S = I yields Λ = S⊤X̃⊤BX̃S.
Substituting the Lagrange multiplier Λ back into Eq. (6),
we obtain the derivative depending solely on S. Then fol-
lowing [14], we can use projected gradient descent to find
a local optimal solution for Eq. (6), where the projection
is only onto {S : S ≥ 0}. After the local optimal S∗

is obtained, we can discretize it to obtain the desired so-
lution. The analysis of the gap between the local optima
and the global optima is challenging and perhaps an open
problem. It may be helpful to realize that S2 is a matching
polytope [23] for such kind of analysis.

In summary, we present the whole algorithm for active
learning based on error bound minimization in Algorithm
1. Since our algorithm is designed from logistic regression,
we call it Logistic Bound. In the special case that b = 1,
i.e., fully sequential active learning, we do not need to use
projected gradient descent in each iteration. In that case,
we can find the best single example by sorting.

We emphasize that α in Theorem 2 is some parameter
within [0, 1]. This parameter comes from the mean value
theorem in the derivation. It is not a parameter of our algo-
rithm, because we use ŵ to approximate w̃ in Algorithm 1.
So we do not need to tune α at all.

Algorithm 1 Batch-Mode Active Learning Based on Error
Bound Minimization (Logistic Bound)

Input: X,V, number of iterations T , batch size b, reg-
ularization parameter λ, initial labeled set L and unla-
beled set U ;
for t = 1→ T do

Compute ŵt based on L;
Compute D and Σ based on Eqs. (3) and (4);
Compute B ⊂ U based on Eq. (5);
Update L = L ∪ B and U = U \ B;

end for

3.3 TIME COMPLEXITY

In this subsection, we analyze the time complexity of the
proposed active learning algorithm. The computation of
Eq. (6) involves A−1, which is the inverse of a d × d ma-
trix. However, we do not need to compute it directly. Since
A−1 = (λI + XSS⊤X⊤)−1, by applying the Woodbury
matrix identity, we have A−1 = 1/λI − 1/λXS(λI +
S⊤X⊤XS)−1S⊤X⊤. Thus we only need to calculate the
inverse of (λI + S⊤X⊤XS), whose size is b × b, where b
is the batch size. So the time complexity of computing the
gradient in Eq. (6) can be reduced to O(ndb + db2 + b3),
which is dominated by O(ndb) because b is often set to 5
to 50. The total complexity of the projected gradient de-
scent is O(ndbt), where t is the iteration number. The time
complexity is clearly linear to the sample size n, and the
dimension of the input space d.

4 RELATED WORK

In this section, we show the connections of the proposed
approach with some existing active learning methods.

One thread of related work is experimental design [2].
For instance, Yu et al. [29] proposed transductive experi-
mental design (TED), whose intent is to select the exam-
ples to learn a least squares regression function which has
minimum prediction variance on the validation data. As
we mentioned before, it is a non-adaptive active learning
method, because the label information of the selected ex-
amples cannot be utilized to select subsequent unlabeled
examples. Intuitively, taking into account the labels of
queried examples is beneficial for subsequent label query.
Our method is able to utilize the labeled examples obtained
up to now to choose the next batch of examples through
D and Σ. Recall that in our method, each example in
the pool is weighted by Dii = σ(ŵ⊤xi)(1 − σ(ŵ⊤xi)).
Apparently, the more uncertain an example is, the big-
ger its weight will be (because Dii is maximized when
σ(ŵ⊤xi) = 1/2). In the special case, if σ(ŵ⊤xi) = 1/2
for every example in the pool, then all the examples are
equally weighted, and our method will degrade to TED. By
applying the derivation technique to ridge regression, we
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can obtain a very similar result to [29]. However, using the
derivation technique from experimental design, we cannot
get the results in this paper. So the derivation technique
used in this paper is more general.

The second line of related work is active learning based
on logistic regression [30, 26]. Based on the asymptotic
analysis, Zhang and Oles [30] derived the inverse of the
Fisher information matrix of the maximum likelihood es-
timation (MLE) of logistic regression, which measures the
variance of model. Thus they proposed an active learning
criterion by minimizing the variance. Our criterion derived
in Theorem 2 is from finite sample analysis, which is non-
asymptotic and different from the criterion derived in [30].
Since finite sample error bounds characterize the behavior
of a classifier provided with a finite training sample, they
provide more accurate guidance on algorithm design than
asymptotic analysis. Following this seminal work, several
incremental studies were presented, which solve the same
criterion using different sophisticated optimization algo-
rithms. For example, Hoi et al. [20] proposed to refor-
mulate it as a submodular function maximization problem.
On the other hand, Guo and Schuurmans [17] proposed a
batch-mode active learning algorithm based on logistic re-
gression, by maximizing the likelihood on the labeled train-
ing sample and minimizing the entropy on the selected un-
labeled training sample. The main innovation lies in the
optimization part rather than the theoretical results.

The last but not least related work is the family of expected
error minimization-based approaches. Recently, Gu et al.
[14] proposed an active learning method based on mini-
mizing the out-of-sample error bound for Laplacian regu-
larized least squares (LapRLS) [6], a semi-supervised ver-
sion of least squares regression. It sheds light on designing
active learning algorithms via deriving certain kind of er-
ror bounds, which do not rely on the i.i.d assumption of the
training sample nor the class labels. The method is non-
adaptive1, raising a question that whether we can design an
adaptive active learning algorithm along this line. Our re-
sult in this paper is in the affirmative. However, the linear
regression model as well as the derivation technique used
there are not capable to achieve this goal. So we study
logistic regression with a new analyzing technique instead.
Note also that in the supervised case, the methods proposed
in [14] and [29] are identical in terms of the criterion.

1It is nonadaptive, in the sense that when the model (ŵ) is up-
dated using the newly labeled examples, the algorithm is not able
to use the information from the updated model (ŵ) to choose next
batch of examples to label. In fact, the active learning algorithm
in [14] does not use any information from ŵ in the process of
active learning, because its criterion does not depend on ŵ.

5 EXPERIMENTS

In this section, we evaluate the proposed method on both
UCI datesets [3] (wdbc, wpbc, sonar, heart, australian, dia-
betes, splice) and two text datasets (Text1 and Text2) gener-
ated from the famous 20-newsgroups data set2. For the text
datasets, the original number of features (words) is 8, 014.
We apply principal component analysis (PCA) to reduce
the input dimensionality by projecting the data onto its
leading principal components, where the number of princi-
pal component is determined such that it accounts for 95%
of its total variance. For each example, we normalize it into
a vector with unit ℓ2-norm.

5.1 EXPERIMENTAL SETUP AND BASELINES

In order to randomize the experiments, in each run of ex-
periments, we use 50% data as the training examples. The
remaining 50% data is used as test set. We use the train-
ing set for active learning and evaluate the prediction per-
formance on the fixed test set. This random split was re-
peated 20 times, thus we can do statistical significance test.
We study a difficult case of active learning, where we start
with one randomly selected example per class. All the al-
gorithms start with the same initial labeled set, unlabeled
set and test set.

To demonstrate the effectiveness of our proposed method,
we compare it with existing state-of-the art algorithms, in-
cluding one fully sequential active learning approach, one
non-adaptive active learning algorithm, and three batch-
mode active learning methods. We summarize these meth-
ods as follows:

Random Sampling (Random): It is the simplest baseline,
which uniformly selects examples from the candidate set as
training data.

Query the informative and representative examples
(QUIRE) [22]: it is a fully sequential active learning al-
gorithm.

Transductive experiment design (TED) [29]: it is a non-
adaptive active learning method. Note that it selects all the
examples to label at one shot.

SVM batch-mode active learning (SVM BMAL) [21]: in
our empirical study, we found that it consistently outper-
forms SVM active learning [27], so we only demonstrate
its results while omit the results of SVM active learning.
We use linear kernel for SVM. In fact, SVM active learn-
ing can be seen as a special case of SVM BMAL, where
the batch size is equal to 1.

Discriminative batch-mode active learning (Disc) [17]: it
is a batch-mode active learning algorithm based on logistic
regression.

2http://people.csail.mit.edu/jrennie/20Newsgroups/
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Figure 1: Comparison of active learning methods on both UCI and text datasets with batch side b = 5, and T = 20
iterations. The x-axis is number of labeled examples, and the y-axis is the classification accuracy (%).

Table 1: Win/tie/loss counts for the proposed method versus the other methods during the whole active learning process,
based on paired t-test at 95% significance level. The first column is the dataset name (#examples/#features).

DATASETS VS RANDOM VS QUIRE VS TED VS SVM BMAL VS DISC VS FISHER

WDBC(569/30) 14/6/0 18/2/0 8/12/0 18/2/0 17/3/0 10/10/0
WPBC(198/33) 9/6/5 9/6/5 13/7/0 4/12/4 10/6/4 11/6/3
SONAR(208/60) 2/16/2 13/7/0 18/2/0 14/6/0 20/0/0 19/1/0
HEART(270/13) 9/11/0 19/1/0 6/13/1 20/0/0 5/15/0 14/6/0
AUSTRALIAN(690/14) 14/6/0 20/0/0 10/10/0 10/10/0 20/0/0 20/0/0
DIABETES(768/8) 1/19/0 20/0/0 11/9/0 20/0/0 17/3/0 15/5/0
SPLICE(1000/60) 15/4/1 18/2/0 14/5/1 18/2/0 16/4/0 0/19/1
TEXT1(1980/991) 20/0/0 20/0/0 13/5/2 20/0/0 19/1/0 19/1/0
TEXT2(1990/768) 18/2/0 20/0/0 9/10/1 20/0/0 18/2/0 18/1/1
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Fisher information of logistic regression (Fisher) [20]: It is
also a batch-mode active learning based on logistic regres-
sion. However, it is derived from non-asymptotic analysis
of logistic regression.

For our method, the validation set V is set to the same as
the pool of unlabeled examples. Recall that our method
does not require the labels of the validation set either.

For each dataset, we let the active learning methods in-
crementally choose b = 5 examples to label, and perform
T = 20 iterations in total (except for wpbc, where we only
perform T = 19 iterations due to limited examples). We
did not compare with [16], because we were not able to ac-
quire a working implementation of this algorithm. Accord-
ing to the experimental results (Table 1) reported in [16],
its performance is statistically similar to Disc [17]. We did
not use semi-supervised classifiers. Hence the approach
proposed in [14] reduces to TED. Most of the implemen-
tations are provided by the authors of the corresponding
papers.

One issue with most of the active learning methods we in-
vestigated is that they are invented based on different clas-
sifiers. For example, TED is designed for ridge regression.
Disc and Fisher are developed based on logistic regression.
We use different classifiers for different active learning ap-
proaches, because we found that using the classifier based
on which the active learning method is derived can lead
to better results than using other classifiers. Furthermore,
for each active learning method, its parameter and the pa-
rameter of its corresponding classifier are tuned by 5-fold
cross validation on the labeled set through searching the
grid {10−3, 10−2, . . . , 103}.

5.2 RESULTS AND DISCUSSIONS

The experimental results are shown in Figure 1. In all sub-
figures, the x-axis represents the number of labeled exam-
ples, while the y-axis is the averaged classification accu-
racy on the test data over 20 runs.

We compare all the active learning methods during the en-
tire query process. Recall that in Figure 1, there are 20
query points (except for wpbc, which has only 19), with 20
results on each of them. We therefore run a 2-sided paired
t-test at each query point, at 95% significance level. The
results of t-test can be categorized into three cases: (i) our
method outperforms a specific algorithm significantly, de-
noted by “win”; (ii) our method is significantly worse than
a specific algorithm, denoted by “lose”; (iii) otherwise, de-
noted by “tie”. We summarize the t-test results in terms of
the count of “win”, “tie” and “lose” in Table 1.

We observe that the proposed method outperforms the other
methods significantly at most cases. SVM BMAL and
QUIRE are often the worst. The reason is probably that
their criteria are not related to prediction performance. The

performance of Disc is satisfactory. Yet it performs well
on some datasets while not very well on other datasets.
The performance of TED and Fisher are comparable. Al-
though TED aims to minimize the variance of prediction,
[14] showed that it is actually consistent with minimizing
the out-of-sample error of ridge regression. This explains
its good performance. However, since TED is a nonadap-
tive active learning method, it cannot fully utilize the la-
bel information during the query process. This limits its
performance on many datasets. Fisher minimizes the un-
certainty of the model, which does not necessarily lead to
small generalization error. However, it happens that the un-
certain reduction criterion for logistic regression derived in
[30] is a little similar to our criterion. This may interpret
its general good performance. The superior performance of
our method is attributed to its theoretical foundation, which
guarantees that the classifier can achieve small prediction
error on the unseen data. Lastly, we found that the perfor-
mance of random sampling is not bad. As an unbiased label
selection procedure, random sampling is at least a consis-
tent algorithm to choose the training sample, as is widely
done in passive learning. This is consistent with the result
reported in [17].

5.3 STUDY ON THE BATCH SIZE

In previous experiments, we fixed the batch size to 5, which
could be biased in comparison. So we will compare our
method with those batch-mode active learning algorithms
under different settings of batch size here. We vary the
batch size using the grid {1, 5, 10, 20, 30, 60} and show the
results with 60 labeled examples in Figure 2. We only show
the results on three datasets (Sonar, Heart and Text1). Sim-
ilar results can be observed on the other datasets.

It can be seen that under different batch sizes, our method
outperforms the other batch-mode active learning algo-
rithms in most cases. This strengthens the superiority of
our method over the others. In addition, we also observe
some interesting results. For example, for some batch-
mode active learning algorithms such as SVM BMAL and
Disc, their performance of using a batch size of more than
one example sometimes seems not as good as choosing a
single example at each round. This implies that they may
not be able to address the information overlap among ex-
amples very well. In contrast, our method is able to exploit
the interdependence among examples, because our method
usually achieves better results with batch-size larger than
one.

In addition, we found that our method obtains the best re-
sult when the batch size is either not too small (b = 1) nor
too large (b = 60). This is quite reasonable, because when
b = 1, it is a fully sequential strategy, and we cannot utilize
the dependence among examples. On the contrary, if the
batch size is too large (such as one-short active learning in

307



1 5 10 20 30 60
64

66

68

70

72

74

76

78

80

Batch Size

A
c
c
u
ra
c
y

 

 

SVM BMAL

Disc

Fisher

Logistic Bound

(a) sonar

1 5 10 20 30 60
79

80

81

82

83

84

85

Batch Size

A
c
c
u
ra
c
y

 

 

SVM BMAL

Disc

Fisher

Logistic Bound

(b) heart

1 5 10 20 30 60
65

70

75

80

85

90

95

Batch Size

A
c
c
u
ra
c
y

 

 

SVM BMAL

Disc

Fisher

Logistic Bound

(c) Text1

Figure 2: Comparison of batch-mode active learning methods on three datasets with different batch size ranging from b = 1
to b = 60. The x-axis represents the batch size, and the y-axis is the classification accuracy (%) with 60 labeled examples.

the extreme case), the information contained in the newly
labeled examples cannot be immediately exploited through
updating the classifier, which may limit its performance.
This somehow implies the superiority of batch-mode active
learning against both fully sequential and one-short active
learning. It also suggests us to choose a medium size of
batch in practice. More rigorous analysis is required in the
future work.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel active learning method
based on out-of-sample error bound minimization. We use
logistic regression as a running example to derive the al-
gorithm. We would like to emphasize that the derivation
technique developed in this paper applies to other gener-
alized linear models, or even more sophisticated graphical
models. In our future work, we will study these alterna-
tives. We also plan to conduct comparisons with some
other batch-mode active learning methods proposed re-
cently [4, 10, 28]. On the other hand, we aim to develop
an algorithm solving Eq. (5) with provable guarantee.
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Abstract

This paper presents a Bayesian generative
model for dependent Cox point processes,
alongside an efficient inference scheme which
scales as if the point processes were mod-
elled independently. We can handle miss-
ing data naturally, infer latent structure, and
cope with large numbers of observed pro-
cesses. A further novel contribution enables
the model to work effectively in higher dimen-
sional spaces. Using this method, we achieve
vastly improved predictive performance on
both 2D and 1D real data, validating our
structured approach.

1 INTRODUCTION

Point processes are effectively used to model a variety
of event data, and have also shown a recent popular-
ity within the Machine Learning community as priors
over sets. The most fundamental example of such a
stochastic model for random sets is the homogenous
Poisson process. This is defined via an intensity which
describes the expected number of points found in any
bounded region of some arbitrary domain. An in-
homogenous Poisson process allows the intensity to
vary throughout the domain over which the process
is defined. As we do not know the functional form of
this intensity given only event data, another stochas-
tic process is typically used to model it nonparamet-
rically. This is then termed a doubly-stochastic Pois-
son process, a type of renewal process also known as
a Cox process. In our particular construction, we use
transformed Gaussian processes to model the intensity
functions of the individual dependent point processes,
in such a manner as to enable fully nonparametric
Bayesian inference (Adams et al., 2009; Murray et al.,
2010). While we only explicitly consider the doubly

∗ Corresponding authors, in alphabetical order.

stochastic Poisson process, any general renewal pro-
cess (Rao and Teh, 2011) could be incorporated into
the framework we define.

There are many occasions when we have multiple point
processes which we expect to be dependent: If the
domain is temporal, then an example would be indi-
vidual clients making trades with a specific financial
services provider, or individual customers purchasing
items from a specific vendor. If the domain is spa-
tial, we might consider different categories of crime de-
fined over some geographic region. Defining a flexible
model for inter-process dependency structure, along-
side an efficient inference scheme allows us to learn
the underlying intensity functions which drive the typ-
ical behaviour. These can then be used to make more
accurate predictions, especially during periods of un-
observability for an individual process.

In order to maximise the flexibility of our approach, we
specifically assume that the individual intensity func-
tions arise via a weighted summation of convolutions of
latent functions with a kernel. Intuitively this means
that we take a small number of latent functions, indi-
vidually smooth and scale them, and then add them
together to yield an intensity function. This approach
allows a wide range of intensities to arise from only a
few latent functions.

We will present and validate the following novel con-
tributions:

• The first generative model for dependent Cox pro-
cess data (Section 2).

• An efficient, parallelised inference scheme, which
scales benignly with the number of observed point
processes (Section 3).

• A new adaptation of thinning (Lewis, 1979),
which we term ‘adaptive thinning’. This in-
troduces multiple uniformisation levels over the
space, making the model viable for higher dimen-
sional spaces and larger datasets (Section 4).
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2 THE MODEL

We first formally review the Cox process, before de-
scribing the innovative nonparametric Bayesian model
outlined in Adams et al. (2009) as the Sigmoidal Gaus-
sian Cox Process (SGCP), which allows a full Gaussian
process to be used as a prior over an individual inten-
sity function. We then move on to review the convolu-
tion process (Álvarez and Lawrence, 2011), a method
of modelling dependent functions and the underlying
latent processes which govern them. Our novel com-
bination of these constituent elements represents the
first model for dependent Cox point processes.

2.1 THE INHOMOGENOUS POISSON
PROCESS

For a domain X = RD of arbitrary dimension D, we
may define an inhomogenous Poisson process via an
intensity function λ(x) : X → R+, and a Lebesgue
measure over the domain, dx. The number of events
N(T ) found over a subregion T ⊂ X will be Pois-
son distributed with parameter λT =

∫
T λ(x) dx. Fur-

thermore, we define N(Ti) to be independent random
variables, where Ti are disjoint subsets of X (Kingman,
1993).

If we bound the region to be considered, and assume
there are K observed events, labelled as {xk}Kk=1, then
the inhomogenous Poisson process likelihood function
may be written as

p({xk}Kk=1 | λ(x)) = exp

{
−
∫

T
dxλ(x)

} K∏

k=1

λ(xk).

(1)

2.2 THE SIGMOIDAL GAUSSIAN COX
PROCESS

In order to model the intensity nonparametrically, we
place a Gaussian Process (Rasmussen and Williams,
2006) prior over a random scalar function g(x) : X →
R. This means that the prior over any finite set of
function values {g(xn)}Nn=1 is a multivariate Gaussian
distribution, defined by a positive definite covariance
function C(., .) : X × X → R and a mean function
m(.) : X → R. The mean and covariance function are
parameterised by a set of hyperparameters, which we
denote γ.

In the SGCP, a Gaussian Process is transformed into a
prior over the intensity function by passing it through
a sigmoid function and scaling it against a maximum
intensity λ∗: λ(x) = λ∗σ(g(x)), where σ(.) is the lo-
gistic function. This forms the basis of a generative
prior, whereby exact Poisson data can be generated
from λ(x) via thinning (Lewis, 1979), which involves

adding M events, such that the joint point process
over the M +K events is homogenous with fixed rate
λ∗.

As we are using an infinite dimensional proxy for
λ(x), the integral in Equation 1 is intractable. Fur-
thermore, using Bayes’ theorem with this likelihood
yields a posterior with intractable integrals in both
the numerator and denominator. These challenges are
overcome by making use of the generative prior, and
augmenting the variable set to include the number
of thinned points, M , and their locations, {x̃m}Mm=1.
This then means that the value of the intensity func-
tion need only be inferred at the M + K point loca-
tions, gM+K = {g(xk)}Kk=1∪{g(x̃m)}Mm=1. Noting that
σ(−z) = 1 − σ(z), the joint likelihood over the data,
function values and latent variables is

p({xk}Kk=1,M, {x̃m}Mm=1,gM+K | λ∗, T , θ) =

(λ∗)M+K exp {−λ∗µ(T )}

×
K∏

k=1

σ(g(xk))
M∏

m=1

σ(−g(x̃m))

× GP(gM+K | {xk}Kk=1, {x̃m}Mm=1, γ), (2)

where we have defined µ(T ) =
∫
T

dx.

Notably, this likelihood equation does not involve any
intractable integrals. This means that inference is now
possible in this model, albeit subject to the cost of an
augmented variable set.

2.3 THE CONVOLUTION PROCESS

The convolution process framework is an elegant way
of constructing dependent output processes. Instead of
assuming the typical instantaneous (Teh et al., 2005)
mixing of a set of independent processes to construct
correlated output processes, we generalise to allow a
blurring of the latent functions achieved via convolu-
tion with a kernel, G(x, z), prior to mixing. z is typ-
ically defined on the same domain as x. If we place
a Gaussian process prior over the latent function, the
output function turns out to also be a Gaussian pro-
cess (Álvarez and Lawrence, 2011). Specifically, given
D dependant intensity functions gd(x) and Q latent
processes uq(x), (where typically Q < D), the stochas-
tic component of the dth intensity is

gd(x) =

Q∑

q=1

∫

T

Gd(x, z)uq(z) dz. (3)

Given full knowledge of the latent functions, the gd(x)
are independent and deterministic. The Gd(x, z) en-
code the observed process specific characteristics, and
the uq(z) can be thought of as encoding the latent
driving forces.
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The convolution process has strong links with the
Bayesian kernel method, as described in (Pillai et al.,
2007). This allows a function f(x) on X to arise as

f(x) =

∫

X
K(x, z)U(dz), (4)

where U(dz) ∈ M(X ) is a signed measure on X . The
integral operator LK : U(dz) → f(x) maps the space
of signed measures M(X ) into HK , a reproducing
kernel Hilbert space (RKHS) defined by the kernel,
K(x, z). This mapping is dense in HK . If we place a
Gaussian process prior on the random signed measure
U(dz), rather than directly over f(x), then any draw
of f(x) will provably lie in HK . As HK is equivalent
to the span of functions expressible as kernel integrals,
this approach allows us to properly construct distri-
butions over specific parts of function space. Using
prior domain knowledge to restrict inference to plau-
sible areas of function space is valuable, particularly
for point process intensities where the likelihood link-
ing function to data is weak and non-trivial, and we
wish to only consider smooth intensities while using a
sampling based inference scheme.

The convolution process is also known as a latent force
model (Alvarez et al., 2009). In this guise, it is used
to infer the solution of a differential equation when
there is uncertainty in the forcing function. The con-
volution kernel is the Green’s function of a particular
differential equation, and the Gaussian process prior
is placed on the driving function. This representation
lets us consider the latent functions as driving forces,
which are viewed through the intensity function spe-
cific convolution kernel. The convolution kernel can,
for example, be used to model differing speeds of in-
formation propagation from the latent factors to each
of the observed processes.

It is worth noting that any general Lévy process prior
can be used over the latent functions, however in this
particular case we use a pure Gaussian process primar-
ily for reasons of tractability.

2.4 SPARSE LATENT FUNCTIONS

To make the model tractable, we make use of the prop-
erty that the intensities are independent conditioned
on the latent functions. This is made clear from the
perspective of a generative model with only one la-
tent function: we first draw a sample of the object
u(z), before solving the integral in equation 3, where
uncertainty about u(z) is propagated through the con-
volution. Now instead of maintaining the full, infinite
dimensional object u(z), let us condition on a finite
dimensional draw of u(z), u(Z) = [u(z1), . . . , u(zJ)]T

where Z = {zj}Jj=1. We can then sample from p(u(z) |
u(Z)), as this is a conditional Gaussian distribution,

and use this function to solve the convolution integral.
With multiple latent functions we can approximate
each uq(z) by E[uq(z) | uq(Z)], replacing Equation 3
with

gd(x) ≈
Q∑

q=1

∫

T

Gd(x, z)E[uq(z) | uq(Z)] dz. (5)

This is reasonable as long as each uq(z) is smooth, in
the sense that it is well approximated given the covari-
ance function and the finite dimensional sample uq(Z).
In Section 3, we use the approximation in Equation 5
along with the conditional independence assumption
to build a tractable inference scheme.

2.5 CONSTRUCTING THE MODEL

Let the Q latent functions uq(z) be modelled as Gaus-
sian processes with Gaussian covariance functions such
that

uq | φq ∼ GP(0,Kq(z, z
′)), (6)

where Kq(z, z
′) is simply the Gaussian kernel

Kq(z, z
′) = N (z; z′, φq). (7)

We use a scaled Gaussian convolution kernel

Gd(x, z) = κdN (x; z, θd). (8)

This restricts gd(x) to be at least as smooth as the ran-
dom draws from uq(z). The covariance linking uq(z)
to gd(x) is

Kfd,uq (x, z) =

∫

X

Gd(x, z)Kq(z, z
′)dz

= κdN (x; z, θd + φq), (9)

and the overall covariance between output functions is

Kfd,fd′ (x, x
′) =

Q∑

q=1

∫

X

Gd(x, z)

∫

X

Gd′(x
′, z′)Kq(z, z

′) dz′ dz

Kfd,fd′ (x, x
′) =

Q∑

q=1

κd κd′ N (x; z, θd + θ′d + φq). (10)

We could use this joint covariance function to con-
struct one large joint Gaussian process over all the
intensity functions. In doing this, however, the uq(z)
have been implicitly integrated out, and the result-
ing inference problem will scale computationally as
O(D3N3) with storage requirements of O(D2N2),
where N = M +K is the joint number of events. This
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is intractable for any real problem, where we would
hope to leverage many dependent point processes to
learn a few latent factors with minimal uncertainty.

Let us now define some additional notation: K de-
notes a covariance matrix obtained by evaluating the
appropriate covariance function at all eligible pairs of
data points. Subscripts determine which covariance is
used and hence which inputs are valid, e.g. Kgd,uq de-
notes the cross covariance between the dth output and
qth input function. Kgd,u means stack the Q Kgd,dq

matrices vertically, Ku,u is a block diagonal matrix
where each block corresponds to Kuq,uq , and u is the
result of stacking the draws from the finite dimensional
Gaussians p(uq(Z)) vertically.

We also define: φ = {φq}Qq=1, κ = {κd}Dd=1, θ =

{θd}Dd=1, Xd = {xd,k}Kdk=1 ∪ {x̃d,m}Md
m=1. If we wish

to allow the latent functions to be sampled at differ-
ent points, then we define a separate Zq for each uq(z):
Zq = {zq,j}Jj=1. The set of inputs over all latent func-

tions is then Z = {Zq}Qq=1, and similarly for the inten-

sities: X = {Xd}Dd=1.

Notation in place, we determine that given the approx-
imation in Equation 5, the conditional likelihood for
gd(x) is

p(gd | u, Z,Xd, κd, θd, φ) =

N (Kgd,uK
−1
u,uu, Kgd,gd −Kgd,uK

−1
u,uK

T
gd,u

). (11)

Still conditioning on the latent functions, the joint like-
lihood over all D intensity functions is then simply

p(g1, . . . , gD | u, Z,X, κ, θ, φ) =

D∏

d=1

p(gd | u, Z,Xd, κd, θd, φ). (12)

Bayes’ rule for Gaussians gives us the posterior over
the uq(Z) as

p(u1, . . . , uQ | g1, . . . , gD, Z,X, κ, φ, θ)

= N (u1, . . . , uQ;µp, Σp). (13)

Where the mean and covariance are

Σp =
[
K−1
u,u + (Kg,uK

−1
u,u)TD−1(Kf,uK

−1
u,u)

]−1

µp = Σp(Kg,uK
−1
u,u)TD−1g (14)

and where D = Kg,g −Kg,uK
−1
u,uK

T
g,u.

The exact form of D depends on the degree to which
we are willing make independence assumptions in or-
der to approximate the Gaussian processes used to
model the functions. Naturally the higher the degree
of approximation, the more scalable the resulting in-
ference scheme.

Under full dependence, a single event is linked to both
inter and intra-process data. We will be assuming that
the dependency structure across the gd(x) is entirely
contained by the latent processes, uq(z). Intuitively,
this means that we maintain the full Gaussian pro-
cess structure for each individual intensity function,
while summarising the latent functions via a set of
inducing inputs Z = {zj}Jj=1. This approximation
scheme results in a functional form which is similar
to what Quiñonero Candela and Rasmussen (2005)
call the Partial Independence (PITC) scheme. Impor-
tantly it allows inference to scale computationally as
O(DN3), with storage requirements of O(DN2) even
in the worst case scenario of J = N . Further approxi-
mations may be made, and these are especially useful
if the number of events per process is large, however for
our purposes they are not necessary. For more infor-
mation on approximation methods for Gaussian pro-
cesses see Quiñonero Candela and Rasmussen (2005)
and Snelson and Ghahramani (2005).

Under the PITC low rank covariance, the resulting
form for D is: [Kg,g−Kg,uK

−1
u,uK

T
g,u]◦M, where M =

IN ⊗1N and 1N is a N ×N matrix of ones. This may
be more familiar as blkdiag[D].

3 INFERENCE

For each of the D point processes we need to learn
|Xd|, Xd, κd, θd, λ

∗
d and gd(x). For each of the Q

latent functions uq(Z) and φq must be inferred. Zq
are fixed to an evenly spaced grid which is identical
across the latent processes. To find posteriors over
all these variables, we choose a Markov Chain Monte
Carlo (MCMC) algorithm, as detailed below.

Using the PITC approximation scheme, the likelihood
over the point processes factorises conditioned on the
latent functions. This means that given D compute
units the updates associated with each point process
may be made in parallel. This is important as the in-
ference algorithm is computationally bottlenecked by
operations associated with learning the locations of the
thinning points, X.

We now give a recap of the inference scheme from the
SGCP for a single point process, while listing our mi-
nor modifications. Updates for the latent functions are
then given, conditioning on the D intensity functions.

3.1 LEARNING THE INTENSITY
FUNCTION

Recalling Equation 2, three kinds of Markov transi-
tions are used to draw from this joint distribution: 1)
Sampling the number of thinned points, M . 2) Sam-
pling the locations of the thinned events, {x̃m}Mm=1. 3)
Resampling the intensity function, gM+K.
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Metropolis-Hastings is used to sample M . The prob-
ability of insertion/deletion is parameterised by a
Bernoulli proposal function: b(K,M) : N×N→ (0, 1),
where the parameter has been arbitrarily set to 1

2 . If
an insertion is required, a new xM+1 is drawn uni-
formly and at random from µ(T ), and g(xM+1) is
drawn from the Gaussian process conditioned on the
current state. A deletion results in a thinned event
x̃m being removed at random from {x̃m}Mm=1. The
overall transition kernels q, and Metropolis-Hastings
acceptance ratios, a, are:

qins(M + 1←M) = (15)
b(K,M)
µ(T ) GP(g(x̃M+1) | {x̃m}Mm=1,gM+K),

ains =
(1− b(K,M + 1))µ(T )λ∗

(M + 1)b(K,M)(1 + exp(g(x̃M+1)))
, (16)

qdel(M − 1←M) =
1− b(K,M)

M
(17)

adel =
Mb(K,M − 1)(1 + exp(g(x̃m)))

(1− b(K,M))µ(T )λ∗
. (18)

Sampling the locations of the thinned events also
makes use of the Metropolis criterion. For each event
x̃m a move to x̂m is proposed via a Gaussian proposal
density. A function value g(x̂m) is then drawn con-
ditioned on the state with g(x̃m) removed, denoted
gM−+K. This gives the move acceptance ratio

amove =
qmove(x̃m ← x̂m)(1 + exp(g(x̃m)))

qmove(x̂m ← x̃m)(1 + exp(g(x̂m)))
. (19)

where qmove is the proposal distribution. We use a
symmetric Gaussian proposal

qmove(x̂m ← x̃m) = N
(

0,
µ(T )

100

)
. (20)

To sample the function we opt to use Elliptical Slice
Sampling (Murray et al., 2010). This is an algorithm
specifically designed for sampling from high dimen-
sional, highly correlated, Gaussian process posteriors.
The log conditional posterior over function values is

ln p(gM+K |M, {xk}Kk=1, {x̃m}Mm=1, γ) =

− 1
2gM+KΣ−1gM+K −

K∑
k=1

ln(1 + exp(−g(xk)))

−
M∑
m=1

ln(1 + exp(g(x̃m))) + const. (21)

In our case, Σ is equal to the covariance in Equation
11, and naturally for each iteration we perform all the
above updates in parallel for each observed point pro-
cess, conditioned on the latent functions.

To infer the posteriors over the Gaussian process
hyperparameters, we use Hamiltonian Monte Carlo

Algorithm 1 MCMC Scheme

Input: {Xk}Kk=1, priors.
repeat

ParFor d = 1 to D
Sample thinned events: Equations 16 → 27
Sample locations: Equations 20 → 19
Sample function: Equation 21
Sample hyperparameters: Equation 21
Sample λ∗: Equation 22

EndParFor
Sample latent functions: Equation 13
Sample latent hyperparameter: Equation 23

until convergence is true

(HMC) (Duane et al., 1987; Neal, 2010), with log-
normal priors over each hyperparameter. By placing
a Gamma prior with shape α and inverse scale β over
λ∗, we infer the posterior conditioned on the thinned
and true points using a Gibbs update as follows:

αpost = α+K +M, βpost = β + µT . (22)

3.2 LEARNING THE LATENT
FUNCTIONS

Conditioning on the point process intensity functions,
gd(x), the latent functions are dependent, with condi-
tional posterior distribution given by Equation 13.

Having drawn new values for each of the uq(Zq), we
can update the φq using a metropolis-hastings step
under the following log conditional posterior which is

ln p(φq | uq(Zq), Zq) = − 1
2uq(Zq)K

−1
uq,uq

1
2uq(Zq)

− 1
2 log det(Kuq,uq ) + const. (23)

The overall procedure is summarised in algorithm 1.

4 ADAPTIVE THINNING

In higher dimensional spaces, data is typically con-
centrated into small, high density sub-domains. Un-
der the current methodology, we must thin the entire
empty space to a uniform concentration which matches
that of the most dense subregion. If we wish to use
Gaussian Process intensities this rapidly becomes in-
feasible, even under the most radical of sparse approx-
imations (Snelson and Ghahramani, 2005).

Our novel solution to this problem is to model the
upper bounded intensity over the space using a piece-
wise constant function, where each section takes a frac-
tional proportion of the global upper bound, λ∗. This
preserves the tractability of the integrals in the like-
lihood and posterior, and does not violate any of the
properties of the point process, while simultaneously

314



allowing empty regions to be thinned to a far lower
average density.

Consider Figure 1: this shows both the data and the
thinned points, where for the left three quarters of the
plot the maximum rate does not exceed 50% of λ∗.
Let us assume we allow the maximum rate to take one
of two values for each datapoint: 1

2λ
∗ and λ∗. For

each new thinned point we sample an intensity func-
tion value, before also sampling an upper bound for
the rate from the available levels. This upper bound
is at least as great as the current function evaluation
at that point.

In this manner we hope to infer that for the majority
of Figure 1, the rate may be happily upper-bounded
by half the global maximum rate, λ∗, and hence the
bulk of the space may be thinned to a significantly
lower density. As a result, the computational burden
incurred will be significantly reduced, as far fewer ex-
pensive points need be incorporated into our GP.

In our particular implementation, we fix a-priori a set
of B possible maximum rate ‘levels’:

L = {li ∈ (0, 1]|li < li+1, lB = 1}Bi=1. (24)

We then augment the variable set to include for each
thinned point x̃m which rate level rm ∈ {1 . . . B}
it is currently assigned, where we set rm such that
σ(g(x̃m)) ≤ lrm . This causes the probability of seeing
a thinned point x̃m under the sigmoid GP to become

p(x̃m|rm) =
lrm − σ(g(x̃m))

lrm
, (25)

while the probability of a non-thinned point remains
unchanged. Using this relationship we modify the
Metropolis acceptance criteria which now become

ains =
(1− b(K,M + 1))µ(T )λ∗lrM+1

p(x̃M+1|rM+1)

(M + 1)b(K,M)
,

(26)

adel =
Mb(K,M − 1))

(1− b(K,M))µ(T )λ∗lrmp(x̃m|rm)
, (27)

as well as the likelihood function for p(g(XM+K)),
Equation 21.

In principle this scheme could slow mixing, since the
function is constrained to lie below the maximum level
at each point. By ensuring that there is always some
slack, s, between the function and the rate level as-
signed we find that mixing is hardly affected. The
slack is incorporated by assigning the rate as follows:

rm ←
{

argmax
r
{σ(g(x̃m)) ≤ lr × s} , σ(g(x̃m)) ≤ s

1, otherwise.
(28)

Figure 1: Graphical representation of adaptive thin-
ning: Blue crosses indicate thinned points, red crosses
represent data. The black line shows the intensity
function. Each point is accepted as data with prob-
ability given by σ(g(xn)). Fewer thinned points are
required in areas of half maximum bound.

We used s = 0.9. The rate levels can also change at
each iteration during the ‘move’ step when we compute
the new rate level for jittered points and we compose
the acceptance criteria as the product of the insertion
and deletion criteria amove = ains × adel.
Finally, when re-sampling λ∗ we must compute an esti-
mate of the total number of points under a single rate
uniformisation of the space. This estimate is read-
ily available because the number of points (including
observed data points) with rate r is a Monte-Carlo in-
tegral of the proportion of space thinned to rate level
lr. Since the number of points in each region is scaled
by lr, the estimated total is

N̂tot =
K∑

k=1

1

lr̄k
+

M∑

m=1

1

lrm
, (29)

where r̄k is the notional rate of observed data com-
puted exactly as for the thinned points. The posterior
value αpost is therefore α+ N̂tot.

To validate adaptive thinning, we return to the original
SGCP and modify it in the manner described above.
We perform two experiments: The first in 1D and the
second in 2D. In both cases we use 10 known random
intensity functions to generate event data: In the 1D
case we sample 15 random datasets per function, while
in the 2D case we generate 10. One dataset is used to
learn the model, the rest are held out for testing pur-
poses. Two metrics of performance are used: L2-norm
error as measured against the true intensity function,
and average predictive log-likelihood across all held
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out test datasets.

In 1D, we run each model for 6 minutes total compute
time, in 2D we allow 20 minutes total. In both cases
half the time is allocated to burn-in. In 1D the single
rate method achieved roughly one sample per second,
with the two rate case yielding just under four samples
per second, and the four rate approach giving just un-
der 8 samples per second. In 2D the number of points
required was larger in all cases, with the multi-rate
approach buying a factor of two speedup.

The results, (given in Tables 1 through 4), show that in
almost all cases the multi-level approach performs best
across both metrics. It is observed that typically the
original, homogenous rate approach performs worst of
all.

5 EMPIRICAL RESULTS

As this is the first model for structured point process
data, the approach is initially validated on a synthetic
dataset. It is then compared to both the independent
SGCP, as well as a state of the art Kernel Density
Estimator (Botev et al., 2010) on two real datasets.

5.1 SYNTHETIC DATA

Using the convolution process, we sample four inten-
sity functions, using those to sample event data. The
variety of intensities which may be observed given a
single latent function is notable in Figure 2.

We then average over 2000 iterations after it was deter-
mined convergence had been achieved. The resulting
learned intensity functions are shown in Figure 3.

It is reassuring that the original latent function is well
recovered given only four observed event processes.

5.2 REAL DATA

Two datasets were selected to test the model, both of
which we considered were likely to exhibit a depen-
dency structure which could be well captured by the
convolution process.

• British politicians (MPs) tweet times during
the week of Nelson Mandela’s death (02/12/13-
08/12/13). These were obtained using the Twit-
ter API. Here we considered that there would
naturally be a daily periodicity, however, it is
not unreasonable to further postulate that some
MPs may concentrate their twitter activity into a
smaller segment of the day. This behaviour should
be well captured by the convolution process.

• NBA player shot profiles for the 2013-2014 sea-
son, scraped from the NBA website. Here we se-

lect a diverse subset of four players: Blake Griffin,
Damien Lillard, DeMar DeRozen, and Arron Af-
falo. It was supposed that it might be possible for
a single latent function to be blurred to represent
a variety of player positions and styles.

5.2.1 Twitter Data Results

Four MPs active on twitter were selected at random.
Here on we call them MPs A, B, C, and D. We se-
lect data from the period covering 02/12/13 through
13/12/13, and randomly partition each dataset into
75% training data, with the remainder being used to
evaluate predictive test log-likelihood.

Figure 4 depicts the average learned intensity functions
for each MP (red line), along with the one standard de-
viation bars (grey shading) derived from the function
samples. The bottom plot depicts the learned latent
driving function in the same manner.

The latent function clearly shows a strong daily pe-
riod, particularly evident during the working week
(02/12/13 was a Monday—corresponding to ‘1’ in Fig-
ure 4). Furthermore, the largest two peaks in activity
occur on the 3rd and the 5th of December. Poten-
tial contributing factors to these two spikes include a
public sector strike, and the death of Nelson Mandela
respectively.

Figure 4: Learned intensities over four MP’s tweet
data (A, B, C, D); learned latent function at bottom.
Actual data shown in blue.

Table 5 gives predictive log-likelihood for the held out
data, again evaluated across three approaches: An in-
tensity function learned via Kernel Density Estimation
(KDE) (Botev et al., 2010), the SGCP (Adams et al.,
2009), and our own structured approach. Both the
SGCP and our own approach use two maximum rate
levels for adaptive thinning. Each intensity function
is modelled using an independent SGCP/KDE. The
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Table 1: One dimensional adaptive thinning
L2-norm function error. Bold is best.

Function L2 Norm Error
(1D) Original 2 Rates 4 Rates

1 11.6 13.0 7.1
2 14.6 10.5 7.2
3 10.6 5.0 4.9
4 10.5 4.7 5.1
5 12.4 10.1 10.4
6 11.1 8.2 7.6
7 12.0 13.7 12.5
8 13.0 12.0 12.8
9 19.6 16.4 28.8
10 31.4 27.2 32.6

Table 2: One dimensional adaptive thinning
average predictive log-likelihood on 14 held out

datasets. Bold is best.

Function Predictive Log-Likelihood
(1D) Original 2 Rates 4 Rates

1 373.8 381.8 388.2
2 626.1 644.2 650.7
3 274.2 285.1 288.0
4 435.5 457.7 456.0
5 877.0 885.8 889.5
6 995.4 1006.6 1013.4
7 753.0 763.3 760.6
8 522.3 531.2 528.3
9 1840.6 1852.9 1826.0
10 2328.1 2365.8 2349.8

Table 3: Two dimensional adaptive thinning
L2-norm function error. Bold is best.

Function L2 Norm Error
(2D) Original 2 Rates 4 Rates

1 13.3 13.4 11.3
2 14.3 14.3 14.7
3 13.5 14.7 13.5
4 12.5 12.9 12.0
5 17.9 16.6 17.8
6 14.4 16.2 15.3
7 15.1 13.7 17.5
8 14.6 14.4 14.8
9 18.3 17.1 15.6
10 15.4 12.9 13.6

Table 4: Two dimensional adaptive thinning
average predictive log-likelihood on 9 held out

datasets. Bold is best.

Function Predictive Log-Likelihood
(2D) Original 2 Rates 4 Rates

1 2039.6 2080.6 2203.0
2 2757.9 2758.1 2829.3
3 2753.2 2689.5 2827.2
4 2803.2 2784.0 2933.6
5 2532.4 2663.0 2572.1
6 3098.2 3040.5 3054.4
7 3157.5 3259.8 3075.2
8 2086.9 2101.0 2087.4
9 5018.1 5146.6 5185.3
10 2008.1 2205.0 2174.0

Figure 2: Synthetic functions (not showing the
sampled events).

Figure 3: Learned functions using 3 rate levels: 1
4λ
∗,

1
2λ
∗, λ∗.
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Figure 5: Learned basketball intensity functions
using 3 rate levels: 1

4λ
∗, 1

2λ
∗, and λ∗.

Player Predictive Log-Likelihood
KDE SGCP Ours

Blake Griffin -121.8 335.6 374.7
Damien Lillard -22.6 231.2 395.3
DeMer DeRozen -2.9 253.1 410.7
Arron Affalo -260.7 -76.7 84.2

Figure 6: Basketball ball shot data (top) and pre-
dictive log-likelihood for held out basketball data
across models (bottom).

structured approach performs vastly better, suggest-
ing that it is highly appropriate for this type of data.

Table 5: Predictive log-likelihood for held out twitter
data across models.

MP Predictive Log-Likelihood
KDE SGCP Ours

A 177.1 176.6 469.5
B -1.3 89.6 412.9
C -5.4 49.6 283.4
D -67.7 38.7 293.7

5.2.2 Basketball Data

For the basketball point shot data, the approach per-
formed particularly well. Each player had around 600
attempted shots, of which we used 400, holding out
the rest as test data. We used 3 rate boundaries: 1

4λ
∗,

1
2λ
∗, λ∗, and once again averaged over 2000 samples af-

ter convergence. We compare predictive log-likelihood
to both the SGCP model (using the same set of rate
boundaries) and using a rate function estimated via a
state of the art KDE by Botev et al. (2010).

Figure 5 depicts the resulting intensity functions. It
is clear that the latent function represents a general
view of the court hotspots, the hoop and three pointer
line are clearly demarcated. Furthermore the intensity
functions for each player strongly match what would
be expected given their playing style—e.g. Arron Af-
falo is a ‘shooting guard’ who is expected to spend
the majority of his time inside the three pointer line,

but has a propensity to shoot from the bottom left of
the court. These effects are clearly visible on the heat
map, less so on the data (see Figure 5.2.1).

As is clearly demonstrated in Table 6, our structured
approach to modelling the basketball point data in a
fully Bayesian fashion yields a huge improvement over
both the independent SGCP as well as a modern ker-
nel density estimator. Another point worth making is
that due to the high data density around the hoop for
each player, the traditional approach of thinning (used
here as well as in the SGCP) would be prohibitively
computationally expensive. We are only able to test
on this data due to the method of adaptive thinning
introduced in this paper.

6 CONCLUSION

We have introduced a fully generative model for de-
pendent point processes, alongside an efficient, paral-
lelised inference scheme. We have shown the appro-
priateness of this model on two real datasets, and in-
troduced a new adaptation of thinning which allows
the model to scale to larger datasets and in particular
higher dimensional spaces. Future work entails inves-
tigating the appropriateness of manually introducing
known latent drivers, exploring multiple latent func-
tions, and replacing the MCMC inference scheme with
one based on stochastic variational inference (Hens-
man et al., 2013).
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Abstract

We present a peptide-spectrum alignment strategy
that employs a dynamic Bayesian network (DBN)
for the identification of spectra produced by tan-
dem mass spectrometry (MS/MS). Our method is
fundamentally generative in that it models peptide
fragmentation in MS/MS as a physical process.
The model traverses an observed MS/MS spec-
trum and a peptide-based theoretical spectrum
to calculate the best alignment between the two
spectra. Unlike all existing state-of-the-art meth-
ods for spectrum identification that we are aware
of, our method can learn alignment probabilities
given a dataset of high-quality peptide-spectrum
pairs. The method, moreover, accounts for noise
peaks and absent theoretical peaks in the observed
spectrum. We demonstrate that our method out-
performs, on a majority of datasets, several widely
used, state-of-the-art database search tools for
spectrum identification. Furthermore, the pro-
posed approach provides an extensible framework
for MS/MS analysis and provides useful informa-
tion that is not produced by other methods, thanks
to its generative structure.

1 INTRODUCTION

A fundamental problem in biology and medicine is accu-
rately identifying the proteins present in a complex sam-
ple, such as a drop of blood. The only high-throughput
method for solving this problem is tandem mass spectrom-
etry (MS/MS). Given a complex sample, an MS/MS ex-
periment produces a collection of spectra, each of which
represents a single peptide (protein subsequence) that was
present in the original sample. Fundamental to MS/MS is
the ability to accurately identify the peptide responsible for
generating a particular spectrum.

The most accurate methods for identifying MS/MS spectra
make use of a peptide database. Given a peptide drawn from

the database and an observed spectrum, these methods com-
pare a theoretical spectrum of the peptide’s idealized frag-
mentation events to a quantized or fixed-width thresholded
observed spectrum. Such preprocessing necessarily discards
potentially useful information. The spectrum identification
problem is greatly complicated by experimental noise, cor-
responding both to the presence of unexpected peaks (in-
sertions) and the absence of expected peaks (deletions) in
the observed spectrum (Fig. 1). This paper describes a Dy-
namic Bayesian network for Rapid Identification of Peptides
(DRIP), a database search method that serves as a generative
model of the process by which peptides produce spectra in
MS/MS. DRIP explicitly models insertions and deletions,
without quantization or thresholding of the observed spectra.

We note that a DBN-based database search method, called
Didea, was recently proposed [1], but this method does not
model the underlying process by which peptides produce
MS/MS spectra. Rather, in Didea both theoretical and ob-
served spectra are observed, and the model contains only
a single hidden variable, which is devoid of any physical
meaning relative to the underlying MS/MS process. The the-
oretical spectrum in DRIP, by contrast, is hidden; insertions
and deletions are explicitly modeled as latent variables (as
in [2]), and the most probable alignment between the the-
oretical and observed spectra can be efficiently calculated
(detailed in Section 4). Furthermore, Didea has a single
hyperparameter that is optimized via grid search, making
the model poorly adaptable to the wide range of machines
with widely varying characteristics, a problem addressed by
the highly trainable nature of DRIP.

We demonstrate, in fact, that against four state-of-the-art
benchmarked competitors, DRIP is the most frequent top
performer, dominating the others on four out of nine separate
datasets. By contrast, other competitors, such as Didea, dom-
inate on at most two datasets. Furthermore, DRIP, thanks to
its generative approach, provides valuable auxiliary informa-
tion, such as which observed peaks are most likely spurious,
which theoretical peaks are most likely present, and the
ability to calculate posteriors of interest via sum-product
inference [3, 4]. Such posteriors include the probability of
post-translational modifications given the observed spec-
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trum, a task which previously required post-processing the
results of a database search [5].

We first give a brief overview of a typical tandem mass spec-
trometry experiment and an overview of database search in
Section 2. Readers are directed to [6] for further background
in this area. Next, the four benchmarked competitors are
described in Section 3. DRIP is described in detail in Sec-
tion 4. Results are presented in Section 5, and we conclude
and discuss future work in Section 6.

2 TANDEM MASS SPECTROMETRY
AND DATABASE SEARCH
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Figure 1: Sample tandem mass spectrum, where the
peptide responsible for generating the spectrum is x =
LWEPLLDVLVQTK, the precursor charge cs is 2, and the
most probable alignment computed in DRIP is plotted. The
b-ion peaks are colored blue, y-ion peaks are colored red,
and insertions are colored gray. Note that fragment ions
b1, y1, b4, b12 correspond to deletions.

Although we are typically interested in the protein content
of a complex mixture, the fundamental unit of observation
in tandem mass spectrometry is the peptide, because pep-
tides are more amenable to liquid chromatography and mass
spectrometry analysis[6, 7]. Thus, a typical MS/MS exper-
iment begins by digesting the proteins into peptides using
a cleavage agent such as the enzyme trypsin. MS/MS then
proceeds with two rounds of mass spectrometry. The first
round measures the mass-to-charge ratio (m/z) of the intact
peptide (called the precursor m/z), and the second round
fragments the peptide and measures the m/z values of the
resulting prefixes and suffixes. Each of these fragment m/z
values is associated with an intensity value, which is roughly
proportional to the number of copies of that peptide frag-
ment. Figure 1 displays a sample tandem mass spectrum,
along with the theoretical fragment ions (described below)
of the generating peptide. A single unit along the m/z
axis is called a Thomson (Th), and the intensity (y-axis) is
unitless but can be seen as a measure of abundance or count.

Let P be the set of all possible peptides and S be the set
of all tandem mass spectra. Given an observed spectrum
s ∈ S with observed precursor m/zms and precursor charge
cs, our task is to identify the peptide x from a given pep-
tide database D ⊆ P that is responsible for generating s.
Any given mass spectrometry device is capable of isolating

peptides with a specified precision on the precursor m/z;
therefore, we may constrain the search to only consider pep-
tides with precursor m/z ±w of ms. The set of candidate
peptides to be scored is then

D(ms, cs,D, w) =

{
x : x ∈ D,

∣∣∣∣
m(x)

cs
−ms

∣∣∣∣ ≤ w
}
,

(1)

where m(x) is the calculated mass of peptide x. The goal
of database search, then, is to return the highest scoring
candidate peptide

x∗ = argmax
x∈D(ms,cs,D,w)

ψ(x, s),

where ψ : P × S → R is a function that assigns higher
scores to higher quality matches and the pair (x, S) is
referred to as a peptide-spectrum match (PSM). The
primary distinguishing characteristic of any database search
procedure is its choice of score function ψ.

2.1 THEORETICAL SPECTRA

Many score functions, including the one employed by the
very first database search algorithm, SEQUEST [8], work by
comparing the observed spectrum to a theoretical spectrum
that is derived from a candidate peptide using basic rules
of biochemistry. Let x ∈ D(ms, cs,D, w) be an arbitrary
candidate peptide of length n. Note that x = x0x1 . . . xn−1
is a string of amino acids, i.e. characters in a dictionary of
size 20. For convenience, let ñ = n − 1. Our goal is to
produce a theoretical spectrum vx containing the fragment
m/z values that we expect x to produce. In this work, we as-
sume that the mass spectrometer employs collision-induced
dissociation, which is the most widely employed method
of peptide fragmentation. The model can be modified in a
straightforward fashion to accommodate other fragmenta-
tion modes.

The first type of fragment m/z value corresponds to prefixes
or suffixes of the candidate peptide, referred to respectively
as b-ions and y-ions. In this work, we assume that the
precursor charge cS is 2, because this is the charge state
of the high-quality set of PSMs used for training [9]. For
cS = 2, these b- and y-ions can be represented as functions
b(·, ·) and y(·, ·), respectively, that take as input a peptide x
and integer k < n:

b(x, k) =
k−1∑

i=0

m(xi) + 1, y(x, k) =
ñ∑

i=ñ−k
m(xi) + 19.

(2)

Note that the whole peptide mass is not considered and that,
for 1 < k < n, we have the recurrence relations b(x, k) =
b(x, k−1)+m(xk−1) and y(x, k) = y(x, k−1)+m(xñ−k).
In Equation 2, the b-ion unit offset corresponds to the mass
of a hydrogen atom while the y-ion offset corresponds to
the masses of a water molecule as well as a hydrogen atom.
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Thus, the b- and y-ions are simply the shifted prefix sums
and suffix sums of x, respectively. When there is no ambi-
guity as to the peptide being described, it is typical to repre-
sent the b- and y-ion pairs as (bk, yn−k) for k = 1, . . . , ñ,
where the subscript denotes the number of amino acids uti-
lized in the ion computation. As an example, for peptide
x = EALK, (b1, y3) = (b(x, 1), y(x, 3)) = (130, 331).
Denoting the number of unique b- and y-ions as nx and,
for convenience, letting ñx = nx − 1, our theoretical spec-
trum is a sorted vector vx = (v0, . . . , vñx) consisting of the
unique b- and y-ions of x. Figure 2 displays the theoretical
spectrum for x = EALK, and Figure 1 displays an observed
spectrum with annotated b- and y-ions.

0 

vx, x=EALK 

 

 

 

 

 

 

b-ion increment 
y-ion increment 
theoretical spectrum increment 
bk,yn-k pairs 

m/z 

Figure 2: Theoretical spectrum of the peptide x = EALK.
Note that the b- and y-ions correspond to prefix and suffix
sums, respectively, of the peptide x.

3 PREVIOUS WORK

We compare DRIP’s performance to that of four previ-
ously developed state-of-the-art methods. We describe each
method briefly here, and in more detail in [10]. All four
methods begin by binning the observed spectrum. The first
database search algorithm, SEQUEST [8], uses a scoring
function called XCorr, consisting of a dot-product minus a
cross-correlation term that provides an empirical null model
for a random match. The second approach, the Open Mass
Spectrometry Search Algorithm (OMSSA) [11] counts, the
b- and y-ions present in the observed spectrum and then esti-
mates a p-value by fitting this count to a Poisson distribution
with mean parameter derived from the properties of the ob-
served spectrum. The third algorithm, MasS Generating
Function DataBase (MS-GFDB) [12], computes a score by
taking a dot product between a Boolean theoretical vector
and a processed observed spectrum and then computes a
p-value for this score using dynamic programming. The
fourth algorithm that we consider, Didea [1], is most closely
related to DRIP, in the sense that both methods employ
a DBN. However, Didea differs from DRIP in four quite
significant ways:

• Notion of “time.” In Didea, each frame of the DBN
corresponds to one amino acid from the candidate pep-
tide sequence. Accordingly, Didea must copy the en-
tire observed spectrum in every frame in order to score
these observations. By contrast, each frame in DRIP

instead corresponds to a peak in the observed spec-
trum, such that a single m/z value and intensity value
are observed and scored per frame.

• Whether the theoretical spectrum is hidden or ob-
served. The theoretical spectrum in DRIP is hidden,
and inference is run to determine the best alignment
between the observed and theoretical spectra while ac-
counting for insertions and deletions, thus providing
not just a score but valuable alignment information as
well. In Didea, the theoretical spectrum is not hidden
because the amino acid variables in each frame are
observed, so that performing inference only provides a
score.

• Observed spectrum pre-processing. DRIP performs
much less pre-processing on the observed spectrum
than Didea. In particular, Didea must work with a
version of the observed spectrum in which the m/z
axis is discretized and the observed intensity values are
reweighted using a complicated function of exponen-
tials. DRIP instead scores m/z values in their natural
resolution, without discarding information due to quan-
tization.

• Training of parameters. Whereas Didea is essentially
a fixed model, DRIP offers the ability to learn its param-
eters using training data. The only learning available
in Didea is the tuning of a single hyperparameter, via
grid search, which controls the reweighting of peak
intensities.

4 DRIP PEPTIDE SCORING

Alignment  
logic 

MAX_THEO_INDEX 

EPI_IN_RANGE 

THEO_INDEX 

DELETE_COUNT 

THEO_PEAK 

OBS_MZ 

OBS_INTENSITY 

IS_INSERTION 

THEO_INCREMENT 

INSERTION_COUNT 

Figure 3: Graph of DRIP, where the boxed words on the far
left summarize the role of the random variables on the same
horizontal level to aid interpretation of the model. THEO
and OBS are short for theoretical and observed, respectively.

The graph of DRIP is displayed in Figure 3, where each
frame of the model corresponds to a single observed peak.
Shaded nodes represent observed variables, and unshaded
nodes represent hidden variables. Black edges correspond to
deterministic functions of parent variables, and blue edges
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represent switching parent functionality (also known as
Bayesian multi-nets [13]) where the parent nodes are known
as switching parents and the parents (and hence conditional
distributions) of their children may change given the values
of their switching parents. Finally, red edges denote continu-
ous conditional distributions. Random variables are grouped
into frames, indexed by t = 0, . . . , ns − 1. Note that while
elements of vectors are denoted using parentheses, a particu-
lar value of a sequence is denoted using subscripts, such that
δt is a random variable in the tth frame. For convenience,
let ñs = ns − 1, and recall that ñx denotes the number
of peaks in the theoretical spectrum minus one. The first
and last frames are known as the prologue and epilogue,
respectively. The middle frame is called the chunk and is
unrolled ns − 2 times to frames t = 1, . . . , ñs − 1. Each
frame of the graph contains observations Omz

t and Oin
t , the

tth m/z and normalized intensity values of s, respectively.
Thus, we can view traversing the graph from left to right as
moving across the observed spectrum.
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Figure 4: Illustration of a particular spectrum alignment
(instantiation of random variables) in DRIP, where the node
color denotes its instantiated value. The observed spectrum
peaks serve as the observations in each frame while the theo-
retical spectrum is hidden. DRIP thus serves as a sequencer
through all possible alignments between the theoretical and
observed spectra, made efficient via dynamic programming.

The goal of DRIP is to calculate the most probable alignment
between the observed and theoretical spectra, where an
alignment is an instantiation of the random variables in
the graph and the scoring of observed peaks as dictated by
this instantiation. This concept is detailed in Figure 4 for
a particular alignment, where random variable values are
denoted by node colors, and the alignment corresponds to a
traversal of both the theoretical (upper portion) and observed
spectra (lower portion). In the center portion of Figure 4, the
random variable Kt denotes the theoretical peak index and,
given the increment random variable δt, moves us down the

theoretical spectrum, while further alignment logic in DRIP
constrains the manner in which the theoretical and observed
spectra may be aligned. Figure 5 illustrates the scoring of
observed peaks (discussed in Section 4.2) in this alignment,
and the instantiation of random variables may be found in
Table 1. We now discuss the details of how DRIP aligns the
theoretical and observed spectra.

4.1 TRAVERSING THE THEORETICAL
SPECTRUM

The variable Kt is the index of the theoretical peak used to
score peaks in frame t, such that

p(K0 = δ0|δ0) = 1, (3)
p(Kt = Kt−1 + δt|Kt−1, δt) = 1, t > 0. (4)

From (3) and (4), we see that δt is the number of theoretical
peaks we traverse between frames t and t + 1. Note that
a deletion thus occurs when δ0 > 0 and δt > 1 for t > 0,
i.e., the hypotheses such that one or more theoretical peaks
are not accessed, where a hypothesis is an assignment of all
random variables in the graph. The number of deletions
occurring in a single frame is then δ0 for the prologue and
(δt − 1)1{δt > 1} for all subsequent frames, where 1{·} is
the indicator function which returns 1 if its argument is true
and 0 otherwise. The total number of allowed deletions is Z
and counts down in subsequent frames such that, denoting
the number of deletions left in a frame as Zt, we have

p(Z0 =Z − δ0|Z, δ0) = 1

p(Zt =Zt−1 − (δt − 1)1{δt > 1}|Zt−1, δt) = 1, t > 0.

The allowable number of insertions counts down in a simi-
lar manner to the deletions. ξ0 is the maximum allowable
insertions for all frames, it is a Bernoulli random variable
which signifies whether the peak in frame t is an inser-
tion, and p(ξt = ξt−1 − it−1|ξt−1, it−1) = 1. Further-
more, the role of ξt as a switching parent of it is such that
p(it = 0|ξt = 0) = 1. Thus, when there are no insertions
left, it is 0 for all remaining frames.

The hidden multinomial δt is such that p(δ0 >
Z) = 0, i.e. it respects the maximum deletion con-
straint of the first frame, and for t > 0, p(δt) =∑
it−1

p(δt|δt−1, Zt−1, ñx, it−1)p(it−1), where

p(δt = 0|δt−1, Zt−1, ñx, it−1 = 1) = 1, (5)
p(δt > ñx − (Kt − Zt)|ñx,Kt, Zt, it−1) = 0. (6)

Equation (5) prohibits DRIP from moving down the theoret-
ical spectrum in a frame following an insertion. This con-
straint ensures that the theoretical spectrum may not be triv-
ially traversed while observed peaks are scored as insertions,
or equivalently that some observed peak must not be scored
as an insertion in order to move down the theoretical spec-
trum for frames t > 0. Equation (6) constrains DRIP from
incrementing past the range of valid theoretical peak indices.
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Table 1: Random variable hypothesis for alignment displayed in Figure 5. Recall the deterministic relationships K0 = δ0,
Kt = Kt−1 + δt for t > 0, and given the theoretical peak index Kt we have the theoretical peak vx(Kt). For instance, from
the theoretical spectrum of x = EALK in Figure 4, we have K6 = K5 + δ6 and vx(K6) = vx(1) = 147.

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
δt 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0
Kt 0 0 0 0 0 0 1 1 1 2 2 2 2 2 2 4 4 4 4 4 4 4 5 5 5 5 5
it 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1

In order to discourage the use of deletions unless absolutely
necessary, the distribution over δt is constrained to be mono-
tone decreasing, such that for it−1 = 1, Kt − Zt < ñx,
and 0 < h < ñxt − (Kt − Zt) − 1, we have p(δt =
h|ñx,Kt, Zt, it−1) < p(δt = h− 1|ñx,Kt, Zt, it−1).

The epilogue variable Rñs , observed to 1, constrains which
theoretical peaks may occur in the final frame. If the number
of theoretical peaks left unexplored in the epilogue is greater
than the number of remaining deletions, then such a hypoth-
esis of random variables receives probability zero. Thus, we
have p(Rñs = 1|ñx,Kñs , Zñs) = 1{ñx − Kñs ≤ Zñs}.
This boundary condition limits the number of valid hypothe-
ses in DRIP which have non-zero probability, and by forcing
the traversal of the theoretical spectrum from prologue to
epilogue ensures that a peptide cannot align trivially well
to the observed spectrum. Figure 4 and Table 1 detail the
theoretical spectrum traversal for the alignment depicted in
Figure 5.

4.2 SCORING OBSERVED PEAKS
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Figure 5: Spectra alignment in DRIP given observed spec-
trum s, x = EALK, the theoretical Gaussian peaks of vx,
and hypothesis from Figure 4. Note that t is the frame
number, all Gaussians have equal variance, and vx(3) is a
deletion.

The m/z observation is scored by a Gaussian centered near
the theoretical peak accessed in a frame, and the intensity
observation is scored using a Gaussian with mean greater
than or equal to the most intense peak value. In this man-
ner, DRIP aligns the theoretical and observed spectra by
penalizing observed peaks far from theoretical peaks and pe-
nalizing peaks with intensity less than unity. The conditional

distributions of the observations are then

p(Omz
t |vx(Kt)) =

∑

it

p(Omz
t |vx(Kt), it)p(it),

p(Oin
t ) =

∑

it

p(Oin
t |it)p(it).

When it = 0, i.e., the tth observed peak is not an insertion,
then the observations are scored as

p(Omz
t |vx(Kt), it = 0) ∼N (µmz(vx(Kt)), σ

2),

p(Oin
t |µin, it = 1) ∼N (µin, σ̄2),

where µin and σ̄2 are the mean and variance of the Gaus-
sian used to score peak intensities, σ2 is the variance of
the Gaussian used to score m/z observations, and µmz is
a vector of means such that an arbitrary theoretical peak
j scores m/z observations using N (µmz(j), σ2). The the-
oretical peaks serve as indices into a vector of Gaussians,
each such Gaussian having equal variance and centered at
a unique m/z position (illustrated in Figure 5). Thus, when
describing a theoretical peak as scoring an observed peak,
we are referring to scoring using the Gaussian accessed by
the theoretical peak. To avoid confusion, we refer to the
Gaussian accessed by a theoretical peak as the theoretical
Gaussian peak.

All DRIP Gaussian means and variances are learned using
expectation-maximization(EM) [14] and a high-confidence
set of PSMs used in [9]. Note that this adds a great deal of
modeling power to DRIP, allowing for adaptability of the
expected m/z location of theoretical peaks. In MS/MS data,
the m/z measurements will be stochastically offset from
the true m/z values in a manner dependent upon machine
precision, and may also be systematically offset in a non-
linear fashion due to machine miscalibration [15]. Learning
the means of the Gaussians allows DRIP to account for
and adapt to these trends. Furthermore, the learned means
themselves may be of interest to researchers in the field as a
method of studying the nonlinear warping of the m/z axis
encountered in specific experiments.

4.2.1 Insertion penalties

Due to the noisy nature of MS/MS data, only a small minor-
ity of observed peaks actually correspond to fragment ions.
As an example, Figure 1 displays excellent fragmentation
of the peptide present in the observed spectrum. However,
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only 22 of 324 peaks correspond to fragment ions. Further-
more, these fragment ions only occur within a sufficiently
small Th window of their theoretical values. Indeed, the
learned variance σ2 dictates that 99.9937% of the mass for
a theoretical Gaussian peak lies within an approximately
1Th range, so that attempting to score all m/z observations
with theoretical Gaussian peaks would see a majority of pep-
tides score poorly for almost all observed spectra. Such an
approach would also make the comparison of scores across
different spectra in the same dataset difficult, because the
variance among the PSMs would be incredibly high. Thus,
when it = 1, the observations are scored as

p(Omz
t |vx(Kt), it = 1) =p(Omz

t |it = 1) = a

p(Oin
t |it = 1) =b,

where a and b are constants.

The insertion constant a imposes a tradeoff between, on the
one hand, receiving exponentially bad scores from scoring
observed peaks far from theoretical Gaussian peaks and, on
the other hand, simply receiving an arbitrarily large constant
penalty. To balance this tradeoff, a is set to the score re-
ceived evaluating an m/z observation 4 standard deviations
from the theoretical Gaussian peak mean, µmz(vx(Kt)),
i.e., a = f(4σ − µmz(vx(Kt))|µmz(vx(Kt)), σ

2), where
f(z|µ, σ̄2) is the scalar Gaussian with mean µ and vari-
ance σ̄2, evaluated at z ∈ R. Thus, scoring an m/z ob-
servation score is greater than a so long as the observa-
tion remains within 99.9937% of the centered mass of
N (µmz(vx(Kt)), σ

2). Similarly, the penalty b is set such
that an intensity observation score is greater than b so long
as it is within a specified percentage of the centered mass of
N (µin, σ̄2). The percentage used for the results in Section 5
was 20%, prioritizing aligning the observed and theoretical
peaks over simply scoring high intensity peaks. Further-
more, the number of allowable insertions is limited per pep-
tide (described in [10]), restricting the ability of arbitrary
peptides to score observed peaks well.

4.3 DRIP SCORING FUNCTION

Peptides are scored by their optimal alignment using their
per-frame log-Viterbi Score,

ψ(s, x) =
1

ns
max
δt,it,∀t

log p(s|x) =
1

ns
log p∗(s|x). (7)

Dividing by the number of frames allows comparability of
PSMs from different spectra. In order to further analyze
the scoring function, assume inference has been completed
and we have computed the Viterbi path, using ∗ to denote
a variable’s Viterbi value. Let λ =

∑ñs

t=0 i
∗
t denote the

number of used insertions and note that p(it = 0) = p(i0 =

0). DRIP’s score is then

log p∗(s|x) = (8)
λ[log(ab) + 3 log p(i0 = 1)] + 3(ns − λ) log p(i0 = 0)+

ñs∑

t=0

[
log p(δ∗t ) + log f(Oin

t |µin, σ2))+

1{i∗t = 0}(log f(Omz
t |µmz(vx(K∗t )), σ2)

]

where, as before, f(z|µ, σ̄2) is the scalar Gaussian with
mean µ and variance σ̄2, evaluated at z ∈ R. The learned
model variances are such that σ2 < σ̄2, i.e., there is more
uncertainty in intensity measurements than m/z measure-
ments. Thus, it is easy to see that when a peptide does not
align well with the observed spectrum (i.e., many observed
peaks are far from the closest theoretical peak), then the
log f(Omz

t |µmz(vx(K∗t )), σ2) term severely penalizes the
score. Furthermore, this score decreases quickly as the dis-
tance between the observed peak and theoretical peak mean
increases. This also implies that peptides which arbitrarily
match intense peaks will still receive poor scores if they do
not align well.

4.4 APPROXIMATE INFERENCE

Table 2: DRIP per-peptide run-times (in seconds) for 3 yeast
spectra, 1000 scored candidate peptides each.

Spec. Exact Inf. k = 1500 k = 1000 k = 500
s1 0.07816 0.01056 0.00779 0.00436
s2 0.30003 0.02070 0.01496 0.00820
s3 3.61777 0.04105 0.02861 0.01586

The state space of the random variables in DRIP grows
rapidly as the number of observed and theoretical peaks
increases. Although the observed variables ñx, Rñs ,Z, ξ0
greatly decrease the number of states necessary to explore
by limiting the hypotheses in DRIP which receive non-zero
probability, there are still an exponentially large number of
states to score in order to find the Viterbi path. However,
the problem of interest is ideally suited for approximate
inference techniques, specifically beam pruning [16]. In
beam pruning, assuming a beam width of k ∈ N, only the
top k most probable states in a frame are allowed to persist.
Although under this methodology we are no longer theoreti-
cally guaranteed to find the Viterbi path, the structure of the
problem and the value of the learned theoretical Gaussian
variances ensures that, per frame, many of the hypotheses
will be of extremely low probability.

For instance, the hypothesis that the first theoretical peak
matches the last observed peak is highly improbable. In gen-
eral, the hypothesis that a theoretical peak centered many
Thomsons away from an observed peak is also highly im-
probable. Thus, we can retain the k most probable states
in a frame without deleteriously affecting the Viterbi score.
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However, care must be taken such that k is not too small
or else globally good alignments where a frame must be
explained by a low probability event may not be allowed to
persist. Table 2 displays the per-peptide run times for 3 ran-
domly chosen yeast spectra, scoring 1000 candidate peptides
per spectrum using exact inference and various k values.
Each test was performed on the same machine with an Intel
Core 2 Quad Q9550 and 8GB RAM. For k ∈ {1500, 1000},
all peptide scores were equal to their exact scores. For
k = 500, 0.1% of the peptide scores differed from their
exact scores. The top ranking PSM scores did not change
for all beam widths. The results found in Section 5 were
generated using k = 1500.

4.5 DRIP OBSERVED SPECTRUM
PREPROCESSING

As with all other search algorithms, we score database pep-
tides of at most a fixed maximum length, specified prior to
run time. Practical values of the maximum peptide length
(the maximum peptide length considered for all results in
Section 5 is 50) mean that the number of observed peaks is
typically an order of magnitude larger than the number of
theoretical peaks for any scored peptide. Furthermore, most
of these peaks are noise peaks [17], and as such we filter all
but the most l intense peaks, where in practice, l = 300.

After filtering peaks, the observed spectrum is renormal-
ized as in SEQUEST [8], the steps of which are as follows.
Firstly, all observed peak intensity values are replaced with
their square root. Secondly, the observed spectrum is par-
titioned into 10 equally spaced regions along the m/z axis
and all peaks in a region are normalized to some globally
maximum intensity, which in our case is 1. Steps 1 and 2
greatly decrease the high variance of observed intensities,
and step 2 helps ensure that scoring is not severely biased
by many large peaks lying arbitrarily close to one another.
Lastly, any peak with intensity less than 1/20 of the most
intense peak is filtered. Note that through all of these pre-
processing steps, the m/z values for all remaining observed
peaks remain unaltered and, as discussed in Section 4.3, the
scoring of these unaltered values dominates the returned
DRIP score.

5 RESULTS

We compared the performance of DRIP to four competing
database search methods (Section 3). In these evaluations,
we do not have an independently labeled gold standard set of
identified spectra. Although it is possible to send a purified
sample of known peptides through the MS/MS pipeline to
obtain high confidence identifications, the low complexity
of the input sample yields spectra that are less noisy than
real spectra. Therefore, as is common in this field, we esti-
mate for each search procedure the false discovery rate (i.e.,
the proportion of spectra above a given threshold that are
incorrectly identified, or 1 – precision) by searching a decoy

database of peptides [18]. These decoys are generated by
shuffling the peptides in the target database. Because FDR
is not monotonically related to the underlying score, we
compute a q-value for each scored spectrum, defined as the
minimum FDR threshold at which that score is deemed sig-
nificant. Once the target and decoy PSMs are calculated, we
plot the number of identified targets as a function of q-value
threshold. In practice, search results with an FDR >10%
are not practically useful, so we only plot q ∈ [0, 0.1].

We use eight previously described datasets [1] as well as
another yeast dataset (yeast-03) taken from the same repos-
itory, considering only spectra with charge 2+. All bench-
mark methods were searched using the same target and
decoy databases, and all parameters across search algo-
rithms were set as equivalently as possible. All datasets
and reported PSMs per benchmark method may be found
at http://noble.gs.washington.edu/proj/drip. As seen in the
results panel in Figure 5, DRIP outperforms SEQUEST and
OMSSA at all q-value thresholds on all datasets. DRIP is
the most frequent top performer, beating all other methods
on four datasets, compared to MS-GFDB and Didea, each of
which is top performer on only two datasets. Furthermore,
DRIP individually outperforms MS-GFDB and Didea on six
of the nine datasets. DRIP also offers the most consistent
performance compared to MS-GFDB and Didea across the
different organisms: DRIP is always ranked first or second,
whereas MS-GFDB and Didea rank third on many datasets.
Both DRIP and Didea only model b- and y-ions, whereas the
other algorithms [8, 11, 12] use more complicated models
of peptide fragmentation (further discussed in [10]).

5.1 INSERTION, DELETION COUNT-BASED
SCORES

Once a peptide’s Viterbi path has been decoded, the total
number of insertions and deletions used by a peptide to score
an observed spectrum may be calculated. These two quan-
tities may be used as quality measures for a PSM, as well
as to exactly compute the signal-to-noise ratio per observed
spectrum. To illustrate the utility of these two quantities,
we show that using both as scoring functions allows some
discriminative power to differentiate between target and
decoy peptides, outperforming OMSSA and SEQUEST as
well as MS-GFDB over some datasets. Plotted in Figure 6,
DRIP-NotDel and DRIP-NotIns correspond to scoring func-
tions utilizing the number of a peptide’s theoretical peaks
not deleted and the number of observed peaks a peptide did
not consider an insertion, respectively. Note the piece-wise
linear behavior, which is caused by scoring ties due to the
scoring functions being integer based.

It is worth noting that scoring methods, such as SEQUEST
and Didea, which perform binning typically do so by taking
the maximum observed peak intensity falling within a bin.
Under such binning schemes, the number of theoretical
peaks not deleted is equal to the number of observed peaks
which are not insertions. In DRIP, where quantization is
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Figure 6: Performance curves for DRIP. The x-axis may be thought of as the significance threshold, and the y-axis the
number of correctly identified spectra at a threshold. Thus, higher on the y-axis denotes better performance. DRIP-NotDel
and DRIP-NotIns utilize the decoded DRIP Viterbi path to calculate the number of theoretical peaks not deleted and number
of observed peaks not inserted, respectively, as scoring functions.
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not performed, these two quantities are not equal (Figure 6).
Such quantities are typically used by post-processors as
features for the task of reranking target and decoy scores
for improved accuracy [19, 20], and these quantities (and
potentially others) calculated from DRIP’s Viterbi path may
similarly be used as features.

5.2 IMPACT OF LEARNED PARAMETERS ON
PERFORMANCE

The use of Gaussians allows DRIP to avoid quantization of
m/z measurements, unlike all existing competitors. Learn-
ing the Gaussian means and variances in DRIP provides
both a tool to study the nonlinear m/z offsets caused by
machine error [15] as well as a significant increase in perfor-
mance. As previously mentioned, the Gaussian parameters
are learned using EM and a high-confidence set of charge
2 PSMs used in [9]. Figure 7 displays the performance
benefits of jointly learning these parameters.
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Figure 7: DRIP run with different model parameters over
Yeast-01, where DRIP-0 consists of hand-tuned Gaussian pa-
rameters and DRIP consists of EM jointly learned Gaussian
means and variances.

DRIP-0 consists of setting the Gaussian means to values
halfway between integer units along the m/z axis and setting
the intensity variance to an order of magnitude larger than
the m/z variance, so as to penalize misalignment between
the theoretical and observed spectra greater than small inten-
sities. DRIP consists of jointly learning both the Gaussian
means and variances, the parameters used for testing over
all datasets in Figure 6. Interestingly, the learned inten-
sity variance is larger than the learned m/z variance, so
that the learned parameters dictate m/z measurements have
the largest impact when scoring. Jointly learning both the
means and variances improves performance compared to
hand-tuned parameters, leading to improved performance
relative to Didea. This trend of improved performance via
learning the Gaussian parameters is observed on the other

datasets, as well.

6 CONCLUSIONS AND FUTURE WORK

We have presented DRIP, a generative model of peptide frag-
mentation in MS/MS. Through DRIP, a database peptide is
scored by maximally aligning the peptide’s theoretical spec-
trum to the observed MS/MS spectrum via Viterbi decoding.
Unlike previous database search methods, the observed spec-
trum is not quantized; instead, the m/z measurements are
scored in their natural resolution. Considering the recent
push in the field toward high-resolution data [21], for which
other search methods must reevaluate their quantization
schemes, DRIP’s handling of m/z values at full resolution is
particularly important.

DRIP’s scoring function outperforms state-of-the-art algo-
rithms on many of the presented datasets, and is far superior
to the popular search algorithms SEQUEST and OMSSA.
Furthermore, unlike a recent DBN-based database search
method [1], DRIP is a highly trainable model which allows
it a great deal of adaptability to the wide variety of machines
and experimental conditions. The Viterbi path calculated in
DRIP also provides a large amount of information, which
otherwise typically requires post-processing after database
search. Finally, via sum-product inference, DRIP may be
used to calculate posteriors of particular interest to end
users, a task which has previously required complicated
post-processing [5].

We plan to pursue several avenues for future work. Ini-
tially, we will collect high-quality training sets of PSMs
charge states other than 2 and for high-resolution spectra.
Perhaps the most exciting avenue for future work is that
a minor change to the DRIP model will allow it to align
an observed spectrum to not just one but many different
peptides simultaneously. We plan to investigate sequential
variants of algebraic decision diagrams [22] to represent
(potentially exponentially) large collections of peptides in
polynomial space and to exploit the dynamic programming
nature of DBNs to be able to score such peptide collections
efficiently. Such a framework will also generalize to de
novo sequencing, in which we search over the set of all pos-
sible peptides as opposed to simply a database. Finally, we
plan to investigate generalizing the use of algebraic decision
diagrams to allow DRIP to calibrate its scores relative to
the entire peptide set. This would be similar in spirit to the
dynamic programming calibration employed by methods
like MS-GFDB.
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Abstract

Van Seijen and Sutton (2014) recently proposed
a new version of the linear TD(�) learning algo-
rithm that is exactly equivalent to an online for-
ward view and that empirically performed bet-
ter than its classical counterpart in both predic-
tion and control problems. However, their al-
gorithm is restricted to on-policy learning. In
the more general case of off-policy learning, in
which the policy whose outcome is predicted and
the policy used to generate data may be differ-
ent, their algorithm cannot be applied. One rea-
son for this is that the algorithm bootstraps and
thus is subject to instability problems when func-
tion approximation is used. A second reason
true online TD(�) cannot be used for off-policy
learning is that the off-policy case requires so-
phisticated importance sampling in its eligibility
traces. To address these limitations, we gener-
alize their equivalence result and use this gen-
eralization to construct the first online algorithm
to be exactly equivalent to an off-policy forward
view. We show this algorithm, named true on-
line GTD(�), empirically outperforms GTD(�)
(Maei, 2011) which was derived from the same
objective as our forward view but lacks the ex-
act online equivalence. In the general theorem
that allows us to derive this new algorithm, we
encounter a new general eligibility-trace update.

1 Temporal difference learning

Eligibility traces improve learning in temporal-difference
(TD) algorithms by efficiently propagating credit for later
observations back to update earlier predictions (Sutton,
1988), and can help speed up learning significantly. A good
way to interpret these traces, the extent of which is reg-
ulated by a trace parameter � 2 [0, 1], is to consider the
eventual updates to each prediction. For � = 1 the up-

date for the prediction at time t is similar to a Monte Carlo
update towards the full return following t. For � = 0 the
prediction is updated toward only the immediately (reward)
signal, and the rest of the return is estimated with the pre-
diction at the next state. Such an interpretation is called
a forward view, because it considers the effect of future
observations on the updates. In practice, learning is often
fastest for intermediate values of � (Sutton & Barto, 1998).

Traditionally, the equivalence to a forward view was known
to hold only when the predictions are updated offline. In
practice TD algorithms are more commonly used online,
during learning, but then this equivalence was only approx-
imate. Recently, van Seijen and Sutton (2014) developed
true online TD(�), the first algorithm to be exactly equiv-
alent to a forward view under online updating. For � = 1
the updates by true online TD(�) eventually become ex-
actly equivalent to a Monte Carlo update towards the full
return. As demonstrated by van Seijen and Sutton, such an
online equivalence is more than a theoretical curiosity, and
leads to lower prediction errors than when using the tradi-
tional TD(�) algorithm that only achieves an offline equiv-
alence. In this paper, we generalize this result and show
exact online equivalences are possible for a wide range of
forward views, leading to computationally efficient online
algorithms by exploiting a new generic trace update.

A limitation of the true online TD(�) algorithm by van
Seijen and Sutton (2014) is that it is only applicable to on-
policy learning, when the learned predictions correspond
to the policy that is used to generate the data. Off-policy
learning is important to be able to learn from demonstra-
tions, to learn about many things at the same time (Sutton
et al., 2011), and ultimately to learn about the unknown op-
timal policy. A natural next step is therefore to apply our
general equivalence result to an off-policy forward view.
We construct such a forward view and derive an equivalent
new off-policy gradient TD algorithm, that we call true on-
line GTD(�). This algorithm is constructed to be equivalent
for � = 0, by design, to the existing GTD(�) algorithm
(Maei, 2011). We demonstrate empirically that for higher
� the new algorithm is much better behaved due to its exact
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equivalence to a desired forward view. In addition to the
practical potential of the new algorithm, this demonstrates
the usefulness of our general equivalence result and the re-
sulting new trace update.

2 Problem setting

We consider a learning agent in an unknown environment
where at each time step t the agent performs an action At

after which the environment transitions from the current
state St to the next state St+1. We do not assume the state
itself can be observed and the agent instead observes a fea-
ture vector �t 2 Rn, which is typically a function of the
state St such that �t

.
= �(St). The agent selects its actions

according to a behavior policy b, such that b(a|St) denotes
the probability of selecting action At = a in state St. Typ-
ically b(a|s) depends on s through �(s).

After performing At, the agent observes a scalar (reward)
signal Rt+1 and the process can either terminate or con-
tinue. We allow for soft terminations, defined by a po-
tentially time-varying state-dependent termination factor
�t 2 [0, 1] (cf. Sutton, Mahmood, Precup & van Hasselt,
2014). With weight 1 � �t+1 the process terminates at
time t + 1 and Rt+1 is considered the last reward in this
episode. With weight �t+1 we continue to the next state
and observe �t+1

.
= �(St+1). The agent then selects a

new action At+1 and this process repeats. A special case is
the episodic setting where �t = 1 for all non-terminating
times t and �T = 0 when the episode ends at time T . The
termination factors are commonly called discount factors,
because they discount the effect of later rewards.

The goal is to predict the sum of future rewards, discounted
by the probabilities of termination, under a target policy ⇡.
The optimal prediction is thus defined for each state s by

v⇡(s)
.
= E⇡

" 1X

t=1

Rt

tY

k=1

�k | S0 = s

#
,

where E⇡[ · ] .
= E[ · | At ⇠ ⇡(·|St), 8t ] is the expectancy

conditional on the policy ⇡. We estimate the values v⇡(s)
with a parameterized function of the observed features. In
particular we consider linear functions of the features, such
that ✓>t �t ⇡ v⇡(St) is the estimated value of the state at
time t according to a weight vector ✓t. The goal is then to
improve the predictions by updating ✓t.

We desire online algorithms with a constant O(n) per-step
complexity, where n is the number of features in �. Such
computational considerations are important in settings with
a lot of data or when �t is a large vector. For instance, we
want our algorithms to be able to run on a robot with many
sensors and limited on-board processing power.

3 General online equivalence between
forward and backward views

We can think about what the ideal update would be for a
prediction after observing all relevant future rewards and
states. Such an update is called a forward view, because it
depends on observations from the future. A concrete ex-
ample is the on-policy Monte Carlo return, consisting of
the discounted sum of all future rewards.

In practice, full Monte Carlo updates can have high vari-
ance. It can be better to augment the return with the then-
current predictions at the visited states. When we con-
tinue after some time step t, with weight �t+1, we replace
a portion of 1 � �t+1 of the remaining return with our
current prediction of this return at St+1. Making use of
later predictions to update earlier predictions in this way
is called bootstrapping. The process then continues to the
next action and reward with total weight �t+1�t+1, where
again we terminate with 1 � �t+2 and then bootstrap with
1 � �t+2, and so on. When �t+1 = 0 we get the usual
one-step TD return Rt+1 + �t+1�

>
t+1✓t. If �t = 1 for

all t, we obtain a full (discounted) Monte Carlo return. In
the on-policy setting, when we do not have to worry about
deviations from the target policy, we can then update the
prediction made at time t towards the on-policy �-return
defined by

G�
t = Rt+1 + �t+1

⇥
(1� �t+1)�

>
t+1✓t + �t+1G

�
t+1

⇤
.

The discount factors �t are normally considered a property
of the problem, but the bootstrap parameters �t can be con-
sidered tunable parameters. The full return (obtained for
� = 1) is an unbiased estimate for the value of the be-
havior policy, but its variance can be high. The value es-
timates are typically not unbiased, but can be considerably
less variable. As such, one can interpret the � parameters as
trading off bias and variance. Typically, learning is fastest
for intermediate values of �.

If termination never occurs, G�
t is never fully defined. To

construct a well-defined forward view, we can truncate the
recursion at the current data horizon (van Seijen & Sutton,
2014; Sutton et al., 2014) to obtain interim �-returns. If we
have data up to time t, all returns are truncated as if �t = 0
and we bootstrap on the most recent value estimate�>t ✓t�1

of the current state. This gives us, for each 0  k < t

G�
k,t = Rk+1 + �k+1

⇥
(1� �k+1)�

>
k+1✓k + �k+1G

�
k+1,t

⇤

and G�
t,t = �>t ✓t�1. In this definition of G�

k,t, for each
time step j with k < j  t the value of state Sj is estimated
using �>j ✓j�1, because ✓j�1 is the most up-to-date weight
vector at the moment we reach this state.

Using these interim returns, we can construct an interim
forward view which, in contrast to conventional forward
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views, can be computed before an episode has concluded
or even if the episode never fully terminates. For instance,
when we have data up to time t the following set of linear
updates for all times k < t is an interim forward view:

✓t
k+1 = ✓t

k + ↵k(G�
k,t � �>k ✓t

k)�k , k < t , (1)

where ✓t
0

.
= ✓0 is the initial weight vector. The subscript

on ✓t
k (first index on G�

k,t) corresponds to the state for the
kth update, the superscript (second index on G�

k,t) denotes
the current data horizon.

The forward view (1) is well-defined and computable at
every time t, but it is not very computationally efficient.
For each new observation, when t increments to t + 1, we
potentially have to recompute all the updates, as G�

k,t+1

might differ from G�
k,t for arbitrary many k. The resulting

computational complexity is O(nt) per time step, which
is problematic when t becomes large. Therefore, forward
views are not meant to be implemented as is. They serve as
a conceptual update, in which we formulate what we want
to achieve after observing the relevant data.

In the next theorem, we prove that for many forward views
an efficient and fully equivalent backward view exists that
exploits eligibility traces to construct online updates that
use only O(n) computation per time step, but that still re-
sult in exactly the same weight vectors. The theorem is
constructive, allowing us to find such backward views au-
tomatically for a given forward view.

Theorem 1 (Equivalence between forward and backward
views). Consider any forward view that updates towards
some interim targets Y t

k with

✓t
k+1 = ✓t

k + ⌘k(Y t
k � �>k ✓t

k)�k + xk , 0  k < t ,

where ✓t
0 = ✓0 for some initial ✓0 and where xk 2 Rn

is any vector that does not depend on t. Assume that the
temporal differences Y t+1

k � Y t
k for different k are related

through

Y t+1
k � Y t

k = ck(Y t+1
k+1 � Y t

k+1) , 8k < t , (2)

where ck is a scalar that does not depend on t. Then, the
final weights ✓t

t at each t are equal to the weights ✓t as
defined by e0 = ⌘0�0 and the backward view

✓t+1 = ✓t + (Y t+1
t �Y t

t )et + ⌘t(Y
t
t ��>t ✓t)�t + xt ,

et = ct�1et�1 + ⌘t(1� ct�1�
>
t et�1)�t , t > 0 . (3)

Proof. We introduce the fading matrix Ft
.
= I � ⌘t�t�

>
t ,

such that ✓t
k+1 = Fk✓

t
k + ⌘kY t

k�k. We subtract ✓t
t from

✓t+1
t+1 to find the change when t increments. Expanding

✓t+1
t+1 , we get

✓t+1
t+1 � ✓t

t

= Ft✓
t+1
t � ✓t

t + ⌘tY
t+1
t �t + xt

= Ft(✓
t+1
t � ✓t

t) + ⌘tY
t+1
t �t + (Ft � I)✓t

t + xt

= Ft(✓
t+1
t � ✓t

t) + ⌘tY
t+1
t �t � ⌘t�t�

>
t ✓

t
t + xt

= Ft(✓
t+1
t � ✓t

t) + ⌘t(Y
t+1
t � �>t ✓t

t)�t + xt . (4)

We now repeatedly expand both ✓t+1
t and ✓t

t to get

✓t+1
t � ✓t

t

= Ft�1(✓
t+1
t�1 � ✓t

t�1) + ⌘t�1(Y
t+1
t�1 � Y t

t�1)�t�1

= Ft�1Ft�2(✓
t+1
t�1 � ✓t

t�1)

+ ⌘t�2(Y
t+1
t�2 � Y t

t�2)Ft�1�t�2

+ ⌘t�1(Y
t+1
t�1 � Y t

t�1)�t�1

= . . . (Expand until reaching ✓t+1
0 � ✓t

0 = 0.)

= Ft�1 · · · F0(✓
t+1
0 � ✓t

0)

+

t�1X

k=0

⌘kFt�1· · · Fk+1(Y
t+1
k � Y t

k )�k

=

t�1X

k=0

⌘kFt�1· · · Fk+1(Y
t+1
k � Y t

k )�k

=

t�1X

k=0

⌘kFt�1· · · Fk+1ck(Y t+1
k+1 � Y t

k+1)�k (Using (2))

= . . . (Apply (2) repeatedly.)

= ct�1

t�1X

k=0

⌘k

0
@

t�2Y

j=k

cj

1
AFt�1· · · Fk+1�k

| {z }
.
= et�1

(Y t+1
t � Y t

t )

= ct�1et�1(Y
t+1
t � Y t

t ) . (5)

The vector et can be computed with the recursion

et =

tX

k=0

⌘k

0
@

t�1Y

j=k

cj

1
AFt · · · Fk+1�k

=

t�1X

k=0

⌘k

0
@

t�1Y

j=k

cj

1
AFt · · · Fk+1�k + ⌘t�t

= ct�1Ft

t�1X

k=0

⌘k

0
@

t�2Y

j=k

cj

1
AFt�1 · · · Fk+1�k + ⌘t�t

= ct�1Ftet�1 + ⌘t�t

= ct�1et�1 + ⌘t(1� ct�1�
>
t et�1)�t .

332



We plug (5) back into (4) and obtain

✓t+1
t+1 � ✓t

t

= ct�1Ftet�1(Y
t+1
t � Y t

t ) + ⌘t(Y
t+1
t � �>t ✓t)�t + xt

= (et � ⌘t�t)(Y
t+1
t � Y t

t ) + ⌘t(Y
t+1
t � �>t ✓t)�t + xt

= (Y t+1
t � Y t

t )et + ⌘t(Y
t
t � �>t ✓t)�t + xt .

Because ✓0,t
.
= ✓0 for all t, the desired result follows

through induction.

The theorem shows that under condition (2) we can turn a
general forward view into an equivalent online algorithm
that only uses O(n) computation per time step. Compared
to previous work on forward/backward equivalences, this
grants us two important things. First, the obtained equiva-
lence is both online and exact; most previous equivalences
were only exact under offline updating, when the weights
are not updated during learning (Sutton & Barto, 1998;
Sutton et al., 2014). Second, the theorem is constructive,
and gives an equivalent backward view directly from a de-
sired forward view, rather than having to prove such an
equivalence in hindsight (as in, e.g., van Seijen & Sutton,
2014). This is perhaps the main benefit of the theorem:
rather than relying on insight and intuition to construct effi-
cient online algorithms, Theorem 1 can be used to derive an
exact backward view directly from a desired forward view.
We exploit this in Section 6 when we turn a desired off-
policy forward view into an efficient new online off-policy
algorithm.

We refer to traces of the general form (3) as dutch traces.
The trace update can be interpreted as first shrinking the
traces with c, for instance c = ��, and then updating the
traces for the current state, �>e, towards one with a step
size of ⌘. In contrast, traditional accumulating traces, de-
fined by et = ct�1et�1 + �t, add to the trace value of the
current state rather than updating it toward one. This can
cause the accumulating traces to grow large, potentially re-
sulting in high-variance updates.

To demonstrate one advantage of Theorem 1, we apply it
to the on-policy TD(�) forward view defined by (1).

Theorem 2 (Equivalence for true online TD(�)). Define
✓t

0 = ✓0. Then, ✓t
t as defined by (1) equals ✓t as defined

by the backward view

�t = Rt+1 + ��>t+1✓t � �>t ✓t�1 ,

et = ��et�1 + ↵t(1� ���>t et�1)�t ,

✓t+1 = ✓t + �tet + ↵t(�
>
t ✓t�1 � �>t ✓t)�t .

Proof. In Theorem 1, we substitute xt = 0, ct = �� and
Y t

k = G�
k,t, such that Y t+1

t � Y t
t = �t and Y t

t = �>t ✓t�1.
The desired result follows immediately.

The backward view in Theorem 2 is true online TD(�), as
proposed by van Seijen and Sutton (2014). Using The-
orem 1, we have proved equivalence to its forward view
with a few simple substitutions, whereas the original proof
is much longer and more complex.

4 Off-policy learning

In this section, we turn to off-policy learning with function
approximation. In constructing an off-policy forward view
two issues arise that are not present in the on-policy set-
ting. First, we need to estimate the value of a policy that
is different than the one used to obtain the observations.
Second, using a forward view such as (1) under off-policy
sampling can cause it to be unstable, potentially resulting
in divergence of the weights (Sutton et al., 2008). These
issues can be avoided by constructing our off-policy algo-
rithms to minimize a mean-squared projected Bellman er-
ror (MSPBE) with gradient descent (Sutton et al., 2009;
Maei & Sutton, 2010; Maei, 2011).

The MSPBE was previously used to derive GTD(�) (Maei,
2011), which is an online algorithm that can be used to
learn off-policy predictions. GTD(�) was not constructed
to be exactly equivalent to any forward view and it is a
natural question whether the algorithm can be improved
from having such an equivalence, just as was the case with
TD(�) and true online TD(�). In this section, we introduce
an off-policy MSPBE and show how GTD(�) can be de-
rived. In the next section, we use the same MSPBE to con-
struct a new off-policy forward view from which we will
derive an exactly equivalent online backward view.

To obtain estimates for one distribution when the samples
are generated under another distribution, we can weight the
observations by the relative probabilities of these observa-
tions occurring under the target policy, as compared to the
behavior distribution. This is called importance sampling
(Rubinstein, 1981; Precup, Sutton & Singh, 2000). Re-
call that b(a|s) and ⇡(a|s) denote the probabilities of se-
lecting action a in state s according to the behavior policy
and the target policy, respectively. After selecting an ac-
tion At in a state St according to b, we observe a reward
Rt+1. The expected value of this reward is Eb[Rt+1], but if
we multiply the reward with the importance-sampling ratio
⇢t

.
= ⇡(At|St)/b(At|St) the expected value is

Eb[⇢tRt+1|St] =
X

a

b(a|St)
⇡(a|St)

b(a|St)
E[Rt+1 | St, At = a]

=
X

a

⇡(a|St)E[Rt+1 | St, At = a]

= E⇡[Rt+1 | St] .

Therefore ⇢tRt+1 is an unbiased sample for the reward
under the target policy. This technique can be applied to
all the rewards and value estimates in a given �-return.
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For instance, if we want to obtain an unbiased sample for
the reward under the target policy n steps after the cur-
rent state St, the total weight applied to this reward should
be ⇢t⇢t+1 · · · ⇢t+n�1. An off-policy �-return starting from
state St is given by

G�⇢
t (✓) = ⇢t

⇣
Rt+1 + �k+1(1� �k+1)�

>
k+1✓ (6)

+ �k+1�k+1G
�
k+1(✓)

⌘
.

In contrast to G�
t , this return is defined as a function of a

single weight vector ✓. This is useful later, when we wish
to determine the gradient of this return with respect to ✓.

When using function approximation it is generally not pos-
sible to estimate the value of each state with full accu-
racy or, equivalently, to reduce the conditional expected
TD error for each state to zero at the same time. More
formally, let v✓ be a parameterized value function defined
by v✓(s) = ✓>�(s) and let T�⇡ be a parametrized Bellman
operator defined, for any v : {s}! R, by

(T�⇡ v)(s) =

E⇡
⇥
R1 + �1(1� �1)v(S1) + �1�1(T

�
⇡ v)(S1) | S0 = s

⇤
.

In general, we then cannot achieve v✓ = T�⇡ v✓ , because
T�⇡ v✓ is not guaranteed to be a function that we can rep-
resent with our chosen function approximation. It is, how-
ever, possible to find the fixed point defined by

v✓ = ⇧T�⇡ v✓ . (7)

where ⇧v is a projection of v into the space of representable
functions {v✓ | ✓ 2 Rn}. Let d be the steady-state distri-
bution of states under the behavior policy. The projection
of any v is then defined by

⇧v = v✓v
, where ✓v = arg min

✓
kv✓ � vk2d ,

where k · k2d is a norm defined by kfk2d
.
=
P

s d(s)f(s)2.
Following Maei (2011), the projection is defined
in terms of the steady-state distribution result-
ing from the behavior policy, which means that
d(s) = limt!1 P(St = s | Aj ⇠ b(·|Sj), 8j). This
implies our objective weights the importance of the
accuracy of the prediction in each state according to the
relative frequency that this state occurs under the behavior
policy, which is a natural choice for online learning.

The fixed point in (7) can be found by minimizing the
MSPBE defined by (Maei, 2011)

J(✓) = kv✓ �⇧T�⇡ v✓k2d (8)

= Eb[�
⇡
k (✓)�k]

>Eb

⇥
�k�

>
k

⇤�1 Eb[�
⇡
k (✓)�k] ,

where �⇡k (✓)
.
= (T�⇡ v✓)(Sk) � v✓(Sk) and where the ex-

pectancies are with respect to the steady-state distribution

d, as induced by the behavior policy b. The ideal gradient
update for time step k is then

✓k+1 = ✓k �
1

2
↵r✓ J(✓)|✓k

, (9)

where

� 1

2
r✓ J(✓)|✓k

= �Eb

⇥
r✓�⇡k (✓)�>k

⇤
Eb

⇥
�k�

>
k

⇤�1 Eb[�
⇡
k (✓k)�k]

= Eb

h
(�k �r✓G�⇢

k (✓))�>k
i

Eb

⇥
�k�

>
k

⇤�1Eb[�
⇡
k (✓k)�k]

= Eb[�
⇡
k (✓k)�k]

� Eb

h
r✓G�⇢

k (✓)�>k
i

Eb

⇥
�k�

>
k

⇤�1 Eb[�
⇡
k (✓k)�k]

= Eb[�
⇡
k (✓k)�k]� Eb

h
r✓G�⇢

k (✓)�k

i>
w⇤ , (10)

with G�⇢
k as defined in (6), and where

w⇤
.
= Eb

⇥
�k�

>
k

⇤�1 Eb[�
⇡
k (✓k)�k] .

Update (9) can be interpreted as an expected forward view.

The derivation of the GTD(�) algorithm proceeds by ex-
ploiting the expected equivalences (Maei, 2011)

Eb

⇥
r✓Gk(✓)�>k

⇤

= Eb

⇥
⇢k�k+1(1� �k+1)�k+1�

>
k

⇤

+ Eb

⇥
⇢k�k+1�k+1r✓Gk+1(✓)�

>
k

⇤

= Eb

⇥
⇢k�k+1(1� �k+1)�k+1�

>
k

⇤

+ Eb

⇥
⇢k�1�k�kr✓Gk(✓)�>k�1

⇤

= Eb

⇥
⇢k�k+1(1� �k+1)�k+1�

>
k

⇤

+ Eb

⇥
⇢k�1�k�k⇢k�k+1(1� �k+1)�k+1�

>
k�1

⇤

+ Eb

⇥
⇢k�1�k�k⇢k�k+1�k+1r✓Gk+1(✓)�

>
k�1

⇤

= Eb

⇥
⇢k�k+1(1� �k+1)�k+1�

>
k

⇤

+ Eb

⇥
⇢k�1�k�k⇢k�k+1(1� �k+1)�k+1�

>
k�1

⇤

+ Eb

⇥
⇢k�2�k�1�k�1⇢k�1�k�kr✓Gk(✓)�>k�2

⇤

= . . . (Repeat until we reach �0.)

= Eb


�k+1(1� �k+1)�k+1 ⇢k

kX

j=0

0
@

kY

i=j+1

⇢i�1�i�i

1
A�>j

| {z }
.
= (erk )>

�

= Eb

⇥
�k+1(1� �k+1)�k+1(e

r
k )>

⇤
, (11)

and, similarly, Eb[�
⇡
k (✓k)�k] = Eb[�k(✓k)erk ], where

ert = ⇢t(�t�te
r
t�1 + �t) , (12)

�t(✓) = Rt+1 + �t+1�
>
t+1✓ � �>t ✓ .

The auxiliary vector wt ⇡ w⇤ can be updated with least
mean squares (LMS) (Sutton et al., 2009; Maei, 2011), us-
ing the sample �t(✓t)e

r
t ⇡ Eb[�t(✓t)e

r
t ] = Eb[�

⇡
t (✓t)�t]
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and the update

wt+1 = wt + �t�t(✓t)e
r
t � �t�

>
t wt�t .

The complete GTD(�) algorithm is then defined by1

�t = Rt+1 + �t+1�
>
t+1✓t � �>t ✓t ,

ert = ⇢t(�t�te
r
t�1 + �t) ,

✓t+1 = ✓t + ↵t�te
r
t � ↵t�t+1(1� �t+1)w

>
t ert �t+1 ,

wt+1 = wt + �t�te
r
t � �t�

>
t wt�t .

5 An off-policy forward view

In this section, we define an off-policy forward view which
we turn into a fully equivalent backward view in the next
section, using Theorem 1. GTD(�) is derived by first turn-
ing an expected forward view into an expected backward
view, and then sampling. We propose instead to sample
the expected forward view directly and then invert the sam-
pled forward view into an equivalent online backward view.
This way we obtain an exact equivalence between forward
and backward views instead of the expected equivalence of
GTD(�). This was previously not known to be possible, but
it has the advantage that we can use the precise (potentially
discounted and bootstrapped) sample returns consisting of
all future rewards and state values in each update. This can
result in more accurate predictions, as confirmed by our ex-
periments in Section 7.

The new forward view derives from the MSPBE, as defined
in (8), and more specifically from the gradient update de-
fined by (9) and (10). To find an implementable interim
forward view, we need sampled estimates of all three parts
in (10). We discuss each of these parts separately.

Our interim forward view is defined in terms of a data
horizon t, so the gradient of the MSPBE is taken to ✓t

k

rather than ✓k. Furthermore, �⇡k is defined as the error
between a �-return and a current estimate, and therefore
we need to construct an interim �-return. To estimate
the first term of (10) we therefore need an estimate for
Eb[�

⇡
k (✓t

k)�k] = Eb[G
�⇢
k,t � �>k ✓t

k], for some suitably de-
fined G�⇢

k,t.

The variance of off-policy updates is often lower when we
weight the errors (that is, the difference between the return
and the current estimate) with the importance-sampling ra-
tios, rather than weighting the returns (Sutton et al., 2014).
Let �k = Rk+1 + �k+1�

>
k+1✓k � �>k ✓k�1 denote a one-

step TD error. The on-policy return used in the forward
view (1) can then be written as a sum of such errors:

G�
k,t = �>k ✓k�1 +

t�1X

j=k

 
jY

i=k+1

�i�i

!
�j .

1Dann, Neumann and Peters (2014) call this algorithm
TDC(�), but we use the original name by Maei (2011).

We apply the importance-sampling weights to the one-step
TD errors, rather than just to the reward and bootstrapped
value estimate.2 This does not affect the expected value,
because Eb

⇥
⇢k�

>
k ✓k�1 | Sk

⇤
= Eb

⇥
�>k ✓k�1 | Sk

⇤
, but it

can have a beneficial effect on the variance of the resulting
updates. A sampled off-policy error is then

G�⇢
k,t � ⇢k�

>
k ✓

t
k ⇡ Eb

⇥
�⇡k (✓t

k)�k

⇤
, (13)

where

G�⇢
k,t

.
= ⇢k�

>
k ✓k�1 + ⇢k

t�1X

j=k

 
jY

i=k+1

�i�i⇢i

!
�j .

An equivalent recursive definition for G�⇢
k,t is

G�⇢
k,t = ⇢k

⇣
Rk+1 + �k+1(1� �k+1⇢k+1)�

>
k+1✓k

+ �k+1�k+1G
�⇢
k+1,t

⌘
, (14)

for k < t, and G�⇢
t,t

.
= ⇢t�

>
t ✓t�1. In the on-policy case,

when ⇢k = 1 for all k, G�⇢
k,t reduces exactly to G�

k,t, as used
in the forward view (1) for true online TD(�). Furthermore,
Eb[G

�⇢
k,t | Sk = s] = E⇡[G�

k,t | Sk = s] for any s.

For the second term in (10), which can be thought of as the
gradient correction term, we need an estimate wk ⇡ w⇤.
As in the derivation of GTD(�), we use a LMS update. As-
suming we have data up to t, the ideal forward-view update
for wt

k is then

wt
k+1 = wt

k + �k(��⇢k,t � �>k wt
k)�k , (15)

for some appropriate sample ��⇢k,t ⇡ Eb[�
⇡
k (✓k)]. A natural

interim estimate is defined by

��⇢k,t = ⇢k(�k + ����⇢k+1,t) , (16)

where ��⇢t,t = 0 and

�k = Rk+1 + �✓>k �k+1 � ✓>k �k .

This is not the only possible way to estimate w⇤, but
this choice ensures the resulting algorithm is equivalent to
GTD(0) when � = 0, allowing us to investigate the effects
of the true online equivalence and the resulting new trace
updates in some isolation without having to worry about
other potential differences between the algorithms. In the
next section we construct an equivalent backward view for
(15) to compute the sequence {wt}, where wt = wt

t , 8t.
2For the PTD(�) and PQ(�) algorithms, Sutton et al. (2014)

propose another weighting based on weighting flat return errors
containing multiple rewards. In contrast, our weighting is chosen
to be consistent with GTD(�). True online versions of PTD(�)
and PQ(�) exist, but we do not consider them further in this paper.
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Finally, we use the expected equivalence proved in (11),
and then sample to obtain

�k+1(1� �k+1)�k+1(e
r
k )> ⇡ Eb

⇥
r✓Gk(✓)�>k

⇤
, (17)

with erk as defined in (12).

We now have all the pieces to state the off-policy forward
view for ✓. We approximate the expected forward view
as defined by (9) and (10) by using the sampled estimates
(13), (17) and wk = wk

k ⇡ w⇤, with wk
k as defined by

(15). This gives us the interim forward view

✓t
k+1 = ✓t

k + ↵k(G�⇢
k,t � ⇢k�

>
k ✓

t
k)�k (18)

� ↵k�k+1(1� �k+1)�k+1w
>
k erk ,

with G�⇢
k,t as defined in (14).

6 Backward view: true online GTD(�)

In this section, we apply Theorem 1 to convert the off-
policy forward view as given by (18) into an efficient online
backward view. First, we consider w.

Theorem 3 (Auxiliary vectors). The vector wt
t , as defined

by the forward view in (15), is equal to wt as defined by the
backward view

ew
t = ⇢t�1�t�te

w
t�1 + �t(1� ⇢t�1�t�t�

>
t ew

t�1)�t ,

wt+1 = wt + ⇢t�te
w
t � �t�

>
t wt�t ,

where ew
0 = �0�0, w0 = wt

0, 8t, and

�t
.
= Rt+1 + ��>t+1✓t � �>t ✓t .

Proof. We apply Theorem 1 by substituting ✓t = wt, ⌘t =
�t, xt = 0 and Y t

k = ��⇢k,t, as defined in (16). Then

��⇢k,t+1 � �
�⇢
k,t = ⇢k�k+1�k+1(�

�⇢
k+1,t+1 � �

�⇢
k+1,t) ,

which implies ck = ⇢k�k+1�k+1. Finally, Y t
t = ��⇢t,t = 0

and Y t+1
t � Y t

t = ��⇢t,t+1 = ⇢t�t. Inserting these substi-
tutions into the backward view in Theorem 1 immediately
yields the backward view in the current theorem.

Theorem 4 (True online GTD(�)). For any t, the weight
vector ✓t

t as defined by forward view in (18) is equal to ✓t,
as defined by the backward view

et = ⇢t(�t�tet�1 + ↵t(1� ⇢t�t�t�
>
t et�1)�t) ,

ert = ⇢t(�t�te
r
t�1 + �t) ,

✓t+1 = ✓t + �tet + (et � ↵t⇢t�t)(✓t � ✓t�1)
>�t

� ↵t�t+1(1� �t+1)w
>
t ert �t+1 ,

with wt and �t as defined in Theorem 3.

Proof. Again, we apply Theorem 1. Substitute ⌘t = ⇢t↵t,
xk = �↵k�k+1(1��k+1)�k+1w

>
k erk , Y t

t = ✓>t�1�t and

Y t
k = Rk+1 + �k+1(1� �k+1⇢k+1)✓

>
k �k+1 + ��G�⇢

k+1,t .

This last substitution implies

Y t+1
k � Y t

k = �k+1�k+1⇢k+1(Y
t+1
k+1 � Y t

k+1) ,

so that ck = �k+1�k+1⇢k+1. Furthermore,

Y t+1
t � Y t

t = Rt+1 + �✓>t �t+1 � ✓>t�1�t

= �t + (✓t � ✓t�1)
>�t .

Applying Theorem 1 with these substitutions, and replac-
ing wt

t with the equivalent wt, yields the backward view

✓t+1 = ✓t + (�t + (✓t � ✓t�1)
>�t)et

+ ↵t⇢t(✓
>
t�1�t � ✓>t �t)�t

� ↵t�t+1(1� �t+1)w
>
t ert �t+1 ,

= ✓t + �tet + (et � ↵t⇢t�t)�
>
t (✓t � ✓t�1)

� ↵t�t+1(1� �t+1)w
>
t ert �t+1 ,

where e0 = ↵0⇢0�0 and
et = ⇢t�t�tet�1 + ↵t⇢t(1� ⇢t�t�te

>
t�1�t)�t .

True online GTD(�) algorithm is then defined by

�t = Rt+1 + ��>t+1✓t � �>t ✓t ,

et = ⇢t(�t�tet�1 + ↵t(1� ⇢t�t�t�
>
t et�1)�t) ,

ert = ⇢t(�t�te
r
t�1 + �t) ,

ew
t = ⇢t�1�t�te

w
t�1 + �t(1� ⇢t�1�t�t�

>
t ew

t�1)�t ,

✓t+1 = ✓t + �tet + (et � ↵t⇢t�t)(✓t � ✓t�1)
>�t

� ↵t�t+1(1� �t+1)w
>
t ert �t+1 ,

wt+1 = wt + ⇢t�te
w
t � �t�

>
t wt�t .

The traces et and ew
t are dutch traces. The trace ert is an

accumulating trace that follows from the gradient correc-
tion, as discussed in Section 4. It might be possible to adapt
the forward view to replace ert with et. This is already
possible in practice and in preliminary experiments the re-
sulting algorithm performed similar to true online GTD(�).
A more detailed investigation of this possibility is left for
future work.

For � = 0 the algorithm reduces to

✓t+1 = ✓t + ↵t⇢t�t�t � ↵t⇢t�t+1w
>
t �t�t+1 ,

wt+1 = wt + �t⇢t�t�t � �t�
>
t wt�t ,

which is precisely GTD(0).3

3The on-policy variant of this algorithm, with ⇢t = 1 for all t,
is known as TDC (Sutton et al., 2009; Maei, 2011).
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7 Experiments

We compare true online GTD(�) to GTD(�) empirically in
various settings. The main goal of the experiments is to test
the intuition that true online GTD(�) should be more robust
to high step sizes and high �, due to its true online equiv-
alence and better behaved traces. This was shown to be
the case for true online TD(�) (van Seijen & Sutton, 2014),
and the experiments serve to verify that this extends to the
off-policy setting with true online GTD(�). This is relevant
because it implies true online GTD(�) should then be easier
to tune in practice, and because these parameters can effect
the limiting performance of the algorithms as well.

Both algorithms optimize the MSPBE, as given in (8),
which is a function of �. When the state representation
is of poor quality, the solution that minimizes the MSPBE
can still have a high mean-sqared error (MSE): kv✓�v⇡k2d.
This means that with a low � we are not always guaranteed
to reach a low MSE, even asymptotically. The closer � is
to one, the closer the MSPBE becomes to the MSE, with
equality for � = 1. In practice this implies that sometimes
we need a high � to be able to obtain an sufficiently accu-
rate predictions, even if we run the algorithms a long time.

To illustrate these points, we investigate a fairly simple
problem. The problem setting is a random walk consist-
ing of 15 states that can be thought to lie on a horizontal
line. In each state we have two actions: move one state to
the left, or one state to the right. If we move left in the left-
most state, s1, we bounce back into that state. If we move
right in the right-most state, s15, the episode ends and we
get a reward of +1. On all other time steps, the reward is
zero. Each episode starts in s1, which is the left-most state.

This problem setting is similar to the one used by van
Seijen and Sutton (2014), with three differences. First, we
use 15 rather than 11 states, but this makes little difference
to the conclusions. Second, we turn it into an off-policy
learning problem, as we describe in a moment. Third, we
use different state representations. This last point is be-
cause we want to test the performance of the algorithm not
just with features that can accurately represent the value
function, as used by van Seijen and Sutton, but also with
features that cannot reduce the MSE all the way to zero.

In the original problem, there was a 0.9 probability of mov-
ing right in each state (van Seijen & Sutton, 2014). Here,
we interpret these probabilities as begin due to a behav-
ior policy that selects the ‘right’ action with probability
0.9. Then, we formulate a target policy that want to move
right more often, with probability 0.95. The stochastic tar-
get policy demonstrates that our algorithm is applicable to
arbitrary off-policy learning tasks, and that the results do
not depend on the target policy being deterministic. We
did also test the performance for a deterministic policy that
moves right always and the results are similar to those given
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Figure 1: The MSE on the random walk of GTD(�) (left
column) and true online GTD(�) (right column). The x-
axis shows ↵, and the different lines are for different �,
with � = 0 in blue and � = 1 in orange. The top row is for
15 tabular features, the middle row for 4 binary features,
and the bottom row for 2 monotonic features. The MSE is
minimized over �.

below. Because this is an episodic task, � = 1 .

As stated above, we define three different state represen-
tations. In the first task, we use tabular features, such
that �(si) is a vector of 15 elements, with the ith ele-
ment equal to one and all other elements equal to zero. In
the second task the state number is turned into a binary
representation, such that �(s1) = (0, 0, 0, 1)>, �(s2) =
(0, 0, 1, 0)>, �(s3) = (0, 0, 1, 1)>, and so on up to
�(s15) = (1, 1, 1, 1)>. The features are then normal-
ized to be unit vectors, such that for instance �(s3) =
(0, 0, 1p

2
, 1p

2
)> and �(s15) = ( 1

2 , 1
2 , 1

2 , 1
2 )>. In our final

representation, we use one monotonically increasing fea-
ture and one monotonically decreasing feature, such that
�(si) = ( 14�i+1

14 , i�1
14 )> for all i. These features were not

normalized.

For ↵ the range of parameters was from 2�8 to 1 with steps
in the exponent of 0.25 so that ↵ 2 {2�8, 2�7.75, . . . , 1}.
The secondary step size � was varied over the same range,
with the addition of � = 0. The trace parameter � was
varied from 0 to 1 � 2�10 ⇡ 0.999 with steps of �1 in
the exponent and with the addition of � = 1, such that
� 2 {0, 1� 2�1, . . . , 1� 2�9, 1� 2�10, 1}.

The MSE (averaged over 20 repetitions) after 10 episodes
for all three representations are shown in Figure 1. The left
graphs all correspond to GTD(�) and the plots on the right
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Figure 2: The MSE on the random walk for different � of
GTD(�) and true online GTD(�) for optimized ↵ and � and
binary features.

are for true online GTD(�). Each graph show the MSE as
a function of ↵, with different lines for different values of
� of which the extremes are highlighted (� = 0 is blue;
� = 1 is orange). In all cases, the MSE was minimized
for �, but this secondary step size had little impact on the
performance at all in these problems. Note that the blue
lines in the pair of graphs in each row are exactly equal,
because by design the algorithms are equivalent for � = 0.

In the top plots, the tabular representation was used and
we see that especially with high � both algorithms reach
low prediction errors. This demonstrates that indeed learn-
ing can be faster with higher �. When using function ap-
proximation, in the middle and bottom graphs, the benefit
of having an online equivalence to a well-defined forward
view becomes apparent. For both representations, the per-
formance of GTD(�) with higher � begins to deteriorate
around ↵ = 0.2. In contrast, true online GTD(�) performs
well even for ↵ = � = 1. Note the log scale of the y-axis;
the difference in MSE is many orders of magnitude.

In practice it is not always possible to fully tune the algo-
rithmic parameters and therefore the robustness of true on-
line GTD(�) to different settings is important. However, it
is still interesting to see what the best performance could be
for a fully tuned algorithm. Therefore, in Figure 2 we show
the MSE as a function of � when minimized over both ↵
and �. For all �, true online GTD(�) outperforms GTD(�).

8 Discussion

The main theoretical contribution of this paper is a gen-
eral theorem for equivalences between forward and back-
ward views. The theorem allows us to find an efficient fully
equivalent online algorithm for a desired forward view. The
theorem is as general as required and as specific as possible
for all applications of it in this paper, and in its current form
it is limited to forward views for which an O(n) backward
view exists. The theorem can be generalized further, to
include recursive (off-policy) LSTD(�) (Boyan, 1999) and
other algorithms that can be formulated in terms of forward

views (cf. Geist & Scherrer, 2014; Dann, Neumann & Pe-
ters, 2014), but we did not investigate these extensions.

We used Theorem 1 to construct a new off-policy algorithm
named true online GTD(�), which is the first TD algorithm
to have an exact online equivalence to a off-policy forward
view. We constructed this forward view to maintain equiv-
alence to the existing GTD(�) algorithm for � = 0. The
forward view we proposed is not the only possible, and in
particular it will be interesting to investigate different meth-
ods of importance sampling. We could for instance use the
importance sampling as proposed by Sutton et al. (2014).
We did construct the resulting online algorithm, and in pre-
liminary tests its performance was similar to true online
GTD(�). Likewise, if desired, it is possible to obtain a full
online equivalence to off-policy Monte Carlo for � = 1 by
constructing a forward view that achieves this. For instance
we could use a similar forward view as used in the paper,
but then apply the importance-sampling ratios only to the
returns rather than to the errors. For now, it remains an
open question what the best off-policy forward view is.

True online GTD(�) is limited to state-value estimates. It
is straightforward to construct a corresponding algorithm
for action values, similar to the correspondence between
GTD(�) and GQ(�) (Maei & Sutton, 2010; Maei, 2011)
and between PTD(�) and PQ(�) (Sutton et al., 2014). We
leave such an extension for future work.
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Abstract

Recent approaches to causal discovery based on
Boolean satisfiability solvers have opened new
opportunities to consider search spaces for causal
models with both feedback cycles and unmea-
sured confounders. However, the available meth-
ods have so far not been able to provide a prin-
cipled account of how to handle conflicting con-
straints that arise from statistical variability. Here
we present a new approach that preserves the ver-
satility of Boolean constraint solving and attains
a high accuracy despite the presence of statisti-
cal errors. We develop a new logical encoding
of (in)dependence constraints that is both well
suited for the domain and allows for faster solv-
ing. We represent this encoding in Answer Set
Programming (ASP), and apply a state-of-the-
art ASP solver for the optimization task. Based
on different theoretical motivations, we explore
a variety of methods to handle statistical errors.
Our approach currently scales to cyclic latent
variable models with up to seven observed vari-
ables and outperforms the available constraint-
based methods in accuracy.

1 INTRODUCTION

The search for causal relations underlies many scientific
fields. Unlike mere correlational information, causal re-
lations support predictions of how a system will behave
when it is subject to an intervention. In the causal Bayes
net framework (Spirtes et al., 1993; Pearl, 2000) the causal
structure is represented in terms of a directed graph (see
Figure 1). One of the most widely applicable approaches
to discovering the causal structure uses independence and
dependence constraints obtained from statistical tests to
narrow down the candidate graphs that may have pro-
duced the data. Such an inference relies on the now
well-understood assumptions of causal Markov and causal

faithfulness (Spirtes et al., 1993). Unlike many other ap-
proaches, these constraint-based causal discovery methods
can allow for the presence of latent confounders, feedback
cycles and the utilisation of several (partially overlapping)
observational or experimental data sets.

Even without experimentation (or additional assumptions,
such as time order), and despite the generality of the model
space, constraint-based methods can infer some causal ori-
entations on the basis of v-structures (unshielded colliders).
A v-structure in a graph is a triple of variables, such as
〈x, z, y〉 in Figure 1, where z is a common child of x and y,
but x and y are non-adjacent in the graph. V-structures can
be identified because of the specific (in)dependence rela-
tions they imply (here, x 6⊥⊥ z, z 6⊥⊥ y and x ⊥⊥ y are jointly
sufficient to identify the v-structure). The edges that are
thus oriented provide the basis for all further orientation
inferences in constraint-based algorithms such as PC and
FCI (Spirtes et al., 1993); e.g. identifying the v-structure in
Figure 1 enables the additional orientation of the zw-edge.
However, when processing sample data, the above infer-
ence is often prone to error. Establishing the further depen-
dence x 6⊥⊥ y | z would confirm the inference. If this depen-
dence does not hold, we have a case of a conflict: There is
no causal graph that satisfies all available (in)dependence
constraints (while respecting Markov and faithfulness).

The problem of conflicting constraints is exacerbated when
trying to integrate multiple observational and experimen-
tal data sets in which the sets of measured variables over-
lap only partially. Unlike the case for one passively ob-
served data set, the characterization of the class of graphs
consistent with the (in)dependence constraints is more dif-
ficult in this setting: the graphs may disagree on orien-
tations, adjacencies, and ancestral relations (Tsamardinos
et al., 2012). Triantafillou et al. (2010) and Hyttinen et al.
(2013) have started using general Boolean satisfiability
(SAT) solvers (Biere et al., 2009) to integrate the various
constraints. The basic idea of these methods is to con-
vert the (in)dependence constraints found in the data into
logical constraints on the presence and absence of certain
pathways in the underlying causal structure, and to use a
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Figure 1: Example causal graph (see text for details).

SAT-solver to find the causal structures consistent with all
constraints.

For pure SAT methods, conflicted constraints imply unsat-
isfiability. For these methods to work at all in practice,
conflict handling is paramount. We address this problem
at a variety of levels. We represent the task as a con-
straint optimization problem, and discuss in Section 3 dif-
ferent weighting schemes of the constraints and the theo-
retical motivations that support them. Then, we present in
Section 5 a new encoding that relates (in)dependence con-
straints directly to one another via the operations of inter-
vening, conditioning and marginalization. The encoding
naturally captures the central ideas of constraint integra-
tion as it more directly connects constraints that refer to the
same graphical neighborhood. We represent this encoding
in the constraint optimization paradigm of Answer Set Pro-
gramming (ASP) (Gelfond and Lifschitz, 1988; Niemelä,
1999; Simons et al., 2002). Finally, we compare the re-
liability of our proposed methods with available existing
algorithms in Section 7.

2 PRELIMINARIES

For notational simplicity, we restrict the presentation to the
setting with a single passive observational data set. How-
ever, the approach extends naturally to the general case
of multiple overlapping experimental data sets; details are
provided in the supplement.

We consider the class G of causal graphs of the form G =
(V,E), where V is the set of nodes (associated with ran-
dom variables) of G, and the edge relation E = E→ ∪E↔
is composed of a set E→ of directed edges and a set E↔
of bi-directed edges. A bi-directed edge↔ represents a la-
tent confounder, i.e. an unmeasured common cause of two
or more of the observed variables. In other words, we al-
low for the presence of feedback cycles and do not assume
causal sufficiency. We define a path as a sequence of con-
secutive edges in the graph, without any restrictions on the
types or orientations of the edges involved. A vertex ap-
pears as a collider on a path if both its adjacent edges on
the path point into the vertex.

(In)dependence constraints can be brought into correspon-
dence with structural properties of the graph using the d-
separation criterion (Pearl, 2000). A path in graph G is
d-connecting with respect to a conditioning set C if every

collider c on the path is in C and no other nodes on the path
are in C; otherwise the path is d-separated (or “blocked”).
A pair of nodes are d-connected given a conditioning set
C if there is at least one d-connecting path between them;
otherwise they are d-separated.1 Under the causal Markov
and faithfulness assumptions, two variables x and y are in-
dependent conditional on a set of variables C iff x and y
are d-separated given C in the graph G.2

Let D be an i.i.d. data set sampled from a distribution that
is Markov and faithful to an underlying “true” causal graph
Gt = (V,E). Overall, the aim of causal discovery is
to recover as many properties of Gt as possible from the
data D. There are a variety of ways to proceed. In light
of the generality of the search space we consider, we fo-
cus on the graphical constraints implied by the conditional
(in)dependencies found in the data. Our proposal is that the
causal discovery problem is addressed well by solutions to
the following abstract constrained optimization problem.

Problem Statement
INPUT: A set K of conditional independence and de-

pendence constraints over a set V of variables,
and a non-negative weight (cost) w(k) for each
k ∈ K.

TASK: Find a causal graph G∗ over the vertex set V
such that

G∗ ∈ argmin
G∈G

∑

k∈K : G 6|=k
w(k). (1)

In words, our goal is to find a single representative graph
G∗ that minimizes the sum of the weights of the given
conditional independence and dependence constraints not
implied by G∗. The idea is that the constraints can be
weighted according to their reliability, and that conflicts
among the constraints are well-resolved when the sum of
the weights of the constraints not satisfied by the output
graph are minimized. We take the set K to be the set of all
(in)dependence constraints testable in the data D.3

This formalization poses two key challenges: 1) How to
define the weighting scheme w(k) such that the solutions
(causal graphs) are “as similar as possible” to the true
graph? 2) How to actually find a representative graph G∗,
i.e., how to represent the constraints efficiently such that
one can minimize the objective function (an NP-hard opti-
mization problem) defined above? In the following, we will

1This definition is equivalent to Pearl’s standard defini-
tion (Studený, 1998; Koster, 2002).

2See Spirtes (1995), Pearl and Dechter (1996) and Neal (2000)
for discussions of d-separation in cyclic models.

3When considering experimental data sets, the weights of
(in)dependence constraints of the manipulated distributions enter
into the minimization as well; see Appendix A.
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propose solutions to both of these challenges. We note that
once a representative graph G∗ has been found, the inde-
pendence oracle methods of Hyttinen et al. (2013) can be
used to understand the common properties, such as adja-
cencies and ancestral relations, of all solutions that satisfy
the same set of constraints.

3 PREVIOUS WORK

Statistical variability results in incorrect test results, but
such errors are only detectable when the test results have
conflicting implications. Conflicts can arise directly be-
tween test results or, more commonly, in combination with
search space assumptions. Whether or not conflicts are
detected depends on the tests that have been performed.
Thus, one way of “handling” conflicts is to avoid perform-
ing tests whose results can conflict, or not to draw the full
set of possible inferences from a set of test results. This
is what the standard PC-algorithm does; it basically avoids
conflicts.4 This approach proved to be unreliable for the
detection of v-structures, so a conservative extension was
added that checks additional tests to verify the inference to
the v-structures (see example in Section 1). The resulting
cPC-algorithm (Ramsey et al., 2006) marks any conflicted
v-structures and abstains from the orientation inference, i.e.
it returns a “don’t know” for this part of the graph. The FCI
and cFCI algorithms are analogous in this regard to PC and
cPC, respectively, only that the search space is enlarged to
allow for latent confounders. A more generic approach, not
focused on v-structures, reduces the occurrence of conflicts
by controlling which test results are accepted. Li and Wang
(2009) control the false discovery rate of the tests that PC
performs, while Tsamardinos et al. (2012) use different
p-value thresholds to infer independence vs. dependence
constraints. Very recently, Triantafillou and Tsamardinos
(2014) developed a scheme that uses the p-values from tests
performed by FCI to rank (a specific class of) structural
constraints on the underlying graph, and then use a SAT-
based procedure to satisfy as many constraints as possi-
ble. The selection of tests by FCI depends on the results
of earlier tests. Thus the conflict resolution (in terms of
the ranked constraints) only handles conflicts between tests
that were selected. This scales very well, but the theoretical
account of the accuracy of the output model is unclear, as
the selection of tests interacts with the conflict resolution.

Score-based algorithms take a very different approach
to inconsistencies in data (Cooper and Herskovits, 1992;
Chickering, 2002). Instead of explicitly determining the
(in)dependence constraints (and finding them to be incon-
sistent) the conflicts are implicitly resolved by a direct in-
tegration of the data points into a score that identifies the

4Some PC implementations do in some cases infer the pres-
ence of a latent confounder (violating the model space) when v-
structures are incorrectly detected.

graph (or equivalence class) that maximizes the Bayesian
posterior. Such an approach provides a clear theoretical
account in which sense the output is “closest” to the true
graph (equivalence class). Although mostly restricted to
DAGs, Claassen and Heskes (2012) have transfered some
of the advantages of the Bayesian approach to a constraint-
based search method over models with latent confounders.
Their BCCD algorithm builds on the skeleton search of PC,
and computes Bayesian-style probabilities for the (condi-
tional) independence constraints.

4 WEIGHTING SCHEMES

Given the general search space we are considering, we take
a constraint-based approach. But unlike other such meth-
ods we do not select tests to perform based on previous test
results. Instead, for a given data set, we consider all inde-
pendence tests that can be performed on the set of variables,
and apply the following weighting schemes to the resulting
constraints.

4.1 Controlling False Negatives

One of the problems for constraint based causal discovery
are false negative results, i.e. variables that are truly de-
pendent but test as independent due to low sample sizes
or several cancelling d-connecting paths between them (vi-
olations of faithfulness). Strictly speaking, classical sta-
tistical tests do not license the inference to independence
when the null-hypothesis H0 of independence fails to be
rejected. Schulte et al. (2010) have developed a search pro-
cedure for causal DAGs based on dependence constraints,
which are licensed by classical tests when H0 is rejected.
Independencies enter only as a result of a simplicity as-
sumption. Analogously, we propose to control the false
negatives with a given sufficiently low p-value threshold on
the independence tests. We enforce the detected dependen-
cies as hard constraints. Dependence constraints on their
own cannot conflict, as the complete graph will satisfy all
possible dependencies. But the principle of Occam’s Razor
recommends choosing the simplest among the models able
to produce the data. We take this here to amount to maxi-
mizing the number of independencies given the dependen-
cies (which is closely related to the dependence minimal-
ity proposed by Pearl (2000)). Thus, if we partition the
set of constraints K into the independence constraints K⊥⊥
and dependence constraints K 6⊥⊥, then the causal discov-
ery problem over the class of causal models G amounts to
solving the constrained optimization problem in (1) with a
weight function

w(k) =

{
∞ if k ∈ K6⊥⊥
1 if k ∈ K⊥⊥.

(2)
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4.2 Controlling False Positives and Negatives

In a slight but common abuse of classical statistics, one can
treat the failure to reject H0 as the acceptance of indepen-
dence. Then one can simply find the graph that minimizes
the number of disagreements between the (in)dependence
constraints implied by the graph and the test results. Such
an approach would then also be able to recover from false
positive errors, i.e. true independencies that test as depen-
dencies. Such false positive errors may occur, for example,
if the true structure is a chain x→ z → y and we condition
on a measured, but noisy, version of z, and we still get that
x 6⊥⊥ y | z. The corresponding weight-function for the the
constrained optimization problem in (1) is then simply

w(k) = 1 ∀k ∈ K. (3)

4.3 Weighted Constraints

So far we have treated the test results as binary, but in many
cases one has reason to be more confident about some test
results than others, and the constraints could be weighted
accordingly. One would like to associate a probability as a
measure of confidence with each constraint, since then the
independence test could be treated as a probabilistic clas-
sifier without a hard decision between independence and
dependence. When ground truth is available the quality of
probabilistic classifiers is often compared by proper scor-
ing rules, such as the log-score. Proper scoring rules assign
costs that are minimized when the tests or classifier return
the true probability of class membership. We use such scor-
ing rules here as cost functions: we find the graph G∗ such
that if it were the ground truth, the results of the proba-
bilistic classifier would be optimal – minimizing the cost
assigned by the proper score. Given a data set D, for each
constraint k the classifier returns the probability P (k | D)
for k to hold in G∗. If in fact k holds in G∗, then the classi-
fier should only suffer the cost − logP (k | D), otherwise
the cost is − log[1 − P (k | D)]. As the minimum of these
costs will always be suffered, it is sufficient to let

w(k) = logP (k | D)− log[1− P (k | D)], (4)

which is positive, since only the constraint with higher
probability is included in K.5

It is not straightforward, neither in terms of theoretical
foundation nor actual implementation, to turn p-values
from classical tests into probability estimates, as the dis-
tribution of p-values under H0 is uniform and only known
to be decreasing under H1.6 Instead, Margaritis and
Bromberg (2009) use a Bayesian paradigm to assign proba-

5In Appendix B we show how the log-weights can be inter-
preted probabilistically.

6Some proposals in this direction appear in a recent unpub-
lished paper by Triantafillou and Tsamardinos (2014).

bilities to the (in)dependence statements.7 Following them,
for each independence statement x ⊥⊥ y | C, we consider
two models M⊥⊥ and M 6⊥⊥, where M⊥⊥ : P (x, y | C) =
P (x | C)P (y | C) postulates independence, while M 6⊥⊥ :
P (x, y | C) = P (x | C)P (y | x,C) postulates depen-
dence. Given data D and a prior P (M⊥⊥) = α the prob-
ability associated with k = x ⊥⊥ y | C simplifies to

P (k | D) =
P (y | C)α

P (y | C)α+ P (y | x,C)(1− α) .

The marginal likelihoods P (y | C) and P (y | x,C) corre-
spond to local scores in the score-based learning framework
and have a closed form for categorical variables using a
Dirichlet prior (Cooper and Herskovits, 1992) or for con-
tinuous variables with linear relations and Gaussian distur-
bances using an inverse Wishart Gaussian prior (Geiger and
Heckerman, 1994).

5 A RECURSIVE VIEW TO CAUSAL
GRAPHS

Given a set of (in)dependence constraints, finding an op-
timal graph G∗ (in the sense of the problem statement’s
objective function Eq. 1) requires a formulation of the d-
connection property that is suitable for constraint solvers.
Hyttinen et al. (2013) provided such a formulation in terms
of propositional logic, but that proves to be inefficient for
the computationally more demanding case with conflicted
constraints (see Section 7).

Our new formulation is based on the two central graph
operations that relate the underlying causal graph to the
(in)dependence constraints obtained from an observational
data set: conditioning and marginalization. (Intervening
is treated in the supplementary material.) We define these
operations over objects that we call d-connection graphs
rather than MAGs/PAGs (Richardson and Spirtes, 2002),
as we want allow for the complete generality of the model
space.

A d-connection graph H = (V,E)C is defined relative
to a set C such that: (i) V is the set of variables in the
graph, (ii) the edge relation E = E→ ∪ E↔ ∪ E− is com-
posed of directed, bidirected and undirected edges among
V, and (iii) the set C denotes the set of conditioned vari-
ables with the restriction that V ∩C = ∅. The disjoint sets
V and C are used to keep track of which variables have
been subject to the two operations. Given a causal graph
G = (V,E) (Section 2), the corresponding d-connection
graph H has the same sets V, E→ and E↔, but in addition
the set E− = ∅ (no undirected edges) and C = ∅ (no con-
ditioning). The d-connection graph of the causal graph in

7Claassen and Heskes (2012) also describe a way of obtain-
ing Bayesian probabilities for independence statements, which
is particularly accurate for finding minimal independencies in an
acyclic domain.
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V = {x, y, z, w}, C = ∅, V = {x, y, z}, C = {w},
E = {x→ z, y → z, z → w} E = {x→ z, y → z, z − z}
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(d)

V = {x, y, w}, C = ∅ V = {x, y}, C = {w},
E = {x→ w, y → w,w ↔ w} E = {x− y, x− x, y − y}

Figure 2: Graph operations on d-connection graphs: (a)
original graph, (b) after conditioning on w, (c) after
marginalizing z, (d) after conditioning on w and marginal-
izing z in either order. The xy-edge in (d) shows that x and
y are dependent when conditioning on z and marginalizing
w.

Figure 1 is shown in Figure 2a; the edges correspond ex-
actly. In general, an edge xa− by in a d-connection graph
H = (V′,E′)C′ denotes the existence of a path p with the
given edge ends a and b at x and y in the underlying causal
graph G, such that p is d-connecting with respect to C′ and
does not go through other variables in V′. Consequently,
the d-connection property (as defined in Section 2) can be
directly applied to any d-connection graph.

Given a d-connection graph H = (V,E)C, the condition-
ing operation c(H,w) on a variable w ∈ V results in a
d-connection graph H ′ = (V \w,E′)C∪w, where E′ is re-
lated to E by (i) including in E′ any edges in E not involv-
ing w; (ii) adding to E′ an edge xa− by if there are edges
xa→w and w← by in E, and (iii) not permitting any other
edges in E′ (x and y can be equal above).

The graphs in the right column of Figure 2 are formed by
applying the operation c(·, w) to the graphs in the left col-
umn of Figure 2. The conditioning operation is a little un-
usual because the conditioned variable is removed from the
graph and undirected edges and undirected self-cycles are
introduced. As is well-known, conditioning on a collider or
a child of a collider results in a d-connection between the
collider’s parents. For example, if w is conditioned on in
x → w ← y, we have a d-connecting path between x and
y with a tail at either end. Since the encoding also removes
the conditioned variable from the graph, we just have an
undirected edge x − y, the parents are “moralized”. The
undirected self-loop represents the same idea, just in case
of the child of a collider: each parent of a conditioned vari-
able receives an undirected self-loop to indicate that it can
provide a d-connection between two incoming paths. In
Figure 2a-b this is illustrated for variable z whenw is added

to the conditioning set (and removed from the graph). The
graph in (b) indicates that there is a tail to tail d-connection
at z, which implies that x and y are now d-connected when
w, the child of collider z, is in the conditioning set. The
(perhaps unintuitive) removal of the conditioning variable
from the graph achieves two goals: it reduces the size of the
graph to be encoded, but more importantly, it incrementally
represents the effect of conditioning on the d-connections
among the other variables.

Given a d-connection graph H = (V,E)C, the marginal-
ization operation m(H, z) for variable z ∈ V results in a
d-connection graphH ′ = (V\z,E′)C, where E′ is related
to E by (i) including in E′ any edges in E not involving z;
(ii) adding to E′ an edge xa− by if there are edges xa−z and
zc− by in E; (iii) adding to E′ an xa− by if there are edges
xa→z, z−z and z← by in E, and (iv) not permitting any other
edges in E′ (x and y can be equal above). Marginalization
follows the standard graphical procedures used elsewhere,
except that a little more book-keeping is required to track
the d-connections resulting from self-loops and undirected
edges (see Figure 2 top to bottom).

The following theorem shows that the operations pre-
serve the d-connection properties among the variables still
present in the graph after the operation (proof in Ap-
pendix D).

Theorem 1 Let H ′ = (V′,E′)C′ be the d-connection
graph obtained from a d-connection graph H = (V,E)C
by applying the conditioning operation on w, i.e. H ′ =
c(H,w) (or by applying the marginalization operation on
z, thus H ′ = m(H, z)). Then there is a path of type xa · · · by
that is d-connecting given C′′ ⊇ C′ in H ′ if and only if
there is a path of type xa · · · by that is d-connecting given C′′

in H .

Consequently, a dependence x 6⊥⊥ y | C in (the true causal
graph) G = (V,E) is equivalent to having an edge of
some type in the d-connection graph H = (V′,E′)C when
V′ = {x, y}. This d-connection graph H can be obtained
by consecutively applying the conditioning operation to all
variables in C, and the marginalization operation to the
rest in V \ (C ∪ {x, y}). For example, in Figure 2d the
undirected edge between x and y represents the fact that
x 6⊥⊥ y | w in the underlying causal graph (Figure 1).

Given a causal graph G, we can calculate all of its implied
(in)dependence relations by applying the operations in any
order. However, we need not apply all operations for each
(in)dependence relation, since we can exploit the compact
intermediary representations of the d-connections in the d-
connection graphs obtained earlier. Figure 3 shows the “en-
coding DAG” for one set of applied operations by which
we obtain all (in)dependence relations of the four variable
graph in Figure 1. The true causal graph corresponds to
the node in the middle, and we use the operations to move
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Figure 3: An “encoding DAG”: a tree connecting the causal graph (represented by the middle node) to (in)dependence
constraints (leaves). The conditioning/marginalization operations are marked on the arrows. The circular nodes represent
the sets V | C of the corresponding d-connection graphs and the square nodes show the implied independencies for the
true causal graph shown in Figure 1.

outward until we reach the implied (in)dependencies at the
leaves.

For causal discovery we want to perform the backward
inference. We know the (in)dependence relations at the
leaves (Figure 3) and our aim is to find a causal graph in
the middle node. Again we exploit the same tree structure.
But this time we will have at each node several different
graphs that satisfy the constraints, which are downstream
from it. Moving towards the center, nodes can be com-
bined to find the options that satisfy all constraints down-
stream from the node. For example, in the node ‘x, y, z’
all the tests relevant to identifying the v-structure xa→z← by
are available locally. In the general case of weighted and
possibly conflicting (in)dependence constraints, the infer-
ence becomes hard. We use off-the-shelf solvers for this
job. Nevertheless, as shown by the simulations, the recur-
sive structure allows the backwards inference to work faster
than for the logical formulations of d-connection in Hytti-
nen et al. (2013).

6 CAUSAL DISCOVERY VIA ASP

Building on Section 5, we describe here an ASP-based
constraint optimization approach to optimally solving the
causal structure discovery task defined in (1).

Answer set programming (ASP) is a rule-based declarative
constraint satisfaction paradigm that is well-suited for rep-
resenting and solving various computationally hard prob-
lems (Gelfond and Lifschitz, 1988; Niemelä, 1999; Simons
et al., 2002). ASP offers an expressive declarative mod-
elling language in terms of first-order logical rules, allow-
ing for intuitive and compact representations of NP-hard
optimization tasks. When using ASP, the first task is to
model the problem in terms of ASP rules (constraints) so

that the set of solutions implicitly represented by the ASP
rules corresponds to the solutions of the original problem.
One or multiple solutions of the original problem can then
be obtained by invoking an off-the-shelf ASP solver on the
constraint declaration.

6.1 An ASP Encoding of Causal Discovery

As a self-contained explanation of ASP syntax and seman-
tics would exceed the page limit, we only aim to give an
intuitive reading of our ASP encoding. The ASP encod-
ing, outlined in Figure 4, is based on exactly representing
the conditioning and marginalization operations (defined in
Section 5) in ASP.

Answer set programming can be viewed as a data-centric
constraint satisfaction paradigm, in which the input data,
represented as “facts” that are true via input predicates, ex-
press the instance of the original problem at hand. In our
case, the problem instance consists of a set of independence
and dependence constraints and their associated weights,
represented via the predicates indep and dep, and the “en-
coding DAG”, describing which d-connection graphs can
be mapped from one to the other via the conditioning
and marginalization operations (predicates cond and marg).
Concretely, the input predicates indep(x, y, {x, y},C,W )
and dep(x, y, {x, y},C,W ) represent as facts that the in-
put contains an independence (resp., dependence) con-
straint with weight W over the variables x and y given the
conditioning set C.8 The input predicates cond(V,C, z)
and marg(V,C, z) enable the conditioning and marginal-
izing of a variable z, respectively, in a d-connection graph
that has exactly the variables V and conditioning set C. Es-

8In practice, the ASP language requires integer-valued
weights. For sufficient precision, in our experiments we multi-
ply the weights by 1000, and then truncate to integers.
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sentially, cond and marg represent edges in the encoding
DAG (recall Figure 3).

The other predicates tt(x, y,V,C), th(x, y,V,C), and
hh(x, y,V,C) present the existence of different types
of edges (tt: tail-tail, th: tail-head, hh: head-head) in

Conditioning on a variable z ∈ V, ∀x, y ∈ V \ z:
th(x, y,V \ z,C ∪ z) :- th(x, y,V,C), cond(V,C, z).
th(x, y,V \ z,C ∪ z) :- th(x, z,V,C), hh(z, y,V,C),

cond(V,C, z).

hh(x, y,V \ z,C ∪ z) :- hh(x, y,V,C), cond(V,C, z).
hh(x, y,V \ z,C ∪ z) :- hh(x, z,V,C), hh(z, y,V,C),

cond(V,C, z).

tt(x, y,V \ z,C ∪ z) :- tt(x, y,V,C), cond(V,C, z).
tt(x, y,V \ z,C ∪ z) :- th(x, z,V,C), th(y, z,V,C),

cond(V,C, z).

Marginalizing a variable z ∈ V, ∀x, y ∈ V \ z:
th(x, y,V \ z,C) :- th(x, y,V,C),marg(V,C, z).
th(x, y,V \ z,C) :- tt(x, z,V,C), th(z, y,V,C),

marg(V,C, z).
th(x, y,V \ z,C) :- th(x, z,V,C), th(z, y,V,C),

marg(V,C, z).
th(x, y,V \ z,C) :- tt(x, z,V,C), hh(z, y,V,C),

marg(V,C, z).
th(x, y,V \ z,C) :- th(x, z,V,C), tt(z, z,V,C),

hh(z, y,V,C),marg(V,C, z).

hh(x, y,V \ z,C) :- hh(x, y,V,C),marg(V,C, z).
hh(x, y,V \ z,C) :- th(z, x,V,C), th(z, y,V,C),

marg(V,C, z).
hh(x, y,V \ z,C) :- hh(x, z,V,C), th(z, y,V,C),

marg(V,C, z).
hh(x, y,V \ z,C) :- th(z, x,V,C), hh(z, y,V,C),

marg(V,C, z).
hh(x, y,V \ z,C) :- hh(x, z,V,C), tt(z, z,V,C),

hh(z, y,V,C),marg(V,C, z).

tt(x, y,V \ z,C) :- tt(x, y,V,C),marg(V,C, z).
tt(x, y,V \ z,C) :- tt(x, z,V,C), tt(z, y,V,C),

marg(V,C, z).
tt(x, y,V \ z,C) :- th(x, z,V,C), tt(z, y,V,C),

marg(V,C, z).
tt(x, y,V \ z,C) :- tt(x, z,V,C), th(y, z,V,C),

marg(V,C, z).
tt(x, y,V \ z,C) :- th(x, z,V,C), tt(z, z,V,C),

th(y, z,V,C),marg(V,C, z).

Inferring failures to sat. (in)dep. ∀x∀y>x,∀C,V={x, y}:
fail(x, y,V,C,W ) :- tt(x, y,V,C), indep(x, y,V,C,W ).
fail(x, y,V,C,W ) :- th(x, y,V,C), indep(x, y,V,C,W ).
fail(x, y,V,C,W ) :- th(y, x,V,C), indep(x, y,V,C,W ).
fail(x, y,V,C,W ) :- hh(x, y,V,C), indep(x, y,V,C,W ).
fail(x, y,V,C,W ) :- not th(x, y,V,C), not th(y, x,V,C),

not hh(x, y,V,C), not tt(x, y,V,C),
dep(x, y,V,C,W ).

Weak constraints ∀x∀y > x,∀C,V = {x, y}:
:∼fail(x, y,V,C,W ). [W ]

Figure 4: The ASP encoding.

the d-connection graph with variable set V and condi-
tioning set C. The rules associated with the condition-
ing and marginalization operations encode how the dif-
ferent edges in the d-connection graphs are derived from
edges in other d-connection graphs through the condition-
ing and marginalization operations. The restrictions that
the (in)dependence constraints put on the set of solutions
(causal graphs) follow from these rules. As an example,
the first marginalization rule

th(x, y,V \ z,C) :- th(x, y,V,C), marg(V,C, z).

allows to derive, for any choice of C, V, z ∈ V, and x, y ∈
V\z, that th(x, y,V\z,C) is true (i.e., that there is an edge
x→ y in the d-connection graph over V \ z relative to C)
given that (i) th(x, y,V,C) is true (there is an edge x→ y
in the d-connection graph over V relative to C), and (ii) the
input contains the fact marg(V,C, z), i.e., marginalizing
z in the d-connection graph over V relative to C is allowed
by the encoding DAG. Note that the set of derivation rules
for tt(x, y,V,C), th(x, y,V,C), and hh(x, y,V,C) are
very similar to each other.

Finally, the objective function under minimization (Equa-
tion 1) is expressed using the so-called weak constraints
offered by the ASP language. First, the predicate fail is de-
rived whenever the candidate solution disagrees with the
input. The first four rules for fail denote cases where
the constraints tested from the data suggest independence
but an edge tt/th/hh is derived. The fifth rule derives
fail whenever the input constraints suggest dependence but
there are no d-connecting paths. The last rule of the en-
coding denotes the fact that whenever the fail predicate
is derived, then the cost W is incurred. This implies that
any solution produced by an ASP solver on the encoding
is guaranteed to present an optimal solution to the causal
discovery task, as stated by the following theorem.

Theorem 2 Given a set K of conditional independence
and dependence constraints over a set V of variables, and
a non-negative weight w(k) for each k ∈ K, for any en-
coding DAG connecting the (in)dependence constraints, it
holds that any optimal solution (minimizing the sum of the
unsatisfied weak constraints) to the ASP encoding corre-
sponds to a causal graph that minimizes the objective func-
tion Equation 1.

To find optimal solutions to the encoded problem, the in-
put facts together with the derivation rules and weak con-
straints are given as input to an ASP solver. The actual
complete search for solutions is then performed over a
propositional instantiation of the first-order rules; this pro-
cess is automatized within the ASP solver and does not
require involvement of the user. The search procedure
implemented within state-of-the-art ASP solvers, such as
Clingo (Gebser et al., 2011) used in this paper, is then
based on the successful and highly-efficient Boolean satis-
fiability solver technology (Biere et al., 2009).

346



0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
85

0.
90

0.
95

T
P

R

FPR

T
P

R

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

hard deps [sec. 4.1]
constant weights [sec. 4.2]
log−weights [sec. 4.3]
PC (pcalg)
cPC (pcalg) (subset)
score−based
test only

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
75

0.
80

0.
85

0.
90

FPR

T
P

R

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

hard deps [sec. 4.1]
constant weights [sec. 4.2]
log−weights [sec 4.3]
FCI (pcalg)
cFCI (pcalg) (subset)
test only

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
75

0.
80

0.
85

0.
90

T
P

R

FPR

T
P

R

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

hard deps [sec. 4.1]
constant weights [sec. 4.2]
log−weights [sec. 4.3]
test only

Figure 5: ROC given causally sufficient acyclic models (left), causally insufficient acyclic models (middle) and causally
insufficient cyclic models (right).

7 SIMULATIONS

We first test the accuracy of our method against several
competing algorithms under the restricting assumption of
acyclicity (and causal sufficiency), since no other algo-
rithms are presently available for the most general model
space that we can handle. In the tests for accuracy we
draw 200 linear Gaussian models over 6 variables, where
the edge coefficients are drawn uniformly from±[0.2, 0.8].
The directed edges were drawn randomly such that the av-
erage degree of each node was 2 for the causally suffi-
cient models. For models with latent confounders the av-
erage degree of the nodes for directed edges was 1, and
the covariance matrix of the disturbances corresponded to
the passively observed covariance matrix of another simi-
lar causally sufficient linear Gaussian model. For all meth-
ods we use a correlation based t-test, or the corresponding
Bayesian test. Although our methods straightforwardly al-
low for experimental data sets, we only used 500 samples
of passively observed data here to adhere to the restrictions
of the competing methods.

Different methods represent the uncertainty in their out-
put differently: cPC and cFCI return parts of the graphs
as unknown, while score-based methods, as well as the ap-
proaches in this paper, may be used to return several high
scoring graphs. We compared the methods regarding only
the single ‘highest scoring’ graph (or Markov equivalence
class). To account for the fact that each method returns an
equivalence class based on its model space assumptions,
we evaluate the d-separation and d-connection relations of
the learned result against those of the true data generating
graph. This includes all possible d-connection/separation
relations in the passively observed setting. Each of the
methods takes a parameter (such as a p-value-threshold)
that adjusts the sparsity of the output. To avoid effects of a
specific parameter choice, we plot the accuracy of the dif-
ferent methods run with different parameters in the ROC
space.

Figure 5 (left) shows the accuracy of the methods for
acyclic and causally sufficient data generating models. The

blue line shows the performance of the tests alone (classic
t-tests almost exactly equal the Bayesian tests in the ROC
space). The plain PC algorithm (implemented by Kalisch
et al. (2012)) does not exceed the performance of these
tests and cannot achieve high true positive rates for ac-
ceptable false positive rates. cPC returns an equivalence
class of graphs without unknown parts in only 58/200
cases for the optimal p-value threshold of 0.1 (only out-
puts from these runs are considered in the plot for cPC).
Its performance on these ‘easy instances’ is quite good.
The score-based approach achieves much better accuracy
(BIC score; the MAP DAG is found using exact meth-
ods). All our approaches were run by restricting the model
space to acyclic and causally sufficient graphs. The sur-
prising finding here is that the constraint-based approach
using ‘log-weights’, introduced in Section 4.3, seems to be
able to roughly match the performance of the score-based
method. This suggests that the constraint-optimization re-
solves many conflicts that arise from erroneous tests, and
so it is an accurate approach for causal discovery. Also, the
other suggested approaches, ‘hard deps’ (Section 4.1) and
‘constant weights’ (Section 4.2), seem to be able to per-
form quite well. Clearly, their results are not restricted to
that of the test performance. The conflict resolution is able
to correct many erroneous test results.

Figure 5 (middle) shows the accuracy of the methods in the
ROC-space assuming acyclicity but not causal sufficiency.
Our approaches (now only restricted by acyclicity), espe-
cially the ‘log-weights’, achieve higher true positive rates
than the competing methods. Again cFCI does better than
FCI but only returns a fully determined result for 61/200 of
the cases for the optimal p-value threshold of 0.1. For these
‘easier instances’ (again only results without unknowns are
plotted for cFCI) its performance is quite good.9 Figure 5
(right) shows the accuracy of the proposed methods in the

9The BCCD algorithm (Claassen and Heskes, 2012) and the
(still unpublished) approach of Triantafillou and Tsamardinos
(2014) would provide the most suitable comparison in this set-
ting. We hope to perform the comparison when implementations
of the methods are made available.
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Figure 6: Solving times for (possibly) cyclic causally in-
sufficient models (right).

most general model space allowing for cycles and latent
confounders. There currently do not exist other methods
that apply to such a general model space.

Figure 6 shows the solving times of Clingo on a 2.4-GHz
Intel Core i5 processor for 100 instances of constraints ob-
tained from 500 samples of passively observed data gen-
erated by different possibly cyclic and causally insufficient
models over six variables. The solving times are sorted
for each algorithm individually. The plot shows nicely the
rather large variance of the solving times. Easy problems
(left on the plot) are solved almost instantly, while harder
problems may take considerably longer. This is a general
feature of exact algorithms solving very complex problems:
in the worst case the NP-complexity of the problem kicks
in, but still a large number of instances are relatively easy to
solve. In the figure we also compare the present encoding
against a straightforward ASP-implementation of the en-
coding of Hyttinen et al. (2013). For all weighting schemes,
and especially for the harder instances, the encoding pre-
sented in this paper seems to allow for much faster solving.
Different weighting schemes also clearly affect the solving
time. ‘log-weights’ and ‘hard deps’ are considerably faster
than ‘constant weights’. For graphs with seven observed
variable the solving times take up to half an hour (see sup-
plement), for graphs with eight variables many instances
take several hours to solve.

Finally we analyzed what actually happens in the conflict
resolution. We generated data from 100 random parameter-
izations of the graph in Figure 1, and ran the inference with
log-weights for different sample sizes (Figure 7). The red-
ness of the background color denotes how many times the
specific independence tests most prone to error (listed on
the right axis) produced an incorrect result. The blue line
counts the number of incorrect tests obtained from the data,
which serve as input to our method. The black line shows
the number of (in)dependence relations that were incorrect
in the output graph of our method. The tests produce errors
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Figure 7: Conflict resolution for the graph in Figure 1.

throughout different sample sizes, but we are able to offer
an output with significantly fewer errors.

8 CONCLUSION

We presented a method for causal discovery that works in a
completely general search space that includes models with
feedback and latent confounders. It accepts as input possi-
bly inconsistent (in)dependence constraints obtained from
overlapping experimental or observational data sets. It re-
turns an exact output, in the sense that it finds the graph that
minimizes a well-defined objective function, which charac-
terizes how conflicted constraints should be resolved. We
have considered a variety of theoretical motivations for dif-
ferent conflict resolution schemes, and tested them suc-
cessfully against several extant algorithms.10 Although not
shown explicitly in this article, the direct encoding of the
d-connection properties ensures that in the infinite sample
limit, our algorithm retains the completeness properties of
Hyttinen et al. (2013).

The scalability of the present procedure is still quite lim-
ited, but it is similar to that of the exact graph struc-
ture discovery methods exploiting ASP of Corander et al.
(2013), who search for (undirected) Markov networks. We
have emphasized the exactness of our method, which pro-
vides theoretical guarantees and a very high accuracy. All
other methods we are aware of that consider similar search
spaces take a greedy approach in one way or another. Our
results suggest that the resulting scalability may come at
the price of accuracy for realistic sample sizes on anything
but very sparse causal structures. We hope to use our ap-
proach as basis to explore the trade-off between scalability
and accuracy in the future.
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Abstract

Probabilistic latent variable models have been
successfully used to capture intrinsic character-
istics of various data. However, it is nontrivial to
design appropriate models for given data because
it requires both machine learning and domain-
specific knowledge. In this paper, we focus on
data with nested structure and propose a method
to automatically generate a latent variable model
for the given nested data, with the proposed
method, the model structure is adjustable by its
structural parameters. Our model can represent
a wide class of hierarchical and sequential la-
tent variable models including mixture models,
latent Dirichlet allocation, hidden Markov mod-
els and their combinations in multiple layers of
the hierarchy. Even when deeply-nested data are
given, where designing a proper model is diffi-
cult even for experts, our method generate an ap-
propriate model by extracting the essential infor-
mation. We present an efficient variational in-
ference method for our model based on dynamic
programming on the given data structure. We ex-
perimentally show that our method generates cor-
rect models from artificial datasets and demon-
strate that models generated by our method can
extract hidden structures of blog and news article
datasets.

1 INTRODUCTION

Probabilistic latent variable models have been successfully
used for analyzing and capturing intrinsic characteristics
of a wide variety of datasets. They are applied to various
tasks such as dimension reduction, clustering, visualization
and cluster matching [14, 28, 16, 15]. However, design-
ing appropriate models for given data is difficult because it
requires machine learning knowledge to formulate models
and derive algorithms, and also domain-specific knowledge

to introduce appropriate latent variables and their depen-
dencies.

In this paper, we focus on data with a nested structure and
aim to automatically generate a latent variable model that is
appropriate to the given nested data. Many data have nested
structures such as hierarchies. A document contains sen-
tences and each of the sentences contains words. Purchase
data consist of purchase histories of many users, where a
user history contains multiple shopping events and a shop-
ping event is represented as a basket containing items that
are purchased at the same time. Also music shows such
hierarchy; many musicians compose music scores by com-
bining multiple phrases, where each of the phrases consists
of musical notes. Such nested data sometimes contain not
only hierarchical information but also sequential informa-
tion, that is, the order of elements in nested groups such as
word order in a sentence. Even though such rich structural
information is given, we do not need to incorporate all of
the information in models. For example, a latent Dirich-
let allocation (LDA) model [7], which is a widely-used
Bayesian latent variable model for text data, assumes a doc-
ument is a bag of words; it ignores word order. In contrast,
a hidden Markov model (HMM), which is the most famous
latent variable model for sequential data, assumes a doc-
ument is a sequence of words but ignores its hierarchical
information. When we design models for such structured
data, we have to extract essential information and reflect
that into models by introducing several modeling assump-
tions.

The main contribution of this paper is threefold. First,
we propose a latent variable model based on a hierarchi-
cal and sequential structure of the given data, where our
model can adjust its model structure by structural param-
eters. By changing the values of structural parameters, it
can represent various models including mixture models,
LDA models, HMMs and their combinations. Second, we
propose a universal variational inference algorithm for our
model based on dynamic programming on the given data
structure. Even if model structures and data structures are
changed, we can efficiently compute variational free energy
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(VFE), which is used for a model scoring function [5], by
our universal algorithm. Third, we formulate the model
generation task as an optimization problem for maximiz-
ing VFE with respect to structural parameters. No matter
how deep the input nested data are, our method extracts
the essential information by adjusting model structure. Our
method can generate complex models if necessary. Other-
wise, it generates simple models.

The remainder of this paper is organized as follows. We
first briefly review related work in Section 2. We then intro-
duce an ordered tree representation for nested data in Sec-
tion 3. In Section 4 we propose our latent variable model
and our model generation method. We describe its efficient
variational inference algorithm in Section 5. In Section 6,
we illustrate our method by experiments using artificial and
real-world datasets. Finally, we summarize this paper in
Section 7.

2 RELATED WORK

A number of methods for automatically generating model
strictures from data have been proposed. Structure learn-
ing for Bayesian networks (BNs) [22] is one such example.
A BN defines a joint distribution over random variables by
a directed acyclic graph (DAG) and model parameters. A
DAG defines conditional independencies over random vari-
ables and model parameters define their conditional dis-
tributions. BN structure learning (BNSL) [17] is a prob-
lem to find the DAG that maximizes a scoring function
from a model class. Unfortunately, the problem is gener-
ally NP-hard [8, 9]. Most existing BNSL methods assume
no latent variable or limit the number of latent variables
[5, 24, 26, 27, 20]. Whereas our aim is to obtain appropriate
latent variable models for the given data, the aim of BNSL
is to obtain the exact dependencies of observable variables.
It is intractable to naively apply existing BNSL methods to
our aim because introducing latent variables exponentially
increases the number of candidate model structures and the
computation time of a scoring function. Our method avoids
such intractability by restricting our model class based on
the given nested structure and by introducing a universal
algorithm for efficient score computation on the restricted
model class.

A hierarchical latent class (HLC) model [28] is a tree-
structured BN with latent variables, where its leaf nodes
are observable variables and the others are latent variables.
Learning HLC model structure is similar to our aim, how-
ever, it differs in the following two points. First, our
method assumes that data have nested structure and ex-
ploits the data structure to generate appropriate models.
Second, our method considers both hierarchical and se-
quential dependencies of latent variables. Model structure
generated by our method includes, but are not limited to,
tree structures.

A model generation method based on matrix factorization
has been proposed [12]. The method defines its model class
by using context-free grammar of which grammatical rules
correspond to matrix factorization processes. A sentence
generated by the grammar represents a hierarchical matrix
factorization model. The method assumes that given data
are represented as a single matrix whereas our method uses
data together with its nested structure.

Several latent variable models for nested data have been
proposed. The segmented topic model (STM) [11], which
is a variant of probabilistic topic models [6], assumes that
a document is a collection of segments and each of the seg-
ments is a collection of words. The STM captures cor-
relations of topics over segments and segments over doc-
uments by introducing segment-level and document-level
topic probabilities. The tree-informed LDA (tiLDA) [18],
which is a multi-level LDA model, exploits another type of
hierarchical structure of documents. The tiLDA model as-
sumes that documents are grouped into categories and each
of the categories are also grouped into another categories.
Those models exploit inner-document and outer-document
nested structures, respectively. Our model also copes with
both inner and outer document hierarchies. It additionally
exploits sequential information such as the word and seg-
ment order. By automatically extracting the essential part
of such hierarchical and sequential structures, it generates
appropriate models for the given nested data.

Similarly, latent variable models for sequential data have
been proposed. A hidden Markov topic model (HMTM)
[3], which is a natural extension of LDA models for the
nonexchangeable setting, assumes that word topics are gen-
erated by a Markov chain. Each document has its own
topic Markov chain, however, word emission probabilities
of topics are shared by all documents. A hidden topic
Markov model (HTMM) [13] introduces a Markov chain
to LDA models with a different fashion from HMTM. The
HTMM assumes that words in the same sentence share a
common topic and each of the sentence topics is generated
by a Markov chain. Similar to those methods, our method
can combine LDA models and HMMs. Additionally, our
method automatically chooses appropriate levels in which
Markov chains should be introduced.

3 ORDERED TREE FOR NESTED DATA

We here introduce an ordered tree representation of nested
data. Suppose that nested data D is represented as a pair
(x, T ), where x ≡ (xn)

N
n=1 is a sequence of observ-

able variables and T is an ordered tree representing its
nested structure. An ordered tree T is defined by a triplet
(N, par, sib), where N={0, . . . , N} is node indexes in the
breadth first order (i.e., 0 is a root node), and par : N→N
and sib : N→N define the parent and the previous sibling
of each node, respectively. Thus, par(n) denotes the n’s
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Figure 1: An ordered tree representation of a 3-layered
nested structure.

parent and sib(n) denotes the n’s previous sibling, where
sib(n)=0 denotes that n has no previous sibling. Let D be
the depth of T and dn be that of n. Also let Nd (1≤d≤D)
be a set of nodes n such that dn = d. An observable vari-
able xn is associated with each node n, where variables in
the same depth are assumed to share the same domain. For
simplicity, we focus on the case that xn (n ∈ Nd) has a
discrete domain {1, . . . , Vd}, although our method can be
extended easily to the continuous case, where Vd = 0 de-
notes that n∈Nd has no observation.

We illustrate the ordered tree representation of a collection
of documents with a 3-layered nested structure in Figure 1.
Suppose that the collection contains A documents, where
each document contains B sentences and each sentence
consists of C words. A node in the first layer n∈N1 corre-
sponds to a document, and n ∈ N2 and n ∈ N3 correspond
to a sentence and a word, respectively. The tree depth is
D =3 and the tree size is N =A+AB+ABC. Each leaf
node n ∈ N3 has a corresponding observation xn which is
a term in V3-term vocabulary. Each inter node n ∈ N\N3

have no observation that is denoted by V1 =V2 =0.

When we design a latent variable model for the above
nested data, we choose essential structural information and
reflect it in the model. In LDA models, for example, only
document-level information is preserved and the other in-
formation (the sentence and word order) is ignored. In
this paper, we aim to automatically extract important infor-
mation in T and generate an appropriate model for given
nested data D.

4 OUR MODEL

In this section, we first describe our latent variable model
M of which dependencies among latent variables are ad-
justable by its structural parameters. We then propose a
local search method to optimize the parameters for given
nested data D. The method generates an appropriate model
structure of M that captures intrinsic characteristics of D.

Table 1: An assumption variable Ad and dependencies.
Ad Explanation Dependency

I-det Index-deterministic zn =n
P-det Parent-deterministic zn =zℓ

N-dep Non-dependent zn ⊥⊥ zℓ, zn ⊥⊥ zm

P-dep Parent-dependent zn ̸⊥⊥ zℓ, zn ⊥⊥ zm

S-dep Sibling-dependent zn ⊥⊥ zℓ, zn ̸⊥⊥ zm

B-dep Both-dependent zn ̸⊥⊥ zℓ, zn ̸⊥⊥ zm

4.1 MODEL DEFINITION

We here describe our model M which is a Bayesian latent
variable model for nested data D = (x, T ). Our model
M is defined by a quadruplet (T , A, α, β), where T is
the given ordered tree, A is structural parameters which
control dependencies among latent variables, and α and β
are model parameters.

We first introduce latent variables z ≡ (zn)
N
n=1 and struc-

tural parameters A≡ (Ad)
D
d=1, where Ad is an assumption

variable which defines dependencies among latent vari-
ables in the dth layer. Our model M assumes that each
node n∈Nd has a discrete latent variable zn ∈{1, . . . , Kd}.
We define z0 =0 for denoting the root 0 has no latent vari-
able. Each observable variable xn is generated by depend-
ing only on the corresponding latent variable zn. Each la-
tent variable zn is generated by depending on latent vari-
ables of n’s parent and sibling zpar(n) and zsib(n). For
simplicity, let ℓ = par(n) and m = sib(n) in this pa-
per. An assumption variable Ad with a discrete domain
{I-det, P-det, N-dep, P-dep, S-dep, B-dep} controls the de-
pendency of zn (n ∈ Nd) as shown in Table 1. I-det and
P-det denote that zn deterministically takes a value n and
zℓ, respectively. N-dep denotes that zn is independent of
other latent variables. P-dep, S-dep and B-dep denote that
zn depends on zℓ, zm and the both, respectively. The struc-
tural parameters A control the entire model structure of M
which represents dependencies among all latent variables
z.

We next introduce model parameters α ≡ (αd)
D
d=1 and

β ≡ (βd)
D
d=1, where αd ≡ (αd,k)

Kd

k=1 and βd ≡ (βd,v)
Vd

v=1
are parameters of Dirichlet distributions for generating
θd,i,j ≡ (θd,i,j,k)

Kd

k=1 and ϕd,k ≡ (ϕd,k,v)
Vd

v=1, respectively.
Here, θd,i,j is a parameter of a categorical distribution for
generating zn (n ∈ Nd) and ϕd,k is that for generating xn,
that is, θd,i,j,k is a probability of zn = k given zℓ = i
and zm = j and ϕd,k,v is a probability of xn = v given
zn =k. The generation process of (x, z,θ, ϕ) given model
M ≡(T ,A,α, β) is as follow.

1. For each depth d = 1, . . . , D and hidden class i =
1, . . . , Kd−1 and j, k=1, . . . , Kd

(a) Draw θd,i,j ∼ Dir(αd)
(b) Draw ϕd,k ∼ Dir(βd)
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2. For each depth d=1, . . . , D and node n∈Nd

(a) Choose a class zn by

case Ad

when I-det : zn := n

when P-det : zn := zℓ

when N-dep : zn ∼ Cat(θd,0,0)

when P-dep : zn ∼ Cat(θd,zℓ,0)

when S-dep : zn ∼ Cat(θd,0,zm
)

when B-dep : zn ∼ Cat(θd,zℓ,zm)

(b) Draw an observation xn ∼ Cat(ϕd,zn)

Here, θd,i,j is a parameter for generating zn (n∈Nd) given
zℓ = i and zm = j, however, we set i = 0 and j = 0 when
zn is independent of zℓ and zm, respectively. The joint
probability p(x, z,θ, ϕ | M) factorizes into

p(x, z, θ, ϕ|M) = p(x|z, ϕ) p(z|A,θ) p(θ|α) p(ϕ|β) ,

and each probability is computed as

p(θ | α) =

D∏

d=1

Kd−1∏

i=0

Kd∏

j=0

Dir(θd,i,j ; αd) , (1)

p(ϕ | β) =
D∏

d=1

K∏

k=1

Dir(ϕd,k; βd) , (2)

p(z | A,θ) =

D∏

d=1

Kd−1∏

i=0

Kd∏

j=0

Kd∏

k=1

θ
cd,i,j,k(A,z)
d,i,j,k , (3)

p(x | z, ϕ) =
D∏

d=1

Kd∏

k=1

Vd∏

v=1

ϕ
cd,k,v(z,x)
d,k,v , (4)

where cd,i,j,k(A, z) and cd,k,v(z,x) are define as

cd,i,j,k(A, z) ≡



|{n∈Nd | zn =k}| Ad =N-dep, i=j =0

|{n∈Nd | zℓ = i, zn =k}| Ad =P-dep, j =0

|{n∈Nd | zm =j, zn =k}| Ad =S-dep, i=0

|{n∈Nd | zℓ = i, zm =j, zn =k}| Ad =B-dep
0 otherwise,

cd,k,v(z, x) ≡ |{n∈Nd | zn =k, xn =v}|.

Here, cd,k,v(z, x) is the count of ϕd,k,v used in the gener-
ating process and cd,i,j,k(A,z) is that of θd,i,j,k.

Our model M includes a variety of well-known existing
models. Given text data x and ordered tree T shown in
Figure 1 as its nested structure, we can represent various
models by adjusting structural parameters A as shown in
Table 2, where the corresponding plate notations are shown
in Figure 2.

Table 2: Example models for 3-layered text data. MMM
denotes a multinomial mixture model. dX, sX and wX de-
note document-level X, sentence-level X and word-level X,
respectively.

A=(A1, A2, A3) Corresponding Model
(1) N-dep, P-det, P-det dMMM
(2) I-det, P-det, P-dep dLDA
(3) I-det, I-det, S-dep wHMM
(4) I-det, S-dep, P-dep sHMM + wMMM
(5) I-det, P-det, B-dep dLDA + wHMM
(6) I-det, B-dep, P-dep dLDA+sHMM+wMMM

4.2 MODEL GENERATION

Given nested data D = (x,T ), we aim to generate the
“best” model M = (T , A, α, β) for D by optimizing A,
α and β. To define the “best”, a criterion for compar-
ing multiple models is needed. A log marginal likelihood
L[M ] ≡ ln p(x | M) is one of such criteria which mea-
sures how model M fits to the given data x [19, 10]. How-
ever, computing L[M ] is intractable because it requires an
intractable summation

∑
z p(x, z | M). We instead em-

ploy the variational free energy (VFE) [5] F [M ], which
is a lower bound of L[M ]. The definition and an efficient
computation algorithm of F [M ] are described in Section 5.
The algorithm is also used for optimizing model parame-
ters α and β given D and A. Even though VFE F [M ] is
computable, it is still intractable to maximize F [M ] with
respect to A because it requires evaluation of F [M ] for
all possible instantiations for A. We avoid such intractable
evaluation by employing the following local search:

1. Let A s.t. Ad =P-det for all d and evaluate F [M ]
2. Let t := 0 and Bt := {A}
3. Let NBt := all neighbors of A∈Bt

4. Evaluate F [M ] for all A∈NBt

5. Let Bt+1 := the w best structures w.r.t. VFE
6. Terminate if Bt+1 =Bt and return 3. otherwise

We initialize the first candidate A as the simplest structure
which contains only deterministic latent variables that is
equivalent to no latent variable model. We then repeat gen-
erating neighbors of current candidates and choosing the
w best structures as new candidates while VFE increases,
where w is the search bandwidth. Here, A′ is a neighbor of
A if there exists exactly one d such that Ad ̸=A′

d.

The above method automatically generates an appropriate
latent variable model M for the given nested data D by
optimizing its structural parameters A and its model pa-
rameters α and β. It can also automatically select an ap-
propriate Kd, which is the number of clusters in the d-th
layer, by running with different Kd and choosing M with
the highest VFE. In the case we have a condition on mod-
els, our method can generate only expected models by skip-
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ping violated models in the search. For example, a model
for the document clustering task should have a latent vari-
able which indicates the cluster index of each document.
Our method can generate a such model by excepting mod-
els which have no latent variable in the document-layer.

5 VARIATIONAL INFERENCE

We here define a variational free energy F [M ] which is
used as a measure how model M fits to given nested data
D. We propose an efficient method for computing F [M ]
that employs a dynamic programming algorithm on T as its
building block. The method is universal because it does not
require change even if model structure A and data structure
T are changed.

5.1 VARIATIONAL FREE ENERGY

Using Jensen’s inequality, we obtain the following lower
bound of log marginal likelihood L[M ],

ln p(x | M) ≥ Eq[ln p(x | z, ϕ)] + Eq[ln p(z | A, θ)]

+ Eq[ln p(θ | α)] + Eq[ln p(ϕ | β)] − H[q]

≡ F [q,M ] ,

where q is a variational distribution such that q(z,θ, ϕ) =
q(z) q(θ) q(ϕ) and H[q] is its entropy. By using the Euler-
Lagrange equation, we obtain

q(z) ∝ exp
(
Eq(ϕ)[ln p(x|z, ϕ)]+Eq(θ)[ln p(z|θ)]

)
, (5)

q(θ) ∝ p(θ | α) exp
(
Eq(z)[ln p(z | A, θ)]

)
, (6)

q(ϕ) ∝ p(ϕ | β) exp
(
Eq(z)[ln p(x | z, ϕ)]

)
. (7)

By iteratively updating q, we can maximize F [q, M ] w.r.t.
q. We can also maximize it w.r.t. model parameters α and
β by fixed point iteration [21]. We use F [M ] to denote
F [q, M ] which is computed by estimated q, α and β.

We next detail these q updates. Because q(θ) and q(ϕ) are
approximations of (1) and (2), we define

q(θ) ≡
D∏

d=1

Kd∏

i=0

Kd∏

j=0

Dir(θd,i,j ; ad,i,j) ,

q(ϕ) ≡
D∏

d=1

K∏

k=1

Dir(ϕd,k; bd,k) ,

where ad,i,j ≡(ad,i,j,k)
Kd

k=1 and bd,k ≡(bd,k,v)
Vd

v=1 are vari-
ational parameters. By substituting (1)-(4) into (6)(7), their
updates are obtained by

ad,i,j,k = αd,k + Eq(z)[cd,i,j,k(A, z)] , (8)
bd,k,v = βd,v + Eq(z)[cd,k,v(z,x)] . (9)

We also obtain the following updates of q(z):

q(z) ∝




D∏

d=1

Kd−1∏

i=0

Kd∏

j=0

Kd∏

k=1

θ∗
d,i,j,k

cd,i,j,k(A,z)




×
(

D∏

d=1

Kd∏

k=1

Vd∏

v=1

ϕ∗
d,k,v

cd,k,v(z,x)

)
,

where

θ∗
d,i,j,k ≡ exp

(
Ψ(ad,i,j,k) − Ψ

(
Kd∑

k′=1

ad,i,j,k′

))
,

ϕ∗
d,k,v ≡ exp

(
Ψ(bd,k,v) − Ψ

(
Vd∑

v′=1

bd,k,v′

))
,

and Ψ(·) is a digamma function. Here, q(z) =
p(z | x, θ∗, ϕ∗)1 holds by the definitions of (3) and (4).

1Even ϕ∗
d,k and θ∗

d,i,j are not a probability vector,
p(z | x, θ∗, ϕ∗) is a probability through the effect of a normaliz-
ing factor p(x | θ∗, ϕ∗)=

∑
z p(x, z | θ∗, ϕ∗).
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Thus, expectations in (8) and (9) are computed as

Eq(z)[cd,i,j,k(A, z)] =
∑

n∈Nd

P i,j,k
ℓ,m,n[x, θ∗, ϕ∗] (10)

Eq(z)[cd,k,v(z, x)] =
∑

n∈Nd:xn=v

Kd−1∑

i=0

Kd∑

j=0

P i,j,k
ℓ,m,n[x, θ∗,ϕ∗]

(11)

P i,j,k
ℓ,m,n[x, θ, ϕ] ≡ p(zℓ = i, zm =j, zn =k | x, θ,ϕ) .

We propose an efficient dynamic programming method for
computing P i,j,k

ℓ,m,n[x, θ, ϕ] in Section 5.2.

5.2 EFFICIENT PROBABILITY COMPUTATION

For efficient computation of P i,j,k
ℓ,m,n[x, θ, ϕ], we define

Ri,j,k
ℓ,m,n[x,θ, ϕ] ≡ p(zℓ = i, zm =j, zn =k, x | θ, ϕ) .

(12)

Using the above, P i,j,k
ℓ,m,n[x, θ, ϕ] is computed as

P i,j,k
ℓ,m,n[x, θ, ϕ] =

Ri,j,k
ℓ,m,n[x, θ, ϕ]

p(x | θ, ϕ)
, (13)

p(x | θ, ϕ) =

Kd−1∑

i=0

Kd∑

j=0

Ri,j,k
ℓ,m,n[x, θ, ϕ] . (14)

Computing Ri,j,k
ℓ,m,n[x, θ, ϕ] by naively summarizing out

zn′ (n′ ∈N\{ℓ, m, n}) requires exponential time in N .

We here describe an efficient dynamic programming algo-
rithm for computing Ri,j,k

ℓ,m,n[x, θ,ϕ]. Let Dec(n) be all
descendants of n in T . Also let Sib−(n) and Sib+(n) be
all younger and older siblings of n, respectively. We then
introduce the following four sets, inside set I(n), outside
set O(n), forward set F(n) and backward set B(n):

I(n) ≡ {n} ∪ Dec(n) , F(n) ≡
∪

m∈{n}∪Sib−(n)

I(m) ,

O(n) ≡ N\Dec(n) , B(n) ≡
∪

m′∈{n}∪Sib+(n)

I(m′) .

Figure 3 shows examples of those sets of a 3-layered or-
dered tree. Using those sets, a set of all nodes N factorizes
into N=O(ℓ) ∪ F(m) ∪ B(n). For a set C ⊆N, we define
xC ≡ (xn)n∈C and zC ≡ (zn)n∈C . Then, Ri,j,k

ℓ,m,n[x, θ,ϕ]
factorizes into

Ri,j,k
ℓ,m,n[x, θ, ϕ] = p

(
xO(ℓ), zℓ = i | θ, ϕ

)

p
(
xF(m), zm =j | zℓ = i, θ, ϕ

)

p
(
xB(n), zn =k | zℓ = i, zm =j, θ, ϕ

)
.

To compute the above, we introduce the following four
probabilities, inside probability In[k], outside probability

On[k], forward probability Fn[i, k] and backward proba-
bility Bn[i, j, k]:

In[k] ≡ p
(
xI(n) | zn =k,θ, ϕ

)
,

On[k] ≡ p
(
xO(n), zn =k | θ,ϕ

)
,

Fn[i, k] ≡ p
(
xF(n), zn =k | zℓ = i, θ, ϕ

)
,

Bn[i, j, k] ≡ p
(
xB(n), zn =k, | zℓ = i, zm =j, θ, ϕ

)
.

The above probabilities can be computed in the following
dynamic programming manner:

In[k] = ϕd,k,vBc[k, 0] , (15)

On[k] =

Kd−1∑

i=0

Kd∑

j=0

On[i, j, k] , (16)

Fn[i, k] = In[k]

Kd∑

j=1

Fm[i, j] θd,i,j,k, (17)

Bn[i, j, k] = In[k]Bm′ [i, k] θd,i,j,k, (18)

where v = xn, d = dn, c is the oldest child of n, m′ is the
next sibling of n and

On[i, j, k] ≡ Oℓ[k] Fm[i, j] Bm′ [i, j] ϕd,k,vθd,i,j,k,

Bn[i, j] ≡
Kd∑

k=1

Bn[i, j, k] .

Finally, the target probability is computed by

Ri,j,k
ℓ,m,n[x, θ, ϕ] = Oℓ[i]Fm[i, j] Bn[i, j, k] . (19)

In summary, the variational free energy F [M ] is computed
by Algorithm 1. When Kd = K for all d, the complex-
ity of this algorithm is O(NK3), however, it decreases ac-
cording to structural parameters A. For example, it be-
comes O(NK2) if A represents an HMM, and also be-
comes O(NK) if A represents an LDA model. Note that
the naive computation for Ri,j,k

ℓ,m,n[x, θ, ϕ] requires expo-
nential time in N but our method is polynomial.

6 EMPIRICAL RESULTS

6.1 ARTIFICIAL DATASETS

We here illustrate that our method is feasible for generat-
ing structures of latent variable models by using artificial
datasets, where correct models which generate the datasets
are known. We designed 12 models with the 3-layered
nested structure T shown in Figure 1 and generated 12
datasets from these models. Each dataset contains L docu-
ments, each document contains L sentences and each sen-
tence contains L words. We set the cluster size of each
depth as K1 = K2 = K3 = 5 and the vocabulary size as
V1 =V2 =0 and V3 =500.
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Figure 3: Inside set I(n), outside set O(ℓ), forward set
F(m) and backward sets B(m′) of a 3-layered ordered tree,
where m′ is the next sibling of n.

Algorithm 1 Variational Free Energy F [M ]

repeat
for n=1, . . . , N do

Compute In[k] for each k by (15)
Compute Bn[i, j, k] for each i, j, k by (18)

end for
for n=N, . . . , 1 do

Compute Fn[i, k] for each i, k by (17)
Compute On[k] for each k by (16)

end for
Compute Ri,j,k

ℓ,m,n[x,θ∗, ϕ∗] for each i, j, k by (19)
Compute P i,j,k

ℓ,m,n[x, θ∗, ϕ∗] for each i, j, k by (13)
Compute Eq(z)[cd,i,j,k(z)] for each d, i, j, k by (10)
Compute Eq(z)[cd,k,v(z)] for each d, k, v by (11)
Update ad,i,j,k for each d, i, j, k by (8)
Update bd,k,v for each d, k, v by (9)
Update α and β by fixed point iteration [21]

until a, b, α and β converge
Return F [q, M ] computed by estimated a, b, α,β

We applied our method for the 12 datasets with search
bandwidth w = 3. Table 3 shows the correct models and
generated models. Our method generated the correct mod-
els for all dataset with L = 50. Even the dataset size is
small, it correctly estimated simple models such as MMMs.

6.2 REAL-WORLD DATASETS

To demonstrate its applicability to real data, we applied our
method for two real-world datasets, a Japanese blog dataset
and an English news dataset. In both experiments, we ran
our method with different K = 10, 20, 30 and chose the
model with the highest VFE. We set search bandwidth w=
3 and excluded models of which complexity is O(NK3)
for tractability. We also applied LDA models for the same
datasets with different K = 10, 20, . . . , 100 and compared
VFEs of LDA models and those of generated models.

Table 4: VFEs for the Japanese blog dataset.
Model VFE

user-LDA −5.239×106

article-LDA −5.284×106

Generated model −5.222×106

Table 6: VFEs for the English news dataset.
Model First dataset Second dataset

day-LDA −8.739×106 −4.891×106

article-LDA −8.299×106 −4.609×106

sentence-LDA −8.554×106 −4.842×106

Generated model −7.658×106 −4.555×106

JAPANESE BLOG DATASET. The dataset is a collec-
tion of 100 users’ goo blog [1] articles from April 7th to
June 27th in 2007, where each article is extracted as a se-
quence of nouns and verbs. We filtered out the 100 most
frequent terms as stop words and used the top 5,000 terms
to construct a 3-layered nested dataset consisted of 100
users, 7,687 articles and 731,065 words.

For this dataset, our method generated the same model as
(5) in Figure 2, which is equivalent to an HMTM [3] that is
a combination of a user-level LDA and word-level HMM.
The model is better than LDA models from the aspect of
VFE as shown in Table 4. In the generated model, each
user has a corresponding topic transition matrix but top-
ics are shared by all users. Table 5 shows the ten most
frequent topics and their five most probable words, where
words were translated from Japanese to English. We manu-
ally gave a topic name for each topic. The table shows that
the generated model captured latent topics in the Japanese
blog dataset.

ENGLISH NEWS DATASET. The dataset is a collection
of Reuters’ news articles in 1987 [2]. We extracted articles
from March 1st to 31st and constructed a 4-layered nested
dataset consisting of 29 days, 10,535 articles, 79,155 sen-
tences and 31,057 terms in the vocabulary, where words in-
cluding 0-9 were replaced to “NUM”. We then created two
datasets by extracting the 5,000 most frequent terms: the
first dataset that we did not filter out any words but the sec-
ond one that we filtered the first 100 terms as stop words.
Those datasets contained 1,369,888 and 626,316 words, re-
spectively.

Figure 4 shows plate representations of models generated
by our method. Our method generated a word-level HMM
for the first dataset and a 3-layered MMM for the second
one. Table 6 shows VFEs of the generated models and LDA
models. As shown, our method found better models than
LDA in terms of VFE.

Figure 5 shows the ten most frequent topics, their five most
probable words and the five most probable topic transi-
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Table 3: Correct models and generated models with L=10, 30, 50. Incorrect assumptions are colored in red.
Correct Model L=10 L=30 L=50

1. dMMM N-dep, P-det, P-det N-dep, P-det, P-det N-dep, P-det, P-det
2. sMMM I-det, N-dep, P-det I-det, N-dep, P-det I-det, N-dep, P-det
3. dLDA I-det, P-det, P-dep I-det, P-det, P-dep I-det, P-det, P-dep
4. sLDA I-det, I-det, P-det I-det, S-dep, P-det I-det, I-det, P-dep
5. dHMM I-det, P-det, P-dep S-dep, P-det, P-det S-dep, P-det, P-det
6. sHMM I-det, S-dep, P-det I-det, S-dep, P-det I-det, S-dep, P-det
7. wHMM P-det, P-det, P-det N-dep, P-det, B-dep N-dep, P-det, B-dep
8. dHMM + wMMM I-det, P-det, P-dep I-det, P-det, P-dep S-dep, P-det, P-dep
9. sHMM + wMMM P-det, P-det, P-det N-dep, B-dep, P-dep I-det, S-dep, P-dep
10. dLDA + sHMM P-det, S-dep, P-det S-dep, B-dep, P-det I-det, P-det, B-dep
11. dLDA + wHMM P-det, P-det, P-det S-dep, P-det, B-dep I-det, B-dep, P-det
12. sLDA + wHMM + wMMM P-det, P-det, P-det S-dep, B-dep, P-det I-det, B-dep, P-dep

Table 5: The ten most frequent topics and their five most probable words obtained from the Japanese blog data.
zuaw Topic name The five most probable words

24 Verbs 1 sleep, go, try, mind, no
5 Stock market stock, management, company, proportion, market
16 News book, ads, news, US, company
9 Research psychology, perception, research, knowledge, description
28 Animation version, animation, appearance, track, purchase
27 Travel (urban) bus, station, Rahmen, father, taste
12 Travel (nature) blossom, weather, Japanese cherry, park, wind
25 Software case, screen, data, process, layout
19 International news dictionary, multimedia, phraseology, terrorism, high concept
8 Verbs 2 receive, book, visit, try, time

tions over those topics. The generated model captured
frequently-appearing grammatical patterns. A topic tran-
sition (18 → 7) describes a pattern (number → unit), and
({29, 13} → 26 → {17, 22}) describes a pattern (Preposi-
tion (1) & (2)→Article→{Objects, Adjective}). Because
such grammatical patterns commonly appear in every sen-
tences, our method extracted the word-layer and removed
the other layers.

In contrast, our method generated a 3-layered MMM (day-
article-sentence) for the second dataset. This is because
grammatical patterns in the dataset were destroyed by filter-
ing out stop words. The model performed day, article and
sentence clustering; days were grouped into two clusters
and articles and sentences were grouped into 30 clusters.
Table 7 shows the three most probable article and sentence
clusters and the five most probable words. The day clus-
ters shared neither article cluster nor sentence cluster in the
table. Sentence clusters in day cluster 3 describe periodic
financial reports, budgets of IT companies and shareholder
meeting, respectively. Those in day cluster 26 describe
policies of executives, domestic economy and economic re-
lations between Japan and US, respectively. It seems that
day cluster 3 tends to mention about periodical events.

7 CONCLUSION

We proposed a method for generating latent variable mod-
els from nested data. We presented a latent variable model
of which structure is adjustable by its structural parameters.
Our model attempts to optimize the parameters by maxi-
mizing the variational free energy. We derived a universal
variational inference method for our model based on dy-
namic programming on the given data structure. No matter
how deep the input nested data are, our method extracts its
essential information and generates a model with an appro-
priate complexity. We empirically showed that our method
correctly generated model structures by synthetic datasets
and also showed that it extracted hidden structures of blog
and news datasets.

We note a potential direction for future work. We can ex-
tend our model to non-parametric Bayesian setting by re-
placing Dirichlet distributions by HDPs [23]. To the best
of our knowledge, it seems difficult to provide an effi-
cient variational inference method for the extended model
because it subsumes the infinite hidden Markov model
(iHMM) [4] which is a non-parametric Bayesian extension
of HMM. However, we can easily derive a Gibbs sampling
in the same way as that of iHMM. The beam sampling [25]
is an efficient sampling method for iHMM, which com-
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Figure 4: Plate representations of generated models from two English News datasets.

zdasw Topic Name The five most probable words
26 Articles the, a, its, an, this
29 Prepositions (1) in, to, for, on, by
22 Objects company, year, bank, week, government
18 Numbers NUM, two, one, five, three
17 Adjective new, us, first, common, united
14 Verb (1) will, is, would, has, was
13 Prepositions (2) of, in, for, and, from
4 Economic words oil, foreign, trade, exchange, economic
7 Units mln, pct, billion, cts, dlrs
19 Verb (2) said, that, told, added, but

18 7

29

13

26

17

22

0.64

0.44

0.33

0.39

0.46

Figure 5: Obtained topics and topic translations by word-level HMM from the English news dataset.

Table 7: Obtained topics by 3-layered MMM from the English news dataset.
The three most probable clusters The five most probable words

day cluster zd article cluster zda sentence cluster zdas

3 25 6 prior, record, div, pay, qtly
19 revs, oper, note, avg, shrs
29 quarter, earnings, reported, ended, tax

26 27 management, plant, unit, selling, underwriting
22 computer, system, products, software, data
20 owned, subsidiary, unit, plc, agreed

23 5 common, shareholders, dividend, board, record
1 offer, proceeds, stake, common, capital
27 management, plant, unit, selling, underwriting

26 28 16 buffer, strike, minister, party, union
2 president, chief, executive, chairman, officer
11 there, think, don’t, no, do

19 26 world, loans, payments, economic, countries
11 there, think, don’t, no, do
3 tax, growth, rate, budget, deficit

27 9 industry, companies, financial, markets, business
28 japan, japanese, minister, president, reagan
26 world, loans, payments, economic, countries

bines slice sampling and dynamic programming. It would
be interesting to extend it for the extended model by intro-

ducing our dynamic programming algorithm.

358



References

[1] Goo blog. http://blog.goo.ne.jp.

[2] Reuters-21578 text categorization test col-
lection. http://www.daviddlewis.
com/resources/testcollections/
reuters21578/.

[3] Mark Andrews and Gabriella Vigliocco. The Hidden
Markov Topic Model: A Probabilistic Model of Se-
mantic Representation. Topics in Cognitive Science,
2(1):101–113, January 2010.

[4] MJ Beal. The infinite hidden Markov model. In Proc.
NIPS, 2001.

[5] M.J. Beal and Z. Ghahramani. The Variational
Bayesian EM Algorithm for Incomplete Data: with
Application to Scoring Graphical Model Structures.
Bayesian Statistics, 7, 2003.

[6] David M Blei, Lawrence Carin, and David Dunson.
Probabilistic topic models. Communications of the
ACM, 55(4):77–84, November 2012.

[7] David M Blei, AY Ng, and MI Jordan. Latent dirichlet
allocation. JMLR, 3:993–1022, 2003.

[8] DM Chickering. Learning Bayesian networks is NP-
complete. In Learning from Data: Artificial Intelli-
gence and Statistics. 1996.

[9] DM Chickering, D Heckerman, and C Meek. Large-
sample learning of Bayesian networks is NP-hard.
JMLR, 5:1287–1330, 2004.

[10] Gregory F. Cooper and Edward Herskovits. A
Bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9(4):309–
347, October 1992.

[11] Lan Du, Wray Buntine, and Huidong Jin. A seg-
mented topic model based on the two-parameter
Poisson-Dirichlet process. Machine learning,
81(1):5–19, July 2010.

[12] Roger Grosse and RR Salakhutdinov. Exploiting
compositionality to explore a large space of model
structures. In Proc. UAI, 2012.

[13] Amit Gruber, Y Weiss, and M Rosen-Zvi. Hidden
topic Markov models. In Proc. AISTATS, 2007.

[14] Thomas Hofmann. Probabilistic latent semantic anal-
ysis. In Proc. UAI, 1999.

[15] Tomoharu Iwata, Tsutomu Hirao, and Naonori Ueda.
Unsupervised Cluster Matching via Probabilistic La-
tent Variable Models. In Proc. AAAI, 2013.

[16] Tomoharu Iwata, T Yamada, and N Ueda. Probabilis-
tic latent semantic visualization: topic model for vi-
sualizing documents. In Proc. KDD, 2008.

[17] Changhe Yuan James Cussens, Brandon Malone. Tu-
torial on Optimal Algorithms for Learning Bayesian
Networks. In IJCAI 2013 Tutorial, 2013.

[18] Do-kyum Kim, G Voelker, and LK Saul. A Varia-
tional Approximation for Topic Modeling of Hierar-
chical Corpora. In Proc. ICML, 2013.

[19] David J C Mackay. Bayesian interpolation. Neural
computation, 4(3):415–447, May 1992.

[20] Brandon Malone and C Yuan. Evaluating anytime al-
gorithms for learning optimal Bayesian networks. In
Proc. UAI, 2013.

[21] Thomas P Minka. Estimating a Dirichlet distribution,
2000. http://research.microsoft.com/
minka/papers/dirichlet.

[22] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. San Fran-
cisco, California: Morgan Kaufmann, 1988. 2nd
printing edition.

[23] YW Teh and MI Jordan. Hierarchical dirichlet pro-
cesses. Journal of the American Statistical Associa-
tion, 101(476):1566–1581, 2006.

[24] Marc Teyssier and D Koller. Ordering-based
search: A simple and effective algorithm for learning
Bayesian networks. In Proc. UAI, 2005.

[25] Jurgen Van Gael, Yunus Saatci, Yee Whye Teh, and
Zoubin Ghahramani. Beam sampling for the infinite
hidden Markov model. In Proc. ICML, 2008.

[26] Su-in Lee Varun and Ganapahthi Daphne. Efficient
Structure Learning of Markov Networks using L1-
Regularization. In Proc. NIPS, 2006.

[27] Changhe Yuan, Brandon Malone, and Xiaojian Wu.
Learning optimal Bayesian networks using A* search.
In Proc. IJCAI, 2011.

[28] NL Zhang. Hierarchical latent class models for clus-
ter analysis. JMLR, 5:697–723, 2004.

359



Monotone Closure of Relaxed Constraints in Submodular Optimization:
Connections Between Minimization and Maximization

Rishabh Iyer
Dept. of Electrical Engineering

University of Washington
Seattle, WA-98175, USA

Stefanie Jegelka
Dept. of EECS

University of California, Berkeley
Berkeley, CA-94720, USA

Jeff Bilmes
Dept. of Electrical Engineering

University of Washington
Seattle, WA-98175, USA

Abstract

It is becoming increasingly evident that many ma-
chine learning problems may be reduced to sub-
modular optimization. Previous work addresses
generic discrete approaches and specific relax-
ations. In this work, we take a generic view from
a relaxation perspective. We show a relaxation
formulation and simple rounding strategy that,
based on the monotone closure of relaxed con-
straints, reveals analogies between minimization
and maximization problems, and includes known
results as special cases and extends to a wider
range of settings. Our resulting approximation
factors match the corresponding integrality gaps.
For submodular maximization, a number of relax-
ation approaches have been proposed. A critical
challenge for the practical applicability of these
techniques, however, is the complexity of evaluat-
ing the multilinear extension. We show that this
extension can be efficiently evaluated for a num-
ber of useful submodular functions, thus making
these otherwise impractical algorithms viable for
real-world machine learning problems.

1 INTRODUCTION

Submodularity is a natural model for many real-world
problems including many in the field of machine learn-
ing. Submodular functions naturally model aspects like
cooperation, complexity, and attractive potentials in mini-
mization problems, and also notions of diversity, coverage,
and information in maximization problems. A function
f : 2V → R on subsets of a ground set V = {1, 2, . . . , n}
is submodular [37, 15] if for all subsets S, T ⊆ V , we
have f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). The gain
of an element j ∈ V with respect to S ⊆ V is defined as
f(j|S) , f(S ∪ j)− f(S). Submodularity is equivalent to
diminishing gains: f(j|S) ≥ f(j|T ),∀S ⊆ T, j /∈ T .

A large number of machine learning problems may be

phrased as submodular minimization or maximization prob-
lems. In this paper, we address the following two very
general forms of submodular optimization:

Problem 1: min
X∈C

f(X), Problem 2: max
X∈C

f(X)

Here, C denotes a family of feasible sets, described e.g.,
by cardinality constraints, or by combinatorial constraints
insisting that the solution be a tree, path, cut, matching, or a
cover in a graph.

Applications. Unconstrained submodular minimization
occurs in machine learning and computer vision in the
form of combinatorial regularization terms for sparse recon-
struction and denoising, and MAP inference, e.g. for image
segmentation [30]. Other applications are well modeled as
constrained submodular minimization. For example, a rich
class of models for image segmentation has been encoded
as minimizing a submodular functions subject to cut con-
straints [28]. Similarly, [9] efficiently solves MAP inference
in a sparse higher-order graphical model through submodu-
lar vertex cover, and [48] proposes to interactively segment
images by minimizing a submodular function subject to
connectivity constraints, i.e., the selected set of vertices
must contain an s-t path. Moreover, bounded-complexity
corpus construction [36] can be modeled as cardinality
constrained submodular minimization. Constrained
submodular maximization is a fitting model for problems
such as optimal sensing [32], marketing [29], document
summarization [35], and speech data subset selection [34].

Previous Work. Since most instances of Problems 1 and
2 are NP-hard, one must strive for approximations that have
bounded error. Broadly speaking1, the algorithms can be
classified into discrete (combinatorial) and continuous relax-
ation based. The discrete approaches were initially proposed
for certain specific constraints [17, 27, 47, 41, 12, 4, 3], but
later made general and unified [25, 18, 24]. In the case of
submodular minimization, the discrete approaches have
been based on approximating the submodular function

1 Emphasized words in this paragraph correspond to headings
in Table 1, which also serves as a summary.
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by tractable approximations [25, 18], while in the case
of submodular maximization, they have been based on
greedy and local search techniques [25, 41, 12, 4, 3]. Most
of these algorithms are fast and scalable. The continuous
relaxation techniques, on the other hand, have so far either
been analyzed for very specific constraints, or when general,
are too slow to use in practice. For example, in the case
of minimization, they were studied only for the specific
constraints of covers [20] and cuts [27], and in the case of
maximization, the techniques though general have yet to
show significant practical impact due to their prohibitive
computational costs [6, 5]. Hence discrete algorithms are
typically used in applications (e.g., [34]).

Constraints
or Function

Operation
(& speed)

Algorithm Approach
Combinatorial Relaxation

Specific

Min (fast) [17, 27] [20, 27]
Min (slow) [47] Unnecessary
Max (fast) [41, 12, 4, 3] This paper
Max (slow) Unnecessary [4, 5]

General

Min (fast) [25] This paper
Min (slow) [18] Unnecessary
Max (fast) [25] Open
Max (slow) Unnecessary [6]

Table 1: Past work & our contributions (see text for explanation).

In the present paper, we develop a continuous relaxation
methodology for Problems 1 and 2 that applies not only
for multiple types of constraints but that even establishes
connections between minimization and maximization prob-
lems. We summarize our contributions, in comparison to
previous work, in Table 1, which lists one problem as being
still open, and other problems as being unnecessary (given
a “fast” approach, the corresponding “slow” approach is un-
necessary). Our techniques are not only connective, but also
fast and scalable. In the case of constrained minimization,
we provide a formulation applicable for a large class of con-
straints. In the case of submodular maximization, we show
how for a large class of submodular functions of practical
interest, the generic slow algorithms can be made fast and
scalable. We note, however, that it is still an open problem
to provide a fast and scalable algorithmic framework (with
theoretical guarantees) based on continuous relaxations for
general submodular maximization.

The connections between minimization and maximization
is based on the up- or down-monotonicity of the constraint
set: up-monotone constraints are relevant for submodular
minimization problems, and down-monotone constraints are
relevant for submodular maximization problems. Our relax-
ation viewpoint, moreover, complements and improves on
the bounds found in [25]. For example, where [25] may have
an approximation bound of k, our results imply a bound of
n− k+ 1, where n = |V |, so considering both [25] and our
new work presented here, we obtain combined bounds of the
form min(k, n−k+1) (more specifics are given in Table 2).
This also holds for maximization – in certain cases discrete

algorithms obtain suboptimal results, while relaxation tech-
niques obtain improved, and sometimes optimal guarantees.

The idea of our relaxation strategy is as follows: the sub-
modular function f(S), which is defined on the vertices
of the n-dimensional hypercube, is extended to a function
defined on [0, 1]n. The two functions valuate identically if
the vector x ∈ [0, 1]n is the characteristic vector of a set.
We then solve a continuous optimization problem subject
to linear constraints. For minimization, the convex Lovász
extension defined in Eqn. (1) is a suitable extension of f .
Appropriately rounding the resulting optimal continuous
solutions leads to a number of approximation guarantees.
For maximization, ideally we could utilize a concave exten-
sion. Since the tightest concave extension of a submodular
function is hard to characterize [49], we instead use the
multilinear extension (see Eqn. (2)) that behaves like a con-
cave function in certain directions [6, 5]. Our resulting
algorithms often achieve better bounds than discrete greedy
approaches.

Paper Roadmap. For constrained minimization (Sec. 3),
we provide a generic approximation factor (Theorem 1), for
the general class of constraints defined in Eq. 4. We show
that many important constraints, including matroid, cardi-
nality, covers, cuts, paths, matchings, etc. can be expressed
as Eq. 4. As a corollary to our main result (Theorem 1), we
obtain known results (like covers [20] and cuts [27]), and
also novel ones (for spanning trees, cardinality constraints,
paths, matchings etc.). We also show bounds on integrality
gaps for constrained submodular minimization, which to
our knowledge is novel. In the context of maximization
(Sec. 4), we provide closed form multi-linear extensions
for several submodular functions useful in applications.
We also discuss the implications of these algorithmically.
Note that this is particularly important, given that many
optimal algorithms for several submodular maximization
problems are based on the multilinear extension. Lastly, we
extend our techniques to minimize the difference between
submodular functions, and provide efficient optimization
and rounding techniques for these problems (Sec. 5).

2 CONTINUOUS RELAXATIONS

Convex relaxation. The Lovász extension [37] reveals an
important connection between submodularity and convex-
ity, and is defined as follows. For each y ∈ [0, 1]n, we
obtain a permutation σy by ordering its elements in non-
increasing order, and thereby a chain of sets Σy0 ⊆ . . . ⊆ Σyn,
with Σyj = {σy(1), · · · , σy(j)} for j ∈ {1, 2, . . . , n}. The
Lovász extension f̆ of f is a weighted sum of the ordered
entries of y:

f̆(y) =
n∑

j=1

y[σy(j)] (f(Σyj )− f(Σyj−1)) (1)
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The Lovász extension is unique (despite possibly non-
unique orderings if y has duplicate entries), and convex
if and only if f is submodular. Since it agrees with f
on the vertices of the hypercube, i.e., f(X) = f̆(1X), for
all X ⊆ V (where 1X is the characteristic vector of X ,
i.e., 1X(j) = I(j ∈ X)), f̆ is a natural convex extension
of a submodular function. The Lovász extension is a
non-smooth (piece-wise linear) convex function for which
a subgradient hfσy at y can be computed efficiently via
Edmonds’s’ greedy algorithm [10]:

hfσy (σy(j)) = f(Σyj )− f(Σyj−1), ∀j ∈ {1, 2, · · · , n}
The Lovász extension has also found applications in
defining norms for structured sparsity [1] and divergences
for rank aggregation [23].

Multilinear relaxations. For maximization problems, the
relaxation of choice has frequently been the multilinear
extension [12]

f̃(x) =
∑

X⊆V
f(X)

∏

i∈X
xi
∏

i/∈X
(1− xi), (2)

where f is any set function. Since Eqn. (2) has an exponen-
tial number of terms, its evaluation in general computation-
ally expensive, or requires approximation.

One may define at least two types of gradients for the multi-
linear extension. The first, “standard” gradient is

∇j f̃(x) = ∂f̃/∂xj = f̃(x ∨ ej)− f̃(x ∨ ej − ej).
where ej = 1{j}, and {x ∨ y}(i) = max(x(i), y(i)). A
second gradient is∇aj f̃(x) = f̃(x ∨ ej)− f̃(x). The two
gradients are related component-wise as ∇j f̃(x) = (1 −
xj)∇aj f̃(x), and both can be computed in O(n) evaluations
of f̃ .

Optimization. Relaxation approaches for submodular op-
timization follow a two-stage procedure:

1. Find the optimal (or approximate) solution x̂ to the
problem minx∈PC f̆(x) (or maxx∈PC f̃(x)).

2. Round the continuous solution x̂ to obtain the discrete
indicator vector of set X̂ .

Here, PC denotes the polytope corresponding to the family C
of feasible sets – i.e., their convex hull or its approximation,
which is a “continuous relaxation” of the constraints C. The
final approximation factor is then f(X̂)/f(X∗), where X∗

is the exact optimizer of f over C.

An important quantity is the integrality gap that measures –
over the class S of all submodular (or monotone submod-
ular) functions – the largest possible discrepancy between
the optimal discrete solution and the optimal continuous
solution. For minimization problems, the integrality gap is
defined as:

ISC , sup
f∈S

minX∈C f(X)

minx∈PC f̆(x)
≥ 1. (3)

For maximization problems, we would take the supremum
over the inverse ratio. In both cases, ISC is defined only
for non-negative functions. The integrality gap largely
depends on the specific formulation of the relaxation.
Intuitively, it provides a lower bound on our approximation
factor: we usually cannot expect to improve the solution
by rounding, because any rounded discrete solution is also
a feasible solution to the relaxed problem. One rather only
hopes, when rounding, to not worsen the cost relative to that
of the continuous optimum. Indeed, integrality gaps can
often be used to show tightness of approximation factors
obtained from relaxations and rounding [7]. For a detailed
discussion on this connection, see [26].

3 SUBMODULAR MINIMIZATION

For submodular minimization, the optimization problem
in Step 1 is a convex optimization problem, and can be
solved efficiently if one can efficiently project onto the poly-
tope PC . Our second ingredient is rounding. To round, a
surprisingly simple thresholding turns out to be quite effec-
tive for a large number of constrained and unconstrained
submodular minimization problems: choose an appropri-
ate θ ∈ (0, 1) and pick all elements with “weights” above
θ, i.e., X̂θ = {i : x̂(i) ≥ θ}. We call this procedure the
θ-rounding procedure. In the following sections, we first
review relaxation techniques for unconstrained minimiza-
tion (which are known), and afterwards phrase a generic
framework for constrained minimization. Interestingly, both
constrained and unconstrained versions essentially admit
the same rounding strategy and algorithms.

3.1 UNCONSTRAINED MINIMIZATION

Continuous relaxation techniques for unconstrained sub-
modular minimization have been well studied [1, 15]. In
this case, PC = [0, 1]n, and importantly, the approximation
factor and integrality gap are both 1.

Lemma 1. [15] For any submodular function f , it holds
that minX⊆V f(X) = minx∈[0,1]n f̆(x). Given a continu-
ous minimizer x∗ ∈ argminx∈[0,1]n f̆(x), the discrete mini-
mizers are exactly those obtained by θ-rounding x∗, for any
θ ∈ (0, 1).

Since the Lovász extension is a non-smooth convex func-
tion, it can be minimized up to an additive accuracy of ε in
O(1/ε2) iterations of the subgradient method. This accu-
racy directly transfers to the discrete solution if we choose
the best set obtained with any θ ∈ (0, 1) [1]. For special
cases, such as submodular functions derived from concave
functions, smoothing techniques yield a convergence rate of
O(1/t) [45].
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3.2 CONSTRAINED MINIMIZATION

We next address submodular minimization under constraints,
where rounding affects the accuracy of the discrete solution.
By appropriately formulating the problem, we show that
θ-rounding applies to a large class of problems. We assume
that the family C of feasible solutions can be expressed by a
(low-order) polynomial number of linear inequalities, or at
least that linear optimization over C can be done efficiently,
as is the case for matroid polytopes [10].

A straightforward relaxation of C is the convex hull PC =
conv(1X , X ∈ C) of C. Often however, it is not possible to
obtain a decent description of the inequalities determining
PC , even in cases when minimizing a linear function over
C is easy (two examples are the s-t cut and s-t path poly-
topes [44]). In those cases, we relax C to its up-monotone
closure Ĉ = {X ∪ Y | X ∈ C and Y ⊆ V }. With Ĉ, a
set is feasible if it is in C or a superset of a set in C. The
convex hull of Ĉ is the up-monotone extension of PC within
the hypercube, i.e. PĈ = P̂C = (PC +Rn+)∩ [0, 1]n, which
is often easier to characterize than PC [26]. If C is already
up-monotone, then P̂C = PC .

Optimization. The relaxed minimization problem
minx∈P̂C f̆(x) is non-smooth and convex with linear
constraints, and therefore amenable to, e.g., projected
subgradient methods. We here assume that the submodular
function f is monotone nondecreasing (which often holds
in applications), and extend our results to non-monotone
functions in [26].

For projected (sub)gradient methods, it is vital that the pro-
jection on P̂C can be done efficiently. Indeed, this holds with
the above assumptions that we can efficiently solve a linear
optimization over P̂C . In this case, e.g. Frank-Wolfe [13]
methods apply. The projection onto matroid polyhedra can
also be cast as a form of unconstrained submodular function
minimization and is hence polynomial time solvable [15].
To apply splitting methods such as the alternating directions
method of multipliers (ADMM) [2], we write the problem
as minx,y:x=y f̆(x) + I(y ∈ P̂C). ADMM needs a projec-
tion oracle onto the constraints – discussed above – and the
proximal operator of f . Computing the proximal operator of
the Lovász extension is equivalent to unconstrained submod-
ular minimization, or to solving the minimum norm point
problem. In special cases, faster algorithms apply [39, 45].

Rounding. Once we have obtained a minimizer x̂ of
f̆ over P̂C , we apply simple θ-rounding. Whereas in the
unconstrained case, X̂θ is feasible for any θ ∈ (0, 1), we
must now ensure X̂θ ∈ Ĉ. Hence, we pick the largest
threshold θ such that X̂θ ∈ Ĉ, i.e., the smallest X̂θ that is
feasible. This is always possible since Ĉ is up-monotone and
contains V . The threshold θ can be found using O(log n)
checks among the sorted entries of the continuous solution x̂.
The following lemma states how the threshold θ determines

a worst-case approximation:

Lemma 2. For a monotone submodular f and any x̂ ∈
[0, 1]V and θ ∈ (0, 1) such that X̂θ = {i | x̂i ≥
θ} ∈ Ĉ, it holds that f(X̂θ) ≤ 1

θ f̆(x̂). If, moreover,
f̆(x̂) ≤ βminx∈P̂C f̆(x), then it holds that f(X̂θ) ≤
β
θ minX∈C f(X).

The set X̂θ is in Ĉ and therefore guaranteed to be a superset
of a solution Ŷθ ∈ C. As a final step, we prune down X̂θ

to Ŷθ ⊆ X̂θ. Since the objective function is nondecreas-
ing, f(Ŷθ) ≤ f(X̂θ), Lemma 2 holds for Ŷθ as well. If,
in the worst case, θ = 0, then the approximation bound
in Lemma 2 is unbounded. Fortunately, in most cases of
interest we obtain polynomially bounded approximation
factors.

In the following, we will see that our P̂C provides the basis
for relaxation schemes under a variety of constraints, and
that these, together with θ-rounding, yield bounded-factor
approximations. We assume that there exists a familyW =
{W1,W2, . . . } of sets Wi ⊆ V such that the polytope P̂C
can be described as

P̂C =
{
x ∈ [0, 1]n

∣∣∣
∑

i∈W
xi ≥ bW for all W ∈ W

}
. (4)

Analogously, this means that Ĉ = {X | |X ∩ W | ≥
bW , for all W ∈ W}. In our analysis, we do not requireW
to be of polynomial size, but a linear optimization over P̂C
or a projection onto it should be possible at least within a
bounded approximation factor. This is the case for s-t paths
and cuts, covering problems, and spanning trees.

The following main result (proven in [26]) states approxima-
tion bounds and integrality gaps for the class of problems
described by Equation (4).

Theorem 1. The θ-rounding scheme for constraints C
whose relaxed polytope P̂C can be described by Equa-
tion (4) achieves a worst case approximation bound of
maxW∈W |W | − bW + 1.

We also show [26] that this factor matches the integrality
gap for the constraints considered in this paper.

A result similar to Theorem 1 was shown in [31] for a dif-
ferent, greedy algorithmic technique. While their result also
holds for a large class of constraints, for the constraints in
Equation (4) they obtain a factor of maxW∈W |W |, which
is worse than Theorem 1 if bW > 1. This is the case, for in-
stance, for matroid span constraints, cardinality constraints,
trees and multiset covers.

Pruning. The final piece of the puzzle is the pruning step,
where we reduce the set X̂θ ∈ Ĉ to a final solution Ŷθ ⊆ X̂θ

that is feasible: Ŷθ ∈ C. This is important when the true
constraints C are not up-monotone, as is the case for cuts
or paths. Since we have assumed that the function f is
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monotone, pruning can only reduce the objective value. The
pruning step means finding any subset of X̂θ that is in C,
which is often not hard. We propose the following heuris-
tic for this: if C admits (approximate) linear optimization,
as is the case for all the constraints considered here, then
we may improve over a given rounded subset by assigning
additive weights: w(i) = ∞ if i /∈ X̂θ, and otherwise use
either uniform (w(i) = 1) or non-uniform (w(i) = 1−x̂(i))
weights. We then solve Ŷθ ∈ argminY ∈C

∑
i∈Y w(i). Uni-

form weights lead to the solution with minimum cardinality,
and non-uniform weights will give a bias towards elements
with higher certainty in the continuous solution. Truncation
via optimization works well for paths, cuts, matchings or
matroid constraints. In the extended version [26], we dis-
cuss how to handle non-monotone submodular functions
and down-monotone constraints.

To demonstrate the utility of Theorem 1, we apply it to a
variety of problems. We state only the results, all proofs
are in [26]. Many of the constraints below are based on a
graph G = (V, E), and in that case the ground set is the set
E of graph edges. When the context is clear, we overload
notation and refer to n = |V| and m = |E|. Results are
summarized in Table 2.

3.2.1 MATROID CONSTRAINTS

An important class of constraints are matroid span or base
constraints, with cardinality constraints (uniform matroids)
and spanning trees (graphic or cycle matroids) as special
cases. A matroidM = (IM, rM) is defined by its down-
monotone family of independent sets IM or its rank func-
tion rM : 2V → R. A set Y is a spanning set if its
rank is that of V : rM (Y ) = rM (V ). It is a base if
|Y | = rM (Y ) = rM (V ). Hence, the family of all span-
ning sets is the up-monotone closure of the family of all
bases (e.g., supersets of spanning trees of a graph in the
case of a graphic matroid). See [44] for more details on
matroids. Let SM denote the spanning sets of matroid
M, and set k = rM(V ). It is then easy to see that with
C = SM, the polytope PC is the matroid span polytope,
which can be described as PC = {x ∈ [0, 1]n, x(S) ≥
rM(V )− rM(V \S),∀S ⊆ V } [44]. This is clearly in the
form of Eqn. 4. Although this polytope is described via an
exponential number of inequalities, it can be projected onto
efficiently via submodular minimization [15].

Corollary 1. Let Ŷθ be the rounded and pruned solution
obtained from minimizing the Lovász extension over the
span polytope. Then f(Ŷθ) ≤ (n − k + 1)f(X∗). The
integrality gap is also n− k + 1.

In general, the rounding step will only provide an X̂θ that
is a spanning set, but not a base. We can prune it to a
base by greedily finding a maximum weight base among
the elements of X̂θ. The worst-case approximation factor

2These results were shown in [17, 20, 47]

of n − k + 1 complements other known results for this
problem [25, 18]. The semi-gradient framework of [25]
guarantees a bound of k, while more complex (and less
practical) approximations [18] yield factors ofO(

√
n). The

factor k of [25] is the best for small k, while our continuous
relaxation works well when k is large.

Cardinality Constraints. This is a special class of a ma-
troid, called the uniform matroid. Since it suffices to analyze
monotone submodular functions, the constraint of interest
is C = {X : |X| = k}. In this case, the corresponding
polytope takes a very simple form: PC = {x ∈ [0, 1]n :∑
i xi = k}. Furthermore, the rounding step in this context

is very intuitive. It corresponds to choosing the elements
with the k largest entries in x̂.

Spanning Trees. Here, the ground set V = E is the edge
set in a graph and C is the set of all spanning trees. The
corresponding polytope PC is then the spanning tree poly-
tope. Our bound in this setting is m− n+ 1. The discrete
algorithms of [25, 17] achieve a complementary bound of
|V| = n. For dense graphs, the discrete algorithms admit
better worst case guarantees, while for sparse graphs (e.g.,
embeddable into r-regular graphs for small r), our guaran-
tees are better.

3.2.2 SET COVERS

A fundamental family of constraints are set covers. Given
a universe U , and a family of sets {Si}i∈V , the task is
to find a subset X ⊆ V that covers the universe, i.e.,⋃
i∈X Si = U , and has minimum cost as measured by

a submodular function f : 2S → R. The set cover
polytope is up-monotone, constitutes the set of frac-
tional covers, and is easily represented by Eqn. (4) as
PC = {x ∈ [0, 1]|V | | ∑i:u∈Si x(i) ≥ 1,∀u ∈ U}. The
following holds for minimum submodular set cover:

Corollary 2. The approximation factor of our algorithm,
and the integrality gap for the minimum submodular set
cover problem, is γ = maxu∈U |{i : u ∈ Si}|.

The approximation factor in Corollary 2 (without the
integrality gap) was first shown in [20]. The quantity γ cor-
responds to the maximum frequency of the elements in U .

A generalization of set cover is the multi-set cover prob-
lem [43], where every element u is to be covered multiple
(cu) times. The multi-cover constraints can be formalized
as PC = {x ∈ [0, 1]|S| |∑i:u∈Si x(i) ≥ cu,∀u ∈ U}.
Corollary 3. The approximation factor and integrality gap
of the multi-set cover problem is maxu∈U |{i : u ∈ Si}| −
cu + 1.

This result also implies the bound for set cover (with cu =
1). Since the rounding procedure above yields a solution
that is already a set cover (or a multi set cover), a subsequent
pruning step is not necessary.
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Matroid Constraints Set Covers Paths, Cuts and Matchings
Cardinality Trees Vertex Covers Edge Covers Cuts Paths Matchings

CR. n− k + 1 m− n+ 1 2 deg(G) ≤ n Pmax ≤ n Cmax ≤ m deg(G) ≤ n
SG k n |V C| ≤ n |EC| ≤ n Cmax ≤ m Pmax ≤ n |M | ≤ n
EA

√
n

√
m

√
n

√
m

√
m

√
m

√
m

Integrality Gaps Ω(n− k + 1) Ω(m− n+ 1) 2 Ω(n) Ω(n) Ω(m) Ω(n)

Hardness2 Ω(
√
n) Ω(n) 2− ε Ω(n) Ω(

√
m) Ω(n2/3) Ω(n)

Table 2: Comparison of the results of our framework (CR) with the semigradient framework of [25] (SG), the Ellipsoidal
Approximation (EA) algorithm of [18], hardness [17, 20, 47], and the integrality gaps of the corresponding constrained
submodular minimization problems. Note the complementarity between CR and SG.

Vertex Cover. A vertex cover is a special case of a set
cover, where U is the set of edges in a graph, V is the set
of vertices, and Sv is the set of all edges incident to v ∈
V . Corollary 2 implies a 2-approximation for submodular
vertex cover, which matches the integrality gap and the
lower bound in [17]. The 2-approximation for vertex cover
was also shown in [17, 20].

Edge Cover. In the Edge Cover problem, U is the set of
vertices in a graph, V is the set of edges and Sv contains the
two vertices comprising edge v. We aim to find a subset of
edges such that every vertex is covered by some edge in the
subset. It is not hard to see that the approximation factor we
obtain is the maximum degree of the graph deg(G), which
is upper bounded by |V|, but is often much smaller. The
algorithm in [25] has an approximation factor of the size
of the edge cover |EC|, which is also upper bounded by
O(|V|). These factors match the lower bound shown in [17].

3.2.3 CUTS, PATHS AND MATCHINGS

Even though Eqn. (4) is in the form of covering constraints,
it can help solve problems with apparently very different
types of constraints. The covering generalization works if
we relax C to its up-monotone closure: Ĉ demands that a
feasible set must contain (or “cover”) a set in C. To go from
Ĉ back to C, we prune in the end.

Cuts and Paths. Here, we aim to find an edge set X ⊆ E
that forms an s-t path (or an s-t cut), and that minimizes the
submodular function f . Both the s-t path and s-t cut poly-
topes are hard to characterize. However, their up-monotone
extension P̂C can be easily described. Furthermore, both
these polytopes are intimately related to each other as a
blocking pair of polyhedra (see [44]). The extended poly-
tope for s-t paths can be described as a cut-cover [44] (i.e.,
any path must hit every cut at least once): P̂C = {x ∈
[0, 1]|E| | ∑e∈C x(e) ≥ 1, for every s-t cut C ⊆ E}. The
closure of the s-t path constraint (or the cut-cover) is also
called s-t connectors [44]. Conversely, the extended s-t cut
polytope can be described as a path-cover [44, 27]: P̂C =
{x ∈ [0, 1]|E| |∑e∈P x(e) ≥ 1, for every s-t path P ⊆ E}.
Corollary 4. The relaxation algorithm yields an approxi-
mation factor of Pmax ≤ |V| and Cmax ≤ |E| for minimum
submodular s-t path and s-t cut respectively (Pmax and

Cmax refer to the maximum size simple s-t path and s-t
cut respectively). These match the integrality gaps for both
problems.

While the description of the constraints as covers reveals
approximation bounds, it does not lead to tractable
algorithms for minimizing the Lovász extension. However,
the extended cut and the extended path polytopes can be
described exactly by a linear number of inequalities [42, 44].
The pruning step for paths and covers becomes a shortest
path or minimum cut problem, respectively. As in the
other cases, the approximations obtained from relaxations
complement the bounds of Pmax for paths and Cmax for
cuts shown in [25].

Perfect Matchings. Given a graph G = (V, E), the goal
is to find a set of edges X ⊆ E , such that X is a perfect
matching in G and minimizes the submodular function f .
For a bipartite graph, the polytope P̂C can be characterized
as PC = {x ∈ [0, 1]|E| | ∑e∈δ(v) x(e) = 1 for all v ∈ V},
where δ(v) denotes the set of edges incident to v. Similar
to the case of Edge Cover, Theorem 1 implies an approx-
imation factor of deg(G) ≤ |V|, which matches the lower
bound shown in [17, 24].

4 SUBMODULAR MAXIMIZATION

To relax submodular maximization, we use the multilin-
ear extension. We first show that this extension can be
efficiently computed for a large subclass of submodular
functions (deferring detailed derivations to [26]). As above,
C denotes the family of feasible sets, and PC the polytope
corresponding to C. For maximization, it makes sense to
consider C to be down-monotone (particularly when the
function is monotone ). Such a down-monotone C could
represent for example, matroid independence constraints, or
upper bounds on the cardinality C = {X : |X| ≤ k}. Anal-
ogous to the case of minimization [26], an approximation
algorithm for down-monotone constraints can be extended
to up-monotone constraints, by using f ′(X) = f(V \X).

The relaxation algorithms use the multilinear extension
(Eqn. (2)) which in general requires repeated sampling and
can be very expensive to compute. In the below, we show
how this can be computed efficiently and exactly for many
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practical and useful submodular functions.

Weighted Matroid Rank functions. A common class
of submodular functions are sums of weighted matroid
rank functions, defined as: f(X) =

∑
i max{wi(A)|A ⊆

X,A ∈ Ii}, for linear weights wi(j). These functions
form a rich class of coverage functions for summarization
tasks [34]. The multilinear extension can be efficiently com-
puted for a number of specific instances of this function.
One such special case is the facility location objective [34]:
f(X) =

∑
i∈V maxj∈X sij , for pairwise similarities sij .

The facility location function admits a nice representation
of the multilinear extension (the full derivation is in [26]):
f̃(x) =

∑
i∈V

∑n
l=1 sijlixijli

∏l
m=1(1 − xijli), where for

each i ∈ V , the indices j1
i , j

2
i , · · · , jni denote in sorted or-

der the elements closest to i (in terms of similarity sij).
We can similarly obtain closed form expressions with other
forms of matroids, including uniform matroids or partition
matroids. Due to limited space, detailed derivations are all
given in [26].

Set Cover function: This is another important function,
capturing notions of coverage [34]. Given a set of sets
{S1, · · · , Sn} and the universe U = ∪iSi, define f(X) =
w(∪i∈XSi), where wj denotes the weight of item j ∈ U .
This setup can alternatively be expressed via a neighborhood
function Γ : 2V → 2U such that Γ(X) = ∪i∈XSi. Then
f(X) = w(Γ(X)). Let Γ−1(j) = {i ∈ V : j ∈ Γ(i)}.
Then the multilinear extension has a simple form: f̃(x) =∑

j∈U wj [1−
∏
i∈Γ−1(j)(1−xi)]. Again, for full derivations

see [26].

Probabilistic Coverage Functions. This is a generaliza-
tion of the set cover function above, and has been used in a
number of models for summarization problems [11]. This
provides a probabilistic notion to the set cover function, and
can be defined as f(X) =

∑
i∈U wi[1 −

∏
j∈X(1 − pij)].

We get back the set cover function, when pij is a bi-
nary vector (either i covers j or not). This function also
has an efficiently computable multilinear extension [26]:
f̃(x) =

∑
i∈U wi[1−

∏
j∈V (1− pijxj)].

Graph Cut related functions Graph cuts are a widely
used class of functions. Their multilinear extension also
a admits closed form representation. The function and
its multilinear extension can be written as: f(X) =∑
i∈X,j /∈X sij , f̃(x) =

∑
i,j∈V sijxi(1 − xj). A re-

lated function is a similarity penalizing function: f(X) =
−∑i,j∈X sij . This function has been used for encourag-
ing diversity [35, 34]. Its multilinear extension is f̃(x) =
−∑i,j∈V sijxixj . The detailed derivations of both these
expressions are in [26].

Sparse Pseudo-Boolean functions. For graphical mod-
els, in particular in computer vision, set functions are often

3This extends to top-k facility location as well.
4This is for soft-max extension [16].

written as polynomials [19]. Any set function can be writ-
ten as a polynomial, pf (x) =

∑
T⊆V αT

∏
i∈T xi, where

x ∈ {0, 1}n is the characteristic vector of a set. In other
words, f(S) =

∑
T⊆S αT . Submodular functions are a

subclass of these polynomials. This representation directly
gives the multilinear extension as the same polynomial,
f̃(x) =

∑
T⊆V αT

∏
i∈T xi, and is efficiently computable

if the polynomial is sparse, i.e., has few nonzero coefficients
αT [26]. This is the case for graph cut like functions above
and for the functions considered in [46, 19]. We have been
unable to find the above result elsewhere in the literature, so
we formalize it as follows:

Proposition 1. The polynomial representation is the multi-
linear extension: f̃(x) = pf (x)

Spectral functions. Diversity can also be encouraged via
spectral regularizers [8]. Given a positive definite matrix
S ∈ Rn×n, define SX to be the |X| × |X| sub-matrix of
the rows and columns indexed by X . Any scalar function
ψ whose derivative is operator-antitone defines a submod-
ular function, f(X) =

∑|X|
i=1 ψ(λi(SX)), by applying it

to the eigenvalues of SX [14]. The resulting class of sub-
modular functions includes the log determinants occurring
in DPP inference [16], and, more generally, a smoothed
log-determinant function f(X) = log det(SX + δIX) =∑|X|
i=1 log(λi(SX) + δ). It is monotone for δ ≥ 1, and has

an efficiently computable soft-max extension that is similar
to the multilinear extension [16]. A related function that en-
courages diversity is f(X) = −∑|X|i=1(λi(SX)−1)2 [8]. It
has a surprisingly simple multilinear extension: f̃(x) =
−∑i,j∈V s

2
ijxixj +

∑
i∈V (2sii + 1). For the detailed

derivation of this, see [26].

Given expressions for the functions above, we can also
handle weighted combinations f(X) =

∑
i λifi(X), since

its multilinear extension is f̃(x) =
∑
i λif̃i(x). In the

following sections, we briefly describe relaxation algorithms
and rounding schemes for maximization.

4.1 MONOTONE MAXIMIZATION

We first investigate monotone submodular maximization
subject to matroid independence constraints I. The tech-
nique for maximizing the multilinear extension is the con-
tinuous greedy algorithm [50], which is a slight modifi-
cation of the Frank-Wolfe algorithm [13], with a fixed
step size. In each iteration, the algorithm takes a step
xt+1 = xt + δht (with step size δ = 1/n2) in the di-
rection ht = argmaxh′∈PC 〈h′,∇af̃(xt)〉 best aligned with
the alternate gradient. This continuous greedy procedure ter-
minates in O(n2) iterations, after which we are guaranteed
to obtain a point x such that f̃(x) ≥ (1−1/e)f̃(x∗) [5, 49].
Moreover, using the pipage rounding technique (in particu-
lar, the deterministic variant [50]) ensures that we can round
the continuous solution to a set in O(n2) function calls.
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Fac. Location 3 Set Cover Graph Cuts Diversity I/ II Concave over card. log-Det 4

Multilinear Closed form O(n3) O(n2) O(n2) O(n2) O(n2) O(n3)
Multilinear Sampling O(n7 logn) O(n6) O(n7) O(n7) O(n6) O(n8)
Gradient Closed form O(n3) O(n2) O(n2) O(n2) O(n2) O(n3)

Gradient Sampling O(n7 logn) O(n7) O(n8) O(n8) O(n7) O(n9)

Table 3: Complexity of evaluating the multilinear extensions and their gradients for both the optimized closed forms given
in this paper and for sampling at high accuracy.

Unfortunately, naı̈ve computation of the multilinear exten-
sion or its gradient takes exponential time. To compute these
in polynomial time, we can apply sampling techniques. To
obtain an accuracy better than 1/n2, we need O(n5) sam-
ples for the multilinear extension or for each coordinate of
its gradient [50, 49]. This implies a complexity of O(n6)
function evaluations for the gradient and O(n5) function
evaluations for the extension itself, thus implying the algo-
rithm’s complexity as O(n8T∇f ), where T∇f is the time of
evaluating the gain of f . For facility location, this means
a running time of O(n9 log n), and for set cover functions
O(n9).

But these high complexities are for using a sampling ap-
proximation of the generic expression for the multilinear ex-
tension (Eqn. (2)). The specialized expressions in Section 4
lead to algorithms that run several orders of magnitude faster.
With O(n2) iterations, the time becomes O(n2T∇f̃ ), where
∇f̃ is the time to compute the gradient of f̃ . Table 3 com-
pares the function evaluation times for some useful submod-
ular functions. Moreover, we can also use mixtures of these
submodular functions, each with efficiently computable mul-
tilinear extensions, and compute the resulting multilinear
extension also efficiently. While this is still slower than
the accelerated greedy [38], it gains power for more com-
plex constraints, such as matroid independence constraints,
where the discrete greedy algorithm only achieves an ap-
proximation factor of 1/2, whereas the continuous greedy
obtains at least a 1− 1/e factor. Similarly, the continuous
greedy algorithm achieves a 1− 1/e approximation guaran-
tee for multiple knapsack constraints [33], while the discrete
greedy techniques do not have such guarantees. Hence, the
formulations above make it possible to use the optimal the-
oretical results with a more manageable running time.

4.2 NON-MONOTONE MAXIMIZATION

In the non-monotone setting, we must find a local optimum
of the multilinear extension. We could use, for example,
a Frank-Wolfe style algorithm [13] and run it until it con-
verges to a local optimum. It is easy to see that at con-
vergence x satisfies 〈∇f̃(x), y − x〉 ≤ 0,∀y ∈ PC and is
a local optimum. Practically, this would mean checking
if argmaxy∈PC 〈y,∇f̃(x)〉 = x. For simple or no con-
straints, we could also use a method like L-BFGS. Running
this procedure twice, we are guaranteed to obtain a 0.25
approximate solution [6]. This procedure works for any

down-monotone constraint C. Moreover, this procedure
with a slightly different extension has been successfully ap-
plied in practice to MAP inference with determinantal point
processes [16].

A generic rounding strategy for submodular maximization
problems was given by [6], and works for a large class of
constraints (including matroid, knapsack constraints, and
a combination thereof). Without constraints, this amounts
to sampling a set by a distribution based on the continuous
solution x— it will satisfy EX∼xf(X) = f̃(x). In practice,
however, this may not work well. Since the multilinear
extension is linear in any coordinate (holding the other ones
fixed), a simpler co-ordinate ascent scheme of choosing the
better amongst 0 or 1 for any fractional co-ordinate will
guarantee a deterministic procedure of obtaining an integral
solution no worse than the continuous one.

The above algorithms and rounding techniques offer a gen-
eral and optimal framework, even for many complex con-
straints. Moreover, many of the best algorithms for non-
monotone submodular maximization are based on the mul-
tilinear extension. For example, the best known algorithm
for cardinality constrained non-monotone submodular max-
imization [4] uses a continuous double greedy algorithm on
the multilinear extension. However, the practical utility of
those algorithms is heavily impaired by computational com-
plexity. In fact, non-monotone functions even requireO(n7)
samples [6]. For DPPs, [16] used an extension that is practi-
cal and close to the multilinear extension. Since they do not
use the multilinear extension, the above rounding schemes
do not imply the same approximation bounds as for the
multilinear extension, leaving the worst-case approximation
quality unknown. The expressions we show above use the
multilinear extension and maintain its benefits, demonstrat-
ing that for many functions of practical interest, sampling,
and hence extremely high complexity, is not necessary. This
observation is a step from theory into practice, and allows
for the improved approximations to occur in practice.

4.3 INTEGRALITY GAPS

Surprisingly, the multilinear extension has an integrality gap
of 1 for a number of constraints including the matroid and
cardinality constraints, since it is easy to round it exactly
(using say, the pipage rounding or contention resolution
schemes [5, 6]).
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5 DIFFERENCE OF SUBMODULAR (DS)
FUNCTIONS

Finally, we investigate minimizing the differences between
submodular functions. Given submodular functions f
and g, we consider the following minimization problem:
minX∈C

(
f(X) − g(X)

)
. In fact, any set function can

be represented as a difference between two non-negative
monotone submodular functions [40, 21]. In the uncon-
strained setting, C = 2V . A natural continuous relaxation
(not necessarily convex) is h̃(x) = f̆(x) − ğ(x). The
continuous relaxation problem is a DC programming
problem, and can be addressed (often very efficiently) using
the convex-concave procedure [51]. Moreover, thanks to
the special structure of the Lovász extension, there exists
a simple rounding scheme for the unconstrained version.

Lemma 3. Given submodular functions f and g, and a
continuous vector x, there exists a θ ∈ (0, 1) such that
f(Xθ) − g(Xθ) ≥ f̆(x) − ğ(x), where Xθ = {x ≥ θ}.
Moreover, the integrality gap of h̃(x) (in the unconstrained
setting) is equal to 1.

6 DISCUSSION

We have provided a unifying view to continuous relaxation
methods for submodular optimization. For minimization
problems with various constraints, we provide a generic
rounding strategy with new approximation bounds and
matching integrality gaps. For maximization, we provide
efficiently computable expressions for many practically
interesting submodular functions. This is a useful step
towards transferring optimal theoretical results to real-world
applications. An interesting question remains whether
there exist improved sampling schemes for cases where
the multilinear extension is too complex. Also recently,
[22] investigated forms of submodular minimization and
maximization, with submodular constraints. The proposed
algorithms there were all discrete, and it will be interesting
if our framework could extend to their setting as well.
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Abstract

Given a set of n elements and a corresponding
stream of its subsets, we consider the problem
of selecting k elements that should appear in
at least d such subsets arriving in the “near”
future with high probability. For this min-d-
occur problem, we present an algorithm that
provides a solution with the success proba-

bility of at least 1 − O
(
kd logn
D + 1

n

)
, where

D is a known constant. Our empirical obser-
vations on two streaming data sets show that
this algorithm achieves high precision and re-
call values. We further present a sliding win-
dow adaptation of the proposed algorithm to
provide a continuous selection of these ele-
ments. In contrast to the existing work on
predicting trends based on potential increase
in popularity, our work focuses on a setting
with provable guarantees.

1 Introduction

Consider a set Sn of n elements. When different
sets St ⊆ Sn are being observed at time t and may
not be analyzed at a later time, we refer to these
sets as streaming sets. This formulation of stream-
ing sets is ubiquitous at least in the analysis of net-
work traffic (Edwards et al., 1997), query logs (Gol-
bandi et al., 2013), and social media (Mathioudakis
and Koudas, 2010), where these sets arrive rapidly.
Analyzing these streaming sets to identify historical
patterns and predict future trends has been exten-
sively studied for diverse applications including de-
tection of intrusions (Lee et al., 2000), disease out-
break (Achrekar et al., 2011), and viral content (Weng
et al., 2013). These works primarily focus on the recall

∗Work done during an internship at Yahoo Labs Ban-
galore.

and the earliness of these predictions. As a result, they
are useful for detecting outliers and arranging for pre-
ventive measures (Lamb et al., 2013). However, with-
out any lower bound on the obtained precision values,
these approaches are ineffective when the false posi-
tives may have significant cost associated with them.

Precise predictions are necessary for several planning
applications such as resource allocation. For instance,
accurate estimates of future traffic may help optimize
routing to reduce network latency (Padmanabhan and
Mogul, 1996). Similarly, accurate estimates of search
query volume may help advertisers optimize marketing
budget while bidding for key phrases on a search en-
gine (Jansen and Mullen, 2008). To this end, we study
the problem of making these predictions only when we
can guarantee a minimum probability of success before
the time horizon ∆. We define this problem formally
as follows.

Definition 1. Min-d-occur. Given a stream of sets
St ⊆ Sn arriving at time t, min-d-occur(Sn,∆,k) se-
lects at most k elements {y1, y2, . . . , yk} ∈ Sn at time
τ such that each of these yj appears at least d number
of times in {Sτ+1, · · · , S∆} with probability close to 1.

Note that a solution to this problem may select fewer
than k elements when the criterion for the probabilistic
guarantee is not met. The constant ∆ depends on the
requirements of the application domain, which can be
understood through an illustrative example as follows.
Consider a stream of queries issued to a search engine
that may be arriving at a rate of one million queries
per second. Choosing ∆ close to 100K would corre-
spond to making the predictions about occurrences in
the next 100 milliseconds. The choice of the parameter
d depends on the characteristics of the stream of sets
and determines the effectiveness of the solution. For
the stream of queries, let us assume that we wish to
track a set of 50 popular queries (i.e., n = 50), which
cover approximately 1% of the incoming stream. In
other words, 99% of the stream would be composed of
empty sets, making the solution likely to be effective

370



only when d ≤ 1% of ∆. Since these domain-specific
stream characteristics are external to our problem for-
mulation, we ignore the empty sets hereafter.

In the absence of any other assumptions about the
stream characteristics, the min-d-occur problem is ill-
posed. In fact, if there is a sudden drop in the fre-
quency of the queries from the set Sn in the query
stream (in the above example), there may not exist
a solution set for an algorithm to predict. Using an
appropriate selection of the set Sn and an assumption
about the continuity of the stream statistics in the
given time horizon ∆, it might be fair to assume that
at least k queries will appear at least D = 100 times
in the next 100 milliseconds. Under this additional
assumption, the above min-d-occur problem becomes
more useful for d ≤ D. Using this constant integer D,
we define a constrained variant as follows.

Definition 2. Constrained-min-d-occur. Given
that there exist at least k elements in Sn that appear
D number of times in {S1, · · · , S∆}, constrained-min-
d-occur(Sn,D,∆,k) solves min-d-occur(Sn,∆,k).

Below we present a randomized algorithm for the
constrained-min-d-occur problem. We show that the
probability of a successful prediction from this algo-
rithm is high when d < D

3 logn and k = o(n/ log n).
This theoretical result is further validated using ex-
periments on two streaming data sets: search query
logs and hash-tags in tweets. In both of these data
sets, this algorithm achieved high precision and recall
values for predictions. Interestingly, this algorithm is
empirically effective for larger values of d even when a
corresponding lower-bound is not computed. We also
present a sliding-window based adaptation of our al-
gorithm to accommodate a practical setting where the
predictions need to be updated only at regular inter-
vals of time.

Contributions. There are two main theoretical con-
tributions in this paper. First, we present a novel
problem formulation – constrained min-d-occur – for
making guaranteed predictions of future occurrences
in streaming data. Second, we present a randomized
algorithm for making predictions under this formula-
tion and derive an effective lower-bound on its perfor-
mance. These theoretical contributions are supported
by empirical observations on two real, streaming data
sets i.e., Twitter hash-tags and query logs of a search
engine.

2 Related Work

Our problem formulation is related to online coverage
problems. In the online set cover problem, Alon et al.
(2009) assume that a collection of sets is known be-

forehand but they arrive in an online fashion. An algo-
rithm then selects k sets from this collection that solves
the max-cover problem for the sets that are already ob-
served. Whereas our setup requires predictions to be
made for the sets arriving in future. Another related
coverage problem is set-streaming maximum coverage
proposed by Saha and Getoor (2009). They assume an
orthogonal set up where the collection of sets remain
static but their elements are streaming. Their algo-
rithm is not applicable in our setting because we need
to choose the elements that are present in maximum
number of sets, and not the sets that cover maximum
number of elements. Another similar problem formula-
tion has appeared in the operating systems literature.
Awerbuch et al. (1996) studied the problem of allocat-
ing jobs to workstations to ensure a timely, successful
completion of the given jobs. They presented an al-
gorithm that performs a sequential prediction of these
allocations and allows at most one job to be running
at any time. That is, the second job is allocated only
after the completion (not allocation) of the first job.
It is non-trivial to adapt their algorithm to perform k
simultaneous allocations, although we have borrowed
useful concepts from their lower-bound analysis in the
development of our solution.

There exists significant literature on statistical trend
prediction in streaming data, most notably for the
Twitter data. There has also been some work on track-
ing topics and events in these streams (Ardon et al.,
2013) through an appropriate adaptation of statistical
topic models (AlSumait et al., 2008), and for detecting
bursts or spikes in topics (Diao et al., 2012). Goorha
and Ungar (2010) study the spiking behavior of ele-
ments in an input set of elements. Their algorithm can
only handle a small set of elements, thereby limiting
its utility in a general practical setting. Cataldi et al.
(2010) modeled the streaming elements as a graph,
and employed page-rank algorithm along with an aging
theory to predict the spiking elements. Mathioudakis
and Koudas (2010) analyzed the sudden change in fre-
quency patterns of these elements in conjunction with
a reputation model for the origin of the streaming ele-
ments to make these predictions. Becker et al. (2011)
discussed an online setting to identify events and the
related tweets, but they did not make predictions for
future. Similarly, there has also some work on analyz-
ing trends in user comments (Jain and Galbrun, 2013)

Most of these algorithms are optimized for a specific
application, and require significant modification to be
applicable to a different setting. These algorithms are
evaluated empirically using measures such as the per-
plexity, recall, and earliness of the predictions. Since
these approaches do not formally specificy the (im-
plicit) assumptions made about the stream character-
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Sn set of elements {e1, . . . , en}
n number of possible elements in the global set
k number of elements to choose
xte Score of the element e at time t
yt Solution set constructed at time t
N window size
wte window data structure for element e at time t

Table 1: Notation used in this paper
.

istics, it if challenging to assess their utility across dif-
ferent related settings, e.g., our current formulation.
Also, lower-bound analyses for the prediction accuracy
even for the original problem settings do not exist. In
this work, we address both of these issues. We for-
mally stated the assumptions of our prediction setting
in the previous section. In the next section, we present
a randomized algorithm to obtain a solution for this
setting. A lower-bound analysis of the performance of
this algorithm is described in the subsequent section.

3 Algorithm

Here we present a randomized algorithm that provides
the constrained-min-d-occur (as defined above). In
other words, this algorithm selects k elements (from
Sn) that are likely to appear at least d number of
times in the given future ∆ occurrences. As we
show below, the probability of a successful prediction
from this algorithm is high when: D > 3d log n and
k = o(n/ log n). Later, in Section 6, we demonstrate
that these assumptions hold in several practical set-
tings for streaming data.

Algorithm 1 describes the different steps of our ap-
proach. We maintain a score xte for each element
e ∈ Sn at every time time t. At time t, a new set
St is presented to the algorithm. For each element e
present in the St that has already not been selected, we

toss a coin with probability of getting heads = n
3xti
D

−2

d .
If a head is observed, we add e to the selection set y.
We update the score xte and continue till k elements
have been selected. The set y represents the selected
k elements.

4 Analysis

Here we prove that each of the k elements
{y1, y2, . . . , yk} selected by our algorithm has a high
probability of occurring at least d times in future (gov-
erned by the horizon ∆). We show this probability to
be greater than 1−O(kd logn

D ).

We approach this proof by constructing a subspace

Algorithm 1 k Min-d-occur Prediction

Require: set of elements Sn, integer k, stream
{S1, · · · , S∆}

1: n← |Sn|.
2: ∀e ∈ Sn, x0

e ← 0.

3: y ← {φ}.
4: j = 1
5: for t = 1 to ∆ do
6: βt ← St \ y
7: for e ∈ βt do
8: xte ← xt−1

e + 1.

9: choose u ∼ Bernoulli
(
n(3xte−2D)/D

d

)
.

10: if u = 1 then
11: yj ← e.
12: j ← j + 1.
13: if j>k then
14: return y.
15: end if
16: end if
17: end for
18: end for

Su of probabilistic outcomes of coin-toss experiments
(as illustrated in Figure 1). In this subspace, 0 denotes
the absence of an element in the set arriving at a given
time. Whereas the presence of a particular element is
denoted by the probabilistic outcome, i.e., the toss of
the coin as H (head) or T (tail). In other words, there
will be one coin toss for each pair (t, i) if and only if
ei ∈ St \ yt. The element ei∗ is selected as the jth

prediction at time t∗ if and only if:

• (t∗, i∗) toss is H,

• for t < t∗ and ei /∈ yt, (t, i) toss is T ,

• for t = t∗ and i < i∗, (t, i) toss is T .

Let So ⊆ Su be the subspace where each of the k
selected elements occur in d sets after choosing them.
We refer to this subspace as the solution space. In
this subspace, one H appears in each of the k different
values of i (in different columns) and there are at least
d such sets. Each element would appear in at least d
sets after their respective coin tosses are heads.

To show that Pr[So] is close to 1, we first choose an in-
termediate subspace Si ⊆ S for which the correspond-
ing probability, i.e., Pr[Si], is close to 1. This interme-
diate subspace is selected such that we can construct
a useful injection from Si to So. To this end, we define
Si to consist of sample points for which there are at
least k heads for different elements and for which the
first d flips for each element are tails.
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(a) Universal space Su (b) Intermediate space Si (c) Solution space So

Figure 1: Illustration of the probabilistic subspace for n = 7. Each row represents a set α, where the absence
of an element is denoted by 0; the outcome of the coin-toss for each of the other elements is shown as a tuple
(1, H) or (1, T ).

From the columns of Su, only those elements are kept
for which the first d tosses are tails to form the sub-
space Si. The mapping from Si to So has also been
shown where the (xte − d)th and xte outcomes of coin
toss are flipped depending upon the factors explained
later. We start by proving a basic result about the
universal space Su.

Lemma 1. The probability of getting tails for all coin
tosses in Su ≤ e−n/2.

Proof. The probability of getting tails for all elements
is the product of probability of getting tails for each
element. The latter probability is less than the proba-
bility of getting tails for an element that is present in
at least D sets. This upper bound probability is the
same as the probability that there are no heads among
the last d flips for the element that is available for D
steps, which is at most

(
1− n

3(D−d)
D −2

d

)d
≤
(

1− n

2d

)d
≤ e−n/2 (1)

because D ≥ 3d log n.

The probabilistic subspace Si consists of observation
sets such that there are at least k heads for different
elements and for which the first d flips for each ele-
ment are tails. Now we lower bound the probability
associated with this subspace.

Lemma 2. Pr[Si] ≥ 1- O(1/n).

Proof. We found the probability of the complement of
Si, denoted by S̄i, to be easier to compute than for the
subspace Si. This probability is decomposed as a sum
of two terms P1 and P2 defined below. The term P1

denotes the probability of getting a head among the
first (at most) d × n flips for each xti ≤ d. Since the

probability of observing an H is at most n
3d
D

−2

d ,

P1 ≤ dn
(
n

3d
D −2

d

)
≤ 2/n. (2)

Let P2 denote the probability of observing at most k−1
heads, i.e.,

P2 =
k−1∑

i=0

Pri[H], (3)

where Pri[H] is the probability of observing a total
i occurrences of H. Assuming i.i.d. observations for
coin-tosses, we have

P2 =
k−1∑

i=0

(
n

i

)
Pr1[H]iPr1[T ]n−1 (4)

≤
k−1∑

i=0

(
n

i

)
Pr1[T ]n−i, (5)

since Pr1[H] ≤ 1. Keeping only those elements for
which we get tails and they appear in at least D sets,
we have

P2 ≤
k−1∑

i=0

(
n

i

)
Pr1[T ]k−i (6)

≤ k ×max

((
n

i

)
× (e−n/2)k−i

)
. (7)

For k < n/2,
(
n
i

)
×(e−n/2)k−i is an increasing function

with respect to i; the maximum value is obtained for
i = k − 1. Therefore

P2 ≤ k

(
n

k − 1

)
×
(
e−n/2

)k−(k−1)

(8)

= k

((
n

k − 1

)
× e−n/2

)
. (9)

Also, since
(
n
k

)
≤ nk,

P2 ≤ k × nk−1e−n/2 ≤ 1/n, (10)
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if k ≤
(

n
2 logn − 1

)
. Finally, combining Equation 2

and 10

Pr[Si] = 1− (P1 + P2) (11)

= 1− (O(2/n) +O(1/n)) (12)

= 1−O(1/n). (13)

For each of the members of the above intermediate
subspace, we construct a member of the solution space.
We ensure that the probabilities of occurrences of both
of these instances are similar. The next lemma pro-
vides the similarity in the probabilities of these two
subspaces.

Lemma 3. Pr[So] ≥ (1−O(kd logn
D ))Pr[Si].

Proof. We construct an injection f : Si → So such
that ∀s′ ∈ Si,

Pr[f(s′)] ≥
(

1−O
(
kd log n

D

))
Pr[s′]. (14)

Consider an instance s′ ∈ Si. Let {ei1 , ei2 , . . . , eik} be
the elements for which the flips are the first heads in
s′. Let xij denote the number of sets in which eij has
been present and includes the set where the jth heads
occurred for j ∈ {1, 2, . . . , k}. By definition of Si, xij
> d. Let us define

z′ij = n
3xij
D −2/d (15)

and

zij =
n

3(xij
−d)

D −2

d
= n

−3d
D z′ij (16)

=

(
1−O

(
d log n

D

))
z′ij . (17)

Let p refers to the sets considered in a sample space.
Using these notation, we define the injection f(s′) as
follows. If z′ij ≥ 1/2 then all of the (p, ij) pairs of f(s′)
are made identical to the respective (p, ij) of s′. Next,
the (xij−d)th flip of eij is changed from tails to heads.

If z′ij ≤ 1/2 then all of the (p, ij) pairs of f(s′) are

similar to (p, ij) of s′ except that the (xij − d)th flip
of eij is changed from tails to heads and xthij flip of eij
is changed from heads to tails.

The above process generates f(s′) ∈ So. Without loss
of generality, let us assume that for j ∈ {1, 2, . . . , r}
the value of z′ij ≥ 1/2. For j ∈ {r+ 1, r+ 2, . . . , k}, let

us assume z′ij ≤ 1/2 where r is an integer 1 ≤ r ≤ k.

Using this notation, the ratios of probabilities in the
two subspaces is given by:

Pr[f(s′)]
Pr[s′]

=

r∏

ij=1

zij
1− zij

·
k∏

ij=r+1

zij
1− zij

1− z′ij
z′ij

(18)

For z′ij ≥ 1/2, using Equation 17, we get

zij
1− zij

=

(
1−O

(
d logn
D

))
z′ij

1−
(

1−O
(
d logn
D

))
z′ij

(19)

≥
1/2−O

(
d logn
D

)

1/2 +O
(
d logn
D

) (20)

= 1−O
(
d log n

D

)
. (21)

For z′ij ≤ 1/2, using Equation 17, we get

(
zij

1− zij

)(
1− z′ij
z′ij

)
(22)

≥
(

1−O
(
d log n

D

))
1− z′ij

1− z′ij +O
(
d logn
D z′ij

)

≥ 1−O
(
d log n

D

)
. (23)

Using Equation 21 and Equation 23, the Equation 18
reduces to the following.

Pr[f(s′)]
Pr[s′]

≥
k∏

ij=1

(
1−O

(
d log n

D

))
(24)

≥ 1−O
(
kd log n

D

)
. (25)

Theorem 3. Pr[So] ≥ 1−O
(
kd logn
D + 1

n

)
.

Proof. Using Lemma 2 and Lemma 3.

Corollary 4. For k = 1, we obtain a 2/3 approxima-
tion, i.e., Pr[So] ≥ 2/3 since D > 3d log n.

5 Sliding Window Approach

In a practical setting, the predictions about future
occurrences are made continuously as the streaming
sets continue to arrive. Alternatively, the predictions
are updated at regular intervals of time using the
sets arriving within a sliding time window of size W .
The algorithm described above would require a re-
computation of the frequency counts of the elements
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as the window is updated. To reduce the computa-
tional cost of this update, we employ a data structure
proposed by Datar et al. (2002) that maintains count
statistics for a stream using buckets of different sizes.
Using the binary representation for the presence of an
element in a streaming set, we use this data structure
to calculate the approximate number of 1’s in a given
window. For each of these buckets, the time-stamp of
the most recent 1 and the total count of 1’s appear-
ing in that bucket are maintained. As a new binary
element arrives the following steps are taken.

• The time stamp of each bucket is increased by
one.

• If the time stamp of a bucket exceeds the window
size, the bucket is dropped.

• If the arriving element is 0, we proceed to the next
element.

• If the arriving element is 1, then we create a new
bucket with size 1 (this operation is referred to as
add bucket operation).

• if there exists m/2 + 2 buckets of same size, the
oldest two buckets are merged. Here m is a pre-
defined integer that is inversely proportional to
the maximum permissible relative error ε, i.e.,
m = d1/εe.

In this data structure, the total number of elements
in each bucket is equal to the number of 1’s in the
window (referred to as window score). Datar et al.
(2002) show that this data structure gives an estimate
of the number of 1’s in the window of size W with
a relative error of at most ε using at most

(
m
2 + 1

)
(
log
(

2W
m + 1

)
+ 1
)

buckets. log W + log logW bits
are used per bucket and each new element is processed
in O(log W ) worst case time. At each instant, this data
structure provides a count estimate in O(1) time.

Algorithm 2 use add bucket and window score to
present the sliding window adaptation of Algorithm
1. In our problem formulation, sets {S1, S2, . . . , SW }
arrive in the window W . Let there be x elements in
the union of these sets, then the input stream for the
above data structure would be a permutation of x 1’s
and (n − x) 0’s. For this stream, we create n buckets
at the beginning of the stream and update them as
above when a new element arrives.

6 Experiments

The above analysis ensures a high probability of suc-
cessful predictions from our algorithm. To understand

Algorithm 2 k Min-d-occur Prediction over a sliding
window
Require: Sn, integer k, window size W .
1: ∀e ∈ Sn, x0

e ← 0.

2: j = 1
3: for t = 1 to ∆ do
4: βt ← St \ y
5: for e ∈ βt do
6: wte ← add bucket(wt−1

e )
7: xte ← window score(xt−1

e , wte).

8: choose u ∼ Bernoulli
(
n(3xte−2D)/D

d

)
.

9: if u = 1 then
10: yj ← e.
11: j ← j + 1.
12: if j > k then
13: return y.
14: end if
15: end if
16: end for
17: end for

its effectiveness in practical settings, we performed ex-
periments on two real-world collections of streaming
data: query logs from a commercial search engine and
hash-tags appearing in tweets.

A näıve approach based on selecting the most frequent
elements could be considered as a baseline approach.
However, such comparisons would be unfair to the
baseline approaches because they would not be directly
optimizing the criterion our problem setup mandates.
More importantly, such comparisons would risk the
clarity in the distinction of the proposed problem for-
mulation and the traditional setup for statistical trend
prediction. That said, the results for a naive approach
were indeed empirically inferior to ours.

6.1 Search queries

We considered a data set comprising of one month
of anonymized search logs that is made public under
the Yahoo Webscope program1. We only consider the
anonymized query identifiers in our experiments, ig-
noring other information – i.e., document identifiers,
relevance judgments, etc. – present in this data set.
We randomly sample 100K queries and use their re-
spective timestamp to simulate the arrival of these
queries as a stream. Each of these queries corresponds
to a singleton, streaming set in our formulation. Fig-
ure 3 shows the frequency distribution of the result-
ing 603 unique queries in this data set. We select all
of these unique queries to construct the set Sn (i.e.,

1The L18 data set available from
http://webscope.sandbox.yahoo.com
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(d) Recall

Figure 2: Results on search queries. Each of the four plots show different evaluation metrics for different values
of k and d and D = 200. These metrics are averaged over 200 iterations of our algorithm on random sub-streams
of the original data stream. (Best seen in color).

n = 603). There are 140 queries that appear at least
200 times in the entire stream, therefore the assump-
tion required for the constrained-min-d-occur problem
clearly holds for D = 200 and k ≤ 10. We ran our algo-
rithm for different values of d and report our observa-
tions in Figure 2. Even though we do not have a valid
lower-bound on the prediction accuracy for d > D, we
examine if the algorithm is still able to make predict
queries with larger number of future occurrences.
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Figure 3: Frequency distribution of search queries.

The precision and recall metrics shown in these plots
are computed by comparing the set of predicted
queries against the queries that actually occur d times
in the stream remaining after the prediction is made.
For d = 150, the predicted queries were 100% accu-

rate for k ≤ 10. On average, the algorithm was able to
make predictions for k = 10 after observing about 7500
queries. In the remaining stream, about 60 unique
queries appeared more that 150 times. Therefore, the
recall of our algorithm is around 0.16.

As we increase d, the probability of observing heads
in a coin-toss decreases (see Section 4), making the
algorithm take longer to make the predictions. Outside
the provably correct range d < D

3 logn , the precision
is also observed to be adversely affected in a similar
manner. For larger values of k, the algorithm takes
more time to make predictions, and the performance
degrades outside the provably correct range. In the
provably correct range, the recall values for k = 2 is
nearly twice the value for k = 1, because the number
of predictions made are twice in the former case and
all of the predictions are accurate; the minor deviation
is attributed to the difference in the stopping point in
the two experiments.

6.2 Twitter hash tags

We used the Twitter’s public REST API2 to obtain
150K tweets from the month of November 2013. We

2https://dev.twitter.com/docs/api/1.1
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prediction
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Figure 5: Results on Twitter hash-tags. Each of the four plots show different evaluation metrics for different
values of k and d and D = 200. These metrics are averaged over 200 iterations of our algorithm on random
sub-streams of the original data stream. (Best seen in color).
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(b) D=400

Figure 6: Comparison of precision curves for different choices of D on Twitter hash-tags.

consider all of the hash-tags appearing in each of these
tweets to compose the respective streaming set. We
selected the 1K most frequent hash-tags in this col-
lection to construct Sn. Figure 4 shows the frequency
distribution of the unique hash-tags in this data set.
Considering the skew in this distribution, we selected
a larger value of D = 200 for this data set.

The overall observations for this data sets are similar
to those for the previous data set. However, the drop in
performance is gradual over a bigger range of values of
d. For k = 1, the algorithm continued to make almost

accurate predictions till d = 10∗D = 2000. For k = 10,
around 70% precision was observed while predicting
1000 future occurrences. The algorithm only observed
30K tweets to make these predictions. Assuming an
estimated arrival rate of 150K tweets per minute, our
algorithm can start predicting these ten tags with 70%
accuracy in less than a minute.

The parameter D has a trade-off associated with it.
On one hand, a larger value of D reduces the time
taken to make a prediction and increases the prov-
ably useful range of values of d. On the other hand,
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(a) D=100
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(b) D=200

Figure 7: Results for the sliding-window approach on Twitter hash-tags. The window size is set of 20K. The
average number of correct predictions(Accuracy) made for D = 100 and 200 for different values of k and d.
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Figure 4: Frequency distribution of unique hash-tags

we may have to increase the size of the stream to en-
sure that the related assumption for constrained-min-
d-occur holds. Figure 6 shows a comparison of the
observed precision values for two different choices of
D = {200, 400}. In both of these plots for most val-
ues of k, the precision is close to 1 for almost identical
range of d, but the precision drops faster for smaller
value of D. Also, the graphs for D = 400 are noisy,
which suggests a large variance to be associated with
their precision estimates. For this reason, we postu-
late that useful conclusions could not be derived for
D > 400 in this data set.

6.3 Sliding window

Figure 7 shows the precision curves obtained using
the sliding window adaptation of our algorithm (de-
scribed in Section 5) with window size W = 20K. For
D = 200, the graphs validate two hypothesis about
the correctness of our window-based algorithm. First,
for k = 10, the stopping point (see Figure 5) is greater
than the window size. Therefore, the window-based al-
gorithm should fail to make predictions for most values
of d. Second, the stopping points for k < 10 are less
than the window size for almost all of the values of
d. Hence, the window-based algorithm should obtain
similar performance as the original algorithm without
the window. Similar observations were made when a

window size W = 10K was considered. Similar obser-
vations were made for D = 100. The relative difference
between the performances for D = 100 and D = 200
can be explained similar to the discussion for Figure 6.
These observations confirm that sliding window adap-
tation of the original algorithm well approximates the
desired solution. This approximate algorithm is better
suited for a practical setting where predictions need to
be made at regular intervals of time.

7 Discussion

We presented a new problem formulation, constrained
min-d-occur, for studying algorithms that guarantee
a minimum number of future occurrences in stream-
ing data. For this formulation, we presented a ran-
domized algorithm and derive a lower-bound on the
probability of successful predictions obtained from this
algorithm. To our knowledge, any prior theoretical re-
sults for this problem does not exist. The theoretical
result is further validated using experiments on two
real-world data sets: search query logs and hash-tags
in tweets. In both of these data sets, the proposed al-
gorithm achieved high precision and recall values for
predictions. We studied the performance of this al-
gorithm for different choices of parameters. We also
presented a sliding-window based adaptation of our
algorithm to accommodate a practical setting where
the predictions need to be updated only at regular in-
tervals of time. Interestingly, these algorithms were
found to be effective for larger values of d for which
a useful lower-bound is not computed. Studying the
tightness of our current lower-bound would be a useful
extension of this work.
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Abstract

We propose a generative Bayesian model that
predicts instance labels from weak (bag-level)
supervision. We solve this problem by simulta-
neously modeling class distributions by Gaussian
mixture models and inferring the class labels of
positive bag instances that satisfy the multiple in-
stance constraints. We employ Dirichlet process
priors on mixture weights to automate model se-
lection, and efficiently infer model parameters
and positive bag instances by a constrained varia-
tional Bayes procedure. Our method improves on
the state-of-the-art of instance classification from
weak supervision on 20 benchmark text catego-
rization data sets and one histopathology cancer
diagnosis data set.

1 INTRODUCTION

Automated data acquisition has reached unprecedented
scales. However, annotation of ground-truth labels is still
manual in many applications, lagging behind the massive
increase in observed data. This fact makes learning from
partially labeled data emerge as a key problem in machine
learning. Multiple instance learning (MIL) tackles this
problem by learning from labels available only for instance
groups, called bags [7]. A negatively labeled bag indicates
that all instances have negative labels. In a positively la-
beled bag, there is at least one positively labeled instance;
however, which of the instances are positive is not speci-
fied. We refer to these bag labeling rules as multiple in-
stance constraints. A positive bag instance with a positive
label is called a witness, and one with a negative label a
non-witness.

The classical MIL setup involves both bag-level training
and bag-level prediction. The mainstream MIL algorithms
are developed and evaluated under this classical setup. The
harder problem of instance-level prediction from bag-level

training has been addressed in a comparatively smaller vol-
ume of studies [16, 17, 32]. A group of existing models,
such as Key Instance SVM (KI-SVM) [16] and CkNN-
ROI [32] aim to identify a single positive instance from
each positive bag, the so called key instance, that deter-
mines the bag label, and discard the other instances. In a
recent work, Liu et al. [17] generalize this approach by a
voting framework (VF) that learns an arbitrary number of
key instances from each positive bag. While KI-SVM ex-
tends the MI-SVM formulation [2] with binary variables
indicating key instances, CkNN-ROI and VF are built on
the Citation k-NN method [26].

1.1 Contribution

Our central assumption is that all instances belonging to the
same Gaussian / cluster share the same class label. By per-
forming simultaneous assignment of instances to one class
or the other and clustering instances within each class, our
method effectively captures non-witnesses within the pos-
itive bags from their clustering relationships to other in-
stances. Figure 1 illustrates this idea.

We discover the latent positive bag instance labels by non-
parametrically modeling the distributions of both classes,
while simultaneously assigning the positive bag instances
to the most appropriate class. To capture almost arbitrarily
complex data distributions, we model the class distributions
as mixture of a potentially very large (determined by data
and the Dirichlet process prior) number of Gaussians with
full covariance. The Dirichlet process prior on the mixture
weights addresses the model selection problem, which is in
our context the question of how many clusters to use.

We infer the class distribution parameters and positive bag
instance labels by an efficient constrained variational in-
ference procedure. For a fixed configuration of positive
bag instance labels, we update class distribution parame-
ters as in variational inference of standard Dirichlet process
mixtures of Gaussians. Then keeping class distribution pa-
rameters fixed, we assign each positive bag instance to the
class that maximizes the total variational lower bound of
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Optimal 

DP-MIL 

Boundary

Figure 1: Dots, solid ellipses, and dashed ellipses indicate
instances, bags, and clusters in a two dimensional feature
space, respectively. Positive class is shown as red and neg-
ative class as black. DPMIL infers the label of a positive
bag instance based on the class of the cluster that explains
it best.

class distributions. This way, an increase in lower bound is
guaranteed for all coordinate ascent updates, providing fast
convergence.

We evaluate our method on 20 benchmark text categoriza-
tion data sets, and on a novel application: finding Barrett’s
cancer tumors in histopathology tissue images from bag
labels. Our method improves the state-of-the-art in both
of these applications in terms of instance-level prediction
performance. Furthermore, differently from many existing
MIL methods, the inferred data modes and cluster weights
of our method enable enhanced interpretability. The source
code of our method is publicly available 1.

2 PRIOR ART

There exist several strategies for learning from weak su-
pervision. One is semi-supervised learning, which sug-
gests using large volumes of unlabeled data along with the
limited labeled data to improve supervised learning perfor-
mance [6]. Active learning is an alternative strategy that
proposes learning from the smallest possible set of training
samples selected by the model itself [24]. Another strategy
is self-taught learning where abundant unlabeled data are
available from a different but related task than the actual
learning problem to be solved [20].

Multiple instance learning also aims to solve the weakly
supervised learning problem by allowing supervision only
for groups of instances. This learning setup has been first
introduced by Dietterich et al. [7]. The authors propose
detecting witnesses from the assumption that they lie in a

1http://hci.iwr.uni-heidelberg.de/Staff/
mkandemi/

single axis parallel rectangle (APR) in the feature space.

MIL methods are built upon different heuristics. A group
of methods iteratively choose one instance from each bag
as a representative, and infer model parameters from this
selected instance set. Based on the new model parame-
ters, a new representative set is selected in the next itera-
tion. Seminal examples of this approach are EMDD [30]
and MI-SVM [2]. While the former learns a Gaussian den-
sity kernel on the representative instances, the latter trains
a support vector machine (SVM) on them.

Another group of MIL methods calculate similarities be-
tween bag pairs by bag-level kernels, and train standard
kernel learners, such as SVM, based on these bag similari-
ties. MI Kernel [10] and mi-Graph [31] are seminal exam-
ples of this approach. The common property of these mod-
els is that they assume non-i.i.d. relationships between in-
stances belonging to the same bag. There have been recent
attempts to exploit within-bag correlations in more elabo-
rate ways, such as Ellipsoidal MIL [15] and MIMN [11].
The former method represents each bag as an ellipsoid and
learns a max-margin classifier that obeys the multiple in-
stance constraints. The latter models the within-bag rela-
tionships by a Markov Random Field whose unary poten-
tials are determined by the output of a linear instance-level
classifier and clique (bag) potentials are calculated from
the unary potentials subject to the multiple instance con-
straints. These methods are typically both effective and ef-
ficient. However, they are not applicable to instance level
prediction due to the central non-i.i.d bag instances as-
sumption.

MIL as semi-supervised learning. MIL can be for-
mulated as a semi-supervised learning problem by assign-
ing latent variables to positive bag instances and inferring
them subject to the multiple instance constraints [8]. mi-
SVM [2] applies this principle to the SVM formulation.
GPMIL [14] and Bayesian Multiple Instance RVM [21] ap-
ply it to the Gaussian process classifier and the relevance
vector machine, respectively, by adapting the likelihood
function to MIL.

Generative MIL models. The semi-supervised learning
approach has also been adopted by some generative meth-
ods that model the class distributions and infer the label of
each positive bag instance based on which of these two dis-
tributions explain that instance with higher likelihood [1,8].
Foulds et al. [8] model each class distribution by a Gaussian
density with isotropic or diagonal covariance, and learn the
latent positive bag instances without employing the multi-
ple instance constraints on the training data. Adel et al. [1],
on the other hand, provide a generic framework that en-
forces the multiple instance constraint in the hard assign-
ment of instances to classes. They model class distribu-
tions by a Gaussian density and Gaussian copula. We fol-
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low this line of research, and extend the existing work by
i) using a richer family of distributions (potentially infinite
mixtures of Gaussians with full covariance), while ii) keep-
ing the multiple instance constraints and also providing an
efficient variational inference procedure, and iii) making
instance rather than bag level predictions.

Applications. Recent applications of MIL include dia-
betic retinopathy screening [19], visual saliency estimation
[27] as well as content-based object detection and track-
ing [23]. MIL is also useful in drug activity prediction
where each molecule constitutes a bag, each configuration
of a molecule an instance, and binding of any of these con-
figurations to the desired target is treated as a positive la-
bel, as first introduced by Dietterich et al. [7]. More recent
applications of MIL to this problem include finding the in-
teraction of proteins with Calmodulin molecules [18], and
finding bioactive conformers [9]. Xu et al. [28, 29] apply
MIL to tissue core (bag) level diagnosis of prostate cancer
from histopathology images, where they combine multi-
instance boosting [25] and clustering. There does not exist
any prior work that focuses on locating tumors from tissue
core level supervision, which we do in this paper as a case
study.

Instance-level MIL prediction. There exist few studies
focusing on instance prediction within the MIL setting.
The first principled attempt towards this direction has been
made by Zhou et al. [32]. The authors introduce a variant
of Citation k-NN, called CkNN-ROI. This method chooses
one instance from each positive bag as the key instance that
determines the bag label based on how well it predicts the
training bag labels by nearest neighbor matching, and ig-
nores the other instances. Li et al. [16] detect key instances
by a large margin method called KI-SVM. This method ex-
tends MI-SVM by binary latent variables assigned to each
positive bag instance, which identify strictly one key in-
stance per positive bag, and filter other instances out. The
authors propose two variants of their method: i) Bag KI-
SVM that has one slack variable per negative bag, and ii)
Instance KI-SVM that has one slack variable per negative
bag instance. Liu et al. [17] later propose detecting mul-
tiple key instances per positive bag by another variant of
Citation kNN that learns a voting function from training
bags. These models are shown to be effective in region-of-
interest detection in natural scene images and text catego-
rization. In this paper, we target the same learning problem,
and empirically show that rich modeling of class distribu-
tions leads to better prediction performance.

3 THE MODEL

Let X be a data set consisting of B bags X =
[X1, · · · ,XB ] indexed by b, and y = [y1, · · · , yB ] be
the vector of the corresponding binary bag labels yb ∈

{−1,+1}. Each bag Xb = [xb1, · · · ,xbNb ] consists of Nb
instances. We assume that each instance is associated with
a binary latent variable rbn ∈ {−1,+1} representing the
label of the instance. We further assume that the positive
instances in the data set (rbn = +1) come from distribution
p(xbn|θ+1), and the negative instances (rbn = −1) come
from distribution p(xbn|θ−1), parameterized by θ+1 and
θ−1, respectively. Both of these two distributions are Gaus-
sian mixture models with full covariance and with Dirichlet
process priors on mixture weights. The generative process
of our model is

p(vl) =

K∏

k=1

Beta(vlk|1, α), ∀l

p(zlbn|vl) =Mult(zlbn|πl1, · · · , πlK), ∀l, b, n
p(Λlk) =W(Λlk|W0, ν0), ∀l, k

p(µlk|Λlk) = N (µlk|m0, (β0Λlk)
−1), ∀l, k,

p(xbn|µ,Λ,zlbn, rbn) =
∏

l∈{−1,+1}

K∏

k=1

N (xbn|µlk,Λ−1lk )1(zlbn=k)·1(rbn=l), ∀b, n,

p(yb = +1|r) = 1−
Nb∏

n=1

(1− 1(rbn = +1)) , ∀b

where the hyperparameters of the model are
{ν0,W0,m0, β0, α}. The function 1(·) is the indi-
cator function which returns 1 if its argument is true,
and 0 otherwise. Mult(·| · · · ), Beta(·|·, ·), N (·|·, ·)
and W(·|·, ·) denote the multinomial mass function,
and Beta, Gaussian and Wishart distribution densi-
ties, respectively. K is the number of clusters, and k
is the related index; l ∈ {−1,+1} indexes the two
class densities; πlk = vlk

∏k−1
j=1 (1 − vlj) is the stick

breaking prior over cluster assignments zlbn. The vec-
tor Zl contains cluster-assignment weights zlbn. The
sets µ = {µ−11, · · · ,µ−1K ,µ+11, · · · ,µ+1K} and
Λ = {Λ−11, · · · ,Λ−1K ,Λ+11, · · · ,Λ+1K} contain the
mean and inverse covariance of all clusters in the model,
respectively. The vector r has class-assignment variables
for all instances in its entries, and r−rbn has the same
for all instances except rbn. The set rb has the class-
assignment variables of bag b. If yb = −1 is observed,
it is also observed that rbn = −1 for all instances of bag
b. If yb = +1 is observed, rbn for bag instances of b are
latent, hence are inferred from data. We refer to this model
as Dirichlet process multiple instance learning (DPMIL).
Figure 2 illustrates the model in plate notation.

3.1 Inference

Following the probabilistic paradigm, for inference of the
model above, we aim to maximize the marginal likelihood
p(X,y|z) with respect to the class assignments z subject
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Figure 2: The generative process of DPMIL in plate no-
tation. Shaded nodes denote observed, and unshaded notes
denote latent variables that are inferred by constrained vari-
ational Bayes. Note that rbn is a discrete binary latent vari-
able without a prior. Hence it is denoted by a rectangle.

to the multiple instance constraints

maximize
r

p(X,y|r) (1)

s.t. max(rb) = yb, ∀b.

Let r∗ be a solution to the optimization problem (1), we can
define the divergence from the optimal configuration r∗ as

D(r) = log p(X,y|r∗)− log p(X,y|r).

It is easy to see that D(r) ≥ 0 for any r and D(r) = 0 if
r = r∗.

For a given configuration r, calculating p(X,y|r) is in-
tractable. Hence, we approximate the posterior p a factor-
ized distribution q

p(Z,µ,Λ,v−1,v+1|X, r)

=


 ∏

l∈{−1,+1}

B∏

b=1

Nb∏

n=1

q(zlbn|r)




×


 ∏

l∈{−1,+1}

K∏

k=1

q(µlk,Λlk|r)q(vlk|r)


 .

Let θ = θ−1 ∪ θ+1 denote the set of all parameters and
latent variables of both class distributions. Following the
standard variational Bayes formulation we can decompose
p(X,y|r) as

log p(X,y|r) = L(θ|r) +KL(q||p)

where

L(θ|r) = Eq[log p(X,y,θ|r)]− Eq[log q(θ|r)]

is the variational lower bound andKL(·||·) is the Kullback-
Leibler divergence between the true posterior p and the ap-
proximate posterior q. Similarly to above, KL(q||p) ≥ 0

for all q andKL(q||p) = 0 if and only if q = p. Combining
these two facts, we have

log p(X,y|r∗) = L(θ|r) +KL(q||p) +D(r)︸ ︷︷ ︸
E(q,r)

where the divergence term E(q, r) approaches 0 as q and r
approach optimal values. Hence, we can perform inference
by

maximize
r,θ

L(θ|r)

s.t. max(rb) = yb, ∀b.

which has the same global optimum as the optimization
problem (1). This problem can be solved by coordinate as-
cent. Keeping r fixed, model parameters θ can be updated
as in standard variational Bayes. Letψj ⊂ θ be a subset of
model parameters corresponding to a factor of q, the best
possible update for this factor can be calculated by

∂L
∂q(ψj)

= Eq(θ−ψj )
[log p(X,y,θ|r)]− log q(ψj)− 1 = 0.

Hence, the update rule becomes

q(ψj) = exp
{
Eq(θ−ψj )

[log p(X,y,θ|r)]
}
. (2)

Consequently, keeping θ fixed, r can be updated by

r
(t+1)
bn = argmax

l∈{−1,+1}
L(θ|r(t)−bn, rbn = l). (3)

The cases that violate the multiple instance constraint
max

(
r
(t+1)
b

)
= yb can be resolved by flipping one of the

instances of bag b that had a positive label at iteration (t)
back to positive. The fact that Equations (2) and (3) both
increase L and that E(q, r) ≥ 0 bring out fast convergence
to a local maximum in practice, as experimented in Section
4.3. The overall inference procedure is given in Algorithm
1, and the detailed update equations are available in Ap-
pendix 1.

3.2 Prediction

For a new bag X∗b = [x∗b1, · · · ,x∗bNb ], instance-level pre-
diction can be done by

r̂bn ← argmax
l∈{−1,+1}

p(x∗bn|X,y, r, y∗bn = l),

where

p(x∗bn|X,y, r, y∗bn = l) =

∫
q(θl|X,y, r)p(x∗bn|θl)dθl,

which corresponds to the standard predictive density for DP
Gaussian mixtures as given in [4]. The extended formula
of the predictive density for fixed r is given in Appendix 1.
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Algorithm 1 Constrained variational inference for DPMIL
Input: Data X = [X1, · · · ,XB ] ,

Bag labels y = {y1, · · · , yb}
repeat
\\ Initialize instance class labels
rbn = yb, ∀b, n
\\ Update the class distributions given the current r
for ψj ∈ θ do
q(ψj |r)← exp

{
(Eq(θ−ψj )

[log p(X,y,θ|r)]
}

end for
\\ Update r given the class distributions
for b ∈ {j|yj = +1} do

for n = 1 to NB do
r
(t+1)
bn ← argmax

l∈{−1,+1}
L(θ|r(t)−rbn , rbn = l)

end for
\\ Resolve constraint violation
if max(rb) = −1 then
r
(t+1)
bj ← +1, for any j ∈ {r(t)bj = +1}

end if
end for

until convergence

3.3 Relationship to existing models

DPMIL has the following connections to some of the exist-
ing methods:

• mi-SVM [2]: DPMIL and mi-SVM can be viewed as
generative-discriminative pairs [12]. The two mod-
els find similar labels for positive bag instances when
classes are separable. DPMIL additionally finds the
clusters of both positive and negative instances.

• EMDD [30]: EMDD learns a class-conditional dis-
tribution p(yb = +1|Xb) in a discriminative manner
by applying a single Gaussian kernel on the most rep-
resentative subset of training instances. DPMIL ex-
plains the generative process of all training instances
by multiple Gaussian densities.

• QDA: Our method extends Quadratic Discriminant
Analysis (QDA) in three aspects: i) DPMIL fits mul-
tiple Gaussians on each class distribution, while QDA
fits only one. ii) DPMIL employs priors over mean
and covariance, while QDA performs maximum like-
lihood estimation, following the frequentist paradigm.
iii) DPMIL explains bag labels keeping the multi-
ple instance constraints, while QDA performs single-
instance learning.

• MIMM [8]: This model is a special case of DPMIL.
In particular, when K = 1, uninformative priors are
used for mixture coefficients Z and multiple instance
constraints are ignored, DPMIL reduces to MIMM.

Quadratic Discriminant Analysis (QDA) is the single-
instance version of MIMM.

4 RESULTS

We evaluate the instance prediction performance of our
method on two applications: i) web page categorization,
and ii) Barrett’s cancer diagnosis. For both experiments,
we set cluster countK to 20 (per class), ν0 toD+1, where
D is the dimensionality of the data, W0 to the inverse em-
pirical covariance of the data, m0 to the empirical mean of
the data, β0 to 1, and the concentration parameter α to 2,
which is chosen as the smallest integer larger than the unin-
formative case (α = 1). This value is not manually tuned.
Other choices of α are observed not to affect the outcome
significantly. We set maximum iteration count to 100.

We compare DPMIL to three MIL and two key instance
detection algorithms: mi-SVM [2], MI-SVM [2], GPMIL
[14], Bag KI-SVM [16], and Instance KI-SVM [16]. Mod-
els such as mi-Graph [31], iAPR [7], EMDD [30], Citation
k-NN [26], MILBoost [25], and MIMM [8] are observed to
perform worse than the list above, hence are not reported in
detail. For all kernelizeable models, the radial basis func-
tion (RBF) kernel is used. Hyperparameters of the compet-
ing models are learned by cross-validation.

4.1 20 text categorization data sets

As a benchmarking study, we evaluate DPMIL on the pub-
lic 20 Newsgroups database that consists of 20 text cate-
gorization data sets. Each data set consists of 50 positive
and 50 negative bags. Positive bags have on average 3 % of
their instances from the target category, and the rest from
other categories. Each instance in a bag is the top 200 TF-
IDF representation of a post. We reduce the dimensionality
to 100 by Kernel Principal Component Analysis (KPCA)
with an RBF kernel with a length scale of

√
100, following

the heuristic of Chang et al [5]. We evaluate the general-
ization performance using 10-fold cross validation with the
standard data splits. We use Area Under Precision-Recall
Curve (AUC-PR) as the performance measure due to its in-
sensitivity to class imbalance. Table 1 lists the performance
scores of models in comparison for the 20 data sets. We
report average AUC-PR of two comparatively recent meth-
ods, VF and VFr, on the same database from [17] Table 5 2,
for which public source code is not available. Our method
gives the highest instance prediction performance in 18 of
the 20 data sets, and its average performance throughout
the database is 3 percentage points higher than the state-of-
the-art VF method.
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Table 1: Area Under Precision-Recall Curve (AUC-PR) scores of methods on the 20 Newsgroups database for instance
prediction. DPMIL outperforms the other MIL models in 18 out of 20 data sets. B-KI-SVM and I-KI-SVM stand for Bag
KI-SVM and Instance KI-SVM, respectively.

Data set DPMIL VF VFr B-KISVM miSVM I-KISVM GPMIL MISVM
alt.atheism 0.67 - - 0.68 0.53 0.46 0.44 0.38
comp.graphics 0.79 - - 0.47 0.65 0.62 0.49 0.07

comp.os.ms-windows.misc 0.51 - - 0.38 0.42 0.14 0.36 0.03
comp.sys.ibm.pc.hardware 0.67 - - 0.31 0.57 0.38 0.35 0.10
comp.sys.mac.hardware 0.76 - - 0.39 0.56 0.64 0.54 0.27

comp.windows.x 0.73 - - 0.37 0.56 0.35 0.36 0.04
misc.forsale 0.45 - - 0.29 0.31 0.25 0.33 0.10
rec.autos 0.76 - - 0.45 0.51 0.42 0.38 0.34

rec.motorcycles 0.69 - - 0.52 0.09 0.61 0.46 0.27
rec.sport.baseball 0.74 - - 0.52 0.18 0.41 0.38 0.22
rec.sport.hockey 0.91 - - 0.66 0.27 0.64 0.43 0.75

sci.crypt 0.68 - - 0.47 0.57 0.26 0.31 0.32
sci.electronics 0.90 - - 0.42 0.83 0.65 0.71 0.34

sci.med 0.73 - - 0.55 0.37 0.44 0.32 0.44
sci.space 0.70 - - 0.51 0.46 0.33 0.32 0.20

soc.religion.christian 0.72 - - 0.53 0.05 0.45 0.45 0.40
talk.politics.guns 0.64 - - 0.43 0.57 0.32 0.38 0.01

talk.politics.mideast 0.80 - - 0.60 0.77 0.49 0.46 0.60
talk.politics.misc 0.60 - - 0.50 0.61 0.38 0.29 0.30
talk.religion.misc 0.51 - - 0.32 0.08 0.34 0.32 0.04

Average 0.70 0.67 0.59 0.47 0.45 0.43 0.40 0.26

Table 2: Barrett’s cancer diagnosis accuracy and F1 score
of models in comparison. DPMIL outperforms the second
best model by 6 percentage points in accuracy and 3 per-
centage points in F1 score. Instance level supervision per-
formance is provided in the bottom row for reference.

Method Accuracy (%) F1 Score
DPMIL 71.8 0.74
GPMIL 65.8 0.54
I-KISVM 65.4 0.45
B-KISVM 64.7 0.48
mi-SVM 62.7 0.71
MISVM 46.9 0.64
SVM 83.5 0.82

4.2 Barrett’s cancer diagnosis

Biopsy imaging is a widely used cancer diagnosis tech-
nique in clinical pathology [22]. A sample is taken from
the suspicious tissue, stained with hematoxylin & eosin,
which dyes nuclei, stroma, lumen, and cytoplasm to differ-
ent colours. Afterwards, the tissue is photographed under a
microscope, and a pathologist examines the resultant image
for diagnosis. In many cases, diagnosis of one patient re-
quires careful scanning of several tissue slides of extensive

2 Liu et al. [17] report 0.42 AUC-PR for KI-SVM and 0.41
AUC-PR for mi-SVM in Table 5.

sizes. Considerable time could be saved by an algorithm
that finds the tumors and leads the pathologist to tumorous
regions.

We evaluate DPMIL in the task of finding Barrett’s can-
cer tumors in human esophagus tissue images from image-
level supervision. Our data consists of 210 tissue core
images (143 cancer and 67 healthy) taken from 97 Bar-
rett’s cancer patients. We treat tumor regions drawn by
expert pathologists as ground truth. We split each tissue
core (with average size of 2179x1970 pixels) into a grid
of 200x200 pixel patches. We represent each patch by a
738-dimensional feature vector of SIFT descriptors, local
binary patterns with 20×20-pixel cells, intensity histogram
of 26 bins for each of the RGB channels, and the mean of
the features described in [13] for cells lying in that patch.
The data set includes 14303 instances, 53.4% of which are
cancerous. We treat each image as a bag and each patch
belonging to that image as an instance. A bag is labeled as
positive if it includes tumor, and negative otherwise. Simi-
larly to above, we reduce the data dimensionality to 30 by
KPCA with an RBF kernel having a length scale of

√
30.

We evaluate generalization performance by 4-fold cross-
validation over bags. We repeated this procedure 5 times.

The patch-level diagnosis performance comparison of
models is given in Table 2. Prediction performance of DP-
MIL lies in the middle of the chance level of 53.4% and
the upper bound of 83.5% which is reached by patch-level
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Figure 3: Patch prediction results on sample tissue core images. Green: correctly detected cancer (true positive), Red:
Missed detection of cancer (false negative), Yellow: False cancer alarm (false positive). Rest: True negative.

Healthy cores Local tumors Core-wide tumors

training of an SVM with RBF kernel. DPMIL clearly out-
performs existing models both in prediction accuracy and
F1 score (harmonic mean of precision and recall). Figure
3 shows prediction results of DPMIL on six sample tissue
cores (bags) with different proportions of tumor. DPMIL
produces few false positives for the healthy tissues (left-
most column), detects local tumors with reasonable accu-
racy (middle columns), and produces few false negatives
for tissue cores covered entirely by tumor (right-most col-
umn).

Figure 4 shows the mixture weights of the clusters for the
class distributions averaged over data splits. The healthy
class is dominated by a single cluster due to the relatively
uniform structure of a healthy esophagus tissue. On the
other hand, for the cancer class, the weights are more
evenly distributed among five clusters. This result is con-
sistent with the fact that the data set includes images from
various grades of cancer. Each grade of cancer causes a
different visual pattern in the tissue, resulting in a multi-
modal distribution of tumor patches. As shown in Figure
5, clusters capture meaningful visual structures. Patches
in the first row correspond to a stage of Barrett’s cancer
where cells form circular structures called glands which do
not exist in a healthy esophagus tissue. The second row il-
lustrates samples of cells with faded color, and in the third
row the tissue is covered by an overly high population of
poorly differentiated cells.

4.3 Learning rate and computational time

Weak supervision often emerges as a necessity for analyz-
ing big data. Hence, computational efficiency of an MIL
model is of key importance for feasibility for real-world
scenarios. To this end, we provide an empirical analysis
of the learning rate and the training time of DPMIL. As
shown in Figure 6, the variational lower bound logL(θ|r)
exhibits a sharp increase in the first few iterations, and sat-
urates within 50 iterations.

Figure 6: Evolution of the variational lower bound
logL(θ|r) throughout training iterations for the Barrett’s
cancer data set. DPMIL exhibits a steep learning curve and
converges in less than 50 iterations.
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Table 3 shows the average training times of the models
in comparison for one data split. Thanks to its Bayesian
nonparametric nature, DPMIL does not require a cross-
validation stage for model selection, unlike the other mod-
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Figure 4: Cluster mixture coefficients for cancer (yb = +1) and healthy (yb = −1) in the Barrett’s cancer data set. The
healthy class distribution is dominated by a single mode unlike the cancer class distribution, supporting that a healthy tissue
has a more even look than the cancer class which includes images belonging to various levels of cancer.
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Figure 5: Sample patches from three different clusters (one in each row) of the cancer class. Each patch belongs to a
different image. First cluster shows glandular formations of cancer cells, second cluster contains single cancer cells with
faded color, and third cluster shows increased population of poorly differentiated cancer cells.

els. To avoid variability due to the desired level of detail
in hyperparameter tuning (grid resolution and number of
validation splits) which could lead to unfair comparison,
we excluded the cross-validation time for the competing
models. As a result of its steep learning rate, DPMIL pro-
vides reasonable training time, ranking as the most efficient
model in text categorization and third in Barrett’s cancer di-
agnosis.

5 DISCUSSION

Multiple instance learning methods have long been devel-
oped and evaluated for bag label prediction. In this paper,
we focus on the harder problem of instance level prediction
from bag level training. We approach the problem from a
semi-supervised learning perspective, and attempt to dis-
cover the unknown labels of positive bag instances by rich
modeling of class distributions in a generative manner. We
model these distributions by Gaussian mixture models with
full covariance to handle complex multimodal cases. To

Table 3: Training times (in seconds) of models in compar-
ison for one data split. Thanks to the efficient variational
inference procedure, DPMIL can be trained in reasonable
time.

Model name Text categorization Barrett’s cancer
DPMIL 2.9 44.7
KISVM-B 11.0 107.7
mi-SVM 12.2 126.6
KISVM-I 10.1 15.3
GPMIL 90.5 1491.7
MISVM 4.1 10.8

avoid the model selection problem (i.e. predetermination
of the number of data modes), we apply Dirichlet process
priors over mixture coefficients.

As experimented in a large set of benchmark data sets and
one cancer diagnosis application, our method clearly im-
proves the state-of-the-art in instance classification from
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weak labels. We attribute this improvement to the effective-
ness of the let the data speak attitude in semi-supervised
learning: The model discovers the unknown positive bag
instance labels by assigning them to the class that explains
the data generation process better (i.e. the class that in-
creases the variational lower bound more). Of the other
methods in our comparison, mi-SVM, VF, and KISVM are
ignorant about the class distributions. The remaining meth-
ods are tailored for predicting bag, but not instance labels.

Generative modeling of data is commonly undesirable in
standard pattern classification tasks, as a result of Vapnik’s
razor principle 3. However, our results imply that genera-
tive data distribution modeling turns out to be an effective
strategy when weak supervision is an additional source of
uncertainty.

Modeling class distributions with mixture models brings
enchanced interpretability as a by-product. Analysis of in-
ferred clusters may provide additional information, or may
support further modeling decisions. Even though we re-
strict our analysis to binary classification for illustrative
purposes, extension of our method to multiclass cases is
simply a matter of increasing the number of Gaussian mix-
ture models from two to a desired number of classes.

Appendix 1: Variational update equations
and predictive density

Variational update equations of the approximate posterior q
correspond to those of the Gaussian mixture model as de-
scribed in [3] where the Dirichlet prior on mixture weights
are replaced by a Dirichlet process prior and instances are
assigned to the appropriate distribution by indicator func-
tions 1(·).
For q(vlk) = Beta(γ1lk, γ

2
lk),

γ1
lk = 1 +

B∑

b=1

Nb∑

n=1

q(zlbn = k)1(rbn = l),

γ2
lk = α+

B∑

b=1

Nb∑

n=1

q(zlbn > k)1(rbn = l).

For q(zlbn = k) =Mult(τ1lbn, · · · , τKlbn),

τklbn ←
(

Ψ(γ1
lk)−Ψ(γ1

lk + γ2
lk) +

k=1∑

j=1

(
Ψ(γ2

lk)−Ψ
(
γ1
lk + γ2

lk

))

+

D∑

i=1

Ψ

(
νlk + 1− i

2

)
+D log(2) + log |Wlk| − D

2
log(2π)

− D

2
β−1
lk −

1

2
νlk(xbn −mlk)TWlk(xbn −mlk)

)
1(rbn = l).

3Vapnik’s razor principle: When solving a (learning) prob-
lem of interest, do not solve a more complex problem as an inter-
mediate step.

For q(µlk,Λlk) = N (µlk|mlk, (βlkΛ
−1
lk ))W(Λlk|Wlk, νlk),

where

βlk = β0 +Nlk,

mlk = β−1
lk (β0m0 +Nlkx̄lk),

W−1
lk = W−1

0 +NlkSlk +
β0Nlk
β0 +Nlk

(x̄lk −m0)(x̄lk −m0)T ,

νlk = ν0 +Nlk + 1.

Here,

Nlk =

B∑

b

Nb∑

n=1

1(rbn = l)q(zlbn = k),

x̄lk =
1

Nlk

B∑

b

Nb∑

n=1

1(rbn = l)q(zlbn = k)xbn,

Slk =
1

Nlk

B∑

b=1

Nb∑

n=1

1(rbn = l)q(zlbn = k)(xbn − x̄lk)(xbn − x̄lk)T .

For an inferred configuration r̂, the predictive density of
DPMIL is identical to that of a standard Gaussian mixture
model as given in [3]

p(x∗
bn|X,y, r̂, y∗bn = l) =

∫
q(θl|X,y, r̂)p(x∗

bn|θl)dθl,

=
1

π̂l

K∑

k=1

πlkSt

(
x∗
bn

∣∣∣∣∣mk,
(νk + 1−D)βk

1 + βk
Wk, νk + 1−D

)
,

where π̂lk =
∑K
k=1 πl and St(·|·, ·, ·) is the Student’s t den-

sity function.
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Abstract

Zero-sum stochastic games provide a formal-
ism to study competitive sequential interactions
between two agents with diametrically oppos-
ing goals and evolving state. A solution to
such games with discrete state was presented by
Littman (Littman, 1994). The continuous state
version of this game remains unsolved. In many
instances continuous state solutions require non-
linear optimisation, a problem for which closed-
form solutions are generally unavailable. We
present an exact closed-form solution to a sub-
class of zero-sum continuous stochastic games
that can be solved as a parameterised linear pro-
gram by utilising symbolic dynamic program-
ming. This novel technique is applied to calcu-
late exact solutions to a variety of zero-sum con-
tinuous state stochastic games.

1 INTRODUCTION

Modelling competitive sequential interactions between
agents has important applications within economic and
financial decision-making. Stochastic games (Shapley,
1953) provide a convenient framework to model sequen-
tial interactions between non-cooperative agents. In zero-
sum stochastic games, participating agents have diametri-
cally opposing goals. A reinforcement learning solution
to discrete state zero-sum stochastic games was presented
by Littman (Littman, 1994). Closed-form solutions for the
continuous state case remain unknown, despite the gen-
eral importance of this formalism — zero-sum continu-
ous state stochastic games provide a convenient framework
with which to model robust sequential optimisation in ad-
versarial settings including domains such as option valua-
tion on derivative markets.

The difficulty of solving zero-sum continuous state
stochastic games originates from the need to calculate a

Nash equilibrium for every state, of which there are in-
finitely many. In this paper we make the following key
contributions:

• We characterise a subclass of zero-sum continuous
state stochastic games with restricted reward and tran-
sition functions that can be solved exactly via param-
eterised linear optimisation.

• We provide an algorithm that solves this subclass of
stochastic games exactly and optimally using Sym-
bolic Dynamic Programming (SDP) (Boutilier et al.,
2001; Sanner et al., 2011; Zamani & Sanner, 2012)
for arbitrary horizons.

This paper is organised as follows: In Section 2 we de-
scribe Markov Decision Processes (MDPs) (Howard, 1960)
and value iteration (Bellman, 1957), a widely used dynamic
programming method for solving MDPs. In Sections 3 and
4, we present zero-sum stochastic games with discrete and
continuous states, respectively, as game-theoretic generali-
sations of the MDP framework. Following this, in Section
5, we introduce SDP, and show how it can be used to calcu-
late the first known exact solution to a particular subclass of
zero-sum continuous state stochastic games. In Section 6
we calculate exact solutions to three empirical domains: a
continuous state generalisation of matching pennies, binary
option valuation and robust energy production. In Sec-
tion 7, we survey the related literature. We conclude in
Section 8 and identify interesting directions for future re-
search.

2 MARKOV DECISION PROCESSES

A Markov Decision Process (MDP) (Howard, 1960) is de-
fined by the tuple 〈S,A, T,R, h, γ〉. S and A specify a
finite set of states and actions, respectively. T is the tran-
sition function T : S × A → S, which defines the ef-
fect of an action on the state. R is the reward function
R : S × A → R, which encodes the preferences of the
agent. The horizon h represents the number of decision
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steps until termination and the discount factor γ ∈ [0, 1)
is used to discount future rewards. In general, an agent’s
objective is to find a policy, π : S → A, which maximises
the expected sum of discounted rewards over horizon h.

Value iteration (VI) (Bellman, 1957) is a general dynamic
programming algorithm used to solve MDPs. VI is based
on the set of Bellman equations, which mathematically ex-
press the optimal solution of an MDP. They provide a recur-
sive expansion to compute: (1) V ∗(s), the expected value
of following the optimal policy in state s; and (2) Q∗(s, a),
the expected quality of taking a in state s, then following
the optimal policy. The key idea of VI is to successively
approximate V ∗(s) and Q∗(s, a) by V h(s) and Qh(s, a), re-
spectively, at each horizon h. These two functions satisfy
the following recursive relationship:

Qh(s, a) = R(s, a) + γ ·
∑

s′∈S
T (s, a, s′) · V h−1(s′) (1)

V h(s) = max
a∈A

{
Qh(s, a)

}
(2)

The algorithm can be executed by first initialising V 0(s)

to zero or the terminal reward. Then for each h, V h(s) is
calculated from V h−1(s) via Equations (1) and (2), until the
intended h-stage-to-go value function is computed. Value
iteration converges linearly in the number of iterations to
the true values of Q∗(s, a) and V ∗(s) (Bertsekas, 1987).

MDPs can be used to model multiagent systems by assum-
ing that other agents are part of the environment and have
fixed behaviour. As a result, they ignore the difference be-
tween responsive agents and a passive environment (Hu &
Wellman, 1998). In the next two sections we present game
theoretic frameworks which generalises MDPs to situations
with two or more responsive agents.

3 ZERO-SUM DISCRETE STOCHASTIC
GAMES

Discrete state stochastic games (DSGs) are formally de-
fined by the tuple 〈S,A1, . . . , An, T,R1, . . . , Rn, h, γ〉. S
is a set of discrete states and Ai is the action set avail-
able to agent i. T is a transition function T : S × A1 ×
. . . × An → ∆(S), where ∆(S) is the set of probability
distributions over the state space S. The reward function
Ri : S×A1× . . .×An → R, encodes the individual pref-
erences of agent i. The horizon h represents the number
of decision steps until termination and the discount factor
γ ∈ [0, 1) is used to discount future rewards. In general,
an agent’s objective is to find a policy, πi : S → σi(Ai)
which maximises the expected sum of discounted rewards
over horizon h. Here σi(Ai) specifies probability distri-
butions over action set Ai. The optimal policy in a DSG
may be stochastic, that is, it may define a mixed strategy
for each state.

Zero-sum DSGs are a type of DSG involving two agents
with diametrically opposing goals. Under these conditions
the reward structure for the game can be represented by a
single reward function since an agents reward function is
simply the opposite of their opponent’s. The objective of
each agent is to maximise its expected discounted future
rewards in the minimax sense. That is, each agent views its
opponent as acting to minimise the agent’s reward. Zero-
sum DSGs can be solved using a technique analogous to
value iteration for MDPs (Littman, 1994). The value func-
tion, V h(s), in this setting can be defined as:

V h(s) =

max
m∈σ1(A1)

min
o∈σ2(A2)

∑

a1∈A1

∑

a2∈A2

Qh(s, a1, a2) ·ma1 · oa2

(3)

where m ∈ R|A1| and o ∈ R|A2| are mixed (stochas-
tic) strategies from σ1(A1) and σ2(A2), respectively.
Qh(s, a1, a2), the quality of taking action a1 against action
a2 in state s, is given by:

Qh(s, a1, a2) = R(s, a1, a2) +

γ ·
∑

s′∈S
T (s, a1, a2, s

′) · V h−1(s′). (4)

Equation (3) can be further simplified by noting that given
any m, the optimal minimum strategy is achieved through
a deterministic action choice. This observation leads to the
following form:

V h(s) = max
m∈σ1(A1)

min
a2∈A2

∑

a1∈A1

Qh(s, a1, a2) ·ma1 . (5)

Together Equations (4) and (5) define a recursive method to
calculate the optimal solution to zero-sum DSGs. The pol-
icy for the opponent can be calculated by applying symmet-
ric reasoning and the Minimax theorem (Neumann, 1928).

3.1 SOLUTION TECHNIQUES

Zero-sum DSGs can be solved via discrete linear optimisa-
tion at each horizon h. The value function in Equation (5)
can be reformulated as a linear program through the fol-
lowing steps:

1. Define V h(s) to be the value of the inner minimisation
term in Equation (5). This leads to the following linear
program for a known state s:

maximise V h(s)
subject to

V h(s) = min
a2∈A2

∑

a1∈A1

Qh(s, a1, a2) ·ma1 (6a)

∑

a1∈A1

ma1 = 1; ma1 ≥ 0 ∀a1 ∈ A1
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2. Replace the equality (=) in constraint (6a) with ≤ by
observing that the maximisation of V h(s) effectively
pushes the ≤ condition to the = case. This gives:

maximise V h(s)
subject to

V h(s) ≤ min
a2∈A2

∑

a1∈A1

Qh(s, a1, a2) ·ma1 (7a)

∑

a1∈A1

ma1 = 1; ma1 ≥ 0 ∀a1 ∈ A1

3. Remove the minimisation operator in constraint (7a)
by noting that the minimum of a set is less than or
equal to the minimum of all elements in the set. This
leads to the final form of the discrete linear optimisa-
tion problem:

maximise V h(s)
subject to

V h(s) ≤
∑

a1∈A1

Qh(s, a1, a2) ·ma1 ∀a2 ∈ A2

∑

a1∈A1

ma1 = 1; ma1 ≥ 0 ∀a1 ∈ A1

We can now use existing linear programming solvers to
compute the optimal solution to this linear program for
each s ∈ S at a given horizon h.

The linear program used to solve zero-sum DSGs cannot
be used with continuous state formulations, since there are
infinitely many states. A key contribution of this paper is
in showing that zero-sum continuous state stochastic games
can still be solved exactly through the use of symbolic dy-
namic programming. In the next section we present the
continuous state analogue to zero-sum DSGs.

4 ZERO-SUM CONTINUOUS
STOCHASTIC GAMES

Continuous state stochastic games (CSGs) are formally de-
fined by the tuple 〈~x,A1, . . . , An, T,R1, . . . , Rn, h, γ〉. In
CSGs states are represented by vectors of continuous vari-
ables, ~x = (x1, . . . , xm), where xi ∈ R. The other compo-
nents of the tuple are as previously defined in Section 3.

Zero-sum CSGs impose the same restrictions on the num-
ber of agents and the reward structure as their discrete state
counterparts.

The optimal solution to zero-sum CSGs can be calculated
via the following recursive functions:

Qh(~x, a1, a2) = R(~x, a1, a2) +

γ ·
∫
T (~x, a1, a2, ~x

′) · V h−1(~x′) d~x′ (8)

V h(~x) = max
m∈σ(A1)

min
a2∈A2

∑

a1∈A1

Qh(~x, a1, a2) ·ma1 (9)

We can derive Equation (8) from Equation (4) by replacing
s, s′ and the

∑
operator with their continuous state coun-

terparts, ~x, ~x′ and
∫

, respectively. Equation (9) is simply
Equation (5) restated.

4.1 SOLUTION TECHNIQUES

Zero-sum CSGs can be solved using a technique analogous
to that presented in Section 3.1. Namely, the value func-
tion in Equation (9) can be reformulated as the following
continuous optimisation problem:

maximise V h(~x)
subject to

V h(~x) ≤
∑

a1∈A1

Qh(~x, a1, a2) ·ma1 ∀a2 ∈ A2 (10a)

∑

a1∈A1

ma1 = 1; ma1 ≥ 0 ∀a1 ∈ A1

This optimisation problem cannot be easily solved us-
ing existing techniques due to two factors: (1) there are
infinitely many states in ~x; and (2) constraint (10a) is
nonlinear in ~x and ma1 for general representations of
Qh(~x, a1, a2). To further illustrate the second limitation
consider Qh(~x, a1, a2) in the form of a linear function in
x, for some a1 and a2:

Qh(~x, a1, a2) =
∑

j

cj · xj (11)

Substituting Equation (11) into constraint (10a) yields:

V h(~x) ≤
∑

a1∈A1

ma1

∑

j

cj · xj ∀a2 ∈ A2. (12)

It is clear from Equation (12) that a linear representation
of Qh(~x, a1, a2) leads to a nonlinear constraint where ma1

must be optimal with respect to the free variable ~x. This re-
sults in a parameterised nonlinear program, whose optimal
solutions are known to be NP-hard (Bennett & Mangasar-
ian, 1993; Petrik & Zilberstein, 2011).

At this point we present the first key insight of this pa-
per: we can transform constraint (10a) from a param-
eterised nonlinear constraint to a piecewise linear con-
straint by imposing the following restrictions: (1) restrict-
ing the reward function, R(~x, a1, a2), to piecewise con-
stant functions; and (2) restricting the transition function,
T (~x, a1, a2, ~x

′), to piecewise linear functions. As a re-
sult, V h(~x) and Qh(~x, a1, a2) will be piecewise constant
functions, thereby guaranteeing a tractable solution to con-
straint (10a).

One key challenge still remains, namely, dealing with the
infinitely many states in ~x. We know that the V h(~x) and
Qh(~x, a1, a2) functions have structure, but are unable to de-
rive them. Furthermore, given known structures for V h(~x)
and Qh(~x, a1, a2) we must determine the restrictions that
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guarantee a tractable solution. The SDP framework in con-
junction with its closed-form operations provide answers to
both of these concerns.

In the next section we show that zero-sum CSGs, with the
aforementioned restrictions, can be solved optimally for ar-
bitrary horizons using symbolic dynamic programming.

5 SYMBOLIC DYNAMIC
PROGRAMMING

Symbolic dynamic programming (SDP) (Boutilier et al.,
2001) is the process of performing dynamic programming
via symbolic manipulation. In the following sections we
present a brief overview of SDP operations and also show
how SDP can be used to solve zero-sum CSGs.

5.1 CASE REPRESENTATION

SDP assumes that all functions can be represented in case
statement form (Boutilier et al., 2001) as follows:

f =





φ1 : f1
...

...
φk : fk

Here, the φi are logical formulae defined over the state
~x that can consist of arbitrary logical combinations of
boolean variables and linear inequalities (≥, >,<,≤) over
continuous variables. We assume that the set of conditions
{φ1, . . . , φk} disjointly and exhaustively partition ~x such
that f is well-defined for all ~x. In general, the fi may be
polynomials of ~x with non-negative exponents. However,
in this paper we restrict the fi to be either constant or lin-
ear functions of the state variable ~x. Henceforth, we refer to
functions with linear φi and piecewise constant fi as linear
piecewise constant (LPWC) and functions with linear φi
and piecewise linear fi as linear piecewise linear (LPWL)
functions.

5.2 CASE OPERATIONS

Operations on case statements may be either unary or bi-
nary. In this section we present a brief overview of the
SDP operations needed to calculate closed form solutions
to zero-sum CSGs. All of the operations presented here are
closed form for LPWC and LPWL functions. We refer the
reader to (Sanner et al., 2011; Zamani & Sanner, 2012) for
more thorough expositions of SDP and its operations.

Unary operations on a aingle case statement f, such as
scalar multiplication c · f where c ∈ R, are applied to each
fi (1 ≤ i ≤ k).

Binary operations such as addition, subtraction and mul-
tiplication are executed in two stages. Firstly, the cross-

product of the logical partitions of each case statement is
taken, producing paired partitions. Finally, the binary op-
eration is applied to the resulting paired partitions. The
“cross-sum” ⊕ operation can be performed on two cases in
the following manner:

{
φ1 : f1
φ2 : f2

⊕
{
ψ1 : g1
ψ2 : g2

=





φ1 ∧ ψ1 : f1 + g1
φ1 ∧ ψ2 : f1 + g2
φ2 ∧ ψ1 : f2 + g1
φ2 ∧ ψ2 : f2 + g2

“cross-subtraction”	 and “cross-multiplication”⊗ are de-
fined in a similar manner but with the addition operator re-
placed by the subtraction and multiplication operators, re-
spectively. Some partitions resulting from case operators
may be inconsistent and are thus removed.

Minimisation over cases, known as casemin, is defined as:

casemin

({
φ1 : f1
φ2 : f2

,

{
ψ1 : g1
ψ2 : g2

)
=





φ1 ∧ ψ1 ∧ f1 < g1 : f1
φ1 ∧ ψ1 ∧ f1 ≥ g1 : g1
φ1 ∧ ψ2 ∧ f1 < g2 : f1
φ1 ∧ ψ2 ∧ f1 ≥ g2 : g2
...

...

casemin preserves the linearity of the constraints and the
constant or linear nature of the fi and gi. If the fi or gi are
quadratic then the expressions fi > gi or fi ≤ gi will be
at most univariate quadratic and any such constraint can be
linearised into a combination of at most two linear inequal-
ities by completing the square.

Substitution into case statements is performed via a
set θ of variables and their substitutions e.g. θ ={
x′1/(x1 + x2), x

′
2/x

2
1exp(x2)

}
, where the LHS of the / rep-

resents the substitution variable and the RHS of the / repre-
sents the expression that should be substituted in its place.
θ can be applied to both non-case functions fi and case
partitions φi as fiθ and φiθ, respectively. Substitution into
case statements can be written as:

fθ =





φ1θ : f1θ
...

...
φkθ : fkθ

Substitution is used when calculating integrals with respect
to deterministic δ transitions (Sanner et al., 2011).

A case statement can be maximised with respect to a con-
tinuous parameter y as f1(~x, y) = maxyf2(~x, y). The con-
tinuous maximisation operation is a complex case opera-
tion whose explanation is beyond the scope of this paper.
We refer the reader to (Zamani & Sanner, 2012) for further
details.

Case statements and their operations are implemented
using Extended Algebraic Decision Diagrams (XADDs)
(Sanner et al., 2011). XADDs provide a compact
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data structure with which to maintain compact forms of
Qh(~x, a1, a2) and V h(~x).

5.3 SDP FOR ZERO-SUM CONTINUOUS
STOCHASTIC GAMES

In this section we will show that a subclass of zero-sum
continuous stochastic games with (a) piecewise constant
rewards; and (b) piecewise linear transition functions can
be solved exactly and in closed-form by using SDP.

To calculate the exact solution to zero-sum CSGs we begin
by replacing all functions and operations in Equations (8)
and (9) by their case statement equivalents. That is, we ex-
change operations such as +,× and min, by their symbolic
equivalents, ⊕, ⊗ and casemin, respectively, and express
R(~x, a1, a2), T (~x, a1, a2, ~x′), V 0(~x) as case statements. ma1

is also encoded as a trivial case statement representing an
uninstantiated symbolic variable:

ma1 =
{
> : ma1

The optimal solution to zero-sum CSGs can now be de-
scribed by the following recursive SDP equations:

Qh(~x, a1, a2) = R(~x, a1, a2) ⊕

γ ⊗
∫
T (~x, a1, a2, ~x

′)⊗ V h−1(~x′) d~x′ (13)

Q̃h(~x, a2) =
∑

a1∈A1

Qh(~x, a1, a2)⊗ma1 (14)

V h(~x) =

max
m

casemin
(
casemina2∈A2

(
Q̃h(~x, a2)

)
, I
)

(15)

Equation (14) calculates a symbolic Q function weighted
by the variable ma1 for each a1. In Equation (15) the inner
casemin operation is calculated with respect to Q̃h(~x, a2)

instantiated with a particular a2. The “indicator” function I
serves as the summation constraint

∑
a1∈A1

ma1 = 1 and
ensures that the subsequent max operation returns legal
values for the ma1 . The indicator is defined as follows:

I =
{
∀a1 ∈ A1 [(ma1 ≥ 0) ∧ (ma1 ≤ 1) ∧ (

∑
ma1 = 1)] : +∞

∀a1 ∈ A1¬ [(ma1 ≥ 0) ∧ (ma1 ≤ 1) ∧ (
∑
ma1 = 1)] : −∞

The function I returns +∞when the conjunction of all con-
straints on each ma1 are satisfied and −∞, otherwise.

In Algorithm 1 we present CSG-VI, a methodology to
calculate the optimal h-stage-to-go value function through
Equations (13) to (15). In the algorithm we notationally
specify the arguments of the Qh and V h functions when
they are instantiated by an operation. For the base case of
h = 0, we set V 0(~x), expressed in case statement form, to
zero or to the terminal reward. For all h > 0 we apply the

previously defined SDP operations in the following steps:

1. Prime the Value Function. In line 6 we set up a sub-
stitution θ = {x1/x′1, . . . , xm/x′m}, and obtain V h

′
=

V hθ, the “next state”.

2. Discount and add Rewards. We assume that the re-
ward function contains primed variables and incorpo-
rate it in line 8.

3. Continuous Regression. For the continuous state vari-
ables in ~x lines 10 – 11 follow the rules of integra-
tion w.r.t. a δ function (Sanner et al., 2011). This
yields the following symbolic substitution:

∫
f(x′j) ⊗

δ
[
x′j − g(~z)

]
dx′j = f(x′j)

{
x′j/g(~z)

}
, where g(~z) is a

case statement and ~z does not contain x′j . The lat-
ter operation indicates that any occurrence of x′j in
f(x′j) is symbolically substituted with the case state-
ment g(~z).

4. Incorporate Agent 1’s strategy. At this point we have
calculatedQh(~x, a1, a2), as shown in Equation (13). In
lines 13 - 14 we weight the strategy for a specific a1
by ma1 . We note that ma1 is a case statement repre-
senting an uninstantiated symbolic variable.

5. Case Minimisation. In lines 16 – 17 we compute the
best case for a2 as a function of all other variables, as
shown in Equation (14).

6. Incorporate Constraints. In line 19 we incorporate
constraints on the ma1 variable:

∑
a1∈A1

ma1 = 1 and
ma1 ≥ 0 ∧ma1 ≤ 1 ∀a1 ∈ A1. The casemin opera-
tor ensures that all case partitions which involve illegal
values of ma1 are mapped to −∞.

7. Maximisation. In lines 22 – 23 we compute the best
response strategy for every state. We note that this
can only be done via symbolic methods since there are
infinitely many states. At this point we have calculated
V h(~x) as shown in Equation (15).

It can be proved that all of the SDP operations used in Al-
gorithm 1 are closed form for LPWC or LPWL functions
(Sanner et al., 2011; Zamani & Sanner, 2012). Given a
LPWC V 0(~x) and that SDP operations are closed form, the
resulting V h+1(~x) is also LPWC. Therefore, by induction
V h+1(~x) is LPWC for all horizons h.

In the next section we demonstrate how SDP can be used
to compute exact solutions to a variety of zero-sum contin-
uous stochastic games.

6 EMPIRICAL RESULTS

In this section we evaluate our novel SDP solution tech-
nique for zero-sum CSGs on three continuous domains1:

1All of the source code can be found online at
http://code.google.com/p/xadd-inference.
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Algorithm 1: CSG-VI(CSG, H , I) −→ (V h)

1 begin
2 V 0 := 0, h := 0
3 while h < H do
4 h := h+ 1
5 // Prime the value function
6 Qh := Prime(V h−1)
7 // Discount and add Rewards
8 Qh := R(~x, a1, a2, ~x

′)⊕ (γ ⊗Qh)
9 // Continuous Regression

10 for all x′j ∈ Qh do
11 Qh :=

∫
Qh ⊗ T (x′j |a1, a2, ~x) dx′

j

12 // Incorporate Agent 1’s strategy
13 for all a1 ∈ A1 do
14 Qh := Qh ⊕

(
Qh (a1)⊗ {> : ma1

)

15 // Case Minimisation
16 for all a2 ∈ A2 do
17 Qh := casemin(Qh, Qh (a2))

18 // Incorporate constraints
19 Qh := casemin(Qh, I)
20 // Maximisation
21 V h = Qh

22 for all a1 ∈ A1 do
23 V h := maxma1V

h (ma1)

24 // Terminate if early convergence
25 if V h = V h−1 then
26 break
27 return (V h)

(1) continuous stochastic matching pennies; (2) binary op-
tion stochastic game; and (3) robust energy production.
The results represent the first known exact solutions to
these domains.

6.1 CONTINUOUS STOCHASTIC MATCHING
PENNIES

Matching pennies is a well known zero-sum game with
a mixed strategy Nash Equilibrium (Osborne, 2004). In
this paper we extend the standard formulation of the game
by incorporating continuous state and sequential decisions
while still maintaining the zero-sum nature of the reward.

6.1.1 Domain Description

We define continuous stochastic matching pennies as an ex-
tensive form game between two players p ∈ {1, 2}. The
aim of a player is to maximise its expected discounted pay-
off at a fixed horizon H. Our game is played within the
interval [0, 1], two fixed variables c ∈ [0, 1) and d ∈ (0, 1]
with (c < d), are used to partition the interval into three re-
gions r ∈ {1, 2, 3}. Each region is associated with its own

zero-sum reward structure. The continuous state variable
x ∈ [0, 1] is used to specify which region the players are
competing within.

At each horizon (h ≤ H) each player executes an action
ap ∈ {headsp, tailsp}. Player 1 “wins” if both players
choose the same action. Otherwise, Player 2 wins. The
joint actions of the players affect the state x as follows:

P (x′|x, a1, a2) =

δ


x
′ −





(heads1) ∧ (heads2) ∧ (x ≥ k) : x− k
(heads1) ∧ (tails2) ∧ (x ≤ 1) : x+ k

(tails1) ∧ (heads2) ∧ (x ≥ k) : x+ k

(tails1) ∧ (tails2) ∧ (x ≤ 1) : x− k




The constant k ∈ (0, 1) is a step size which perturbs the
state x. If Player 1 wins, the state moves to the left by k,
otherwise it moves to the right by k. The Dirac function δ[·]
ensures that the transitions are valid conditional probability
functions that integrate to 1.

We define the rewards obtained by Player 1 in region r as:

Rr1 =





(heads1) ∧ (heads2) : αr1
(heads1) ∧ (tails2) : αr2
(tails1) ∧ (heads2) : αr3
(tails1) ∧ (tails2) : αr4

Here we restrict αri ∈ R. The rewards obtained by Player 2
in the same region are simply −Rr1. Given this reward for-
mulation we specify two different reward structures: sym-
metric and asymmetric. In a symmetric reward structure
αr1 = αr4 and αr2 = αr3. An example of this reward struc-
ture is shown in Table 1. Under a symmetric reward set-
ting the expected reward for each player is the same across
all regions r. In an asymmetric reward structure we allow
each of the αri to differ in both sign and magnitude. Ta-
ble 2 shows an example of an asymmetric reward structure.
Under an asymmetric setting the expected reward for each
player may vary across each region r. This gives a player an
incentive to reach regions with a higher expected reward.

Table 1: Symmetric reward structure for Player 1.

Region 1 Region 2 Region 3
(heads1) ∧ (heads2) 10 5 20
(heads1) ∧ (tails2) -10 -5 -20
(tails1) ∧ (heads2) -10 -5 -20
(tails1) ∧ (tails2) 10 5 20

Table 2: Asymmetric reward structure for Player 1.

Region 1 Region 2 Region 3
(heads1) ∧ (heads2) 1 5 7
(heads1) ∧ (tails2) -3 -5 -2
(tails1) ∧ (heads2) 0 -5 10
(tails1) ∧ (tails2) 2 5 20
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(a) Symmetric rewards.
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(b) Asymmetric rewards.

Figure 1: The optimal value functions of the continuous
stochastic matching pennies game for Player 1 at horizon 4
under (a) symmetric and (b) asymmetric reward structures.
Threshold values are set to c = 0.3 and d = 0.7 and are
highlighted in red and green, respectively. The step size is
k = 0.3.

6.1.2 Results

We investigate the continuous stochastic matching pennies
game under both symmetric and asymmetric rewared struc-
tures. For both experiments the threshold values are set to
c = 0.3 and d = 0.7. The step size is k = 0.3.

Figure (1a) shows the results of the continuous stochastic
matching pennies game using the symmetric reward struc-
ture given in Table 1. The results show that the expected
reward for Player 1 remains at zero over all 4 horizons, ir-
respective of the state x. The symmetric reward structure
clearly shows that both players achieve the same expected
reward in all regions r. This in turn ensures that both play-
ers are indifferent between their pure strategies. Hence, the
expected reward for each player is zero in all regions. This
result corresponds to the well known solution of the match-
ing pennies game with symmetric rewards and serves as a
proof of concept for our novel solution technique.

Figure (1b) shows the effect of the asymmetric reward
structure given in Table 2. The figure shows that Player 1
achieves the highest expected reward in Region 3, followed
by Region 2 and finally by Region 1. This corresponds to
the expected reward within each region of Table 2. The
results indicate that the Player 1 is no longer indifferent be-
tween its pure strategies in each region and may take short-
term losses to reach more favourable regions.

6.2 BINARY OPTION STOCHASTIC GAME

Binary options are financial instruments which allow an in-
vestor to bet on the outcome of a yes/no proposition. The
proposition typically relates to whether the price of a par-
ticular asset that underlies the option will rise above or fall
below a specified amount, known as the strike price, κ ∈ R.
When the option reaches maturity the investor receives a
fixed pay-off if their bet was correct and nothing otherwise.

6.2.1 Domain Description

We analyse the valuation of a binary option as an extensive
form zero-sum game between a trader and the market. The
aim of the trader is to maximise their expected discounted
pay-off at a fixed horizon H through buying and selling
options within an adversarial market. The problem has two
state variables: the underlying market value of the asset
v ∈ [0, 100] and the trader’s inventory of options i ∈ N.

At each time step the trader can execute one of three actions
atrd ∈ {buytrd, selltrd, holdtrd}, where buytrd refers to a
request to buy an option from the market, selltrd refers to a
request to sell an option to the market and holdtrd is equiv-
alent to taking no action. The market can execute one of
two actions: amkt ∈ {sellmkt, nsellmkt}, where sellmkt
corresponds to selling an option to the trader and nsellmkt
corresponds to not selling to the trader.

The joint actions of the trader and market, atrd and amkt,
respectively, affect both the underlying market value of the
asset and the trader’s inventory. For the sake of simplicity
we assume that the market value may increase or decrease
by fixed step sizes, u ∈ R for an increase and d ∈ R for a
decrease.

The trader’s option inventory dynamics are given by:

P (i′|v, i, atrd, amkt) =

δ


i′ −





(buytrd) ∧ (sellmkt) : i+ 1

(selltrd) ∧ (i > 0) : i− 1

otherwise : i




It should be noted that under this formulation the market
will always buy an option from the trader when the trader
selects selltrd. The market value changes according to:

P (v′|v, i, atrd, amkt) =

δ


v′ −





(buytrd) ∧ (sellmkt) : v + u

(selltrd) ∧ (i > 0) : v − d
otherwise : v




Assuming that the strike price κ ∈ [0, 100], the rewards
obtained by the trader are given by:

Rtrader =

{
(selltrd) ∧ (i > 0) ∧ (v > κ) : 1

otherwise : 0
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The market’s reward is simply the additive inverse of the
trader’s reward. Hence, the binary option game is zero-
sum.

6.2.2 Results

Figure 2: The optimal value function of the binary option
stochastic game for the trader at horizon 20. The strike
price is set to κ = 45.0 and the increment and decrement
values are set to u = 1.0 and d = 1.0, respectively. Under
the domain specification the value function is invariant to
the inventory i.

In Figure (2) we show the optimal value function for the
binary option game at horizon 20. The strike price is set to
κ = 45.0 and the increment and decrement values, u and
d are both set to 1.0. The value function clearly shows that
under this formulation the trader achieves the most reward
by selling options as soon v > κ. Selling an option causes
the underlying value to decrease. Once the value falls be-
neath the strike price, the trader will buy options, which
increases the underlying value. This leads to the continual
cycling of buying and selling of the option at values close
to the strike price κ. In essence the trader behaves like a
market maker in that they take both sides of the transaction
at values near κ. We note that while Figure (2) is invariant
to the inventory of options i, its inclusion is critical for the
correct formalisation of the domain.

6.3 ROBUST ENERGY PRODUCTION

The provision of energy resources is an integral component
of any economy. Energy providers must be able to pro-
duce energy in response to changes in energy demand. In
situations where demand exceeds supply, an energy crisis
may occur. In this paper we investigate energy production
from the viewpoint of an energy provider responsible for
supplying energy in an adversarial environment.

6.3.1 Domain Description

We define our energy production domain as an extensive
form zero-sum game between an energy provider and na-
ture. The aim of the energy provider is to maximise its

expected discounted reward at a fixed horizon H by chang-
ing production levels in response to changes in demand.
The domain has two state variables: the production level
p ∈ R+ and the energy demand d ∈ R+.

At each time step the energy provider can execute one of
two actions aprd ∈ {incprd, decprd}, where incprd refers
to increasing energy production and decprd refers to de-
creasing energy production. Nature can also execute one
of two actions anat ∈ {incdem, decdem}, where incdem
refers to increasing energy demand and decdem refers to
decreasing energy demand. We specify the increase in the
amount of energy produced or demanded by prdu, natu ∈
R+ and a corresponding decrease by prdd, natd ∈ R+.

The joint actions of the energy provider and nature, aprd
and anat, respectively, affect the production level as fol-
lows:

P (p′|d, p, aprd, anat) =

δ


p′ −





(incprd) : p+ prdu
(decprd) ∧ (p > prdd) : p− prdd
otherwise : p




The energy demand changes according to:

P (d′|d, p, aprd, anat) =

δ


d′ −





(incdem) : d+ natu
(decdem) ∧ (d > natd) : d− natd
otherwise : d




The reward obtained by the energy provider are specified
as:

Rprd =

{
(p < d) : −100
otherwise : 0

We note that under this reward structure failure to meet en-
ergy demand is heavily penalised, whereas meeting or even
exceeding demand are given the same reward. Nature’s re-
ward is simply the additive inverse of the energy provider’s
reward.

6.3.2 Results

In Figure (3) we show the optimal value function for the
robust energy production game at horizon 8. The produc-
tion and demand increase and decrease variables were set
to prdu = prdu = 1.0 and natu = natd = 0.5, respec-
tively. The value function shows that the energy provider
achieves the highest value when the energy provided meets
or exceeds demand. The value function is lowest when the
demand exceeds supply, which is in accordance with the
reward structure. The value function clearly decreases in
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Figure 3: The optimal value function of the robust energy
production game for the producer at horizon 8. The pro-
duction and demand increase and decrease variables were
set to prdu = prdu = 1.0 and natu = natd = 0.5, respec-
tively.

a step-wise manner from the point where the production
level meets demand, indicating that production levels just
beneath demand have a higher value than those well below
demand.

7 RELATED WORK

Solutions to stochastic games have been proposed from
within both game theory and reinforcement learning. The
first algorithm, game theoretic or otherwise, for finding a
solution to a stochastic game was given by Shapley (Shap-
ley, 1953). Shapley’s algorithm calculates a value function
V (s) over discrete states which converges to an optimal
value function V ∗(s). V ∗(s) represents the expected dis-
counted future reward if both players in the game follow
the game’s Nash equilibrium. The algorithm is in essence
an extension of the Value Iteration algorithm to stochastic
games.

A partically implementable solution, based on reinforce-
ment learning, for a subclass of stochastic games was
first introduced by (Littman, 1994). Littman’s algorithm,
Minimax-Q, extends the traditional Q-learning algorithm
for MDPs to zero-sum discrete stochastic games. The al-
gorithm converges to the stochastic game’s equilibrium so-
lution. Hu and Wellman (Hu & Wellman, 1998) extended
Minimax-Q to general-sum games and proved that it con-
verges to a Nash equilibrium under certain restrictive con-
ditions. Although both reinforcement learning based algo-
rithms are able to calculate equilibrium solutions they are
limited to discrete state formulations of stochastic games.
In this paper we provide the first known exact closed-form
solution to a subclass of continuous state zero-sum stochas-
tic games defined by piecewise constant reward and piece-
wise linear transition functions.

Several techniques have been put forward to tackle contin-

uous state spaces in MDPs. Li and Littman (Li & Littman,
2005) describe a method for approximate solutions to con-
tinuous state MDPs. In their work, Li and Littman only
allow for rectilinearly aligned constraints in their reward
and transition functions, not arbitrary linear constraints,
and cannot handle general linear transition models with-
out approximation. Our SDP method provides exact solu-
tions without these restrictions, which makes SDP strictly
more general. Also, Li and Littman did not consider game-
theoretic extensions of their work or the parameterised op-
timisation problem that these extensions entail.

Symbolic dynamic programming techniques have been
previously used to calculate exact solutions to single agent
MDPs with both continuous state and actions in a variety
of non-game theoretic domains (Sanner et al., 2011; Za-
mani & Sanner, 2012). In this paper we build on this work
and present the first application of SDP to stochastic games
with concurrently acting agents.

8 CONCLUSIONS

In this paper we have characterised a subclass of zero-
sum continuous stochastic games that can be solved exactly
via parameterised linear optimisation. We have also pre-
sented a novel symbolic dynamic programming algorithm
that can be used to calculate exact solutions to this sub-
class of games for arbitrary horizons. The algorithm was
used to calculate the first known exact solutions to a vari-
ety of continuous stochastic games with piecewise constant
reward and piecewise linear transitions.

There are a number of avenues for future research. Firstly,
it is important to examine more general representations
of the reward and transition functions while still guar-
anteeing exact solutions. Another direction of research
lies within improving the scalability of the algorithm by
either extending techniques for Algebraic Decision Dia-
grams (Bahar et al., 1993) from APRICODD (St-Aubin
et al., 2000) under the current restrictions on the reward
and transition functions, bounded error compression for
XADDs (Vianna et al., 2013) for more expressive represen-
tations, or lazy approximation of value functions as piece-
wise linear XADDs (Li & Littman, 2005). Search based
approaches such as RTDP (Barto et al., 1995) and HAO*
(Meuleau et al., 2009) are also readily adaptable to SDP.
These extensions may then be used to model sequential
decision making in more complex financial and economic
domains. Finally, SDP can be used to calculate exact solu-
tions to general sum stochastic games. The advances made
within this paper open up a number of potential novel re-
search paths which may be used to progress solutions to
sequential game theoretic domains with continuous state.
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Abstract

The paper presents and evaluates the power of
limited memory best-first search over AND/OR
spaces for optimization tasks in graphical mod-
els. We propose Recursive Best-First AND/OR
Search with Overestimation (RBFAOO), a new
algorithm that explores the search space in a
best-first manner while operating with restricted
memory. We enhance RBFAOO with a simple
overestimation technique aimed at minimizing
the overhead associated with re-expanding inter-
nal nodes and prove correctness and complete-
ness of RBFAOO. Our experiments show that
RBFAOO is often superior to the current state-
of-the-art approaches based on AND/OR search,
especially on very hard problem instances.

1 INTRODUCTION

Graphical models provide a powerful framework for rea-
soning with probabilistic information. These models use
graphs to capture conditional independencies between vari-
ables, allowing a concise knowledge representation and ef-
ficient graph-based query processing algorithms. Combi-
natorial optimization tasks such as MAP or marginal MAP
inference arise in many applications and are typically tack-
led with either search or inference algorithms (Pearl, 1988;
Dechter, 2003). The most common search scheme is the
depth-first branch and bound. Its use for finding exact so-
lutions was studied and evaluated extensively in the context
of AND/OR search spaces that are sensitive to the underly-
ing problem structure (Marinescu and Dechter, 2009a,b).

Meanwhile, best-first search algorithms, despite their bet-
ter time efficiency than depth-first search (Dechter and
Pearl, 1985), are largely ignored in practice primarily due
to their inherently enormous memory requirements (Mari-
nescu and Dechter, 2009b). Furthermore, an important
best-first search property, avoiding the exploration of un-
bounded paths, seems irrelevant to optimization tasks in

graphical models where all solutions are at the same depth
(ie, the number of variables).

We aim at inheriting the advantages of both depth-first
and best-first search schemes. We introduce RBFAOO, a
new algorithm that explores the context minimal AND/OR
search graph associated with a graphical model in a best-
first manner (even with non-monotonic heuristics) while
operating within restricted memory. RBFAOO extends Re-
cursive Best-First Search (RBFS) (Korf, 1993) to graphical
models and thus uses a threshold controlling technique to
drive the search in a depth-first like manner while using the
available memory to cache and reuse partial search results.
In addition, RBFAOO employs an overestimation method
designed to further reduce the high overhead caused by
re-expanding internal nodes. RBFAOO is also related to
the AND/OR search algorithms based on proof/disproof
numbers (Allis et al., 1994) (eg, df-pn and df-pn+ (Na-
gai, 2002)) which are very popular for solving two-player
zero-sum games. However, since game solvers ignore the
solution cost, they do not come with optimality guarantee.
Moreover, while df-pn’s completeness on finding subop-
timal solutions assumes that the cache table preserves all
search results of nodes previously explored (Kishimoto and
Müller, 2008), RBFAOO is proven to be complete with
a small cache table. We evaluate empirically RBFAOO
on benchmark problems used during the PASCAL2 Infer-
ence Challenge. Our results show that RBFAOO is often
superior to the state-of-the-art solvers based on AND/OR
search, especially on the hardest problem instances.

2 PRELIMINARIES

We consider combinatorial optimization problems defined
over graphical models, including Bayesian networks and
Markov random fields (Pearl, 1988; Koller and Friedman,
2009). A graphical model is a tupleM = 〈X,D,F,⊗〉,
where X = {X1, . . . , Xn} is a set of variables and D =
{D1, . . . , Dn} is the set of their finite domains of values.
F = {f1, . . . , fr} is a set of positive real-valued func-
tions defined on subsets of variables, called scopes (ie,
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(a) Primal graph (b) Pseudo tree

Figure 1: A simple graphical model.

∀j fj : Yj → R+ and Yj ⊆ X). The set of func-
tion scopes implies a primal graph whose vertices are the
variables and which includes an edge connecting any two
variables that appear in the scope of the same function.
The combination operator

⊗ ∈ {∏,∑} defines the com-
plete function represented by the graphical model M as
C(X) =

⊗r
j=1 fj(Yj). In this paper, we focus on min-sum

problems, in which we would like to compute the optimal
value C∗ and/or its optimizing configuration x∗:

C∗ = C(x∗) = min
X

r∑

j=1

fj(Yj) (1)

Koller and Friedman (2009) convert the MAP task defined
bymaxX

∏
j fj to log-space and solve it as an energy min-

imization (min-sum) problem to avoid numerical issues.

2.1 AND/OR SEARCH SPACES

Dechter and Mateescu (2007) introduce the concept of
AND/OR search spaces for graphical models. A pseudo
tree of the primal graph defines the search space and cap-
tures problem decomposition.

Definition 2.1. A pseudo tree of an undirected graph G =
(V,E) is a directed rooted tree T = (V,E′), such that
every arc ofG not included inE′ is a back-arc in T , namely
it connects a node in T to an ancestor in T . The arcs in E′

may not all be included in E.

Given a graphical modelM = 〈X,D,F,∑〉 with primal
graph G and a pseudo tree T of G, the AND/OR search
tree ST based on T has alternating levels of OR nodes cor-
responding to the variables and AND nodes correspond-
ing to the values of the OR parent’s variable, with edges
weighted according to F. Identical subproblems, identi-
fied by their context (the partial instantiation that separates
the subproblem from the rest of the problem graph), can be
merged, yielding an AND/OR search graph (Dechter and
Mateescu, 2007). Merging all context-mergeable nodes
yields the context minimal AND/OR search graph, denoted
by CT . The size of the context minimal AND/OR graph is
exponential in the induced width of G along a depth-first
traversal of T (Dechter and Mateescu, 2007).

Figure 2: Context minimal AND/OR search graph.

A solution tree T of CT is a subtree such that: (1) it con-
tains the root node of CT ; (2) if an internal AND node n
is in T then all its children are in T ; (3) if an internal OR
node n is in T then exactly one of its children is in T ; (4)
every tip node in T (ie, nodes with no children) is a ter-
minal node. The cost of a solution tree is the sum of the
weights associated with its arcs.

Each node n in CT is associated with a value v(n) captur-
ing the optimal solution cost of the conditioned subprob-
lem rooted at n. It was shown that v(n) can be com-
puted recursively based on the values of n’s successors:
OR nodes by minimization, AND nodes by summation (see
also (Dechter and Mateescu, 2007)).

Example 1. Figure 1(a) shows a simple graphical model
with 5 bi-valued variables {A,B,C,D,E} and 3 functions
{f1(ABC), f2(ABD), f3(BDE)}, respectively. Figure 2
displays the context minimal AND/OR search graph based
on the pseudo tree from Figure 1(b). The contexts of the
variables are shown next to the corresponding pseudo tree
nodes. A solution tree corresponding to the assignment
(A = 0, B = 1, C = 1, D = 0, E = 0) is highlighted.

2.2 AND/OR SEARCH ALGORITHMS

AND/OR Branch and Bound (AOBB) (Marinescu and
Dechter, 2009a,b) is a state-of-the-art informed search ap-
proach for solving optimization tasks over graphical mod-
els. AOBB explores in a depth-first manner the context
minimal AND/OR search graph associated with the prob-
lem and therefore takes advantage of problem decompo-
sition. During search, AOBB keeps track of the value of
the best solution found so far (an upper bound on the opti-
mal cost) and uses this value and the heuristic function to
prune away portions of the search space that are guaran-
teed not to contain the optimal solution in a typical branch
and bound manner. Most notably, AOBB guided by a class
of partitioning based heuristics won the first place in the
PASCAL2 competition (Otten et al., 2012).

Best-First AND/OR Search (Marinescu and Dechter,
2009b) (AOBF) is a variant of AO* (Nilsson, 1980) appli-
cable to graphical models that explores the graph in a best-
first rather than depth-first manner. This enables AOBF
to visit a significantly smaller search space than AOBB
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which sometimes translates into important time savings.
Extensive empirical evaluations (Marinescu and Dechter,
2009b) showed that when given enough memory AOBF is
often superior to AOBB. However, in many practical sit-
uations AOBF’s overhead of maintaining in memory the
explicated portion of the search space is still prohibitively
large. AOBB therefore remains the best alternative.

3 RECURSIVE BEST-FIRST AND/OR
SEARCH WITH OVERESTIMATION

We introduce RBFAOO, a new algorithm that belongs to
the class of recursive best-first search algorithms and em-
ploys a local threshold controlling mechanism to explore
the context minimal AND/OR search graph in a depth-first
like manner (Korf, 1993; Nagai, 2002). It can however use
additional memory to cache and reuse partial search results
to enhance performance. RBFAOO also leverages an over-
estimation technique to possibly find a suboptimal solution
and then refine it to an optimal one. The latter plays an
essential role in enhancing the performance by avoiding a
high overhead of re-expanding internal nodes.

Before explaining RBFAOO in detail, we give an overview
of the threshold controlling scheme that makes RBFAOO
behave similarly to AO*. Assume that the weight from an
OR node to an AND node is 1, the weight from an AND
node to an OR node is 0, and a heuristic function h returns
values as shown in Figure 3. Let q(n), called q-value, be
a lower bound of the solution cost at node n and th(n) be
RBFAOO’s threshold at n. RBFAOO keeps examining the
subtree rooted at n until either q(n) > th(n) or the subtree
is solved optimally. In Figure 3(a), RBFAOO selects B to
expand, because w(A,B) + q(B) = w(A,B) + h(B) =
3 < w(A,C) + q(C) = w(A,C) + h(C) = 5. It sets
th(B) = w(A,C) + q(C) − w(A,B) = 4 to indicate
that C becomes the best child (ie, w(A,B) + q(B) >
w(A,C) + q(C) holds) if q(B) > th(B). Then, RBFAOO
expands B and updates q(B) by using the q-values of B’s
children (Figure 3(b)). Because q(B) = q(D) + q(E) =
h(D) + h(E) = 3, q(B) ≤ th(B) still holds. Hence,
RBFAOO examines B’s descendants with no backtracks
to A. Assume that D is chosen to examine. RBFAOO
sets th(D) = th(B) − q(E) = 2 to indicate that C be-
comes best if q(D) > th(D) holds, which is equivalent
to q(B) > th(B), because q(B) = q(D) + q(E) and
th(B) = th(D) + q(E). Next, RBFAOO expands D and
updates q(D) = w(D,F ) + h(F ) = 4 (Figure 3(c)). Be-
cause q(D) > th(D), the subtree rooted at D contains no
best leaf in terms of AO*’s strategy. RBFAOO backtracks
to A by updating q(B) = q(D) + q(E) = 6 and exam-
ines C (Figure 3(d)) with th(C) = w(A,B) + q(B) −
w(A,C) = 6 to be able to select B when B becomes best.

RBFAOO gradually grows its search space by updating the
q-values of internal nodes and re-expanding them. The

overhead of internal node re-expansions is still high, even
if RBFAOO does not always propagate back the q-values.
For example, assume that an internal OR node n has two
children c1 and c2, c1 is selected to re-expand, and RB-
FAOO proves that c2 becomes best to examine after ex-
panding only one leaf that is k-steps away from c1. If k is
large, RBFAOO need to spend most of time in re-expanding
internal nodes without exploring the new search space. The
overestimation technique avoids this scenario by increasing
the threshold while it verifies solution optimality.

3.1 ALGORITHM DESCRIPTION

Figure 4 shows the pseudo-code of RBFAOO. Let ε be a
small number and assume∞− ε <∞. In practice, a finite
real number is used to represent∞. Let δ be an empirically
tuned parameter that determines the amount of overestima-
tion. HasNoChildren checks whether a node has no chil-
dren (ie, terminal leaf or dead-end) or not. Evaluate eval-
uates a terminal leaf/dead-end n and returns a pair of the
cost (ie, 0 or∞) and a Boolean flag indicating whether n is
solved or a dead-end. UnsolvedChild returns an unsolved
child. SaveInCache saves in the cache table a q-value
and a flag indicating whether a node is solved optimally or
not. RetrieveFromCache retrieves them from the cache
table. Context calculates the context of a node.

When RBFAOO starts solving a problem, the threshold of
the root node is set to ∞ − ε. If RBFAOO exceeds this
threshold, the problem is proven to have no solution. Oth-
erwise, RBFAOO returns the optimal solution cost to the
problem. In addition, RBFAOO can be easily instrumented
to recover the assignment corresponding to the optimal so-
lution cost (this extension is omitted for clarity reasons).

Function RBFS(n) traverses the subtree rooted at n in a
depth-first manner. It calculates either an optimal solution
cost or a lower bound by using BestChild or Sum and
checks if the termination condition is satisfied. If the solu-
tion optimality is guaranteed at n, n.solved is set to true.

At an OR node,RBFS(n) may find a suboptimal solution.
In this case, n.solved is still set to false and RBFS(n)
continues examining other children until it finds an optimal
solution at n. Because the solution cost found so far is an
upper bound of the optimal one, RBFS(n) uses that so-
lution cost (maintained by ub) to prune away unpromising
branches and to adjust the threshold.

WhenRBFS(n) selects cbest, it examines cbest with a new
threshold. At OR nodes, cbest.th is set to subtracting the
weight between n and cbest from the minimum of:

1. The current threshold for n.

2. The second smallest lower bound q2 to solve n’s
child with considering the weight from n to that child
among a list of such lower bounds of n’s children.
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Figure 3: Snapshot of RBFAOO without overestimation.

This indicates when the current second best child be-
comes the best one. Additionally, a parameter δ called
overestimation rate, that allows for returning a subop-
timal solution cost is added to q2 to avoid an excessive
number of backtracks to n.

3. The upper bound of the optimal solution at n.

At AND nodes, cbest.th is set to the sum of cbest’s q-value
and the gap between n.th and the total q-value of n’s chil-
dren. If q(cbest) > cbest.th, q(n) > n.th also holds.

Let N be the number of nodes in the search space. If the
search space fits into memory, AO* expands O(N) nodes
in the worst case. In contrast, due to node re-expansions,
RBFAOO’s worst-case scenario is O(N2). However, in
practice, by introducing δ, RBFAOO avoids such a high
node re-expansion overhead (see Section 4).

3.2 IMPLEMENTATION DETAILS

The cache table is implemented as a hash table with the
Zobrist function (Zobrist, 1970) using 96-bit integers. The
Zobrist function computes almost uniformly distributed
hash keys by XORing precomputed random integers, each
of which represents the component of a context and is com-
monly used in game-playing programs and in planning.
Each cache table entry preserves the context of a node to
avoid collisions caused by an astronomically small possi-
bility of two different nodes having the same hash key.

When RBFAOO fills up the cache table and tries to store
new results there, some cached results must be replaced.
We use SmallTreeGC (Nagai, 1999), a batch-based re-
placement that discards R% of the table entries with small
subtree sizes. We set R to 30.

Due to floating-point errors, RBFAOO is occasionally un-
able to expand a new leaf. We bypass this by using small
error margins when comparing floating-point numbers.

As in full RBFS (Korf, 1993), q-values of children can be
increased based on the current q-value of their parent. This
technique generates more accurate heuristic information
when cache table entries are replaced or non-monotonic
heuristic functions are used. We implemented this tech-

nique and observed small performance improvement.

3.3 CORRECTNESS AND COMPLETENESS

We prove that RBFAOO is both correct and complete for
solving optimization tasks defined over graphical models
even with a small cache table and arbitrary cache table
replacement schemes as long as certain table entries are
preserved. In contrast, df-pn+ may return suboptimal so-
lutions if the contexts of nodes are used. Additionally,
although its completeness on finding either one (possibly
suboptimal) or no solution is proven, df-pn+ must preserve
all TT entries and the completeness with TT replacement
schemes remains an open question (Kishimoto and Müller,
2008). The following theorems hold with/without enhance-
ments described in Section 3.2.

Theorem 3.1 (correctness). Given a graphical model
M = 〈X,D,F,∑〉, if RBFAOO solves M with admis-
sible heuristic function h, its solution is always optimal.

Proof. Let v(n) be the optimal solution cost for node n.
We first prove that for any value q for node n in the cache
table, q ≤ v(n) holds. Since different nodes with the
same context are proven to be equivalent in DAGs (Mari-
nescu and Dechter, 2009b), we denote n as Context(n)
when a search result at node n is saved in the cache table.
Additionally, we assume h(n) = h(n′) if Context(n) =
Context(n′).

Let Cachet be the state of the cache table immediately af-
ter the t-th save is performed in the cache table. Let Qt(n)
be the value saved in Cachet for n if that value exists in
Cachet or h(n) if n is not preserved in Cachet. By induc-
tion on t, we prove that all the entries in cache table contain
values that do not overestimate optimal ones.

1. Because no result is stored inCache0, the above prop-
erty holds for t = 0.

2. Assume that the above property holds for t = k.
Qk+1(n), saved in Cachek+1, is then calculated as:

• If n is a terminal leaf, Evaluate(n) in the pseudo
code always returns v(n). Qk+1(n) = v(n)
therefore holds.
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// Set up for the root node
double RBFAOO(node root) {
root.th =∞− ε;
q = RBFS(root);
return q;
}
// Depth-first search with a threshold
double RBFS(node n) {

// Terminal leaf/dead-end check
if (HasNoChildren(n)) {

// Calculate the probability
// for a terminal leaf or dead-end
(q, s) = Evaluate(n);
// Store search results
SaveInCache(Context(n),q,s);
return q;
}
GenerateChildren(n);
// Continue search until satisfying
// the termination condition
if (n is an OR node)

loop {
(cbest, q, q2, ub) = BestChild(n);
if (n.th < q || n.solved = true)

break;
// Update the threshold
cbest.th = min(n.th,

q2 + δ,
ub)− w(n, cbest);

RBFS(cbest);
}

else
loop { // AND node
q = Sum(n);
if (n.th < q || n.solved = true)

break;
(cbest, qcbest) = UnsolvedChild(n);
// Update the threshold
cbest.th = n.th− (q − qcbest);
RBFS(cbest);
}

// Store search results
SaveInCache(Context(n),q,n.solved);
return q;
}

// Select the best child
double BestChild(node n) {
q = q2 = ub =∞;
n.solved=false;
foreach (n’s child ci) {
ct = Context(ci);
if (ct is in the cache table)
(qci , s) = RetrieveFromCache(ct);

else {
qci = h(ci);
s=false;
}
qci = w(n, ci) + qci ;
if (s=true) // ci is solved
ub = min(ub, qci);

if (qci < q ||
(qci = q && n.solved=false)) {
q2 = q;
n.solved = s;
q = qci ;
cbest = ci;
} else if (qci < q2)
q2 = qci ;

}
return (cbest, q, q2, ub);
}
// Calculate the total value
double Sum(node n) {
q = 0;
n.solved = true;
foreach (n’s child ci) {
ct = Context(ci);
if (ct is in the cache table)
(qci , s) = RetrieveFromCache(ct);

else {
qci = h(ci);
s = false;
}
q = q + qci ;
n.solved = n.solved ∧ s;
}
return q;
}

Figure 4: Pseudo-code of RBFAOO

• If n is an internal OR node, Qk+1(n) =
w(n, cbest) + Qk(cbest) = mini(w(n, ci) +
Qk(ci)) holds where ci is n’s child. Addi-
tionally, because Qk(ci) ≤ v(ci), Qk+1(n) ≤
mini(w(n, ci) + v(ci)) = v(n) holds.

• If n is an internal AND node, Qk+1(n) =∑
iQk(ci) where ci is n’s child. SinceQk(ci) ≤

v(ci), Qk+1(n) ≤
∑
i v(ci) = v(n) holds.

Hence, Qt(n) ≤ v(n) holds in case of t = k + 1.

Let Q(root) be a value that is about to be saved in the
cache table with satisfying the termination condition of

root.solved = true. Q(root) ≤ v(root) holds from the
above. Additionally, because RBFAOO has traced a so-
lution tree with the cost of Q(root), v(root) ≤ Q(root)
holds. Therefore, Q(root) = v(root) holds.

Theorem 3.2 (completeness). LetM = 〈X,D,F,∑〉 be
a graphical model with primal graph G, let T be a pseudo
tree G and let CT be the context minimal AND/OR search
graph based on T (also a finite DAG). Assume that RB-
FAOO preserves the q-values of the nodes n1, n2, · · · , nk
which are on the current search path and the q-values of
ni’s siblings. Then RBFAOO eventually returns an optimal
solution or proves no solution exists.
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Proof sketch. Let a marked node be a node expanded at
least once by RBFAOO and an unmarked node be a node
that has never been expanded. Denote p1 ⊂ p2 if the path
length of p2 is longer than that of p1 and p2 is identical to
p1 if p2 is limited to the path with the length of p1. Denote
p1 6⊂ p2 unless it holds p1 ⊂ p2. Let s(n, p) be the sum of
the edge costs from the root to n via path p. Assume that
s(n, p) + q(n) <∞− ε holds for any path p if q(n) 6=∞,
which is reasonable in practical settings.

Let qt,p(n) and tht,p(n) be the q-value and threshold for t-
th visit to n via path p, respectively. Assume that RBFAOO
expands no unmarked nodes after expanding k unmarked
nodes. Then, because the search space is finite, there are
two unproven marked nodes n and m examined as follows:

1. RBFAOO starts searching downward from n via path
p1 since qt1,p1(n) ≤ tht1,p1(n) holds.

2. RBFAOO reaches m via path p2 that satisfies
tht2,p2(m) < qt2,p2(m) and p1 ⊂ p2.

3. RBFAOO keeps exploring the remaining search space
rooted at n via p1 (and composed of marked nodes)
and backtracks to n.

4. Continue steps (1)-(3).

If n is an AND node, satisfying tht′,p3(c) < qt′,p3(c) im-
mediately leads to satisfying tht,p1(n) < qt,p1(n) where
c is n’s unproven child and p1 ⊂ p3. Because back-
tracking to n’s parent contradicts step (1), n is an OR
node. Additionally, tht′,p3(c) < thu,p3(c) holds for any
unproven child c, t′ < u and p1 ⊂ p3, because the q-values
of n’s children are preserved in memory as described in
the assumption of the theorem. With similar discussions,
there is an infinite sequence u1, u2, · · · , uk, · · · that satis-
fies ui < uj for i < j, thui,p2(m) < thuj ,p2(m) and
thui,p2(m) < qui,p2(m). This indicates that m has at least
one unproven child o1 via path r1 (p2 6⊂ r1) that contributes
to increasing qui,p2(m) and satisfying thui,p2 < qui,p2(m)
when qui,p2(m) is calculated. Because the search space is
DAG, q(o1) is never affected by q(m). With similar dis-
cussions, if no unmarked node is expanded, there is an in-
finite number of nodes o1, o2, · · · , ok, · · · , where oj+1 is
a child of oj that contributes to increasing q(oj) and sat-
isfying th(oj) < q(oj). However, this contradicts the as-
sumption of the finite search space. Hence, by eventually
examining the whole search space, RBFAOO finds an opti-
mal solution (see Theorem 3.1) or proves no solution.

4 EXPERIMENTS

We empirically evaluate our proposed best-first search
scheme on the MAP task in graphical models. We compare

RBFAOO against the state-of-the-art depth-first and best-
first AND/OR search solvers proposed recently in (Mari-
nescu and Dechter, 2009b) and denoted by AOBB and
AOBF, respectively. All competing algorithms use pre-
compiled mini-bucket heuristics (Kask and Dechter, 2001;
Marinescu and Dechter, 2009b) for guidance and are re-
stricted to a static variable ordering obtained as a depth-first
traversal of a minfill pseudo tree (Marinescu and Dechter,
2009a). Since AOBF cannot use an initial upper bound (ob-
tained via local search) we also disabled its use by AOBB
and RBFAOO in order to maintain a fair comparison.

Our benchmark problems1 include three sets of instances
from genetic linkage analysis (Fishelson and Geiger, 2002)
(denoted pedigree), grid networks and protein side-
chain interaction networks (denoted pdb) (Yanover et al.,
2008). In total, we evaluated 21 pedigrees, 32 grids and
240 protein networks. The algorithms were implemented
in C++ (64-bit) and the experiments were run on a 2.6GHz
8-core processor with 80GB of RAM.

We report the CPU time in seconds and the number of
nodes expanded for solving the problems. We also specify
the problems parameters such as the number of variables
(n), maximum domain size (k), the depth of the pseudo
tree (h) and the induced width of the graph (w∗). The
best performance points are highlighted. In each table,
’oom’ stands for out-of-memory and ’-’ denotes out-of-
time. Note that oom for RBFAOO/AOBB indicates that
the mini-bucket heuristic pre-computation procedure uses
up the physical memory before search is performed.

Tables 1 and 2 show the results obtained for experiments
with pedigree, grid and protein networks. For space rea-
sons and clarity we select a representative subset from the
full 293 instances. The columns are indexed by the mini-
bucket i-bound which ranged between 6 and 16 for pedi-
grees and grids, and between 2 and 5 for proteins, respec-
tively. All algorithms were allotted a 1 hour time limit.
Algorithm AOBF(i) was allowed a maximum of 80GB of
RAM while algorithm RBFAOO(i) used a 10-20GB cache
table with 134,217,728 entries pre-allocated before search.
The overestimation parameter δ was set to 1.

We observe clearly that RBFAOO(i) improves consider-
ably over its competitors, especially at relatively small i-
bounds which yield relatively weak heuristics. For ex-
ample, on the pedigree30 instance, RBFAOO(6) with the
smallest reported i-bound (i = 6) was 4 and 41 times
faster than AOBF(6) and AOBB(6), respectively. Similarly,
RBFAOO(6) solves the 75-23-5 grid in about 30 minutes
and expands over 300 million nodes, while both AOBB(6)
and AOBF(6) run out of time and memory, respectively.
As the i-bound increases and the heuristics become more
accurate thus pruning the search space more effectively,
the differences in running time between the algorithms de-

1All instances are available at http://graphmod.ics.uci.edu.
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Table 1: CPU time (seconds) and number of nodes expanded for pedigree and grid networks. Time limit 1 hour.
RBFAOO(i) ran with a 10-20GB cache table (134,217,728 entries) and overestimation parameter δ = 1.

instance algorithm i = 6 i = 8 i = 10 i = 12 i = 14 i = 16
(n, k, w∗, h) time nodes time nodes time nodes time nodes time nodes time nodes

pedigree instances
AOBB - - - - - -

pedigree7 AOBF oom oom oom oom oom oom
(1068,4,28,140) RBFAOO - - - 2210 345204317 1368 216767091 818 144733023

AOBB - - - - - 1076 139749607
pedigree9 AOBF oom oom 1846 30506650 1379 20960401 1152 20897564 263 7682927
(1118,7,25,123) RBFAOO 1084 195214857 728 136764248 522 97410715 248 46922921 241 44561263 60 10634230

AOBB - - - - - -
pedigree13 AOBF oom oom oom oom oom oom
(1077,3,30,125) RBFAOO - - - - - 2629 364037130

AOBB - - - - - -
pedigree19 AOBF oom oom oom oom oom oom
(793,5,21,51) RBFAOO - - 1753 319268527 834 168262596 226 45738797 378 69780223

AOBB 825 113195179 1450 198371250 244 34182326 63 10855277 102 17794376 3 107437
pedigree30 AOBF 83 2648120 103 2689106 45 1717523 24 867988 39 932986 3 30794
(1289,5,20,105) RBFAOO 20 5435997 19 5401921 14 3840692 5 1406493 6 1691396 3 60479

AOBB - 935 125740961 107 15616376 5 885551 9 1272810 5 24174
pedigree39 AOBF 307 9740964 215 8073776 53 2347928 8 384757 14 607860 5 19960
(1272,5,20,77) RBFAOO 79 19804239 67 16260143 14 3461943 2 480866 4 666873 5 24826

AOBB - - - - - -
pedigree41 AOBF oom oom oom oom oom oom
(1062,5,29,119) RBFAOO - - - 2706 373308327 3312 440228598 1517 210630024

binary grid instances
AOBB - - - - - -

50-20-5 AOBF oom oom oom oom 1309 33138951 789 19857843
(400,2,27,97) RBFAOO 1163 214829892 736 142564959 385 80803927 232 48848448 120 25641963 66 13994679

AOBB - 738 111785572 309 43858649 36 5997367 19 3234878 10 1405451
75-20-5 AOBF 2268 30767273 567 20761132 182 5685498 42 1766240 23 930839 12 442278
(400,2,27,99) RBFAOO 212 46289779 89 19603768 39 8451032 9 2026625 5 1007726 4 511806

AOBB - - - 2206 314621887 994 144092486 67 10500198
75-22-5 AOBF oom oom 1123 34528523 743 22103512 313 10577016 49 1714348
(484,2,30,107) RBFAOO 563 107126385 643 118981360 227 44947693 153 29325424 91 18077594 17 3047665

AOBB - - - - - 131 16039678
75-23-5 AOBF oom oom 1751 39532238 417 11103193 340 8092564 37 1218023
(529,2,31,122) RBFAOO 1860 304935340 1109 198613807 455 87285533 106 20952230 71 13910863 17 2915543

AOBB - - - - - oom
75-26-5 AOBF oom oom oom oom oom oom
(676,2,36,134) RBFAOO - - - - 3005 394135020 oom

AOBB - - 1479 195188949 560 74507590 51 7366618 102 13921196
90-23-5 AOBF 970 32478634 376 12937697 289 10087022 91 3169720 52 1944481 33 1224632
(529,2,31,116) RBFAOO 277 52920346 105 20736738 71 14460847 18 3602104 9 1810658 9 1390189

AOBB - - - - - 1647 186283089
90-26-5 AOBF 1016 25948278 1108 29700313 505 16035732 552 16728882 457 12983459 159 4413795
(676,2,36,136) RBFAOO 241 44068170 183 33284922 68 12738955 65 12176988 49 9170451 30 5180019

crease. In terms of the size of the search spaces explored,
we see that AOBF(i) typically expands the smallest number
of nodes, as expected. RBFAOO(i) expands more nodes
that AOBF(i), due to re-expansions, but in many cases
it expands significantly fewer nodes than AOBB(i) which
translates into important time savings. We also notice that
RBFAOO(i) and AOBB(i) have a relatively small overhead
per node expansion. On the other hand, the computational
overhead of AOBF(i) is much larger. It is caused primarily
by maintaining an extremely large search space in memory
and, secondly, because the node values are typically up-
dated all the way up to the root. Most notably, RBFAOO(i)
was the only algorithm that could solve the most difficult
instances in these benchmarks (eg, pedigrees 7, 13, 19 and
41, as well as grid 75-26-5). This demonstrates the ben-
efit of expanding nodes in best-first rather than depth-first
manner as well as using efficiently a bounded amount of
memory, thus overcoming the most critical limitation of
AOBF(i). Finally, the results on the protein networks show
a similar pattern, namely RBFAOO(i) improves consider-
ably over both AOBB(i) and AOBF(i) for relatively small
i-bounds. This is important because, unlike the pedigrees
and grids, these problems have very large domains (81 val-

ues) and therefore the mini-bucket heuristics could only be
compiled for small i-bounds. Figure 5 which plots the
normalized total CPU time as a function of the i-bound
summarizes the running time profile of the competing al-
gorithms across the benchmarks we considered.

In Table 3 we report on five additional very difficult genetic
linkage analysis networks. The mini-bucket i-bound was
set to 20 in this case. We see again that RBFAOO is the best
performing algorithm closing all instances within the 100
hour time limit. In contrast, AOBB could solve only one
instance while AOBF ran out of memory. For example, on
the type4-120-17 instance, RBFAOO was nearly 3 orders
of magnitude faster than AOBB, while expanding 3 orders
of magnitude fewer nodes.

We summarize next the most important additional factors
that could help improve RBFAOO(i)’s performance.

Impact of caching: Table 4 shows the average perfor-
mance of algorithm RBFAOO(i) (as CPU time in seconds,
number of nodes expanded, and number of problem in-
stances solved) as a function of available memory, across
all three benchmarks. The columns are indexed by the
cache table size used, namely very small (10-20MB), small
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Table 2: CPU time (seconds) and number of nodes expanded for protein networks. Time limit 1 hour. RBFAOO(i) ran
with a 10-20GB cache table (134,217,728 entries) and overestimation parameter δ = 1.

instance algorithm i = 2 i = 3 i = 4 i = 5
(n, k, w∗, h) time nodes time nodes time nodes time nodes

AOBB - - 2218 65175805 oom
pdb1a3c AOBF oom oom oom oom
(144,81,15,32) RBFAOO 1915 45513907 344 259261 oom

AOBB 129 2919570 8 2694 204 1302 oom
pdb1aac AOBF 2851 3195539 11 6264 205 3072 oom
(85,81,11,21) RBFAOO 51 1148212 8 1492 204 783 oom

AOBB 996 55994055 2672 162495198 16 1593 136 4767
pdb1acf AOBF oom oom 17 4021 139 10464
(90,81,9,22) RBFAOO 22 987416 56 2553896 16 1090 137 3212

AOBB 259 7770890 134 3806154 657 3312980 2552 274955
pdb1ad2 AOBF 831 1250161 394 715399 1109 1049637 2595 135265
(177,81,9,33) RBFAOO 36 1227741 42 858899 585 1218780 2543 113780

AOBB 4 177150 31 75051 610 1474224 oom
pdb1ail AOBF 80 66207 47 15817 1728 928375 oom
(62,81,8,23) RBFAOO 2 78677 30 16427 599 1311325 oom

AOBB - 6 154434 260 9348036 236 24412
pdb1atg AOBF oom 38 119195 632 1196429 247 30072
(175,81,12,39) RBFAOO 620 24347033 4 71446 32 430747 236 11545
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Figure 5: Normalized total CPU time as a function of the i-bound.

Table 3: CPU time (seconds) and node expansions for pre-
viously unsolved linkage networks. Time limit 100 hours.

instance algorithm time nodes
AOBB -

type4b-100-19 AOBF oom
(7308,5,29,354) RBFAOO 107258 15157422871

AOBB 162196 5473951156
type4b-120-17 AOBF oom
(7766,5,24,319) RBFAOO 218 3388901

AOBB -
type4b-130-21 AOBF oom
(8883,5,29,416) RBFAOO 312887 43341893185

AOBB -
type4b-140-19 AOBF oom
(9274,5,30,366) RBFAOO 270856 28653407450

AOBB -
largeFam3-10-52 AOBF oom
(1905,3,36,80) RBFAOO 129633 12826083707

(100-200MB), medium (1-2GB) and large (10-20GB), re-
spectively. We see that, as expected, as more memory is
available, the performance improves considerably, namely
more problem instances are solved while the running time
and size of the search space decrease significantly. The best
results were obtained with the 10-20GB cache.

Impact of overestimation: Figure 6 plots the CPU time,
node re-expansion rate (as the ratio of the number of nodes
re-expanded to the total number of expansions) and per-
centage of problem instances solved by RBFAOO(i) as a
function of the overestimation rate δ, across all bench-

marks. We see that RBFAOO(i) without overestimation
(ie, δ = 0) performed rather poorly and was outperformed
considerably by AOBB(i) and AOBF(i), respectively. This
was due to a relatively large number of node re-expansions.
On grids, for example, more than 78% of the nodes were
actually re-expanded for δ = 0 compared to only 11% re-
expansions for δ = 1.2. However, as δ increases the re-
expansion rate decreases but the CPU time starts to increase
due to explorations of unpromising search spaces. There-
fore, we obtained the overall best performance for δ = 1.

Impact of heuristics quality: Based on our empirical
evaluation we noticed that RBFAOO(i) was superior to its
competitors especially for relatively inaccurate heuristics
(which are typically obtained for smaller i-bounds) and on
the hardest problem instances. This is important because
it is likely that for these types of problems it may only be
possible to compute rather weak heuristics given limited
resources (eg, type4 instances in Table 3).

5 RELATED WORK

Algorithms based on proof and disproof numbers (Allis
et al., 1994) have been dominating AND/OR search tech-
niques and successfully applied to many game domains (eg,
(Nagai, 2002; Kishimoto and Müller, 2005; Schaeffer et al.,
2007)). See (Kishimoto et al., 2012) for a comprehensive
literature review.
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Table 4: Average CPU time (seconds), number of nodes expanded and number of problem instances solved by RBFAOO(i)
with different cache sizes. Time limit 1 hour. i = 10 for grids and pedigrees, i = 4 for protein networks.

10-20MB 100-200MB 1-2GB 10-20GB
benchmark time nodes solved time nodes solved time nodes solved time nodes solved
grids 1928 496571526 15/32 1685 321943731 18/32 1257 203898268 22/32 1220 173080755 22/32
pedigree 1416 366052904 12/21 1350 277666996 13/21 1180 223258293 14/21 1155 188200810 14/21
protein 574 35439167 208/240 509 27532421 213/240 443 23135969 217/240 396 20521511 222/240
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Figure 6: Average CPU time (seconds), node re-expansion rate and percentage of instances solved by RBFAOO(i) as a
function of the overestimation rate δ. Time limit 1 hour. i = 10 for grids and pedigrees, i = 4 for protein networks.

A proof/disproof number estimates the difficulty of proving
that the first/second player wins in a partially built tree. The
proof number of node n is defined as the minimum number
of leaf nodes that must be expanded to prove that the first
player wins at n. A node with a smaller proof number is
assumed to be easier to prove a win for the first player. In
contrast, the disproof number of n is the minimum number
of leaf nodes that must be expanded to prove that the second
player wins at n. A node with a smaller disproof number is
assumed to be easier to prove a win for the second player.

Depth-First Proof-Number Search (df-pn) (Nagai, 2002)
is a depth-first reformulation of Best-First Proof-Number
Search (PNS) (Allis et al., 1994) enhanced with a so-called
transposition table (TT), a cache table preserving the search
effort for the expanded nodes. While preserving PNS’ leaf
selection strategy, df-pn empirically re-expands fewer in-
ternal nodes than PNS that always restarts from the root the
procedure of finding a promising leaf to expand. Besides,
df-pn runs using a small amount of space limited by the TT
size in practice, although whether df-pn is complete or not
with a limited amount of TT still remains an open question.
As in RBFS (Korf, 1993), df-pn introduces thresholds to
limit the search depth of depth-first search. Df-pn updates
the thresholds of a node by taking into account when the
search tree rooted at that node contains none of the most
promising leaf nodes chosen by PNS’ best-first strategy.
The df-pn+ algorithm (Nagai, 2002) generalizes df-pn by
introducing evaluation functions to heuristically initialize
proof and disproof numbers and a weight in each edge to
decrease the overhead of node re-expansions (Kishimoto
and Müller, 2005).

Other related work includes MAO* (Chakrabati et al.,
1989), memory-limited AO*. Although MAO* can run un-
der a similar memory limit to RBFAOO, it needs a spe-

cific strategy to discard examined nodes from memory. In
contrast, RBFAOO can leverage arbitrary TT replacement
strategies including SmallTreeGC (Nagai, 1999), which is
empirically most effective in solving games. Additionally,
by incorporating ideas behind RBFS and the overestima-
tion technique, RBFAOO has much smaller overhead to
update node values than MAO* and AO*.

6 CONCLUSION

The paper presents RBFAOO, a limited memory best-first
AND/OR search algorithm for solving combinatorial op-
timization defined over graphical models. RBFAOO be-
longs to the Recursive Best-First Search family of algo-
rithms and therefore uses a threshold controlling mecha-
nism to guide the search in a depth-first like manner. It also
employs a flexible caching scheme to reuse partial search
results as well as an overestimation mechanism to further
reduce the internal node re-expansions. We prove correct-
ness and completeness of the algorithm. We evaluate RB-
FAOO empirically on a variety of benchmarks used dur-
ing the PASCAL2 Inference Challenge. Our results show
that RBFAOO is often superior to current state-of-the-art
solvers based on AND/OR search, especially on the most
difficult problem instances.

For future work we plan to extend RBFAOO to use dy-
namic variable orderings, an initial upper bound obtained
via local search and soft arc-consistency based heuristics.
One possibility we are currently investigating is to imple-
ment RBFAOO on top of the toulbar solver (de Givry
et al., 2005). Since many interesting real-world problems
are still too hard to solve exactly, we also plan to convert
the algorithm into an anytime best-first search scheme.
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Abstract

The implication problem for saturated condi-
tional independence statements is studied in the
presence of fixed and undetermined sets of in-
complete random variables. Here, random vari-
ables are termed incomplete since they admit
missing data. Two different notions of implica-
tion arise. In the classic notion of V -implication,
a statement is implied jointly by a set of state-
ments and a fixed set V of random variables.
In the alternative notion of pure implication, a
statement is implied by a given set of state-
ments alone, leaving the set of random vari-
ables undetermined. A first axiomatization for
V -implication is established that distinguishes
purely implied from V -implied statements. Ax-
iomatic, algorithmic and logical characteriza-
tions of pure implication are established. Pure
implication appeals to applications in which the
existence of random variables is uncertain, for
example, when independence statements are in-
tegrated from different sources, when random
variables are unknown or shall remain hidden.

1 INTRODUCTION

The concept of conditional independence (CI) is important
for capturing structural aspects of probability distributions,
for dealing with knowledge and uncertainty in artificial in-
telligence, and for learning and reasoning in intelligent sys-
tems [Darwiche (2009); Dawid (1979); Pearl (1988)]. Ap-
plication areas include natural language processing, speech
processing, computer vision, robotics, computational biol-
ogy, and error-control coding [Darwiche (2009); Halpern
(2005); Niepert et al. (2013)]. Central to these applica-
tions is the implication problem, which is to decide for an
arbitrary set V of random variables, and an arbitrary set
Σ ∪ {φ} of CI statements over V , whether every prob-
ability model that satisfies every element in Σ also sat-

isfies φ. Indeed, non-implied CI statements represent
new opportunities to construct complex probability mod-
els with polynomially many parameters and to efficiently
organize distributed probability computations [Geiger and
Pearl (1993)]. An algorithm for deciding the implication
problem can also test the consistency of independence and
dependence statements collected from different sources;
which is particularly important as these statements often in-
troduce non-linear constraints resulting in unfeasible CSP
instances [Geiger and Pearl (1993); Niepert et al. (2013)].
While the decidability of the implication problem for CI
statements relative to discrete probability measures remains
open, it is not axiomatizable by a finite set of Horn rules
[Studený (1992)] and already coNP-complete for stable CI
statements [Niepert, Van Gucht, and Gyssens (2010)]. An
important subclass are therefore saturated CI (SCI) state-
ments, in which all given random variables occur. In fact,
graph separation and SCI statements enjoy the same ax-
ioms [Geiger and Pearl (1993)], and the implication prob-
lem of SCI statements is decidable in almost linear time
[Galil (1982)]. These results contribute to the success
story of Bayesian networks in AI and machine learning
[Darwiche (2009); Geiger and Pearl (1993)], and have re-
cently been carried over to the presence of missing data
[Link (2013a)]. Here, independence is not judged on con-
ditions that carry missing data. The findings complement
a long line of AI research on the recognized need to reveal
missing data and to explain where they come from, e.g.
[Chickering and Heckerman (1997); Dempster, Laird, and
Rubin (1977); Friedman (1997); Lauritzen (1995); Marlin
et al. (2011); Saar-Tsechansky and Provost (2007); Singh
(1997); Zhu et al. (2007)]. It is important to realize that
implication problems of SCI statements in the presence of
missing data differ from implication problems in the ab-
sence of data. For an illustration, consider a simplified
burglary example. A r(obbery) sets off an a(larm) causing
s(heldon) or b(atman) to call security. The independence
between sb and r, given a, can be stated as the SCI state-
ment I(sb, r|a) over V = {b, a, r, s}. In the absence of
missing data, I(s, b|ar) and I(sb, r|a) together do V -imply
I(s, br|a). With missing data present, however, I(s, b|ar)

410



and I(sb, r|a) together do not V -imply I(s, br|a):

r a b s P
− true true true 0.5
− true false false 0.5

Here, I(s, b|ar) is satisfied as the assignments on the con-
dition ar involve missing data, represented by −.

Most of the literature on the implication problem for SCI
statements have focused on the notion of implication in
which the underlying set V of random variables is assumed
to be fixed. However, the assumption that V is fixed may
not be practical: for example, the fact that not all random
variables are known yet should not prevent us from declar-
ing some independence statements; or even if we know all
random variables, we may not want to disclose all of them;
or when independence statements are integrated from dif-
ferent sources. Instead, we may want to state that given a,
sb is independent from the set of remaining random vari-
ables, no matter what they are. This statement could be
written as I(sb|a). The intriguing point here is the differ-
ence between declaring I(sb|a) and declaring I(r|a) when
V is left undetermined. In fact, the probability model

r a b s e P
true true − − true 0.5
false true − − false 0.5

satisfies I(sb|a), but does not satisfy I(r|a). We conclude
that I(sb|a) implies I(r|a) for the fixed set V , but I(sb|a)
does not imply I(r|a) when the set of random variables is
left undetermined.

The example illustrates the need to distinguish between dif-
ferent notions of semantic implication. The first notion is
that of V -implication. For example, Link (2013a) estab-
lished an axiomatization UV for the V -implication prob-
lem of SCI statements in the presence of missing data. The
alternative, stronger notion of pure implication leaves the
set of random variables undetermined: the pure implica-
tion problem is to decide for every given set Σ ∪ {φ} of
SCI statements, whether for every probability model π that
involves at least all the random variables in Σ ∪ {φ} and
that satisfies Σ, π also satisfies φ. Pure implication allows
us to use independence statements without knowing all the
random variables. This lowers barriers for their use and
makes them applicable in demanding frameworks where
some variables shall remain unknown for some users and
where we still want to know how complex probability dis-
tributions can be organized efficiently. That is, pure im-
plication enables us to reason under uncertainty about the
random variables, while V -implication does not. For illus-
tration, suppose we want to keep the random variable r hid-
den. Then it is impossible to reason about SCI statements
under the notion of V -implication. With pure implication
we can still state I(sb|a) and I(b|a), and our results show
that we can even conclude I(s|a) from that.

Contribution. In Section 2 we show that the only exist-
ing finite axiomatization UV for the V -implication of SCI
statements cannot distinguish between purely implied and
V -implied SCI statements. That is, there are purely implied
SCI statements for which every inference by UV applies the
V -symmetry rule; giving incorrectly the impression that
the pure implication of an SCI statement depends on V . In
Section 3 we establish a finite axiomatization CV such that
every purely implied SCI statement can be inferred without
any application of the V -symmetry rule; every V -implied
SCI statement can be inferred with only a single applica-
tion of the V -symmetry rule, and this application is done
in the last step of the inference. In Section 4 we establish
a finite axiomatization C for the pure implication of SCI
statements. As C results from CV by removal of the sym-
metry rule, the results show that the symmetry rule is only
necessary to infer those SCI statements that are V -implied
but not implied. In Section 5, pure implication is character-
ized by V -implication where V involves random variables
that do not occur in any of the given SCI statements. In
Sections 6, 7 and 8 this result is exploited to characterize
the pure implication problem i) logically by a propositional
fragment under interpretations by Levesque’s situations, ii)
by multivalued database dependencies involving missing
data, and iii) by an algorithm that decides pure implication
in almost linear time. Related work is discussed in Section
9. We conclude in Section 10.

2 IMPLICATION UNDER FIXED SETS
OF RANDOM VARIABLES

We summarize the semantics of CI statements in the pres-
ence of missing data from Link (2013a). A definition is
given that embodies the ability of an axiomatization to
separate V -implied from purely implied SCI statements.
It is shown that the existing axiomatization UV for V -
implication from Link (2013a) does not have this ability.

We denote by V a countably infinite set of distinct sym-
bols {v1, v2, . . .} of random variables. A domain mapping
is a mapping that associates a set, dom(vi), with each ran-
dom variable vi of a finite set V ⊆ V. This set is called
the domain of vi and each of its elements is a data value
of vi. We assume that each domain dom(vi) contains the
element −, which we call the marker. Although we use
the element − like any other data value, we prefer to think
of − as a marker, denoting that no information is currently
available about the data value of vi. The interpretation of
this marker as no information means that a data value does
either not exist (known as a structural zero in statistics, and
the null marker inapplicable in databases), or a data value
exists but is currently unknown (known as a sampling zero
in statistics, and the null marker applicable in databases).
The disadvantage of using this interpretation is a loss in
knowledge when representing data values known to not
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exist, or known to exist but currently unknown. This in-
terpretation overcomes the computational difficulties when
more expressive interpretations of missing data are used.
As another key advantage one can represent missing data
values, even if it is unknown whether they do not exist, or
exist but are currently unknown. Strictly speaking, we shall
call such random variables incomplete as their data val-
ues may be missing. For simplicity, we continue to speak
off random variables for the remainder of this paper, al-
though we really do mean incomplete random variables.
For X = {v1, . . . , vk} ⊆ V we say that a is an assignment
of X , if a ∈ dom(v1) × · · · × dom(vk). For an assignment
a of X we write a(y) for the projection of a onto Y ⊆ X .
We say that a = (a1, . . . ,ak) is X-complete, if ai ̸= − for
all i = 1, . . . , k.

A probability model over a finite set V = {v1, . . . , vn} of
random variables is a pair (dom, P ) where dom is a domain
mapping that maps each vi to a finite domain dom(vi), and
P : dom(v1) × · · · × dom(vn) → [0, 1] is a probability
distribution having the Cartesian product of these domains
as its sample space.

The expression I(Y, Z|X) where X,Y and Z are disjoint
subsets of V is called a conditional independence (CI)
statement over V . The set X is called the condition of
I(Y,Z|X). If XY Z = V , we call I(Y, Z|X) a saturated
CI (SCI) statement. Let (dom, P ) be a probability model
over V . Following Link (2013a), a CI statement I(Y,Z|X)
is said to hold for (dom, P ) if for every complete assign-
ment x of X , and for every assignment y, z of Y and Z,
respectively,

P (x,y, z) · P (x) = P (x,y) · P (x, z). (1)

Equivalently, (dom, P ) is said to satisfy I(Y,Z|X).

The satisfaction of I(Y, Z|X) requires Equation 1 to hold
for complete assignments x of X only. The reason is that
the independence between an assignment y and an assign-
ment z is conditional on the assignment x. Indeed, in case
there is no information about the assignment x, then there
should not be any requirement on the independence be-
tween y and z.

SCI statements interact with one another, and these interac-
tions have been formalized by the following notion of se-
mantic implication. Let Σ∪{φ} be a set of SCI statements
over V . We say that Σ V -implies φ, denoted by Σ |=V φ,
if every probability model over V that satisfies every SCI
statement σ ∈ Σ also satisfies φ. The V -implication prob-
lem is the following problem.

PROBLEM: V -implication problem
INPUT: Set V of random variables

Set Σ ∪ {φ} of SCI statements over V
OUTPUT: Yes, if Σ |=V φ; No, otherwise

For Σ we let Σ∗
V = {φ | Σ |=V φ} be the semantic closure

Table 1: Axiomatization U under Incomplete RVs

I(V −X, ∅|X)

I(Y, Z|X)

I(Z, Y |X)
(triviality, T ′) (symmetry, S)

I(Y Z,UW |X) I(Y U,ZW |X)

I(Y ZU,W |X)

I(Y,ZW |X)

I(Y,Z|XW )
(algebra, A′) (weak union, W ′)

of Σ, i.e., the set of all SCI statements V -implied by Σ. In
order to determine the V -implied SCI statements we use
a syntactic approach by applying inference rules. These
inference rules have the form

premises
conclusion

and inference rules without any premises are called axioms.
An inference rule is called V -sound, if the premises of the
rule V -imply the conclusion of the rule. We let Σ ⊢R φ
denote the inference of φ from Σ by the set R of inference
rules. That is, there is some sequence γ = [σ1, . . . , σn] of
SCI statements such that σn = φ and every σi is an element
of Σ or results from an application of an inference rule in
R to some elements in {σ1, . . . , σi−1}. For Σ, let Σ+

R =
{φ | Σ ⊢R φ} be its syntactic closure under inferences
by R. A set R of inference rules is said to be V -sound
(V -complete) for the V -implication of SCI statements, if
for every V and for every set Σ of SCI statements over V ,
we have Σ+

R ⊆ Σ∗
V (Σ∗

V ⊆ Σ+
R). The (finite) set R is said

to be a (finite) axiomatization for the V -implication of SCI
statements if R is both V -sound and V -complete.

Table 1 contains the set U = {T ′,S,A′,W ′} of inference
rules that form a finite axiomatization for the V -implication
of SCI statements under incomplete random variables, as
established in Link (2013a).

Motivated by the introductory remarks we now write
I(Y |X) instead of writing I(V − XY, Y |X) for an SCI
statement over V . It is first shown that the system UV =
{T ,S,A,W} from Table 2 forms a finite axiomatization
for the V -implication of such SCI statements under incom-
plete random variables.

Proposition 1 UV is a finite axiomatization for the V -
implication of SCI statements under incomplete random
variables.

Proof Let V ⊆ V be a finite set of random variables.
Let Σ = {I(Y1|X1), . . . , I(Yn|Xn)} and φ = I(Y |X)
be a (set of) SCI statement(s) over V . We can show by
an induction over the inference length that Σ ⊢UV

φ if
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Table 2: Axiomatization UV under Incomplete RVs

I(∅|X)

I(Y |X)

I(V −XY |X)
(triviality, T ) (V-symmetry, SV )

I(Y |X) I(Z|X)

I(Y Z|X)

I(Y |X)

I(Y − Z|XZ)
(union, U) (weak union, W)

and only if Σ′ = {I(Y1, V − X1Y1|X1), . . . , I(Yn, V −
XnYn|Xn)} ⊢U I(V − XY, Y |X). Hence, the V -
soundness (V -completeness) of UV follows from the the
V -soundness (V -completeness) of U.

Example 2 Consider Σ = {I(sb|a), I(b|a)} and φ =
I(s|a) as a (set of) SCI statement(s) over V = {b, a, r, s}.
Then Σ |=V φ as we can show, for example, by the follow-
ing inference:

I(sb|a)
SV : I(r|a) I(b|a)
U : I(rb|a)
SV : I(s|a)

.

However, since the inference applies the V -symmetry rule
it is not clear whether φ is implied by Σ alone, that is,
whether it is true that for all V ′ that include at least a, s, b it
holds that Σ |=V ′ φ. In fact, if we were to find an inference
of φ from Σ by UV that never applies the V -symmetry rule
SV , then we would know that φ is not only V -implied by Σ
but even implied by Σ alone.

The last example motivates the following definition. It ad-
dresses the property of an inference system to first infer all
those SCI statements implied by a set of SCI statements
alone, without any application of the symmetry rule, and,
subsequently, apply the V -symmetry rule once to some of
these SCI statements to infer all V -implied SCI statements
that do depend on the underlying set V of random variables.

Definition 3 Let SV denote a set of inference rules that is
V -sound for the V -implication of SCI statements, and in
which the V -symmetry rule SV is the only inference rule
that is dependent on V . We say that SV is conscious of
pure implication, if for every V , and every set Σ ∪ {φ}
of SCI statements over V such that φ is V -implied by Σ
there is some inference of φ from Σ by SV such that the
V -symmetry rule SV is applied at most once, and, if it is
applied, then it is applied in the last step of the inference
only.

Example 2 and Definition 3 motivate the question if UV is
conscious of pure implication.

Theorem 4 UV is not conscious of pure implication.

Proof Let V = {b, a, r, s} and Σ = {I(b|a), I(bs|a)}.
One can show that I(s|a) /∈ Σ+

{T ,W,U}. Moreover, for all
Y such that r ∈ Y , I(Y |a) /∈ Σ+

{T ,W,U}, see Lemma
10 from Section 4. However, I(s|a) ∈ Σ+

UV
as shown

in Example 2. Consequently, in any inference of I(s|a)
from Σ by UV the V -symmetry rule SV must be applied
at least once, but is not just applied in the last step as
r ∈ V − {b, a, s}.

In view of Theorem 4 it is natural to ask whether there is
any axiomatization that is conscious of pure implication.

3 GAINING CONSCIOUSNESS

Theorem 4 has shown that axiomatizations are, in general,
not conscious of pure implication. We will now establish
a finite conscious axiomatization for the V -implication of
SCI statements under incomplete random variables. For
this purpose, we consider the difference rule D as a new
V -sound inference rule:

I(Y |X) I(Z|X)

I(Y − Z|X)
.

The V -soundness of the difference rule D follows easily
from the algebra rule A′.

Theorem 5 Let Σ be a set of SCI statements over V .
For every inference γ from Σ by the system UV =
{T ,SV ,U ,W} there is an inference ξ from Σ by the sys-
tem CV = {T ,SV ,U ,W,D} such that
1. γ and ξ infer the same SCI statement,
2. SV is applied at most once in ξ,
3. if SV is applied in ξ, then as the last rule.

Proof The proof is done by induction on the length l of γ.
For l = 1, the statement ξ := γ has the desired properties.
Suppose for the remainder of the proof that l > 1, and let
γ = [σ1, . . . , σl] be an inference of σl from Σ by UV . We
distinguish between four different cases according to how
σl is obtained from [σ1, . . . , σl−1].

Case 1. σ1 is obtained from the triviality axiom T , or is
an element of Σ. In this case, ξ := [σl] has the desired
properties.

Case 2. We obtain σl by an application of the weak union
rule W to a premise σi with i < l. Let ξi be obtained by ap-
plying the induction hypothesis to γi = [σ1, . . . , σi]. Con-
sider the inference ξ := [ξi, σl]. If in ξi the V -symmetry
rule SV is not applied, then ξ has the desired properties.
If in ξi the SV is applied as the last rule, then the last two
steps in ξ are of the following form:

I(Y |X)

SV : I(V −XY |X)

W : I(V −XY Z|XZ)

.
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However, these steps can be replaced as follows:

I(Y |X)

W : I(Y − Z|XZ)

SV : I(V −XY Z|XZ)

.

The resulting inference has the desired properties.

Case 3. We obtain σl by an application of the union rule
U to premises σi and σj with i, j < l. Let ξi and ξj
be obtained by applying the induction hypothesis to γi =
[σ1, . . . , σi] and γj = [σ1, . . . , σj ], respectively. Consider
the inference ξ := [ξi, ξj , σl]. We distinguish between four
cases according to the occurrence of the V -symmetry rule
SV in ξi and ξj .

Case 3.1. If SV does not occur in ξi nor in ξj , then ξ has
the desired properties.

Case 3.2. If SV occurs in ξi as the last rule but does not
occur in ξj , then the last step of ξi and the last step of ξ are
of the following form:

I(Y |X)

SV : I(V −XY |X) I(Z|X)

U : I((V −XY )Z|X)

.

However, these steps can be replaced as follows:

I(Y |X) I(Z|X)

D : I(Y − Z|X)

SV : I(V − ((Y − Z)X)︸ ︷︷ ︸
=(V −XY )Z

|X)
.

The resulting inference has the desired properties.

Case 3.3. If SV occurs in ξj as the last rule but does not
occur in ξi, then the last step of ξj and the last step of ξ are
of the following form:

I(Z|X)

I(Y |X) SV : I(V −XZ|X)

U : I((V −XZ)Y |X)

.

However, these steps can be replaced as follows:

I(Z|X) I(Y |X)

D : I(Z − Y |X)

SV : I(V − ((Z − Y )X)︸ ︷︷ ︸
=(V −XZ)Y

|X)
.

The resulting inference has the desired properties.

Case 3.4. If SV occurs in ξi as the last rule and occurs in
ξj as the last rule, then the last steps of ξi and ξj and the
last step of ξ are of the following form:

I(Y |X) I(Z|X)

SV : I(V −XY |X) SV : I(V −XZ|X)

U : I((V −XY )(V −XZ)|X)

.

However, these steps can be replaced as follows:

I(Y |X) I(Z|X)

I(Y |X) D : I(Y − Z|X)

D : I(Y − (Y − Z)︸ ︷︷ ︸
=Y ∩Z

|X)

SV : I(V − ((Y ∩ Z)X)︸ ︷︷ ︸
=(V −XY )(V −XZ)

|X)

.

The resulting inference has the desired properties.

Case 4. We obtain σl by an application of the V -symmetry
rule SV to a premise σi with i < l. Let ξi be obtained
by applying the induction hypothesis to γi = [σ1, . . . , σi].
Consider the inference ξ := [ξi, σl]. If in ξi the V -
symmetry rule SV is not applied, then ξ has the desired
properties. If in ξi the V -symmetry rule SV is applied as
the last rule, then the last two steps in ξ are of the following
form.

I(Y |X)

SV : I(V −XY |X)

SV : I(V − (V −XY )X︸ ︷︷ ︸
=Y

|X)

The inference obtained from deleting these steps has the
desired properties.

Example 6 Recall Example 2 where V = {b, a, r, s}, Σ =
{I(sb|a), I(b|a)} and φ = I(s|a). While the inference of φ
from Σ using UV in Example 2 showed that Σ |=V φ holds,
it did leave open the question whether Σ purely implies φ.
Indeed, no inference of φ from Σ by UV can provide this
insight by Theorem 4. However, using CV we can obtain
the following inference of φ from Σ:

I(sb|a) I(b|a)
D : I(s|a) .

Indeed, the V -symmetry rule SV is unnecessary to infer φ
from Σ.

Examples 2 and 6 indicate that the implication of I(s|a)
by Σ = {I(sb|a), I(b|a)} does not depend on the fixed
set V of random variables. In what follows we will for-
malize the stronger notion of pure implication as moti-
vated in the introduction. Theorem 5 shows that the set
C := CV − {SV } of inference rules is nearly V -complete
for the V -implication of SCI statements under incomplete
random variables.

Theorem 7 Let Σ ∪ {I(Y |X)} be a set of SCI state-
ments over the set V of incomplete random variables.
Then I(Y |X) ∈ Σ+

CV
if and only if I(Y |X) ∈ Σ+

C or
I(V −XY |X) ∈ Σ+

C .

Theorem 7 indicates that C can infer every implied SCI
statement that is independent from the set V of incomplete
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random variables. Another interpretation of Theorem 7 is
the following. In using C to infer V -implied statements,
the fixation of V can be deferred until the last step of an
inference.

4 PURE IMPLICATION

In this section we formalize the notion of pure implication
as motivated in the introduction. It is shown that the set
C of inference rules forms a finite axiomatization for pure
implication. On the one hand, this allows us to distinguish
between V -implied and purely implied statements. On the
other hand, the notion of pure implication can be applied
whenever this notion of implication is more convenient to
use, for examples, when there is uncertainty about addi-
tional random variables that may be required in the future,
when some variables are unknown, or when some variables
are meant to remain hidden.

A probability model is a triple (V, dom, P ) where V =
{v1, . . . , vn} ⊆ V is a finite set of incomplete random vari-
ables, dom is a domain mapping that maps each vi to a finite
domain dom(vi), and P : dom(v1)×· · ·×dom(vn) → [0, 1]
is a probability distribution having the Cartesian product of
these domains as its sample space. The expression I(Y |X)
where X and Y are finite, disjoint subsets of V is called
a saturated conditional independence (SCI) statement. We
say that the SCI statement I(Y |X) holds for (V, dom, P ) if
XY ⊆ V and for every complete assignment x ofX , every
assignment y of Y , and every assignment z of V − XY ,
respectively,

P (x,y, z) · P (x) = P (x,y) · P (x, z).

Equivalently, (V, dom, P ) is said to satisfy I(Y |X). For
an SCI statement σ = I(Y |X) let Vσ := XY , and for a
finite set Σ of SCI statements let VΣ :=

∪
σ∈Σ Vσ denote

the random variables that occur in it.

Definition 8 Let Σ ∪ {φ} be a finite set of SCI statements.
We say that Σ purely implies φ, denoted by Σ |= φ, if and
only if every probability model (V, dom, P ) with VΣ∪{φ} ⊆
V that satisfies every SCI statement σ ∈ Σ also satisfies φ.

In the definition of pure implication the set of incomplete
random variables is left undetermined. The only require-
ment is that the SCI statements must apply to the proba-
bility model. The pure implication problem for SCI state-
ments can be stated as follows.

PROBLEM: Pure Implication Problem
INPUT: Set Σ ∪ {φ} of SCI statements
OUTPUT: Yes, if Σ |= φ; No, otherwise

Pure implication is stronger than V -implication.

Table 3: Axiomatization C for Pure Implication

I(∅|X)

I(Y |X)

I(Y − Z|XZ)
(triviality, T ) (weak union, W)

I(Y |X) I(Z|X)

I(Y Z|X)

I(Y |X) I(Z|X)

I(Y − Z|X)
(union, U) (difference, D)

Proposition 9 Let Σ∪{φ} be a finite set of SCI statements,
such that VΣ∪{φ} ⊆ V . If Σ |= φ, then Σ |=V φ, but the
other direction may fail.

Proof The first statement follows directly from the defini-
tions of pure and V -implication. For the other direction,
let V = {b, a, r, s}, Σ = {I(r|a)} and let φ be I(sb|a).
Clearly, Σ V -implies φ. However, Σ does not purely imply
φ as the example from the introduction shows.

Soundness and completeness for pure implication are de-
fined as their corresponding notions in the context of some
fixed set V by dropping the reference to V . While trivial-
ity axiom T , weak union rule W , and union rule U are all
sound, the V -symmetry rule SV is V -sound but not sound.

We shall now prove that C forms a finite axiomatization for
the pure implication of SCI statements. For this purpose,
we prove two lemmata in preparation. The correctness of
the first lemma can easily be observed by inspecting the
inference rules in C. For each of the rules, every random
variable that occurs on the left-hand side of the bar in the
conclusion of the rule, already appears on the left-hand side
of the bar in at least one premise of the rule.

Lemma 10 Let Σ = {I(Y1|X1), . . . , I(Yn|Xn)} be a fi-
nite set of SCI statements. If I(Y |X) ∈ Σ+

C , then Y ⊆
Y1 ∪ . . . ∪ Yn.

For the next lemma one may notice that the random vari-
ables that do not occur in VΣ can always be introduced in
the last step of an inference, by applying the weak union
rule W .

Lemma 11 Let Σ be a finite set of SCI statements. If
I(Y |X) ∈ Σ+

C , then there is an inference γ = [σ1, . . . , σl]
of I(Y |X) from Σ by C such that every attribute occurring
in σ1, . . . , σl−1 is an element of VΣ.

Proof Define W := VΣ and let ξ̄ :=
[I(V1|U1), . . . , I(Vl−1|Ul−1)] be an inference of I(Y |X)
from Σ by C. Consider the sequence

ξ := [I(V1 ∩W |U1 ∩W ), . . . , I(Vl−1 ∩W |Ul−1 ∩W )] .
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We claim that ξ is an inference of I(Y ∩W |X ∩W ) from
Σ by C. For if I(Vi|Ui) is an element of Σ or was ob-
tained by an application of the triviality axiom T , then
I(Y ∩ W |X ∩ W ) = I(Y |X). One can verify that if
I(Vi|Ui) is the result of applying one of the rules U ,W,D,
then I(Vi∩W |Ui∩W ) is the result of the same rule applied
to the corresponding premises in ξ.

Now by Lemma 10 we know that Y ⊆ W , hence Y ∩W =
Y . However, this means that we can infer I(Y |X) from
I(Y ∩W |X∩W ) by a single application of the weak union
rule W:

I(Y ∩W |X ∩W )

I((Y ∩W ) −X︸ ︷︷ ︸
=Y

| (X ∩W ) ∪X︸ ︷︷ ︸
=X

)
.

Hence, the inference [ξ, I(Y |X)] has the desired proper-
ties.

We are now prepared to prove the following result.

Theorem 12 The set C = {T ,W,U ,D} forms a finite ax-
iomatization for the pure implication of SCI statements un-
der incomplete random variables.

Proof Let Σ = {I(Y1|X1), . . . , I(Yn|Xn)} be a finite set
of SCI statements and I(Y |X) an SCI statement. We have
to show that

I(Y |X) ∈ Σ∗ if and only if I(Y |X) ∈ Σ+
C .

Let T := X ∪ Y ∪ VΣ. In order to prove the soundness of
C we assume that I(Y |X) ∈ Σ+

C holds. Let (V, dom, P ) be
a probability model that satisfies every element of Σ, and
where T ⊆ V holds. We must show that (V, dom, P ) also
satisfies I(Y |X). According to Lemma 11 there is an infer-
ence γ of I(Y |X) from Σ by C such that U ∪W ⊆ T ⊆ V
holds for each SCI statement I(W |U) that occurs in γ.
Since each rule in C is sound we can conclude (by induc-
tion) that each SCI statement occurring in γ is satisfied by
(V, dom, P ). In particular, (V, dom, P ) satisfies I(Y |X).

In order to prove the completeness of C we assume that
I(Y |X) /∈ Σ+

C . Let V ⊆ V be a finite set of ran-
dom variables such that T is a proper subset of V , i.e.,
T ⊂ V . Consequently, V − XY is not a subset of T .
Hence, by Lemma 10, I(V − XY |X) /∈ Σ+

C . Now from
I(Y |X) /∈ Σ+

C and from I(V − XY |X) /∈ Σ+
C we con-

clude that I(Y |X) /∈ Σ+
CV

by Theorem 7. Since CV is
V -complete for the V -implication of SCI statements it fol-
lows that Σ does not V -imply I(Y |X). Hence, Σ does not
purely imply I(Y |X) by Proposition 9.

Example 13 Recall Example 6 where V = {b, a, r, s},
and Σ consists of the two SCI statements I(bs|a) and
I(b|a). The inference of I(s|a) from Σ by CV in Exam-
ple 6 is actually an inference by C. Hence, I(s|a) is purely
implied by Σ, as one would expect intuitively.

5 PURE AND V -IMPLICATION

Instances Σ |= φ of the pure implication problem can be
characterized by the instance Σ |=V φ of the V -implication
problem for any set V of incomplete random variables that
properly contains VΣ∪{φ}.

Theorem 14 Let Σ∪{φ} be a set of SCI statements. Then
the following are equivalent:
1. Σ |= φ
2. for some V such that VΣ∪{φ} ⊂ V , Σ |=V φ
3. for all V such that VΣ∪{φ} ⊂ V , Σ |=V φ

Proof It is clear that 3. entails 2. Let φ = I(Y |X), and let
V be any finite set of random variables such that VΣ∪{φ} ⊂
V . If 2. holds, then Theorem 7 and Theorem 12 show
that 1. holds or Σ ⊢C I(V − XY |X) holds. However,
Lemma 10 shows that the latter condition cannot hold as
V −XY contains some random variable that does not occur
in VΣ. Hence, 2. entails 1. If 1. holds, then Theorem 7 and
Theorem 12 show that 3. holds as well.

Example 15 Σ = {I(bs|a), I(b|a)} purely implies I(s|a)
as, for instance, Σ |=V I(s|a) for V = {b, a, r, s}.
Σ′ = {I(bs|a)} does not purely imply I(r|a) as for V =
{b, e, a, r, s}, Σ′ does not V -imply I(r|a) as witnessed in
the introduction.

In the following we apply Theorem 14 to establish charac-
terizations of pure implication in terms of logical formulae
under Levesque’s situations, database dependencies, and
algorithmic solutions. For a set Σ ∪ {φ} of SCI statements
we write Vc = VΣ∪{φ} ∪ {v0} for some v0 /∈ VΣ∪{φ},
σc = I(Vc −XY, Y |X) for σ = I(Y |X) ∈ Σ ∪ {φ} and
Σc = {σc | σ ∈ Σ}. In particular, Σ |= φ if and only if
Σc |=Vc φc.

6 LEVESQUE’S SITUATIONS

We recall the framework for situations from Levesque
(1989), and exploit them to establish a logical characteri-
zation of the pure implication problem.

For a finite set L of propositional variables, let L∗ de-
note the propositional language over L, generated from the
unary connective ¬ (negation), and the binary connectives
∧ (conjunction) and ∨ (disjunction). Elements of L∗ are
also called formulae of L, and usually denoted by φ′, ψ′ or
their subscripted versions. Sets of formulae are denoted by
Σ′. We omit parentheses if this does not cause ambiguity.

Let Lℓ denote the set of all literals over L, i.e., Lℓ =
L ∪ {¬v′ | v′ ∈ L}. A situation of L is a total function
ω : Lℓ → {F,T} that does not map both a propositional
variable v′ ∈ L and its negation ¬v′ to F. That is, we must
not have ω(v′) = F = ω(¬v′) for any v′ ∈ L.
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A situation ω : Lℓ → {F,T} of L can be lifted to a total
function Ω : L∗ → {F,T}. Assuming φ′ is in Negation
Normal Form, this lifting is defined by:
- Ω(φ′) = ω(φ′), if φ′ ∈ Lℓ,
- Ω(φ′ ∨ ψ′) = T iff Ω(φ′) = T or Ω(ψ′) = T,
- Ω(φ′ ∧ ψ′) = T iff Ω(φ′) = T and Ω(ψ′) = T.
A situation ω is a model of a set Σ′ of L-formulae if and
only if Ω(σ′) = T holds for every σ′ ∈ Σ′. We say that
Σ′ implies an L-formula φ′, denoted by Σ′ |=L φ′, if and
only if every situation that is a model of Σ′ is also a model
of φ′.

Equivalences. Let ϕ : Vc → Lc denote a bijection between
a set Vc of random variables and the set Lc = {v′ | v ∈ V }
of propositional variables. We extend ϕ to a mapping Φ
from the set of SCI statements over Vc to the set L∗

c . For
an SCI statement I(Y, Z | X) over Vc, let Φ(I(Y, Z | X))
denote

∨

v∈X

¬v′ ∨
(∧

v∈Y

v′
)

∨
(∧

v∈Z

v′
)
.

Disjunctions over zero disjuncts are F and conjunctions
over zero conjuncts are T. We will denote Φ(φc) = φ′

c

and Φ(Σc) = {Φ(σc) | σ ∈ Σc} = Σ′
c.

In our example, for φc = I(bse, r | a) we have φ′
c =

¬a′ ∨ (b′ ∧ s′ ∧ e′) ∨ r′, and for Σc = {I(re, bs | a)} we
have Σ′

c = {¬a′ ∨ (b′ ∧ s′) ∨ (r′ ∧ e′)}.

It was shown in Link (2013a) that for any set Σc ∪ {φc}
of SCI statements over Vc there is a probability model
π = (dom, P ) over Vc that satisfies Σc and violates φc if
and only if there is a situation ωπ over Lc that is a model of
Σ′

c but not a model of φ′
c. For arbitrary probability models

π it is not obvious how to define the situation ωπ . However,
if Σc does not Vc-imply φc, then there is a special proba-
bility model π = (dom, {a1,a2}) over Vc that i) has two
assignments a1, a2 of probability one half each, ii) satisfies
all SCI statements in Σc and iii) violates φc. Given such π,
let ωπ denote the following special situation of Lc, taken
from Link (2013a):

ωπ(v′) =

{
T , if a1(v) = a2(v)
F , otherwise , and

ωπ(¬v′) =





T , if a1(v) = µ = a2(v) or
a1(v) ̸= a2(v)

F , otherwise
.

From the results in Link (2013a) and Theorem 14 we obtain
the following logical characterization of pure implication.

Theorem 16 Let Σ ∪ {φ} be a finite set of SCI statements
and Lc = {v′ | v ∈ VΣ∪{φ} ∪ {v0}}. Then Σ |= φ if and
only if Σ′

c |=Lc φ
′
c.

Proof Theorem 14 shows that Σ |= φ if and only if

Σc |=Vc φc for Vc = VΣ∪{φ} ∪ {v0}. By (Link, 2013a,
Thm.6), Σc |=Vc φc if and only if Σ′

c |=Lc φ
′
c.

Recall that Σ = {I(sb | a)} does not purely imply φ =
I(s, br | a) as the special probability model π defined by

r a b s e P
true true − − true 0.5
false true − − false 0.5

satisfies Σc, but violates φc. Any special situation where
ωπ(b′) = T = ωπ(s′), ωπ(¬a′) = ωπ(r′) = ωπ(e′) = F
is a model of Σ′

c = {¬a′ ∨ (b′ ∧ s′) ∨ (r′ ∧ e′)}, but not a
model of φ′

c = ¬a′ ∨ (b′ ∧ s′ ∧ e′) ∨ r′.

7 DATABASE DEPENDENCIES

Database dependencies enforce the semantics of applica-
tion domains in database systems [Link (2001)]. Let A =
{v̂1, v̂2, . . .} be an infinite set of distinct symbols, called
attributes. A relation schema is a finite non-empty sub-
set R of A. Each attribute v̂ ∈ R has an infinite domain
dom(v̂). In order to encompass missing data values the
domain of each attribute contains the null marker −. The
intention of − is to mean “no information” [Lien (1982)].
A tuple over R is a function t : R → ∪

v̂∈R dom(v̂) with
t(v̂) ∈ dom(v̂) for all v̂ ∈ R. For X ⊆ R let t(X)
denote the restriction of t to X . A relation r over R is
a finite set of tuples over R. For a tuple t over R and
a set X ⊆ R, t is said to be X-total, if for all v̂ ∈ X ,
t(v̂) ̸= −. A relation over R is a total relation, if it is R-
total. A multivalued dependency (MVD) over R is a state-
ment X � Y where X and Y are disjoint subsets of R
[Lien (1982)]. The MVD X � Y over R is satisfied by
a relation r over R if and only if for all t1, t2 ∈ r the fol-
lowing holds: if t1 and t2 are X-total and t1(X) = t2(X),
then there is some t ∈ r such that t(XY ) = t1(XY ) and
t(X(R − XY )) = t2(X(R − XY )). Thus, the relation
r satisfies X � Y when every X-total value determines
the set of values on Y independently of the set of values on
R − Y . For a set Σ̂ ∪ {φ̂} of MVDs over R, Σ̂ R-implies
φ̂, denoted by Σ̂ |=R φ̂, if and only if every relation over
R that satisfies all elements in Σ̂ also satisfies φ̂.

For a set Σc ∪ {φc} of SCI statements over Vc one may
associate the set Σ̂c ∪ {φ̂c} of MVDs over Rc := {v̂ |
v ∈ Vc}, where σ̂c = X � Y for σc = I(Y,Z|X) and
Σ̂c = {σ̂c | σ ∈ Σc}.

Theorem 17 Let Σ ∪ {φ} be a finite set of SCI statement.
Then Σ |= φ if and only if Σ̂c |=Rc φ̂c.

Proof Theorem 14 shows that Σ |= φ if and only if
Σc |=Vc φc for Vc = VΣ∪{φ} ∪ {v0}. By (Link, 2013a,
Thm.8), Σc |=Vc φc if and only if Σ̂c |=Rc φ̂c.
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8 ALGORITHM & COMPLEXITY

(Link, 2013a, Thm. 7) shows that Σc |=Vc φc for φc =
I(Z, Y |X) holds if and only if Σc[X] |=Vc φc holds clas-
sically, that is, when no domain contains the marker. Here,
Σc[X] := {I(V,W |U) | I(V,W |U) ∈ Σc ∧U ⊆ X}. The
independence basis IDepBΣc[X](X) consists of the mini-
mal Y ⊆ Vc − X such that Σc[X] |=Vc

I(Z, Y |X). By
(Link, 2013a, Thm. 8), Σ |= φ if and only if ˆΣc[X] |=Rc

φ̂c, that is, every total relation over Rc that satisfies ˆΣc[X]
also satisfies φ̂c. Galil (1982) gave an efficient algorithmic
solution to the latter problem.

Theorem 18 Using the algorithm in Galil (1982), the pure
implication problem Σ |= I(Y |X) can be decided in time
O(|Σc|+min{kΣc[X], log p̄Σc[X]}×|Σc[X]|). Herein, |Σc|
denotes the total number of random variables in Σc, kΣc[X]

denotes the cardinality of Σc[X], and p̄Σc[X] denotes the
number of sets in IDepBΣc[X](X) that have non-empty in-
tersection with Y .

9 RELATED WORK

Dawid (1979) first investigated fundamental properties of
conditional independence, leading to a claim that “rather
than just being another useful tool in the statistician’s
kitbag, conditional independence offers a new language
for the expression of statistical concepts and a frame-
work for their study”. Geiger and Pearl (1993) have sys-
tematically investigated the implication problem for frag-
ments of CI statements over different probability mod-
els. In particular, they have established an axiomatiza-
tion of SCI statements by a finite set of Horn rules. Stu-
dený (1992) showed that no axiomatization by a finite set
of Horn rules exists for general CI statements. Niepert,
Van Gucht, and Gyssens (2010) established an axiomati-
zation for stable CI statements, which subsume SCI state-
ments, and showed that their associated implication prob-
lem is coNP-complete. Independently, database theory has
investigated the concept of embedded multivalued depen-
dencies (MVDs) whose implication problem is undecidable
[Herrmann (1995)] and not axiomatizable by a finite set of
Horn rules [Stott Parker Jr. and Parsaye-Ghomi (1980)].
Studený (1992) also showed that the implication problem
of embedded MVDs and that of CI statements do not co-
incide. In contrast, the implication problems of MVDs,
SCI statements and some fragement of Boolean proposi-
tional logic all coincide [Geiger and Pearl (1993); Sagiv
et al. (1981); Wong, Butz, and Wu (2000)]. These find-
ings have been established for the notion of implication
over fixed sets of variables and the idealized case where all
data values are known. Biskup, Hartmann, and Link (2012)
differentiated between V -implication and pure implication
for SCI statements with complete random variables only,
applying ideas from database theory in Biskup (1980) and

Link (2012). In the case of missing data, equivalences be-
tween implication problems for MVDs with null markers,
SCI statements with incomplete random variables, and a
fragment of propositional logic under Levesque’s situations
were established recently in Link (2013a) and Hartmann
and Link (2012). However, the notion of pure implication
for conditional independence statements has not been stud-
ied yet in the context of missing data.

10 CONCLUSION

Recently, probabilistic conditional independence state-
ments were studied in the presence of incomplete random
variables, which admit missing data values. The associated
implication problem for saturated CI statements was char-
acterized axiomatically by a finite set UV of Horn rules,
logically by a propositional fragment under interpretations
by Levesque’s situations, and algorithmically by an equiva-
lence to database dependencies. In this paper it was shown
that there is a difference between SCI statements V -implied
jointly by a given set of SCI statements and a fixed set V of
incomplete random variables, and those purely implied by
a given set of SCI statements alone. It was shown that UV

cannot separate V -implied from purely implied SCI state-
ments. An axiomatization CV was then established that can
infer any purely implied SCI statement without applica-
tions of the V -symmetry rule SV , and infer any V -implied
SCI statement with a single application of SV in the very
last step of the inference only. The system C that results
from CV by removing SV was proven to from a finite ax-
iomatization for the stronger notion of pure implication.
The pure implication problem Σ |= φ was characterized
by the V -implication problem Σ |=V φ for sets V that
properly contain the random variables that occur Σ ∪ {φ}.
This result enabled us to characterize pure implication log-
ically and algorithmically as well. Our results clarify the
role of the V -symmetry rule SV as a pure means to infer
V -implied SCI statements. The notion of pure implica-
tion is appealing when the existence of random variables
is uncertain, for example, when independence statements
are integrated from different sources, when random vari-
ables are unknown or when they shall remain hidden. It is
future work to extend the findings of this paper to the gen-
eral case where an arbitrary finite set S of complete random
variables can be specified, thereby, covering the current set-
ting by the case where S = ∅ and the classical setting by
the case where every random variable is complete. This
would extend the work in Link (2013b) where the notion
of pure implication was not considered.
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Abstract

A matroid is a notion of independence in combi-
natorial optimization which is closely related to
computational efficiency. In particular, it is well
known that the maximum of a constrained mod-
ular function can be found greedily if and only if
the constraints are associated with a matroid. In
this paper, we bring together the ideas of bandits
and matroids, and propose a new class of combi-
natorial bandits, matroid bandits. The objective
in these problems is to learn how to maximize a
modular function on a matroid. This function is
stochastic and initially unknown. We propose a
practical algorithm for solving our problem, Op-
timistic Matroid Maximization (OMM); and prove
two upper bounds, gap-dependent and gap-free,
on its regret. Both bounds are sublinear in time
and at most linear in all other quantities of inter-
est. The gap-dependent upper bound is tight and
we prove a matching lower bound on a partition
matroid bandit. Finally, we evaluate our method
on three real-world problems and show that it is
practical.

1 Introduction

Combinatorial optimization is a well-established field that
has many practical applications, ranging from resource al-
location [14] to designing network routing protocols [20].
Modern combinatorial optimization problems are often so
massive that even low-order polynomial-time solutions are
not practical. Fortunately, many important problems, such
as finding a minimum spanning tree, can be solved greed-
ily. Such problems can be often viewed as optimization on
a matroid [25], a notion of independence in combinatorial
optimization which is closely related to computational ef-
ficiency. In particular, it is well known that the maximum
of a constrained modular function can be found greedily if
and only if all feasible solutions to the problem are the in-

dependent sets of a matroid [8]. Matroids are common in
practice because they generalize many notions of indepen-
dence, such as linear independence and forests in graphs.

In this paper, we propose an algorithm for learning how to
maximize a stochastic modular function on a matroid. The
modular function is represented as the sum of the weights
of up to K items, which are chosen from the ground set E
of a matroid, which has L items. The weights of the items
are stochastic and represented as a vector w 2 [0, 1]L. The
vector w is drawn i.i.d. from a probability distribution P .
The distribution P is initially unknown and we learn it by
interacting repeatedly with the environment.

Many real-world optimization problems can be formulated
in our setting, such as building a spanning tree for network
routing [20]. When the delays on the links of the network
are stochastic and their distribution is known, this problem
can be solved by finding a minimum spanning tree. When
the distribution is unknown, it must be learned, perhaps by
exploring routing networks that seem initially suboptimal.
We return to this problem in our experiments.

This paper makes three main contributions. First, we bring
together the concepts of matroids [25] and bandits [15, 3],
and propose a new class of combinatorial bandits, matroid
bandits. On one hand, matroid bandits can be viewed as a
new learning framework for a broad and important class of
combinatorial optimization problems. On the other hand,
matroid bandits are a class of K-step bandit problems that
can be solved both computationally and sample efficiently.

Second, we propose a simple greedy algorithm for solving
our problem, which explores based on the optimism in the
face of uncertainty. We refer to our approach as Optimistic
Matroid Maximization (OMM). OMM is both computationally
and sample efficient. In particular, the time complexity of
OMM is O(L log L) per episode, comparable to that of sort-
ing L numbers. Moreover, the expected cumulative regret
of OMM is sublinear in the number of episodes, and at most
linear in the number of items L and the maximum number
of chosen items K.

Finally, we evaluate OMM on three real-world problems. In
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the first problem, we learn routing networks. In the second
problem, we learn a policy for assigning loans in a micro-
finance network that maximizes chances that the loans are
repaid. In the third problem, we learn a movie recommen-
dation policy. All three problems can be solved efficiently
in our framework. This demonstrates that OMM is practical
and can solve a wide range of real-world problems.

We adopt the following notation. We write A + e instead
of A [ {e}, and A + B instead of A [ B. We also write
A� e instead of A \ {e}, and A�B instead of A \ B.

2 Matroids

A matroid is a pair M = (E, I), where E = {1, . . . , L} is
a set of L items, called the ground set, and I is a family of
subsets of E, called the independent sets. The family I is
defined by the following properties. First, ; 2 I. Second,
every subset of an independent set is independent. Finally,
for any X 2 I and Y 2 I such that |X| = |Y | + 1, there
must exist an item e 2 X � Y such that Y + e 2 I. This
is known as the augmentation property. We denote by:

E(X) = {e : e 2 E �X, X + e 2 I} (1)

the set of items that can be added to set X such that the set
remains independent.

A set is a basis of a matroid if it is a maximal independent
set. All bases of a matroid have the same cardinality [25],
which is known as the rank of a matroid. In this work, we
denote the rank by K.

A weighted matroid is a matroid associated with a vector
of non-negative weights w 2 (R+)L. The e-th entry of w,
w(e), is the weight of item e. We denote by:

f(A,w) =
X

e2A

w(e) (2)

the sum of the weights of all items in set A. The problem
of finding a maximum-weight basis of a matroid:

A⇤ = arg max
A2I

f(A,w) = arg max
A2I

X

e2A

w(e) (3)

is a well-known combinatorial optimization problem. This
problem can be solved greedily (Algorithm 1). The greedy
algorithm has two main stages. First, A⇤ is initialized to ;.
Second, all items in the ground set are sorted according to
their weights, from the highest to the lowest, and greedily
added to A⇤ in this order. The item is added to the set A⇤

only if it does not make the set dependent.

3 Matroid Bandits

A minimum spanning tree is a maximum-weight basis of a
matroid. The ground set E of this matroid are the edges of

Algorithm 1 The greedy method for finding a maximum-
weight basis of a matroid [8].

Input: Matroid M = (E, I), weights w

A⇤  ;
Let e1, . . . , eL be an ordering of items such that:

w(e1) � . . . � w(eL)
for all i = 1, . . . , L do

if (ei 2 E(A⇤)) then
A⇤  A⇤ + ei

end if
end for

a graph. A set of edges is considered to be independent if
it does not contain a cycle. Each edge e is associated with
a weight w(e) = umax � u(e), where umax = maxe u(e)
and u(e) is the weight of edge e in the original graph.

The minimum spanning tree cannot be computed when the
weights w(e) of the edges are unknown. This may happen
in practice. For instance, consider the problem of building
a routing network, which is represented as a spanning tree,
where the expected delays on the links of the network are
initially unknown. In this work, we study a variant of max-
imizing a modular function on a matroid that can address
this kind of problems.

3.1 Model

We formalize our learning problem as a matroid bandit. A
matroid bandit is a pair (M, P ), where M is a matroid and
P is a probability distribution over the weights w 2 RL of
items E in M . The e-th entry of w, w(e), is the weight of
item e. The weights w are stochastic and drawn i.i.d. from
the distribution P . We denote the expected weights of the
items by w̄ = E[w] and assume that each of these weights
is non-negative, w̄(e) � 0 for all e 2 E.

Each item e is associated with an arm and we assume that
multiple arms can be pulled. A subset of arms A ✓ E can
be pulled if and only if A is an independent set. The return
for pulling arms A is f(A,w) (Equation 2), the sum of the
weights of all items in A. After the arms A are pulled, we
observe the weight of each item in A, w(e) for all e 2 A.
This model of feedback is known as semi-bandit [2].

We assume that the matroid M is known and that the dis-
tribution P is unknown. Without loss of generality, we as-
sume that the support of P is a bounded subset of [0, 1]L.
We would like to stress that we do not make any structural
assumptions on P .

The optimal solution to our problem is a maximum-weight
basis in expectation:

A⇤ = arg max
A2I

Ew[f(A,w)] = arg max
A2I

X

e2A

w̄(e). (4)
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Algorithm 2 OMM: Optimistic matroid maximization.
Input: Matroid M = (E, I)

// Initialization
Observe w0 ⇠ P
ŵe,1  w0(e) 8e 2 E
Te(0) 1 8e 2 E

for all t = 1, . . . , n do
// Compute UCBs
Ut(e) ŵe,Te(t�1) + ct�1,Te(t�1) 8e 2 E

// Find a maximum-weight basis with respect to Ut

At  ;
Let et

1, . . . , e
t
L be an ordering of items such that:

Ut(e
t
1) � . . . � Ut(e

t
L)

for all i = 1, . . . , L do
if (et

i 2 E(At)) then
At  At + et

i

end if
end for
Observe {wt(e) : e 2 At}, where wt ⇠ P

// Update statistics
Te(t) Te(t� 1) 8e 2 E
Te(t) Te(t) + 1 8e 2 At

ŵe,Te(t)  
Te(t� 1)ŵe,Te(t�1) + wt(e)

Te(t)
8e 2 At

end for

The above optimization problem is equivalent to the prob-
lem in Equation 3. Therefore, it can be solved greedily by
Algorithm 1 when the expected weights w̄ are known.

Our learning problem is episodic. In episode t, we choose
a basis At and gain f(At,wt), where wt is the realization
of the stochastic weights in episode t. Our goal is to learn
a policy, a sequence of bases, that minimizes the expected
cumulative regret in n episodes:

R(n) = Ew1,...,wn

"
nX

t=1

Rt(wt)

#
, (5)

where Rt(wt) = f(A⇤,wt) � f(At,wt) is the regret in
episode t.

3.2 Algorithm

Our solution is designed based on the optimism in the face
of uncertainty principle [17]. In particular, it is a variant of
the greedy method for finding a maximum-weight basis of
a matroid where the expected weight w̄(e) of each item e
is substituted with its optimistic estimate Ut(e). Therefore,
we refer to our approach as Optimistic Matroid Maximiza-
tion (OMM).

The pseudocode of our algorithm is given in Algorithm 2.
The algorithm can be summarized as follows. First, at the
beginning of each episode t, we compute the upper confi-
dence bound (UCB) on the weight of each item e:

Ut(e) = ŵe,Te(t�1) + ct�1,Te(t�1), (6)

where ŵe,Te(t�1) is our estimate of w̄(e) at the beginning
of episode t, ct�1,Te(t�1) represents the radius of the con-
fidence interval around this estimate, and Te(t � 1) is the
number of times that OMM chooses item e before episode t.
Second, we order all items e by their UCBs (Equation 6),
from the highest to the lowest, and then add them greedily
to At in this order. The item is added to the set At only if
it does not make the set dependent. Finally, we choose the
basis At, observe the weights of all items in the basis, and
update our model ŵ of the world.

The radius:

ct,s =
p

2 log(t)/s (7)

is defined such that each upper confidence bound Ut(e) is
with high probability an upper bound on the weight w̄(e).
The role of the UCBs is to encourage exploration of items
that are not chosen very often. As the number of episodes
increases, the estimates of the weights w̄ improve and OMM

starts exploiting best items. The log(t) term increases with
time t and enforces exploration, to avoid linear regret.

OMM is a greedy algorithm and therefore is extremely com-
putationally efficient. In particular, let the time complexity
of checking for independence, et

i 2 E(At), be O(g(|At|)).
Then the time complexity of OMM is O(L(log L + g(K)))
per episode, comparable to that of sorting L numbers. The
design of our algorithm is not surprising and is motivated
by prior work [12]. The main challenge is to derive a tight
upper bound on the regret of OMM, which would reflect the
structure of our problem.

4 Analysis

In this section, we analyze the regret of OMM. Our analysis
is organized as follows. First, we introduce basic concepts
and notation. Second, we show how to decompose the re-
gret of OMM in a single episode. In particular, we partition
the regret of a suboptimal basis into the sum of the regrets
of individual items. This part of the analysis relies heavily
on the structure of a matroid and is the most novel. Third,
we derive two upper bounds, gap-dependent and gap-free,
on the regret of OMM. Fourth, we prove a lower bound that
matches the gap-dependent upper bound. Finally, we sum-
marize the results of our analysis.

4.1 Notation

Before we present our results, we introduce notation used
in our analysis. The optimal basis is A⇤ = {a⇤1, . . . , a

⇤
K}.
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We assume that the items in A⇤ are ordered such that a⇤k is
the k-th item with the highest expected weight. In episode
t, OMM chooses a basis At = {at

1, . . . , a
t
K}, where at

k is the
k-th item chosen by OMM. We say that item e is suboptimal
if it belongs to Ā⇤ = E � A⇤, the set of suboptimal items.
For any pair of suboptimal and optimal items, e 2 Ā⇤ and
a⇤k, we define a gap:

�e,k = w̄(a⇤k)� w̄(e) (8)

and use it as a measure of how difficult it is to discriminate
the items. For every item e 2 Ā⇤, we define a set:

Oe = {k : �e,k > 0} , (9)

the indices of items in A⇤ whose expected weight is higher
than that of item e. The cardinality of Oe is Ke = |Oe|.

4.2 Regret Decomposition

Our decomposition is motivated by the observation that all
bases of a matroid are of the same cardinality. As a result,
the difference in the expected values of any two bases can
be always written as the sum of differences in the weights
of their items. In particular:

Ew

⇥
f(A⇤,w)� f(At,w)

⇤
=

KX

k=1

�at
k,⇡(k), (10)

where ⇡ : {1, . . . , K} ! {1, . . . , K} is an arbitrary bijec-
tion from At to A⇤ such that ⇡(k) is the index of the item
in A⇤ that is paired with the k-th item in At. In this work,
we focus on one particular bijection.

Lemma 1. For any two matroid bases A⇤ and At, there
exists a bijection ⇡ : {1, . . . , K}! {1, . . . , K} such that:

n
at
1, . . . , a

t
k�1, a

⇤
⇡(k)

o
2 I 8k = 1, . . . , K.

In addition, ⇡(k) = i when at
k = a⇤i for some i.

Proof. The lemma is proved in Appendix.

The bijection ⇡ in Lemma 1 has two important properties.
First,

n
at
1, . . . , a

t
k�1, a

⇤
⇡(k)

o
2 I for all k. In other words,

OMM can choose item a⇤⇡(k) at step k. However, OMM selects
item at

k. By the design of OMM, this can happen only when
the UCB of item at

k is larger or equal to that of item a⇤⇡(k).
As a result, we know that Ut(a

t
k) � Ut(a

⇤
⇡(k)) in all steps

k. Second, Lemma 1 guarantees that every optimal item in
At is paired with the same item in A⇤.

In the rest of the paper, we represent the bijection ⇡ using
an indicator function. The indicator function:

1e,k(t) = 1
�
9i : at

i = e, ⇡(i) = k
 

(11)

indicates the event that item e is chosen instead of item a⇤k
in episode t. Based on our new representation, we rewrite
Equation 10 as:

KX

k=1

�at
k,⇡(k) =

X

e2Ā⇤

KX

k=1

�e,k1e,k(t)


X

e2Ā⇤

KeX

k=1

�e,k1e,k(t) (12)

and then bound it from above. The last inequality is due to
neglecting the negative gaps.

The above analysis applies to any basis At in any episode
t. The results of our analysis are summarized below.

Theorem 1. The expected regret of choosing any basis At

in episode t is bounded as:

Ew

⇥
f(A⇤,w)� f(At,w)

⇤

X

e2Ā⇤

KeX

k=1

�e,k1e,k(t).

The indicator function 1e,k(t) indicates the event that item
e is chosen instead of item a⇤k in episode t. When the event
1e,k(t) happens, Ut(e) � Ut(a

⇤
k). Moreover:

X

e2Ā⇤

KeX

k=1

1e,k(t)  K 8t

KeX

k=1

1e,k(t)  1 8t, e 2 Ā⇤.

The last two inequalities follow from the fact that 1e,k(t)
is a bijection from At to A⇤, every item in the suboptimal
basis At is matched with one unique item in A⇤.

One remarkable aspect of our regret decomposition is that
the exact form of the bijection is not required in the rest of
our analysis. We only rely on the properties of 1e,k(t) that
are stated in Theorem 1.

4.3 Upper Bounds

Our first result is a gap-dependent bound.

Theorem 2 (gap-dependent bound). The expected cumula-
tive regret of OMM is bounded as:

R(n) 
X

e2Ā⇤

16

�e,Ke

log n +
X

e2Ā⇤

KeX

k=1

�e,k
4

3
⇡2.

Proof. First, we bound the expected regret in episode t us-
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ing Theorem 1:

R(n) =
nX

t=1

Ew1,...,wt�1
[Ewt

[Rt(wt)]]


nX

t=1

Ew1,...,wt�1

2
4X

e2Ā⇤

KeX

k=1

�e,k1e,k(t)

3
5

=
X

e2Ā⇤

KeX

k=1

�e,kEw1,...,wn

"
nX

t=1

1e,k(t)

#
. (13)

Second, we bound the expected cumulative regret associ-
ated with each item e 2 Ā⇤. The key idea of this step is to
decompose the indicator 1e,k(t) as:

1e,k(t) = 1e,k(t)1{Te(t� 1)  `e,k} + (14)
1e,k(t)1{Te(t� 1) > `e,k}

and choose `e,k appropriately. By Lemma 2, the regret as-
sociated with Te(t� 1) > `e,k is bounded as:

KeX

k=1

�e,kEw1,...,wn

"
nX

t=1

1e,k(t)1{Te(t� 1) > `e,k}
#


KeX

k=1

�e,k
4

3
⇡2 (15)

when `e,k =
j

8
�2

e,k
log n

k
. For the same value of `e,k, the

regret associated with Te(t� 1)  `e,k is bounded as:
KeX

k=1

�e,kEw1,...,wn

"
nX

t=1

1e,k(t)1{Te(t� 1)  `e,k}
#

 max
w1,...,wn

"
nX

t=1

KeX

k=1

�e,k1e,k(t)⇥ (16)

1

(
Te(t� 1)  8

�2
e,k

log n

)#
.

The next step of our proof is based on three observations.
First, the gaps are ordered such that �e,1 � . . . � �e,Ke

.
Second, by the design of OMM, the counter Te(t) increases
when the event 1e,k(t) happens, for any k. Finally, by The-
orem 1,

PKe

k=1 1e,k(t)  1 for any given e and t. Based on
these facts, we bound Equation 16 from above by:
"
�e,1

1

�2
e,1

+

KeX

k=2

�e,k

 
1

�2
e,k

� 1

�2
e,k�1

!#
8 log n. (17)

By Lemma 3, the above term is bounded by
16

�e,Ke

log n.

Finally, we combine all of the above inequalities and get:
KeX

k=1

�e,kEw1,...,wn

"
nX

t=1

1e,k(t)

#

 16

�e,Ke

log n +

KeX

k=1

�e,k
4

3
⇡2. (18)

Our main claim is obtained by summing over all subopti-
mal items e 2 Ā⇤.

We also prove a gap-free bound.

Theorem 3 (gap-free bound). The expected cumulative re-
gret of OMM is bounded as:

R(n)  8
p

KLn log n +
4

3
⇡2KL.

Proof. The key idea is to decompose the expected cumula-
tive regret of OMM into two parts, where the gaps are larger
than " and at most ". We analyze each part separately and
then set " to get the desired result.

Let Ke," be the number of optimal items whose expected
weight is higher than that of item e by more than " and:

Ze,k(n) = Ew1,...,wn

"
nX

t=1

1e,k(t)

#
. (19)

Then, based on Equation 13, the regret of OMM is bounded
for any " as:

R(n) 
X

e2Ā⇤

Ke,"X

k=1

�e,kZe,k(n) + (20)

X

e2Ā⇤

KeX

k=Ke,"+1

�e,kZe,k(n).

The first term can be bounded similarly to Equation 18:

X

e2Ā⇤

Ke,"X

k=1

�e,kZe,k(n)


X

e2Ā⇤

16

�e,Ke,"

log n +
X

e2Ā⇤

Ke,"X

k=1

�e,k
4

3
⇡2

 16

"
L log n +

4

3
⇡2KL. (21)

The second term is bounded trivially as:

X

e2Ā⇤

KeX

k=Ke,"+1

�e,kZe,k(n)  "Kn (22)

because all gaps �e,k are bounded by " and the maximum
number of suboptimally chosen items in n episodes is Kn
(Theorem 1). Based on our upper bounds, we get:

R(n)  16

"
L log n + "Kn +

4

3
⇡2KL (23)

and then set " = 4

r
L log n

Kn
. This concludes our proof.
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4.4 Lower Bounds

We derive an asymptotic lower bound on the expected cu-
mulative regret R(n) that has the same dependence on the
gap and n as the upper bound in Theorem 2. This bound is
proved on a class of matroid bandits that are equivalent to
K Bernoulli bandits.

Specifically, we prove the lower bound on a partition ma-
troid bandit, which is defined as follows. Let E be a set of
L items and B1, . . . , BK be a partition of this set. Let the
family of independent sets be defined as:

I = {I ✓ E : (8k : |I \Bk|  1)} . (24)

Then M = (E, I) is a partition matroid of rank K. Let P
be a probability distribution over the weights of the items,
where the weight of each item is distributed independently
of the other items. Let the weight of item e be drawn i.i.d.
from a Bernoulli distribution with mean:

w̄(e) =

⇢
0.5 e = mini2Bk

i
0.5�� otherwise, (25)

where � > 0. Then B̃ = (M, P ) is our partition matroid
bandit. The key property of B̃ is that it is equivalent to K
independent Bernoulli bandits, one for each partition. The
optimal item in each partition is the item with the smallest
index, mini2Bk

i. All gaps are �.

To formalize our result, we need to introduce the notion of
consistent algorithms. We say that the algorithm is consis-
tent if for any matroid bandit, any suboptimal e 2 Ā⇤, and
any ↵ > 0, E[Te(n)] = o(n↵), where Te(n) is the number
of times that item e is chosen in n episodes. In the rest of
our analysis, we focus only on consistent algorithms. This
is without loss of generality. In particular, by definition, an
inconsistent algorithm performs poorly on some problems,
and therefore extremely well on others. Because of this, it
is difficult to prove good problem-dependent lower bounds
for inconsistent algorithms. Our main claim is below.

Theorem 4. For any partition matroid bandit B̃ that is de-
fined in Equations 24 and 25, and parameterized by L, K,
and 0 < � < 0.5; the regret of any consistent algorithm is
bounded from below as:

lim inf
n!1

R(n)

log n
� L�K

4�
.

Proof. The theorem is proved as follows:

lim inf
n!1

R(n)

log n
�

KX

k=1

X

e2Bk�A⇤

�

kl(0.5��, 0.5)

=
(L�K)�

kl(0.5��, 0.5)

� L�K

4�
, (26)

where kl(0.5 ��, 0.5) is the KL divergence between two
Bernoulli variables with means 0.5 �� and 0.5. The first
inequality is due to Theorem 2.2 [4], which is applied sep-
arately to each partition Bk. The second inequality is due
to kl(p, q)  (p�q)2

q(1�q) , where p = 0.5�� and q = 0.5.

4.5 Summary of Theoretical Results

We prove two upper bounds on the regret of OMM, one gap-
dependent and one gap-free. These bounds can be summa-
rized as:

Theorem 2 O(L(1/�) log n)

Theorem 3 O(
p

KLn log n),
(27)

where � = min
e

min
k2Oe

�e,k. Both bounds are sublinear in

the number of episodes n, and at most linear in the rank K
of the matroid and the number of items L. In other words,
they scale favorably with all quantities of interest and as a
result we expect them to be practical.

Our upper bounds are reasonably tight. More specifically,
the gap-dependent upper bound in Theorem 2 matches the
lower bound in Theorem 4, which is proved on a partition
matroid bandit. Furthermore, the gap-free upper bound in
Theorem 3 matches the lower bound of Audibert et al. [2]
in adversarial combinatorial semi-bandits, up to a factor ofp

log n.

Our gap-dependent upper bound has the same form as the
bound of Auer et al. [3] for multi-armed bandits. This ob-
servation suggests that the sample complexity of learning a
maximum-weight basis of a matroid is comparable to that
of the multi-armed bandit. The only major difference is in
the definitions of the gaps. We conclude that learning with
matroids is extremely sample efficient.

5 Experiments

Our algorithm is evaluated on three matroid bandit prob-
lems: graphic (Section 5.1), transversal (Section 5.2), and
linear (Section 5.3).

All experiments are episodic. In each episode, OMM selects
a basis At, observes the weights of the individual items in
that basis, and then updates its model of the environment.
The performance of OMM is measured by the expected per-
step return in n episodes:

1

n
Ew1,...,wn

"
nX

t=1

f(At,wt)

#
, (28)

the expected cumulative return in n episodes divided by n.
OMM is compared to two baselines. The first baseline is the
maximum-weight basis A⇤ in expectation. The basis A⇤ is
computed as in Equation 4 and is our notion of optimality.

425



200 400 600 800 1000
304

305

306

307

308

309
ISP network 1221

Episode n

Ex
pe

ct
ed

 p
er
−s

te
p 

co
st

200 400 600 800 1000
620

640

660

680

700
ISP network 1239

Episode n
200 400 600 800 1000

190

195

200

205

210
ISP network 1755

Episode n

 

 
Optimal policy
ε−greedy policy
OMM

Figure 1: The expected per-step cost of building three minimum spanning trees in up to 103 episodes.

ISP Number Number Minimum Maximum Average Optimal "-greedy
network of nodes of edges latency latency latency policy policy OMM

1221 108 153 1 17 2.78 305.00 307.42 ± 0.08 305.49 ± 0.10
1239 315 972 1 64 3.20 629.88 676.74 ± 2.03 641.17 ± 0.18
1755 87 161 1 31 2.91 192.81 199.49 ± 0.16 194.88 ± 0.11
3257 161 328 1 47 4.30 550.85 570.35 ± 0.63 559.80 ± 0.10
3967 79 147 1 44 5.19 306.80 320.30 ± 0.52 308.54 ± 0.08
6461 141 374 1 45 6.32 376.27 424.78 ± 1.54 381.48 ± 0.07

Table 1: The description of six ISP networks from our experiments and the expected per-step cost of building minimum
spanning trees on these networks in 103 episodes. All latencies and costs are in milliseconds.

The second baseline is an "-greedy policy, where " = 0.1.
This setting of " is common in practice and corresponds to
10% exploration.

5.1 Graphic Matroid

In the first experiment, we evaluate OMM on the problem of
learning a routing network for an Internet service provider
(ISP). We make the assumption that the routing network is
a spanning tree. Our objective is to learn a tree that has the
lowest expected latency on its edges.

Our problem can be formulated as a graphic matroid ban-
dit. The ground set E are the edges of a graph, which rep-
resents the topology of a network. We experiment with six
networks from the RocketFuel dataset [23], which contain
up to 300 nodes and 103 edges (Table 1). A set of edges is
considered independent if it does not contain a cycle. The
latency of edge e is w(e) = w̄(e) � 1 + ", where w̄(e) is
the expected latency, which is recorded in our dataset; and
" ⇠ Exp(1) is exponential noise. The latency w̄(e) ranges
from one to 64 milliseconds. Our noise model is motivated
by the following observation. The latency in ISP networks
can be mostly explained by geographical distances [7], the
expected latency w̄(e). The noise tends to be small, on the
order of a few hundred microseconds, and it is unlikely to
cause high latency.

In Figure 1, we report our results from three ISP networks.

We observe the same trends on all networks. First, the ex-
pected cost of OMM approaches that of the optimal solution
A⇤ as the number of episodes increases. Second, OMM out-
performs the "-greedy policy in less than 10 episodes. The
expected costs of all policies on all networks are reported
in Table 1. We observe again that OMM consistently outper-
forms the "-greedy policy, often by a large margin.

OMM learns quickly because all of our networks are sparse.
In particular, the number of edges in each network is never
more than four times larger than the number of edges in its
spanning tree. Therefore, at least in theory, each edge can
be observed at least once in four episodes and our method
can learn quickly the mean latency of each edge.

5.2 Transversal Matroid

In the second experiment, we study the assignment of lend-
ing institutions (known as partners) to lenders in a micro-
finance setting, such as Kiva [1]. This problem can be for-
mulated under a family of matroids, called transversal ma-
troids [9]. The ground set E of a transversal matroid is the
set of left vertices of the corresponding bipartite graph, and
the independence set I consists of the sets of left vertices
that belong to all possible matchings in the graph such that
no two edges in a matching share an endpoint. The weight
w̄(e) is the weight associated with the left vertices of the
bipartite graph. The goal is to learn a transversal of the bi-
partite graph that maximizes the overall weight of selected
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Partner w̄(e) Lender Num of Avg
id id partners rate
46 1.0 31 200 0.728
70 1.0 2 2 0.924
72 1.0 20 195 0.725
88 1.0 23 207 0.724
168 0.983 44 49 0.712
231 0.981 48 186 0.723
179 0.970 24 149 0.743
157 0.951 10 180 0.735
232 0.940 40 10 0.718
123 0.934 42 113 0.721
142 0.925 7 168 0.745
130 0.919 32 23 0.690

(a) (b) (c)

Figure 2: (a) The Kiva dataset can be modeled as a bipartite graph connecting lenders to field partners, which, in turn, fund
several loans in the region. (b) The expected per-step return of finding maximum weight transversal in up to 15k episodes.
(c) Top 12 selected partners assigned based on their mean success rate in the optimal solution A⇤. The optimal solution
involves 46 partner/lender assignments.

left vertices.

We used a sample of 194, 876 loans from the Kiva microfi-
nance dataset [1], and created a bipartite graph. Every loan
is handled by a partner (Figure 2-a). There are a total of
232 partners in the dataset that represent the left vertices
of the bipartite graph and therefore the ground set E of
the matroid. There are 286, 874 lenders in the dataset. We
grouped these lenders into 51 clusters according to the their
location: 50 representing each individual state in United
States, and 1 representing all foreign lenders. These 51
lender clusters constitute the right vertices of the bipartite
graph. There is an edge between a partner and a lender if
the lender is among the top 50% supporters of the partner,
resulting in approximately 5k edges in the bipartite graph.
The weight w̄(e) is the probability that a loan handled by
partner e will be paid back. We estimate it from the dataset
as w̄(e) = 1

nl

Pnl

i=1 wi(e), where nl is the number of loans
handled by this partner. We assume wi(e) is 0.7 if the loan
i is in repayment, 1 if it is paid, and 0 otherwise. At the
beginning of each episode, we choose the loan i at random.

The optimal solution A⇤ is a transversal in the graph that
maximizes the overall success rate of the selected partners.
Top twelve partners selected based on their mean success
rate in the optimal solution are shown in Figure 2-c. For
each partner, the id of the lender to which this partner was
assigned along with the number of eligible partners of the
lender and their average success rate are listed in the Table.
The objective of OMM and "-greedy policies is similar to the
optimal policy with the difference that success rates (i.e.
w(e)) are not known beforehand, and they must be learned
by interacting repeatedly with the environment. Compari-
son results of the three policies are reported in Figure 2-b.
Similar to the previous experiment, we observe the follow-
ing trends. First, the expected return of OMM approaches

that of the optimal solution A⇤ as the number of episodes
increases. Second, OMM outperforms the "-greedy policy.

5.3 Linear Matroid

In the last experiment, we evaluate OMM on the problem of
learning a set of diverse and popular movies. This kind of
movies is typically recommended by existing content rec-
ommender systems. The movies are popular, and therefore
the user is likely to choose them. The movies are diverse,
and therefore cover many potential interests of the user.

Our problem can be formulated as a linear matroid bandit.
The ground set E are movies from the MovieLens dataset
[16], a dataset of 6 thousand people who rated one million
movies. We restrict our attention to 25 most rated movies
and 75 movies that are not well known. So the cardinality
of E is 100. For each movie e, we define a feature vector
ue 2 {0, 1}18, where ue(j) indicates that movie e belongs
to genre j. A set of movies X is considered independent if
for any movie e 2 X , the vector ue cannot be written as a
linear combination of the feature vectors of the remaining
movies in X . This is our notion of diversity. The expected
weight w̄(e) is the probability that movie e is chosen. We
estimate it as w̄(e) = 1

np

Pnp

i=1 wi(e), where wi(e) is the
indicator that person i rated movie e and np is the number
of people in our dataset. At the beginning of each episode,
we choose the person i at random.

Twelve most popular movies from the optimal solution A⇤

are listed in Figure 3. These movies cover a wide range of
movie genres and appear to be diverse. This validates our
assumption that linear independence is suitable for model-
ing diversity. The expected return of OMM is reported in the
same figure. We observe the same trends as in the previous
experiments. More specifically, the expected return of OMM
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Movie title w̄(e) Movie genres
American Beauty 0.568 Comedy Drama
Jurassic Park 0.442 Action Adventure Sci-Fi
Saving Private Ryan 0.439 Action Drama War
Matrix 0.429 Action Sci-Fi Thriller
Back to the Future 0.428 Comedy Sci-Fi
Silence of the Lambs 0.427 Drama Thriller
Men in Black 0.420 Action Adventure Comedy Sci-Fi
Fargo 0.416 Crime Drama Thriller
Shakespeare in Love 0.392 Comedy Romance
L.A. Confidential 0.379 Crime Film-Noir Mystery Thriller
E.T. the Extra-Terrestrial 0.376 Children’s Drama Fantasy Sci-Fi
Ghostbusters 0.361 Comedy Horror
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Figure 3: Left. Twelve most popular movies in the optimal solution A⇤. The optimal solution involves 17 movies. Right.
The expected per-step return of three movie recommendation policies in up to 50k episodes.

approaches that of A⇤ as the number of episodes increases
and OMM outperforms the "-greedy policy in 10k episodes.

6 Related Work

Our problem can be viewed as a stochastic combinatorial
semi-bandit [12], where all feasible solutions are the inde-
pendent sets of a matroid. Stochastic combinatorial semi-
bandits were pioneered by Gai et al. [12], who proposed a
UCB algorithm for solving these problems. Chen et al. [6]
proved that the expected cumulative regret of this method
is O(K2L(1/�) log n). Our gap-dependent regret bound
is O(L(1/�) log n), a factor of K2 tighter than the bound
of Chen et al. [6]. Our analysis relies heavily on the prop-
erties of our problem and therefore we can derive a much
tighter bound.

COMBAND [5], OSMD [2], and FPL [19] are algorithms
for adversarial combinatorial semi-bandits. The main limi-
tation of COMBAND and OSMD is that they are not guar-
anteed to be computationally efficient. More specifically,
COMBAND needs to sample from a distribution over ex-
ponentially many solutions and OSMD needs to project to
the convex hull of these solutions. FPL is computationally
efficient but not very practical because its time complexity
increases with time. On the other hand, OMM is guaranteed
to be computationally efficient but can only solve a special
class of combinatorial bandits, matroid bandits.

Matroids are a broad and important class of combinatorial
optimization problems [21], which has been an active area
of research for the past 80 years. This is the first paper that
studies a well-known matroid problem in the bandit setting
and proposes a learning algorithm for solving it.

Our work is also related to submodularity [18]. In particu-
lar, let:

g(X) = max
Y :Y✓X,Y 2I

f(Y, w̄) (29)

be the maximum weight of an independent set in X . Then

it is easy to show that g(X) is submodular and monotonic
in X , and that the maximum-weight basis of a matroid is a
solution to A⇤ = arg maxA:|A|=K g(A). Many algorithms
for learning how to maximize a submodular function have
been proposed recently [13, 26, 10, 24, 11]. None of these
algorithms are suitable for solving our problem. There are
two reasons. First, each algorithm is designed to maximize
a specific submodular function and our function g may not
be of that type. Second, the algorithms are only near opti-
mal, learn a set A such that g(A) � (1� 1/e)g(A⇤). Note
that our method is guaranteed to be optimal and learn A⇤.

7 Conclusions

This is the first work that studies the problem of learning a
maximum-weight basis of a matroid, where the weights of
the items are initially unknown, and have to be learned by
interacting repeatedly with the environment. We propose a
practical algorithm for solving this problem and bound its
regret. The regret is sublinear in time and at most linear in
all other quantities of interest. We evaluate our method on
three real-world problems and show that it is practical.

Our regret bounds are ⌦(
p

L). Therefore, OMM is not prac-
tical when the number of items L is large. We believe that
these kinds of problems can be solved efficiently by intro-
ducing additional structure, such as linear generalization.
In this case, the weight of each item would be modeled as
a linear function of its features and the goal is to learn the
parameters of this function.

Many combinatorial optimization problems can be viewed
as optimization on a matroid or its generalizations, such as
maximum-weight matching on a bipartite graph and mini-
mum cost flows. In a sense, these are the hardest problems
in combinatorial optimization that can be solved optimally
in polynomial time [22]. In this work, we show that one of
these problems is efficiently learnable. We believe that the
key ideas in our work are quite general and can be applied
to other problems that involve matroids.

428



References

[1] KIVA. http://build.kiva.org/docs/data, 2013.

[2] Jean-Yves Audibert, Sebastien Bubeck, and Gabor
Lugosi. Regret in online combinatorial optimization.
Mathematics of Operations Research, 39(1):31–45,
2014.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
Finite-time analysis of the multiarmed bandit prob-
lem. Machine Learning, 47:235–256, 2002.
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Abstract

In this paper, we present a novel probabilistic la-
bel enhancement model to tackle multi-label im-
age classification problem. Recognizing multiple
objects in images is a challenging problem due
to label sparsity, appearance variations of the ob-
jects and occlusions. We propose to tackle these
difficulties from a novel perspective by construct-
ing auxiliary labels in the output space. Our idea
is to exploit label combinations to enrich the la-
bel space and improve the label identification ca-
pacity in the original label space. In particular,
we identify a set of informative label combina-
tion pairs by constructing a tree-structured graph
in the label space using the maximum spanning
tree algorithm, which naturally forms a condi-
tional random field. We then use the produced
label pairs as auxiliary new labels to augment
the original labels and perform piecewise train-
ing under the framework of conditional random
fields. In the test phase, max-product message
passing is used to perform efficient inference on
the tree graph, which integrates the augmented
label pair classifiers and the standard individual
binary classifiers for multi-label prediction. We
evaluate the proposed approach on several image
classification datasets. The experimental results
demonstrate the superiority of our label enhance-
ment model in terms of both prediction perfor-
mance and running time comparing to the-state-
of-the-art multi-label learning methods.

1 INTRODUCTION

With the development of internet and digital devices, the
availability of visual data has been dramatically increas-
ing in recent decades, which provides billions of images
and videos. An important task for information retrieval
and processing over such image and video data is object-

based image annotation, which requires identifying a set
of objects presented in each image from a given set of
desired object concepts. The image annotation problem
for object recognition is an inherent multi-label classifi-
cation problem, since each image usually contains more
than one object of interest. Multi-label classification gen-
eralizes the standard multi-class classification by allowing
each instance to be simultaneously assigned into multiple
label categories. A key challenge for multi-label classifica-
tion is label sparsity. That is, the multiple labels are sup-
ported by the training data at different levels and many rare
labels may lack sufficient training supports to be reliably
recognized individually. Hence instead of learning binary
classifiers independently for each label, many multi-label
learning methods have proposed to exploit label correla-
tions or label dependence to improve multi-label classifica-
tion performance, including second-order strategy methods
[7, 11, 15], which model pairwise label correlations, and
high-order strategy methods [16, 19, 36], which consider
the interactions among subsets of labels.

Moreover, on image classification, multi-label learning also
faces the general intra-class variation challenge of standard
multi-class classification which is caused by viewpoint and
context variations and occlusions, as shown in Figure 1.
From the figures, we can see that the appearance of the
objectpeoplecan be profoundly different across different
images, by co-occurring with different objects and having
different occlusion patterns. In such cases, an individual
binary classifier may not be reliable for recognizing a tar-
get object. But other co-occurred objects can likely pro-
vide some useful information. For example, in the image
“peopleriding a bike”, many parts of thebike are invis-
ible, but thepeopleis easy to recognize and can provide
information about thebike; in the image “peoplesitting in
thecar”, eachpeopleis severely occluded but thecar can
be detected easily and help the recognition of thepeopleif
they often co-occur; in the image “peopleriding ahorse”,
the objectspeopleandhorsecan be helpful to each other
as well. Moreover, the recognition of such composite co-
occurrence patterns can also help the correct recognition of
individual objects, especially for the ones that are occluded
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Figure 1: Examples of image occlusion and object co-occurrence patterns in object recognition tasks.

or difficult to be recognized individually.

Motivated by these observations, in this paper, we propose
a novel probabilistic label enhancement model that utilizes
the label combination patterns to improve multi-label im-
age classification performance. Our assumption is that vi-
sual composites can be helpful when single classifier fails.
For example, assume the composite “people riding horses”
often stays in similar poses. A classifier for this visual
composite can then capture the co-appearance of the two
objects even though bothpeopleandhorseclassifiers fail
to reliably recognize them separately. We propose to con-
struct label combinations, in particular label pairs, as auxil-
iary new labels to augment the original labels and improve
label identification capacity in the original label space. In
particular, we identify a set of informative label combina-
tion pairs by constructing a tree-structured graph in the la-
bel space using the maximum spanning tree algorithm, ac-
cording to the label co-occurrence information in the train-
ing data. This naturally forms a conditional random field
framework, under which we perform piecewise training.
The label pairs identified by the edges of the tree are used
as auxiliary new labels, and a binary classifier is trained for
each label in the augmented label space. To integrate the
augmented multiple binary classifiers for multi-label pre-
diction in the original label space, we perform exact infer-
ence on the tree-structured conditional random field using
max-product message passing. We evaluate the proposed
approach on a number of multi-label image classification
datasets. The experimental results show that the proposed
label enhancement model effectively outperforms the re-
lated state-of-the-art methods in terms of both prediction
performance and running time.

The rest of the paper is organized as follows. In Section
2, we present a brief review over the related work. The
proposed approach is presented in Section 3. We report the
experimental results in Section 4 and finally conclude the
paper in Section 5.

2 RELATED WORK

A considerable amount of research has been devoted to
addressing image annotation and multi-label classification

problems in the literature. In this section, we will provide
a brief review over the most related work to the proposed
approach from the perspectives of image annotation, object
interaction and multi-label classification.

Image Annotation There are three major groups of im-
age annotation techniques [13]: (i) Generative models.
Some methods in this group use generative topic models
such as latent Dirichlet allocation [1], probabilistic latent
semantic analysis [24], and hierarchical Dirichlet processes
[33]. They model annotated images as samples from a mix-
ture of topics, where each topic is a distribution over image
features. Some other methods use mixture models to define
a joint distribution over image features and annotation tags
[4, 9, 22]. However, generative models perform training by
maximizing generative data likelihoods, which are not nec-
essarily optimal for the target prediction performance. (ii)
Discriminative models. The methods in this group address
image annotation as a classification problem. For exam-
ple, simple methods in [23, 12] treat labels independently
and learn a classifier for each label, while more advanced
methods in [30, 3] improve the classification performance
by considering the co-occurrences of different labels. (iii)
Nearest neighbor based models. For example, the label
propagation method in [13] constructs a similarity graph
for all images, and propagates the label information via the
graph; and the search based method in [10] exploits a re-
gression based kernel metric.

Object Interaction There are a number of works on ob-
ject interaction that share the same intuition as our pro-
posed work, that is, visual composites can be helpful while
single components fail. The work in [18] learns object in-
teractions by modeling the prepositions and adjectives that
relate nouns. The work in [34] models the co-occurrence of
objects and human poses in human-object interaction activ-
ities. In [8], the interactions between objects are modeled
implicitly in the context of predicting sentences for images.
[28] introduces a complex visual composite concept called
visual phrase for object detection, which treats each phrase
as a new label. Though this work shares similarity with our
proposed work in exploiting visual composites, there are
significant differences between it and our work. First, its
visual phrases are not automatically discovered but prede-
fined. By contrast, the label combinations in our work are

431



constructed automatically. Second, it addresses very dif-
ferent problems from ours. It tackles object detection tasks
while we address multi-label image annotation problems;
its goal is to find a bounding box where the visual compos-
ite occurs, while our goal is to predict the category labels
of an image.

Multi-label Classification The most straightforward
multi-label classification method is binary relevance [2],
which trains a binary classifier for each label. The obvi-
ous flaw of such method is the complete ignorance of label
correlations. Hence, numerous methods that encode label
correlations have been proposed. One group is the ranking
based methods [7, 11, 32], which rank the relevant labels
higher than irrelevant ones and capture label correlations
implicitly in the loss function. This technique however re-
lies on a good distance metric and a fine-tuned threshold in
determining the number of relevant labels. The method in
[15] hence further eliminates this drawback by developing
a novel calibrated separation ranking loss function. An-
other group is the graph-based methods, which implicitly
incorporate label correlations into label propagation algo-
rithms as either part of the graph weights [20, 5] or addi-
tional constraints [30, 35]. There are also a set of proba-
bilistic graph-based methods [6, 14, 17, 27]. The method
in [14] uses directed graphs over the label variables to cap-
ture label dependence under a probabilistic conditional de-
pendency network model. [17] further improves this model
by learning sparse conditional dependency graphs. [6, 27]
integrate multiple classifiers in a chain graph to capture
label correlations. These methods share similarity with
our proposed approach in capturing label correlations by
integrating probabilistic classifiers on graphs over labels.
However, [6, 27] are limited to chain graphs and they ap-
ply greedy heuristics to search for the best label vector on
each test instance; [14, 17] use cyclic directed graphs and
their test phases involve approximate inference. By con-
trast, our method can exploit any automatically generated
acyclic tree graphs, not necessarily chains, while using a
max-product message passing algorithm to perform effi-
cient exact inference.

3 PROPOSED MODEL

3.1 Preliminaries

Multi-label Classification systems can be described as
below. Given the input feature spaceX ∈ Rd and the
output label spaceY = {0, 1}L, a mapping functionh:
X → Y can be used to predict the corresponding label vec-
tor y ∈ Y for each input data instancex ∈ X . Multi-label
learning focuses on identifying a good mapping functionh
from the training data. The most straightforward method
to learn such a mapping function is the binary relevance
method, which assumes labels are independently generated
and learns one binary classifierhi for each label. The out-

put ofh is aL-length binary vector

h(x) = [h1(x), h2(x), . . . , hL(x)] .

The binary classifierhi can be trained by minimizing dif-
ferent loss functions, such as log-loss and hinge loss.

Conditional Random Fields (CRFs) are undirected
graphical models that model the conditional distribution of
the output labels given an input vector based on undirected
graphs. An undirected graphG = (V,E) in the label space
is formed by a set of verticesV , each of which represents
a label variable, and a set of undirected edgesE, where
each edge consists of a pair of vertices(s, t) ∈ E and rep-
resents the dependence relationship between the label vari-
ables. The joint probability of a configuration of the label
variables in a CRF can be given by

P (y1,y2, . . . ,yL|x) =
1

Z(x)

∏

c∈C
ψC(yc,x)

whereZ(x) is a partition function that ensures a valid con-
ditional distribution given the input data instancex, C is
the set of cliques of the graph, andψc is the potential func-
tion for clique c, which maps the clique label configura-
tion yc and the input data instancex into a positive scalar
value. The standard training procedure of conditional ran-
dom fields typically involves first-order gradient descent or
second-order Newton methods, which require performing
inference over each training instance in each iterative pa-
rameter update step. For general graphs, performing exact
inference in CRFs is intractable, and approximate inference
algorithms are usually used instead. Moreover, performing
inference in each parameter update step can make the train-
ing process computationally expensive, especially for large
and densely connected graphs and large training sets.

3.2 Probabilistic Label Enhancement Model

The straightforward method for multi-label image classifi-
cation casts the problem as a set of independent binary clas-
sification problems, one for each object label, and trains
one binary classifier for each label using the one-vs-all
scheme. Training binary classifiers is computationally effi-
cient and the one-vs-all training scheme can scale linearly
with the increasing of the label set. However, as we dis-
cussed before, such binary classifiers can fail to accurately
recognize the individual objects in an image, due to la-
bel sparsity, intra-class variations, and occlusions. In this
work, we propose to enhance these standard binary clas-
sifiers by exploiting the label combination patterns which
typically present as co-occurred object composites in im-
ages of the training data, as shown in Figure 1. We first
identify the informative label combination pairs by learn-
ing a tree-structured undirected graph in the label space,
which forms the structure of a conditional random field.
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Then we use the label combination pairs as augmenting
new labels and formulate the learning process as a piece-
wise training procedure under the framework of conditional
random fields. Finally we apply the trained probabilistic
model to predict labels for test images using a max-product
exact inference algorithm.

3.2.1 Learning Tree-Structured Graph

Given the labeled training imagesD={(x(i),y(i))}n
i=1,

where each label vectory(i) contains{0,1} values with
lengthL, corresponding to theL label classes, we aim to
identify the useful object composites by finding the infor-
mative label co-occurrence patterns. Though in principle
we can consider any label combination patterns, for compu-
tational simplicity we focus on second-order patterns, i.e.,
label pairs. We take all possible label pairs as candidates
by constructing a fully connected graph over theL label
variables. Then we measure the combination strength of
each label pair as the weight of the corresponding edge us-
ing an appropriate criterion. One standard criterion is the
empiricalmutual informationmeasure, which is popularly
used to measure the dependence strength of two variables
and can be computed from the training data. For example,
the empirical mutual information between label variables
Yi andYj can be computed as

MI(Yi;Yj) =
∑

yi,yj∈{0,1}
P̂ (yi, yj) log

(
P̂ (yi, yj)

P̂ (yi)P̂ (xj)

)

with the empirical probabilities computed from the training
data. However, this measure treats the co-presence of the
two labels and the co-missing of them equivalently, while
we want to find the label composites that have significant
co-presence patterns. Hence we propose a simple new mea-
sure,normalized co-occurrence, to use. For two label vari-
ablesYi andYj , the normalized co-occurrence measure is
defined as

NC(Yi;Yj) =
count(Yi, Yj)

min (count(Yi), count(Yj))

wherecount(Yi, Yj) is the number of co-occurrence of the
two labels in the training data, such that

count(Yi, Yj) =

n∑

ℓ=1

I[y
(ℓ)
i = 1,y

(ℓ)
j = 1] (1)

andI[·] denotes an indicator function. Similarly,count(Yi)
andcount(Yj) are the numbers of occurrences of single la-
bels in the training data. By normalizing the co-occurrence
counts of the two labels with the minimum of their individ-
ual occurrence counts, the measure emphasizes the relative
relatedness of the two objects and favors the less frequently
appeared objects. For example, assume there are 15 images
containingpeopleanddogs, and 10 images containingpeo-
ple andcars, while there are totally 100 people images, 80

Figure 2: An example of the constructed tree-structured
graph over labels.

dog images and 20 car images. The composite ofpeople
andcars can be more important to capture than the com-
posite ofpeopleanddogs, towards the goal of assisting the
objects with sparse supports in the training data. Our pro-
posed measure encodes this principle.

Given the proposed normalized co-occurrence criterion, we
can compute the weights for all edges between the label
variables. Then we use a maximum spanning tree algo-
rithm to select(L − 1) edges according to the computed
weights to form a tree-structured graph. In our implemen-
tation, we used Prim’s algorithm [26] to produce the max-
imum spanning tree. Figure 2 demonstrates an example
of the constructed tree graph over the label variables. The
label pair connected by each edge on the constructed tree
graph will be used as a constructed new label to augment
the original labels. For example, for the tree graph in Fig-
ure 2, since there is an edge between the nodeY1 and the
nodeY2, we will consider a constructed new labelY1∼2,
which has binary values{0, 1}. The label value forY1∼2

in each instance can be produced based on thatY1∼2 = 1
is equivalent toY1 = 1 ∧ Y2 = 1. Then for each instance
x(i), we sety(i)

1∼2 = 1 if and only if the instance has been

assigned both labelY1 and labelY2 such thaty(i)
1 = 1 and

y
(i)
2 = 1. Otherwise, we havey(i)

1∼2 = 0. Thus each con-
structed new label can be treated as a new prediction class
from the prediction perspective. The reason that we pro-
duce tree graphs instead of densely connected cyclic graphs
is that tree graphs have acyclic structures and permit effi-
cient exact inference in the test phase to integrate the aug-
mented label classifiers with the binary classifiers in the
original label space.

3.2.2 Piecewise Training of CRFs

The tree-structured graph constructed in the label space ac-
tually forms a standard CRF model that permits label vec-
tor prediction from the input data, where we treat each node
and each edge as separate cliques. Based on our motivation
of capturing object composite concept to help the multi-
label prediction in the original label space, we propose to
perform piecewise training for the tree-structured CRF by
learning the potential functions for each node clique and
each edge clique separately. That is, we train a set ofL
binary classifiers independently from the data, one for each
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Figure 3: The factor graph constructed from the tree graph
in Figure 2. The circle nodes are variable nodes and the
rectangle nodes are factor nodes.

label in the original label space, as the potential functions
for the node cliques, and train a set of(L− 1) binary clas-
sifiers independently from the data for the constructed new
labels as the potential functions for the corresponding edge
cliques. Piecewise training can effectively avoid the re-
peated inference required for each step of parameter up-
dates in the standard CRF training procedure and make the
learning process efficient and scalable. It has been shown
in [29] that piecewise training of a CRF can be justified as
minimizing a family of upper bounds on the log partition
function of the data log-likelihood.

To have the outputs of potential functions compatible to
each other, we propose to use binary probabilistic classi-
fiers, in particular binary logistic regression classifiers, for
training. Each binary logistic regression classifier can be
trained efficiently by using second-order Newton methods
to minimize the regularized log-likelihood. For thek-th
classifier, this is to minimize

min
w

n∑

i=1

log
(
1 + e−ŷ

(i)
k w⊤x(i)

)
+
β

2
w⊤w (2)

whereβ is a trade-off parameter, and̂y(i)
k is simply the

translation ofy(i)
k from values{1, 0} to {1,−1}.

3.2.3 Inference with Max-product Algorithm

Given the trained tree-structured CRF model, the multi-
label prediction on a test instance can be performed us-
ing the max-product inference algorithm [21]. The max-
product algorithm conducts label decoding through mes-
sage passing which operates in factor graphs. Given the
trained pairwise CRF model, we then first transfer it into
a factor graph by simply keeping all variable nodes and
adding a factor node for each edge clique. For example,
the factor graph constructed for the tree-structured CRF in
Figure 2 is given in Figure 3, where each variable node
is represented as a circle and each factor node is repre-
sented as a rectangle. For a given test instancex, the po-
tentials of the two types of nodes in the factor graph can
be computed using the probabilistic binary classifiers pro-
duced in the training phase, such asψ(yi) = P (yi|x) and
ψ(yi,yj) = ψ(yi∼j) = P (yi∼j |x).

The decoding process on the test instancex aims to find the
maximum a posteriori (MAP) label assignment by solving

y∗ = arg max
y

P (y|x) (3)

The max-product algorithm performs this decoding on the
factor graph using the following message passing. First,
we randomly select a variable noder as the root of the tree,
and pass messages from leaves until they reach the root.
There are two types of messages: node-to-factor messages
and factor-to-node messages. The message from the nodei
to the factora (e.g.,a = i ∼ j) can be computed as

µi→a(yi) = ψ(yi)
∏

c∈N(i)\a

µc→i(yi) (4)

whereN(i)\a represents all the neighboring factor nodes
of nodei excluding factor nodea. The message from the
factora = i ∼ j to the nodej can be computed as

µa→j(yj) = max
yi

(
ψa(yi,yj)µi→a(yi)

)
(5)

Back pointers are kept for each value that achieves the max-
imum at a max operation. At the root, we multiply all in-
coming messages to obtain the maximum probability and
the MAP configuration of the root nodey∗

r

P ∗ = max
yr

(
ψ(yr)

∏

a∈N(r)

µa→r(yr)
)

(6)

y∗
r = arg max

yr

(
ψ(yr)

∏

a∈N(r)

µa→r(yr)
)

(7)

We then back trace the pointers and find the complete val-
uesy∗ that lead toP ∗. For tree graphs, this max-product
algorithm provides an exact inference solution. But for an
arbitrary graph with loops, it can only provide an approxi-
mate solution.

4 EXPERIMENTS

To evaluate the proposed approach, we conducted experi-
ments on several standard multi-label image classification
datasets, comparing to a few state-of-the-art multi-label
learning methods and baselines. We report our empirical
results in this section.

4.1 Datasets

We used the following three image datasets in our exper-
iments: Pascal VOC 2007 (Pascal07), Corel5K, andSUN
2012. Pascal07is one of the most famous image datasets
for classification and detection and it contains20 different
object classes.Corel5K is a standard image set for multi-
label classification with5, 000 instances and260 classes.
To have a fair comparison with a few comparison methods,
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some of which are too slow to deal with many classes, we
selected two subsets with50 most frequent labels and100
most frequent labels respectively to use.SUN 2012[31] is
a recently released large-scale image set for object detec-
tion. Similarly, we used two subsets with50 labels and100
labels respectively. The properties of the datasets used in
our experiment are briefly summarized in Table 1, where
cardinality denotes the average number of labels assigned
to one image. In these datasets, each image is represented
as a 512-dimensionGIST [25] feature vector.

Table 1: Summary information of the datasets.

Dataset #images #labels cardinality
Pascal07 4168 20 2.26

Corel5K(s50) 4999 50 2.32

Corel5K(s100) 4999 100 2.89

SUN12(s50) 5000 50 8.98

SUN12(s100) 5000 100 11.18

4.2 Experimental Results

On each of five datasets, we compared the proposed ap-
proach to the following state-of-the-art multi-label classifi-
cation methods and baseline method:

• Ensembled Probabilistic Classifier Chain (EPCC).
This probabilistic multi-label learning method is de-
veloped in [6] and it integrates base classifiers in a
chain structure in the label space.

• Maximum Margin Output Coding (MMOC). This is a
multi-label learning method developed in [36], which
performs classification on a simultaneously learned
lower-dimensional label space within a maximum
margin framework.

• Logistic Regression (LR). This is a baseline method
that trains a set of independent binary logistic regres-
sion classifiers, one for each label, to perform multi-
label classification.

For our proposed approach, there is one regularization
trade-off parameterβ to set for the logistic regression clas-
sifiers. We found that logistic regression classifiers are not
very sensitive to this parameter. In our experiments, we set
β as a very small value around0.0002. For the comparison
methodsEPCCandMMOC, we used the code packages re-
leased on the internet1. These packages contain parameter
selection procedures and settings.

On each dataset, we performed a 5-fold cross validation to
compare all the methods. To evaluate the multi-label clas-
sification results from different perspective, we used five

1 https://github.com/multi-label-classification/PCC;
http://www.cs.cmu.edu/ yizhang1/files/ICML2012Code.zip

standard criteria: macro-F1, micro-F1, hamming loss, pre-
cision and recall. The average results and standard devia-
tions in terms of the five criteria for all the four methods are
reported in Table 2. We can see that our proposed method
outperforms all the other comparison methods across all
five datasets and in terms of all the four measure crite-
ria: macro-F1, micro-F1, Precision and Recall. In terms
of hamming loss, the proposed approach produced the best
results on four out of the five datasets. Moreover, the pro-
posed approach significantly outperforms the baselineLR
method across all different settings. This clearly shows that
the augmenting new labels in our model are very effective
in assisting identifying the individual labels, and it is very
beneficial to exploit the label co-occurrence patterns. By
comparing the results on theCorel5k(s50)dataset and the
Corel5k(s100)dataset, we can see that with the increas-
ing of the label set size, the performance of all methods in
terms of the four measures, macro-F1, micro-F1, precision
and recall, has the general trend of decreasing. In terms of
the hamming loss, however, the results of all approaches
are even better onCorel5k(s100)than onCorel5k(s50).
This seems very strange. But if we check the two datasets,
we can see that thoughCorel5k(s100)contains 50 more
labels thanCorel5k(s50), the difference between their la-
bel cardinality values is very small. This indicates that
the labels are even more sparse inCorel5k(s100)than in
Corel5k(s50). By producing similar number of positive la-
bels, the performance of each approach will automatically
get better in terms of hamming loss, with the increasing
of the label set size. This result suggests that hamming
loss is not an appropriate criterion for multi-label classifi-
cation when the label cardinality is small while the num-
ber of label classes is large. Similar results are observed
acrossSUN12(s50)andSUN12(s100)as well. Another ob-
servation over the table is thatEPCCproduced the second
best results in most cases. TheEPCCmethod greatly out-
performs the baselineLR almost on all the datasets and in
terms of all criteria, except that onSUN12(s100)in terms of
macro-F1 and onSUN12(s50)in terms of precision, where
it produces similar results withLR. The MMOC method
is much more time-consuming than other methods. On
the two datasets with 100 labels, it fails to yield any re-
sult within reasonable period of running time. It has infe-
rior performance comparing to the proposed approach and
EPCCin most cases.

Running time To compare the empirical efficiency of the
approaches, we have also recorded the training time and
testing time of each approach on a 64-bit machine with
16GB memory and quad core intel i7 processors. The re-
sults of average running time are reported in Figure 4. We
can see the baselineLR is the most efficient method in
terms of both training and testing time, since it only needs
to train a set of binary classifiers and perform classification
independently for each label. Among the remaining three
methods, our proposed approach is significantly more ef-
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Table 2: The average results and standard deviations of all the comparison methods on the five datasets in terms of different
evaluation criteria. On each dataset, the best result in each criterion across different methods is shown in bold font. ’-’
denotes the fact that the method fails to run on the corresponding dataset due to the large label size.

Measure Methods
Datasets

Pascal07 Corel5k(s50) Corel5k(s100) SUN12(s50) SUN12(s100)

Macro-F1

Proposed 0.268±0.005 0.276±0.003 0.167±0.004 0.377±0.004 0.315±0.002
EPCC 0.252±0.005 0.245±0.006 0.158±0.002 0.355±0.002 0.210±0.003
MMOC 0.220±0.003 0.218±0.002 - 0.318±0.002 -
LR 0.247±0.006 0.201±0.003 0.135±0.002 0.323±0.002 0.215±0.002

Micro-F1

Proposed 0.579±0.004 0.362±0.005 0.333±0.003 0.581±0.003 0.514±0.002
EPCC 0.567±0.003 0.351±0.002 0.327±0.002 0.563±0.001 0.507±0.002
MMOC 0.543±0.006 0.238±0.003 - 0.514±0.002 -
LR 0.481±0.007 0.222±0.003 0.197±0.003 0.486±0.003 0.386±0.003

Hamming Loss

Proposed 0.057±0.003 0.062±0.002 0.023±0.002 0.146±0.003 0.089±0.004
EPCC 0.094±0.001 0.077±0.001 0.047±0.000 0.166±0.001 0.110±0.000
MMOC 0.089±0.002 0.057±0.001 - 0.154±0.001 -
LR 0.121±0.002 0.079±0.001 0.049±0.000 0.170±0.001 0.138±0.001

Precision

Proposed 0.697±0.013 0.343±0.003 0.310±0.005 0.656±0.003 0.541±0.003
EPCC 0.649±0.004 0.311±0.002 0.300±0.003 0.544±0.001 0.517±0.002
MMOC 0.689±0.011 0.225±0.004 - 0.614±0.003 -
LR 0.518±0.010 0.198±0.003 0.185±0.004 0.548±0.004 0.403±0.003

Recall

Proposed 0.570±0.010 0.458±0.014 0.418±0.008 0.641±0.002 0.565±0.005
EPCC 0.557±0.003 0.453±0.005 0.404±0.004 0.610±0.003 0.523±0.003
MMOC 0.482±0.004 0.184±0.005 - 0.464±0.003 -
LR 0.507±0.006 0.235±0.004 0.206±0.003 0.456±0.002 0.396±0.002
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Figure 4: Training and testing time (seconds) for all methods. Note on Corel5k(s100) and SUN12(s100), the yellow bar
(for MMOC) is missing due to that MMOC fails to handle these datasets.

ficient than the other two methods in terms of the testing
time. For training time, the proposed approach is similar to
EPCCon the datasetPascal07which has small label set,
and is more efficient thanEPCCon the other larger scale
datasets.MMOC is the most inefficient one among all the
four methods. It even fails to produce any results on the
two datasets with 100 labels.

Illustration of the Results To have an illustrative under-
standing about the image annotation problem and the pre-
diction results, in Table 3 we presented the predicted labels
on four testing images from theSUN12(s50)dataset by the
four methods. The true positive labels are shown in bold
font. We can see that our proposed approach is in general
more accurate than the other methods, thoughEPCChas
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Table 3: The predicted labels on four test images of SUN12(s50) by the comparison methods. The true positive labels are
shown in bold font.

Methods
Proposed wall, floor, ceiling,

chair, door, cabinet,
table, vase, bottle,
window

floor, wall, ceiling,
door, table, person,
box, books, chair

wall, door, road, car,
sky, trees, person,
mountain

door, sky, trees, grass

EPCC wall, floor, ceiling,
chair, ceiling lamp,
table, vase, flowers,
window, plant

wall, floor, ceiling,
chair, door, person,
ceiling lamp, window,
cabinet

sky, window, door,
plant, building, tree,
grass

sky, tree, wall, floor,
window, ceiling, chair,
door, table, plant

MMOC wall, floor, window,
ceiling, chair, table,
curtain, sofa, window

wall, floor, ceiling, per-
son, window, ceiling
lamp

sky, car, ceiling, grass,
plant, building, tree,
streetlight

sky, tree, wall, win-
dow, plants

LR wall, floor, ceiling,
chair, table, bottle,
window, curtain, rug,
sofa

wall, floor, ceiling, per-
son

wall, sky, road, car,
plant, building, tree,
grass, streetlight

sky, tree, grass, plant,
wall

good precision result on the first image as well.

All these results suggest that by capturing the object combi-
nation patterns in newly created labels, the proposed proba-
bilistic label enhancement model provides an effective and
efficient framework for multi-label image classification.

4.3 Experiments with Dense Graphs

Our proposed approach constructs a tree-graph to iden-
tify the informative label combination patterns. In order
to produce the tree structure, the maximum spanning tree
algorithm needs to ignore the edges with larger (normal-
ized co-occurrence) weights to avoid cycles. To investigate
whether this is problematic, we tried an alternative ver-
sion of the proposed approach by constructing a densely
connected graph for label combinations, instead of restrict-
ing to singly connected trees. Specifically, we produce the
dense graph by simply keeping a proportion of the existing
edges (there is no edge between label pairs that never co-
occur) with largest weights. In the experiments, we kept
the top30% of the edges.

We compared the two variants of the proposed model
across the five datasets. In particular, Figure 5 shows the
examples of the dense graph and the tree graph constructed
on the Pascal07 dataset. The tree graph only has 19 edges,
while the dense graph has 37 edges. We can see that the
two graphs have many common edges but also capture
some very different label combination patterns. There are

some interesting pairs missing in the tree graph. For ex-
ample,sofaandtv monitorcan be observed in most sitting
rooms, but their combination pair is not kept in the tree
graph. On the other hand, the tree graph captured many
important co-occurrence patterns withmuch lessnumber
of edges. For example, the tree graph captures the frequent
co-occurrences betweenpersonand many other objects. By
looking at the images in Pascal07, we can find many images
containingpersonin different classes, which explains why
the tree graph isperson-centric. Moreover, even with much
more edges, there are two isolated nodes in the dense graph,
while none of nodes can be isolated in the tree graph.

The classification results of these two variants are reported
in Table 4, in terms of macro-F1, micro-F1 and hamming
loss. We can see that though the tree graph sacrificed edges
with larger weights to maintain a singly connected tree
structure, its performance is similar or even slightly better
than the performance of the dense graph in most cases. In
terms of the three measures, the dense graph only outper-
forms the tree graph onCorel5k(s50)andSUN12(s50)in
terms of macro-F1, and onPascal07in terms of hamming
loss. With cyclic dense graphs, the max-product algorithm
in the test phase can only produce approximate inference
results. This can contribute to the inferior performance of
the dense graph in many cases. Moreover, with more edges
kept in the graph, there will be more auxiliary classifiers
to train in the training phase, this makes the dense graph
variant to have larger training time. All these information
suggests that the tree graph is a desirable structure.
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Figure 5: The densely connected graph and tree graph constructed on Pascal07.

Table 4: The average comparison results between the proposed approach (with tree graph) and its alternative version with
a dense graph.

Measure Methods
Datasets

Pascal07 Corel5k(s50) Corel5k(s100) SUN12(s50) SUN12(s100)

Macro-F1
Tree 0.268±0.005 0.276±0.003 0.167±0.004 0.377±0.004 0.315±0.002
Dense 0.250±0.005 0.278±0.005 0.162±0.003 0.420±0.005 0.298±0.002

Micro-F1
Tree 0.579±0.004 0.362±0.005 0.333±0.003 0.581±0.003 0.514±0.002
Dense 0.568±0.002 0.360±0.004 0.330±0.003 0.579±0.003 0.504±0.003

Hamming Loss
Tree 0.057±0.003 0.062±0.002 0.023±0.002 0.146±0.003 0.089±0.004
Dense 0.052±0.001 0.078±0.001 0.032±0.001 0.172±0.001 0.120±0.001

5 CONCLUSION

In this paper, we presented a novel probabilistic label en-
hancement model for multi-label image classification. The
idea is to use informative label combination pairs (i.e., the
object composite concepts in images) to augment the orig-
inal labels which can be difficult to predict individually
due to label sparsity, intra-class variations and occlusions,
aiming to enhance the overall multi-label prediction per-
formance. We formulated our model under the conditional
random field framework by first constructing a tree graph
in the label space based on the label co-occurrence patterns
in the training data, and then performing efficient piece-
wise training. The learning process of the proposed model
only requires training a set of independent binary classi-
fiers, while its tree structure permits efficient and exact
max-product inference in the test phase. Our experiments
on several image classification datasets showed the pro-
posed approach has superior performance in terms of both
prediction quality and empirical computational complexity,
comparing to the state-of-the-art comparison methods.
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Abstract

One of the most tedious tasks in the applica-
tion of machine learning is model selection, i.e.
hyperparameter selection. Fortunately, recent
progress has been made in the automation of this
process, through the use of sequential model-
based optimization (SMBO) methods. This can
be used to optimize a cross-validation perfor-
mance of a learning algorithm over the value of
its hyperparameters. However, it is well known
that ensembles of learned models almost consis-
tently outperform a single model, even if prop-
erly selected. In this paper, we thus propose an
extension of SMBO methods that automatically
constructs such ensembles. This method builds
on a recently proposed ensemble construction
paradigm known as Agnostic Bayesian learning.
In experiments on 22 regression and 39 classifi-
cation data sets, we confirm the success of this
proposed approach, which is able to outperform
model selection with SMBO.

1 INTRODUCTION

The automation of hyperparameter selection is an impor-
tant step towards making the practice of machine learning
more approachable to the non-expert and increases its im-
pact on data reliant sciences. Significant progress has been
made recently, with many methods reporting success in
tuning a large variety of algorithms Bergstra et al. [2011],
Hutter et al. [2011], Snoek et al. [2012], Thornton et al.
[2013]. One successful general paradigm is known as Se-
quential Model-Based Optimization (SMBO). It is based
on a process that alternates between the proposal of a new
hyperparameter configuration to test and the update of an
adaptive model of the relationship between hyperparameter
configurations and their holdout set performances. Thus,
as the model learns about this relationship, it increases its
ability to suggest improved hyperparameter configurations

and gradually converges to the best solution.

While finding the single best model configuration is useful,
better performance is often obtained by, instead, combining
several (good) models into an ensemble. This was best il-
lustrated by the winning entry of the Netflix competition,
which combined a variety of models [Bell et al., 2007].
Even if one concentrates on a single learning algorithm,
combining models produced by using different hyperpa-
rameters is also helpful. Intuitively, models with compa-
rable performances are still likely to generalize differently
across the input space and produce different patterns of er-
rors. By averaging their predictions, we can hope that the
majority of models actually perform well on any given in-
put and will move the ensemble towards better predictions
globally, by dominating the average. In other words, the
averaging of several comparable models reduces the vari-
ance of our predictor compared to each individual in the
ensemble, while not sacrificing too much in terms of bias.

However, constructing such ensembles is just as tedious
as performing model selection and at least as important in
the successful deployment of machine-learning-based sys-
tems. Moreover, unlike the model selection case for which
SMBO can be used, no comparable automatic ensemble
construction methods have been developed thus far. The
current methods of choice remain trial and error or exhaus-
tive grid search for exploring the space of models to com-
bine, followed by a selection or weighting strategy which is
often an heuristic. One exception is the work of Thornton
et al. [2013], which can support the construction of ensem-
bles, but only of up to 5 models.

In this paper, we propose a method for leveraging the re-
cent research on SMBO in order to generate an ensem-
ble of models, as opposed to the single best model. The
proposed approach builds on the Agnostic Bayes frame-
work [Lacoste et al., 2014], which provides a successful
strategy for weighting a predetermined and finite set of
models (already trained) into an ensemble. Using a suc-
cessful SMBO method, we show how we can effectively
generalize this framework to the case of an infinite space of
models (indexed by its hyperparameter space). The result-
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ing method is simple and highly efficient. Our experiments
on 22 regression and 39 classification data sets confirm that
it outperforms the regular SMBO model selection method.

The paper develops as follows. First, we describe SMBO
and its use for hyperparameter selection (Section 2). We
follow with a description of the Agnostic Bayes framework
and present a bootstrap-based implementation of it (Sec-
tion 3). Then, we describe the proposed algorithm for au-
tomatically constructing an ensemble using SMBO (Sec-
tion 4). Finally, related work is discussed (Section 5) and
the experimental comparisons are presented (Section 6).

2 HYPERPARAMETER SELECTION
WITH SMBO

Let us first lay down the notation we will be using to de-
scribe the task of model selection for a machine learning
algorithm. In this setup, a task D corresponds to a proba-
bility distribution over the input-output spaceX×Y . Given
a set of examples S ∼ Dm (which will be our holdout vali-
dation set), the objective is to find, among a setH, the best
function h? : X → Y . In general, H can be any set and
we refer to a member as a predictor. In the context of hy-
perparameter selection,H corresponds to the set of models
trained on a training set T ∼ Dn (disjoint from S), for
different configurations of the learning algorithm’s hyper-
parameters γ. Namely, let Aγ be the learning algorithm
with a hyperparameter configuration γ ∈ Γ, we will note
hγ = Aγ(T ) the predictor obtained after training on T .
The setH contains all predictors obtained from each γ ∈ Γ
when Aγ is trained on T , i.e. H def= {hγ |γ ∈ Γ}.
To assess the quality of a predictor, we use a loss function

L : Y × Y → R,

that quantifies the penalty incurred when hγ predicts hγ(x)
while the true target is y. Then, we can define the risk
RD(hγ) as being the expected loss of hγ on task D, i.e.
RD(hγ) def= E

x,y∼D
[L (hγ(x), y)]. Finally, the best1 func-

tion is simply the one minimizing the risk, i.e.

h? def= argmin
hγ∈H

RD(hγ).

Here, estimating h? thus corresponds to hyperparameter se-
lection.

For most of machine learning history, the state of the art
in hyperparameter selection has been testing a list of pre-
defined configurations and selecting the best according to
the loss function L on some holdout set of examples S.
When a learning algorithm has more than one hyperparam-
eter, a grid search is required, forcing |Γ| to grow exponen-
tially with the number of hyperparameters. In addition, the

1The best solution may not be unique but any of them are
equally good.

search may yield a suboptimal result when the minimum
lies outside of the grid or when there is not enough compu-
tational power for an appropriate grid resolution. Recently,
randomized search has been advocated as a better replace-
ment to grid search [Bergstra and Bengio, 2012]. While
it tends to be superior to grid search, it remains inefficient
since its search is not informed by results of the sequence
of hyperparameters that are tested.

To address these limitations, there has been an increasing
amount of work on automatic hyperparameter optimiza-
tion [Bergstra et al., 2011, Hutter et al., 2011, Snoek et al.,
2012, Thornton et al., 2013]. Most rely on an approach
called sequential model based optimization (SMBO). The
idea consists in treating RS(hγ) def= f(γ) as a learnable
function of γ, which we can learn from the observations
{(γi, RS(hγi))} collected during the hyperparameter se-
lection process.

We must thus choose a model family for f . A common
choice is a Gaussian process (GP) representation, which
allows us to represent our uncertainty about f , i.e. our un-
certainty about the value of f(γ∗) at any unobserved hy-
perparameter configuration γ∗. This uncertainty can then
be leveraged to determine an acquisition function that sug-
gests the most promising hyperparameter configuration to
test next.

Namely, let functions µ : Γ → R and K : Γ × Γ → R be
the mean and covariance kernel functions of our GP over
f . Let us also denote the set of the M previous evaluations
as

R def= {(γi, RS (hγi))}Mi=1 (1)

where RS (hγi) is the empirical risk of hγi on set S, i.e.
the holdout set error for hyperparameter γ.

The GP assumption on f implies that the conditional dis-
tribution p(f(γ∗)|R) is Gaussian, that is

p(f(γ∗)|R) = N (f(γ∗);µ(γ∗;R), σ2(γ∗;R),

µ(γ∗;R) def= µ(γ∗) + k>K−1(r− µ),

σ2(γ∗;R) def= K(γ∗, γ∗)− k>K−1k

whereN (f(γ∗);µ(γ∗;R), σ2(γ∗;R) is the Gaussian den-
sity function with mean µ(γ∗;R) and variance σ2(γ∗;R).
We also have vectors

µ def= [µ(γ1), . . . , µ(γM )]>,

k def= [K(γ∗, γ1), . . . ,K(γ∗, γM )]>,

r def= [RS (hγ1
) , . . . , RS (hγM )]>,

and matrix K is such that Kij = K(γi, γj).

There are several choices for the acquisition function. One
that has been used with success is the one maximizing the
expected improvement:

EI(γ∗;R) def= E [max{rbest − f(γ∗), 0}|R] (2)
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which can be shown to be equal to

σ2(γ∗;R) (d(γ∗;R)Φ(d(γ∗;R)) +N (d(γ∗;R), 0, 1))

(3)

where Φ is the cumulative distribution function of the stan-
dard normal and

rbest
def= min

i
RS (hγi) ,

d(γ∗;R) def=
rbest − µ(γ∗;R)

σ(γ∗;R)
.

The acquisition function thus maximizes Equation 3 and
returns its solution. This optimization can be performed by
gradient ascent initialized at points distributed across the
hyperparameter space according to a Sobol sequence, in or-
der to maximize the chance of finding a global optima. One
advantage of expected improvement is that it directly offers
a solution to the exploration-exploitation trade-off that hy-
perparameter selection faces.

An iteration of SMBO requires fitting the GP to the cur-
rent set of tested hyperparameters R (initially empty), in-
voking the acquisition function, running the learning algo-
rithm with the suggested hyperparameters and adding the
result to R. This procedure is expressed in Algorithm 1.
Fitting the GP corresponds to learning the mean and co-
variance functions hyperparameters to the collected data.
This can be performed either by maximizing the data’s
marginal likelihood or defining priors over the hyperparam-
eters and sampling from the posterior using sampling (see
Snoek et al. [2012] for more details).

Algorithm 1 SMBO Hyperparameter Optimization with
GPs
R ← {}
for k ∈ {1, 2, . . . ,M} do
γ ← SMBO(R) {Fit GP and maximize EI}
hγ ← Aγ(T ) {Train with suggested γ}
R ← R∪ {(γ,RS(hγ))} {Add to collected data}

end for
γ∗ ← argmin

(γ,RS(hγ))∈R
RS(hγ)

return hγ∗

While SMBO hyperparameter optimization can produce
very good predictors, it can also suffer from overfitting on
the validation set, especially for high-dimensional hyper-
parameter spaces. This is in part why an ensemble of pre-
dictors are often preferable in practice. Properly extending
SMBO to the construction of ensembles is, however, not
obvious. Here, we propose one such successful extension,
building on the framework of Agnostic Bayes learning, de-
scribed in the next section.

3 AGNOSTIC BAYES

In this section, we offer a brief overview of the Agnostic
Bayes learning paradigm presented in Lacoste et al. [2014]
and serving as a basis for the algorithm we present in this
paper. Agnostic Bayes learning was used in Lacoste et al.
[2014] as a framework for successfully constructing en-
sembles when the number of predictors inH (i.e. the poten-
tial hyperparameter configurations Γ) was constrained to be
finite (e.g. by restricting the space to a grid). In our con-
text, we can thus enumerate the possible hyperparameter
configurations from γ1 to γ|Γ|. This paper will generalize
this approach to the infinite case later.

Agnostic Bayes learning attempts to directly address the
problem of inferring what is the best function h? in H,
according to the loss function L. It infers a posterior
ph?(hγ |S), i.e. a distribution over how likely each member
of H is the best predictor. This is in contrast with stan-
dard Bayesian learning, which implicitly assumes that H
contains the true data-generating model and infers a distri-
bution for how likely each member of H has generated the
data (irrespective of what the loss L is). From ph?(hγ |S),
by marginalizing h?, we obtain a probabilistic estimate for
the best prediction y? def= h?(x)

py?(y|x, S) =
∑

γ∈Γ

ph?(hγ |S)I[hγ(x) = y].

Finally, to commit to a final prediction, for a given x, we
use the most probable answer2. This yields the following
ensemble decision rule

E?(x) def= argmax
y∈Y

py?(y|x, S). (4)

To estimate ph?(hγ |S), Agnostic Bayes learning uses
the set of losses lγ,i

def= L(hγ(xi), yi) of each example
(xi, yi) ∈ S as evidence for inference. In Lacoste et al.
[2014], a few different approaches are proposed and an-
alyzed. A general strategy is to assume a joint prior p(r)
over the risks rγ

def= RD(hγ) of all possible hyperparameter
configurations and choose a joint observation p(lγ,i ∀γ ∈
Γ|r) for the losses. From Bayes rule, we obtain the poste-
rior p(r|S) from which we can compute

ph?(hγ |S) = Er [I[rγ < rγ′ ,∀γ′ 6= γ]|S] (5)

with a Monte Carlo estimate. This would result in repeat-
edly sampling from p(r|S) and counting the number of
times each γ has the smallest sampled risk rγ to estimate
ph?(hγ |S). Similarly, samples from ph?(hγ |S) could be
obtained by sampling a risk vector r from p(r|S) and re-
turning the predictor hγ with the lowest sampled risk. The

2As noted in Lacoste et al. [2014], py?(y|x, S) does not cor-
respond to the probability of observing y given x and cannot be
used with the optimal Bayes theory, thus justifying the usage of
the most probable answer
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ensemble decision rule of Equation 4 could then be im-
plemented by repeatedly sampling from ph?(hγ |S) to con-
struct the ensemble of predictors and using their average as
the ensemble’s prediction.

Among the methods explored in Lacoste et al. [2014] to
obtain samples from p(r|S), the bootstrap approach stands
out for its efficiency and simplicity. Namely, to obtain
a sample from p(r|S), we sample with replacement from
S to obtain S′ and return the vector of empirical risks
[RS′(hγ1), . . . , RS′(hγ|Γ|)]

> as a sample. While bootstrap
only serves as a “poor man’s” posterior, it can be shown
to be statistically related to a proper model with Dirich-
let priors and its empirical performance was shown to be
equivalent [Lacoste et al., 2014].

When the bootstrap method is used to obtain samples from
ph?(hγ |S), the complete procedure for generating each en-
semble member can be summarized by

h̃? = argmin
γ∈Γ

RS′(hγ), (6)

where h̃? corresponds to a sample from ph?(hγ |S). In
this work, we use SMBO to address the optimization part.
Thus, we can now extended to an uncountable set Γ.

This method can be seen as applying bagging on the val-
idation set instead of the training set. However, we stand
by the Agnostic Bayes theory since it offers a strong the-
oretical backbone to bagging as well as few refinements.
Most importantly, the normal assumption of Section 3.3
in Lacoste et al. [2014] suggests that methods based on
the covariance of the predictions such as ensemble prun-
ing [Zhang et al., 2006] and MinCq [Roy et al., 2011] are
simply different approximations of this idea. This connec-
tion allows us to be confident that the fast and simple al-
gorithm we propose in this paper is at least equivalent in
generalization performance to other state of the art ensem-
ble methods. Finally, this claim is supported by the strong
experimental section of Lacoste et al. [2014].

4 AGNOSTIC BAYES ENSEMBLE WITH
SMBO

We now present our proposed method for automatically
constructing an ensemble, without having to restrict Γ (or,
equivalentlyH) to a finite subset of hyperparameters.

As described in Section 3, to sample a predictor from the
Agnostic Bayes bootstrap method, it suffices to obtain a
bootstrap S′ from S and solve the optimization problem of
Equation 6. In our context where H is possibly an infinite
set of models trained on the training set T for any hyper-
parameter configuration γ, Equation 6 corresponds in fact
to hyperparameter optimization where the holdout set is S′

instead of S.

This suggests a simple procedure for building an ensem-
ble of N predictors according to Agnostic Bayes i.e., that
reflects our uncertainty about the true best model h?. We
could repeat the full SMBO hyperparameter optimization
process N times, with different bootstrap S′j , for j ∈
{1, 2, . . . , N}. However, for large ensembles, performing
N runs of SMBO can be computationally expensive, since
each run would need to train its own sequence of models.

We can notice however that predictors are always trained on
the same training set T , no matter in which run of SMBO
they were trained on. We propose a handy trick that ex-
ploits this observation to greatly accelerate the construc-
tion of the ensemble by almost a factor of N . Specifically,
we propose to simultaneously optimize all N problems in
a round-robin fashion. Thus, we maintain N different his-
tories of evaluation Rj , for j ∈ {1, 2, . . . , N} and when a
new predictor hγ = Aγ(T ) is obtained, we update all Rj
with (γ,RS′j (hγ)). Notice that the different histories Rj
contain the empirical risks on different bootstrap holdout
sets, but they are all updated at the cost of training only a
single predictor. Also, to avoid recalculating multiple times
L(hγ(xi), yi), these values can be cached and shared in the
computation of each Rj . This leaves the task of updating
all Rj insignificant compared to the computational time
usually required for training a predictor. This procedure
is detailed in Algorithm 2.

Algorithm 2 Agnostic Bayes Ensemble with SMBO
for j ∈ {1, 2, . . . , N} do
Rj ← {}
S′j ← bootstrap(S)

end for

E ← {} {Will contain all trained predictors}
for k ∈ {1, 2, . . . ,M} do
v ← (k − 1) moduloN + 1
γ ← SMBO(Rv)
hγ ← Aγ(T )
E ← E ∪ {hγ}
for j ∈ {1, 2, . . . , N} do
Rj ← Rj ∪

{(
γ,RS′j (hγ)

)}

end for
end for

H′ ← {} {Will contain N selected predictors}
for j ∈ {1, 2, . . . , N} do
hj ← argmin

hγ∈E
RS′j (hγ)

H′ ← H′ ∪ {hj}
end for

ph?(hγ |S) = Uniform(H′)
return ph?(hγ |S)
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By updating all Rj at the same time, we trick each SMBO
run by updating its history with points it did not suggest.
This implies that the GP model behind each SMBO run will
be able to condition on more observations then it would if
the runs had been performed in isolation. This can only
benefit the GPs and improve the quality of their sugges-
tions.

While Algorithm 2 is sequential, it can be easily adapted to
the parallelized version of SMBO presented in Snoek et al.
[2012]. Also, it can be extended to use cross validation,
based on the method developed in [Lacoste et al., 2014].

In our experiments, we fix N = bM2 c. This maximizes
the number of samples used to estimate py?(y|x, S) while
ensuring at least one SMBO step with a reasonably large
history for each bootstrap. When the prediction time on the
test set is a concern, we suggest to choose N ≈ 10. We
observed that it was usually enough to obtain most of the
generalization gain.

Finally, since py?(y|x, S) is only estimated, finding the
maximum, as requested in Equation 4, requires some form
of density estimation. In the case of classification, we sim-
ply use the most probable class. However, in the regression
case, we fit a normal distribution3. Thus, the maximum co-
incide with the average prediction. For a more complex Y ,
such as in structured output tasks, we recommend to use an
appropriate density estimation and increase the number of
samples N .

5 RELATED WORK

In the Bayesian learning literature, a common way of deal-
ing with hyperparameters in probabilistic predictors is to
define hyperpriors and perform posterior inference to in-
tegrate them out. This process often results in also con-
structing an ensemble of predictors with different hyper-
parameters, sampled from the posterior. Powerful MCMC
methods have been developed in order to accommodate for
different types of hyperparameter spaces, including infinite
spaces.

However, this approach requires that the family of predic-
tors in question be probabilistic in order to apply Bayes
rule. Moreover, even if the predictor family is probabilis-
tic, the construction of the ensemble will entirely ignore the
nature of the loss function that determines the measure of
performance. The comparative advantage of the proposed
Agnostic Bayes SMBO approach is thus that it can be used
for any predictor family (probabilistic or not) and is loss-
sensitive.

On the other hand, traditional ensemble methods such as
Laviolette et al. [2011], Kim and Ghahramani [2012], and

3It is also possible to use a more elaborated method, such as
kernel density estimation.

Zhang et al. [2006] require a predefined set of models and
are not straightforward to adapt to an infinite set of models.

6 EXPERIMENTS

We now compare the SMBO ensemble approach (ESMBO)
to three alternative methods for building a predictor from a
machine learning algorithm with hyperparameters:

• A single model, whose hyperparameters were se-
lected by hyperparameter optimization with SMBO
(SMBO).

• A single model, whose hyperparameters were selected
by a randomized search (RS), which in practice is
often superior to grid search [Bergstra and Bengio,
2012].

• An Agnostic Bayes ensemble constructed from a ran-
domly selected set of hyperparameters (ERS).

Both ESMBO and SMBO used GP models of the hold-
out risk, with hyperparameters trained to maximize the
marginal likelihood. A constant was used for the mean
function, while the Matérn 5/2 kernel was used for the co-
variance function, with length scale parameters. The GP’s
parameters were obtained by maximizing the marginal like-
lihood and a different length scale was used for each dimen-
sion4.

Each method is allowed to evaluate 150 hyperparameter
configurations. To compare their performances, we per-
form statistical tests on several different hyperparameter
spaces over two different collections of data sets.

6.1 HYPERPARAMETER SPACES

Here, we describe the hyperparameter spaces of all learn-
ing algorithms we employ in our experiments. Except for
a custom implementation of the multilayer perceptron, we
used scikit-learn5 for the implementation of all other learn-
ing algorithms.

Support Vector Machine We explore the soft margin
parameter C for values ranging from 10−2 to 103 on a
logarithmic scale. We use the RBF kernel K(x, x′) =

eγ||x−x
′||22 and explore values of γ ranging from 10−5 to

103 on a logarithmic scale.

Support Vector Regressor We also use the RBF kernel
and we explore the same values as for the Support Vec-
tor Machine. In addition, we explore the ε-tube parameter
[Drucker et al., 1997] for values ranging between 10−2 and
1 on a logarithmic scale.

4We used the implementation provided by spearmint:
https://github.com/JasperSnoek/spearmint

5http://scikit-learn.org/
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Random Forest We fix the number of trees to 100 and
we explore two different ways of producing them: either
the original Breiman [2001] method or the extremely ran-
domized trees method of Geurts et al. [2006]. We also ex-
plore the choice of bootstrapping or not the training set
before generating a tree. Finally, the ratio of randomly
considered features at each split for the construction of the
trees is varied between 10−4 and 1 on a linear scale.

Gradient Boosted Classifier This is a tree-based algo-
rithm using boosting [Friedman, 2001]. We fix the set of
weak learners to 100 trees and take the maximum depth of
each tree to be in {1, 2, . . . , 15}. The learning rate ranges
between 10−2 and 1 on a logarithmic scale. Finally, the
ratio of randomly considered features at each split for the
construction of the trees varies between 10−3 and 1 on a
linear scale.

Gradient Boosted Regressor We use the same param-
eters as for Gradient Boosted Classifier except that we ex-
plore a convex combination of the least square loss function
and the least absolute deviation loss function. We also fix
the ratio of considered features at each split to 1.

Multilayer Perceptron We use a 2 hidden layers percep-
tron with tanh activation function and a softmax function
on the last layer. We minimize the negative log likelihood
using the L-BFGS algorithm. Thus there is no learning rate
parameter. However, we used a different L2 regularizer
weight for each of the 3 layers with values ranging from
10−5 to 100 on a logarithmic scale. Also, the number of
neurons on each layer can take values in {1, 2, . . . , 100}.
In total, this yields a 5 dimensional hyperparameter space.

6.2 COMPARING METHODS ON MULTIPLE
DATA SETS

To assess the generalization performances, we use a sep-
arate test set Stest, which is obtained by randomly parti-
tioning the original data set. More precisely, we use the
ratios 0.4, 0.3, and 0.3 for T , S and Stest respectively6.
However, testing on a single data set is insufficient to tes-
tify the quality of a method that is meant to work across
different tasks. Hence, we evaluate our methods on several
data sets using metrics that do not assume commensura-
bility across tasks [Demšar, 2006]. The metrics of choice
are thus the expected rank and the pairwise winning fre-
quency. Let Ai(Tj , Sj) be either one of our K = 4 model
selection/ensemble construction algorithms run on the jth

data set, with training set Tj and validation set Sj . When
comparing K algorithms, the rank of (best or ensemble)

6Is is also possible to perform cross-validation as mentioned
in Lacoste et al. [2014].

predictor hi = Ai(Tj , Sj) on test set Stest
j is defined as

Rankhi,Stest
def=

K∑

l=1

I
[
RStest

j
(hl) ≤ RStest

j
(hi)

]
.

Then, the expected rank of the ith method is obtained from
the empirical average over the L data sets i.e., E[R]i

def=
1
L

∑L
j=1 Rankhi,Stest

j
. When comparing algorithm Ai

against algorithm Al, the winning frequency7 of Ai is

ρi,l
def=

1

L

L∑

i=1

I[RStest
j

(hi) < RStest
j

(hl)]

In the case of the expected rank, lower is better and for the
winning frequency, it is the converse. Also, when K = 2,
E[R]i = 1 + (1− ρi,l).

When the winning frequency ρi,l > 0.5, we say that
method Ai is better than method Al. However, to make
sure that this is not the outcome of chance, we use statis-
tical tests such as the sign test and the Poisson Binomial
test (PB test) [Lacoste et al., 2012]. The PB test derives
a posterior distribution over ρi,l and integrates the prob-
ability mass above 0.5, denoted as Pr(A � B). When
Pr(A � B) > 0.9, we say that it is significant. Similarly
for the sign test, when the p-value is lower than 0.05, it
corresponds to a significant result. To report more infor-
mation, we also use other thresholds for lightly significant
and highly significant as described in Table 1.

To build a substantial collection of data sets, we used the
AYSU collection [Ulaş et al., 2009] coming from the UCI
and the Delve repositories and we added the MNIST data
set. We also converted the multiclass data sets to binary
classification by either merging classes or selecting pairs of
classes. The resulting benchmark contains 39 data sets. We
have also collected 22 regression data sets from the Louis
Torgo collection8.

6.3 TABLE NOTATION

The result tables present the winning frequency for each
pair of methods, where grayed out values represent redun-
dant information. As a complement, we also add the ex-
pected rank of each method in the rightmost column and
sort the table according to this metric. To report the con-
clusion of the sign test and the PB test, we use different
symbols to reflect different level of significance. The exact
notation is presented in Table 1. The first symbol reports
the result of the PB test and the second one, the sign test.
For more stable results, we average the values obtained dur-
ing the last 15 iterations.

7We deal with ties by attributing 0.5 to each method except for
the sign test where the sample is simply discarded.

8These data sets were obtained from the following source :
http://www.dcc.fc.up.pt/˜ltorgo/Regression/
DataSets.html
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Table 1: Significance Notation Used in Result Tables.
Meaning Symbol Pr(A � B) p-value

Lightly significant ◦ > 0.8 < 0.1
Significant • > 0.9 < 0.05

Highly significant • > 0.95 < 0.01

Table 2: Pairwise Win Frequency For the 3 Different Re-
gression Hyperparameter Spaces (Refer to Section 6.3 for
the notation).

Support Vector Regressor
ESMBO ERS SMBO RS E[rank]

ESMBO 0.50•• 0.66•• 0.82•• 0.86•• 1.66
ERS 0.34•• 0.50•• 0.50•• 0.77•• 2.38

SMBO 0.18•• 0.50•• 0.50•• 0.64◦• 2.68
RS 0.14•• 0.23•• 0.36•• 0.50•• 3.27

Gradient Boosting Regressor
ERS ESMBO RS SMBO E[rank]

ERS 0.50•• 0.52•• 0.77•• 0.86•• 1.84
ESMBO 0.48•• 0.50•• 0.77•• 0.91•• 1.85

RS 0.23•• 0.23•• 0.50•• 0.42•• 3.12
SMBO 0.14•• 0.09•• 0.58•• 0.50•• 3.19

Random Forest
ESMBO ERS SMBO RS E[rank]

ESMBO 0.50•• 0.53•• 0.76•• 0.91•• 1.80
ERS 0.47•• 0.50•• 0.72•• 1.00•• 1.81

SMBO 0.24•• 0.28•• 0.50•• 0.66•• 2.82
RS 0.09•• 0.00•• 0.34•• 0.50•• 3.57

6.4 ANALYSIS

Looking at the overall results over 7 different hyperpa-
rameter spaces in Table 2 and Table 3, we observe that
ESMBO is never significantly outperformed by any other
method and often outperforms the others. More precisely,
it is either ranked first or tightly following ERS. Look-
ing more closely, we see that the cases where ESMBO
does not significantly outperform ERS concerns hyperpa-
rameter spaces of low complexity. For example, most hy-
perparameter configurations of Random Forest yield good
generalization performances. Thus, these cases do not re-
quire an elaborate hyperparameter search method. On the
other hand, when looking at more challenging hyperparam-
eter spaces such as Support Vector Regression and Multi-
layer Perceptrons, we clearly see the benefits of combining
SMBO with Agnostic Bayes.

As described in Section 4, ESMBO is alternating between
N different SMBO optimizations and deviates from the
natural sequence of SMBO. To see if this aspect of ESMBO
can influence its convergence rate, we present a temporal
analysis of the methods in Figure 1 and Figure 2. The left
columns depict Pr(A � B) for selected pairs of methods
and the right columns present the expected rank of each
method over time.

Table 3: Pairwise Win Frequency for the 4 Different Clas-
sification Hyperparameter Spaces (Refer to Section 6.3 for
the notation).

Support Vector Machine
ESMBO RS SMBO ERS E[rank]

ESMBO 0.50•• 0.54•• 0.55•• 0.56•• 2.35
RS 0.46•• 0.50•• 0.51•• 0.51•• 2.52

SMBO 0.45•• 0.49•• 0.50•• 0.53•• 2.54
ERS 0.44•• 0.49•• 0.47•• 0.50•• 2.59

Gradient Boosting Classifier
ESMBO ERS RS SMBO E[rank]

ESMBO 0.50•• 0.51•• 0.59•• 0.65◦• 2.25
ERS 0.49•• 0.50•• 0.59•• 0.64◦◦ 2.28

RS 0.41•• 0.41•• 0.50•• 0.55•• 2.64
SMBO 0.35•• 0.36•• 0.45•• 0.50•• 2.83

Random Forest
ERS ESMBO RS SMBO E[rank]

ERS 0.50•• 0.52•• 0.60•◦ 0.64◦• 2.24
ESMBO 0.48•• 0.50•• 0.60•• 0.67◦• 2.25

RS 0.40•• 0.40•• 0.50•• 0.57•• 2.63
SMBO 0.36•• 0.33•• 0.43•• 0.50•• 2.89

Multilayer Perceptron
ESMBO SMBO ERS RS E[rank]

ESMBO 0.50•• 0.57◦• 0.76•• 0.75•• 1.92
SMBO 0.43•• 0.50•• 0.68◦• 0.68◦• 2.21

ERS 0.24•• 0.32•• 0.50•• 0.54•• 2.91
RS 0.25•• 0.32•• 0.46•• 0.50•• 2.96

A general analysis clearly shows that there is no signifi-
cant degradation in terms of convergence speed. In fact,
we generally observe the opposite. More precisely, look-
ing at Pr(ESMBO � SMBO), the green curve of the left
columns, it usually reaches a significantly better state right
at the beginning or within the first few iterations. A notable
exception to that trend occurs with the Multiplayer Percep-
trons, where SMBO is significantly better than ESMBO for
a few iterations at the beginning. Then, it gets quickly out-
performed by ESMBO.

7 CONCLUSION

We described a successful method for automatically con-
structing ensembles without requiring hand-selection of
models or a grid search. The method can adapt the SMBO
hyperparameter optimization algorithm so that it can pro-
duce an ensemble instead of a single model. Theoretically,
the method is motivated by an Agnostic Bayesian paradigm
which attempts to construct ensembles that reflect the un-
certainty over which a model actually has the smallest true
risk. The resulting method is easy to implement and comes
with no extra computational cost at learning time. Its gen-
eralization performance and convergence speed are also
dominant according to experiments on 22 regression and
39 classification data sets.

446



0.0

0.2

0.4

0.6

0.8

1.0

Pr
(A
�

B
)

Support Vector Regressor

ESMBO vs ERS
ESMBO vs SMBO
SMBO vs RS

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
[r

an
k]

Support Vector Regressor

ESMBO
SMBO
RS
ERS

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(A
�

B
)

Gradient Boosting Regressor

ESMBO vs ERS
ESMBO vs SMBO
SMBO vs RS

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
[r

an
k]

Gradient Boosting Regressor

ESMBO
SMBO
RS
ERS

0 20 40 60 80 100 120 140 160
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(A
�

B
)

Random Forest

ESMBO vs ERS
ESMBO vs SMBO
SMBO vs RS

0 20 40 60 80 100 120 140 160
Iteration

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
[r

an
k]

Random Forest

ESMBO
SMBO
RS
ERS

Figure 1: PB Probability and Expected Rank over Time for the 3 Regression Hyperparameter Spaces.
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Abstract

ListMLE is a state-of-the-art listwise learning-to-
rank algorithm, which has been shown to work
very well in application. It defines the probabil-
ity distribution based on Plackett-Luce Model in
a top-down style to take into account the position
information. However, both empirical contradic-
tion and theoretical results indicate that ListM-
LE cannot well capture the position importance,
which is a key factor in ranking. To amend the
problem, this paper proposes a new listwise rank-
ing method, called position-aware ListMLE (p-
ListMLE for short). It views the ranking prob-
lem as a sequential learning process, with each
step learning a subset of parameters which maxi-
mize the corresponding stepwise probability dis-
tribution. To solve this sequential multi-objective
optimization problem, we propose to use lin-
ear scalarization strategy to transform it into
a single-objective optimization problem, which
is efficient for computation. Our theoretical s-
tudy shows that p-ListMLE is better than ListM-
LE in statistical consistency with respect to typi-
cal ranking evaluation measure NDCG. Further-
more, our experiments on benchmark datasets
demonstrate that the proposed method can sig-
nificantly improve the performance of ListMLE
and outperform state-of-the-art listwise learning-
to-rank algorithms as well.

1 INTRODUCTION

Ranking is an important problem in various applications,
such as information retrieval, meta search and collaborative
filtering. In recent years, machine learning technologies
have been widely applied for ranking, and a new research
branch named learning to rank has emerged. A learning-
to-rank process can be described as follows. In training,

a number of sets (queries) of objects (documents) are giv-
en and within each set the objects are labeled by assessors,
mainly based on multi-level ratings. The target of learning
is to create a model that provides a ranking over the objects
that best respects the observed labels. In testing, given a
new set of objects, the trained model is applied to generate
a ranking list of the objects. To evaluate the performance
of a ranking system, many position-aware evaluation mea-
sures such as NDCG [9], MAP [2], ERR [5] are used to
reflect users’ bias on different positions. That is, users of-
ten care more about the results on top positions in a ranking
[3, 16, 21].

In literature, pointwise algorithms such as McRank [14]
were first proposed to solve the ranking problem, which
transformed ranking into (ordinal) regression or classifi-
cation on individual documents. The idea is natural but
it is comprehensively criticized for using different objec-
tives from ranking. Therefore, pairwise algorithms such
as RankSVM [10], RankBoost [7] and RankNet [1] were
then proposed to view a pair of items as the object, and
transform ranking into the pairwise classification problem.
However, the pairwise approach highly ignores the position
information over different pairs, which is quite important
for ranking as mentioned above. To overcome the weak-
ness of pairwise ranking algorithms, listwise ranking algo-
rithms such as ListMLE [21], ListNet [4], RankCosine [17]
and AdaRank [22] were proposed, which view the whole
ranking list as the object. For example, ListMLE utilized
the likelihood loss of the probability distribution based on
Plackett-Luce model for optimization. According to previ-
ous studies [4, 15, 17, 21], the listwise approach can out-
perform the other two approaches on benchmark datasets.

Seemingly listwise approaches can well solve the ranking
problem by directly modeling the ranking lists and thus tak-
ing into account the position information. However, both
empirical contradiction and theoretical results indicate that
listwise approaches cannot well capture the position im-
portance, which is a key factor in ranking [13, 6]. In this
paper, we take the typical listwise method ListMLE as an
example to illustrate this problem. Empirically, given two
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ranking functions f1 and f2, the error of f1 occurs in the
top positions and that of f2 occurs in the bottom positions.
We find that ListMLE will prefer f1 to f2, leading to lower
performance under the IR evaluation measure such as ND-
CG. Theoretically, it has been proven in [21] that ListMLE
is consistent1 with permutation level 0-1 loss, a loss with-
out considering the importance of different positions.

We analyze the underlying reason behind these above re-
sults. We find that the probability in ListMLE is defined in
a top-down style which seems to reflect the position im-
portance in ranking. However, due to the chain rule of
probability, the decomposition of probability in ListMLE
is not unique, indicating that different positions are actually
equally important in such definition. To amend this prob-
lem, we propose a new listwise ranking approach, name-
ly position-aware ListMLE (p-ListMLE for short), which
views ranking as a sequential learning process. Specifi-
cally, at step 1, it aims to maximize the top 1 probabili-
ty distribution of Plackett-Luce model. At step i, it aims
to maximize the i-th conditional probability distribution of
Plackett-Luce model given the top i−1 items. To solve the
sequential learning problem, we propose to transform it in-
to a single-objective optimization problem, which is equiv-
alent to minimizing a new surrogate loss.

Theoretically, we study the statistical consistency issue of
p-ListMLE. Following the technique used in [11], we can
prove that with RDPS as the assumption, p-ListMLE will
be consistent with Weighted Pairwise Disagreement Loss
(WPDL for short), which is equivalent to a certain ND-
CG. Further considering the previous result that ListMLE is
consistent with permutation level 0-1 loss, we can see that
p-ListMLE is better than ListMLE theoretically. We fur-
ther conduct extensive experiments on benchmark datasets
LETOR4.0, and the empirical results demonstrate that the
proposed p-ListMLE can significantly outperform the o-
riginal ListMLE as well as other state-of-the-art listwise
learning-to-rank algorithms.

The contribution of this paper lies in the following aspects:

(1) We provide a novel view of ranking as a sequential
learning process, with each step to learn a subset of param-
eters which maximize the corresponding stepwise proba-
bility distribution;

(2) We propose a new ranking algorithm to incorporate po-
sitions into the learning process;

(3) We provide theoretical analysis on the consistency of
the proposed ranking algorithm.

The remainder of the paper are organized as follows. In
section 2, we provide some backgrounds on ListMLE, in-

1Please note that Xia et al. [19] prove that a modification to
ListMLE is consistent with top-k 0-1 loss, however, top-k 0-1 loss
take the top k positions as equal, therefore cannot well capture the
position importance.

cluding the framework of listwise learning to rank, the al-
gorithm of ListMLE, and the theoretical results on ListM-
LE. Section 3 describes the motivation of this paper and
section 4 presents our main results, including the novel se-
quential view of ranking and the loss function of the new
algorithm. Section 5 and 6 presents our theoretical and ex-
perimental results, respectively. Section 7 concludes the
paper.

2 BACKGROUNDS

In this section, we give some backgrounds on ListMLE,
which is a famous listwise ranking algorithm. Listwise
learning to rank addresses the ranking problem in the fol-
lowing way. In learning, it takes ranking lists of object-
s as instances and trains a ranking function through the
minimization of a listwise loss function defined on predict-
ed list and the ground-truth list. Following [21], we give
the mathematical description of listwise learning-to-rank
framework as follows.

2.1 Listwise Learning to Rank

Let x = {x1, · · · , xn} ∈ X be a set of objects to be ranked,
and y = {y1, · · · , yn} ∈ Y be the ground-truth permuta-
tion of these objects, where yi stands for the position of xi

and y−1(i) stands for the index of items in the i-th position
of y. We assume that (x,y) are sampled according to a
fixed but unknown joint probability distribution PXY . Let
f : X → Rn be a ranking function, where Rn denotes a
n-dimensional real-valued vector space. The task of list-
wise learning to rank is to learn a ranking function that can
minimize the expected risk R0(h), defined as:

R0(h) =

∫

X×Y

L0(f ;x,y) dPXY (x,y),

where L0 is a true loss of listwise learning to rank. For
example, Xia et al. [21] utilized permutation level 0-1 loss
as the true loss, which takes the following form.

L0−1(f ;x,y) = I{πf (x) ̸=y}, (1)

where I{·} is an indicator function, with IA = 1, if A is
true, and IA = 0, otherwise. πf stands for the output per-
mutation induced by sorting the objects in descending order
of scores produced by f , that is,

πf (x) = sort(f(x1), · · · , f(xn)).

Since PXY is unknown, the optimal ranking function
which minimizes the expected loss cannot be easily ob-
tained. In practice, we are usually given independently and
identically distributed samples S = {xi,yi}N

i=1 ∼ PXY ,
where xi = (x

(i)
1 , · · · , x

(i)
ni ) and yi = (y

(i)
1 , · · · , y

(i)
ni ).
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Therefore, we instead try to obtain a ranking function that
minimize the empirical risk.

R̂(h) =
1

N

N∑

i=1

L0(h;xi,yi).

However, the true loss is usually nonconvex, which poses
a challenge to the optimization of the empirical risk. As is
done in the literature of machine learning, people usually
use surrogate losses as an approximation of the true loss,
and turn to minimize the corresponding surrogate empiri-
cal risk instead.

Rϕ(f,x,y) =
1

N

N∑

i=1

Lϕ(f ;xi,yi).

2.2 ListMLE

ListMLE is such a listwise ranking algorithms which utilize
a likelihood loss as the surrogate loss, defined as follows.

L(f ;x,y) = − log P (y|x; f), (2)

where,

P (y|x; f) =
n∏

i=1

exp (f(xy−1(i)))∑n
k=i exp(f(xy−1(k)))

. (3)

The above probability is defined according to Plackett-
Luce model. That is to say, the probability of a permutation
is first decomposed to the product of a stepwise conditional
probability, with the i-th conditional probability standing
for the probability that the document is ranked at the i-th
position given the top i − 1 objects are ranked correctly.
The precise form are given in the following equations.

P (y|x; f) (4)

= P (y−1(1),y−1(2), · · · ,y−1(n)|x; f)

=P (y−1(1)|x; f)

n∏

i=2

P (y−1(i)|x,y−1(1), · · · ,y−1(i−1); f)

where,

P (y−1(1)|x; f) =
exp (f(xy−1(1)))∑n

k=1 exp(f(xy−1(k)))
, (5)

P (y−1(i)|x,y−1(1),y−1(2), · · · ,y−1(i − 1); f)

=
exp (f(xy−1(i)))∑n

k=j exp(f(xy−1(k)))
, ∀i = 2, · · · , n (6)

2.3 Consistency

Previous theoretical analyses on ListMLE were mainly fo-
cused on generalization and consistency. For generaliza-
tion analysis, Lan et al. [12] has derived the generaliza-
tion bounds of listwise ranking methods, including ListM-
LE [21], ListNet [4] and RankCosine [17]. As to the sta-
tistical consistency analysis, the loss function in ListMLE
has been proven to be consistent with permutation level 0-1
loss [20], where consistency is defined as follows.

Definition 1. We say a surrogate loss Lϕ is statistical-
ly consistent with respect to the true loss L0, if ∀ϵ1 >
0, ∃ϵ2 > 0, such that for any ranking function f ∈
F , Rϕ(f) ≤ infh∈F Rϕ(h) + ϵ2 implies R0(f) ≤
infh∈F R0(h) + ϵ1.

Statistical consistency is a desired property for a good sur-
rogate loss, which measures whether the expected true risk
of the ranking function obtained by minimizing a surrogate
loss converges to the expected true risk of the optimal rank-
ing in the large sample limit. Therefore, the consistency of
ListMLE with respect to permutation level 0-1 loss means
that the the surrogate loss of ListMLE is a good surrogate
of permutation level 0-1 loss theoretically. However, 0-1
loss is not a ‘good’ loss for the ranking problem, since it
largely ignores the impact of positions, which is crucial in
ranking. Therefore, in this paper, we propose to study how
to improve ListMLE to make it consistent with a better loss
for ranking.

3 MOTIVATIONS

The motivation of this work comes from both empirical
contradiction and theoretical results in ListMLE, indicating
that position importance, which is a key factor in ranking,
is actually ignored in this listwise approach.

3.1 Empirical Contradiction

Firstly, we take a case study on some toy data to show that
position importance is actually not considered in ListMLE.

We are given a set of documents x = {x1, · · · , x5}
and their ground-truth labels z = (z1, · · · , z5) in terms
of 5-level ratings, where zi = i. That is to say, the
best ranking list is y = (1, 2, 3, 4, 5). Suppose we are
given two ranking functions f1 and f2 with correspond-
ing scores y1 = (ln 4, ln 5, ln 3, ln 2, ln 1) and y2 =
(ln 5, ln 4, ln 1, ln 2, ln 3), where yi(j) = fi(xj). As we
can see, the first two documents are mistakenly ranked by
f1, while the last three documents are mistakenly ranked by
f2. The corresponding likelihood losses of these two rank-
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ing functions in ListMLE are listed as follows.

L(f1,x,y)

=−log

(
4

4+5+3+2+1
· 5

5+3+2 +1
· 3

3+2+1
· 2

2+1
· 1
1

)
,

L(f2,x,y)

=−log

(
5

5+4+3+2+1
· 4

4+3+2+1
· 1

1+2+3
· 2

2+3
· 3
3

)
.

Through comparison, we can see that f1 is better than f2

in terms of likelihood loss of ListMLE, as indicated by the
fact that L(f1,x,y) < L(f2,x,y).

However, from the view of IR evaluation measure NDCG,
we can see that NDCG(f1,x,y) < NDCG(f2,x,y),
showing that f2 should be preferred to f1.

NDCG@5(f1,x,y)

=
1

N5

(
(25−1)log

1

3
+(24−1)log

1

2
+(23−1)log

1

4

)

+
1

N5

(
(22−1)log

1

5
+(21−1)log

1

6

)
,

NDCG@5(f2,x,y)

=
1

N5

(
(25−1)log

1

2
+(24−1)log

1

3
+(23−1)log

1

6

)

+
1

N5

(
(22−1)log

1

5
+(21−1)log

1

4

)
,

As we know, IR evaluation measures such as NDCG reflect
the fact that users are more concerned on results in top posi-
tions in a ranking. Therefore, the mistakes in top positions
will be more severe than that in low positions. The em-
pirical contradiction between ListMLE and IR evaluation
measures thus indicates that the loss of ListMLE cannot
well capture the position importance.

3.2 Theoretical Result

In [21], it was proven that the loss functions of ListMLE
[21] are consistent with permutation level 0-1 loss. How-
ever, permutation level 0-1 loss actually does not take po-
sition importance into account. Therefore, theoretical con-
sistency between ListMLE and permutation level 0-1 loss
also demonstrates that the position importance cannot be
well captured by the loss of ListMLE.

4 POSITION-AWARE LISTMLE

The above results indicates that ListMLE ingnores the posi-
tion importance, which is a key factor for ranking. Howev-
er, the probability in ListMLE is defined in a top-down style

which seems to reflect the position importance in rank-
ing. This contradiction makes us revisit the algorithm of
ListMLE. As we can see, the probability on permutation in
ListMLE can be decomposed as follows.

P (y|x; f) (7)

= P (y−1(1),y−1(2), · · ·,y−1(n)|x; f)

= P (y−1(1)|x; f)
n∏

i=2

P (y−1(i)|x,y−1(1), · · ·,y−1(i−1); f)

However, the chain rule of probability described as follows
tells us that this is not the unique decomposition.

P (A1, · · · , An)

= P (Ai1)P (Ai2 |Ai1) · · · P (Ain |Ai1 , · · · , Ain−1),

where (i1, · · · , in) is any permutation of (1, · · · , n).

As a consequence, the probability is equal to any decom-
position described as follows.

P (y|x; f) (8)

= P (y−1(1),y−1(2), · · ·,y−1(n)|x; f)

=P (y−1(i1)|x;f)
n∏

j=2

P (y−1(ij)|x,y−1(i1),· · ·,y−1(ij−1);f)

where (i1, · · · , in) is any permutation of (1, · · · , n). In this
way, different positions are actually equally important un-
der the probability definition of ListMLE. In other words,
the loss of ListMLE cannot reflect the position importance
in a top-down style. Therefore, we propose a new listwise
ranking approach, namely p-ListMLE, to capture the posi-
tion importance in a ‘true’ top-down style.

4.1 Ranking As a Sequential Process

To reflect the position importance in a top-down style,
i.e. higher position is more important, we propose a new
sequential learning process for ranking as follows.

Step 1: Maximizing the probability that the top 1 object is
selected with mathematical description as follows.

max
f∈F

P (y−1(1)|x; f);

Step i: For i = 2, · · · , n, we denote the subset of rank-
ing functions that reach the maximum in Step i − 1 as
Si−1. The task of step i is to maximize the probability
that the object with position i in ground-truth permu-
tation is selected given the top i − 1 objects ranked
correctly. The mathematical formulation is described
as follows.

max
f∈Si−1

P (y−1(i)|x,y−1(1), · · ·,y−1(i − 1); f);
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Step n+1: The learning process ends, and the ranking
function f is randomly selected from Sn−1 as the out-
put ranking function.

4.2 Loss Function

In order to solve the above sequential multi-objective op-
timization problem, we propose to use linear scalarization
strategy [8] to transform it into a single-objective optimiza-
tion problem, and emphasize the early steps to reflect the
position importance.

min
f∈F

Φ(f),

Φ(f)=−
n∑

i=2

α(i) logP (y−1(i)|x,y−1(1), · · ·,y−1(i−1);f)

− α(1)logP (y−1(1)|x;f),

where α(·) is a decreasing function, i.e. α(i) > α(i + 1).

Incorporating the probability based on Plackett-Luce mod-
el as described in Eq. (5) and Eq. (6) into the above
optimization problem, we obtain a new algorithm which
minimizes the following likelihood loss function for p-
ListMLE.

Lp(f ;x,y) (9)

=
n∑

i=1

α(i)(−f(xy−1(i)) + log(
n∑

j=i

exp(f(xy−1(j))))).

4.3 Case Revisit

Here, we revisit the case used in section 3.1 to show that
after introducing position factor α into ListMLE, the em-
pirical contradiction will disappear. We first compute the
likelihood losses of p-ListMLE with respect to f1 and f2,
which are listed as follows.

Lp(f1,x,y)

=−α(1) log((
4

4 + 5 + 3 + 2 + 1
)−α(2) log(

5

5 + 3 + 2 + 1
)

−α(3) log(
3

3 + 2 + 1
)−α(4) log(

2

2 + 1
),

Lp(f2,x,y)

=−α(1) log(
5

5 + 4 + 3 + 2 + 1
)−α(2) log(

4

4 + 3 + 2 + 1
)

−α(3) log(
1

1 + 2 + 3
)−α(4) log(

2

2 + 3
).

In this way, the following equality holds:

Lp(f1,x,y) − Lp(f2,x,y)

= (α(1) − α(2) − α(4)) ln 5 − (α(1) − α(2)) ln 4

− (α(3) − α(4)) ln 3 + α(2)(ln 11 − ln 10)

> (α(1) − α(2) − α(4)) ln 5 − (α(1) − α(2)

+ α(3) − α(4)) ln 4,

Therefore, as long as α satisfies the following condition in
Eq. (10), we will have Lp(f1,x,y) > Lp(f2,x,y).

α(1) − α(2) − α(4)

α(1) − α(2) + α(3) − α(4)
>

ln 4

ln 5
. (10)

That is, f2 is preferred to f1 in terms of p-ListMLE, which
is consistent with NDCG as shown in Section 3.1. This
condition is easy to be satisfied as long as α(1) is far lager
than the other α(i), i = 2, · · · , 5.

5 STATISTICAL CONSISTENCY OF P-
LISTMLE

In this section, we study the statistical consistency of p-
ListMLE. In [21], it is proved that ListMLE is consistent
with permutation level 0-1 loss. Since position factor α(·)
is introduced in p-ListMLE, we consider weighted pairwise
loss (WPDL) defined in [11] as the true loss.

LWPDL(f ;x,y) =
∑

i,j:ri>rj

D(ri, rj)I{f(xi)−f(xj)≤0},

(11)
where ri = n − yi, D(ri, rj) = α(rj) − α(ri) > 0.

Firstly, we introduce the definition of a rank-differentiable
probability space (RDPS for short), with which we can
prove that p-ListMLE is consistent with WPDL.Hereafter,
we will also refer to data from RDPS as having a rank-
differentiable property.

5.1 A Rank-Differentiable Probability Space

Before introducing the definition of RDPS, we give two
definitions, an equivalence class of ratings and dual rat-
ings. Intuitively, we say two ratings are equivalent if they
induce the same ranking or preference relationships. Mean-
while, we say two ratings are the dual ratings with respect
to a pair of objects, if the two ratings only exchange the
ratings of the two objects while keeping the ratings of oth-
er objects unchanged. The formal definitions are given as
follows.

Definition 2. A ratings r is called equivalent to r̃, denot-
ed as r ∼ r̃, if P(r) = P(r̃). Where P(r) = {(i, j) :
ri > rj .} and P(r̃) = {(i, j) : r̃i > r̃j .} stand for the
preference relationships induced by r and r̃, respectively.
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Therefore, an equivalence class of the ratings r, denoted as
[r], is defined as the set of ratings which are equivalent to
r. That is, [r] = {r̃ ∈ R : r̃ ∼ r.}.

Definition 3. Let R(i, j) = {r ∈ R : ri > rj .}, r′ is
called the dual ratings of r ∈ R(i, j) with respect to (i, j)
if r′

j = ri, r
′
i = rj , r

′
k = rk,∀k ̸= i, j.

Now we give the definition of RDPS. An intuitive explana-
tion on this definition is that there exists a unique equiva-
lence class of ratings that for each induced pairwise pref-
erence relationship, the probability will be able to separate
the two dual ratings with respect to that pair.

Definition 4. Let R(i, j) = {r ∈ R : ri > rj .}, a
probability space is called rank-differentiable with (i, j),
if for any r ∈ R(i, j), P (r|x) ≥ P (r′|x), and there exist-
s at least one ratings r ∈ R(i, j), s.t. P (r|x) > P (r′|x),
where r′ is the dual ratings of r.

Definition 5. A probability space is called
rank-differentiable, if there exists an equiv-
alence class [r∗], s.t. P(r∗) = {(i, j) :
the probability space is rank-differentiable with(i, j).},
where P(r∗) = {(i, j) : r∗

i > r∗
j .}. We will also call this

probability space a RDPS or rank-differentiable with [r∗].

5.2 Consistency with WPDL

Following the proof technique in [11], we prove that p-
ListMLE is consistent with WPDL, as shown in the fol-
lowing theorem.

Theorem 1. We assume that the probability space is
rank-differentiable, then the surrogate loss function in p-
ListMLE is consistent with WPDL.

The proof of the theorem is similar to Theorem 5 in [11],
and is based on the following theorem.

Theorem 2. We assume that the probability space is rank-
differentiable with an equivalence class [r∗]. let f be a
function such that Rp(f |x) = infh∈F Rp(h|x), then for
any object pair (xi, xj), r

∗
i > r∗

j , we have f(xi) > f(xj).

Proof. (1) We assume that f(xi) < f(xj), and define
f ′ as the function such that f ′(xi) = f(xj), f

′(xj) =
f(xi), f

′(xk) = f(xk), ∀k ̸= i, j. We can then get the

following equation,

Rp(f
′|x) − Rp(f |x)

=
∑

r,r′,
r∈R(i,j)

∑

k:rj<rk<ri

α(rk)[P (r|x)−P (r′|x)]

× log

(∑n
l=yk,l ̸=yj

exp(f(xy−1(l)))+exp(f(xi))∑n
l=yk,l ̸=yj

exp(f(xy−1(l)))+exp(f(xj))

)

+
∑

r,r′,
r∈R(i,j)

[α(ri)−α(rj)][log(f(xi))−log(f(xj))]

× [P (r|x)−P (r′|x)]

+
∑

r,r′,
r∈R(i,j)

α(rj)[P (r|x)−P (r′|x)]

× log

(∑n
l=yj+1 exp(f(xy−1(l))) + exp(f(xi))∑n
l=yj+1 exp(f(xy−1(l))) + exp(f(xj))

)
,

According to the conditions of RDPS and the requirements
of α(·), we can obtain

Rp(f
′|x) < Rp(f |x).

This is a contradiction with Rp(f |x) = infh∈F Rp(h|x).
Therefore, we have proven that f(xi) ≤ f(xj).

(2) Now we assume that f(xi) = f(xj) = f0. From the
assumption Rp(f |x) = infh∈F Rp(h|x), we can get

∂RΦ(f |x)

∂f(xi)

∣∣∣∣
f0

= 0,
∂RΦ(f |x)

∂f(xj)

∣∣∣∣
f0

= 0.

Accordingly, we can obtain two equations as follows:

∑

r,r′,
r∈R(i,j)

A1P (r|x) + A2P (r′|x) = 0, (12)

∑

r,r′,
r∈R(i,j)

B1P (r|x) + B2P (r′|x) = 0, (13)

where,

A1 = B2

=
∑

k:rj<ri<rk

α(rk)
exp(f0)∑n

l=yk
exp(f(xy−1(k)))

+ α(ri)(−1 +
exp(f0)∑n

l=yi
exp(f(xy−1(k)))

),
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A2 = B1

=
∑

k:rj<ri<rk

α(rk)
exp(f0)∑n

l=yk
exp(f(xy−1(k)))

+
∑

k:ri<rk<rj

α(rk)
exp(f0)∑n

l=yk
exp(f(xy−1(k)))

+ α(ri)
exp(f0)∑n

l=yi
exp(f(xy−1(l)))

+ α(rj)(−1 +
exp(f0)∑n

l=yj
exp(f(xy−1(k)))

)

Based on the requirements of RDPS and α(·), we can ob-
tain that,

∑

r,r′,
r∈R(i,j)

(A1 − B1)P (r|x) + (A2 − B2)P (r′|x)

=
∑

r,r′,
r∈R(i,j)

(A1 − A2)[P (r|x) − P (r′|x)]

≤
∑

r,r′,
r∈R(i,j)

(α(rj) − α(ri))[P (r|x) − P (r′|x)] < 0.

This is a contradiction with Eq. (12). Therefore, we actual-
ly have proven that f(xi) > f(xj).

5.3 Discussion

In [21], ListMLE is proved to be consistent with permuta-
tion level 0-1 loss. However, consistency with permutation
level 0-1 loss does not mean consistency with NDCG. For
example, it has been proven in [18] that losses in RankCo-
sine [17] and ListNet [4] are not consistent with NDCG. S-
ince that we have proven that p-ListMLE is consistent with
WPDL, it is natural to study the relationship between W-
PDL and NDCG. Here we show that WPDL with a certain
weight, referred to as difference-weight pairwise disagree-
ment loss (DWPDL for short), is equivalent to NDCG with
a certain discount function, referred to as sharp-NDCG. In
this way, p-ListMLE is better than ListMLE theoretically.

The formal definition of NDCG is as follows.

NDCG@n(f ;x,y) =
1

Nn

n∑

i=1

Gain(r(yi))Disc(πf (i)),

where Gain is the gain function which gives larger scores
to objects with larger labels and Disc is the discount func-
tion which gives larger scores to objects ranked higher in
πf . r(yi) is a function to mapping position yi into rele-
vance score. For consistency with above formulation, we
use ri to denote r(yi), and define ri = n − yi, πf (i) is
the position of document xi in permutation πf and Nn is a
normalization factor.

We define WDPDL, and sharp-NDCG as follows, respec-
tively.

lw(f ;x,y)

=
∑

i,j,ri>rj

(Gain(ri) − Gain(rj))1{f(xi)≤f(xj)},

sharp−NDCG@n(f ;x,y) =

∑n
i=1(n − π(i))Gain(ri)

N ′
n

,

where N ′
n is a normalization factor.

The following theorem shows the relationship between D-
WPDL and sharp-NDCG.
Theorem 3. We denote F0 = {f ∈ F : ∀x, f(xi) ̸=
f(xj), ∀i, j.}, then ∀(x,y), f, g ∈ F0, we have

lw(f ;x,y) < lw(g;x,y)

⇔ sharp−NDCG@n(πf ,x,y)>sharp−NDCG@n(πg,x,y).

Proof. According to the definition of sharp-NDCG, it has
the following form:

sharp−NDCG@n(π,y) =

n∑

i=1

Gain(ri)(n − π(i)).

Rewrite n − π(i) and n − πy(i) as
∑m

j=1 1{π(i)−π(j)<0}
and

∑m
j=1 1{πy(i)−πy(j)<0}, respectively, then the follow-

ing equation holds,
n∑

i=1

(n − πy)Gain(ri) − sharp−NDCG@n(π;x,y)

=

n∑

i=1

∑

j ̸=i

Gain(r(yi))(1{πy(i)−πy(j)<0}−1{π(i)−π(j)<0}),

Thus, for each pair (i, j), ri > rj , the term becomes:

Gain(ri)1{π(i)−π(j)>0}−Gain(r(yj))1{π(j)−π(i)<0}
= Gain(ri)1{π(i)−π(j)>0} − Gain(j)1{π(i)−π(j)>0}
= (Gain(ri) − Gain(r(yj)))1{π(i)−π(j)>0},

Further considering the relationship between π and f , the
following equation holds:
m∑

i=1

(n − πy)Gain(ri) − sharp−NDCG@m(π;x,y)

= lw(f ;x,y).

Since
∑m

i=1(n − πy)Gain(ri) is just dependent on y, the
result in the theorem has been proved.

Note that in applications such as information retrieval, peo-
ple usually use the following specific discount and gain
functions.

Gain(i) = 2r(yi) − 1, Disc(π(i)) =
1

log2(1 + π(i))
.
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According to the original paper of NDCG [9], however,
this is not the only choice. Actually, the only difference
between sharp-NDCG and the above NDCG is that the dis-
count function in sharp-NDCG is sharper.

In summary, we have obtain that:

(1) p-ListMLE is statistically consistent with WPDL,
where D(ri, rj) = α(rj) − α(ri);

(2) WPDL with D(ri, rj) = Gain(ri) − Gain(rj) is e-
quivalent to sharp-NDCG;

(3) sharp-NDCG is intrinsic similar with NDCG.

Therefore, we can expect to obtain better performance w.r.t
NDCG if we define α(ri) = Gain(ri) = 2n−yi − 1.

6 EXPERIMENTS

In this section, we conduct experiments on benchmark da-
ta sets LETOR 4.02 to show that p-ListMLE can achieve
better performances compared to ListMLE as well as other
state-of-the-art listwise learning-to-rank algorithms.

As the setting in this paper is listwise ranking, we choose t-
wo datasets in LETOR, i.e. MQ2007-list and MQ2008-list,
in which the ground-truth is a full order ranking list. In
MQ2007-list, there are about 1700 queries and 700 doc-
uments per query on average. In MQ2008-list, there are
about 800 queries and 1000 documents per query on aver-
age. Both query sets are from Million Query track of TREC
2007 and TREC 2008.

We implement both ListMLE and p-ListMLE by Stochas-
tic Gradient Descent (SGD). In p-ListMLE, we set α(i) as
2n−i − 1, as guided in the above section. The stopping
criteria is chosen from {0.1i}6

i=1 to control when to stop,
and the learning rates are selected from {0.1i}5

i=1 with the
maximal number of iterations 500. Evaluation measure
NDCG is adopted to evaluate the test performances of both
algorithms, where the multi-level ground-truth label is tak-
en as l(xi) = n − yi, where yi is the rank of item i in the
listwise ground-truth. For empirical comparison, we also
include two other state-of-the-art listwise learning-to-rank
algorithms such as ListNet and RankCosine, and the imple-
mentation is conducted strictly under the standard setting as
shown in [4] and [17]. The experimental results are shown
in Figure 1.

From the results, we can see that p-ListMLE significant-
ly outperform ListMLE with NDCG as evaluation measure
on both datasets. Taking NDCG@10 as an example, the
improvement of p-ListMLE over ListMLE is 0.95% and
0.54% on MQ2007-list and MQ2008-list, respectively.

2http://research.microsoft.com/en-
us/um/beijing/projects/letor/.

Moreover, when comparing p-ListMLE with the other two
baseline methods, we can see that it can also outperform
traditional listwise ranking methods significantly. We al-
so take NDCG@10 as an example, the improvement of p-
ListMLE over ListNet is 0.85% and 0.22% on MQ2007-list
and MQ2008-list, respectively. While, the improvement of
p-ListMLE over RankCosine is 1.48% and 0.32% on on
MQ2007-list and MQ2008-list, respectively.

7 CONCLUSION

In this paper, we address the problem of ListMLE that
the position importance is highly ignored, which is how-
ever very important for ranking. We propose a new list-
wise ranking algorithm, namely position-aware ListMLE
(p-ListMLE) to amend the problem. In p-ListMLE, rank-
ing is viewed as a sequential learning process, with each
step learning a subset of parameters which minimize the
corresponding stepwise probability distribution. We prove
that p-ListMLE is consistent with WPDL, which is equiv-
alent to a certain form of NDCG. In addition, our experi-
mental results on benchmark datasets show that p-ListMLE
can significantly outperform ListMLE. Therefore, we have
demonstrated both theoretically and empirically that p-
ListMLE is better than ListMLE.

For the future work, we plan to further investigate the prob-
lem of how to set the position factor α(·) in practice, or how
to guide the settings from other theoretical aspects.
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Abstract
This paper introduces an extension to undirected
graphical models of the classical continuous time
Markov chains. This model can be used to solve
a transductive or unsupervised multi-class classi-
fication problem at each point of a network de-
fined as a set of nodes connected by segments of
different lengths. The classification is performed
not only at the nodes, but at every point of the
edge connecting two nodes. This is achieved by
constructing a Potts process indexed by the con-
tinuum of points forming the edges of the graph.

We propose a homogeneous parameterization
which satisfies Kolmogorov consistency, and
show that classical inference and learning algo-
rithms can be applied.

We then apply our model to a problem from geo-
matics, namely that of labelling city blocks auto-
matically with a simple typology of classes (e.g.
collective housing) from simple properties of the
shape and sizes of buildings of the blocks. Our
experiments shows that our model outperform
standard MRFs and a discriminative model like
logistic regression.

1 INTRODUCTION
Connections in networks typically have a length or weight
that gives a measure of distance between the nodes con-
nected, or the intensity of their interaction. This length in-
formation has been used to perform unsupervised or semi-
supervised classification on graphs based among others on
graph partitioning algorithms (see e.g. Zhu and Goldberg,
2009). When defining probabilistic graphical models on
such networks, it is not clear how to take this distance into
account naturally so that the interaction decreases with the
distance. In this paper, we propose an unoriented counter-
part of the continuous-time Markov process on a tree pro-
posed by Holmes and Rubin (2002) which is naturally gen-
eralized to any unoriented graph.

In a continuous time Markov chain, a random state Xt is
associated with every point t ∈ R+. The generalization
to a continuous tree mode considered by Holmes and Ru-
bin (2002) is most simply described through its applica-
tion in phylogenetics. The phylogenetic tree of a family of
species is assumed given as a directed tree with branches of
different lengths. The length of the branches measure the
genetic distance between extant or extinct species. Branch-
ing nodes are associated with speciation events. Each point
of each branch of the tree corresponds to the form taken
by a species as it existed at one time in the past and the
variable modeled as a random process and defined at each
such point is typically a discrete trait of that species such
as the nucleic acid among {A,C, T,G} at a certain posi-
tion in the DNA. In the absence of speciation event, the
state evolves like a continuous-time Markov chain, with
time here being measure in terms of the genetic distance
along an edge. When a branching occurs, the Markov chain
is split into two identical states which continue to involve
independently. For that process, if the edges of the trees
are identified with line segments, there is a random vari-
able Xt associated with every point t of each of these seg-
ments. Since a tree is simply connected, removing point t
will split the tree in at least two components, and with this
model we have the fundamental Markov property that the
subprocesses defined on each component are conditionally
independent given Xt.

We aim to extend these models in two ways. First,
these continuously indexed processes are fundamentally
oriented. This stems for the fact that the continuous
Markov chain in this model is homogeneous, which implies
that the conditional distributions forward in time are con-
stant, a property which, while true forward, is not in general
true backwards in time. This implies in particular that all
marginals of the process on any finite set of points includ-
ing at least all nodes of degree different than two is natu-
rally parameterized as a product of conditionals p(xs|xt)
whose value depends on the graph only through the dis-
tance between s and t. We aim to propose natural parame-
terization for unoriented continuously indexed models with
the same Markov property as the oriented trees. Second,
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the considered models are simply connected and we would
like to propose an extension from weighted trees to general
weighted graphs, where all edges are identified with a real
segment of lengths equal to their weights, and which satisfy
the Markov property in the sense that if a finite set of points
A on these segments cuts the graph into several connected
components, the processes on the two subgraphs are con-
ditionally independent given (Xa)a∈A. The obtained mod-
els will be Potts models that take into account in a natural
way the length of the edges and such that the interaction
between two nodes decreases with the distance separating
them.

After a discussion of related work, we first consider the
simplest case of an unoriented continuous chain for which
we propose an exponential family parametrization. Next,
we show how this parametrization is naturally extended
to general unoriented continuous graphs. We derive the
marginal log-likelihood of different subsets of nodes, as
well as the form of its gradients, and show that inference
and learning in these models can be obtained with classical
algorithms. We then extend the model and algorithms to the
hidden Markov random field case where a feature vector is
attached to a certain number node. In terms of experiments,
we consider first a transductive classification problem from
geomatics, which consists in assigning city blocks to dif-
ferent classes from simple buildings characteristics, while
taking into account the distances between the blocks. Then
we illustrate the possibility of using the model for transfer
learning in order to refine predictions for city blocks from
a new entirely unlabelled city.

2 RELATED WORK

The model we consider in this work can be viewed as an ex-
tension to undirected graphs of the continuous time Markov
chain (CTMC). The continuous-time Markov chain (Nor-
ris, 1997) is a fundamental model in probability and statis-
tics for random variables that take values in a set of discrete
states and that can transition at any point in continuous time
from one state to another. Beyond its theoretical value, it
has been applied directly in queuing theory, for the statisti-
cal modeling of chemical reactions and in genetics.

In genetics, CTMC models have been notably used to pro-
pose models of the evolution of DNA at the nucleotide level
(Nielsen, 2005; Durrett, 2008), with among several others,
the celebrated Jukes-Cantor model. In this context, these
models have been extended to directed trees, where the
tree corresponds to a phylogeny of species or of proteins,
and which has been used to estimate rate matrices or for
genetic sequence alignment (Von Bing and Speed, 2004).
Like for CTMCs, the fact that these models are continuous
arise from temporality, and the models derived are thus in-
trinsically oriented. For these CTMC on trees, Holmes and
Rubin (2002) proposed an exponential family parametriza-
tion of the likelihood and showed that it was possible to

design an EM algorithm to learn the rate matrices model-
ing the substitution of DNA bases over time, in a way that
generalizes the classical EM algorithm on trees.

As is the case for the CTMC, continuously indexed pro-
cesses arise typically as the limit of discretely indexed pro-
cesses. Along these lines, Yaple and Abrams (2013) con-
sider a continuum limit of the Ising model on a regular grid
where the lengths of the edges are infinitesimal and use it to
characterize the patterns of magnetic polarity in ferromag-
netic materials through the resolution of integro-differential
equations.

A different but also recent line of research combining
ideas from the graphical models literature with stochas-
tic processes is known under the name of continuous time
Bayesian networks (CTBNs, Nodelman et al., 2002). These
are models of structured multivariate stochastic processes
in time in which the interaction between the different com-
ponents of the process can be modeled by a graphical
model. These models are quite different than the continu-
ous time tree models or the models we will propose in this
paper in that, for CTBNs, the graphical model structure is
somehow orthogonal to the direction of time which is the
unique global oriented continuous variable for the process.

Last but not least, a common family of approaches which
take into account the length of edges in a graph in the con-
text of unsupervised or semi-supervised classification are
the graph partitioning and related spectral clustering tech-
niques (see e.g. Zhu and Goldberg, 2009, chap. 5). A re-
view of these techniques is beyond the scope of this paper.
We however discuss how these methods differ and are not
directly comparable to ours in section 7.

3 NOTATIONS
All multinomial variables considered in the paper take val-
ues in K = {1, . . . ,K} and are represented by the indi-
cator vector x ∈ {0, 1}K whose sole non zero entry is
xk when the multinomial is the kth state. We thus define
X = {x ∈ {0, 1}K | ∑k∈K xk = 1}. Given a vector
x ∈ RK , Diag(x) is the diagonal matrix whose elements
are the entries in x.

We use � (resp. �) to denote the Hadamard prod-
uct (resp. division), that is the entrywise multiplication
(resp. division) of matrices.

We will denote nodes of graphical model with the sans-serif
font a, b, and set of nodes with upper capitals of the same
font: A,B.

4 CONTINUOUS GRAPH POTTS
MODELS

4.1 An unoriented continuous chain model
To derive a parameterization of the model, we start with the
case of an unoriented chain that we identify with the [0, l]
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segment, where without loss of generality l is an integer.
We will denote by Xa a multinomial random variable asso-
ciated with the point a ∈ [0, l]. Before defining the process
at any point of the segment, we model the joint distribution
of the random variables Xk for k an integer in {0, . . . , l}.
Denoting by xk ∈ {0, 1}K an instance of Xk, and assum-
ing that both unary and binary potentials are constant, the
joint distribution of (Xk)k∈{0,1,...,l} can be written in mul-
tiplicative form as

p(x0, x1, . . . , xl; U, h) ∝
l∏

k=0

hᵀxk
l−1∏

k=0

xᵀkUxk+1,

with h ∈ RK+∗ the vector of unary potential values and
U ∈ RK×K+∗ the matrix of binary potential values. For
reasons of symmetry and invariance along the chain, we
assume that those parameters do not depend on the posi-
tion k and that U = Uᵀ. Note that, while similar in spirit,
the assumption that these parameters are constant is dif-
ferent from assuming that the Markov chain is homoge-
neous; we discuss this point in section 7. To get concise
forms for the distributions induced on subsets of the Xks
by marginalization, we introduce furtherH = Diag(h) and
W = H

1
2UH

1
2 . If in particular we marginalize all vari-

ables except for the extreme points of the segment we then
have

p(x0, xl; W,h)∝
∑

x1··· xl−1

l−1∏

i=0

xᵀi Uxi+1

l∏

i=0

h
ᵀ
xi

∝ hᵀx0

(
xᵀ0H

− 1
2W lH−

1
2xl

)
hᵀxl,

(See appendix for details).
Similar calculations show that, for any sequence a0 = 0<
a1 < . . . < am = l with ak ∈ {0, . . . , l}, denoting dj =
d(aj , aj−1) = aj−aj−1 the distances between consecutive
nodes and A = {a0, · · · , am}, we have:

p(xA; W,h) ∝
m∏

j=0

hᵀxaj

m∏

j=1

xᵀaj−1
H−

1
2W djH−

1
2xaj .

By simply taking the logarithm of this expression we ob-
tain a curved exponential family of distributions with log-
likelihood

` (xA; θ)=
m∑

j=0

ηᵀxaj+
m−1∑

j=0

xᵀajΛ(θ, dj)xaj+1
−A(θ), (4.1)

with ∀k ∈ K, ηk = log(hk), θ = (W, η), A the log-
partition function and where Λ(θ, d) is defined entrywise
by [Λ(θ, d)]kk′ = log([H−

1
2W dH−

1
2 ]kk′).

It is now very natural to try and use this formula to ex-
tend the definition of the process to any sequence of points
a0 = 0 < a1 < . . . < am = l that are no longer restricted
to take integer values. This requires however that for all

for all s ≥ 0, W s should be a well defined real valued
matrix with non-negative (or for learning purposes posi-
tive) entries. The fact that W is real symmetric and that all
its powers should be real implies that it should have non-
negative eigenvalues. Since we can approximate a low rank
matrix with a full rank matrix, we assume for convenience
that all it eigenvalues are positive (any low rank matrix can
be approximated by a full rank one). W is then a matrix ex-
ponential W = exp(Π). The fact that all its powers should
have non-negative entries implies in particular that for any
s, W s is completely positive1. We therefore need to char-
acterize which conditions on Π are needed to obtain a valid
W . Note that Π can be viewed as the counterpart of the
rate matrix for CTMCs.

4.2 Infinitesimal generator Π

To easily compute the matrix exponential we use the eigen-
decomposition of Π:

Π = P ᵀΣP, Σ = Diag(σ), P ᵀP =PP ᵀ =IK (4.2)

and exponentiate its eigenspectrum2.

In the context of learning, it is natural to assume that the
entries of W s are actually strictly positive so that the log-
likelihood is always finite. The following lemma provides
sufficient and necessary conditions on Π for the entries of
exp (lΠ) to be either non negative or positive.
Lemma 1. For Π a square matrix, [exp (lΠ)]i,j ≥ 0 ∀l ∈
R+ and ∀i, j if and only if Πi,j ≥ 0 for all i 6= j. Similarly,
[exp (lΠ)]i,j > 0 for all i, j and ∀l ∈ R∗+, if and only if

the sequences
(
u

(k)
i,j

)
k∈N

with u(k)
i,j =

[
Πk
]
i,j

is such that

its first non-zero value exists and is strictly positive, for all
i 6= j .

This lemma is proved in the appendix.

It is easy to see from the proof of the lemma that Πi,j > 0
for i 6= j is a sufficient condition for [exp (lΠ)]i,j to be
positive for all i, j and for all l ∈ R∗+.

Note that the likelihood obtained in (4.1) is invariant by a
multiplication ofH orU and thus ofW by a positive scalar,
because of normalization. As a result it is also invariant by
addition of a constant multiple of the identity matrix to Π
or equivalently to σ.

This means that the likelihood is invariant by addition of an
arbitrary identical constant to all the eigenvalues (σi)i∈K.
In particular, it is possible to choose this constant sufficient
large to guarantee that the diagonal of Π is positive. This
implies that it will be conveniently possible to parameterize
the model by the entrywise logarithm of Π.

1A ∈ RK×K is completely positive iff there exists B ∈
RK×m+ with A = BBᵀ (see e.g. Seber (2008) p. 223).

2One caveat of this parametrization is that ifW is close to low
rank, the corresponding eigenvalues in σ have to take large nega-
tive values. This could be addressed by working with (σ−1

k )k∈K.
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4.3 Existence of the process on the chain

Proposition 2. There exists a stochastic process
(Xa)a∈[0,l] defined at all points of the segment [0, l]
whose finite marginal on any finite set of points containing
a0 and al is given by (4.1).

Proof. Let A = {a0, . . . , am} and B = {b0, . . . , bn} two
such sets with a0 = b0 = 0 and am = bn = l. It is clear
that using (4.1) to define a joint probability distribution on
(Xa)a∈A∪B, the distribution obtained by marginalization of
elements of A\B using the same type of derivation used
in (4.1) is still of the form of (4.1). Since the same holds
for B\A, we just showed that the collection of proposed
marginals are consistent and by Kolmogorov’s extension
theorem (Chung and Speyer, 1998, chap. 6). This proves
the existence of the process.

4.4 Extending the model to graphs

4.4.1 Real graphs

To extend the model we proposed on a segment to undi-
rected trees and more generally to undirected graphs, we
first define what we will call continuous graphs or real
graphs3. Given a weighted graph G = (V,E) with the
weight dab associated with the edge (a, b) ∈ E, we define
the associated real graph G as the space constructed as the
union of line segments of lengths dab associated with the
edges (a, b) ∈ E and whose extreme points are respec-
tively identified with the nodes a and b through an equiv-
alence relation. Put informally, a real graph is the set of
line segments that we usually draw to represent an abstract
graph. For any pair of points a′, b′ on the same segment
[a, b], we will denote by da′b′ the length of that subseg-
ment.

It should be noted that, in a real graph, the segments con-
necting a node of degree two are essentially merged into a
single segment by concatenation. We will call all nodes of
degree different than two junction nodes. Conversely, iden-
tifying nodes and points in the real graph, any point that is
not a junction node can actually be viewed as a degree two
node.

Definition 3. Let S be the set of junction nodes. Given A
a set of points on the real graph, we will call the induced
discrete graph on A∪S, denoted by GA the graph with ver-
tices A ∪ S and whose edges EA link the nodes that can be
joined on the real graph by segments not containing ele-
ments of A ∪ S: EA = {(a, b) | ] a, b [∩ (A ∪ S) = ∅}. To
distinguish them from S \A, we will call the set of nodes in
A observed nodes.

3Real graphs extend the notion of real trees which have been
introduced previously in the literature (Chiswell, 2001) and are of
interest notably in mathematical cladistics and to construct Brow-
nian trees.

(a) (b)

Figure 4.1: (a) Representation of a real graph with a zoom that
shows that edges are actually a continuum of nodes linked by in-
finestimal unoriented edges. (b) The induced discrete graph asso-
ciated with the junction nodes in red and the observed nodes in
blue.

Figure 4.2: (left) Toy example illustrating that the process is
defined at all points of the continuous graph. For a model on three
classes (red, green blue) each point of each edge is colored with
the mixture of these three colors corresponding to the probability
of observing each of the classes, given that all the circle nodes are
observed with the given colors.

The concepts of real graph, junction node, observed node
and induced graph are illustrated on Figure 4.1.

4.4.2 Towards a Potts model on real graphs

To extend the stochastic process previously defined to real
graphs, we first define its marginals. In particular, given a
set of points A = {a0, · · · , am}, the marginal on A ∪ S is
naturally defined as follows: let GA = (A ∪ S, EA) be the
induced discrete graph on A ∪ S, we propose to define the
log-marginal distribution on (Xa)a∈A∪S as

` (xA∪S; θ)=
∑

a∈A∪S
ηᵀxa+

∑

(a,b)∈EA

xᵀaΛ(θ, dab)xb−A(θ), (4.3)

with θ = (η,W ) which we reparametrize from now on
with θ = (η,Π). If A does not contain S, then p (xA) is
obtained by marginalizing xS\A out in p (xA∪S).

4.4.3 Existence of the process on a real graph

The existence of the process on a real graph is again proven
using Kolmogorov’s theorem:

Proposition 4. There exists a stochastic process (Xa)a∈G
defined at all points of the real graph G with log-marginals
on any set of nodes A containing the junction nodes given
by Eq. (4.3).

Proof. Let A and B be two subsets of nodes on the real
graph G, for which the distributions xA and xB are obtained
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by marginalizing S out of xA∪S and xB∪S in Eq. (4.3). We
note that a node on an edge is conditionally independent of
any node on a different edge given xS. Proposition 2 tells
us that the marginals are consistent on each edge with fixed
endpoints, from which we can deduce that the definition of
the definition of the process on A∪S and B∪S provided in
Eq. (4.3) is consistent since it is obtained by marginaliza-
tion of the joint distribution at the nodes A∪B∪S. The pro-
cess being consistent on A and A∪S by definition of p(xA),
and similarly on B and B∪S, we have proved Kolmogorov
consistency between A and B which in turn proves the ex-
istence of the process on the real graph.

We will refer to the obtained process, illustrated on Fig-
ure 4.2, as a continuous graph Potts model or continuous
graph Markov random field (CGMRF).

5 INFERENCE

Probabilistic inference is an operation which is key to
learning and making predictions in graphical models. In
the case of our continuous graph G, if we consider any seg-
ment [a, b] with a, b ∈ S and any a′, b′ ∈ [a, b], it should
be noted that p(x{a,a′,b′,b}) = p(x{a′,b′}|x{a,b})p(x{a,b})
where p(x{a,b}) is computed as a clique marginal of p(xS),
and p(x{a′,b′}|x{a,b}) has a simple analytical expression
given that reduces to the model on the segment. This im-
plies that marginal distributions on any finite collection of
nodes on the same edge can be computed efficiently pro-
vided the edge marginals of the induced model on S can be
computed efficiently. In spite of the fact that the graph has
uncountably many nodes, inference can thus be performed
by any classical inference algorithm, i.e. the sum-product
algorithm if the graph is a tree and typically approximate
inference techniques otherwise, such as loopy belief prop-
agation.

6 LEARNING

In this section, we focus on learning the model from data.
Since the process values are only observed at a finite num-
ber of points, we are somehow always in the situation
where some nodes are unobserved. However, when all
junctions nodes are observed the joint likelihood of a given
set of nodes has the closed form expression of Eq. (4.3).
Since this a curved exponential family, the log-likelihood
is in general not a concave function of the parameters4.

To avoid having to cope with positivity constraints, and
given the rapid divergence of the likelihood on the bound-
ary of the domain we parameterize the likelihood by η and
the entrywise logarithm of Π, since given the remark fol-
lowing lemma 1, it possible to take Π positive entrywise.

4It is however clearly concave when all edges are of the same
length, because the constraint of equality of the parameters for all
potentials is a convex constraint.

For the CTMC directed tree, Holmes and Rubin (2002)
consider the likelihood of the entire process, show that it
has a canonical exponential family form with a small num-
ber of sufficient statistics and derive an EM algorithm based
on this representation to learn the parameters. A similar
exponential family form can be obtained for our process,
with also a small number of sufficient statistics and in the-
ory it is possible to construct a similar EM algorithm. Un-
fortunately, in our case the M-step of the algorithm would
still require solving a convex optimization problem whose
solution is not closed form. We therefore do not pursue
further this approach or detail the corresponding canoni-
cal exponential family form of the process. We propose
instead to optimize the likelihood using a gradient based
method. We show that the gradient can be computed from
the moments obtained by performing the probabilistic in-
ference on the model in different settings. In the next sec-
tions (sections 6.1 - 6.4), we derive the form of the gra-
dient of the likelihood, first when all junction nodes are
observed, then, when any set of nodes is observed, and
finally, when some nodes are observed and another (typi-
cally larger) set of nodes emits observed vectors of features
that are each conditionally independent given the state of
associated node, as in a hidden Markov random field set-
ting. Since computing the inference is typically intractable
in graphs, we introduce a variational approximation in 6.5
that allows for faster (linear) computation. The proofs of
lemmas and propositions presented can be found in the ap-
pendix.

6.1 Gradient of the likelihood on a segment

Given that the model is parameterized by exponentials of
Π, the gradients involve the differential of the matrix ex-
ponential. We will therefore repeatedly use the function
ψl,Π with ψl,Π (X) = P ᵀ( (PXP ᵀ) � Γl,Π

)
P, where

Π = P Diag(σ)P ᵀ is the eigenvalue decomposition of Π
and

[Γl,Π]i,j =





exp (l σi)− exp (l σj)

σi − σj
if σi 6= σj

l exp(l σj) if σi = σj .

The function ψ is such that the gradient of xᵀ exp (lΠ) y is
ψl,Π (xyᵀ). It is essentially switching to the spectral space
of Π, where the gradient has a simple multiplicative form
given by Γ and then maps the result back to the original
space. With this function, we thus have
Lemma 5. The gradient with respect to variable Π of the
log-likelihood ` of xa and xb on a segment of length l whose
end points are a and b can be written as

∇Π` (xa, xb; θ) = ψl,Π
(

(xax
ᵀ
b − E [XaX

ᵀ
b ])�W l

)
.

6.2 Gradient of the likelihood in a real graph

We now compute the gradient of the log-likelihood for the
joint distribution of the nodes (xa)a∈A, with the subset A
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containing the junction nodes S. We still denote GA =
(A, EA) the induced discrete graph of A on G. And since
Π is identical for every edge, a direct application of the
chain rule implies that:

Proposition 6. The gradient of the likelihoods are com-
puted5 as

∇Π` (xA; θ) =
∑

(a,b)∈EA

ψdab,Π
(

(xax
ᵀ
b − µab)�W dab

)

∇η` (xA; θ) =
∑

a∈A
(xa−µa)− 1

2

∑

(a,b)∈EA

(xa−µa + xb−µb).

with µa = E [Xa] and µab = E [XaX
ᵀ
b ].

6.3 Partially observed junction nodes

To learn from partially labelled data it is necessary to con-
sider the likelihood ofXB for B a set of nodes that does not
necessarily contain S. Let B be a set of observed nodes, i.e.
for which we know the states xB, and A a set of unobserved
nodes containing S\B. We have the following distributions

` (xA∪B; θ) =
∑

a∈A∪B
ηᵀxa+

∑

(a,b)∈EA∪B

xᵀaΛ(θ, dab)xb −AA∪B(θ)

` (xA|xB; θ) =
∑

a∈A∪B
ηᵀxa+

∑

(a,b)∈EA∪B

xᵀaΛ(θ, dab)xb −AA|B(θ, xB) ,

We can rewrite the log-likelihood as follows (Wainwright
and Jordan, 2008) :

` (xB; θ) = AA|B (Π, h, xB)−AA∪B (Π, h) ,

and its gradient are therefore computed as

Proposition 7.

∇Π` (xB; θ) =
∑

〈a,b)∈EA∪B

ψdab,Π
(
(µab|B − µab)�W dab

)

∇η` (xB; θ) =
∑

a∈A∪B
µa|B−µa

− 1
2

∑

(a,b)∈EA∪B

(
µa|B−µa + µb|B−µb

)
.

with µab|B =E [XaX
ᵀ
b |XB =xB], µa|B =E [Xa|XB =xB].

6.4 Hidden Markov model

We consider a hidden Markov random field variant of our
model in which some nodes have, in addition to the state
variable, a feature vector with a state specific distribution.
More precisely, we envision to learn from data on a graph
in which the states of a set of nodes B are observed and in

5Note that a single spectral decomposition of Π allows to com-
pute W dab efficiently for all pairs (a, b).

which each node in a set A (with A ∩ B 6= ∅) provides an
observed feature vectors ya which is conditionally indepen-
dent of the rest of the graph given the corresponding node
state xa. For simplicity, we assume that S ⊂ A ∪ B.

The joint and conditional distribution of observed and un-
observed variables are very similar as above

` (xA∪B, yA; θ, κ) =
∑

a∈A∪B
ηᵀxa+

∑

a∈A
log (p (ya|xa;κ))

+
∑

(a,b)∈EA∪B

xᵀaΛ(θ, dab)xb −AA∪B (θ, κ)

` (xA|yA, xB; θ, κ) =
∑

a∈A∪B
ηᵀxa +

∑

a∈A
log (p (ya|xa) ;κ)

+
∑

(a,b)∈EA∪B

xᵀaΛ(θ, dab)xb −AA|B (θ, κ, xB, yA) ,

which allows us to rewrite the likelihood of observations as
` (xB, yA) = AA|B (θ, κ, yA, xB)−AA∪B (θ, κ).
Given that the model for p(ya|xa) is Gaussian or at least
an exponential family, when envisioning an EM algorithm
to learn κ and θ, it is easy to see that the update for κ is
closed form while that of θ is not. This motivates a variant
of the EM algorithm which does not attempt to maximize
with respect to both κ and θ simultaneously but which ei-
ther maximizes the expected likelihood with respect to κ
or maximizes it with respect to θ. The algorithm can then
be summarized as an E-M1-E-M2 algorithm, where the E-
step is the usual computation of expected sufficient statis-
tics given current parameters, M1 solves for κ in closed
form and M2 maximizes with respect to θ using gradient
ascent6.

6.5 Variational approximation

For graphs with cycles, since inference is intractable, we
replace the likelihood by a pseudo-likelihood obtained us-
ing a variational approximation of the log-partition. Our
variational approximation is the one associated with the
entropy of Bethe (see, e.g. section 4.1 in Wainwright and
Jordan, 2008), but other choices would be possible. The
main motivation behind this approximation is that the exact
gradient of this pseudo-likelihood is directly obtained from
the pseudo-moments given by loopy BP. In practice, damp-
ing needs to be used (see Wainwright and Jordan, 2008,
chap. 7).

In term of complexity, the parametrization of CGMRF
could suggest that inference is slower than in the dis-
crete setting since the computation of the SVD of Π is re-
quired. However, since the number of states is typically
much smaller than the number of nodes in the graph, the
computational cost of the SVD is negligeable compared to

6Note that gradient ascent itself requires to perform some in-
ference to recompute the log-partition function
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the overall cost of the algorithm. Hence, inference in the
CGMRF is just as hard as for any discrete MRF.

The log-likelihood is a curved exponential family and is in
particular not a convex function of the parameters, while
it is convex for a standard MRF. As a consequence the
pseudo log-likelihood based on the variational approxima-
tion is also non-convex. We use gradient descent with a
line-search based on the Wolfe conditions to find a local
minimum (see Nocedal and Wright, 1999, chap. 3). Em-
pirically the algorithm is not trapped in bad local minima
but takes more iterations to converge than the MRF coun-
terpart. Experiments showed that the training for CGMRFs
was only two times longer than for regular MRFs.

7 DISCUSSION

In this section, we discuss more precisely features of CGM-
RFs that are unique or common with other models and ap-
proaches existing in the literature.

First, we note that for a tree, our model is not equivalent to
that of Holmes and Rubin (2002). Their model uses a con-
stant rate matrix (i.e. the Markov process is homogeneous)
while we use constant infinitesimal potentials, which do not
lead to a constant rate matrix on any orientation of the tree.
If the tree is just the segment [0, L], for s and t with 0 <
s < t < L a CTMC is such that p(xt|xs) only depends on
t− s and not on L. By contrast for our model log p (xt|xs)
depends also on L − t and L − s since log p (xt|xs) =
xᵀsΛ (t−s)xt+xᵀt η+xᵀtΛ (L−t)1−xᵀsΛ (L−s)1,where
for simplicity we omitted the dependance in θ, and 1 is the
constant vector equal to 1. See the appendix for an illustra-
tion and further discussion of the differences between the
models.

Our model has in common with graph partitioning tech-
niques and spectral clustering (SC) that the distance be-
tween nodes are taken into account. But there are several
important differences: first, in SC, there is no model learn-
ing in the sense that no parameters are learned to optimize
the model (Bach and Jordan (2006) who learn the metric
for SC, are an exception). Second, our model captures that
there could be different transition probabilities between dif-
ferent classes along the graph which is not possible in SC.
Then, the main assumption in SC is that classes are sepa-
rated by edges of smaller weights so that each class is as
disconnected as possible. By contrast, our model autho-
rizes (to some extent) transitions between classes on short
edges and moreover permits that each class corresponds to
several connected components. Our models extends natu-
rally to a hidden Markov model that makes it possible to
include feature vectors for some nodes and not for others,
which is not possible with SC techniques.

Another graph-based approach to classification which is
perhaps more related to ours is the work of Zhu et al. (2003)
on binary classification with harmonic functions. Indeed,

the Gaussian field considered there is similar to the Potts
model we obtain on the junction nodes. The approach of
Zhu et al. (2003) is however just concerned by inference
and not by learning, but their approach could be extended
both to multi-class classification and to perform learning of
the parameters.

8 EXPERIMENTS
We present in this section experiments on real data. Syn-
thetic experiments on the core model of the CGMRF (with-
out hidden layer) can be found in section 6 of the appendix.

In geographic information systems, data is often aggre-
gated either on regular grid or on cells corresponding to ab-
stract administrative boundaries, which do not necessarily
reflect the structure of a city. A fairly natural type of rep-
resentation for urban environment is based on graphs and
in particular weighted graphs which can encode a distance
information.

We consider a problem from geomatics in which this
type of representation could be beneficial and which con-
sists in predicting building use in urban and peri-urban
environments from a few annotations and simple build-
ing shape characteristics that can be extracted easily from
aerial images. More precisely, we consider the transduc-
tive learning problem of assigning city blocks to one cate-
gory from {individual housing, collective housing, indus-
trial/commercial area}.

8.1 Building the city block continuous graph

A city can be divided into city blocks using its layout and
road network as in Figure 8.1. Assuming that the blocks
are given, we compute the Voronoi diagram of the block
centroids and link together blocks with adjacent Voronoi
cells. Edges are annotated with a proximity measure, in
our case the distance between their respective closest build-
ings. This provides a continuous graph encapsulating the s
tructure of the city. Each block is then annotated into one
of three categories : individual residential, collective resi-
dential and industrial/commercial area. The blocks are an-
notated by hand using cadastral information, business reg-
istration codes, and resorting to Google street view images
for ambiguous blocks (see Figure 8.1).

8.2 Data descriptors and learning setting

A block is then described by the weighted average of char-
acteristics of the buildings it contains, each building count-
ing with a weight proportional to its volume. We tested
10 different building descriptors, found that floor area and
height were the most discriminative, and that adding more
descriptors actually decreases the performance of all tested
algorithms.

We use the example of Sevran, a French city of 50 000
inhabitants north of Paris. We divided it into 461 blocks,
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Figure 8.1: (left) Buildings and road network of Sevran. (middle) Division into city blocks. (right) City blocks with
annotations. Blue: individual housing, cyan: collective housing, red: industrial/commercial area. (Best seen in color.)

400 of which can clearly be assigned one of three labels
mentioned above and the rest being of insignificant size,
ambiguous, or corresponding to other categories such as
schools or hospitals.

We consider the transductive learning problem of predict-
ing all block labels from a subset of labelled blocks. In our
experiments, 7% of annotated labels, corresponding to 28
blocks, are used for training and the remaining are used for
testing.

8.3 Competing algorithms

As baselines we consider two algorithms that do not take
into account spatial information: a generative Gaussian
mixture model and a logistic regression trained each using
the 7% revealed labels. We also consider classical hidden
MRFs, which cannot take into account the distance, and
whose graph is either the same as for the CGMRF or a
pruned graph in which all edges longer than a threshold
(corresponding to the average city block radius) have been
removed. The different graphs are illustrated on Figure 8.2.
Note that the Gaussian mixture model does not take the
graph structure into account, and can be interpreted as an
edgeless MRF

In all Markov models, we use Gaussian emissions to model
the distribution of the building descriptors given the block
label, which can conveniently be optimized in closed form.
To train the CGMRF and MRF models we learn the param-
eter θ with the maximum likelihood principle following the
approach presented in section 6.5.

8.4 Results analysis

For each model, we construct a precision-coverage curve,
obtained by sorting the probabilistic predictions by increas-
ing values of their entropies, and reported on Figure 8.3.
The confidence bands represented corresponds to one stan-
dard error for the estimation of the mean precision.

We can see that enriching the simple Gaussian mixture
model by adding a graph structure significantly improves
the overall performance. Building a MRF using all the
edges from the Voronoi proximity or only retaining a frac-
tion of the shorter edges yields similar results, on par with
logistic regression. Building a CMRF using the edges an-
notated with a distance measure leads to a performance
which is significantly above all others based on estimated
standard errors.

When making prediction for all unlabeled points from
the 7% of revealed annotations, the different algorithms
yield the following average precisions (over the 300 resam-
plings): for the Gaussian mixture model 88.0%, for logistic
regression 92.5%, the full MRF 92.4%, the pruned MRF
91.6% and our CGMRF 94.0%. Both pruned MRF and
full MRF outperform the simple Gaussian mixture model,
but not logistic regression, even though their precision at
intermediate coverage is higher. The misclassification er-
ror of the CGMRF is 20% smaller than that of logistic re-
gression, 21.5% smaller than for the best MRF model, and
50.2% smaller than for the Gaussian mixture. The gain
in precision is not only obtained in average since the mis-
classification error in the CMRF was lower than MRF and
logistic regression in respectively 193 and 293 out of 300
experiments. Wilcoxon signed rank tests assigns respec-
tively p-values of 7 · 10−26 and 3 · 10−24 to the common
median hypothesis.

In this experiment, with 461 nodes and 2718 edges the in-
ference takes less than 0.1s on a CPU at 3.3GHz. Learning
requires usually around 50 calls to the inference step for the
MRF (5s total), while it is closer to 100 for the CGMRF
(10s total).

8.5 Transfer learning on another city

We now consider the problem of predicting block labels
on a new unannotated city using partial annotation from
a given city. More precisely, we train our model with
15% of revealed labels from Sevran, and consider several
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Figure 8.2: (left) continuous graph used to train the HCGMRF, the darker the edge the shorter the annoted distance,
(middle) graph used for the HMRF including all edges or (right) with only edges shorter than a threshold.

schemes to make predictions on the neighboring urban area
formed by Pierrefitte-sur-Seine together with Stains, for a
total of 63000 inhabitants and 583 blocks, for which both
graph and features are available but no labels are revealed.
We consider logistic regression and the Gaussian mixture
model trained from the annotated blocks from Sevran as
baselines, and test for each of the CGMRF and MRF the
models learnt as follows:

• θ and κ are learnt on data from Sevran

• idem followed by a single EM-step on κ alone (E-M2)
on the graph of Pierrefitte+Stains

• idem followed by an EM-step on θ (E-M1) and then
an EM-step on κ (E-M2).

We use the 359 labelled blocks (out of 583) of the Pier-
refitte/Stains conglomeration as a testing set and construct
the precision-coverage curves reported on Figure 8.4 (see
the appendix for a figure comaring more approaches). We
observe that the CGMRF setting is superior to its competi-
tors, and that the relearning step improves the performance.
The MRFs does not perform as well, which can be ex-
plained by the initial prediction being inferior, and relearn-
ing degrades its performance. The setting where only one
E-M2 step is performed yields in both cases results com-
prised between the two other settings.

9 CONCLUSION
In this paper, we constructed a Potts model over a contin-
uous graph and showed how to compute the likelihood of
several of its variants as well as the corresponding gradi-
ents, for the purpose of learning.

Our experiments on a problem from geomatics show that
this model outperforms regular MRFs, and compares favor-
ably with logistic regression which although discriminative
does not leverage unlabelled data. Finally, we showed that
the model can be used to perform transfer learning from a
first partially labelled graph towards a new completely un-
labeled graph.

Figure 8.3: Precision coverage curves on Sevran. Aver-
aged precision coverage curves for the inference for 300 random
resamplings of 7% of revealed labels on the city of Sevran. (Best
seen in color.)

Figure 8.4: Precision coverage curves for transfer learn-
ing. Averaged precision coverage curves for the inference on the
Pierrefitte/Stains conglomeration for 200 random resamplings of
15% of revealed labels on the city of Sevran. (Best seen in color.)

467



References
Bach, F. R. and Jordan, M. I. (2006). Learning spectral

clustering, with application to speech separation. The
Journal of Machine Learning Research, 7:1963–2001.

Chiswell, I. (2001). Introduction to Lambda Trees. World
Scientific Publishing Company.

Chung, W. H. and Speyer, J. L. (1998). Stochastic Pro-
cesses, Estimation, and Control. Society for Industrial
and Applied Mathematics.

Durrett, R. (2008). Probability models for DNA sequence
evolution. Springer.

Holmes, I. and Rubin, G. (2002). An expectation maxi-
mization algorithm for training hidden substitution mod-
els. Journal of Molecular Biology, 317(5):753–764.

Nielsen, R. (2005). Statistical methods in molecular evolu-
tion. Springer.

Nocedal, J. and Wright, S. (1999). Numerical Optimiza-
tion. Springer.

Nodelman, U., Shelton, C. R., and Koller, D. (2002). Con-
tinuous time Bayesian networks. In Proceedings of the
Eighteenth conference on Uncertainty in artificial intel-
ligence, pages 378–387. Morgan Kaufmann Publishers
Inc.

Norris, J. R. (1997). Markov chains. Cambridge University
Press.

Seber, G. A. (2008). A matrix handbook for statisticians,
volume 15. Wiley.

Von Bing, Y. and Speed, T. P. (2004). Modeling DNA base
substitution in large genomic regions from two organ-
isms. Journal of Molecular Evolution, 58(1):12–18.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical
models, exponential families, and variational inference.
Foundations and Trends in Machine Learning, 1(1-2):1–
305.

Yaple, H. A. and Abrams, D. M. (2013). A continuum
generalization of the Ising model. arXiv1306.3528.

Zhu, X., Ghahramani, Z., and Lafferty, J. (2003). Semi-
supervised learning using Gaussian fields and harmonic
functions. In Proceedings of the International Confer-
ence on Machine Learning (ICML), volume 3, pages
912–919.

Zhu, X. and Goldberg, A. B. (2009). Introduction to semi-
supervised learning. Synthesis lectures on Artificial In-
telligence and Machine Learning, 3(1):1–130.

468



Efficient Inference of
Gaussian-Process-Modulated Renewal Processes

with Application to Medical Event Data

Thomas A. Lasko
Computational Medicine Laboratory, Department of Biomedical Informatics

Vanderbilt University School of Medicine
Nashville, TN 37203

Abstract

The episodic, irregular and asynchronous nature
of medical data render them difficult substrates
for standard machine learning algorithms. We
would like to abstract away this difficulty for
the class of time-stamped categorical variables
(or events) by modeling them as a renewal pro-
cess and inferring a probability density over non-
parametric longitudinal intensity functions that
modulate the process. Several methods exist
for inferring such a density over intensity func-
tions, but either their constraints prevent their
use with our potentially bursty event streams,
or their time complexity renders their use in-
tractable on our long-duration observations of
high-resolution events, or both. In this paper
we present a new efficient and flexible infer-
ence method that uses direct numeric integra-
tion and smooth interpolation over Gaussian pro-
cesses. We demonstrate that our direct method is
up to twice as accurate and two orders of magni-
tude more efficient than the best existing method
(thinning). Importantly, our direct method can
infer intensity functions over the full range of
bursty to memoryless to regular events, which
thinning and many other methods cannot do. Fi-
nally, we apply the method to clinical event data
and demonstrate a simple example application
facilitated by the abstraction.

1 INTRODUCTION

One of the hurdles for identifying clinically meaningful
patterns in medical data is the fact that much of that data
is sparsely, irregularly, and asynchronously observed, ren-
dering it a poor substrate for many pattern recognition al-
gorithms.

A large class of this problematic data in medical records
is time-stamped categorical data such as billing codes.

For example, an ICD-9 billing code with categorical la-
bel 714.0 (Rheumatoid Arthritis) gets attached to a patient
record every time the patient makes contact with the health-
care system for a problem or activity related to her arthritis.
The activity could be an outpatient doctor visit, a labora-
tory test, a physical therapy visit, a discharge from an inpa-
tient stay, or any other billable event. These events occur at
times that are generally asynchronous with events for other
conditions.

We would like to learn things from the patterns of these
clinical contact events both within and between diseases,
but their often sparse and irregular nature makes it diffi-
cult to apply standard learning algorithms to them. To ab-
stract away this problem, we consider the data as streams
of events, one stream per code or other categorical label.
We model each stream as a modulated renewal process and
use the process’s modulation function as the abstract rep-
resentation of the label’s activity. The modulation function
provides continuous longitudinal information about the in-
tensity of the patient’s contact with the healthcare system
for a particular problem at any point in time. Our goal is to
infer these functions, the renewal-process parameters, and
the appropriate uncertainties from the raw event data.

We have previously demonstrated the practical utility of us-
ing a continuous function density to couple standard learn-
ing algorithms to sparse and irregularly observed contin-
uous variables (Lasko et al., 2013). Unfortunately, the
method of inferring such densities for continuous vari-
ables is not applicable to categorical variables. This paper
presents a method that achieves the inference for categori-
cal variables.

Our method models the log intensity functions nonpara-
metrically as Gaussian processes, and uses Markov Chain
Monte Carlo (MCMC) to infer a posterior distribution over
intensity functions and model parameters given the events
(Section 2).

There are several existing approaches to making this infer-
ence (Section 3), but all of the approaches we found have
either flexibility or scalability problems with our clinical
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data. For example, clinical event streams can be bursty, and
some existing methods are unable to adapt to or adequately
represent bursty event patterns.

In this paper we demonstrate using synthetic data that our
approach is up to twice as accurate, up to two orders of
magnitude more efficient, and more flexible than the best
existing method (Section 4.1). We also demonstrate our
method using synthetic data that mimics our clinical data,
under conditions that no existing method that we know of is
able to satisfactorily operate (Section 4.1). Finally, we use
our method to infer continuous abstractions over real clini-
cal data (Section 4.2), and as a simple application example
we infer latent compound diseases from a complex patient
record that closely correspond to its documented clinical
problems.

2 MODULATED RENEWAL PROCESS
EVENT MODEL

A renewal process models random events by assuming that
the interevent intervals are independent and identically dis-
tributed (iid). A modulated renewal process model drops
the iid assumption and adds a longitudinal intensity func-
tion that modulates the expected event rate with respect to
time.

We consider a set of event times T = {t0, t1, . . . , tn} to
form an event stream that can be modeled by a modulated
renewal process. For this work we choose a modulated
gamma process (Berman, 1981), which models the times
T as

P(T ; a, λ(t)) =

1

Γ(a)n

n∏

i=1

λ(ti)(Λ(ti)− Λ(ti−1))a−1e−Λ(tn), (1)

where Γ(·) is the gamma function, a > 0 is the shape pa-
rameter, λ(t) > 0 is the modulating intensity function, and
Λ(t) =

∫ t
0
λ(u) du.

Equation (1) is a generalization of the homogeneous
gamma process γ(a, b), which models the interevent inter-
vals xi = ti − ti−1, i = 1 . . . n as positive iid random vari-
ables:

γ(x|a, b) = P(x; a, b) =
1

Γ(a)ba
xa−1e−x/b, (2)

where b takes the place of a now-constant 1/λ(t), and can
be thought of as the time scale of event arrivals.

The intuition behind (1) is that the function Λ(t) warps the
event times ti into a new space where their interevent inter-
vals become draws from the homogeneous gamma process
of (2). That is, the warped intervals wi = Λ(ti)− Λ(ti−1)
are modeled by wi ∼ γ(a, b).

For our purposes, a gamma process is better than the sim-
pler and more common Poisson process because a gamma
process allows us to model the relationship between neigh-
boring events, instead of assuming them to be independent
or memoryless. Specifically, parameterizing a < 1 models
a bursty process, a > 1 models a more regular or refrac-
tory process, and a = 1 produces the memoryless Poisson
process. Clinical event streams can behave anywhere from
highly bursty to highly regular.

We model the log intensity function
log λ(t) = f(t) ∼ GP(0, C) as a draw from a Gaus-
sian process prior with zero mean and the squared
exponential covariance function

C(ti, tj) = σe−
(
ti−tj
l

)2
, (3)

where σ sets the magnitude scale and l sets the time scale of
the Gaussian process. We choose the squared exponential
because of its smoothness guarantees that are relied upon
by our inference algorithm, but other covariance functions
could be used.

In our application the observation period generally starts at
tmin < t0, and ends at tmax > tn, and no events occur at
these endpoints. Consequently, we must add terms to (1)
to account for these partially observed intervals. For effi-
ciency in inference, we estimate the probabilities of these
intervals by assuming that w0 and wn+1 are drawn from
a homogeneous γ(1, 1) process in the warped space. The
probability of the leading interval w0 = Λ(t0)−Λ(tmin) is
then approximated by P(w ≥ w0) =

∫∞
w0
e−w dw = e−w0 ,

which is equivalent to w0 ∼ γ(1, 1). The trailing interval
is treated similarly.

Our full generative model is as follows:

1. l ∼ Exponential(α)
log σ ∼ Uniform(log σmin, log σmax)
log a ∼ Uniform(log amin, log amax)
b = 1

2. f(t) ∼ GP(0, C) using (3)
3. λ(t) = ef(t)

4. Λ(t) =
∫ t

0
λ(u) du

5. w0 ∼ γ(1, 1); wi>0 ∼ γ(a, b)

6. ti = tmin + Λ−1(
∑i
j=0 wj)

Step 1 places a prior on l that prefers smaller values, and
uninformative priors on a and σ. We set b = 1 to avoid
an identifiability problem. (Rao and Teh (2011) set b =
1/a to avoid this problem. While that setting has some
desirable properties, we’ve found that setting b = 1 avoids
more degenerate solutions at inference time.)

2.1 INFERENCE

Given a set of event times T , we use MCMC to simultane-
ously infer posterior distributions over the intensity func-

470



tion λ(T ) and the parameters a, σ, and l (Algorithm 1).
For simplicity we denote g(T ) = {g(t) : t ∈ T} for any
function g that operates on event times. On each round
we first use slice sampling with surrogate data (Murray
and Adams, 2010, code publicly available) to compute new
draws of f(t), σ, and l using (1) as the likelihood function
(with additional factors for the incomplete interval at each
end). We then sample the gamma shape parameter a using
Metropolis-Hastings updates.

One challenge of this direct inference is that it requires in-
tegrating Λ(t) =

∫ t
0
λ(u) du, which is difficult because

λ(t) does not have an explicit expression. Under certain
conditions, the integral of a Gaussian process has a closed
form (Rasmussen and Gharamani, 2003), but we know of
no closed form for the integral of a log Gaussian process.
Instead, we compute the integral numerically (the trape-
zoidal rule works fine), relying on the smoothness guaran-
tees provided by the covariance function (3) to provide high
accuracy.

The efficiency bottleneck of the update is the O(m3) com-
plexity of updating the Gaussian process f at m locations,
due to a matrix inversion. Naively, we would compute f at
all n of the observed ti, with additional points as needed for
accuracy of the integral. To improve efficiency, we do not
directly update f at the ti, but instead at k uniformly spaced
points T̂ = {t̂j = tmin + jd}, where d = tmax−tmin

k−1 . We
then interpolate the values f(T ) from the values of f(T̂ ) as
needed. We set the number of points k by the accuracy re-
quired for the integral. This is driven by our estimate of the
smallest likely Gaussian process time scale lmin, at which
point we truncate the prior on l to guarantee d� lmin ≤ l.
The efficiency of the resulting update isO(k3)+O(n), with
k depending only on the ratio lmin/(tmax − tmin).

It helps that the factor driving k is the time scale of changes
in the intensity function λ(t) instead of the time scale of in-
terevent intervals, which is usually much smaller. In prac-
tice, we’ve found k = 200 to work well for nearly all of our
medical data examples, regardless of the observation time
span, resulting in an update that is linear in the number of
observed points.

Additionally, the regular spacing in T̂ means that its co-
variance matrix generated by (3) is a symmetric positive
definite Toeplitz matrix, which can be inverted or solved in
a compact representation as fast as O(k log2 k) (Martins-
son et al., 2005). We did not include this extra efficiency in
our implementation, however.

3 RELATED WORK

There is a growing literature on finding patterns among
clinical variables such as laboratory tests that have both a
timestamp and a numeric value (Lasko et al., 2013), but
we are not aware of any existing work exploring unsuper-

Algorithm 1 Intensity Function and Parameter Update

Input: Event times T , regular grid T̂ , current function f
and parameters σ, l, and a

Output: Updated f , λ, Λ, σ, l, and a with likelihood p
1: Update f(T̂ ), σ, l, using slice sampling
2: Compute f(T ) by smooth interpolation of f(T̂ )

3: λ(T ∪ T̂ )← ef(T∪T̂ )

4: Compute Λ(T ) from λ(T̂ ) numerically
5: Compute p = P (T ; a, λ(T )) using (1)
6: Update a and p with Metropolis-Hastings and (1)

vised, data-driven abstractions of categorical clinical event
streams that we address here.

There is much prior work on methods similar to ours that
infer intensity functions for modulated renewal processes.
The main distinction between these methods lies in the
way they handle the form and integration of the intensity
function λ(t). Approaches include using kernel density es-
timation (Ramlau-Hansen, 1983), using parametric inten-
sity functions (Lewis, 1972), using discretized bins within
which the intensity is considered constant (Moller et al.,
1998, Cunningham et al., 2008), or using a form of rejec-
tion sampling called thinning (Adams et al., 2009, Rao and
Teh, 2011) that avoids the integration altogether.

The binned time approach is straightforward, but there
is inherent information loss in the piecewise-constant in-
tensity approximation that it must adopt. Moreover,
when a Gaussian process is used to represent this in-
tensity function, the computational complexity of infer-
ence is cubic with the number of bins in the inter-
val of observation. For our data, with events at 1-day
or finer time resolution over up to a 15 year observa-
tion period, this method is prohibitively inefficient. A
variant of the binned-time approach that uses variable-
sized bins (Gunawardana et al., 2011, Parikh et al., 2012)
has been applied to medical data (Weiss and Page, 2013).
This variant is very efficient, but is restricted to a Poisson
process (fixed a = 1), and the inferred intensity functions
are neither intended to nor particularly well suited to form
an accurate abstraction over the raw events.

Thinning is a clever method, but it is limited by the re-
quirement of a bounded hazard function, which prevents
it from being used with bursty gamma processes. (Bursty
gamma processes have a hazard function that is unbounded
at zero). One thinning method has also adopted the use
of Gaussian processes to modulate gamma processes (Rao
and Teh, 2011). But in addition to not working with bursty
events, it also rather inefficient; its time complexity is cubic
in the number of events that would occur if the maximum
event intensity were constant over the entire observation
time span. For event streams with a small dynamic range
of intensities, this is not a big issue, but our medical data
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Figure 1: Our direct method (top) is more accurate than thinning (bottom) on parametric intensity functions λ1 to λ3 (left
to right). Red line: true normalized intensity function λ(t)/a; White line: mean inferred normalized intensity function;
Blue region: 95% confidence interval. Inset: inferred distribution of the gamma shape parameter a, with the true value
marked in red. Grey bar at a = 1 for reference.

sequences can have a dynamic range of several orders of
magnitude.

Our method therefore has efficiency and flexibility advan-
tages over existing methods, and we will demonstrate in the
experiments that it also has accuracy advantages.

4 EXPERIMENTS

In these experiments, we will refer to our inference
method as the direct method because it uses direct
numerical integration. A full implementation of our
method and code to reproduce the results on the syn-
thetic data is available at https://github.com/
ComputationalMedicineLab/egpmrp.

We tested the ability of the direct method and the thinning
method to recover known intensity functions and shape
parameters from synthetic data. We then used the direct
method to extract latent intensity functions from streams
of clinical events, and we inferred latent compound con-
ditions from the intensity functions for a complex patient
record that accurately correspond to the dominant diseases
documented in the record.

4.1 SYNTHETIC DATA

Our first experiments were with the three parametric in-
tensity functions below, carefully following Adams et al.
(2009) and Rao and Teh (2011). We generated all data us-
ing the warping model described in Section 2, with shape
parameter a = 3.

1. λ1(t)/a = 2e−t/15 + e−((t−25)/10)2 over the interval

[0, 50], 48 events.

2. λ2(t)/a = 5 sin(t2) + 6 on [0, 5], 29 events.

3. λ3(t)/a is the piecewise linear curve shown in Figure
1, on the interval [0, 100], 230 events.

We express these as normalized intensities λ(t)/a, which
have units of “expected number of events per unit time”,
because they are more interpretable than the raw intensities
and they are comparable to the previous work done using
Poisson processes, where a = 1.

We compared the direct method to thinning on these
datasets, using the MATLAB implementation for thinning
that was used by Rao and Teh (2011). Adams et al. (2009)
compared thinning to the kernel smoothing and binned time
methods (all assuming a Poisson process), and Rao and
Teh (2011) compared thinning to binned time, assuming
a gamma process with constrained a > 1. Both found thin-
ning to be at least as accurate as the other methods in most
tests.

We computed the RMS error of the true vs. the median nor-
malized inferred intensity, the log probability of the data
given the model, and the inference run time under 1000
burn-in and 5000 inference MCMC iterations.

On these datasets the direct method was more accurate than
thinning for the recovery of both the intensity function and
the shape parameter, and more efficient by up to two or-
ders of magnitude (Figure 1 and Table 1). The results for
thinning are consistent with those previously reported (Rao
and Teh, 2011), with the exception that the shape parameter
inference was more accurate in the earlier results.

472



0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

Time

In
te

ns
ity

0 0.5 0.8

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

Time

In
te

ns
ity

0 0.5 1 2

Figure 2: Accurate recovery of intensity function and parameters under conditions that would be prohibitive for any other
method of which we are aware. Left panel presents results for high intensities and many events, right panel for low
intensities and few events. While there is insufficient evidence in the right panel to recover the true intensity, the inferred
intensity is reasonable given the evidence, and the inferred confidence intervals are accurate in that the true intensity is
about 95% contained within them. Legend as in Figure 1.

The confidence intervals from the direct method are subjec-
tively more accurate than from the thinning method. (That
is, the 95% confidence intervals from the direct method
contain the true function for about 95% of its length in each
case). This is particularly important in the case of small
numbers of events that may not carry sufficient information
for any method to resolve a highly varying function.

As might be expected, we found the results for λ2(t) to
be sensitive to the prior distribution on l, given the small
amount of evidence available for the inference. Following
Adams et al. (2009) and Rao and Teh (2011), we used a log-
normal prior with a mode near l = 0.2, tuned slightly for
each method to achieve the best results. We also allowed
thinning to use a log-normal prior with appropriate modes
for λ1(t) and λ3(t), to follow precedent in the previous
work, although it may have conferred a small advantage to
thinning. We used the weaker exponential prior on those
datasets for the direct method.

Our next experiments were on synthetic data generated to
resemble our medical data. We tested several configura-
tions over wide ranges of parameters, including some that
were not amenable to any known existing approach (such
as the combination of a < 1, high dynamic range of in-

Table 1: Performance on Synthetic Data. RMS: root-mean-
squared error; LP: log probability of data given the model;
RT: run time in seconds. Best results for each measure are
bolded.

Direct Thinning
RMS LP RT RMS LP RT

λ1 0.37 +12.1 453 0.66 −62.7 4816
λ2 3.1 −228 511 3.4 −333 1129
λ3 0.25 +1.21 385 0.53 −82.2 41291

tensity, and high ratio of observation period to event reso-
lution, Figure 2). The inferred intensities and gamma pa-
rameters were consistently accurate. Estimates of the con-
fidence intervals were also accurate, including in cases with
low intensities and few events (Figure 2, right panel).

4.2 CLINICAL DATA

We applied the direct method to sequences of billing codes
representing clinical events. After obtaining IRB approval,
we extracted all ICD-9 codes from five patient records with
the greatest number of such codes in the deidentified mir-
ror of our institution’s Electronic Medical Record. We ar-
ranged the codes from each patient record as streams of
events grouped at the top (or chapter) level of the ICD-
9 disease hierarchy (which collects broadly related condi-
tions), as well as at the level of the individual disease.

For the streams of grouped events, we included an event if
its associated ICD-9 code fell within the range of the given
top-level division. For example, any ICD-9 event with a
code in the range [390 – 459.81] was considered a Cardio-
vascular event. While intensity functions are only strictly
additive for Poisson processes, we still find the curves of
grouped events to be informative.

We inferred intensity functions for each of these event
streams (for example, Figure 3). Each curve was gener-
ated using 2000 burn-in and 2000 inference iterations in
about three minutes using unoptimized MATLAB code on
a single desktop CPU. The results have good clinical face
validity.

There is much underlying structure in these events that can
now be investigated with standard learning methods ap-
plied to the inferred intensity functions. As a simple exam-
ple, singular value decomposition (Strang, 2003) can infer
the latent compound conditions (which we might as well
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Figure 3: Inferred intensities for all top-level ICD-9 disease divisions of a very complicated patient’s record. Such a display
may be clinically useful for getting a quick, broad understanding of a patient’s medical history, including quickly grasping
which conditions have not been diagnosed or treated. Numbers in parentheses: total number of events in each division. For
clarity, confidence intervals are not shown.
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Figure 4: A small number of latent compound conditions
(or eigendiseases) produce most of the activity captured by
the patient record in Figure 3.

call eigendiseases) underlying the recorded clinical activ-
ity, taking into account the continuously changing, longitu-
dinal time course of that activity. The singular values for
the curves in Figure 3 reveal that about 40% of the patient’s
activity relates to a single eigendisease, and about 70% is
distributed among the top three (Figure 4). The inferred
eigendiseases closely correspond to the dominant clinical
problems described in the record (Figure 5).

5 DISCUSSION

We have made two contributions with this paper. First, we
presented a direct numeric method to infer a distribution of
continuous intensity functions from a set of episodic, irreg-
ular, and discrete events. This direct method has increased
efficiency, flexibility, and accuracy compared to the best
prior method. Second, we presented results using the di-
rect method to infer a continuous function density as an ab-
straction over episodic clinical events, for the purposes of
transforming the raw event data into a form more amenable
to standard machine learning algorithms.

The clinical interpretation of these intensity functions is
that increased intensity represents increased frequency of
contact with the healthcare system, which usually means
increased instability of that condition. In some cases, it
may also mean increased severity of the condition, but not
always. If a condition acutely increases in severity, this rep-
resents an instability and will probably generate a contact
event. On the other hand, if a condition is severe but stably
so, it may not necessarily require high-frequency medical
contact.

The methods described here to represent categorically la-
beled events in time as continuous curves augment our

previously reported methods to construct similar curves
from observations with both a time and a continuous value
(Lasko et al., 2013). These two data types represent the
majority of the information in a patient record (if we con-
sider words and concepts in narrative text to be categori-
cal variables), and opens up many possibilities for finding
meaningful patterns in large medical datasets.

The practical motivation for this work is that once we have
the continuous function densities, we can use them as in-
puts to a learning problem in the time domain (such as iden-
tifying trajectories that may be characteristic of a particular
disease), or by aligning many such curves in time and look-
ing for useful patterns in their cross-sections (which to our
knowledge has not yet been reported). We presented a sim-
ple demonstration of inferring cross-sectional latent factors
from the intensity curves of a single record. Discovering
similar latent factors underlying a large population is a fo-
cus of future work.

We discovered incidentally that a presentation such as Fig-
ure 3 appears to be a promising representation for effi-
ciently summarizing a complicated patient’s medical his-
tory and communicating that broad summary to a clinician.
The presentation could allow drilling-down to the intensity
plots of the specific component conditions and then to the
raw source data. (The usual method of manually paging
through the often massive chart of a patient to get this in-
formation can be a tedious and frustrating process.)

One could also imagine presenting the curves not of the
raw ICD-9 codes, but of the inferred latent factors underly-
ing them, and drilling down into the rich combinations of
test results, medications, narrative text, and discrete billing
events that comprise those latent factors.

We believe that these methods will facilitate Computational
Phenotype Discovery (Lasko et al., 2013), or the data-
driven search for population-scale clinical patterns in ex-
isting electronic medical records that may illuminate previ-
ously unknown disease variants, unanticipated medication
effects, or emerging syndromes and infectious disease out-
breaks.
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Abstract

We study a sequential resource allocation prob-
lem involving a fixed number of recurring jobs.
At each time-step the manager should distribute
available resources among the jobs in order to
maximise the expected number of completed
jobs. Allocating more resources to a given job in-
creases the probability that it completes, but with
a cut-off. Specifically, we assume a linear model
where the probability increases linearly until it
equals one, after which allocating additional re-
sources is wasteful. We assume the difficulty of
each job is unknown and present the first algo-
rithm for this problem and prove upper and lower
bounds on its regret. Despite its apparent sim-
plicity, the problem has a rich structure: we show
that an appropriate optimistic algorithm can im-
prove its learning speed dramatically beyond the
results one normally expects for similar problems
as the problem becomes resource-laden.

1 INTRODUCTION

Assume that there are K jobs and at each time-step t a
learner must distribute the available resources with Mk,t ≥
0 going to job k, subject to a budget constraint,

K∑

k=1

Mk,t ≤ 1.

The probability that the kth job completes in time-step t is
min {1,Mk,t/νk}, where the unknown cut-off parameter
νk ∈ (0,∞] determines the difficulty of job k. After ev-
ery time-step the resources are replenished and all jobs are
restarted regardless of whether or not they completed suc-
cessfully in the previous time-step. The goal of the learner

∗On sabbatical leave from the Department of Computing Sci-
ence, University of Alberta, Canada

is to maximise the expected number of jobs that success-
fully complete up to some known time horizon n.

Despite the simple model, the problem is surprisingly rich.
Given its information structure, the problem belongs to the
class of stochastic partial monitoring problems, which was
first studied by Agrawal et al. [1989]1, where in each time
step the learner receives noisy information about a hidden
“parameter” while trying to maximise the sum of rewards
and both the information received and the rewards depend
in a known fashion on the actions and the hidden parameter.
While partial monitoring by now is relatively well under-
stood, either in the stochastic or the adversarial framework
when the action set is finite [Bartók et al., 2011, Foster and
Rakhlin, 2012, Bartók, 2013], the case of continuous action
sets has received only limited attention [Broder and Rus-
mevichientong, 2012, and references therein]. To illustrate
the difficulty of the problem, notice that over-assigning re-
sources to a given job means that the job completes with
certainty and provides little information about the job’s dif-
ficulty. On the other hand, if resources are under-assigned,
then the information received allows one to learn about the
payoff associated with all possible arms, which is reminis-
cent of bandit problems where the arms have “correlated
payoffs” (e.g., Filippi et al. 2010, Russo and Roy 2013 and
the references therein). Finally, allocating less resources
yields high-variance estimates.

Our motivation to study this particular framework comes
from the problem of cache allocation. In particular, data
collected offline from existing and experimental allocation
strategies showed a relatively good fit to the above paramet-
ric model. In this problem each job is a computer process,
which is successful in a given time-step if there were no
cache misses (cache misses are very expensive). Besides
this specific resource allocation problem, we also envision
other applications, such as load balancing in networked
environments, or any other computing applications where
some precious resource (bandwidth, radio spectrum, CPU,
etc.) is to be subdivided amongst competing processes. In
fact, we anticipate numerous extensions and adaptations for

1The name was invented later by (perhaps) [Rustichini, 1999].
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specific applications, such as in the case of bandits (see,
Bubeck and Cesa-Bianchi [2012] for an overview of this
rich literature). Finally, let us point out that although our
problem is superficially similar to the so-called budgeted
bandit problems (or, budget limited bandit problems), there
are some major differences: in budgeted bandits, the in-
formation structure is still that of bandit problems and the
resources are not replenished. Either learning stops when
the budget is exhausted (e.g., Tran-Thanh et al. 2012, Ding
et al. 2013, Badanidiyuru et al. 2013)2, or performance is
measured against the total resources consumed in an ongo-
ing fashion (e.g., György et al. 2007).

The main contribution besides the introduction of a new
problem is a new optimistic algorithm for this problem that
is shown to suffer poly-logarithmic regret with respect to
optimal omniscient algorithm that knows the parameters
(νk)k in advance. The structure of the bound depends sig-
nificantly on the problem dynamics, ranging from a (rel-
atively) easy full-information-like setting, corresponding
to a resource-laden regime, to a bandit-like setting, corre-
sponding to the resource-scant setting. Again, to contrast
this work to previous works, note that the results we obtain
for the full-information-like setting are distinct from those
possible in the finite action case, where the full-information
setting allows one to learn with finite regret [Agrawal et al.,
1989]. On the technical side, we believe that our study and
use of weighted estimators in situations where some sam-
ples are more informative than others might be of indepen-
dent interest, too.

Problems of allocating resources to jobs were studied in
the community of architecture and operating systems. Liu
et al. [2004] build static profile-based allocation of L2-
cache banks to different processes using their current miss
rate data. Suh et al. [2002] proposed a hit-rate optimisation
using hardware counters which used a model-based esti-
mation of hit-rate vs allocated cache. However, they all as-
sume the model is fully known and no learning is required.
Bitirgen et al. [2008] used ANNs to predict individual pro-
gram performance as a function of resources. Finally, Ipek
et al. [2008] used reinforcement learning to allocate DRAM
to multi-processors.

2 PRELIMINARIES

In each time-step t the learner chooses Mk,t ≥ 0 subject
to the constraint,

∑K
k=1Mk,t ≤ 1. Then all jobs are exe-

cuted and Xk,t ∈ {0, 1} indicates the success or failure of
job k in time-step t and is sampled from a Bernoulli distri-
bution with parameter β(Mk,t/νk) := min {1,Mk,t/νk}.
The goal is to maximise the expected number of jobs that
successfully complete, ∑K

k=1 β(Mk,t/νk). We define the gaps
∆j,k = ν−1

j − ν−1
k . We assume throughout for conve-

2Besides Badanidiyuru et al. [2013], all works consider finite
action spaces and unstructured reward functions.

nience, and without loss of generality, that ν1 < ν2 <
· · · < νK . It can be shown that the optimal allocation dis-
tributes the resources to jobs in increasing order of diffi-
culty.

M∗k = min

{
1−

k−1∑

i=1

M∗i , νk

}
.

We let ` be the number of jobs that are fully allocated under
the optimal policy: ` = max {i : M∗i = νi}. The overflow
is denoted by S∗ = M∗`+1, which we assume to vanish if
` = K. The expected reward (number of completed jobs)
when following the optimal allocation is

K∑

k=1

M∗k
νk

= `+
S∗

ν`+1
,

where we define νK+1 = ∞ in the case that ` = K. The
(expected n-step cumulative) regret of a given allocation
algorithm is the difference between the expected number
of jobs that complete under the optimal policy and those
that complete given the algorithm,

Rn = E

[
n∑

t=1

rt

]
, rt =

K∑

k=1

β(M∗k/νk)−
K∑

k=1

β(Mk,t/νk)

=

(
`+

S∗

ν`+1

)
−

K∑

k=1

β(Mk,t/νk).

Some proofs are omitted due to space constraints, but may
be found in the supplementary material [Lattimore et al.,
2014].

3 OVERVIEW OF ALGORITHM

We take inspiration from the optimal policy for known νk,
which is to fully allocate the jobs with the smallest νk (eas-
iest jobs) and allocate the remainder/overflow to the next
easiest job. At each time-step t we replace the unknown νk
by a high-probability lower bound νk,t−1 ≤ νk. This corre-
sponds to the optimistic strategy, which assumes that each
job is as easy as reasonably possible. The construction of a
confidence interval about νk is surprisingly delicate. There
are two main challenges. First, the function β(Mk,t/νk) is
non-differentiable atMk,t = νk, and forMk,t ≥ νk the job
will always complete and little information is gained. This
is addressed by always using a lower estimate of νk in the
algorithm. The second challenge is thatMk,t will vary with
time, so the samples Xk,t are not identically distributed.
This would normally be unproblematic, since martingale
inequalities can be applied, but the specific structure of this
problem means that a standard sample average estimator is
a little weak in the sense that its estimation accuracy can be
dramatically improved. In particular, we will propose an
estimator that is able to take advantage of the fact that the
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variance of Xk,t decreases to zero as Mk,t approaches νk
from below.

As far as the estimates are concerned, rather than estimate
the parameters νk, it turns out that learning the reciprocal
ν−1
k is both more approachable and ultimately more useful

for proving regret bounds. Fix k and let Mk,1, . . . ,Mk,t ≤
νk be a sequence of allocations with Mk,s ≤ νk and
Xk,s ∼ Bernoulli (Mk,s/νk). Then a natural (unbiased)
estimator of ν−1

k is given by

1

ν̂k,t
:=

1

t

t∑

s=1

Xk,s

Mk,s
.

The estimator has some interesting properties. First, the
random variable Xk,s/Mk,s ∈ [0, 1/Mk,s] has a large
range for smallMk,s, which makes it difficult to control the
error ν̂−1

k,t − ν−1
k via the usual Azuma/Bernstein inequali-

ties. Secondly, if Mk,s is close to νk, then the range of
Xk,s/Mk,s is small, which makes estimation easier. Addi-
tionally, the variance is greatly decreased for Mk,s close to
νk. This suggests that samples for which Mk,s is large are
more useful than those where Mk,s is small, which moti-
vates the use of the weighted estimator,

1

ν̂k,t
:=

∑t
s=1 wsXk,s∑t
s=1 wsMk,s

,

where ws will be chosen in a data-dependent way, but with
the important characteristic that ws is large for Mk,s close
to νk. The pseudo-code of the main algorithm is shown
on Algorithm Listing 1. It accepts as input the horizon n,
the number of jobs, and a set {νk,0}Kk=1 for which 0 <
νk,0 ≤ νk for each k. In Section 7 we present a simple
(and efficient) algorithm that relaxes the need for the lower
bounds νk,0.

Remark 1. Later (in Lemma 6) we will show that with
high probability 1 ≤ wk,s ≤ O(s). By definition the con-
fidence bounds νk,t and ν̄k,t are non-decreasing/increasing
respectively. These results are sufficient to guarantee that
the new algorithm is numerically stable. It is also worth
noting that the running time of Algorithm 1 is O(1) per
time step, since all sums can be computed incrementally.

4 UPPER BOUNDS ON THE REGRET

The regret of Algorithm 1 depends in a subtle way on the
parameters νk. There are four natural cases, which will
appear in our main result.

Case 1: Insufficient budget for any jobs. In this case ` =
0 and the optimal algorithm allocates all available resources
to the easiest task, which means M∗1 = 1. Knowing that
` = 0, the problem can be reduced to a K-armed Bernoulli
bandit by restricting the action space to Mk,t = 1 for all
k. Then a bandit algorithm such as UCB1 [Auer et al.,

Algorithm 1 Optimistic Allocation Algorithm

1: input: n,K, {νk,0}Kk=1
2: δ ← (nK)−2 and ν̄k,0 =∞ for each k
3: for t ∈ 1, . . . , n do
4: /* Optimistically choose Mk,t using νk,t−1 */
5: (∀k ∈ 1, . . . ,K) initialise Mk,t ← 0
6: for i ∈ 1, . . . ,K do
7: k ← arg min

k:Mk,t=0
νk,t−1

8: Mk,t ← min
{
νk,t−1, 1−∑K

j=1Mj,t

}

9: end for
10: (∀k ∈ 1, . . . ,K) observe Xk,t

11: (∀k ∈ 1, . . . ,K) compute weighted estimates:

wk,t ←
1

1− Mk,t

ν̄k,t−1

1

ν̂k,t
←
∑t
s=1 wk,sXk,s∑t
s=1 wk,sMk,s

12: (∀k ∈ 1, . . . ,K) update confidence intervals:

Rk,t ← max
s≤t

wk,s V̂ 2
k,t ←

∑

s≤t

wk,sMk,s

νk,t−1

ε̃k,t ←
f(Rk,t, V̂

2
k,t, δ)∑t

s=1 wk,sMk,s

1

νk,t
← min

{
1

νk,t−1
,

1

ν̂k,t
+ ε̃k,t

}

1

ν̄k,t
← max

{
1

ν̄k,t−1
,

1

ν̂k,t
− ε̃k,t

}

13: end for

14: function f (R,V 2, δ)
15: δ0 ← δ

3(R+1)2(V 2+1)2

16: return R+1
3 log 2

δ0

+
√

2(V 2 + 1) log 2
δ0

+
(
R+1

3

)2
log2 2

δ0

17: end function

2002] will achieve logarithmic (problem dependent) regret
with some dependence on the gaps ∆1,k = 1

ν1
− 1

νk
. In

particular, the regret looks like Rn ∈ O
(∑K

k=2
logn
∆1,k

)
.

Case 2: Sufficient budget for all jobs. In this case
` = K and the optimal policy assigns Mk,t = νk for all
k, which enjoys a reward of K at each time-step. Now
Algorithm 1 will choose Mk,t = νk,t−1 for all time-steps
and by Theorem 4 stated below we will have νk,t−1/νk ∈
O(1 − 1

t log n). Consequently, the regret may be bounded
by Rn ∈ O

(
log2 n

)
with no dependence on the gaps.

Case 3: Sufficient budget for all but one job. Now the
algorithm must learn which jobs should be fully allocated.
This introduces a weak dependence on the gaps ∆`,k for
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k > `, but choosing the overflow job is trivial. Again we
expect the regret to be O(log2 n), but with an additional
modest dependence on the gaps.

Case 4: General case. In the completely general case even
the choice of the overflow job is non-trivial. Ultimately it
turns out that in this setting the problem decomposes into
two sub-problems. Choosing the jobs to fully allocate, and
choosing the overflow job. The first component is fast,
since we can make use of the faster learning when fully
allocating. Choosing the overflow reduces to the bandit
problem as described in case 1.

Our main result is the following theorem bounding the re-
gret of our algorithm.
Theorem 2. Let δ be as in the algorithm, ηk =
min {1, νk} /νk,0, δ̃k = δ

48η4kn
6 , ck,1 = 27 log 2

δ̃k
, ck,2 =

6 log 2
δ̃k

, uk,j =
ck,1

νk,0∆j,k
. Then Algorithm 1 suffers regret

at most

Rn ≤ 1 +
∑̀

k=1

ck,1ηk(1 + log n)

+ 1{` < K}
[

K∑

k=`+2

ck,2
νk,0∆`+1,k

+
`+1∑

k=1

ck,1ηk(1 + log n)

+
K∑

k=`+2

ck,1ηk(1 + log u`+1,k) +
K∑

k=`+1

ck,1ηk(1 + log u`,k)

]
.

If we assume ηk ∈ O(1) for each k (reasonable as dis-
cussed in Section 7), then the regret bound looks like

Rn ∈ O
(
` log2 n+

K∑

k=`+1

(
log

1

νk∆`,k

)
log n (1)

+

K∑

k=`+2

(
log

1

νk∆`+1,k

)
log n+

K∑

k=`+1

log n

∆`+1,k

)
,

where the first term is due to the gap between νk,t and νk,
the second due to discovering which jobs should be fully
allocated, while the third and fourth terms are due to mis-
takes when choosing the overflow job.

The proof is broken into two components. In the first part
we tackle the convergence of ν̂t,k to νk and analyse the
width of the confidence intervals, which are data-dependent
and shrink substantially faster whenMk,t is chosen close to
νk. In the second component we decompose the regret in
terms of the width of the confidence intervals. While we
avoided large constants in the algorithm itself, in the proof
we focus on legibility. Optimising the constants would
complicate an already long result.

5 ESTIMATION

We consider a single job with parameter ν and analyse the
estimator and confidence intervals used by Algorithm 1.

We start by showing that the confidence intervals contain
the truth with high-probability and then analyse the rate at
which the intervals shrink as more more data is observed.
Somewhat surprisingly the rate has a strong dependence
on the data with larger allocations leading to faster conver-
gence.

Let {Ft}∞t=0 be a filtration and let M1, . . . ,Mn be a se-
quence of positive random variables such that Mt is Ft−1-
measurable. Define Xt to be sampled from a Bernoulli dis-
tribution with parameter β(Mt/ν) for some ν ∈ [ν0,∞]
and assume that Xt is Ft-measurable. Our goal is to con-
struct a sequence of confidence intervals {[νt, ν̄t]}nt=1 such
that ν ∈ [νt, ν̄t] with high probability and ν̄t − νt → 0 as
fast as possible. We assume a known lower bound ν0 ≤ ν
and define ν̄0 = ∞. Recall that the estimator used by Al-
gorithm 1 is defined by

ws =
1

1− Mt

ν̄t−1

,
1

ν̂t
=

∑t
s=1 wsXs∑t
s=1 wsMs

.

Fix a number 0 < δ < 1 and define ε̃t =
f(Rt, V̂

2
t , δ)/

∑t
s=1 wsMs, where the function f is de-

fined in Algorithm 1, Rt = maxs≤t ws and V̂ 2
t =∑t

s=1
wsMs

νt−1
. The lower and upper confidence bounds on

ν−1 are defined by,

1

νt
=min

{
1

νt−1
,

1

ν̂t
+ ε̃t

}
,

1

ν̄t
=max

{
1

ν̄t−1
,

1

ν̂t
− ε̃t

}
.

We define εt = ν−1
t − ν̄−1

t to be the (decreasing) width of
the confidence interval. Note that both νt and ν̄t depend
on δ, although this dependence is not shown to minimise
clutter.

Theorem 3. If Ms is chosen such that Ms ≤ νs−1 for
all s then P {∃s ≤ t s.t. ν 6∈ [νs, ν̄s]} ≤ tδ holds for any
0 < δ < 1.

Proof of Theorem 3. Let Ft be the event Ft =
{ν ∈ [νt, ν̄t]}. Note that since [νt, ν̄t] ⊂ [νt−1, ν̄t−1] ⊂
· · · ⊂ [ν0, ν̄0], Ft ⊂ Ft−1 ⊂ · · · ⊂ F0. Hence,
Ft = ∩s≤tFs and it suffices to prove that P {F ct } ≤ tδ.3

Define Ys = wsXs − wsMs

ν and St =
∑t
s=1 Ys and V 2

t =∑t
s=1 Var[Ys|Fs−1]. We proceed by induction. Assume

P
{
F ct−1

}
≤ (t − 1)δ, which is trivial for t = 1. Now, on

Ft−1,

V 2
t

(a)
=

t∑

s=1

Var[Ys|Fs−1]
(b)
=

t∑

s=1

w2
sMs

ν

(
1− Ms

ν

)

(c)
=

t∑

s=1

wsMs

ν

(
1− Ms

ν

1− Ms

ν̄s−1

)
(d)

≤
t∑

s=1

wsMs

ν

(e)

≤ V̂ 2
t ,

3For an event E, we use Ec to denote its complement.
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where (a) is the definition of V 2
t , (b) follows since ws

is Fs−1-measurable, (c) follows by substituting the def-
inition of ws, (d) and (e) are true since given Ft−1 we
know that νs−1 ≤ ν ≤ ν̄s−1. Therefore f(Rt, V

2
t , δ) ≤

f(Rt, V̂
2
t , δ), which follows since f is monotone increas-

ing in its second argument. Therefore,

P
{∣∣∣∣

1

ν̂t
− 1

ν

∣∣∣∣ ≥ ε̃t ∧ Ft−1

}

= P

{∣∣∣∣∣

∑t
s=1 wsXs∑t
s=1 wsMs

− 1

ν

∣∣∣∣∣ ≥
f(Rt, V̂

2
t , δ)∑t

s=1 wsMs

∧ Ft−1

}

≤ P

{∣∣∣∣∣
t∑

s=1

wsXs −
t∑

s=1

wsMs

ν

∣∣∣∣∣ ≥ f(Rt, V
2
t , δ) ∧ Ft−1

}

= P
{
|St| ≥ f(Rt, V

2
t , δ) ∧ Ft−1

}
. (2)

By the union bound we have

P
{
|St| ≥ f(Rt, V̂

2
t , δ) ∨ F ct−1

}

≤ P
{
|St| ≥ f(Rt, V

2
t , δ) ∧ Ft−1

}
+ P

{
F ct−1

}

(a)

≤ δ + P
{
F ct−1

}
≤ δ + (t− 1)δ = tδ ,

where (a) follows from a martingale version of Bernstein’s
inequality adapted from Bernstein 1946 and Freedman
1975. See the supplementary material for details. There-
fore P

{
|St| ≤ f(Rt, V

2
t , δ) ∧ Ft−1

}
≥ 1− tδ and so with

probability at least 1− tδ we have that Ft−1 and
∣∣∣∣

1

ν̂t
− 1

ν

∣∣∣∣ ≤
f(Rt, V̂

2
t , δ)∑t

s=1 wsMs

= ε̃t,

in which case

1

νt
= min

{
1

νt−1
,

1

ν̂t
+ ε̃t

}
≥ 1

ν
,

and similarly 1
ν̄t
≤ 1

ν , which implies Ft. Therefore
P {F ct } ≤ tδ as required.

We now analyse the width εt ≡ ν−1
t − ν̄−1

t of the con-
fidence interval obtained after t samples are observed. We
say that a job is fully allocated at time-step s ifMs = νs−1.
The first theorem shows that the width εt drops with or-
der O(1/T (t)), where T (t) =

∑t
s=1 1{Ms = νs−1} is the

number of fully allocated time-steps. The second theorem
shows that for any α > 0, the width εt drops with or-
derO(

√
1/(αUα(t))), where Uα(t) =

∑t
s=1 1{Ms ≥ α}.

The dramatic difference in speeds is due to the low variance
Var[Xt|Ft−1] when Mt is chosen close to ν. For the next
results define η = min {1, ν} /ν0 and δ̃ = δ

48η4n6 .

Theorem 4. εt ≤
c1

ν0(T (t) + 1)
where c1 = 27 log 2

δ̃
.

Theorem 5. εt ≤
√

c2
αν0Uα(t)

where c2 = 6 log 2
δ̃

.

The proofs are based on the following lemma that collects
some simple observations:

Lemma 6. The following hold for any t ≥ 1:

1. wtMt ≤ 1
εt−1

, with equality if Mt = νt−1.
2. 1 ≤ Rt ≤ 1

ν0εt−1
.

3. εt ≥ 1
tmin{1,ν} .

4. 1− νt
ν ≤ νtεt.

Proof. Using the definition of ws and the fact that Ms is
always chosen to be smaller or equal to νs−1, we get

ws ≡
(

1− Ms

ν̄s−1

)−1 (a)

≤
(

1− νs−1

ν̄s−1

)−1

=
1

εs−1νs−1
.

The first claim follows since the inequality (a) can be re-
placed by equality if Ms = νs−1. The second follows
from the definition of Rt and the facts that (εs)s is non-
increasing and (νs)s is non-decreasing. For the third claim
we recall that Rt = maxs≤t ws and Ms ≤ ν. Therefore,

εt
(a)

≥ min

{
εt−1,

Rt∑t
s=1 wsMs

}

(b)

≥ min

{
εt−1,

1

tmin {1, ν}

}
,

where (a) follows from the definition of εt and naive bound-
ing of the function f , (b) follows since Rt ≥ ws for all
s ≤ t and because Ms ≤ min {1, ν} for all s. Trivial in-
duction and the fact that ε0 = ν−1

0 ≥ ν−1 completes the
proof of the third claim. For the final claim we use the facts
that ν−1

t ≤ ν−1 + εt. Therefore, 1− νt
νt

= νt

(
1
νt
− 1

ν

)
≤

νtεt.

Lemma 7. εt ≤
6Rt log 2

δ̃∑t
s=1 wsMs

+

√√√√ 8 log 2
δ̃

ν0

∑t
s=1 wsMs

.

Proof. Let δt = δ/(3(Rt + 1)2(V̂ 2
t + 1)2) < 1. By the

definition of εt,

εt ≤
2f(Rt, V̂

2
t , δ)∑t

s=1 wsMs

(a)

≤
4(Rt+1)

3 log 2
δt

+ 2
√

2(V̂ 2
t + 1) log 2

δt∑t
s=1 wsMs

(b)

≤
6Rt log 2

δt
+
√

8
ν0

∑t
s=1 wsMs log 2

δt∑t
s=1 wsMs

=
6Rt log 2

δt∑t
s=1 wsMs

+

√
8 log 2

δt

ν0

∑t
s=1 wsMs

,

where in (a) we used the definition of f , in (b) we substi-
tuted the definition of V̂ 2

t and used the facts that Rt ≥ 1
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and ν0 ≤ νt−1 and we also used a naive bound. The proof
is completed by proving 2/δt ≤ 2/δ̃. Indeed, by Lemma 6,
1 ≤ Rt ≤ 1

εt−1ν0
≤ 1

εtν0
. We also have V̂ 2

t ≤ tR2
t . Thus,

2

δt
=

6(Rt + 1)2(V̂ 2
t + 1)2

δ
≤ 6

δ

(
16t2

(εtν0)
4

)
(a)

≤ 2

δ̃
,

where in (a) we used Lemma 6(3).

Proof of Theorem 4. By Lemma 7,

εt ≤
6Rt log 2

δ̃∑t
s=1 wsMs

+

√
8

ν0

∑t
s=1 wsMs

log
2

δ̃
. (3)

We proceed by induction. Assume that εs−1 ≤
c1

ν0(T (s−1)+1) , which is trivial for s = 1. By Lemma 6(1),

t∑

s=1

wsMs ≥
T (t)∑

s=1

sν0

c1
=
ν0T (t)(T (t) + 1)

2c1
. (4)

Therefore,
√

8

ν0

∑t
s=1 wsMs

log
2

δ̃

(a)

≤ 1

ν0T (t)

√
4c1 log

2

δ̃
. (5)

Now we work on the first term in (3). If εt−1 ≤ c1
ν0(T (t)+1) ,

then we are done, since εs is non-increasing. Otherwise, we
use Lemma 6(2) to obtain,

6Rt∑t
s=1 wsMs

log
2

δ̃
≤ 6

ν0εt−1

∑t
s=1 wsMs

log
2

δ̃

(a)

≤ 3

ν0T (t)
log

2

δ̃
, (6)

where in (a) we used (4) and the lower bound on εt−1. Sub-
stituting (5) and (6) into (3) we have

εt ≤
1

ν0T (t)

√
4c1 log

2

δ̃
+

3

ν0T (t)
log

2

δ̃
.

Choosing c1 = 27 log 2
δ̃

leads to

εt ≤
1

ν0T (t)

√
4 · 27 log2 2

δ̃
+

3

ν0T (t)
log

2

δ̃

≤ 27

ν0(T (t) + 1)
log

2

δ̃
=

c1
ν0(T (t) + 1)

,

which completes the induction and proof.

Proof of Theorem 5. Firstly, by Lemma 7,

εt ≤
6Rt∑t

s=1 wsMs

log
2

δ̃
+

√
8

ν0

∑t
s=1 wsMs

log
2

δ̃
.

The second term is easily bounded by using the fact that
ws ≥ 1 and the definition of Uα(t),

√
8

ν0

∑t
s=1 wsMs

log
2

δ̃
≤
√

8

ν0Uα(t)α
log

2

δ̃
.

For the first term we assume εt−1 ≥
√

c2
ν0Uα(t)α , since

otherwise we can apply monotonicity of εt. Therefore

6Rt∑t
s=1 wsMs

log
2

δ̃
≤ 6

ν0εt−1

∑t
s=1 wsMs

log
2

δ̃

≤
√
Uα(t)αν0

c2
·

6 log 2
δ̃

ν0Uα(t)α
≤ 6

√
1

c2αν0Uα(t)
log

2

δ̃
.

Now choose c2 = 6 log 2
δ̃

to complete the result.

6 PROOF OF THEOREM 2

We are now ready to use the results of Section 5 to bound
the regret of Algorithm 1. The first step is to decompose
the regret into two cases depending on whether or not the
confidence intervals contain the truth. The probability that
they do not is low, so this contributes negligibly to the re-
gret. When the confidence intervals are valid we break
the problem into two components. The first is the selec-
tion of the processes to fully allocation, which leads to
the O(log2 n) part of the bound. The second component
involves analysing the selection of the overflow process,
where the approach is reminiscent of the analysis for the
UCB algorithm for stochastic bandits [Auer et al., 2002].

Let Fk,t denote the event when none of the confidence in-
tervals underlying job k fail up to time t:

Fk,t = {∀s ≤ t : ν ∈ [νk,s, ν̄k,s]} .

The algorithm uses δ = (nK)−2, which is sufficient by a
union bound and Theorem 3 to ensure that,

P {Gc} ≤ 1

nK
, where G =

K⋂

k=1

Fk,n . (7)

The regret can be decomposed into two cases depending on
whether G holds:

Rn = E
n∑

t=1

rt
(a)
= E1{Gc}

n∑

t=1

rt + E1{G}
n∑

t=1

rt (8)

(b)

≤ E1{Gc}nK + E1{G}
n∑

t=1

rt
(c)

≤ 1 + E1{G}
n∑

t=1

rt,

where (a) follows from the definition of expectation, (b) is
true by bounding rt ≤ K for all t, and (c) follows from (7).
For the remainder we assume G holds and use Theorems 4
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and 5 combined with the definition of the algorithm to con-
trol the second term in (8). The first step is to decompose
the regret in round t:

rt = `∗ +
S∗

ν`+1
−

K∑

k=1

β

(
Mk,t

νk

)
.

By the assumption that G holds we know for all t ≤ n and
k that ν̄−1

k,t ≤ ν−1
k ≤ ν−1

k,t . Therefore Mk,t ≤ νk,t−1 ≤ νk,
which means that β(Mk,t/νk) = Mk,t/νk. Define πt(i) ∈
{1, . . . ,K} such that νπt(i),t−1 ≤ νπt(i+1),t−1. Also let

At = {k : Mk,t = νk,t−1} ,
A≤jt = At ∩ {πi(t) : 1 ≤ i ≤ j} ,

Tk(t) =
t∑

s=1

1{k ∈ At} and Bt = πt(`+ 1).

Informally, At is the set of jobs that are fully allocated at
time-step t, A≤jt is a subset of At containing the j jobs
believed to be easiest, Tk(t) is the number of times job k
has been fully allocated at time-step t, and Bt is the (` +
1)th easiest job at time-step t (this is only defined if ` < K
and will only be used in that case).

Lemma 8. For all t, |At| ≥ ` and if |At| = `, then
MBt,t ≥ S∗.

Proof. |At| = max
{
j :
∑j
i=1 νπt(i),t−1 ≤ 1

}
. But

νk,t−1 ≤ νk for all k and t, so
∑`
i=1 νπt(i),t−1 ≤∑`

k=1 νk,t−1 ≤
∑`
k=1 νk ≤ 1. Therefore |At| ≥ `.

If |At| = `, then Bt /∈ At is the overflow job and so
MBt,t = 1 − ∑k∈At νk,t−1 ≥ 1 − ∑k∈A∗ νk,t−1 ≥
1−∑k∈A∗ νk ≡ S∗

We now decompose the regret, while still assuming that G
holds:

n∑

t=1

rt =

n∑

t=1

(
`+

S∗

ν`+1
−

K∑

k=1

Mk,t

νk

)

≤
n∑

t=1

∑

k∈A≤`
t

(
1− Mk,t

νk

)
(9)

+ 1{` < K}
n∑

t=1

(
S∗

ν`+1
− MBt,t

νBt

)
. (10)

Let us bound the first sum:

n∑

t=1

∑

k∈A≤`
t

(
1− Mk,t

νk

)

=
n∑

t=1

K∑

k=1

1
{
k ∈ A≤`t

}(
1− νk,t−1

νk

)

(a)

≤
n∑

t=1

K∑

k=1

1
{
k ∈ A≤`t

}
νk,t−1εk,t−1

(b)

≤
n∑

t=1

K∑

k=1

1
{
k ∈ A≤`t

} ck,1νk,t−1

νk,0Tk(t)
, (11)

where (a) follows by Lemma 6 and (b) by Theorem 4.

Lemma 9. If k > j, then

n∑

t=1

1
{
k ∈ A≤jt

}
≤ ck,1
νk,0∆j,k

=: uj,k.

Proof. Assume k ∈ A≤jt . Therefore νk,t−1 ≤ νj . But if
uj,k <

∑t
s=1 1

{
k ∈ A≤js

}
≤ Tk(t− 1) + 1, then

1

νk,t−1
≤ 1

νk
+ εk,t−1 =

1

νj
+ εk,t−1 −∆j,k

(a)

≤ 1

νj
+

ck,1
νk,0(Tk(t− 1) + 1)

−∆j,k <
1

νj
,

where (a) follows from Theorem 4. Therefore k ∈
A≤jt implies that

∑t
s=1 1

{
k ∈ A≤js

}
≤ uj,k and so

∑n
t=1 1

{
k ∈ A≤jt

}
≤ uj,k as required.

Continuing (11) by applying Lemma 9 with j = `:

n∑

t=1

K∑

k=1

1
{
k ∈ A≤`t

} ck,1νk,t−1

νk,0Tk(t)

=
n∑

t=1

∑

k∈A∗

1
{
k ∈ A≤`t

} ck,1νk,t−1

νk,0Tk(t)

+
n∑

t=1

∑

k/∈A∗

1
{
k ∈ A≤`t

} ck,1νk,t−1

νk,0Tk(t)
(12)

(a)

≤
∑

k∈A∗

n∑

t=1

ck,1ηk
t

+
∑

k/∈A∗

u`,k∑

t=1

ck,1ηk
t

≤
∑̀

k=1

ck,1ηk(1 + log n) +
K∑

k=`+1

ck,1ηk(1 + log u`,k),

where (a) follows by Lemma 9 and the fact that k ∈ A≤`t
implies that νk,t−1

νk,0
≤ ηk. Now if ` = K, then the second

term in (9) is zero and the proof is completed by substitut-
ing the above result into (9) and then into (8). So now we
assume ` > K and bound the second term in (9) as follows:

n∑

t=1

(
S∗

ν`+1
− MBt,t

νBt

)
≤

n∑

t=1

1{Bt ∈ At}
(

1− νBt,t−1

νBt

)

+
n∑

t=1

1{Bt /∈ At}
(
S∗

ν`+1
− S∗

νBt

)
, (13)
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where we used Lemma 8 and S∗ ≤ 1 and that if Bt ∈ At,
then MBt,t = νBt,t−1. Bounding each term separately:

n∑

t=1

1{Bt ∈ At}
(

1− νBt,t−1

νBt

)

(a)

≤
K∑

k=1

n∑

t=1

1
{
k ∈ A≤`+1

t

}(
1− νk,t−1

νk

)

(b)

≤
K∑

k=1

n∑

t=1

1
{
k ∈ A≤`+1

t

}
νk,t−1εk,t−1 (14)

(c)

≤
K∑

k=1

n∑

t=1

1
{
k ∈ A≤`+1

t

} ck,1νk,t−1

νk,0Tk(t)

(d)

≤
`+1∑

k=1

ck,1ηk(1 + log n) +
K∑

k=`+2

ck,1ηk(1 + log u`+1,k),

where (a) follows since Bt ∈ At implies that Bt ∈ A≤`+1
t ,

(b) follows from Lemma 6(4), (c) by Theorem 4, and (d)
follows from Lemma 9 and the same analysis as (12).
For the second term we need the following lemma, which
uses Theorem 5 and a reasoning analogues to that of Auer
et al. [2002] to bound the regret of the UCB algorithm for
stochastic bandits:

Lemma 10. Let Uk(t) =
∑t
s=1 1{Mk,s ≥ S∗} and k >

`+ 1. If Uk(t) ≥ ck,2
S∗νk,0∆2

`+1,k
=: vk, then k 6= Bt.

Proof. If νk,t−1 > ν`+1, then k 6= Bt. Furthermore, if
Uk(t) > vk, then

1

νk,t−1
≤ 1

νk
+ εk,t−1 =

1

ν`+1
−∆`+1,k + εk,t−1

(a)

≤ 1

ν`+1
−∆`+1,k +

√
ck,2

νk,0S∗Uk(t)
<

1

ν`+1
,

where (a) follows from Theorem 5.

Therefore

n∑

t=1

1{Bt /∈ At}
(
S∗

ν`+1
− S∗

νBt

)

(a)

≤ S∗
K∑

k=1

n∑

t=1

1{k = Bt /∈ At}∆`+1,k

(b)

≤ S∗
K∑

k=`+2

n∑

t=1

1{k = Bt /∈ At}∆`+1,k

(c)

≤ S∗
K∑

k=`+2

n∑

t=1

1{k = Bt ∧Mk,t ≥ S∗}∆`+1,k

(d)

≤
K∑

k=`+2

S∗∆`+1,kvk
(e)
=

K∑

k=`+2

ck,2
νk,0∆`+1,k

, (15)

where (a) follows from the definition of ∆`+1,k and the fact
that if Bt /∈ At, then |At| = `, (b) follows since ∆`+1,k is
negative for k ≤ `+ 1, (c) by Lemma 8, (d) by Lemma 10,
and (e) by the definition of vk. Substituting (14) and (15)
into (13) we have

n∑

t=1

(
S∗

ν`+1
− MBt,t

νBt

)
≤

`+1∑

k=1

ck,1ηk(1 + log n)

+
K∑

k=`+2

ck,1ηk(1 + log u`+1,k) +
K∑

k=`+2

ck,2
νk,0∆`+1,k

.

We then substitute this along with (12) into (9) and then (8)
to obtain

Rn ≤ 1 +
∑̀

k=1

ck,1ηk(1 + log n)

+ 1{` < K}
[

K∑

k=`+2

ck,2
νk,0∆`+1,k

+

`+1∑

k=1

ck,1ηk(1 + log n)

+
K∑

k=`+2

ck,1ηk(1 + log u`+1,k) +
K∑

k=`+1

ck,1ηk(1 + log u`,k)

]
.

7 INITIALISATION

Previously we assumed a known lower bound νk,0 ≤ νk for
each k. In this section we show that these bounds are easily
obtained using a halving trick. In particular, the following
algorithm computes a lower bound ν0 ≤ ν for a single job
with unknown parameter ν.

Algorithm 2 Initialisation of ν0

1: for t ∈ 1, . . . ,∞ do
2: Allocate Mt = 2−t and observe Xt

3: if Xt = 0 then return ν0 ← 2−t.
4: end for

A naive way to eliminate the need for the lower bounds
(νk,0)k is simply to run Algorithm 2 for each job sequen-
tially. Then the following proposition (proven in supple-
mentary material) shows that η ∈ O(1) is reasonable,
which justifies the claim made in (1) that the ηk terms ap-
pearing in Theorem 2 are O(1).

Proposition 11. If η = min{1,ν}
ν0

, then Eη ≤ 4.

The problem with the naive method is that the expected
running time of Algorithm 2 is O(log 1

ν ), which may be
arbitrary large for small ν and lead to a high regret during
the initialisation period. Fortunately, the situation when ν
is small is easy to handle, since the amount of resources
required to complete such a job is also small. The trick is
to run K offset instances of Algorithm 2 alongside a mod-
ified version of Algorithm 1. First we describe the parallel
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implementations of Algorithm 2. For job k, start Algo-
rithm 2 in time-step k, which means that the total amount
of resources used by the parallel copies of Algorithm 2 in
time-step t is bounded by
K∑

k=1

1{t ≥ k} 2k−t−1

≤ min
{

1, 2K−t
}
. (16)

Job Mk,1 Mk,2 Mk,3 Mk,4

1 1/2 1/4 1/8 1/16

2 0 1/2 1/4 1/8

3 0 0 1/2 1/4
K∑
k=1

Mk,t 1/2 3/4 7/8 7/16

Algorithm 1 is implemented starting from time-step 1, but
only allocates resources to jobs for which the initialisa-
tion process has completed. Estimates are computed using
only the samples for which Algorithm 1 chose the alloca-
tion, which ensures that they are based on allocations with
Mk,t ≤ νk. Note that the analysis of the modified algo-
rithm does not depend on the order in which the parallel
processes are initialised. The regret incurred by the modi-
fied algorithm is given in order notation in (1). The proof
is omitted, but relies on two observations. First, that the
expected number of time-steps that a job is not (at least)
fully allocated while it is being initialised is 2. The second
is that the resources available to Algorithm 1 at time-step t
converges exponentially fast to 1 by (16).

8 MINIMAX LOWER BOUNDS
Despite the continuous action space, the techniques used
when proving minimax lower bounds for standard stochas-
tic bandits [Auer et al., 1995] can be adapted to our setting.
The proof is included in the supplementary material.

Theorem 12. Given fixed n and 8n ≥ K ≥ 2 and an
arbitrary algorithm, there exists an allocation problem for
which the expected regret satisfies Rn ≥

√
nK

16
√

2
.

9 EXPERIMENTS
All code and data is available in the supplementary mate-
rial. Data points were generated using the modified algo-
rithm described in Section 7 and by taking the mean of 300
samples. With this many samples the standard error is rel-
atively low (and omitted for readability). We should note
that the variance in the regret of the modified algorithm
is reasonably large, because the regret depends linearly on
the random ηk. For known lower bounds the variance is ex-
tremely low. To illustrate the behaviour of the algorithm we
performed four experiments on synthetic data with K = 2,
which are plotted below as TL (top left), TR, BL, BR (bot-
tom right) respectively. In TL we fixed n = 104, ν1 = 2
and plotted the regret as a function of ν2 ∈ [2, 10]. The
experiment shows the usual bandit-like dependence on the
gap 1/∆1,2. In TR we fixed ν1 = 4/10, ν2 = 6/10 and
plotted Rn/ log2 n as a function of n. The experiment lies
within case 2 described in Section 4 and shows that the
algorithm suffers regret Rn ≈ 45 log2 n as predicted by
Theorem 2. In BL we fixed n = 105, ν1 = 4/10 and plotted
the regret as a function of ν2 ∈ [4/10, 1]. The results show

the algorithm suffering O(log2 n) regret for both processes
until the critical point when ν2 > 6/10 when the second
process can no longer be fully allocated, which is quickly
learned and the algorithm suffers O(log2 n) regret for only
one process. In BR we fixed ν1 = 4/10 and ν2 = 6/10 and
plotted the regret as a function of n for two algorithms. The
first algorithm (solid blue) is the modified version of Algo-
rithm 1 as described in Section 7. The second (dotted red)
is the same, but uses the unweighted estimator wk,t = 1
for all k and t. The result shows that both algorithms suf-
fer sub-linear regret, but that the weighted estimator is a
significant improvement over the unweighted one.
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10 CONCLUSIONS
We introduced the linear stochastic resource allocation
problem and a new optimistic algorithm for this setting.
Our main result shows that the new algorithm enjoys a
(squared) logarithmic problem-dependent regret. We also
presented a minimax lower bound of Ω(

√
nK), which is

consistent with the problem-dependent upper bound. The
simulations confirm the theory and highlight the practical
behaviour of the new algorithm. There are many open
questions and possibilities for future research. Most impor-
tant is whether the log2 n can be reduced to log n. Problem-
dependent lower bounds would be interesting. The algo-
rithm is not anytime (although a doubling trick presumably
works in theory). Developing and analysing algorithms
when the horizon it not known, and have high-probability
bounds are both of interest. We also wonder if Thompson
sampling can be efficiently implemented for some reason-
able prior, and if it enjoys the same practical and theoretical
guarantees in this domain as it does for bandits. Other inter-
esting extensions are when resources are not replenished,
or the state of the jobs follow a Markov process. Finally,
we want to emphasise that we have made just the first steps
towards developing this new and interesting setting. We
hope to see significant activity extending and modifying the
model/algorithm for specific problems.
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Abstract

We consider the problem of selecting informative
observations in Gaussian graphical models con-
taining both cycles and nuisances. More specif-
ically, we consider the subproblem of quantify-
ing conditional mutual information measures that
are nonlocal on such graphs. The ability to effi-
ciently quantify the information content of obser-
vations is crucial for resource-constrained data
acquisition (adaptive sampling) and data process-
ing (active learning) systems. While closed-
form expressions for Gaussian mutual informa-
tion exist, standard linear algebraic techniques,
with complexity cubic in the network size, are in-
tractable for high-dimensional distributions. We
investigate the use of embedded trees for com-
puting nonlocal pairwise mutual information and
demonstrate through numerical simulations that
the presented approach achieves a significant re-
duction in computational cost over inversion-
based methods.

1 INTRODUCTION

In resource-constrained inferential settings, uncertainty can
be efficiently minimized with respect to a resource bud-
get by acquiring or processing the most informative sub-
set of observations – a problem known as active inference
(Krause and Guestrin, 2005; Williams et al., 2007). Yet
despite the myriad recent advances in both understanding
and streamlining inference through probabilistic graphical
models (Koller and Friedman, 2009), there does not exist a
comparable wealth of knowledge regarding how informa-
tion measures propagate on these graphs. This paper con-
siders the problem of efficiently quantifying a measure of
informativeness across nonlocal pairings in a loopy Gaus-
sian graphical model.

This paper assumes a model has been provided, and the
ensuing goal is to interpret relationships within this model

in the context of informativeness. This assumption is mo-
tivated by the hypothesis that, regardless of the specific
sensing modalities or communication platforms used in an
information collection system, the underlying phenomena
can be described by some stochastic process structured ac-
cording to a probabilistic graphical model. The sparsity
of that model determines the efficiency of inference pro-
cedures. In contrast to methods for estimating informa-
tion measures directly from raw data (e.g., Kraskov et al.,
2004), the approach of this paper does not require the prior
enumeration of interaction sets that one wishes to quan-
tify, and the presented algorithm computes conditional in-
formation measures that account for statistical redundancy
between observations.

This paper specifically addresses the common issue of nui-
sances in the model – variables that are not of any extrin-
sic importance, but act as intermediaries between random
variables that are either observable or of inferential inter-
est. Marginalization of nuisances can be both computa-
tionally expensive and detrimental to the sparsity of the
graph, which, in the interest of efficient model utilization,
one wishes to retain. Ignoring nuisances by treating them
as relevant can result in observation selectors fixated on re-
ducing uncertainty in irrelevant portions of the underlying
distribution (Levine and How, 2013). In terms of informa-
tion quantification, nuisances can induce nonlocality in the
sense that observations and relevant latent variables are not
adjacent in the graph, motivating the study of how informa-
tion measure propagate through graphical models.

In this paper, we investigate the use of embedded trees
(Sudderth et al., 2004) for efficiently quantifying nonlo-
cal mutual information in loopy Gaussian graphs. The for-
mal problem statement and a characterization thereof is de-
scribed in Section 2. Some preliminary material and prior
algorithmic technologies are reviewed in Section 3. Our
method for quantify mutual information using embedded
trees, ET-MIQ, is described in Section 4 and demonstrated
through experimental results in Section 5. A discussion of
ET-MIQ in comparison to alternative methods and in antic-
ipation of future extensions is provided in Section 6.
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2 PROBLEM STATEMENT

Let x = (x1, . . . , xN ) be a collection of N random vari-
ables (or disjoint subvectors) with joint distribution px(·).
Let index set V = {1, . . . , N} be partitioned such that
V = U ∪ S , where U ⊂ V indexes latent (unobservable)
variables, and where S ⊂ V indexes observable variables,
whose realizations xs = xs, s ∈ S may be obtained by
expending some resource. Let c : 2S → R≥0 be the cost
function that maps subsets of observable variables to a re-
source cost, and let β ∈ R≥0 be a resource budget. Given
a subset R ⊆ U of relevant latent variables, which are of
inferential interest and about which one wishes to reduce
uncertainty, the general focused active inference problem
(Levine and How, 2013) is

maximizeA⊆S I(xR; xA)
s.t. c(A) ≤ β, (1)

where I(· , ·) is the mutual information measure (cf. Sec-
tion 3.3).

It is well known that (1) is NP-hard (Ko et al., 1995; Krause
and Guestrin, 2009). Despite this, suboptimal heuristics
such as greedy selection have been analyzed in the con-
text of submodularity (Nemhauser et al., 1978), leading to
various performance bounds (Golovin and Krause, 2010;
Krause and Guestrin, 2005; Williams et al., 2007). In
the focused case, where there are nuisances U \ R in the
problem, the objective in (1) is in general not submodular
(Krause et al., 2008), although online-computable perfor-
mance bounds can be established through submodular re-
laxations (Levine and How, 2013).

However, efficient computation of the mutual informa-
tion objective in (1) has remained elusive for all but sim-
ple models – symmetric discrete distributions (Choi et al.,
2011) and Gaussian trees (Levine and How, 2013). Just as
covariance analysis in the Kalman filtering framework can
be used to anticipate the uncertainty evolution in a linear-
Gaussian state space model, which is Markov to a mini-
mal tree-shaped Gaussian graph, this paper aims to provide
a general preposterior analysis of uncertainty reduction in
nontree Gaussian systems.

This paper specifically considers the class of Gaussian dis-
tributed vectors x ∼ N−1(0, J) with inverse covariance
matrices J , each of which is Markov to an undirected graph
with cycles. For large N , evaluating the MI objective in
(1) via matrix inversion is cubic in N , which may be pro-
hibitively expensive. The aim of this paper is explicating
an iterative algorithm for computing MI whose complex-
ity per iteration is linear in N , and whose convergence is
often subquadratic in N , leading to a relative asymptotic
efficiency over naı̈ve linear algebraic techniques.

3 BACKGROUND

3.1 MARKOV RANDOM FIELDS

A graph G = (V, E), with vertex set V and edge set E link-
ing pairs of vertices, can be used to represent the condi-
tional independence structure of a joint distribution px(·)
over a collection x = (x1, . . . , xN ) of N random variables
(or disjoint random subvectors). This paper considers the
class of distributions represented by undirected graphs, also
known as Markov random fields (MRFs).

The topology of an MRF can be characterized, in part,
by its set of paths. A path is a sequence of distinct ad-
jacent vertices (v1, . . . , vm) where {vk, vk+1} ∈ E , k =
1, . . . ,m− 1. If for any two distinct vertices s, t ∈ V there
is more than one path joining s to t, then G contains a cycle.
A graph without cycles is called a tree (or, if it is discon-
nected, a forest).

An MRF can represent conditional independences of the
form given by the global Markov condition: For disjoint
subsets A,B,C ⊂ V , xA ⊥⊥ xB | xC iff A and B are
graph-separated by C (all paths between a vertex in A and
a vertex inB must pass throughC). The edge set E satisfies
the pairwise Markov property: For all i, j ∈ V , {i, j} /∈ E
iff xi ⊥⊥ xj | xV\{i,j}. A distribution is said to be Markov
with respect to a graph G if it satisfies the conditional inde-
pendences implied by G.

3.2 INFERENCE ON GAUSSIAN MRFS

A multivariate Gaussian distribution in the information
form px(x) ∝ exp{− 1

2x
TJx + hTx}, with (symmetric,

positive definite) precision or inverse covariance matrix J
and potential vector h, is Markov with respect to a Gaus-
sian MRF (GMRF; Speed and Kiiveri, 1986) if J satisfies
the sparsity pattern of E : (J)i,j = (J)Tj,i 6= 0 ⇔ {i, j} ∈
E . The parameters of the information form are related to the
covariance P = J−1 and mean J−1h. Thus, estimating the
mean of a Gaussian is equivalent to solving the system of
equations

J x̂ = h. (2)

Assume without loss of generality1 that each component
xi of x is a subvector of dimension d ∈ N+, whereby
J ∈ RNd×Nd can be partitioned into an N × N grid of
d × d block submatrices. Solving (2) by inverting J re-
quires O((Nd)3) operations, which can be prohibitively
expensive for largeN . If the graph contains no cycles, then
Gaussian belief propagation (GaBP) (Pearl, 1988; Weiss
and Freeman, 2001) can be used to compute the conditional
mean, as well as marginal variances, inO(Nd3), providing
a significant computational savings for largeN . For graphs

1Extension to the case of varying subvector dimensions with
d , maxi∈V dim(xi) is straightforward.
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with cycles, various estimation procedures have been re-
cently developed to exploit available sparsity in the graph
(cf. Sections 3.4 and 3.5).

Marginalization and conditioning can be conceptualized as
selecting submatrices of P and J , respectively. Let disjoint
sets A and B form a partition of V = {1, . . . , N}. The
marginal distribution pxA(·) over xA is parameterized by
covariance matrix (P )A,A, the block submatrix of P corre-
sponding to the rows and columns indexed byA. Similarly,
the conditional distribution pxA|xB (·|xB) of xA conditioned
on xB := xB is parameterized by the (J)A,A block subma-
trix of J . In the inferential setting, one has access to J and
not P .

3.3 MUTUAL INFORMATION

Mutual information (MI) is an information-theoretic mea-
sure of dependence between two (sets of) random variables.
Its interpretation as a measure of entropy reduction appeals
to its use in uncertainty mitigation (Caselton and Zidek,
1984). For disjoint subsets A,B,C ⊂ V (with C possibly
empty), conditional mutual information is defined as

I(xA; xB |xC) , h(xA|xC)− h(xA|xB , xC), (3)

where, for continuous random variables xV , h(·) is the dif-
ferential entropy functional

h(qx(·)) = −
∫

X
qx(x) log qx(x) dx .

Note that MI is always nonnegative and is symmetric with
respect to its first two arguments. For convenience, we will
often use only the index sets (and not the random variables
they index) as the arguments of mutual information.

Let PA|C denote the (marginal) covariance of xA given xC .
For multivariate Gaussians, the conditional MI (Cover and
Thomas, 2006) is

I(A;B|C) = 1

2
log

det(PA|C) det(PB|C)

det(PA∪B|C)
. (4)

Computing the marginal covariance matrices needed in
(4) via matrix inversion (or taking Schur complements) of
JA∪B|C generally requires O((Nd)3) operations, even if
one is computing pairwise MI (i.e., |A| = |B| = 1). For
Gaussian trees, an efficient algorithm exist for reducing
pairwise MI complexity toO(Nd3), i.e., linear in the num-
ber of vertices (Levine and How, 2013). The main objective
of this paper is providing a similar reduction in complexity
for loopy Gaussian graphical models.

3.4 EMBEDDED TREES

The embedded trees (ET) algorithm was introduced in
(Sudderth, 2002; Wainwright et al., 2000) to iteratively

compute both conditional means and marginal error vari-
ances in Gaussian graphical models with cycles. Although
the algorithm requires only the identification of subgraphs
on which inference is tractable, and extensions to, for ex-
ample, embedded polygons (Delouille et al., 2006) and
embedded hypergraphs (Chandrasekaran et al., 2008) have
been considered, this paper will focus for clarity of discus-
sion on embedded trees.

Let x ∼ N−1(0, J) be a Gaussian distributed random vec-
tor Markov to an undirected graph G = (V, E) that contains
cycles. Consider an alternatively distributed random vector
xT ∼ N−1(0, JT ) that is of the same dimension as x but
is instead Markov to a cycle-free subgraph GT = (V, ET )
of G (in the sense that ET ⊂ E). The tree-shaped (and
symmetric, positive definite) inverse covariance matrix JT
can be decomposed as JT = J + KT , where KT is any
symmetric cutting matrix that enforces the sparsity pattern
of JT by zeroing off-diagonal elements of J correspond-
ing to cut edges E \ ET . Since many cutting matrices KT
will result in a tree-shaped inverse covariance JT Markov
to GT , attention will be restricted to so-called regular cut-
ting matrices, whose nonzero elements are constrained to
lie at the intersection of the rows and columns correspond-
ing to the vertices incident to cut edges. Note that KT can
always be chosen such that rank(KT ) is at most O(Ed),
where E , |E \ ET | will be used to denote the number of
cut edges.

3.4.1 Conditional Means

Given an initial solution x̂(0) to (2), the single-tree Richard-
son iteration (Young, 1971) induced by embedded tree GT
with cutting matrix KT and associated inverse covariance
JT = J +KT is

x̂(n) = J−1T

(
KT x̂

(n−1) + h
)
. (5)

Thus, each update x̂(n) is the solution of a synthetic infer-
ence problem (2) with precision matrix J̃ = JT and po-
tential vector h̃ = KT x̂(n−1) + h. This update requires a
total of O(Nd3 + Ed2) operations, where O(Nd3) is due
to solving J̃ x̂(n) = h̃ with a tree-shaped graph, and where
O(Ed2) with E = |E \ ET | is due to forming h̃. In the
case that E is at most O(N), the overall complexity per
iteration is O(Nd3). Letting ρ(D) , maxλ∈{λi(D)} |λ|
denote the spectral radius of a square matrix D, the asymp-
totic convergence rate of the single-tree iteration (5) is

ρ(J−1T KT ) = ρ(I − J−1T J), (6)

with convergence to x̂ guaranteed (regardless of x̂(0)) if
and only if ρ(J−1T KT ) < 1. Inherent in (5) and (6) is a
tradeoff in the choice of embedded structure between the
tractability of solving JT x̂(n) = h̃ and the approximation
strength of JT ≈ J for fast convergence.
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The ET algorithm (Sudderth et al., 2004) is conceptualized
as a nonstationary Richardson iteration with multiple ma-
trix splittings of J . Let {GTn}∞n=1 be a sequence of em-
bedded trees within G, and let {KTn}∞n=1 be a sequence
of cutting matrices such that JTn = J + KTn is Markov
to GTn for n = 1, . . . ,∞. The nonstationary Richardson
update is then

x̂(n) = J−1Tn

(
KTn x̂

(n−1) + h
)
, (7)

with error e(n) , x̂(n) − x̂ that evolves according to

e(n) = J−1Tn KTne
(n−1). (8)

The criterion for convergence is when the normalized resid-
ual error ||KTn(x̂(n)−x̂(n−1))||2/||h||2 falls below a spec-
ified tolerance ε > 0. The sparsity of KTn permits the effi-
cient computation of this residual.

When {GTn ,KTn}∞n=1 is periodic in n, a convergence rate
analysis similar to (6) is given in (Sudderth et al., 2004).
It is also demonstrated that using multiple embedded trees
can significantly improve the convergence rate. Online
adaptive selection of the embedded tree was explored in
(Chandrasekaran et al., 2008) by scoring edges according
to single-edge walk-sums and forming a maximum weight
spanning tree in O(|E| log |N |).

3.4.2 Marginal Variances

Given that rank(KT ) ≤ 2Ed (Sudderth, 2002), where
E = |E \ ET |, an additive rank-one decomposition

KT =
∑

i

wiuiu
T
i , ui ∈ RNd (9)

can be substituted in the fixed-point equation (Sudderth
et al., 2004)

P = J−1T + J−1T KT P, (10)
yielding

P = J−1T +
∑

i

wi(J
−1
T ui)(Pui)

T . (11)

Solving for the vertex-marginal covariances Pi =
(P )i,i, i ∈ V , which are the block-diagonal entries of P ,
requires:

• solving for the block-diagonal entries of J−1T , with
one-time complexity O(Nd3) via GaBP;

• solving the synthetic inference problems JT zi = ui,
for all O(Ed) vectors ui of KT in (9), with one-
time total complexity O(Nd3 · Ed) = O(NEd4) via
GaBP;

• solving the synthetic inference problems Jzi = ui,
for all O(Ed) vectors ui of KT in (9), with per itera-
tion total complexity of O(NEd4) operations via ET
conditional means (7);

• and assembling the above components via (11).

Note that there exists a decomposition, alternative to (9), of
KT into O(Wd) rank-one matrices using a cardinality-W
vertex cover of E \ET (whereW ≤ E for any minimal ver-
tex cover); this alternative decomposition requires solving
a symmetric quadratic eigenvalue problem (Sudderth et al.,
2004).

3.5 COMPETING METHODS

Other methodologies have been proposed to perform in-
ference in loopy graphs. Loopy belief propagation (LBP)
is simply parallel belief propagation performed on graphs
with cycles; if it converges, it does so to the correct mean
but, in general, to incorrect variances (Weiss and Freeman,
2001). Extended message passing augments the original
BP messages and provides for convergence to the correct
variances, but its complexity is O(NL2) in the scalar case,
where L is the number of vertices incident to any cut edge,
and it requires the full message schedule to be executed
to produce an estimate (Plarre and Kumar, 2004). Lin-
ear response algorithms can be used to compute pairwise
marginal distributions for nonadjacent pairs of vertices, but
at a complexity ofO(N |E|d3), which may be excessive for
large N and |E| = O(N) given that conditional MI re-
quires only very specific pairwise marginals (Welling and
Teh, 2004).

It is also possible to perform efficient inference if it is
known that removal of a subset of V , called a feedback
vertex set (FVS), will induce a tree-shaped subgraph (Liu
et al., 2012). The resulting belief propagation-like infer-
ence algorithm, called feedback message passing, has com-
plexity O(Nk2) for scalar networks, where k is the size of
the FVS. If the topological structure of the graphical model
is well known a priori, or if the graph is learned by an
algorithm oriented towards forming FVSs (Liu and Will-
sky, 2013), then identification of an FVS is straightforward.
However, if the graphical model is provided without such
identification, it may be computationally expensive to form
an FVS of reasonable size, whereas finding a spanning tree
(as the ET algorithm does) is comparatively simple.

Various graph sparsification methods have been pursued to
find useful substructures that can precondition linear sys-
tems of equations (e.g., support graph theory (Bern et al.,
2006)). Notably, Spielman and Teng (2011) present a spec-
tral sparsification method for the graph Laplacian (which
has scalar edge weights) that permits the solution of di-
agonally dominant linear systems in near-linear time. In
contrast, this paper analyzes the ET sparsifier, which op-
erates on edges with potentially vectoral weights and does
not assume diagonal dominance (which would, for exam-
ple, guarantee the convergence of LBP (Weiss and Free-
man, 2001)).
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4 ET MUTUAL INFORMATION
QUANTIFICATION (ET-MIQ)

This section describes the application of embedded trees to
efficient iterative computation of nonlocal mutual informa-
tion measures on loopy Gaussian graphs.

It is typically intractable to enumerate all possible selec-
tion sets A ∈ 2V and evaluate the resulting MI objective
I(R;A). Often, one balances tractability with performance
by using suboptimal selection heuristics with either a pri-
ori or online-computable performance bounds (Krause and
Guestrin, 2005; Levine and How, 2013). Starting from an
empty selection A ← ∅, the greedy heuristic

a← argmax
{y∈S\A : c(y)≤β−c(A)}

I(R; y|A) (12)

A ← A∪ {a}

selects one unselected observable variable with the highest
marginal increase in objective and continues to do so un-
til the budget is expended. By comparison to (4), the MI
evaluations needed to perform a greedy update are of the
form

I(R; y|A) = 1

2
log

det(PR|A) det(P{y}|A)

det(PR∪{y}|A)
(13)

While inverse covariance matrices obey specific sparsity
patterns, covariance matrices are generally dense. Thus
two of the determinants in (13) require O(|R|3d3) oper-
ations to compute. If |R| is O(N) (e.g., the graph repre-
sents a regular pattern, a constant fraction of which is to
be inferred), then such determinants would be intractable
for large N . One instead fixes some ordering R over the
elements of R, denoting by rk its kth element, Rk =
∪ki=1{ri} its first k elements, and appeal to the chain rule
of mutual information:

I(R; y | A) = I(r1; y | A) + I(r2; y | A ∪R1) + . . .

+ I(r|R|; y | A ∪R|R|−1). (14)

The advantage of this expansion is twofold. Each term
in the summation is a pairwise mutual information term.
Given an efficient method for computing marginal covari-
ance matrices (the focus of the remainder of this sec-
tion), the determinants in (4) can be evaluated in O(d3)
operations. More pressingly, conditioning in an undi-
rected graphical model removes paths from the graph (by
the global Markov property), potentially simplifying the
structure over which one must perform the quantification.
Therefore, the chain rule converts the problem of evaluat-
ing a set mutual information measure I(R; y|A) into |R|
separate pairwise MI computations that decrease in diffi-
culty as the conditioning set expands.

It suffices to describe how to compute one of the |R| terms
in the summation (14); the template will be repeated for the

other |R|−1 terms, but with a modified conditioning set. In
the remainder of this section, it is shown how to efficiently
compute I(r; y|C) for all y ∈ S \C provided some r ∈ R
and conditioning set C ⊂ V \ {r}. Since conditioning on
C can be performed by selecting the appropriate submatrix
of J corresponding to V \ C, it is assumed for clarity of
presentation and without loss of generality2 that eitherC =
∅ or that one is always working with a J resulting from a
larger J ′ that has been conditioned on C. The resulting MI
terms, in further simplification of (13), are of the form

I(r; y) =
1

2
log

det(P{r}) det(P{y})

det(P{r,y})
, (15)

where P{r} = (P )r,r and P{y} = (P )y,y are the d × d
marginal covariances on the diagonal, and where P{r,y} is
the 2d× 2d block submatrix of the (symmetric) covariance
P = J−1:

P{r,y} =

[
(P )r,r (P )r,y
(P )y,r (P )y,y

]
.

In addition to the marginal covariances on the diagonal, the
d × d off-diagonal cross-covariance term (P )r,y = (P )Ty,r
is needed to complete P{r,y}. If it were possible to effi-
ciently estimate the d columns of P corresponding to r,
all such cross-covariance terms (P )r,y,∀y ∈ S , would be
available. Therefore, let P be partitioned into columns
{pi}Ndi=1 and assume without loss of generality that r corre-
sponds to p1, . . . , pd. Let ei be the ithNd-dimensional axis
vector (with a 1 in the ith position). Then pi ≡ Pei, i =
1, . . . , d, can be estimated using the synthetic inference
problem

Jpi = ei. (16)

Thus, by comparison to (2) and (7), the first d columns of
P can be estimated with a complexity of O(Nd4) per ET
iteration.

Using the results of Section 3.4.2, the marginal variances
can be estimated in O(NEd4) per iteration, where E =
|E \ ETn | is the number of cut edges. One can subse-
quently form each matrix P{r,y}, y ∈ S in O(d2) and
take its determinant in O(d3). Since |S| < N , the ET-
MIQ procedure outlined in the section can be used to iter-
atively estimate the set {I(r; y)}y∈S with total complexity
O(NEd4) operations per iteration. Returning to the greedy
selection of (12) and the chain rule of (14), given a subset
A ⊂ S of previous selections, the set of marginal gains
{I(R; y|A)}y∈S\A can be estimated in O(N |R|Ed4) op-
erations per iteration.

2Alternatively, the unconditioned J can be used by treating
conditioned vertices as blocked (not passing messages) and by
zeroing the elements of h and x̂(n) in (5) corresponding to C.
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5 EXPERIMENTS

5.1 ALTERNATIVE METHODS

In order to demonstrate the comparative performance of the
ET-MIQ procedure of Section 4, alternative methods for
computing mutual information in Gaussian graphs – two
based on matrix inversion, and one based exclusively on
estimating columns of P – are briefly described.

5.1.1 Naı̈ve Inversion

Whenever a mutual information term of the form
I(A;B|C) is needed, the Naı̈veInversion procedure
conditions J on C and computes the marginal covari-
ance matrices PA∪B|C , PA|C , and PB|C of (4) using stan-
dard matrix inversion, which is O(N3d3). A greedy se-
lection update, which requires computing marginal infor-
mation gain scores {I(R; y|A)}y∈S\A, thereby requires
O(N3|S|d3) operations using this procedure.

5.1.2 Block Inversion

Intuitively, the Naı̈veInversion procedure appears
wasteful even for an inversion-based method, as it repeats
many of the marginalization operations needed to form
{I(R; y|A)}y∈S\A. The BlockInversion procedure
attempts to rectify this. Given a previous selection set
A, BlockInversion conditions J on A and marginal-
izes out nuisances U \ R (along with infeasible observa-
tion selections {y ∈ S \ A | c(y) > β − c(A)}) using
Schur complements. The complexity of this approach, for
each greedy update, isO(|S|4 + |R||S|3 + |R|3|S|+N3).
BlockInversion has the same worst-case asymptotic
complexity of O(N3|S|d3) as Naı̈veInversion but
may achieve a significant reduction in computation depend-
ing on how |R| and |S| scale with N .

5.1.3 ColumnET

The ColumnET procedure uses nonstationary embedded
tree estimation of specific columns of P to compute all in-
formation measures. That is to say, no marginal error vari-
ance terms are computed (cf. Section 3.4.2). Given a previ-
ous selection setA, and an orderingR overR, the columns
of P·|A∪Rk−1

corresponding to {rk} ∪ S \A are estimated
via (7) and (16). The complexity of a greedy update using
ColumnET is O(N |R||S|d4) operations per ET iteration.

5.2 “HOOP-TREE” EXAMPLES

To investigate the performance benefits of ET-MIQ, we
consider a subclass of scalar (d = 1) loopy graphs contain-
ing m simple cycles (achordal “hoops”) of length l, where
cycles may share vertices but no two cycles may share
edges. The structure of this graph resembles a macro-tree

Figure 1: Example of a hoop-tree with 4-vertex cycles.

over hoop subcomponents (a “hoop-tree”; see Figure 1).
Any embedded tree on this graph must only cut m edges
(E = m), one for each l-cycle. This class of graphs is use-
ful for benchmarking purposes, as it permits randomization
without requiring the subsequent enumeration of loops via
topological analysis, which may be computationally expen-
sive and thus inefficient for testing.

For each problem instance, we generate a random hoop-
tree G = (V, E) of size |V| = N . To generate a cor-
responding inverse covariance J , we sample (J)i,j ∼
uniform([−1, 1]) for each {i, j} ∈ E , and sample (J)i,i ∼
Rayleigh(1), with the diagonal rescaled to enforce the
positive definiteness of J . We then randomly label ver-
tices in V as belonging to S or U (or neither), set a bud-
get β ∝ |S|, and sample an integer-valued additive cost
function c(·) such that c(s) ∼ uniform([1, γβ]) for some
γ ∈ [0, 1] and all s ∈ S, and such that c(A) =∑a∈A c(a)
for all A ⊆ S.

Let GT1 and KT1 be the embedded subtree and associated
regular cutting matrix formed by cutting the edge of each l-
cycle with the highest absolute precision parameter |(J)i,j |.
Guided by the empirical results of Sudderth et al. (2004),
the second embedded tree GT2 is selected such that in every
l-cycle, KT2 cuts the edge farthest from the corresponding
cut edge in the GT1 (modulo some tie-breaking for odd l).

Figure 2 summarizes a comparison of ET-MIQ
against Naı̈veInversion, BlockInversion,
and ColumnET in terms of the mean runtime to complete
a full greedy selection. Random networks of size N
were generated, with |R| = 5 and |S| = 0.3N . The
alternative methods were suppressed when they began to
take prohibitively long to simulate (e.g., N = 1200 for
BlockInversion and ColumnET).

The runtime of ET-MIQ, which vastly outperforms the al-
ternative methods for this problem class, appears to grow
superlinearly, but subquadratically, in N (approximately,
bounded by o(N1.7)). The growth rate is a confluence of
three factors: the O(N |R|Ed4) complexity per Richard-
son iteration of updating {I(R; y|A)}y∈S\A; the number
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Figure 2: Mean runtime of the full greedy selection as
a function of the network size N for randomized loopy
graphs with m = 10 simple cycles of length l = 4.
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Figure 3: Mean runtime of the full greedy selection as
a function of the network size N for randomized loopy
graphs with m = 0.1N simple cycles of length l = 4.
As predicted, in the case where m = O(N), the ET-based
algorithms have the same asymptotic complexity; ET-MIQ
has a lower constant factor.

of Richardson iterations until the normalized residual error
converges to a fixed tolerance of ε = 10−10; and the growth
rate of |S| as a function of N , which indirectly affects the
runtime through the budget β by permitting larger selection
sets, and hence more rounds of greedy selection. To better
disambiguate the second and third factors, we studied how
the number of Richardson iterations to convergence (for a
random input h; cf. (2)) varies as a function ofN and found
no significant correlation in the case where m is constant
(not a function of N ). The median iteration count was 7,
with standard deviation of 0.6 and range 5-9 iterations.

We also considered the effect of letting m, the number of
cycles in the graph, vary with N . A runtime comparison
for m = 0.1N is shown in Figure 3. Given that E = m =
O(N) and |R| = O(1), ET-MIQ has an asymptotic com-
plexity of O(N |R|Ed4) = O(N2). Similarly, the com-
plexity of ColumnET is O(N |R||S|d4) = O(N2). Fig-
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Figure 4: Number of Richardson iterations until conver-
gence, for m = 0.1N cycles.
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Figure 5: Number of Richardson iterations until conver-
gence, for N = 1600 vertices, m = δN cycles.

ure 3 confirms this agreement of asymptotic complexity,
with ET-MIQ having a lower constant factor.

We repeated the convergence study for m = 0.1N and
varying N ∈ [100, 2000] (see Figure 4). The mean iter-
ation count appears to grow sublinearly in N ; the actual
increase in iteration count over N is quite modest.

The relationship between the convergence and the prob-
lem structure was more clearly illustrated when we fixed
a network size of N = 1600 and varied the number of 4-
vertex cycles m = δN , for δ ∈ [0.04, 0.32] (see Figure 5).
The cycle fraction δ is strongly correlated with the iteration
count – and even slightly more correlated with its log – sug-
gesting an approximately linear (and perhaps marginally
sublinear) relationship with δ, albeit with a very shallow
slope.

6 DISCUSSION

This paper has presented a method of computing nonlocal
mutual information in Gaussian graphical models contain-
ing both cycles and nuisances. The base computations are
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iterative and performed using trees embedded in the graph.
We assess the proposed algorithm, ET-MIQ, and its alterna-
tives (cf. Sections 3.5 and 5.1) in terms of the asymptotic
complexity of performing a greedy update. For ET-MIQ,
per-iteration complexity is O(N |R|Ed4), where N is the
number of vertices in the network, R ⊂ V is set of rele-
vant latent variables that are of inferential interest, E is the
number of edges cut to form the embedded tree, and d is
the dimension of each random vector indexed by a vertex
of the graph. Let κ denote the expected number of Richard-
son iterations to convergence of ET-MIQ, which is a direct
function of the eigenproperties of the loopy precision ma-
trix and its embedded trees and an indirect function of the
other instance-specific parameters (number of cycles, net-
work size, etc.). The experimental results of Section 5 sug-
gest that the proposed algorithm, ET-MIQ, achieves signif-
icant reduction in computation over inversion-based meth-
ods, which have a total complexity of O(N3|S|d3), where
S ⊂ V is the set of observable vertices that one has the
option of selecting to later realize.

Based on the asymptotic complexities, we expect ET-MIQ
would continue to achieve a significant reduction in compu-
tation for large networks whenever |R|Edκ = o(N2|S|).
Typically, the vertex dimension d is not a function of the
network size. For dense networks (|E| = O(N2)), we
would not expect significant performance improvements
using ET-MIQ; however, it is often the case that E is sparse
in the sense that the number of cut edges E = O(N).
With |S| = O(N) (the number of available observations
growing linearly in the network size), asymptotic benefits
would be apparent for |R|κ = o(N2). Since we suspect κ
grows sublinearly (and very modestly) inN , and whichever
system utilizing the graphical model is free to choose R,
we expect that ET-MIQ would be beneficial for efficiently
quantifying information in a wide class of active inference
problems on Gaussian graphs.

The methods described in this paper are exact in the
sense that all mutual information measures are estimated
to within a specified tolerance. If the computational cost
of quantifying mutual information were constrained (e.g.,
in a distributed estimation framework with communication
costs), it may be of interest to develop algorithms for al-
lowing prioritized approximation depending on how sensi-
tive the overall information reward is to these conditional
mutual information terms. In addition to algorithms for
adaptively selecting embedded trees to hasten convergence,
Chandrasekaran et al. (2008) propose methods for choosing
and updating only a subset of variables in each Richard-
son iteration. If, in an essentially dual problem to (1), the
cost of sensor selections were to be minimized subject to
a quota constraint on the minimum amount of collected in-
formation, the ability to truncate information quantification
when a subset of the graph falls below an informativeness
threshold would be of potential interest, which we intend

to explore in future work.
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Abstract

The term “CoRE kernel” stands for correlation-
resemblance kernel. In many real-world applica-
tions (e.g., computer vision), the data are often
high-dimensional, sparse, and non-binary. We
propose two types of (nonlinear) CoRE kernels
for non-binary sparse data and demonstrate the
effectiveness of the new kernels through a clas-
sification experiment. CoRE kernels are sim-
ple with no tuning parameters. However, train-
ing nonlinear kernel SVM can be costly in time
and memory and may not be always suitable
for truly large-scale industrial applications (e.g.,
search). In order to make the proposed CoRE
kernels more practical, we develop basic proba-
bilistic hashing (approximate) algorithms which
transform nonlinear kernels into linear kernels.

1 INTRODUCTION

The use of high-dimensional data has become popular in
practice, especially in search, natural language processing
(NLP), and computer vision. For example, Winner of 2009
PASCAL image classification challenge [27] used 4 million
(non-binary) features. [5, 25, 28] mentioned datasets with
billions or even trillions of features.

For text data, the use of extremely high-dimensional
representations (e.g., n-grams) is the standard practice. In
fact, binary representations for text data could be sufficient
if the order of n-grams is high enough. On the other hand,
in current practice of computer vision, it is still more
common to use non-binary feature representations, for
example, local coordinate coding (LCC) [29, 27]. It is
often the case that in practice high-dimensional non-binary
features might be appropriately sparsified without hurting
the performance of subsequent tasks (e.g., classification).
However simply binarizing the features will often incur
loss of accuracies, sometimes significantly so. See Table 1
for an illustration of such a phenomenon.

Our contribution in this paper is the proposal of two types
of (nonlinear) “CoRE” kernels, where “CoRE” stands for
“correlation-resemblance”, for non-binary sparse data. In-
terestingly, using CoRE kernels leads to improvement in
classification accuracies (in some cases significantly so) on
a variety of datasets (see Table 2).

For practical large-scale applications, naive implementa-
tions of nonlinear kernels may be too costly (in time and/or
memory), while linear learning methods (e.g., linear SVM
or logistic regression) are extremely popular in industry.
The proposed CoRE kernels would be facing the same chal-
lenge. To address this critical issue, we also develop basic
hashing algorithms which approximate the CoRE kernels
by linear kernels. These new hashing algorithms allow us
to take advantage of highly efficient (batch or stochastic)
linear learning algorithms, e.g., [15, 24, 1, 8].

In the rest of this section, we first review the definitions
of correlation and resemblance, then we provide an exper-
imental study to illustrate the loss of classification accura-
cies when sparse data are binarized.

1.1 Correlation

We assume a data matrix of size n×D, i.e., n observations
in D dimensions. Consider, without loss of generality, two
data vectors u, v ∈ RD. The correlation is simply the nor-
malized inner product defined as follows

ρ = ρ(u, v) =

∑D
i=1 uivi√∑D

i=1 u2
i

∑D
i=1 v2

i

=
A√

m1m2
, (1)

where A =

D∑

i=1

uivi, m1 =

D∑

i=1

u2
i , m2 =

D∑

i=1

v2
i

It is well-known that ρ(u, v) constitutes a positive definite
and linear kernel, which is one of the reasons why correla-
tion is very popular in practice.
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1.2 Resemblance

For binary data, the resemblance is commonly used:

R = R(u, v) =
a

f1 + f2 − a
, (2)

where f1 =
D∑

i=1

1{ui ̸= 0}, f2 =
D∑

i=1

1{vi ̸= 0},

a =
D∑

i=1

1{ui ̸= 0}1{vi ̸= 0}

It was shown in [22] that the resemblance defines a type of
positive definite (nonlinear) kernel. In this study, we will
combine correlation and resemblance to define two new
types of nonlinear kernels.

1.3 Linear SVM Experiment

Table 1 lists the datasets, which are non-binary and sparse.
The table also presents the test classification accuracies us-
ing linear SVM on both the original (non-binary) data and
the binarized data. The results in the table illustrate the no-
ticeable drop of accuracies by using only binarized data.1

Available at the UCI repository, Youtube is a multi-view
dataset, and we choose the largest set of features (audio) for
our experiment. M-Basic, M-Rotate, and MNIST10k were
used in [18] for testing abc-logitboost and abc-mart [17]
(and comparisons with deep learning [16]). For RCV1, we
use a subset of the original testing examples (to facilitate
efficient kernel computation later needed in the paper).

Table 1: Classification accuracies using linear SVM (LI-
BLINEAR [8]) on sparse non-binary data. As we always
normalize data to unit norm, the correlation kernel ρ is
naturally used in our study. We experiment with the l2-
regularized linear SVM (with a regularization parameter
“C”) and report the best test accuracies from a wide range
of C values. Using binarized data (i.e., the last column),
the test accuracies drop very noticeably in most datasets.

Dataset #Train #Test Linear Lin. Bin.
M-Basic 12,000 50,000 90.0% 88.9%
MNIST10k 10,000 60,000 90.0% 88.8%
M-Rotate 12,000 50,000 48.0% 44.4%
RCV1 20,242 60,000 96.3% 95.6%
USPS 7,291 2,007 91.8% 87.4%
Youtube 11,930 97,934 47.6% 46.5%

Figure 1 provides more detailed classification accuracy re-
sults for a wide range of C values, where C is the usual
l2-regularization parameter in linear SVM.

1For all datasets except USPS, we used “0” as the threshold
to binarize the data. For USPS, since it contains many very small
entries, we used a threshold which is slightly different from zero.
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Figure 1: Test classification accuracies for both the original
(non-binary, solid) and the binarized (dashed) data, using
l2-regularized linear SVM with a regularization parameter
C. We present results for a wide range of C values. The
best (highest) values are summarized in Table 1.

While linear SVM is extremely popular in industrial prac-
tice, it is often not as accurate. Our proposed CoRE kernels
will be able to produce noticeably more accurate results.

2 CORE KERNELS

We propose two types of CoRE kernels, which combine
resemblance with correlation, for sparse non-binary data.
Both kernels are positive definite. We will demonstrate
the effectiveness of the two CoRE kernels using the same
datasets in Table 1 and Figure 1.

2.1 CoRE Kernel, Type 1

The first type of CoRE kernel is basically the product of
correlation ρ and the resemblance R, i.e.,

KC,1 = KC,1(u, v) = ρR (3)

Later in the paper we will express KC,1 as an (expectation
of) inner product, i.e., KC,1 is obviously positive definite.

If the data are fully dense (i.e., no zero entries), then R = 1
and KC,1 = ρ. On the other hand, if the data are binary,
then ρ = a√

f1f2
and KC,1 = a√

f1f2

a
f1+f2−a . See (2) for

the definitions of f1, f2, a.
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2.2 CoRE Kernel, Type 2

The second type of CoRE kernel perhaps appears less intu-
itive than the first type:

KC,2 = KC,2(u, v) = ρ

√
f1f2

f1 + f2 − a
=

ρR

a/
√

f1f2

(4)

If the data are binary, then KC,2 = R. We will, later in the
paper, also write KC,2 as an expectation of inner product
to confirm it is also positive definite.

2.3 Kernel SVM Experiment

Figure 2 presents the classification accuracies on the same
6 datasets as in Figure 1 and Table 1, using nonlinear ker-
nel SVM with three different kinds of kernels: CoRE Type
1, CoRE Type 2, and resemblance. We can see that re-
semblance (which only uses binary information of the data)
does not perform as well as CoRE kernels.
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Figure 2: Test classification accuracies using nonlinear
kernel SVM and three types of kernels: CoRE Type 1,
CoRE Type 2, and resemblance. We use the LIBSVM pre-
computed kernel functionality. Compared with the results
of linear SVM in Figure 1, we can see CoRE kernels and
resemblance kernel perform better (or much better, espe-
cially on M-Rotate dataset). The best results (highest points
on the curves) are summarized in Table 2.

The best results in Figure 2 are summarized in Table 2.
It is interesting to compare them with the test accuracies
of linear SVM in Table 1 and Figure 1. We can see that
CoRE kernels perform very well, without using additional

tuning parameters. In fact, if we compare the best results
in [16, 18] (e.g., RBF SVM, abc-boosting, or deep learn-
ing) on MNIST10k, M-Rotate, and M-Basic, we will see
that CoRE kernels (with no tuning parameters) can achieve
the same (or similar) performance.

Table 2: Best test classification accuracies (in %) for five
different kernels. The first two columns (i.e., “linear” and
“linear binary”) are already shown in Table 1.

Dataset Lin. Lin. Bin. Res. CoRE1 CoRE2
M-Basic 90.0 88.9 95.9 97.0 96.5
MNIST10k 90.0 88.8 95.5 96.6 96.0
M-Rotate 48.0 44.4 80.3 87.6 86.2
RCV1 96.3 95.6 96.5 97.0 96.9
USPS 91.8 87.4 92.5 95.5 95.2
Youtube 47.6 46.5 51.1 53.1 53.2

We shall mention that our experiments can be fairly easily
reproduced because all datasets are public and we use stan-
dard SVM packages (LIBSVM and LIBLINEAR) without
any modifications. We also provide the results for a wide
range of C values in Figure 1 and Figure 2. Note that,
because we use pre-computed kernel functionality of LIB-
SVM (which consumes very substantial memory to store
the kernel matrix), we only experiment with training data
of moderate sizes, to ensure repeatability (by other re-
searchers without access to machines with large memory).2

2.4 Challenges with Nonlinear Kernel SVM

[2, Section 1.4.3] mentioned three main computational is-
sues of kernels summarized as follows:

1. Computing kernels is very expensive.

2. Computing a full kernel matrix is wasteful, because
not all pairwise kernel values are used during training.

3. The kernel matrix does not fit in memory. The cost of
storing the full kernel matrix in the memory is O(n2),
which is not realistic for most PCs even for merely
105, while the industry has used training data with bil-
lions of examples. Thus, kernel evaluations are often
conducted on the fly, which means the computational
cost is dominated by kernel evaluations.

In fact, evaluating kernels on-demand would encounter an-
other serious (and often common) issue if the dataset itself
is too big for the memory.

All these crucial issues motivate us to develop hashing al-
gorithms to approximate CoRE kernels by linear kernels.

2At the time this paper was written, the implementation of
LIBSVM restricted the maximum size of the kernel matrix. The
LIBSVM team recently has made effort on this issue and it is ex-
pected such a restriction will be removed in the new release. We
highly appreciate Dr. Chih-Jen Lin and his team for the efforts.
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2.5 Benefits of Hashing

Our goal is to develop good probabilistic hashing algo-
rithms to (approximately) transform our proposed nonlin-
ear CoRE kernels into linear kernels. Once we have the
new data representations (i.e., the hashed data), we can use
highly efficient batch or stochastic linear methods for train-
ing SVM (or logistic regression) [15, 24, 1, 8].

Another benefit of hashing would be in the context of ap-
proximate near neighbor search because probabilistic hash-
ing provides a (often good) strategy for space partitioning
(i.e., bucketing) which will help reduce the search time
(i.e., no need to scan all data points). Our proposed hashing
methods can be modified to become an instance of locality
sensitive hashing (LSH) [13] in the space of CoRE kernels.

At this stage, we will focus on developing hashing algo-
rithms for CoRE kernels based on the standard random pro-
jection and minwise hashing methods. There will be plenty
of room for improvement which we leave for future work.

We first provide a review of the two basic building blocks.

3 REVIEW OF RANDOM PROJECTIONS
AND MINWISE HASHING

Typically, the method of random projections is used for
dense high-dimensional data, while the method of minwise
hashing is very useful for sparse (often binary) data. The
proposed hashing algorithms for CoRE kernels combine
random projections and minwise hashing.

3.1 Random Projections

Consider two vectors u, v ∈ RD. The idea of random pro-
jection is simple. We first generate a random vector of i.i.d.
entries ri, i = 1 to D, and then compute the inner products
as the hashed values:

P (u) =
D∑

i=1

uiri, P (v) =
D∑

i=1

viri (5)

For the convenience of theoretical analysis, we adopt the
choice of ri ∼ N(0, 1), which is a typical choice in the
literature. Several variants of random projections like [21,
28] are essentially equivalent, as analyzed in [22].

In this study, we always assume the data are normalized,
i.e.,

∑D
i=1 u2

i =
∑D

i=1 v2
i = 1. Note that computing

the l2 norms of all the data points only requires scanning
the data once which is anyway needed during data col-
lection/processing. For normalized data, it is known that
E [P (u)P (v)] = ρ. In order to estimate ρ, we need to use
k random projections to generate Pj(u), Pj(v), j = 1 to k,
and estimate ρ by 1

k

∑k
j=1 Pj(u)Pj(v), which is also an in-

ner product. This means we can directly use the projected
data to build a linear classifier.

3.2 Minwise Hashing

The method of minwise hashing [3] is very popular for
computing set similarities, especially for industrial appli-
cations, for example, [3, 9, 12, 26, 14, 7, 11, 23, 4].

Consider the space of the column numbers: Ω =
{1, 2, 3, ..., D}. We assume a random permutation π :
Ω −→ Ω and apply π on the coordinates of both vec-
tors u and v. For example, consider D = 4, u =
[0, 0.45, 0.89, 0] and π : 1 → 3, 2 → 1, 3 →
4, 4 → 2. Then the permuted vector becomes π(u) =
[0.45, 0, 0, 0.89]. In this example, the first nonzero col-
umn of π(u) is 1, and the corresponding value of the coor-
dinate is 0.45. For convenience, we introduce the following
notation:

L(u) = location of first nonzero entry of π(u) (6)
V (u) = value of first nonzero entry of π(u) (7)

In this example, we have L(u) = 1 and V (u) = 0.45.

The well-known collision probability

Pr (L(u) = L(v)) = R(u, v) = R (8)

can be used to estimate the resemblance R. To do so, we
need to generate k permutations πj , j = 1 to k.

4 HASHING CORE KERNELS

The goal is to develop unbiased linear estimators of CoRE
Kernels KC,1 and KC,2. Linear estimators can be written
as inner products. We assume that we have already con-
ducted random projections and minwise hashing k times.
In other words, for each data vector u, we have the hashed
values Pj(u), Lj(u), Vj(u), j = 1 to k. Recall the defini-
tions of Pj , Lj , Vj in (5), (6), and (7), respectively.

4.1 Hashing Type 1 CoRE Kernel

Our proposed estimator of KC,1 is

K̂C,1(u, v) =
k∑

j=1

Pj(u)Pj(v)1{Lj(u) = Lj(v)} (9)

The following Theorem 1 shows K̂C,1 is an unbiased esti-
mator and provides its variance.

Theorem 1

E
(
K̂C,1

)
= KC,1 (10)

V ar
(
K̂C,1

)
=

1

k

{(
1 + 2ρ2

)
R − ρ2R2

}
(11)

Proof: See Appendix A. �
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A simple argument can show that K̂C,1 could be written
as an inner product and hence KC,1 is positive definite.
Although this fact is obvious since KC,1 is a product of
two positive definite kernels, we would like to present a
constructive proof because the construction is basically the
same procedure for expanding the hashed data before feed-
ing them to a linear SVM solver.

Recall, Lj is the location of the first nonzero after minwise
hashing. Basically, we can view Lj(u) equivalently as a
vector of length D whose coordinates are all zero except
the Lj(u)-th coordinate. The value of the only nonzero
coordinate will be Pj(u). For example, suppose D = 4,
Lj(u) = 2, Pj(u) = 0.1. Then the equivalent vector would
be [0, 0.1, 0, 0]. With k projections and k permutations,
we can have k such vectors. This way, we can write K̂C,1 as
an inner product of two D × k-dimensional sparse vectors.

Note that the input data format of standard SVM packages
is the sparse format. For linear SVM, the cost is essentially
determined by the number of nonzeros (in this case, k), not
much to do with the dimensionality (unless it is too high).
If D is too high, then we can adopt the standard trick of
b-bit minwise hashing [22] by only using the lowest b bits
of Lj(u). This will lead to an efficient implementation.

4.2 Hashing Type 2 CoRE Kernel

Our proposed estimator for Type 2 CoRE Kernel is

K̂C,2 =

√
f1f2

k

k∑

j=1

Vj(u)Vj(v)1{Lj(u) = Lj(v)} (12)

Recall that we always assume the data (u, v) are normal-
ized. For example, if the data are binary, then we have
ui = 1√

f1
, vi = 1√

f2
. Hence the values Vj(u) and Vj(v)

are small (and we need the term
√

f1f2).

This estimator is again unbiased. Theorem 2 proves the
mean the variance of K̂C,2.

Theorem 2

E
(
K̂C,2

)
= KC,2 (13)

V ar
(
K̂C,2

)
(14)

=
1

k

f1f2

f1 + f2 − a




D∑

i=1

u2
i v

2
i −

(∑D
i=1 uivi

)2

(f1 + f2 − a)




Proof: See Appendix B. �

Once we understand how to express K̂C,1 as an inner prod-
uct, it should be easy to see that K̂C,2 can also be written
as an inner product. Again, suppose D = 4, Lj(u) = 2,
and Vj(u) = 0.05. We can consider an equivalent vector

[0, 0.05
√

f1, 0, 0]. In other words, the difference between
K̂C,1 and K̂C,2 is what value we should put in the nonzero
location. Compared to K̂C,1, one advantage of K̂C,2 is that
it only requires the permutations and thus eliminates the
cost for conducting random projections.

As one would expect, the variance of K̂C,2 would be
large if the data are heavy-tailed. However, when the
data are appropriately normalized (e.g., via the TF-IDF
transformation, or simply binarized), V ar

(
K̂C,2

)
is ac-

tually quite small. Consider the extreme case when the
data are binary, i.e., ui = 1√

f1
, vi = 1√

f2
, we have

V ar
(
K̂C,2

)
= 1

k

(
R − R2

)
, which is (considerably)

smaller than V ar
(
K̂C,1

)
= 1

k

{(
1 + 2ρ2

)
R − ρ2R2

}
.

4.3 Experiment for Validation

To validate the theoretical results in Theorem 1 and The-
orem 2, we provide a set of experiments in Figure 3. Two
pairs of word vectors are selected: “A–THE” and “HONG–
KONG”, from a chuck of web crawls. For example, the
vector “HONG” is a vector whose i-th entry is the number
of occurrences of the word “HONG” in the i-th document.
For each pair, we apply the two proposed hashing algo-
rithms to estimate KC,1 and KC,2. With sufficient repeti-
tions (i.e., k), we can empirically compute the mean square
errors (MSE = Var + Bias2), which should match the theo-
retical variances if the estimators are indeed unbiased and
the variance formulas, (11) and (14), are correct.
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Figure 3: Mean square errors (MSE = Var + Bias2) on two
pairs of word vectors for validating Theorems 1 and 2. The
empirical MSEs (solid curves) essentially overlap the the-
oretical variances (dashed curves), (11) and (14). When
using the raw counts (left panels), the MSEs of K̂C,2 is sig-
nificantly higher than the MSEs of K̂C,1. However, when
using binarized data (right panels), the MSEs of K̂C,2 be-
come noticeably smaller, as expected.
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The number of word occurrences is a typical example of
highly heavy-tailed data. Usually when text data are used
in machine learning tasks, they have to be appropriately
weighted (e.g., TF-IDF) or simply binarized. Figure 3
presents the results on the original data (raw counts) as well
as the binarized data, to verify the formulas in Theorem 1
and Theorem 2, for k = 1 to 1000.

Indeed, the plots show that the empirical MSEs essentially
overlap the theoretical variances. In addition, the MSEs
of K̂C,2 is significantly larger than the MSEs of K̂C,1 on
the raw data, as expected. Once the data are binarized, the
MSEs of K̂C,2 become smaller, also as expected.

5 HASHING CORE KERNELS FOR SVM

In this section, we provide a set of experiments for using
the hashed data as input for a linear SVM solver (LIBLIN-
EAR). Our goal is to approximate the (nonlinear) CoRE
kernels with linear kernels. In Section 4, we have explained
how to express the estimators K̂C,1 and K̂C,2 as inner prod-
ucts by expanding the hashed data. With k permutations
and k random projections, the number of nonzeros of the
expanded data is precisely k. To reduce the dimensionality,
we use only the lowest b bits of the locations [22]. In this
study, we experiment with b = 1, 2, 4, 8.

Figure 4 presents the results on the M-Rotate dataset. As
shown in Figure 1 and Table 1, using linear kernel can
only achieve a test accuracy of 48%. This means, if we
use random projections (or the variants, e.g., [21, 28]),
which approximate inner products, then the best accuracy
we can achieve would be about 48%. For this dataset, the
performance of CoRE kernels (and resemblance kernel) is
astonishing, as shown in Figure 2 and Table 2. Thus, we
choose this dataset to demonstrate our proposed hashing
algorithms combined with linear SVM can also approach
the performance of (nonlinear) CoRE kernels.

To explain the procedure, we use the same examples as in
Section 4. Suppose we apply k minwise hashing and k
random projections on the data and we consider without
loss of generality the data vector u. For the j-th projection
and j-th minwise hashing, suppose Lj(u) = 2, Vj(u) =
0.05, Pj(u) = 0.1. Recall Lj and Vj are, respectively,
the location and the value of the first nonzero entry after
minwise hashing. Pj is the projected value obtained from
random projection.

In order to use linear SVM to approximate kernel SVM
with Type 1 CoRE kernel, for the above example, we ex-
pand the j-th hashed data as a vector [0, 0.1, 0, 0] if b = 2,
or [0, 0.1] if b = 1. We then concatenate k such vectors to
form a vector of length 2b × k (with exactly k nonzeros).
Before we feed the expanded hashed data to LIBLINEAR,
we normalize the vectors to have unit norm. The experi-
mental results are presented in the left panels of Figure 4.

To approximate Type 2 CoRE kernel, we expand the j-
th hashed data of u as [0, 0.05

√
f1, 0, 0] if b = 2, or

[0, 0.05
√

f1] if b = 1, where f1 is the number of nonzero
entries in the original data vector u. Again, we concatenate
k such vectors. The experimental results are presented in
the middle panels of Figure 4.

To approximate resemblance kernel, we expand the j-th
hashed data of u as [0, 1, 0, 0] if b = 2 or [0, 1] if b = 1
and we concatenate k such vectors.

The results in Figure 4 are exciting because linear SVM
on the original data can only achieve an accuracy of 48%.
Our proposed hashing methods + linear SVM can achieve
> 86%. In comparison, using only the original b-bit
minwise hashing, the accuracy can still reach about 80%.
Again, we should mention that other hashing algorithms
which aim at approximating the inner product (such as ran-
dom projections and variants) can at most achieve the same
result as using linear SVM on the original data. This is the
significant advantage of CoRE kernels.

6 DISCUSSIONIS

There is a line of related work called Conditional Ran-
dom Sampling (CRS) [19, 20] which was also designed for
sparse non-binary data. Basically, the idea of CRS is to
keep the first (smallest) k nonzero entries after applying
one permutation on the data. [19, 20] developed the trick
to construct an (essentially) equivalent random sample for
each pair. CRS is naturally applicable to non-binary data
and is capable of estimating any (linear) summary statistics,
in static as well as dynamic (streaming) settings. In fact, the
estimators developed for CRS can be (substantially) more
accurate than the estimator for minwise hashing.

The major drawback of CRS is that the samples are not ap-
propriately aligned. Consequently, CRS is not suitable for
training linear SVM (or other applications which require
the input data to be in a metric space). Our method has
overcome this drawback. Of course, CRS can still be used
in important scenarios such as estimating similarities dur-
ing the re-ranking stage in LSH.

Why do we need to two types of CoRE kernels? While
hashing Type 2 CoRE kernel is simpler because it requires
only the random permutations, Table 2 shows that Type 1
CoRE kernel can often achieve better results than Type 2
CoRE kernel. Therefore, we develop hashing methods for
both CoRE kernels, to provide users with more choices.

There are many promising extensions. For example, we
can construct new kernels based on CoRE kernels (which
currently do not have tuning parameters), by using the ex-
ponential function and introducing an additional tuning pa-
rameter γ, just like RBF kernel. This will allow more flex-
ibility and potentially further improve the performance.
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Figure 4: Test classification accuracies on the M-Rotate dataset using our proposed hashing methods and linear SVM
(LIBLINEAR). The red (if color is available) dot curves are the results of kernel SVM on the original data (i.e., the same
curves from Figure 2), using Type 1 CoRE kernel (left panels), Type 2 CoRE kernel (middle panels), and resemblance
kernel (right panels), respectively. We apply both b-bit minwise hashing (with b = 1, 2, 4, 8) and random projections k
times and feed the (expanded) hashed data to linear SVM.
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Another interesting line of extensions would be applying
other hashing algorithms on top of our generated hashed
data. This is possible again because we can view our es-
timators as inner products and hence we can apply other
hashing algorithms which approximate inner products on
top of our hashed data. The advantage is the potential fur-
ther data compression. Another advantage would be in the
context of sublinear time approximate near neighbor search
(when the target similarity is the CoRE kernels).

For example, we can apply another layer of random projec-
tions on top of the hashed data and then store the signs of
the new projected data [6, 10]. These signs, which are bits,
provide good indexing & space partitioning capability to
allow sublinear time approximate near neighbor search un-
der the framework of locality sensitive hashing (LSH) [13].
This way, we can search for near neighbors in the space of
CoRE kernels (instead of the space of inner products).

In addition, we expect that our work will inspire new re-
search on the development of more efficient (b-bit) min-
wise hashing methods when the size of the space (i.e., D)
is not too large and the data are not necessarily extremely
sparse. Traditionally, minwise hashing has been used as a
data size/dimensionality reduction tool, typically for very
large D (e.g., 264). Readers perhaps have noticed that, in
our paper, (b-bit) minwise hashing could be utilized as a
data expansion tool in order to apply efficient linear algo-
rithms. When D is not very large, many aspects of the al-
gorithms such as pseudo-random number generation would
be quite different and new research may be necessary.

7 CONCLUSION

Current popular hashing methods, such as random pro-
jections and variants, often focus on approximating in-
ner products and large-scale linear classifiers (e.g., lin-
ear SVM). However, linear kernels often do not achieve
good performance. In this paper, we propose two types of
nonlinear CoRE kernels which outperform linear kernels,
sometimes by a large margin, on sparse non-binary data
(which are common in practice). Because CoRE kernels
are nonlinear, we accordingly develop basic hash meth-
ods to approximate CoRE kernels with linear kernels. The
hashed data can be fed into highly efficient linear classi-
fiers. Our experiments confirm the findings. We expect this
work will inspire a new line of research on kernel learning,
hashing algorithms, and large-scale learning.
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A Proof of Theorem 1

To compute the expectation and variance of the estimator
K̂C,1 = 1

k

∑k
j=1 Pj(u)Pj(v)1{Lj(u) = Lj(v)}, we need

the first two moments of Pj(u)Pj(v)1{Lj(u) = Lj(v)}.
The first moment is

E [Pj(u)Pj(v)1{Lj(u) = Lj(v)}]

=E [Pj(u)Pj(v)]Pr (Lj(u) = Lj(v)) = ρR

which implies that E
(
K̂C,1

)
= KC,1 = ρR. The second

moment is

E
[
P 2

j (u)P 2
j (v)1{Lj(u) = Lj(v)}

]

=E
[
P 2

j (u)P 2
j (v)

]
Pr (Lj(u) = Lj(v))

=
(
1 + 2ρ2

)
ρR

Here, we have used the result in the prior work [21]:
E

[
P 2

j (u)P 2
j (v)

]
= 1 + 2ρ2. Therefore, the variance is

V ar
(
K̂C,1

)
=

1

k

{(
1 + 2ρ2

)
R − ρ2R2

}

This completes the proof.

B Proof of Theorem 2

We need the first two moments of the estimator K̂C,2 =
1
k

∑k
j=1 Vj(u)Vj(v)1{Lj(u) = Lj(v)}√

f1f2

Because

E [Vj(u)Vj(v)1{Lj(u) = Lj(v)}]

=E [Vj(u)Vj(v)1{Lj(u) = Lj(v)}|Lj(u) = Lj(v)]

× Pr (Lj(u) = Lj(v))

=

∑D
i=1 uivi

a
R = ρ

1

f1 + f2 − a

we know

E
(
K̂C,2

)
=

1

k

k∑

j=1

ρ

√
f1f2

f1 + f2 − a
= KC,2

and

E
[
V 2

j (u)V 2
j (v)1{Lj(u) = Lj(v)}

]

=E
[
V 2

j (u)V 2
j (v)

]
Pr (Lj(u) = Lj(v))

=

∑D
i=1 u2

i v
2
i

a
R =

∑D
i=1 u2

i v
2
i

f1 + f2 − a

Therefore,

V ar
(
K̂C,2

)

=
1

k

f1f2

f1 + f2 − a




D∑

i=1

u2
i v

2
i −

(∑D
i=1 uivi

)2

(f1 + f2 − a)




This completes the proof.
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Abstract

The main shortcoming of sparse recovery with
a convex regularizer is that it is a biased esti-
mator and therefore will result in a suboptimal
performance in many cases. Recent studies have
shown, both theoretically and empirically, that
non-convex regularizer is able to overcome the
biased estimation problem. Although multiple
algorithms have been developed for sparse recov-
ery with non-convex regularization, they are ei-
ther computationally demanding or not equipped
with the desired properties (i.e. optimal recovery
error, selection consistency and oracle property).
In this work, we develop an algorithm for effi-
cient sparse recovery based on proximal gradient
descent. The key feature of the proposed algo-
rithm is introducing adaptive non-convex regu-
larizers whose shrinking threshold vary over it-
erations. The algorithm is compatible with most
popular non-convex regularizers, achieves a ge-
ometric convergence rate for the recovery er-
ror, is selection consistent, and most importantly
has the oracle property. Based on the proposed
framework, we suggest to use a so–called ACCQ
regularizer, which is equivalent to zero proximal
projection gap adaptive hard-thresholding. Ex-
periments with both synthetic data sets and real
images verify both the efficiency and effective-
ness of the proposed method compared to the
state-of-the-art methods for sparse recovery.

1 INTRODUCTION

Inspired by the seminal work of compressive sens-
ing (Candès et al., 2006), numerous algorithms have been

∗Ming Lin and Changshui Zhang are from State Key Labora-
tory on Intelligent Technology and Systems, Tsinghua National
Laboratory for Informatin Science and Technology(TNList), De-
partment of Automation, Tsinghua University, Beijing , P.R.
China 100084.

developed to recover a sparse vector from its linear low
dimensional measurement. Most of these algorithms can
be classified into two categories: greedy methods and
optimization–based methods. Greedy methods aggres-
sively select the support set as they recover the target sparse
vector ((Tropp and Wright, 2010) and references therein).
Although they are computationally efficient, the greedy
methods are usually sensitive to noise especially when the
target signal is not exactly sparse. Optimization–based
methods, on the other hand, are known to be more robust
to noise but at the price of a higher computational cost
(Zou and Hastie, 2005; Rosenbaum and Tsybakov, 2010;
Xu et al., 2010).

Most optimization–based methods cast sparse recovery
into convex optimization problems. The most well known
algorithms in this category are LASSO (Tibshirani, 1996;
Efron et al., 2004) and Dantzig selector (Candes and Tao,
2007). A main drawback of convex optimization based
methods for sparse recovery is that they are biased esti-
mators, i.e. the solutions found by the convex optimization
based methods do not have the oracle property (Fan and
Li, 2001; Zhang and Zhang, 2011), which is sometime re-
ferred to as Lasso bias (Zhang and Zhang, 2011). We note
that there are two different versions of oracle property used
in the literature: the asymptotical one that examines the
oracle property with the number of measurements going to
infinity (Fan and Li, 2001) and the finite sample one (Zhang
and Zhang, 2011) that examines the oracle property with a
finite number of measurements. In this study, we will use
the finite sample version of oracle property.

It was first suggested in (Fan and Li, 2001) that the Lasso
bias can be corrected by a non–convex regularizer. Sev-
eral theory and algorithms have been developed recently
for sparse recovery using concave regularizers (Zhang and
Zhang, 2011; Zhang, 2012; Loh and Wainwright, 2013),
and their effectiveness for sparse recovery has been verified
empirically by several recent studies (Xiang et al., 2013;
Gong et al., 2013a; Ochs et al., 2013). Despite the appeal-
ing result, it remains to be challenging as how to efficiently
solve the optimization problem with non-convex regular-
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izer.

Zhang (2012) proposed a multi-stage algorithm that re-
laxes a non–convex optimization problem into a sequence
of convex optimization problems with weighted `1 regular-
izers. Besides the recovery error, the author also showed
in (Zhang, 2012) that the solution found by multi-stage al-
gorithm satisfies the oracle property when the non-zero en-
tries in the target sparse vector are sufficiently large. The
main shortcoming of the multi-stage algorithm is its po-
tentially high computational cost as it needs to solve a se-
quence of `1 regularized optimization problems. (Zhao-
ran Wang, 2013) relax this problem by computing approxi-
mate solution at each stage, but still require multiple stages
thus is not very efficient. Several proximal gradient descent
methods have been proposed for non-convex regularizers
(Gong et al., 2013b; Loh and Wainwright, 2013) that enjoy
higher computational efficiency than the multi-stage algo-
rithm. However, it is unclear if the solutions found by these
algorithms will be unbiased estimators and have the oracle
property, the key reason for using a non-convex regularizer.

In this work, we propose an algorithm for sparse recovery
using adaptive non-convex regularizer to develop efficient
algorithms with all the desired properties above. The pro-
posed framework, on one hand, enjoys the high computa-
tional efficiency and achieves a linear convergence rate in
the recovery error as some of the proximal gradient descent
methods do. On the other hand, like the multi-stage algo-
rithm, the proposed framewrok is able to find a sparse solu-
tion with optimal recovery error, selection consistency, and
oracle property under appropriate conditions. The key fea-
ture introduced by the proposed framework is introducing
adaptive concave regularizers whose shrinking-threshold
vary over iterations. It is the introduction of the adaptive
concave regularizer that allows us to effectively remove the
noise and identify the support set, leading to high computa-
tional efficiency and a solution with optimal recovery error
and oracle property.

Although the proposed algorithm is compatible with most
popular non-convex regularizers, via a more deep examina-
tion, we find that the type of non-convex regularizer is not
important at all. What really matters is the so–called prox-
imal projection gap that will be defined later. This gap de-
termines the bias of regularizer in sparse estimation. Based
on this discovery, we propose to use a so–called ACCQ reg-
ularizer, whose proximal projection gap is zero. From op-
timization viewpoint, the ACCQ regularizer is equivalent
to one kind of hard-thresholding algorithms with adaptive
threshold. The ACCQ regularizer is the only regularizer
whose projection gap is zero, thus is surperior than other
alternatives.

The rest of this paper is organized as following. Section 2
reviews the related work. Section 3 describes the proposed
algorithm for sparse recovery. Section 4 analyzes theoreti-

cal properties. Experimental results with both synthesized
and real data sets are summarized in Section 5. Section 6
encloses our study with open questions.

2 RELATED WORK

We briefly review the related work on sparse recovery, with
focus on non-convex regularizer. More complete refer-
ences on the related subject can be found in (Tropp and
Wright, 2010), (Davenport et al., 2011) and (Zhang and
Zhang, 2011).

Most sparse recovery methods are based on `1 regulariza-
tion. The most well algorithm is LASSO (Tibshirani, 1996;
Efron et al., 2004). Numerous algorithms have been de-
velop to solve LASSO related optimization problem effi-
ciently (Beck and Teboulle, 2009; Foucart, 2012). It has
been shown that `1 regularization can be solved efficiently
with a linear convergence (up to stochastic tolerance) (Xiao
and Zhang, 2012; Agarwal et al., 2012). A main problem
with LASSO is that it is a biased estimator. In particular,
LASSO is unable to perfectly recover the solution of ora-
cle Least Square Estimation (LSE), a property that is usu-
ally referred to as oracle property. We emphasize that the
LASSO bias is not an artifact of analysis, and it does show
up noticeably in the recovery error, according to our em-
pirical study as well as others (Zhang, 2012; Zou, 2006). It
was pointed out in (Fan and Li, 2001; Zhang and Zhang,
2011) that LASSO bias also exists in other convex regular-
izers.

Multiple non-convex regularizers have been proposed to
address the bias of convex regularizers, including Geman
Penalty (GP) (Geman and Yang, 1995; Trzasko and Mand-
uca, 2009), SCAD (Fan and Li, 2001), Log Sum Penalty
(LSP) (Candes et al., 2008), `q norm (Foucart and Lai,
2009), Minimax Concave Penalty (MCP) (Zhang, 2010a),
Capped–`1 norm (Loh and Wainwright, 2013). Various al-
gorithms have been developed to find local optimal for non-
convex regularizers( (Zhang and Zhang, 2011) and refer-
ences therein). It is however unclear if the local solutions
found by these algorithms have the desired properties (i.e.
the optimal recovery error and the oracle property). Only a
handful algorithms that achieve the desired properties, in-
cluding the multi-stage algorithm (Zhang, 2010b), adap-
tive LASSO (Zou, 2006) that can be shown as a special
case of multi-stage algorithm and achieve the asymptotical
oracle property, and the forward and backward regression
scheme (FOBA) (Zhang, 2011), based on adaptive regular-
ization, also finds the solutions with all the desired proper-
ties. FOBA is guaranteed to terminiate within O(s) itera-
tions, where s is the sparsity. The main limitation of FOBA
is that it is unclear if the oracle property recovery error of
their algorithm can achieve a linear convergence rate. Each
iteration of FOBA is an optimization problem therefore is
not efficient. Ji Liu (2013) propose an variant of FOBA but
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they still suffer the same problem. The FOBA and its vari-
ants make different assumptions that is complementary to
our analysis. Although the multi-stage algorithm achieves a
linear convergence, it requires to solve a weighted `1 regu-
larization problem that can be computationally costly when
the dimension of data is high.

3 SPARSE RECOVERY BY ADAPTIVE
NON-CONVEX REGULARIZER

In this section, we first introduce the background materi-
als and notations for sparse recovery. We then present our
algorithm and its main theoretical property. The sketch of
proofs is given at the end of this section.

3.1 BACKGROUNDS AND NOTATIONS

Let A be an n × d design matrix and y ∈ Rn be response
vector satisfying

y = Ax∗ + z , (1)

where x∗ ∈ Rd is the s-sparse vector to be recovered
and z ∈ Rn is a noise vector. We assume that each
element [A>z]i follows a subgaussian distribution with
‖[A>z]i‖ψ2

≤ σ
√
n, i = 1, . . . , d, where σ indicates the

noise level in z and ‖ · ‖ψ2
is Orlicz norm (Koltchinskii,

2011). Using the property of subgaussianianity, we have,
with a high probability (1− d−3),

‖[Az]i‖∞ ≤ 2σ
√
n log d (2)

For the rest of the paper, we will simply assume condition
(2) holds.

Following (Candes and Tao, 2005), we assume A satisfies
Restricted Isometric Property (R.I.P.) defined as follows.

Definition 1 (Restricted Isometric Property). A matrix A
satifies δs–R.I.P. condition, if there exits a possitive con-
stant δs such that for all s-sparse vector x,

(1− δs) ‖x‖22 ≤
1

n
‖Ax‖22 ≤ (1 + δs) ‖x‖22 . (3)

A is called δs,s–restricted orthogonal, if there exists a pos-
sitive constant δs,s such that for any two s–sparse vector
u,v whose support sets are disjoint,

1

n
|〈Au, Av〉| ≤ δs,s‖u‖2‖v‖2 . (4)

Small δs and δs,s indicate that A is approximately isomet-
ric on sparse subspace and any two set of s columns are
approximately orthogonal if they are disjoint. In the rest of
this paper, we will say A is δ–R.I.P. when both (3) and (4)
are satisfied with δ = max{δ2s, δs,s}.

Algorithm 1 Proximal Gradient Descent With Adaptive
Capped Concave Quadratic (ACCQ) Regularizer
Input: the size of target vector R ≥ ‖x∗‖2, design matrix
A, measurements y, threshold θ, shrinking parameter q ∈
(0, 1), and number of iterations T

1: Initialization: x1 = 0
2: for t = 1 to T do
3: Compute τt by τt = Rqt−1 + θ
4: Compute x̂t+1 by x̂t+1 = xt −∇L(xt)
5: Update xt+1 using (8)
6: end for

Output: xT+1

There are other alternative conditions for spare recovery
which are more general than R.I.P, such as restricted eigen-
value condition (Bickel et al., 2009). A complete list of
conditions for sparse recovery and their comparison can
be found (Van De Geer and Bühlmann, 2009). We choose
R.I.P condition due to its simplicity, and extension to more
general cases will be studied in the future. From now on we
will assume that A is δ–R.I.P.. In experiments we gener-
ate A from random Gaussian distribution, which is widely
known to obey the R.I.P. with a high probability.

To recover the sparse vector x∗, a common approach is to
minimize the regularized empirical loss

min
x

1

2n
‖y −Ax‖22 + Ω(x) , (5)

where Ω(x) is a regularizer that controls the sparsity of the
solution. To remove the LASSO bias, a non-convex regu-
larizer is used for Ω(x), leading to a non-convex optimiza-
tion problem that is not only difficult to solve numerically
and but also challenging to analyze the theoretical proper-
ties for the found solution.

The following notation will be used throughout this paper.
For a vector x, we denote by [x]i the i-the entry of x, by
|x|i the absolute value of [x]i, by [x]A the subvector of x
that only includes the elements in the index setA ⊆ [d], and
by λmin(x) the minimum absolute value of the non-zero
entries in x. We will use supp(x) for the support set for a
vector x. We will use ‖x‖2, ‖x‖1, and ‖x‖∞ to represent
the `2, `1, and `∞ norm of vector x. We will denote by S∗
the support set of x∗ and by St the support set for xt.

3.2 PROXIMAL GRADIENT DESCENT USING
ADAPTIVE CAPPED CONCAVE QUADRATIC
(ACCQ) REGULARIZER

The proposed framework essentially follows the proximal
gradient descent method that has been widely used in con-
vex optimization. At each iteration, we first obtain an aux-
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iliary solution x̂t by

x̂t = xt −∇L(xt)

where L(x) =
1

2n
‖y −Ax‖22

. (6)

The updated solution xt+1 is then given by

xt+1 = arg min
x

1

2
‖x− x̂t‖22 + Ωt(x) (7)

where the regularizer Ωt has a subscript t and therefore
varies from trial to trial.

To ensure Eq. (7) leading to an unbiased sparse estima-
tion, we make some assumptions on the adaptive regular-
izer Ωt(x). The type of Ωt(x) is not important at all. We
only care about its shrinking strategy in step Eq. (7).

Assumption 1. Define variables τt and constant α. The
adaptive non-convex regularizer Ωt(x) in Eq. (7) shrinks
x̂t in the following way:

• For |x̂t|i < τt, [xt+1]i = 0.
• For |x̂t|i > τt + α, [xt+1]i = [x̂t]i.
• For τt ≤ |x̂t|i ≤ τt + α, 0 < [xt+1]i < [x̂t]i.

The τt is a threshold parameter that adaptively shrinks
over iterations. We will describe the updating rule of τt
later in Eq. (9). α is called proximal projection gap. In
Assumption 1, if the intermedia solution |x̂t|i is outside
[τt, τt + α], the proximal projection of Ωt is equivalent
to hard-thresholding. Otherwise |x̂t|i is projected onto
(0, |x̂t|i), whose value depends on the specific regularizer
being used. The hard-thresholding is the key to unbias es-
timation, which is only possible when using non-convex
regularizer. The proximal projection gap α reflects the non-
convexity of Ωt(x) in the proximal projection. For con-
vex regularizer, α is infinity by definition because they are
soft-thresholding methods that never do hard-thresholding.
For a particular non-convex regularizer, we natually prefer
small α to avoid involving bias as much as possible.

The shrinking strategy of non-convex regularizer is very
similar to greedy algorithms. The following concavity
assumption distinguish non-convex methods from greedy
methods, which at the same time build a bridge of the two
realms.

Assumption 2. Ωt(x) is concave in x :

Ωt(x1)−Ωt(x2) ≤ 〈∂Ωt(x2),x1 − x2〉 , ‖∂Ωt(x)‖ ≤ τt ,

where ∂Ωt(x) is the subgradient.

Most popular static non-convex regularizer and their adap-
tive variants fit Assumption 1 and Assumption 2, with dif-
ferent τt and α. We list a few of them in Table 1. We notice
that in Table 1, most regularizers’ α is not zero. Although
our theory could deal with non-zero α, we natually hope

there is a regularizer that doesn’t need to suffer this gap α,
which results in a better estimation. Inspired by this obser-
vation, we introduce Adaptive Capped Concave Quadratic
regularizer (ACCQ) , defined in the last row of Table 1.
Clearly, this regularizer is the only hard-thresholding regu-
larizer whose proximal projection gap is zero. It is proxi-
mal projection is given by :

[xt+1]i =

{
[x̂t]i |x̂t|i ≥ τt
0 otherwise

(8)

This specific adaptive hard-thresholding strategy allows us
to correct the LASSO bias and consequentially achieve the
oracle property when the signals in the target vectors are
strong.

In the rest of this paper, we only focus on ACCQ and its
recovery properties. For regularizers with α > 0, all of the
following theorems hold true except an extra α in the upper
bound. Therefore they are always suboptimal compared
with ACCQ.

Threshold parameter τt is determined by the following
equation

τt = Rqt−1 + θ . (9)

• Threshold parameter θ > 0 determines the lower
bound for τt. It is introduced to ensure that the reg-
ularization is strong enough to overcome the noise.
• Shrinking parameter q ∈ (0, 1) controls the speed

of shrinkage. The idea of using a shrinking regular-
izer is motivated by a simple observation: as we go
through the iteration t, we expect the solution xt will
approach the target vector x∗ with a smaller error.
As a result, only a smaller regularization is needed
to overcome the noise caused by the recovery error.
We note that similar shrinking strategy has been used
in sparse recovery with the `1 regularizer (Xiao and
Zhang, 2012).

Algorithm 1 gives the details for the proposed algorithm.

Remark 1 In practice, the settings of q and θ is robust, as
suggested by our theorems and experiments. We suggest to
set 0.9 ≤ q < 1 and θ ∈ [O(σ/

√
n), λmin(x∗)]. For exam-

ple, q = 0.95, θ = 0.005 usually satisfies our assumption
and works well in practice.

Remark 2 It is interesting to compare Algorithm 1 with
greedy hard-thresholding algorithms like GraDeS. GraDeS
keeps exactly s entries at each iteration, even if the small-
est s-th entry contains large noise. The proposed algorithm
gradually collects entries according to their magnitude and
current estimation uncertainty. It doesn’t keep entries that
contain large noise, so at the beginning of each iteration, it
will keep less than s entries. Another greedy algorithm is
OMP, which greedy select entries then keep them as sup-
port set. OMP must ensure that it always collect right entry
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Table 1: Adaptive Regularizers And Proximal Projection Gap
Name Ωt(xi) Gap α
adaptive `1 norm τtλ|xi| ∞
adaptive capped `1 norm τtλmin(|xi|, θ) θ > 0 τt(θ − λ)

adaptive MCP τtλ
∫ |xi|
0

min(1, [θλ−xi]+(θ−1)λ ) dx θ ≥ 2 τt(θ − 1)λ

ACCQ ΩCCQ
t (x) =

∑d
i=1

{
− 1

2 (|x|i − τt)2 + 1
2τ

2
t |x|i < τt

1
2τ

2
t otherwise

0

at each iteration, otherwise it will fail definitely. The pro-
pose algorithm adaptively throw out entries that is collected
in the previous iterations. This strategy is clealy much more
robst against noise.

3.3 MAIN THEORETICAL RESULTS

The following theorem shows that the recovery error for
Algorithm 1 is reduced exponentially, and all the interme-
diate solutions are 2s-sparse.

Theorem 1. Assume x∗ is s-sparse, and 6δ < 1. Set pa-
rameter q, and θ in Algorithm 1 as

q = max

(
3δ, 2

√
δ

1− 2δ

)
, θ = 2σ

√
log d

n
(10)

Let x1, . . . ,xT be the sequence of solutions output from
algorithm 1. Let St be the support set for xt and let S∗ be
the support set for x∗. We have

|St \ S∗| ≤ s, ‖xt − x∗‖2 ≤ Rqt−1 +
4σ

1− q

√
s log d

n
(11)

First, as revealed by Theorem 1, the recovery error will
converge geometrically to O(σ

√
s log d/n), which has

shown to be minimax optimal in (Raskutti et al., 2009).
Second, as indicated in (11), all the intermediate solutions
are at most 2s-sparse, making it computational appealing
as our algorithm only needs to maintain a vector of no
more than 2s non-zero entries. This is similar to itera-
tive hard thresholding algorithms (e.g. (Garg and Khan-
dekar, 2009) ). Finally, the linear convergence takes place
when δ ≤ 1/6, which worse than some other conditions
on δ (e.g. (Garg and Khandekar, 2009)). We believe that
this condition is improvable by more carefully tuning the
inequalities in our analysis via similar techniques demon-
strated in (Garg and Khandekar, 2009).

Next, we will show that the solution found by Algo-
rithm 1 is selection consistent and has the oracle property
if λmin(x∗), the smallest absolute value for the non-zero
entries in x∗, is larger than O(σ

√
log d/n). To this end,

we first define the solution of Least Square Oracle (LSE)
estimation.

Definition 2 (Least Square Oracle (LSE)). The Least
Square Oracle estimation is the least square estimation of
x∗ by assuming that the support set S∗ of x∗ is provided.
The LSE solution xo is given by

xo = xS∗ = (A>S∗AS∗)
−1A>S∗y.

Definition 3 (Selection Consistent and Oracle Property).
An estimator is selection consistent if the estimated solu-
tion x̂ satisfies supp(x̂) = supp(x∗), and has the oracle
property if x̂ = xo.

We note that since the solution of oracle LSE xo is ob-
tained without using any regularizer, the oracle property
(i.e. x̂ = xo) essentially ensures that the sparse recovery al-
gorithm will not be biased by the regularizer, of course un-
der the assumption that λmin(x∗) is sufficiently large. We
note that the early definition of oracle property (e.g. (Fan
and Li, 2001)) requires x̂S∗ − xo converge to a Gaussian
random vector when the number of measurements n goes
to infinity, which is weaker than the finite sample version
defined above.

Theorem 2. Assume 6δ < 1 and with q and θ set in (10).
Define

t0 = log2

(
max(R, 1)

σ

√
log d

n

)

Then, we have St = S∗ for t > t0 (i.e. selection consis-
tency) and

‖xt − xo‖2 ≤
(

3δ

1− 3δ

)(t−t0)/2 8σ

1− q

√
s log d

n

if

λmin(x∗) ≥
4σ

1− δ

√
2

log d

n
(12)

and

s ≤ 1

50δ
(1− q)2(2− 1

1− δ ) (13)

As revealed by the above theorem, xo, the solution of or-
acle LSE, can be perfectly recovered by Algorithm 1 with
sufficiently large number of iterations, provided (i) the non-
zero entries in x∗ are sufficiently large, and (ii) the RIP
constant δ is sufficiently small.
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Remark 1 Eq. (13) is essentially a particular form of
Generalized Uncertainty Principle (GUP) (Candès et al.,
2006). GUP claims that for any compress sensing meth-
ods, the number s of non-zeros elements in x∗ couldn’t be
larger than half of the number n of frequence sampling,
i.e., s ≤ 0.5n. Otherwise there is no algorithm could re-
cover the sparse signal. In Eq. (13), generally speaking,
δ = O(1/n). So Eq. (13) is claiming that s should be
smaller than

s ≤ cn ,

where c is a constant. The constant c given by Eq. (13)
is slightly loose than 1/2 which is proven to be optimal in
GUP. We believe this could be refined by carefully tuning
the inequalities in our analysis.

Remark 2 λmin(x∗) in Eq. (12) doesn’t contain
√
s

thanks to the non-convexity of ACCQ. For convex regu-
larizer, λmin(x∗) = O(

√
sσ) therefore is significantly sub-

optimal compared to Eq. (12).

Remark 3 If the proximal projection gap α > 0, Eq. (12)
should be modified as :

λmin(x∗) ≥ O(

√
log d

n
+ α) .

This is inferior than α = 0. For α > 0, the proof is similar.
We will explore α > 0 in the journal version of this paper.

3.4 PROOF SKETCH

In this analysis, we provide a sketch of proof for Theo-
rem 1. The proof for Theorem 2 mostly follows the analysis
of Theorem 1 by carefully exploiting the property of non-
convex regularizer. All the detailed proofs can be found in
the supplementary document.

The first step toward the proof for Theorem 1 is to show
that the solution xt+1 will be sparse if xt is sparse, which
is revealed by the following theorem.

Theorem 3. Assume |S∗| ≤ s, and |St \ S∗| ≤ s. Then, if
we set

τt ≥
3δ√
s
‖xt − x∗‖2 + 2σ

√
log d

n
,

we have |St+1 \ S∗| ≤ s.

In the second step, we show in the theorem below that
the recovery error will be reduced exponentially, up to the
stochastic tolerance (i.e. O(σ

√
s log d/n)).

Theorem 4. Assume |S∗| ≤ s, |St \ S∗| ≤ s, and ‖xt −
x∗‖2 ≤ ∆t. Then, by setting

τt =
3δ√
s

∆t + 2σ

√
log d

n
,

we have

‖xt+1 − x∗‖2 ≤ q∆t + 4σ

√
s log d

n

where

q = max

(
3δ, 2

√
δ

1− 2δ

)

With the above two theorems, we will show Theorem 1 by
induction. Since ‖x1 − x∗‖2 = ‖x∗‖2 ≤ R, Theorem 1
holds for t = 1. Let’s assume that it holds for xt. Using
Theorem 3, we have that xt+1 is a 2s sparse vector with
|St+1 \ S∗| ≤ s. Using Theorem 4, we have

‖xt+1 − x∗‖2 ≤ q∆t + 4σ

√
s log d

n

≤ qtR+
4σ

1− q

√
s log d

n

4 EXPERIMENTS

Since there are thounsands of papers discussing compress
sensing, it it impossible to compare every method pub-
lished in this paper. We mainly select methods with the-
oretical gaurantees and provable geometrical convergence
rate. We compare Algorithm 1 (ACCQ) with five baseline
methods:

• the greedy hard thresholding method (GraDeS) (Garg
and Khandekar, 2009),

• Multiple Stage Capped `1–norm method
(MSCL1) (Zhang, 2012),

• non–convex proximal gradient descent with MCP (P–
MCP) (Loh and Wainwright, 2013),

• the GIST method (Gong et al., 2013b), and
• Homotopy LASSO (LASSO) (Xiao and Zhang,

2012).

GraDeS is a greedy hard thresholding method with a ge-
ometrical convergence rate. We set γ = 3 in GraDeS as
recommended in (Garg and Khandekar, 2009). Homotopy
LASSO is a LASSO solver with geometrical convergence
rate. We tune the regularizer parameter λ in Homotopy
LASSO in set {1, 0.1, 10−2, 10−3, 10−4}, and report the
best performance. MSCL1, GIST and P–MCP are based
on non–convex regularizers. The threshold parameter θ
in MSCL1 is set to be θ = λmin(x∗)/2 = 0.05. Any
θ < λmin(x∗) should work as well (Zhang, 2012). Here
we choose θ = λmin(x∗)/2 because it is at the same time
large enough to suppress the noise. For the proposed algo-
rithm, we similarly set θ = λmin(x∗)/2 = 0.05. We tune
parameter q in the set {0.8, 0.9, 0.95, 0.99, 0.995}.
Two metrics are used to evaluate the recovery performance
of different algorithms. To evaluate the recovery error, we
follow compress sensing settings (Candes and Tao, 2005;

510



Table 2: Dataset Statistics
d ‖x∗‖0 ‖x∗‖∞ ‖x∗‖2 λmin(x∗)

airplanes 6.3× 104 ± 6× 103 4.2× 102 ± 92 0.36± 0.059 0.96± 0.011 0.01
butterfly 7× 104 ± 1× 104 6.3× 102 ± 2.6× 102 0.28± 0.084 0.93± 0.045 0.01
camera 7.4× 104 ± 1.5× 104 5× 102 ± 1.6× 102 0.33± 0.11 0.94± 0.019 0.01
dolphin 6.4× 104 ± 1.1× 104 6× 102 ± 2.1× 102 0.27± 0.061 0.94± 0.027 0.01

Statistics of dataset of each category. d the dimension of x∗. ‖x∗‖0 is the number of non-zero entries in x∗. ‖x∗‖∞ is the
maximal amplitude of entries in x∗. ‖x∗‖2 is the `2–norm of x∗. λmin(x∗) is the smallest absolute value of the non-zero
entries in x∗. All numbers in the table are average values plus variances.

Table 3: Support Set Recovery Errors εsupp
LASSO GraDeS MSCL1 P-MCP GIST ACCQ

airplanes
σ = 0 2.1× 10−3 0.0× 100 0.0× 100 2.0× 10−1 0.0× 100 0.0× 100

σ = 0.01 5.9× 10−2 8.2× 10−3 2.1× 10−4 2.0× 10−1 1.7× 10−1 0.0× 100

σ = 0.1 6.0× 10−2 1.5× 10−3 5.3× 10−4 4.0× 10−1 4.4× 10−2 1.6× 10−4

butterfly
σ = 0 3.8× 10−2 7.9× 10−3 4.4× 10−3 4.1× 10−1 5.9× 10−3 3.1× 10−3

σ = 0.01 3.9× 10−2 8.5× 10−3 4.7× 10−3 4.1× 10−1 1.0× 10−1 2.5× 10−3

σ = 0.1 6.3× 10−2 9.3× 10−3 1.1× 10−2 4.1× 10−1 8.4× 10−3 6.7× 10−3

camera
σ = 0 5.2× 10−3 0.0× 100 0.0× 100 6.8× 10−3 0.0× 100 0.0× 100

σ = 0.01 5.4× 10−2 6.1× 10−3 5.0× 10−3 6.8× 10−3 9.7× 10−2 0.0× 100

σ = 0.1 5.4× 10−2 2.6× 10−3 7.9× 10−4 6.8× 10−3 4.0× 10−2 1.5× 10−4

dolphin
σ = 0 1.3× 10−2 3.8× 10−3 1.9× 10−2 2.1× 10−1 1.4× 10−2 0.0× 100

σ = 0.01 2.3× 10−2 9.7× 10−3 1.9× 10−2 2.1× 10−1 1.4× 10−2 0.0× 100

σ = 0.1 6.8× 10−2 5.9× 10−3 1.1× 10−3 2.1× 10−1 2.0× 10−3 1.5× 10−4

Support set recovery errors under different noise level. The smaller, the better.
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Figure 1: `2 Norm Recovery Errors For Synthetic Data Sets. x–Axis is CPU Time (Seconds) in Logrithmic Scale and
y–Axis is `2 Norm Recovery Error ‖xt − x∗‖
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Figure 2: The Recovery Error For Real Images From The Caltech 101 Data Set

Zou and Hastie, 2005; Loh and Wainwright, 2012) and
measure the `2 norm of the difference between the target
vector and the recovered one. In order to take into the com-
putational efficiency, we plot the recovery error vs. the run-
ning time for each algorithm. To evaluate the property of
selection consistency, we also measure the accuracy in re-
covering the support set of the original sparse vector that
defined as follows:

εsupp = (|St\S∗|+ |S∗\St|)/d .

Therefore εsupp = 0 if and only if St = S∗.

All codes are implemented in Matlab, running on In-
tel(R) Core(TM)2 Duo CPU, P8700@2.53 GHz, Windows
7 64bit, 4GB memory. We terminate each algorithm if it
runs more than five hours.

4.1 EXPERIMENTS WITH SYNTHETIC DATA

First we verify the effectiveness of the proposed algorithm
on synthetic data. We generate A and z∗ independently
from standard normal distributions. To generate the sparse
vector x∗, we first draw a random Gaussian vector x′∗. We
then normalize x′∗ to be one and only keep the largest s
entries in x′∗. We create two synthetic data sets: toy1 (d =
1000, s = 50, σ = {0, 0.1}, n = 500), and toy2 (d =
5000, s = 50, σ = {0, 0.5}, n = 1000). Clearly toy2 is
more difficult than toy1 because of the high dimensionality
and large noise. The performance averaged over 10 trials

is reported in this study. Since GraDeS needs to set all the
entries in the intermediate solution to be zero except for
the first k largest entries at each iteration, we tune k in set
{40, 60, 80, 100}, and report the best performance.

Figure 1 shows the recovery results for the synthetic data
sets, where the horizontal axis is CPU time (second) in the
logarithmic scale. We observe that the proposed method
ACCQ, although has the slow start at the beginning, is able
to find a solution with small recovery error significantly
faster than the other baseline methods. The slow start of
the proposed algorithm is mostly due to the fact that the
initial threshold τ1 is set too high, leading to xt = 0 for
the first a few of iterations. The LASSO bias is revealed by
the noisy cases, where LASSO has the worst recovery error
compared to the other methods. We also observe that the
GraDeS method, an iterative hard thresholding algorithm,
works well for the two toy datasets, in terms of both com-
putational time and recovery error. We however found that
for the real images, the GraDeS method behaves unstably
when measurements are contaminated with random noise,
as shown in the experimental result in the next subsection.

4.2 EXPERIMENTS WITH REAL IMAGES

Dataset We select a subset of images in Caltech101 as
the sparse signals. Five images randomly chosen from four
categories categories— “airplanes”, “butterfly”, “camera”
and “dolphin”— are used in this study. For the convenience
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of presentation, we denote each of the five images selected
from one category by “001.jpg” to “005.jpg”. The total
number of images we extract is 20. To generate a truely
s–sparse signal, all images are first normalized to be zero–
mean and unit variance. We then apply Fourier transform
to the normalized image and filter out Fourier components
with coefficient smaller than 0.01. The final sparse vec-
tor x∗ is constructed based on the survived Fourier compo-
nents. Table 2 summarizes the statistics of our dataset.

For each s–sparse signal x∗, we independently gener-
ate random Gaussian design matrix A with n = 5000.
The entries in noise vector z are independently drawn
from a Gaussian distribution with variance σ varied in set
{0, 0.01, 0.1}. When σ > 0.1, no algorithm could do a
good job due to heavy information corruption. For param-
eter k in GraDeS, i.e. the number of non-zero entries to be
kept at each iteration, we tune it in set {500, 1000, 2000}
and report the best performance.

Figure 2 presents the convergence rate of `2-norm recov-
ery error of the six methods. To save space we only show
the result for “001.jpg” in each category here, and the re-
sults for the remaining images can be found in the supple-
mentary document. Similar to the result of the synthetic
data sets, The bias of LASSO is again revealed by its large
recovery error for the noisy cases compared to several al-
gorithms in comparison. The proposed algorithm ACCQ,
although with a slow start, is able to find the solution with a
small error significantly faster than the baseline algorithms
on almost all cases except for airplanes with σ = 0 and
camera with σ = 0.1, where the GraDeS method is the
most efficient but with a slightly worse error. We notice
that the performance of the GraDeS method appears to be
not very consistent across images: it performs well for air-
plane and camera images, but does poorly for the images
of butterfly and dolphin. Similarly, P-MCP and GIST, two
sparse recovery algorithms with non-convex regularizers,
although works well for the synthetic datasets, performs
poorly for a number of cases. More investigation is needed
to further understand the behavior of these algorithms.

In Table 2, we report the support set recovery error for each
dataset under different noise level. Similar to `2 norm re-
covery error, ACCQ achieves perfect support set recovery
on almost all datasets under σ = {0, 0.01} except for but-
terfly. When noise σ = 0.1 is large, although ACCQ is
unable to recover the exact support set, its error in recov-
ering the support set is the smallest among the methods in
comparison.

5 CONCLUSION

We propose an adaptive non–convex method to efficiently
recover the sparse signal under compress sensing settings.
The proposed method achieves a geometrical convergence
rate for `2–norm recovery error up to the statistical tol-

erance. By using a non-convex regularizer, the proposed
method is able to remove the LASSO bias and achieve
the selection consistency and oracle property. Experiments
with both synthetic data sets and real images verify both the
efficiency and effectiveness of the proposed method com-
pared to the state-of-the-art methods for sparse recovery.
In the future, we would like to improve our analysis to re-
move the extra condition in (13) for selection consistency
and oracle property. We also plan to extend the proposed
algorithm to other sparse recovery problems such as group
sparsity and low rank matrix recovery.
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Abstract

This paper aims to address a class of nuclear
norm regularized least square (NNLS) problems.
By exploiting the underlying low-rank matrix
manifold structure, the problem with nuclear
norm regularization is cast to a Riemannian opti-
mization problem over matrix manifolds. Com-
pared with existing NNLS algorithms involving
singular value decomposition (SVD) of large-
scale matrices, our method achieves significant
reduction in computational complexity. More-
over, the uniqueness of matrix factorization can
be guaranteed by our Grassmannian manifold
method. In our solution, we first introduce the
bilateral factorization into the original NNLS
problem and convert it into a Grassmannian op-
timization problem by using a linearized tech-
nique. Then the conjugate gradient procedure on
the Grassmannian manifold is developed for our
method with a guarantee of local convergence.
Finally, our method can be extended to address
the graph regularized problem. Experimental re-
sults verified both the efficiency and effective-
ness of our method.

1 Introduction

In recent years, matrix approximation problems with nu-
clear norm regularization have occurred in many machine
learning and compressed sensing applications such as ma-
trix completion, matrix classification, multi-task learning
and dimensionality reduction [6]. In this paper, we con-
sider the following optimization problem over matrices:

min
X∈Rm×n

f(X) := g(X) + µ∥X∥∗, (1)

where g(X) is any differentiable convex function (usually
called the loss function, e.g. g(X) = ∥A(X) − b∥2

2, where
∗Corresponding author

A(·) is a linear operator), µ > 0 is a regularization param-
eter, and ∥X∥∗ denotes the nuclear (or trace) norm of the
matrix X with rank r, that is, the l1-norm of the matrix
spectrum as ∥X∥∗ =

∑r
i=1 σi, where {σi} are the singular

values of X .

Most algorithms for solving the nuclear norm minimization
(NNM) problem (1) do not require the rank to be specified
and iteratively optimize the nuclear norm penalized prob-
lem. Naturally, the singular value decomposition (SVD)
tends to paly a critical computational role in the design
of various nuclear norm solvers, e.g., the singular value
thresholding (SVT) [5], soft-impute [14], accelerated prox-
imal gradient approach [9], and so on. Those algorithms in-
volving SVD and applying a soft-thresholding operator on
the singular values at each iteration suffer from high com-
putational cost of multiple SVDs [14, 15]. In particular, if
the iterations need to pass through a region where the spec-
trum is dense, those algorithms can become potentially be-
come prohibitively expensive [3]. Noticing that only those
singular values exceeding a threshold and their correspond-
ing singular vectors contribute to the soft-thresholding op-
erator, a commonly used strategy is to compute the partial
SVD instead of the full one, such as APGL [17] and IALM
[12] both use PROPACK [11]. However, it can compute
only a given number of largest singular values, and the soft-
thresholding operator requires the principal singular values
that are greater than a given threshold.

If the rank is known, a class of existing matrix factoriza-
tion algorithms [10, 4, 22, 15, 18] cast the low-rank matrix
estimation problem (1) as the following non-convex model,

min
X∈Rm×n

g(X), s.t., rank(X) = k. (2)

Matrix factorization is arguably the most widely applied
method for the low-rank matrix completion problem, due
to its high accuracy, scalability and flexibility to incorpo-
rating side-information [19]. LMaFit [22] fixes the rank by
explicitly formulating the matrix as the product of its low-
rank factors and using an optimization technique based on
successive over-relaxation to solve (2). In [15] and [18],
two improved versions were proposed to optimize it on the
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Grassmannian manifolds, and improve its convergence by
using conjugate gradients rather than the standard gradient
descent. Moreover, [10] proved that exact recovery can be
obtained with high probability by solving a non-convex op-
timization problem. In the model (2), the correct rank needs
to be known as a priori. Unfortunately, the determination
of the reduced rank is also an open problem, especially for
the noisy matrix estimation.

To address these key problems mentioned above, we pro-
pose an effective approximation method for solving nuclear
norm regularized least squares problems, which can reduce
the SVD computational cost. We achieve it by convert-
ing the original NNM problem into a Grassmannian op-
timization problem. In our framework, we use the nuclear
norm term to promote the robustness of the fixed-rank man-
ifold optimization problem with respect to the given rank,
in other words, to avoid the over-fitting problems of ma-
trix factorization. Moreover, we present an efficient conju-
gate gradient descent algorithm on the Grassmannian man-
ifolds with a guarantee of local convergence. Finally, our
method is also extended to address the graph regularized
problem. In summary, our method inherits the superiority
of two classes of frameworks, i.e., the NNM methods and
Riemannian manifold optimization methods based on ma-
trix factorizations.

2 Background

When choosing g(X) := 1
2∥PΩ(X) − PΩ(Z)∥2

F for some
linear projection operators PΩ(·), i.e., PΩ(Xij) = Xij if
(i, j) ∈ Ω, and PΩ(Xij) = 0 otherwise, the above formu-
lation (1) is the low-rank matrix completion (MC) problem.
The MC problem is to find out a matrix of the lowest rank
whose entries in the observed set Ω correspond to the en-
tries of Z:

min
X∈Rm×n

1

2
∥PΩ(X) − PΩ(Z)∥2

F + µ∥X∥∗, (3)

or the noiseless version,

min
X∈Rm×n

∥X∥∗, s.t., XΩ = ZΩ. (4)

Recently, many low-complexity algorithms have emerged,
such as APGL [17], IALM [12], and FPCA [13]. Involving
SVDs in their each iteration, thus those algorithms based
on the soft-thresholding operator suffer from high compu-
tational cost. This limits the usage of the matrix completion
techniques in real-world applications.

Alternatively, low-rank matrix completion based on fixed-
rank matrix factorization has received a significant amount
of attention [15]. Suppose that the low-rank matrix X ∈
Rm×n with rank r is decomposed as X = UM , where U ∈
Rm×r and M ∈ Rr×n. LMaFit [22] applies a successive
over-relaxation iteration scheme to alternatively solve the

following least-squares problem,

min
U∈Rm×r

min
M∈Rr×n

∑

(i,j)∈Ω

∥(UM)ij − Zij∥2. (5)

However, the factorization of the matrix X into the prod-
uct UM is not unique. Indeed, for any r-by-r invert-
ible matrix O, we have UM = (UO)(O−1M). Hence,
some researchers convert the matrix factorization problem
into some corresponding Riemannian manifold optimiza-
tion problems, such as OptSpace [10], RTRMC [4], Rie-
mannCG [18], and ScGrass [15]. However, in those algo-
rithms we need to know the exact rank which is usually dif-
ficult to obtain. Furthermore, they often suffer badly from
overfitting due to their least-squares loss functions, espe-
cially on noisy matrices.

2.1 Grassmannian Manifold

We will briefly recall the related notions of matrix mani-
folds (readers may refer to [2] for details).

Definition 1. Grassmannian manifold: The set of r-
dimensional vector subspaces of Rm is defined as Gm,r.
Each point U ∈ Gm,r can be presented by a generator ma-
trix U ∈ Nm,r, where Nm,r is the set of m × r matrices
with orthonormal columns, i.e., Nm,r = {U ∈ Rm×r :
UT U = Ir}.

Definition 2. Tangent space: Consider an arbitrary point
on the Grassmannian manifold, U ∈ Gm,r. To perform
differential calculus, the tangent space at U (the generator
matrix of U) is denoted as TUGm,r. And the tangent space
is represented as TUGm,r = {η ∈ Rm×r : UT η = 0}.

As the generalization of the standard optimization meth-
ods, some Riemannian manifold optimization methods can
be used for solving the following low-rank matrix learning
problem with the fixed rank r,

min
U∈Gm,r

f(U), (6)

where f(·) is a smooth function on Grassmannian mani-
folds.

2.2 Skeleton of CG Algorithms on Grassmannian
Manifolds

In general, the typical nonlinear conjugate gradient (CG)
algorithm on Grassmannian manifolds with a line-search
rule for the unconstrained optimization problem (6) is out-
lined in Algorithm 1, which we elaborate as follows.

• Ambient gradient: To obtain the Euclidean gradient
∇f(Uk) in the ambient space.

• Riemannian gradient: It, denoted by gradf(Uk), is a
specific tangent vector ηk which corresponds to the
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Algorithm 1 Geometric CG
Input: The fixed rank r and tol > 0.
Output: X = UM .

1: while not converged do
2: Compute the ambient gradient: ∇f(Uk).
3: Compute the Grassmannian gradient:

gradf(Uk).
4: Check convergence: ∥gradf(Uk)∥ ≤ tol.
5: Compute βk by the PR+ updating rule,

and compute a conjugate direction ξk:
ξk = −gradf(Uk) + βkTUk−1→Uk

Gm,r(ξk−1).
6: Find an appropriate step size tk and compute

U : Uk+1 = ℜUk
(tkξk).

7: end while

direction of steepest ascent of f(Uk), but is restricted
to only directions in the tangent space TUk

Gm,r.

• The conjugate direction: It, denoted by ξk ∈
TUk

Gm,r, is conjugate to the gradient, and requires
taking a linear combination of the Riemannian gra-
dient with the previous search direction ξk−1. Since
ξk−1 does not lie in TUk

Gm,r, it needs to be trans-
ported to TUk

Gm,r. This is done by a mapping
TUk−1→Uk

Gm,r : TUk−1
Gm,r → TUk

Gm,r, the so-
called vector transport. In total, the conjugate direc-
tion ξk = −gradf(Uk) + βkTUk−1→Uk

Gm,r(ξk−1)
can be computed by a variant of the classical Polak-
Ribière (PR+) updating rule in the non-linear CG.

• Retraction: Because a tangent vector only gives a di-
rection but not the line search itself on the manifold,
a smooth mapping ℜUk

: TUk
Gm,r → Gm,r, named

as retraction, is needed to map tangent vectors to the
manifold. To retract the search direction ξk with a
line-search step size tk back to the manifold is denoted
as: Uk+1 = ℜUk

(tkξk).

3 Grassmannian Optimization

3.1 Linearization Technique

As in [17], the problem (1) can be approximated iteratively
by minimizing the following linearized function,

L(X) =µ∥X∥∗ + g(Xk) + ⟨∇g(Xk), X − Xk⟩

+
1

2τ
∥X − Xk∥2

F ,
(7)

where τ > 0 is a proximal parameter. Without loss of gen-
erality, suppose d is an upper bound for rank(X) = r,
i.e., r ≤ d. X ∈ Rm×n is decomposed as X = UM ,
where U ∈ Nm,d and M ∈ Rd×n. Furthermore, the quo-
tient geometry (i.e., Grassmannian manifold) is used in our
paper to guarantee the uniqueness of matrix factorization.

Hence, U ∈ Nm,d can be viewed as the generator ma-
trix of U ∈ Gm,d and is an orthonormal basis of U . With
UT U = I , we have ∥X∥∗ = ∥M∥∗. Thus, the problem (7)
is rewritten in the following form

L(U,M) = µ∥M∥∗ + ⟨∇g(UkMk), UM − UkMk⟩

+g(UkMk) +
1

2τ
∥UM − UkMk∥2

F .
(8)

For solving the problem (8), then we formulate the follow-
ing subproblem at the k-th iteration,

min
U∈Gm,d

min
M∈Rd×n

f̃UkMk
(U,M) :=

µτ∥M∥∗ +
1

2
∥UM − UkMk + τ∇g(UkMk)∥2

F .
(9)

In the following, the problem (9) is equally converted into a
Grassmannian manifold optimization problem with respect
to U .

3.2 Objective Function on Grassmannian Manifolds

Similar to [4], we now derive the objective function on
Grassmannian manifolds. Given the variable U , comput-
ing the matrix M that minimizes f̃UkMk

is a nuclear norm
regularized least-squares problem. The mapping between
U and this (unique) optimal M , denoted by MU , is given
by

U 7→ MU =

arg minM∈Rd×n µτ∥M∥∗ +
1

2
∥UM − Pk∥2

F ,
(10)

where Pk = UkMk − τ∇g(UkMk). Following [5], we can
obtain a unique closed-form solution to the problem (10)
via the SVT operator,

MU = SVTµτ (UT Pk), (11)

where SVTµτ (A) := Udiag(max{σ − µτ, 0})V and
Udiag(σ)V is the SVD of A. Substituting (11) into the
function f̃UkMk

, then the cost function fUkMk
: Gm,r → R

on Grassmannian manifolds is given by

min
U∈Gm,d

fUkMk
(U) := µτ∥MU∥∗ +

1

2
∥UMU − Pk∥2

F .

(12)

3.3 Riemannian Gradient

For solving our problem (12), we first derive the formulas
for the Euclidean gradient of the cost function fUkMk

in
(12) at U . Using the chain rule, we have

∇fUkMk
(U) =

d
dU

fUkMk
(U)

=
∂

∂U
f̃UkMk

(U,MU ) +
∂

∂MU
f̃UkMk

(U,MU )
d

dU
MU ,

(13)
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where f̃UkMk
(U,MU ), fUkMk

(U) and the map MU have
been defined in (9), (12) and (11), respectively. The
first term of (13), ∂

∂U f̃UkMk
(U,MU ), can be computed

easily. To compute the second term in (13), i.e.,
∂

∂MU
f̃UkMk

(U,MU ) d
dU MU , we will present the following

derivation using the singular value and singular subspace
perturbation theories.

3.3.1 Computation of Ambient Gradient

To compute the ambient gradient, we first introduce the fol-
lowing two definitions and give their property, respectively.

Definition 3. Subdifferential: Let ∂M f̃UkMk
(U,M) de-

note the subdifferential of the non-smooth function f̃UkMk

(U,M) at M , then

∂M f̃UkMk
(U,M) = µτ∂∥M∥∗ + (M − UT Pk), (14)

where ∂∥ · ∥∗ denotes the subdifferential of the non-smooth
convex function ∥ · ∥∗, and is a closed convex set. Specif-
ically, let M = ÛΛV̂ be the SVD of M ∈ Rd×n, then
∂∥M∥∗ is given by [5], i.e.,

∂∥M∥∗ =

{Û V̂ + W : ÛT W = 0,W V̂ T = 0, ∥W∥2 ≤ 1},
(15)

where ∥ · ∥2 is a spectrum norm.

By Definition 3, we can obtain the following property.
Lemma 1. Let MU be the solution of problem (10), MU =
Ũ Λ̃Ṽ be the SVD of MU , and Γ = {W : ŨT W =
0,W Ṽ = 0, ∥W∥2 ≤ 1}, then ∃W̃ ∈ Γ satisfies

∂MU
f̃UkMk

= {µτ(W − W̃ ), W ∈ Γ}. (16)

Proof. Since MU is a optimal solution, then the first-order
optimality condition of the problem (10) is given by,

0 ∈ µτ∂∥MU∥∗ + (MU − UT Pk). (17)

By (15), then ∃W̃ ∈ Γ satisfies

µτŨ Ṽ + µτW̃ + (MU − UT Pk) = 0. (18)

Furthermore, substituting (18) into the subdifferential in
(14), we have

∂M f̃UkMk
= µτ∂∥MU∥∗ + (MU − UT Pk)

={µτŨ Ṽ T + µτW + M − UT Pk, W ∈ Γ}
={µτ(W − W̃ ), W ∈ Γ}.

(19)

This completes the proof.

Definition 4. Directional Derivative: Let MU =
SVTµτ (UT Pk), the directional derivative of the mapping
MU at U along the direction H is defined as

MU,H =

lim
γ→0

SVTµτ ((U + γH)T Pk) − SVTµτ (UT Pk)

γ
.

(20)

Furthermore, we give the following result by the singular
value and singular subspaces perturbation theorems.

Lemma 2. With the same notations as Lemma 1, then for
any matrix W ∈ Γ, we have

⟨MU,H ,W ⟩ = 0. (21)

Proof. To prove the lemma, the classical perturbation the-
ory for singular value and singular subspaces problems is
introduced. We use the classical result of [20] that the
eigenvalues of a matrix which is an analytic function of
a single variable can always be numbered so that they are
each analytic functions of the variable. Using the relation-
ship between eigenvalues and singular values, it follows
that if the singular values of the matrix B = A + γR,
where A and R are m × n matrices, denoted by σi(γ), i =
1, 2, . . . , n, then

σi(γ) = σi + γuT
i Rvi + Oi(γ), i = 1, 2, . . . n, (22)

where Oi(γ) is an infinitesimal of higher order than γ,
ui and vi are singular vectors of A corresponding to σi.
Let A = Ũ Σ̃Ṽ + Ũ

′
Σ̃

′
Ṽ

′
and B = Û Σ̂V̂ + Û

′
Σ̂

′
V̂

′

be the SVDs of A and B respectively, where Σ̃ =
diag(σ1, . . . , σs) and Σ̂ = diag(σ1(γ), . . . , σs(γ)) are s

largest singular values of A and B, respectively. Ũ and
Û denote the spaces of Ũ and Û , and Ṽ and V̂ denote the
spaces of Ṽ and V̂ , respectively. Then the classic theorem
on the perturbation of singular subspaces is due to [21],

√
∥ sinΘ(Ũ , Û)∥2

F + ∥ sinΘ(Ṽ, V̂)∥2
F

≤
√

∥E1∥2
F + ∥E2∥2

F

δ
,

(23)

where E1 = BṼ − Ũ Σ̃ ≡ γRṼ , E2 = BT Ũ − Ṽ Σ̃ ≡
γRT Ũ , and ∥ sinΘ(Ũ , Û)∥2

F is a measure that is related
to the canonical angles between the subspace Ũ and Û .
Moreover, the gap δ is the distance between two sets
of singular values in Σ̃ = diag(σ1, . . . , σs) and Σ̃

′
=

diag(σs+1, . . . , σn) (Please see the details in [21]).

Let A := UT Pk, R := HT Pk, B := A + γR = UT Pk +
γHT Pk, σ1 ≥ . . . ≥ σs ≥ µτ and σs+1 < µτ . By using
the result in (22) and the definition of the SVT operator
with γ → 0, we have

SVTµτ ((U + γH)T Pk) − SVTµτ (UT Pk)

=Û(Σ̂ − µτ)V̂ − Ũ(Σ̃ − µτ)Ṽ

=T1 + T2 + O(γ),

(24)

where T1 = Û(Σ̃−µτ)V̂ −Ũ(Σ̃−µτ)Ṽ , T2 = γÛ∆V̂ , the
i-th element of the diagonal matrix ∆ is ∆i =ũT

i HT Pkṽi,
O(γ) ∈ Rd×n and its all entries are infinitesimals of higher
order than γ.

By the singular subspace perturbation theory of in (23), the
subspace Û → Ũ , while γ → 0, i.e., ∃D1, such that Û →
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ŨD1. Similarly, ∃D2, such that V̂ → Ṽ D2. Thus, it is not
difficult to verify Û = ŨD1 + δ1(γ) and V̂ T = Ṽ T D2 +
δ2(γ)T , where δ1(γ) ∈ Rm×d and δ2(γ) ∈ Rd×n, and all
of their entries are infinitesimals of the same order as γ.
Then we have

⟨W, Û(Σ̃ − µτ)V̂ ⟩ = ⟨ÛT WV̂ T , (Σ̃ − µτ)⟩
=⟨DT

1 ŨT WV̂ T , (Σ̃ − µτ)⟩
+ ⟨δ1(γ)T WṼ T D2, (Σ̃ − µτ)⟩
+ ⟨δ1(γ)T Wδ2(γ), (Σ̃ − µτ)⟩,

(25)

where W is defined in (15), ŨT W = 0, WṼ T = 0, and
by (25), then

⟨W,T1⟩ = ⟨W, Û(Σ̃ − µτ)V̂ ⟩ + ⟨W, Ũ(Σ̃ − µτ)Ṽ ⟩
= ⟨δ1(γ)T Wδ2(γ), (Σ̃ − µτ)⟩.

Similarly, we have

⟨W,T2⟩ = ⟨W,γÛ∆V̂ ⟩
=⟨DT

1 ŨT WV̂ T , γ∆⟩ + ⟨δT
1 WṼ T D2, γ∆⟩

+ ⟨δT
1 (γ)Wδ2(γ), γ∆⟩

=⟨δT
1 (γ)Wδ2(γ), γ∆⟩.

Thus, we have

⟨W,MU,H⟩ = limγ→0
⟨W,T1 + T2 + O(γ)⟩

γ
= 0.

Thus, this completes the proof.

Next we will compute the ambient gradient. Let ∀ζ ∈
∂

∂MU
f̃UkMk

(U,MU ) d
dU MU , by the chain rule of compos-

ite function, and substituting the result in Lemma 1 into the
chain rule, then ∃(W − W̃ ) ∈ Γ satisfies

ζij = ⟨W − W̃ , MU,H̃ij ⟩,
i = 1, 2, . . . , m, j = 1, 2, . . . , d,

where ζij denotes the element in the i-th row and the j-th
column of ζ, and MU,H̃ij is given by Definition 2, and the

direction H̃ij ∈ Rm×d is defined as

(H̃ij)m,n =

{
1 m = i and n = j,

0 otherwise.

And by Lemma 2, then

ζij = ⟨W − W̃ , MU,H̃ij ⟩ = 0. (26)

Thus, we have

∂

∂MU
f̃UkMk

(U,MU )
d

dU
MU = 0. (27)

By (27), then the ambient gradient in (13) can be rewritten
as follows:

∇fUkMk
(U) =

∂

∂U
f̃UkMk

(U,MU )

= (UMU − Pk)MT
U .

(28)

Note the above result implies that the function fUkMk
(·) is

continuously differentiable.

3.3.2 Computation of Riemannian Gradient

Following [18], and (I −UUT )U = 0, then the Grassman-
nian gradient of fUkMk

at U is given by

gradfUkMk
(U) = (I − UUT )∇fUkMk

(U)

= −(I − UUT )PkMT
U .

(29)

3.4 Conjugate Gradient Iteration

In the part, we describe the nonlinear CG algorithm on the
Grassmannian manifold for solving the proposed model.
The main additional ingredient we need is vector trans-
port which is used to transport the old search direction to
the current point on the manifold, i.e., TUk−1→Uk

Gm,d :
TUk−1

Gm,d → TUk
Gm,d. The transport search direction

is then combined with the gradient at the current point,
e.g. by the Polak-Ribière formula (see [2]), to derive the
new search direction. Vector transport can be defined us-
ing the Riemann connection, which in turn is defined based
on the Riemann metric [1]. In this paper, we will use the
canonical metric to derive vector transport when consider-
ing the natural quotient manifold structure of the Grass-
mannian manifold. Following [15], the previous search
direction ξk−1 at Uk−1 will be transported to Uk+1 as
TUk−1→Uk

Gm,d = (I − UkUT
k )ξk−1. Then the new search

direction is

ξk = −gradf(Uk) + βkTUk−1→Uk
Gm,r(ξk−1), (30)

where βk can be calculated by using the Polak-Ribiere for-
mula in [7].

Furthermore, U is updated by

Uk+1 = R(Uk + tkξk) = qf(Uk + tkξk), (31)

where qf(A) is used as a retraction operator, which is the Q
factor in the QR factorization of A, and the step size tk is
obtained by the Armijo linear search rule [2].

To solve the Riemannian optimization subproblem (12) at
each iteration, we present a non-linear conjugate gradient
decent algorithm on Grassmannian manifolds. Overall, the
skeleton of our method is listed in Algorithm 2.

3.5 Convergence Analysis

In this part, we analyze the convergence of Algorithm 2
using the non-linear conjugate gradient descent scheme.
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Algorithm 2 A Riemannian optimization framework for
solving the problem (12)
Input: The rank d, the parameters µ, τ and tol.
Output: X = UM .

1: while not converged do
2: Formulate the cost function fUkMk

by (12).
3: Compute the Grassmannian gradient by (29),

ηk = gradfUkMk
(Uk).

4: Check convergence: ηk ≤ tol.
5: Compute a conjugate direction ξk by (30).
6: Find an appropriate step size tk using Armijo rule,

and compute Uk+1 by (31).
7: Compute Mk+1 by (11).
8: end while

Lemma 3. Let g(X) = ∥A(X) − b∥2
F , {(Uk,Mk)} be an

infinite sequence of iterates generated by Algorithm 2 with
the Armijo backtracking rule, and τ ∈ (0, 1/ρ(AT A)),
where ρ(·) denotes the spectral radius operator, then we
have the following results:
(I) limk→∞ ∥gradfUkMk

(Uk)∥ = 0.
(II) limk→∞ ∥Uk+1 − Uk∥ = 0, and

limk→∞ ∥Uk+1Mk+1 − UkMk∥ = 0.

Proof: The detailed proof can be found in the supplemen-
tary material.
Theorem 4. Let {(Uk, Mk)} be an infinite sequence of it-
erates generated by Algorithm 2. Then each accumulation
point of {(Uk,Mk)} is a critical point of the following op-
timization problem

min
U∈Gm,d

min
M∈Rd×n

µτ∥M∥∗ +
1

2
g(UM). (32)

Proof: The detailed proof of the theorem can be found in
the the supplementary material.

3.6 Complexity Analysis

In this part, we discuss the time complexity of our method.
For the matrix completion problem (12), the main run-
ning time of our algorithm is consumed by performing
SVD for the SVT operator, some multiplications and re-
traction operator. The time complexity of performing the
SVT operator in (11) is O1 := O(d2n). The time com-
plexity of some multiplication and retraction operators is
O2 := O(dmn + d2m). The time complexity of perform-
ing retraction operator is O3 := O(d2m). Thus, the total
time complexity of our method is O(T (O1 + O2 + O3)),
where T is the number of iterations.

4 Graph Regularization Extensions

In this paper, we mainly consider the problem of recover-
ing a noisy low-rank matrix from a few observed entries as

a matrix completion application of our nuclear norm regu-
larized least squares model. In addition, our method is quite
general, and can be easily extended to incorporate the con-
textual information, including social relations of users, so-
cial tags issued by users, movie genres, user demographic
information, etc. In order to incorporate the social network
information, our social network aided context-aware rec-
ommender model is formulated as follows:

min
U∈Nm,d

min
M∈Rd×n

f(U,M) :=
1

2
∥PΩ(UM) − PΩ(Z)∥2

F

+ µ∥M∥∗ +
λ1

2
tr(UT LUU) +

λ2

2
tr(MLMMT ),

(33)

where tr(A) denotes the trace of the matrix A, LU and LM

are the graph Laplacian matrices, i.e., LU = DU − WU ,
WU is the weight matrix for the user set, and DU is the di-
agonal matrix whose entries are column sums of WU , i.e.,
(DU )ii =

∑
j(WU )ij , and λ1 ≥ 0 and λ2 ≥ 0 are regular-

ization constants. It is not difficult to verify, for any matrix
O ∈ Nd,d, we have f(UO,OT M) = f(U,M). Hence, the
Grassmannian manifold is also used in our social network
aided context-aware recommender model, and it is refor-
mulated as follows:

min
U∈Gm,d

min
M∈Rd×n

1

2
∥PΩ(UM) − PΩ(Z)∥2

F + µ∥M∥∗

+
λ1

2
tr(UT LUU) +

λ2

2
tr(MLMMT ),

(34)

where the column orthonormal matrix U is viewed as the
generator matrix of U . Moreover, Algorithm 2 can be ex-
tended to solve our graph regularized matrix completion
problem (34).

5 Experimental Results

In this section, we evaluate both the effectiveness and effi-
ciency of our method for solving matrix completion prob-
lems on both synthetic and real-world data.

5.1 Synthetic Data

The synthetic matrices Z ∈ Rm×n with rank r in this
subsection are created randomly by the following proce-
dure: two random matrices U ∈ Rm×r and V ∈ Rn×r

with i.i.d. standard Gaussian entries are first generated, and
then X = UV T is assembled. Two test experiments are
conducted on random matrix without or with noise, where
the observed subset is corrupted by i.i.d. standard Gaus-
sian random variables as in [17]. In both cases, only 10%
observed entries are sampled uniformly at random as the
training set, and the remaining is used as the testing set.
Summaries of the computational results are presented in
Figure 1 on noiseless matrices of size 2000 × 2000 and
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Figure 1: The recovery accuracy on noiseless data vs. running time (seconds): training RMSE (left) and testing RMSE
(right).
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Figure 2: The recovery accuracy on noisy data (where the noise level nf = 0.001) vs. running time (seconds): training
RMSE (left) and testing RMSE (right).

Figure 2 on noisy matrices of size 2000 × 2000, respec-
tively.

We compare our method with APGL1 [17], IALM2 [12],
OptSpace3 [10], LMaFit4 [22], and ScGrass5 [15] on the
noiseless or noisy matrices, and illustrate the training and
testing recovery accuracies (RMSE) in Figures 1 and 2,
respectively, where APGL and IALM use the PROPACK
package [11] to compute a partial SVD. All the methods

1http://www.math.nus.edu.sg/˜mattohkc/
NNLS.html

2http://www.cis.pku.edu.cn/faculty/
vision/zlin/zlin.htm

3http://web.engr.illinois.edu/˜swoh/
software/optspace/

4http://lmafit.blogs.rice.edu/
5http://www-users.cs.umn.edu/˜thango/

are implemented in Matlab and use mex files. In terms of
running time, the results show that for the noiseless data,
our method, LMaFit and ScGrass converge much faster
than the other three methods including APGL, IALM, and
OptSpace. However, for the noisy data, the testing RMSE
of LMaFit becomes worse due to overfitting while the train-
ing RMSE gradually decreases.

We also test the robustness of all these methods against the
noise, and demonstrate the experimental results (the testing
RMSE and running time) in Figure 3. It is clear that when
the noise level is higher, our method usually outperforms
the other methods in terms of the testing RMSE, that is, our
method has the good generation ability. With the increase
of the noise level, the running time of the other algorithms
dramatically grows except for our method and OptSpace.
In contrast, the runtime of our method increases slightly.
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Figure 3: The recovery results vs. the noise level: RMSE
(left) and running time (right).

5.2 Real-World Data

In order to evaluate our method, experiments were con-
ducted on three widely used recommendation systems data
sets6: MovieLens100K (ML-100K) with 100K ratings,
MovieLens1M (ML-1M) with 1M ratings, and Movie-
Lens10M (ML-10M) with 10M ratings. We randomly split
these three data sets to train and test sets such that the ra-
tio of the train set to test set is 9:1, and the experimental
results are reported over 20 independent runs. Except for
APG, IALM, OptSpace, and LMaFit, we also compare our
method with two state-of-the-art optimization methods on
manifolds: ScGrass and RTRMC7 [4]. For our method,
we set the rank d = 5, 6, 7, and µ = 10−2. The stopping
tolerance for all algorithms is set to ε = 10−4. All other
parameters are set to their default values for the algorithms
that we compare with. We also use the Root Mean Squared
Error (RMSE) as the evaluation measure.

The average RMSE on these three data sets is reported over
20 independent runs and is shown in Table 1. The results
show that for some fixed ranks, the matrix factorization
methods including OptSpace, ScGrass, RTRMC, LMaFit
and our method usually perform better than two nuclear
norm minimization methods including APGL and IALM.
As expected, our method with d = 5 on the MovieLens
(1M) data set achieved a RMSE of 0.8711, slightly outper-
forming the well-known restricted Boltzeman machines’s
RMSE of 0.8817 [16]. Moreover, our matrix factoriza-
tion method with nuclear norm regularization consistently
outperforms the other matrix factorization methods includ-
ing OptSpace, ScGrass, RTRMC and LMaFit, and the two
nuclear norm minimization methods including APGL and
IALM. This confirms that the proposed matrix factoriza-
tion model with nuclear norm regularization can avoid the
over-fitting problems of matrix factorization.

Furthermore, we also analyze the robustness of our method
with regard to its parameters: the given rank and the reg-
ularization parameter µ on the MovieLens1M data set, as

6http://www.grouplens.org/node/73
7http://perso.uclouvain.be/nicolas.

boumal/RTRMC/
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Figure 4: Results of our method with varying parameter
values on the MovieLens1M data set.

shown in Figure 4, from which we can see that our method
is robust against variations in its parameters. For com-
parison, we also show the results of two related meth-
ods: ScGrass and LMaFit with varying ranks in Figure
4(a). It is clear that, by increasing the number of the given
ranks, the RMSE of ScGrass and LMaFit becomes worse.
In contrast, the RMSE of our method increases slightly
when the number of the given ranks increases. This fur-
ther confirms that our matrix factorization model with nu-
clear norm regularization is effective and can avoid overfit-
ting. OptSpace also has a spectral regularization version:
minU,S,V (1/2)∥PΩ(USV T − X)∥2

F + µ∥S∥2
F . From Fig-

ure 4(b), we observe that our method is much more robust
than OptSpace in terms of the regularization parameter µ.

Finally, we conduct the running time comparison of all
those algorithms on the MovieLens100K and Movie-
Lens1M data sets, as shown in Figure 5. The experi-
ments were performed with Matlab 7.11 on an Intel Core
2 Duo (2.33 GHz) PC running Windows 7 with 2GB main
memory. From the results shown in Figure 5, we can ob-
serve that our method, ScGrass, RTRMC, and LMaFit are
much faster than the other three state-of-the-art algorithms
including APGL, IALM and OptSpace. For APGL and
IALM, SVD-related calculations essentially dominate their
total costs. Therefore, avoiding SVD-related calculations
on relative large-scale matrices is a main reason why our
method is much faster than the nuclear norm minimization
algorithms such as APGL and IALM, validating our orig-
inal motivation of solving the matrix factorization model
with nuclear norm regularization.

5.3 The Impact of Social Context

We also investigate the effects of social context on the
MovieLens100K data set, which is suitable to evaluate the
impacts of user demographic information and item genre
information because it consists of demographic informa-
tion (e.g. gender, age and occupation) of users and genre of
movies. According to [8], a two dimensional feature vector
is used to characterize the user’s gender, that is, if the user
is male, then the first feature is 1 while the second is 0, and
vice versa. The users are partitioned into 7 age group: 1-17,
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Table 1: RMSE of different methods on three data sets: MovieLens 100K, MovieLens 1M, and MovieLens 10M.

Methods MovieLens (100K) MovieLens (1M) MovieLens (10M)
APGL 1.2142 1.1528 0.8637
IALM 1.2585 1.0153 0.8989
OptSpace 0.9411 0.9068 1.1357
Ranks 5 6 7 5 6 7 5 6 7
ScGrass 0.9236 0.9392 0.9411 0.8847 0.8846 0.8936 0.8359 0.8290 0.8247
RTRMC 0.9837 1.0617 1.1642 0.8901 0.8906 0.8977 0.8463 0.8442 0.8386
LMaFit 0.9468 0.9540 0.9568 0.8918 0.8920 0.8853 0.8576 0.8530 0.8423
Ours 0.9216 0.9243 0.9330 0.8711 0.8723 0.8738 0.8330 0.8261 0.8217
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Figure 5: Running time (seconds) for comparison on the
MovieLens100K and MovieLens1M data sets.

18-24, 25-34, 35-44, 45-49, 50-55, 56+. Then a seven di-
mensional feature vector is used to describe the user’s age
group. In addition, there are totally 21 occupations: admin-
istrator, doctor, educator, engineer, entertainment, execu-
tive, healthcare, homemaker, lawyer, librarian, marketing,
programmer, retired, salesman, scientist, student, techni-
cian, writer, other and none. Thus, a 21 dimensional feature
vector is used to describe the user’s occupation. In total, a
30 dimensional feature vector is achieved for user i. On
the other hand, there are 19 genres of movies. Likewise,
we use a 19 dimensional feature vector for movie j. We
evaluate the impact of user demographic and item genre
information on this data set with 60% and 90% training
sets, and we report in Fig. 6 the RMSE results yielded by
our method without graph regularization, with user or item
graph regularization and both graph regularizations. When
with the effect of the user demographic or the item genre
context, the performance of our method improves. For ex-
ample, compared with our method without graph regular-
ization, on average, our method with user or item graph
regularization have 0.35% and 1.04% relative performance
improvement in terms of RMSE, respectively. When with
the effects of both the user demographic and the item genre
context, our method obtains the best performance, suggest-
ing that the user demographic and the item genre context
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Figure 6: The performance of variants of our method on
the the MovieLens100K data set.

contain complementary information to each other for rec-
ommendation.

6 Conclusions

In this paper, we proposed a Grassmannian manifold op-
timization method to tackle the nuclear norm regularized
least squares problems with a guarantee of local conver-
gence, such as the noisy matrix completion problem. Our
method inherits the superiority of two classes of methods,
i.e. soft thresholding approaches and hard thresholding ap-
proaches, and has good generation ability. In addition, our
method is extended to address the graph regularized prob-
lem. We demonstrated with convincing experimental re-
sults that our regularized formulation is effective, and our
method is robust to noise or against variations in its param-
eters.
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Abstract

We propose a new two stage algorithm LING
for large scale regression problems. LING has
the same risk as the well known Ridge Regres-
sion under the fixed design setting and can be
computed much faster. Our experiments have
shown that LING performs well in terms of both
prediction accuracy and computational efficiency
compared with other large scale regression al-
gorithms like Gradient Descent, Stochastic Gra-
dient Descent and Principal Component Regres-
sion on both simulated and real datasets.

1 INTRODUCTION

Ridge Regression (RR) is one of the most widely applied
penalized regression algorithms in machine learning prob-
lems. Suppose X is the n × p design matrix and Y is the
n × 1 response vector, ridge regression tries to solve the
problem

β̂ = arg min
β∈Rp

‖Xβ −Y‖2 + nλ‖β‖2 (1)

which has an explicit solution

β̂ = (X>X+ nλ)−1X>Y (2)

However, for modern problems with huge design matrix X,
computing (2) costsO(np2) FLOPS. When p > n� 1 one
can consider the dual formulation of (1) which also has an
explicit solution as mentioned in (Lu et al., 2013; Saunders
et al., 1998) and the cost is O(n2p) FLOPS. In summary,
trying to solve (1) exactly costs O(npmin {n, p}) FLOPS
which can be very slow.
There are faster ways to approximate (2) when computa-
tional cost is the concern. One can view RR as an opti-
mization problem and use Gradient Descent (GD) which

∗ yichaolu@wharton.upenn.edu
† foster@wharton.upenn.edu

takes O(np) FLOPS in every iteration. However, the con-
vergence speed for GD depends on the spectrum of X and
the magnitude of λ. When X is ill conditioned and λ is
small, GD requires a huge number of iterations to con-
verge which makes it very slow. For huge datasets, one
can also apply stochastic gradient descent (SGD) (Zhang,
2004; Johnson and Zhang, 2013; Bottou, 2010), a powerful
tool for solving large scale optimization problems.
Another alternative for regression on huge datasets is
Principal Component Regression (PCR) as mentioned in
(Artemiou and Li, 2009; Jolliffe, 2005), which runs regres-
sion only on the top k1 principal components (PCs) of the
X matrix. PCA for huge X can be computed efficiently
by randomized algorithms like (Halko et al., 2011a,b). The
cost for computing top k1 PCs of X is O(npk1) FLOPS.
The connection between RR and PCR is well studied by
(Dhillon et al., 2013). The problem of PCR is that when a
large proportion of signal sits on the bottom PCs, it has to
regress on a lot of PCs which makes it both slow and inac-
curate (see later sections for detailed explanations).
In this paper, we propose a two stage algorithm LING1

which is a faster way of computing the RR solution (2).
A detailed description of the algorithm is given in section
2. In section 3, we prove that LING has the same risk as
RR under the fixed design setting. In section 4, we compare
the performance of PCR, GD, SGD and LING in terms of
prediction accuracy and computational efficiency on both
simulated and real data sets.

2 THE ALGORITHM

2.1 DESCRIPTION OF THE ALGORITHM

LING is a two stage algorithm. The intuition of LING is
quite straight forward. We start with the observation that
regressing Y on X (OLS) is essentially projecting Y onto
the span of X. Let U1 denote the top k2 PCs (left sin-
gular vectors) of X and let U2 denote the remaining PCs.
The projection of Y onto the span of X can be decom-

1LING is the Chinese of ridge
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Algorithm 1 LING
Input : Data matrix X ,Y. U1, an orthonormal matrix
consists of top k2 PCs of X. d1, d2, ...dk2 , top k2 singu-
lar values of X. Regularization parameter λ, an initial
vector γ̂2,0 and number of iterations n2 for GD .
Output : γ̂1,s, γ̂2, the regression coefficients.
1.Regress Y on U1, let γ̂1 = U>1 Y.
2.Compute the residual of previous regression problem.
Let Yr = Y −U1γ̂1.
3.Compute the residual of X regressing on U1. Use
Xr = X−U1U

>
1 X to denote the residual of X.

4.Use gradient descent with optimal step size with ini-
tial value γ̂2,0 (see algorithm 3) to solve the RR problem
minγ̂2∈Rp ‖Xrγ̂2 −Yr‖2 + nλ‖γ̂2‖2.
5. Compute a shrinkage version of γ̂1 by (γ̂1,s)i =
d2i

d2i+nλ
(γ̂1)i

6.The final estimator is Ŷ = U1γ̂1,s +Xrγ̂2.

posed into two orthogonal parts, the projection onto U1

and the projection onto U2. In the first stage, we pick a
k2 � p and the projection onto U1 can be computed di-
rectly by Ŷ1 = U1U

>
1 Y which is exactly the same as

running a PCR on top k2 PCs. For huge X, computing the
top k2 PCs exactly is very slow, so we use a faster ran-
domized SVD algorithm for computing U1 which is pro-
posed by (Halko et al., 2011a) and described below. In
the second stage, we first compute Yr = Y − Ŷ1 and
Xr = X − U1U

>
1 X which are the residual of Y and X

after projecting onto U1. Then we compute the projec-
tion of Y onto the span of U2 by solving the optimization
problem minγ̂2∈Rp ‖Xrγ̂2−Yr‖2 with GD (Algorithm 3).
Finally, since RR shrinks the projection of Y onto X (the
OLS solution) via regularization, we also shrink the pro-
jections in both stages accordingly. Shrinkage in the first
stage is performed directly on the estimated regression co-
efficients and shrinkage in the second stage is performed by
adding a regularization term to the optimization problem
mentioned above. Detailed description of LING is shown
in Algorithm 1.

Remark 1. LING can be regarded as a combination of
PCR and GD. The first stage of LING is a very crude es-
timation of Y and the second stage adds a correction to
the first stage estimator. Since we do not need a very ac-
curate estimator in the first stage it suffices to pick a very
small k2 in contrast with the k1 PCs needed for PCR. In the
second stage, the design matrix Xr is a much better condi-
tioned matrix than the original X since the directions with
largest singular values are removed. As introduced in sec-
tion 2.2, Algorithm 3 converges much faster with a better
conditioned matrix. Hence GD in the second stage of LING
converges faster than directly applying GD for solving (1).
The above property guarantees that LING is both fast and
accurate compared with PCR and GD. More details about

Algorithm 2 Random SVD
Input : design matrix X, target dimension k2, number
of power iterations i.
Output : U1 ∈ n×k2, the matrix of top k2 left singular
vectors of X, d1, d2, ...dk2 , the top k2 singular values of
X.
1.Generate random matrix R1 ∈ p × k2 with i.i.d stan-
dard Gaussian entries.
2.Estimate the span of top k2 left singular vectors of X
by A1 = (XX>)iXR1.
3.Use QR decomposition to compute Q1 which is an or-
thonormal basis of the column space of A1.
4.Compute SVD of the reduced matrix Q>1 X =
U0D0V

>
0 .

5.U1 = Q1U0 gives the top k2 singular vectors of X and
the diagonal elements of D0 gives the singular values.

Algorithm 3 Gradient Descent with Optimal Step Size
(GD)

Goal : Solve the ridge problem minγ̂∈Rp ‖Xγ̂−Y‖2+
nλ‖γ̂‖2.
Input : Data matrix X, Y, regularization parameter λ,
number of iterations n2, an initial vector γ̂0
Output : γ̂
for t = 0 to n2 − 1 do
Q = 2X>X+ 2nλI
wt = 2X>Y −Qγ̂t
st =

w>
t wt

w>
t Qwt

. st is the step size which makes the
target function decrease the most in direction wt.
γ̂t+1 = γ̂t + st · wt.

end for

on the computational cost will be discussed in section 2.2.

Remark 2. Algorithm 2 is essentially approximating the
subspace of top left singular vectors by random projection.
It provides a fast approximation of the top singular values
and vectors for large X when computing the exact SVD is
very slow. Theoretical guarantees and more detailed ex-
planations can be found in (Halko et al., 2011a). Empir-
ically we find in the experiments, Algorithm 2 may occa-
sionally generate a bad subspace estimator due to random-
ness which makes PCR perform badly. On the other hand,
LING is much more robust since in the second stage it com-
pensate for the signal missing in the first stage. In all the
experiments, we set i = 1.

The shrinkage step (step 5) in Algorithm 1 is only
necessary for theoretical purposes since the goal is to
approximate Ridge Regression which shrinks the Least
Square estimator over all directions. In practice shrinkage
over the top k2 PCs is not necessary. Usually the number
of PCs selected (k2) is very small. From the bias variance
trade off perspective, the variance reduction gained from
the shrinkage over top k2 PCs is at most O(k2n ) under
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the fixed design setting (Dhillon et al., 2013) which is a
tiny number. Moreover, since the top singular values of
X>X are usually very large compared with nλ in most
real problems, the shrinkage factor d2i

d2i+nλ
will be pretty

close to 1 for top singular values. We use shrinkage in
Algorithm 1 because the risk of the shrinkage version of
LING is exactly the same as RR as proved in section 3.
Algorithm 2 can be further simplified if we skip the
shrinkage step mentioned in previous paragraph. Instead
of computing the top k2 PCs, the only thing we need to
know is the subspace spanned by these PCs since the first
stage is essentially projecting Y onto this subspace. In
other words, we can replace U1 in step 1, 2, 3 of Algorithm
1 with Q1 obtained in step 3 of Algorithm 2 and directly
let Ŷ = Q1γ̂1 +Xrγ̂2. In the experiments of section 4 we
use this simplified version.

2.2 COMPUTATIONAL COST

We claim that the cost of LING is O
(
np(k2 + n2)

)
where

k2 is the number of PCs used in the first stage and n2 is
the number of iterations of GD in the second stage. Ac-
cording to (Halko et al., 2011a), the dominating step in
Algorithm 2 is computing (XX>)iXR1 and Q>1 X which
costs O(npk2) FLOPS. Computing γ̂1 and Yr cost less
thanO(npk2). Computing Xr costsO(npk2). So the com-
putational cost before the GD step is O(npk2). For the
GD stage, note that in every iteration Q never needs to be
constructed explicitly. While computing wt and st, always
multiplying matrix and vector first gives a cost of O(np)
for every iteration. So the cost for GD stage is O(n2np).
Add all pieces together the cost of LING isO

(
np(k2+n2)

)

FLOPS.
Let n1 be the number of iterations required for solving (1)
directly by GD and k1 be the number of PCs used for PCR.
It’s easy to check that the cost for GD is O(n1np) FLOPS
and the cost for PCR is O(npk1). As mentioned in remark
1, the advantage of LING over GD and PCR is that k1 and
n1 might have to be really large to achieve high accuracy
but much smaller values of the pair (k2, n2) will work for
LING.
In the remaining part of the paper we use "signal on certain
PCs" to refer to the projection of Y onto certain principal
components of X. Consider the case when the signal is
widely spread among all PCs (i.e. the projection of Y onto
the bottom PCs of X is not very small) instead of concen-
trating on the top ones, k1 needs to be large to make PCR
perform well since the signal on bottom PCs are discarded
by PCR. But LING does not need to include all the signal
in the first stage regression since the signal left over will be
estimated in the second GD stage. Therefore LING is able
to recover most of the signal even with a small k2.
In order to understand the connection between accuracy
and number of iterations in Algorithm 3 , we state the fol-

lowing theorem in A.Epelman (2007):

Theorem 1. Let g(z) = 1
2z
>Mz + q>z be a quadratic

function where M is a PSD matrix. Suppose g(z) achieves
minimum at z∗. Apply Algorithm 3 to solve the minimiza-
tion problem. Let zt be the z value after t iterations, then
the gap between g(zt) and g(z∗), the minimum of the ob-
jective function satisfies

g(zt+1)− g(z∗)
g(zt)− g(z∗)

≤ C =

(
A− a
A+ a

)2

(3)

where A, a are the largest and smallest eigenvalue of the
M matrix.

Theorem 1 shows that the sub optimality of the target func-
tion decays exponentially as the number of iterations in-
creases and the speed of decay depends on the largest and
smallest singular value of the PSD matrix that defines the
quadratic objective function. If we directly apply GD to
solve (1), Let f1(β) = ‖Xβ − Y‖2 + nλ‖β‖2. Assume
f1 reaches its minimum at β̂. Let β̂t be the coefficient after
t iterations and let di denote the ith singular value of X.
Applying theorem 1, we have

f1(β̂t+1)− f1(β̂)
f1(β̂t)− f1(β̂)

≤ C =

(
d21 − d2p

d21 + d2p + 2nλ

)2

(4)

Similarly for the second stage of LING, Let f2(γ2) =
‖Xrγ2 − Yr‖2 + nλ‖γ2‖2. Assume f2 reaches its min-
imal at γ̂2. We have

f2(γ̂2,t+1)− f2(γ̂2)
f2(γ̂2,t)− f2(γ̂2)

≤ C =

(
d2k2+1

d2k2+1 + 2nλ

)2

(5)

In most real problems, the top few singular values of X>X
are much larger than the other singular values and nλ.
Therefore the constant C obtained in (4) can be very close
to 1 which makes GD algorithm converges very slowly. On
the other hand, removing the top few PCs will make C in
(5) significantly smaller than 1. In other words, GD may
take a lot of iterations to converge when solving (1) directly
while the second stage of LING takes much less iterations
to converge. This can also be seen in the experiments of
section 4.

3 THEOREMS

In this section we compute the risk of LING estimator
(explained below) under the fixed design setting. For
simplicity, assume U1,D0 generated by Algorithm 2
give exactly the top k2 left singular vectors and singular
values of X and GD in step 4 of Algorithm 1 converges
to the optimal solution. Let X = UDV> be the SVD
of X where U = (U1,U2) and V = (V1,V2). Here
U1,V1 are top k2 singular vectors and U2,V2 are bottom
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p − k2 singular vectors. Let D = diag(D1,D2) where
D1 ∈ k2 × k2 contains top k2 singular values denoted by
d1 ≥ d2 ≥ ... ≥ dk2 and D2 ∈ p − k2 × p − k2 contains
bottom p − k2 singular values. Let D3 = diag(0,D2)
(replace D1 in D by a zero matrix of the same size).

3.1 THE FIXED DESIGN MODEL

Assume X, Y comes from the fixed design model Y =
Xβ + ε where ε ∈ n × 1 are i.i.d noise with mean 0 and
variance σ2. Here X is fixed and the randomness of Y only
comes from ε. Note that X = U1D1V

>
1 + Xr, the fixed

design model can also be written as

Y = (U1D1V
>
1 +Xr)β + ε = U1γ1 +Xrγ2 + ε

where γ1 = D1V
>
1 β and γ2 = β. We use the l2 distance

between E(Y|X) (the best possible prediction given X un-
der l2 loss) and Ŷ = U1γ̂1,s + Xrγ̂2 (the prediction by
LING) as the loss function, which is called risk in the fol-
lowing discussions. Actually E(Y|X) = Xβ is linear in X
under fixed design model. The risk of LING can be written
as

1

n
E‖E(Y|X)−U1γ̂1,s −Xrγ̂2‖2

=
1

n
E‖U1γ1 +Xrγ2 −U1γ̂1,s −Xrγ̂2‖2

We can further decompose the risk into two terms:

1

n
E‖U1γ1 +Xrγ2 −U1γ̂1,s −Xrγ̂2‖2 =

1

n
E‖U1γ1 −U1γ̂1,s‖2 +

1

n
E‖Xrγ2 −Xrγ̂2‖2

(6)

because U>1 Xr = 0. Note that here the expectation is
taken with respect to ε.
Let’s calculate the two terms in (6) separately. For the first
term we have:

Lemma 1.

1

n
E‖U1γ1 −U1γ̂1,s‖2 =

1

n

k2∑

j=1

d4jσ
2 + γ21,jn

2λ2

(d2j + nλ)2
(7)

Here γ1,j is the jth element of γ1.

Proof. Let S ∈ k2 × k2 be the diagonal matrix with

Sj,j =
d2j

d2j+nλ
. So we have γ̂1,s = SU>1 Y = Sγ1+SU

>
1 ε,

E(γ̂1,s) = Sγ1.

1

n
E‖U1γ1 −U1γ̂1,s‖2

=
1

n
E‖U1E(γ̂1,s)−U1γ̂1,s‖2

+
1

n
‖U1γ1 −U1E(γ̂1,s)‖2

=
1

n
E‖U1SU

>
1 ε‖2 +

1

n
‖γ1 − Sγ1‖2

=
1

n
ETr(U1S

2U>1 εε
>) +

1

n
‖γ1 − Sγ1‖2

=
1

n
ETr(S2)σ2 +

1

n
‖γ1 − Sγ1‖2

=
1

n

k2∑

j=1

d4jσ
2 + γ21,jn

2λ2

(d2j + nλ)2

Now consider the second term in (6).
Note that

Xr = UD3V
>

The residual Yr after the first stage can be represented by

Yr = Y−U1γ̂1 = (I−U1U
>
1 )Y = Xrγ2+(I−U1U

>
1 )ε

and the optimal coefficient obtained in the second GD stage
is

γ̂2 = (X>r Xr + nλI)−1X>r Yr

For simplicity, let ε2 = (I −U1U
>
1 )ε.

Lemma 2.

E‖Xrγ2−Xrγ̂2‖2 =

p∑

i=k2+1

1

(d2i + nλ)2
(d4iσ

2+nλ2d2iα
2
i )

(8)
where αi is the ith element of α = V>γ2

Proof. First define

Xλ = X>r Xr + nλI

Dλ = D2
3 + nλI

E‖Xrγ2 −Xrγ̂2‖2 = ‖Xrγ2 −XrE(γ̂2)‖2 (9)
+ E‖XrE(γ̂2)−Xrγ̂2‖2 (10)

Consider (9) and (10) separately.

(9) = ‖XrX
−1
λ X>r Xrγ2 −Xrγ2‖2

= ‖UD3D
−1
λ D2

3V
>γ2 −UD3V

>γ2‖2
= ‖D3D

−1
λ D2

3α−D3α‖2

=

p∑

i=k2+1

α2
i d

2
i (

nλ

d2i + nλ
)2
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(10) = Eε2‖XrX
−1
λ X>r ε2‖2

= Eε2Tr
(
XrX

−1
λ X>r XrX

−1
λ X>r ε2ε

>
2

)

= Eε2Tr
(
D3D

−1
λ D2

3D
−1
λ D3U

>ε2ε
>
2 U
)

= Tr
(
D3D

−1
λ D2

3D
−1
λ D3Eε2 [U>ε2ε>2 U]

)

Note that

Eε2 [U>ε2ε>2 U] = diag(0, Ip−k2)σ
2

(diag(0, Ip−k2)replace the top k2×k2 block of the identity
matrix with 0),

(10) =

p∑

i=k2+1

d4i
(d2i + nλ)2

σ2 (11)

Add the two terms together finishes the proof.

Plug (7) (8) into (6) we have
Theorem 2. The risk of LING algorithm under fixed design
setting is

1

n

k2∑

j=1

d4jσ
2 + γ21,jn

2λ2

(d2j + nλ)2
+

1

n

p∑

i=k2+1

d4iσ
2 + n2λ2d2iα

2
i

(d2i + nλ)2

(12)
Remark 3. This risk is the same as the risk of ridge regres-
sion provided by Lemma 1 in (Dhillon et al., 2013). Actu-
ally, LING gets exactly the same prediction as RR on the
training dataset. This is very intuitive since on the training
set LING is essentially decomposing the RR solution into
the first stage shrinkage PCR predictor on top k2 PCs and
the second stage GD predictor over the residual spaces as
explained in section 2.

4 EXPERIMENTS

In this section we compare the accuracy and computa-
tional cost (evaluated in terms of FLOPS) of 3 different
algorithms for solving Ridge Regression: Gradient De-
scent with Optimal step size (GD), Stochastic Variance Re-
duction Gradient (SVRG) (Johnson and Zhang, 2013) and
LING. Here SVRG is an improved version of stochastic
gradient descent which achieves exponential convergence
with constant step size. We also consider Principal Com-
ponent Regression (PCR) (Artemiou and Li, 2009; Jolliffe,
2005) which is another common way for running large
scale regression. Experiments are performed on 3 simu-
lated models and 2 real datasets. In general, LING per-
forms well on all 3 simulated datasets while GD, SVRG
and PCR fails in some cases. For two real datasets, all
algorithms give reasonable performance while SVRG and
LING are the best. Moreover, both stages of LING require
only a moderate amount of matrix multiplications each cost
O(np), much faster to run on matlab compared with SVRG
which contains a lot of loops.

Table 1: parameter setup for simulated data

MODEL 1 MODEL 2 MODEL 3

k1
21,22,23,26
30,50,100

20,30,50
100,150,400

20,30,50,100
150,400

n1

10,20,30
50,80,100
150,200

2,4,6,8,10
15,20,30

6,10,15,20
30,50,80

120,180,250
k2 20 20 20

n2
1,2,3,5
8,13,20

2,4,6,8,10
15,20,30

2,4,6,8,10
15,30

nSVRG
30,50,80
120,150

5,10,20
30,50

5,10,15,25
40,60,90

4.1 SIMULATED DATA

Three different datasets are constructed based on the fixed
design model Y = Xβ+εwhere X is of size 2000×1500.
In the three experiments X and β are generated randomly in
different ways (more details in following sections) and i.i.d
Gaussian noise is added to Xβ to get Y. Then GD, SVRG,
PCR and LING are performed on the dataset. For GD,
we try different number of iterations n1. For SVRG, we
vary the number of passes through data denoted by nSVRG.
The number of iterations SVRG takes equals the number
of passes through data times sample size and each iteration
takes O(p) FLOPS. The step size of SVRG is chosen by
cross validation but this cost is not considered when evalu-
ating the total computational cost. Note that one advantage
of GD and LING is that due to the simple quadratic form
of the target function, their step size can be computed di-
rectly from the data without cross validation which intro-
duces extra cost. For PCR we pick different number of PCs
(k1). For LING we pick top k2 PCs in the first stage and try
different number of iterations n2 in the second stage. The
computational cost and the risk of the four algorithms are
computed. The above procedure is repeated over 20 ran-
dom generation of X, β and Y. The risk and computational
cost of the traditional RR solution (2) for every dataset is
also computed as a benchmark.
The parameter set up for the three datasets are listed in table
1.

4.1.1 MODEL 1

In this model the design matrix X has a steep spectrum.
The top 30 singular values of X decay exponentially as
1.3i where i = 40, 39, 38..., 11. The spectrum of X is
shown in figure 4. To generate X, we fix the diagonal ma-
trix De with the designed spectrum and construct X by
X = UeDeV

>
e where Ue, Ve are two random orthonor-

mal matrices. The elements of β are sampled uniformly
from interval [−2.5, 2.5]. Under this set up, most of the
energy of the X matrix lies in top PCs since the top singu-
lar values are much larger than the remaining ones so PCR
works well. But as indicated by (4), the convergence of GD
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is very slow.
The computational cost and average risk of the four algo-
rithms and also the RR solution (2) over 20 repeats are
shown in figure 1. As shown in figure 1 both PCR and
LING work well by achieving risk close to RR at less com-
putational cost. SVRG is worse than PCR and LING but
much better than GD.
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Figure 1: Model 1, Risk VS. Computational Cost plot.
PCR and LING approaches the RR risk very fast. SVRG
also approaches RR risk but cost more than the previous
two. GD is very slow and inaccurate.

4.1.2 MODEL 2

In this model the design matrix X has a flat spectrum.
The singular values of X are sampled uniformly from
[
√
2000
2 ,
√
2000]. The spectrum of X is shown in figure 5.

To generate X, we fix the diagonal matrix De with the de-
signed spectrum and construct X by X = UeDeV

>
e where

Ue, Ve are two random orthonormal matrices. The ele-
ments of β are sampled uniformly from interval [−2.5, 2.5].
Under this set up, the signal are widely spread among all
PCs since the spectrum of X is relatively flat. PCR breaks
down because it fails to catch the signal on bottom PCs. As
indicated by (4), GD converges relatively fast due to the flat
spectrum of X.
The computational cost and average risk of the four algo-
rithms and also the RR solution (2) over 20 repeats are
shown in figure 2. As shown by the figure GD works best
since it approaches the risk of RR at the the lowest com-
putational cost. LING and SVRG also works by achiev-
ing reasonably low risk with less computational cost. PCR
works poorly as explained before.

4.1.3 MODEL 3

This model presented a special case where both PCR
and GD will break down. The singular values of X ∈
2000×1500 are constructed by first uniformly sample from
[
√
2000
2 ,
√
2000]. The top 15 sampled values are then multi-

plied by 10. The top 100 singular values of X are shown in
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Figure 2: Model 2, Risk VS. Computational Cost plot.
GD approaches the RR risk very fast. SVRG and LING are
slower than GD but still achieves risk close to RR at less
cost. PCR is slow and has huge risk.

figure 6. To generate X, we fix the diagonal matrix De with
the designed spectrum and construct X by X = UeDe

where Ue is a random orthonormal matrix. The first 15 and
last 1000 elements of the coefficient vector β ∈ 1500 × 1
are sampled uniformly from interval [−2.5, 2.5] and other
elements of β remains 0. In this set up, X has orthogonal
columns which are the PCs, and the signal lies only on the
top 15 and bottom 1000 PCs. PCR won’t work since a large
proportion of signal lies on the bottom PCs. On the other
hand, GD won’t work as well since the top few singular
values are too large compared with other singular values,
which makes GD converges very slowly.
The computational cost and risk of the four algorithms and
also the RR solution (2) over 20 repeats are shown in figure
3. As shown by the figure LING works best in this set up.
SVRG is slightly worse than LING but still approaching
RR with less cost. In this case, GD converges slowly and
PCR is completely off target as explained before.

4.2 REAL DATA

In this section we compare PCR, GD, SVRG and LING
with the RR solution (2) on two real datasets.

4.2.1 GISETTE DATASET

The first is the gisette data set (Guyon et al., 2004) from
the UCI repository which is a bi-class classification task.
Every row of the design matrix X ∈ 6000 × 5000 con-
sists of pixel features of a single digit "4" or "9" and Y
gives the class label. Among the 6000 samples, we use
5000 for training and 1000 for testing. The classification
error rate for RR solution (2) is 0.019. Since the goal is to
compare different algorithms for regression, we don’t care
about achieving the state of the art accuracy for this dataset
as long as regression works reasonably well. When running
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Figure 3: Model 3, Risk VS. Computational Cost plot.
LING approaches RR risk the fastest. SVRG is slightly
slower than LING. GD also approaches RR risk but cost
more than LING. PCR has a huge risk no matter how many
PCs are selected.
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Figure 4: Top 100 singular values of X in Model 1

PCR, we pick top k1 = 10, 20, 40, 80, 150, 300, 400 PCs
and in GD we iterate n1 = 2, 5, 10, 15, 20, 30, 50, 100, 150
times. For SVRG we try nSVRG = 1, 2, 3, 5, 10, 20, 40, 80
passes through the data. For LING we pick k2 = 5, 15 PCs
in the first stage and try n2 = 1, 2, 4, 8, 10, 15, 20, 30, 50
iterations in the second stage. The computational cost and
average classification error of the four algorithms and also
the RR solution (2) on test set over 6 different train test
splits are shown in figure 7. The top 150 singular values
of X are shown in figure 9. As shown in the figure, SVRG
gets close to the RR error very fast. The two curves of
LING with k2 = 5, 15 are slower than SVRG since some
initial FLOPS are spent on computing top PCs but after that
they approach RR error very fast. GD also converges to RR
but cost more than the previous two algorithms. PCR per-
forms worst in terms of error and computational cost.

4.2.2 BUZZ IN SOCIAL MEDIA

The second dataset is the UCI buzz in social media dataset
which is a regression task. The goal is to predict popular-
ity (evaluated by the mean number of active discussion) of
a certain topic on Twitter over a period. The original fea-
ture matrix contains some statistics about this topic over
that period like number of discussions created and new au-
thors interacting at the topic. The original feature dimen-
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Figure 5: Singular values
of X in Model 2
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Figure 6: Top 100 singular
values of X in Model 3
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Figure 7: Gisette, Error Rate VS. Computational Cost plot.
SVRG achieves small error rate fastest. Two LING lines
with different n2 spent some FLOPS on computing top PCs
first, but then converges very fast to a lower error rate. GD
and PCR also provide reasonably small error rate and are
faster than RR, but suboptimal compared with SVRG and
LING.

sion is 77. We add quadratic interactions to make it 3080.
To save time, we only used a subset of 8000 samples. The
samples are split into 6000 train and 2000 test. We use
MSE on the test data set as the error measure. For PCR we
pick k1 = 10, 20, 30, 50, 100, 150 PCs and in GD we iter-
ate n1 = 1, 2, 4, 6, 8, 10, 15, 20, 30, 40, 60, 100 times. For
SVRG we try nSVRG = 1, 2, 3, 5, 10, 15, 20, 40, 80 passes
through the dataset and for LING we pick k2 = 5, 15 in the
first stage and n2 = 0, 1, 2, 4, 6, 8, 10, 15, 20, 25 iterations
in the second stage. The computational cost and average
MSE on test set over 5 different train test splits are shown
in figure 8. The top 150 singular values of X are shown in
figure 10. As shown in the figure, SVRG approaches MSE
of RR very fast. LING spent some initial FLOPS for com-
puting top PCs but after that converges fast. GD and PCR
also achieves reasonable performance but suboptimal com-
pared with SVRG and LING. The MSE of PCR first decays
when we add more PCs into regression but finally goes up
due to overfit.
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Figure 8: Buzz, MSE VS. Computational Cost plot. SVRG
and two LING lines with different n2 achieves small MSE
fast. GD is slower than LING and SVRG. PCR reaches its
smallest MSE at k1 = 50 then overfits.
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lar values of X in Gisette
Dataset
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Figure 10: Top 150 singu-
lar values of X in Social
Media Buzz Dataset

5 SUMMARY

In this paper we present a two stage algorithm LING for
computing large scale Ridge Regression which is both fast
and robust in contrast to the well known approaches GD
and PCR. We show that under the fixed design setting
LING actually has the same risk as Ridge Regression as-
suming convergence. In the experiments, LING achieves
good performances on all datasets when compare with
three other large scale regression algorithms.
We conjecture that same strategy can be also used to accel-
erate the convergence of stochastic gradient descent when
solving Ridge Regression since the first stage in LING es-
sentially removes the high variance directions of X, which
will lead to variance reduction for the random gradient di-
rection generated by SGD.
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Abstract

We develop an adaptive monotone shrinkage es-
timator for regression models with the following
characteristics: i) dense coefficients with small
but important effects; ii) a priori ordering that in-
dicates the probable predictive importance of the
features. We capture both properties with an em-
pirical Bayes estimator that shrinks coefficients
monotonically with respect to their anticipated
importance. This estimator can be rapidly com-
puted using a version of Pool-Adjacent-Violators
algorithm. We show that the proposed monotone
shrinkage approach is competitive with the class
of all Bayesian estimators that share the prior in-
formation. We further observe that the estima-
tor also minimizes Stein’s unbiased risk estimate.
Along with our key result that the estimator mim-
ics the oracle Bayes rule under an order assump-
tion, we also prove that the estimator is robust.
Even without the order assumption, our estima-
tor mimics the best performance of a large family
of estimators that includes the least squares es-
timator, constant-λ ridge estimator, James-Stein
estimator, etc. All the theoretical results are non-
asymptotic. Simulation results and data analysis
from a model for text processing are provided to
support the theory.

1 INTRODUCTION

Feature selection and coefficient estimation are familiar
topics in both statistics and machine learning communities.
Many results in this area concern models that are ‘nearly
black,’ possessing a handful of large effects against a wide
field of noise. Consider the widely used linear model

Y = Xβ + ε where ε ∼ N(0, σ2In) , (1)

X is full-rank, n × p matrix of explanatory features with
p ≤ n, and β is a p dimensional vector of unknown coeffi-

cients. In the ‘nearly black’ case, all but a few of the coor-
dinates of β are zero. A long sequence of results leverage
this sparsity (Foster and George [1994]; Tibshirani [1996];
Abramovich et al. [2006]; Candes and Tao [2007]; Fan and
Lv [2008]; Bickel et al. [2009]). Sparsity assumptions are
well suited to many applications, especially within the field
of signal and image processing (Donoho [1995], Wright
et al. [2009]).

Despite the prevalence of research on sparse models, some
applications do not conform to this paradigm. For example,
Foster et al. [2013] used methods such as latent semantic
analysis, essentially principal components analysis (PCA),
to convert text into features for regression analysis. The
estimated coefficients of these principal components show
two specific characteristics that draw our attention: dense
coefficient estimates with a monotonically decaying effect
size. Rather than concentrate in a few estimates, the pre-
dictive power of the model spreads across many features.
Sparsity-based methods such as hard or soft thresholding
that set small effects to zero produce fitted models with
greatly diminished predictive ability. Too much predic-
tive signal has been lost by eliminating small, but nonethe-
less informative, coefficients. Dense coefficients appear in
other applications as well. Hall et al. [2009] and Dicker
[2011, 2012] also propose models for dense signals and
Dicker [2011, 2012] discusses several shrinkage estimators
in high dimensions.

The second characteristic of this application is the mono-
tone decrease in typical effect size. The signal tends to
concentrate in the leading principal components, then grad-
ually decay. We may not know the signal strength, but we
do have an ordering. In this sense, the unsupervised PCA
of the text data provides useful information that can be ex-
ploited within the regression. In particular, the eigenvalues
from the PCA provide an external ordering of the features
that is suggestive of the effect size. Such exogenous infor-
mation appears in other domains. In time series analysis,
data collected more recently are expected to be more in-
formative for the prediction of future trends. In principal
components regression, we tend to expect the first principal

533



component to be more important than the second. There-
fore, models without incorporating this prior knowledge
might be suboptimal.

In this paper, we capture both characteristics with an em-
pirical Bayes estimator that shrinks coefficients monotoni-
cally with respect to their anticipated importance. The pro-
cedure is tuning free and can be efficiently implemented
using Pool-Adjacent-Violators algorithm. We further show
that the estimator can be derived from frequentists’ per-
spective as well by minimizing Stein’s unbiased risk es-
timate. Finally, we establish non-asymptotic results to gau-
rantee that the proposed estimator is nearly Bayes optimal
under the order assumption and even when the order as-
sumption (or say, prior knowledge) is wrong, it still mim-
ics the best performance of a large family of estimators that
includes the least squares estimator, ridge estimator, James-
Stein estimator, etc.

The rest of this paper is organized as follows. In sec-
tion 2, we describe the monotone shrinkage model in de-
tail and introduce the maximum marginal likelihood esti-
mator(MMLE) and Pool-Adjacent-Violators algorithm. In
section 3, we show that the proposed estimator also mini-
mizes Stein’s unbiased risk estimate and establish its non-
asymptotic oracle properties both with and without order
assumption. In section 4, we suggest an estimator of the er-
ror variance σ2. In section 5, we present simulation results
and an analysis of text to support our theory. Concluding
remarks are given in section 6. Details of the technique are
provided in the Appendix.

2 ADAPTIVE MONOTONE SHRINAKGE

2.1 Model Formulation

We use a Bayesian framework to encode the prior knowl-
edge about the importance of explanatory features in our
model. We express this prior knowledge in a distribution
of the coefficients β. Intuitively, if the features within the
regression are standardized such that XTX = Ip, then the
coefficient |βi| gives the importance of the ith feature: a
unit change in Xi is associated with a change of |βi| in
the response. A natural prior that captures the sense that
the elements of β have decaying size specifies a monotone
decreasing sequence of variances for the coefficients. For
convenience, we assume that the size of signal in βi is de-
creasing with the index i:

βi ∼ N(0, σ2
i )

σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
p ≥ 0

(2)

Since we know the order, we can always rearrange βi so
that the unknown σ2

i are monotone as above. Throughout,
we consider only orthonormal designs for which XTX =

Ip. Then the Bayes rule β∗ in (1) and (2) is:

β∗i =
σ2
i

σ2
i + σ2

β̃i ,

where β̃ = (β̃1, · · · , β̃p) = XTY is the least squares esti-
mator. The Bayes rule shrinks β̃i monotonically, shrinking
more and more harshly as the index and σ2

i increase. For
our application, we know only the order of the features, not
the signal strength σ2

i , so the Bayes rule is not a real es-
timator because it depends on the unknown parameter σ2

i .
To mimic the performance of the Bayes rule, we estimate
the σ2

i s from data under the order constraint and use the
resulting plug-in estimator. For convenience, we write the
model as β ∼ N(0,Σ) where Σ = diag(σ2

1 , · · · , σ2
p).

2.2 Maximum Marginal Likelihood Estimator

To estimate the ordered prior variances on the diagonal
of Σ, we observe that the marginal distribution of Y is
N(0, XΣXT + σ2In). If we further assume the error vari-
ance σ2 from (1) is known (or we can plug in a consistent
estimator), a simple calculation shows that the least square
estimator β̃ = XTY is a sufficient statistic for Σ. So, in the
following discussions, we base our inference on β̃, whose
marginal distribution is N(0, σ2Ip + Σ). A natural esti-
mator of Σ is the maximum marginal likelihood estimator
(MMLE). The log marginal likelihood function is

l(Σ) = −1

2

p∑

i=1

(
log(2π) + log(σ2 + σ2

i ) +
β̃2
i

σ2 + σ2
i

)

Consequently, the MMLE is the solution to the following
optimization problem:

arg min
σi

p∑

i=1

(
log(σ2 + σ2

i ) +
β̃2
i

σ2 + σ2
i

)

subject to σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
p ≥ 0

(3)

2.3 Pool-Adjacent-Violators Algorithm

The optimization problem (3) resembles the well-known
isotonic regression problem

β̂iso = arg min
β

n∑

i=1

(yi − βi)2 subject to β1 ≥ · · · ≥ βn
(4)

whose unique solution can be efficiently obtained by
running the Pool-Adjacent-Violators (PAV) algorithm.
Roughly speaking, this algorithm solves (4) as follows. Set
i = 1. Move to the right (increase the index i) until finding
a pair (yi, yi+1) that violates the monotonicity constraint,
that is yi < yi+1. Pool yi and the adjacent yi+1 and replace
both by their average. Next check whether yi−1 <

yi+yi+1

2 .
If so, replace (yi−1, yi, yi+1) with their average. Continue
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to the left until monotonicity is satisfied and then proceed
to the right until the whole sequence is monotone. Hence,
PAV algorithm outputs an decreasing blockwise constant
sequence. As far as we know, the PAV algorithm dates back
to Ayer et al. [1955], where it is used to compute the MLE
of independent binomial distributions. Brunk [1955, 1958]
considered rather general scenarios and established some
consistency properties. According to Grotzinger and Witz-
gall [1984], if carefully implemented, the PAV algorithm
has computational complexity O(n).

Although the optimization problem (3) is not convex, it can
be solved efficiently by the PAV algorithm. Before estab-
lishing this result, we introduce some notations.

fi(x) = log(x+ σ2) +
β̃2
i

x+ σ2

σ̃2
i = arg min

x
fi(x) = β̃i

2 − σ2

Proposition 2.1. The following two-step algorithm pro-
duces the MMLE denoted by (σ̂2

1 , · · · , σ̂2
p)

Step 1. (σ̌2
1 , · · · , σ̌2

p) = PAV (σ̃2
1 , · · · , σ̃2

p)
Step 2. σ̂2

i = σ̌2
i I(σ̌2

i≥0).

For those σ2
i estimated to be 0, it means the corresponding

features are not included in the model. To prove the
proposition, we first introduce a lemma:

Lemma 2.1. Consider optimization problem

min

p∑

i=1

fi(θi)

subject to: θ1 ≥ θ2 ≥ · · · ≥ θp

where the element-by-element solution θ̃i = arg min
θ
fi(θ)

is finite. If the following two conditions are satisfied,
then the optimization problem has the unique solution
(θ̂1, · · · , θ̂p)=PAV(θ̃1, · · · , θ̃p).
Condition 1.(Pooling Property)
Let θij =

∑j
k=i θ̃k
j−i+1 . Then ∀i ≤ j, arg min

θ

∑j
k=i fk(θ) =

θij and
∑j
k=i fk(θ) is strictly decreasing when θ ≤ θij

and strictly increasing when θ ≥ θij .
Condition 2.(Violating Property)
If θ̃i ≤ θ̃i+1, then θ̂ki = θ̂ki+1,∀i + 1 ≤ k ≤ p, where
(θ̂k1 , · · · , θ̂kk) is the solution to the following optimization
problem (P k):

min
k∑

i=1

fi(θi)

subject to: θ1 ≥ θ2 ≥ · · · ≥ θk

Although the conditions in the lemma seem weird, actually
they are nearly necessary. Helpfully, the conditions can be

easily checked. Numerous distributions have log likelihood
functions that satisfy the conditions. These include the bi-
nomial distribution, Poisson distribution, normal distribu-
tion with fixed variance and variable mean, normal distri-
bution with fixed mean and variable variance, and so on.

Proof of Proposition 2.1
The situation we are faced up with is normal distribu-
tion with fixed mean and variable variance, which satis-
fies the conditions in Lemma 1. According to the lemma,
(σ̌2

1 , · · · , σ̌2
p) = PAV (σ̃2

1 , · · · , σ̃2
p) solves:

min

p∑

i=1

(log(σ2 + σ2
i ) +

β̃2
i

σ2 + σ2
i

)

subject to: σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
p

which is only slightly different from our original optimiza-
tion problem. To finish the proof, we just need to introduce
some auxiliary functions. Let f−k = log(σ2 + σ2

−k) +
σ2

σ2+σ2
−k
, 1 ≤ k ≤ n, so σ̃2

−k = arg min f−k(σ2
−k) = 0.

Consider the following optimization problem (Qn):

min

p∑

i=1

(log(σ2 + σ2
i ) +

β̃2
i

σ2 + σ2
i

)

+
n∑

i=1

(log(σ2 + σ2
−i) +

σ2

σ2 + σ2
−i

)

subject to σ2
1 ≥ · · · ≥ σ2

p ≥ σ2
−1 ≥ · · · ≥ σ2

−n

Lemma 1 shows PAV(σ̃2
1 , · · · , σ̃2

p, 0, · · · , 0) solves (Qn).
Denote it (σ̂2

n1, · · · , σ̂2
np, σ̂

2
−nn, · · · , σ̂2

−n1). Notice that
(σ̂2

1 , · · · , σ̂2
p, 0, · · · , 0) is a feasible solution, which should

be suboptimal, that is to say,

p∑

i=1

(log(σ2 + σ̂2
ni) +

β̃2
i

σ2 + σ̂2
ni

) +

n∑

i=1

f−k(σ̂2
−ni)

≤
p∑

i=1

(log(σ2 + σ̂2
i ) +

β̃2
i

σ2 + σ̂2
i

) +
n∑

i=1

f−k(0)

Recall that σ̃2
−k = arg min f−k(σ2

−k) = 0, which implies

p∑

i=1

(log(σ2 + σ̂2
ni) +

β̃2
i

σ2 + σ̂2
ni

)

≤
p∑

i=1

(log(σ2 + σ̂2
i ) +

β̃2
i

σ2 + σ̂2
i

)

Let n goes to infinity, PAV(σ̃2
1 , · · · , σ̃2

p, 0, · · · , 0) con-
verges to (σ̌2

1I(σ̌2
1≥0), · · · , σ̌2

pI(σ̌2
p≥0), 0, · · · , 0) and the in-

equality above implies (σ̌2
1I(σ̌2

1≥0), · · · , σ̌2
pI(σ̌2

p≥0)) is the
solution to the original optimization problem.
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2.4 Data-Driven Blockwise James-Stein Estimator:
Global and Local Adaptivity

Proposition 1 and the nature of Pool-Adjacent-Violators
algorithm show that the MMLE (σ̂2

1 , · · · , σ̂2
p) is decreas-

ing and blockwise constant. We now change notation in
this part and let σ̂2

i denote the common variance estimate
of the ith block. Define βi = (βi1, · · · , βini) to be the
coefficients within the ith block and correspondingly de-
fine β̂i, β̃i. With these notations, we can write explicitly

σ̂2
i =

(∑ni
j=1(β̃2

ij−σ2)

ni

)

+

and

β̂i =
σ̂2
i

σ̂2
i + σ2

β̃i

= (1− niσ
2

∑ni
j=1 β̃

2
ij

)+β̃i ,

which is exactly the positive part of the James-Stein type
estimator. Hence the proposed estimator can be interpreted
as a monotone blockwise James-Stein estimator. Block-
wise James-Stein estimator is well-studied in the wavelet
setting (Cai [1999], Cai and Zhou [2009]). In Cai [1999],
the block size is fixed before observing the data and is the
same for all blocks. Cai and Zhou [2009] proposed an
adaptive procedure to make the block size data-driven but
the block size remains the same for all blocks. As for our
procedure, the number of blocks and the size of each block
are completely data-driven. The difference is due to dif-
ferent assumptions. The former is based on smoothness of
Besov bodies while the later is based on monotonicity.

The advantage of our data-driven, monotone blockwise
James-Stein estimator is the ability to achieve both global
and local adaptivity. Blockwise shrinkage utilizes informa-
tion about neighboring coefficients. However, if the block
size is too large, local inhomogeneity might be overlooked.
So, the best way to achieve a good balance is to let the data
speak for itself.

3 ORACLE RISK PROPERTIES

3.1 Equivalence between MMLE and SURE
Estimator

In this section, we show that our empirical Bayes estima-
tor can also be derived within a frequentist framework by
minimizing Stein’s unbiased risk estimate (SURE). Under
squared error loss: l(β̂, β) = 1

p

∑p
i=1(β̂i − βi)

2. If one

uses the shrinkage estimator β̂λ defined by β̂λi = λi
λi+σ2 β̃i

to estimate βi, the risk for a given β is:

Rp(β̂
λ, β) = E[l(β̂λ, β)] =

1

p

p∑

i=1

σ2

(σ2 + λi)2
(σ2β2

i +λ2
i )

and an unbiased estimate for the risk is

SURE(λ) =
1

p

p∑

i=1

[(
σ2

σ2 + λi
)2β̃2

i +
σ2(λi − σ2)

σ2 + λi
]

Generally, SURE(λ) is unbiased estimate of the risk only if
λ is a fixed constant and cannot depend on data. We say β̂λ̂

is a monotone shrinkage estimator if β̂λ̂i = λ̂i
λ̂i+σ2

β̃i and

λ̂1 ≥ · · · ≥ λ̂p ≥ 0, where λ̂i can be data dependent. A
monotone shrinkage estimator is completely determined by
the monotone shrinkage parameter λ̂ = (λ̂1, · · · , λ̂p). If
only considering the family of monotone shrinkage esti-
mators, the relationship suggests that the data-dependent λ̂
which minimizes SURE(λ) should be a good choice. De-
fine:

λ̂SURE = arg min
λ1≥···≥λp≥0

n∑

i=1

[(
σ2

σ2 + λi
)2β̃2

i +
σ2(λi − σ2)

σ2 + λi
]

which is of the same form as optimization problem (3). Let
gi(λi) = ( σ2

σ2+λi
)2β̃2

i + σ2(λi−σ2)
σ2+λi

. Then it is easy to see
that λ̃i = arg min

λi
gi(λi) = β̃2

i − σ2. Checking that gi(λi)

satisfy the two conditions in Lemma 2.1, the same argu-
ment used to show Proposition 2.1 implies:

Proposition 3.1. MMLE equals SURE estimator β̂λ̂SURE .

In the rest of the paper, we will use β̂SURE = β̂λ̂SURE to
denote the proposed estimator.

Remark 3.1. Monotone shrinkage estimator was also in-
vestigated in Xie et al. [2012] when dealing with het-
eroscedastic normal sequence model. Different empirical
Bayes estimators were studied in this paper and SURE es-
timator was shown to dominate MMLE and method of mo-
ments. While in our context, the three estimators turned out
to be the same.

3.2 Oracle Property with Order Assumption

Proposition 3.1 provides us with a powerful tool to inves-
tigate the risk properties of the proposed estimate. First of
all, we introduce the oracle estimator, namely the Bayes
rule β∗ = (β∗1 , · · · , β∗p) defined by

β∗i =
σ2
i

σ2
i + σ2

β̃i

Of course, β∗ is not an practical estimator because it de-
pends on the unknown parameter λ∗ = (σ2

1 , · · · , σ2
p). It is

easy to see the oracle risk is:

R(β∗) =
1

p

p∑

i=1

σ2σ2
i

σ2 + σ2
i

Then we introduce another lemma, which is the building
block of the oracle properties. It says that E[SURE(λ̂)]
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is uniformly good approximation of the true risk E[l(β̂λ̂)],
where the expectation is with respect to both data and pa-
rameter β.

Lemma 3.1.

sup
σ2
1 ,··· ,σ2

p

sup
λ̂1≥···≥λ̂p

|E{E[l(β̂λ̂, β)−SURE(λ̂)|β]}| ≤ 4

√
2

p
σ2

where λ̂ = (λ̂1, · · · , λ̂p) is arbitrary monotone shrinkage
parameter and can be data dependent.

Theorem 3.1.

sup
σ2
1≥···≥σ2

p≥0

(R(β̂SURE)−R(β∗)) ≤ 4

√
2

p
σ2

Proof: Because λ∗ is fixed constant, we have

R(β̂SURE , β)−R(β∗, β)

= E[l(β̂SURE , β)|β]− E[SURE(λ∗)|β]

= E[l(β̂SURE , β)− SURE(λ̂SURE)+

SURE(λ̂SURE)− SURE(λ∗)|β]

≤ E[l(β̂SURE , β)− SURE(λ̂SURE)|β]

The inequality is due to the definition of λ̂SURE . So the
Bayes risk satisfies:

R(β̂SURE)−R(β∗)

≤ E{E[l(β̂SURE , β)− SURE(λ̂SURE)|β]}
≤ sup
σ2
1 ,··· ,σ2

p

sup
λ̂1≥···≥λ̂p≥0

|E{E[l(βλ̂, β)−SURE(λ̂)|β]}|

Applying lemma 3.1 finishes the proof.

Remark 3.2. Theorem 3.1 shows that SURE estimator
mimics the oracle Bayes rule and therefore outperforms all
other estimators. What needs to be highlighted is that this
is a non-asymptotic result with rate of convergenceO(p−

1
2 )

independent of the true σ2
i s. No matter how the σ2

i s vary,
as long as the order is known, the proposed adaptive pro-
cedure can uniformly capture the truth.

Corollary 3.1. sup
σ2
1≥···≥σ2

p≥0

R(β̂SURE)
σ2+R(β∗) = 1 + 4

√
2
p

3.3 Oracle Property without Order Assumption

In this section, we show that even without knowing the or-
der of the σ2

i ’s, the proposed estimator retains an oracle
property among monotone shrinkage estimators.

Theorem 3.2.

sup
σ2
1 ,··· ,σ2

p

(R(β̂SURE)− inf
γ̂1≥···≥γ̂p≥0

R(β̂γ̂)) ≤ 8

√
2

p
σ2

Proof: For any given (σ2
1 , · · · , σ2

p), we can always find
η̂ = (η̂1, · · · , η̂p) that satisfies η̂1 ≥ · · · ≥ η̂p ≥ 0 and
R(β̂η̂) < inf

γ̂1≥···≥γ̂p≥0
R(β̂γ̂) + ε. Then,

R(β̂SURE)− inf
γ̂1≥···≥γ̂p≥0

R(β̂γ̂) ≤ R(β̂SURE)−R(β̂η̂)+ε

Notice that,

l(β, β̂SURE)−l(β, β̂η̂) = (l(β, β̂SURE)−SURE(λ̂SURE))

+(SURE(λ̂SURE)−SURE(η̂))+(SURE(η̂)−l(β, β̂η̂))

≤ (l(β, β̂SURE)−SURE(λ̂SURE))+(SURE(η̂)−l(β, β̂η̂))

Take expectations, we have

R(β̂SURE)−R(β̂η̂) ≤ E{E[l(β, β̂SURE)−
SURE(λ̂SURE) + SURE(η̂)− l(β, β̂η̂)|β]}

≤ 2 sup
σ2
1 ,··· ,σ2

p

sup
λ̂1≥···≥λ̂p≥0

|E{E[l(βλ̂, β)−SURE(λ̂)|β]}|

Lemma 3.1 implies,

R(β̂SURE)− inf
γ̂1≥···≥γ̂p≥0

R(β̂γ̂) ≤ 8

√
2

p
σ2 + ε

Since the upper bound does not depend on σ2
i , let ε → 0,

and the theorem follows.

If we replace the data dependent shrinkage parameters in
Theorem 2 with fixed ones, we can improve the error bound
by a factor of 2, which is

Corollary 3.2.

sup
σ2
1 ,··· ,σ2

p

(R(β̂SURE)− inf
γ1≥···≥γp≥0

R(β̂γ)) ≤ 4

√
2

p
σ2

Theorem 2 shows that even when the order assumption is
invalid, the proposed estimator is nearly the best in the
family of monotone shrinkage estimators. In particular,
uniform shrinkage estimators such as least square estima-
tor, ridge estimator and James-Stein estimator and step-
wise regression methods such as monotone AIC, BIC, RIC
(just search for p nested submodels: with ith submodel as
{1, · · · , i}) are included. This is also a non-asymptotic re-
sult with rate of convergence O(p−

1
2 ) independent of the

σ2
i s. Therefore, the proposed estimator is robust and good

enough for practical use. Actually, Theorem 3.2 states
about the worst case. If the order is partially right, the
proposed procedure benefits where the order is right and
retains good properties where the order is wrong.

Remark 3.3. The robustness is due to the ‘soft constraint’.
Instead of restricting the norm of regression coefficients to
be monotone, we incorporate the constraint in the prior
distribution, which makes the model flexible and robust.
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4 ESTIMATION OF σ2

We have assumed σ2 is known to establish the theoretical
properties of our estimator. Here we suggest a reasonable
estimate in practice that is based on maximum marginal
likelihood. Unlike section 2.2, within this section the un-
known parameter becomes θ = (σ2

1 , · · · , σ2
p, σ

2). Recall
that the marginal distribution of Y isN(0, XΣXT+σ2In).
So, the log marginal likelihood function:

l(θ|y) ∝ −log(|XΣXT+σ2In|)−yT (XΣXT+σ2In)−1y

where | · | means determinant. Let X = (x1, · · · , xp),
we can add another n − p vectors xp+1, · · · , xn to make
X̃ = (X,xp+1, · · · , xn) an orthonormal matrix. Let Σ̃ =

diag(Σ+σ2Ip, σ
2In−p). ThenXΣXT +σ2In = X̃Σ̃X̃T

and thus (XΣXT + σ2In)−1 = X̃Σ̃−1X̃T . Plug this ex-
pression back into the marginal likelihood function,

l(θ|y) ∝ −log(|X̃Σ̃X̃T |)− yT X̃Σ̃−1X̃T y

We abuse notation in this section and let β̃ = X̃T y. If
we introduce variable (τ2

1 , · · · , τ2
n) = diag(Σ̃) = (σ2

1 +
σ2, · · · , σ2

p + σ2, σ2, · · · , σ2), then

l(Σ) ∝ −
n∑

i=1

(log τ2
i +

β̃2
i

τ2
i

)

So, the MMLE is the solution to the following optimization
problem.

min

p∑

i=1

(log τ2
i +

β̃2
i

τ2
i

)

subject to: τ2
1 ≥ · · · ≥ τ2

p ≥ τ2
p+1 = · · · = τ2

n ≥ 0

Following a similar but slightly different argument in
Proposition 2.1, we get:

Proposition 4.1. The solution is uniquely given by

(τ̂2
1 , · · · , τ̂2

p , τ̂
2
p+1, · · · , τ̂2

n) =

PAV (β̃2
1 , · · · , β̃2

p ,

∑n
i=p+1 β̃

2
i

n− p , · · · ,
∑n
i=p+1 β̃

2
i

n− p )

The MMLE of original parameters can be recovered
by (τ̂2

1 , · · · , τ̂2
p , τ̂

2
p+1, · · · , τ̂2

n) = (σ̂2
1 + σ̂2, · · · , σ̂2

p +
σ̂2, σ̂2, · · · , σ̂2).

5 NUMERICAL EXPERIMENTS

5.1 Simulation Results

In this section, we compare the proposed monotone shrink-
age approach with several other popular methods for fea-
ture selection and estimation. For simplicity, we only con-
sider the normal sequence model and assume the error vari-
ance σ2 is known.

• PAV, the proposed adaptive monotone shrinkage pro-
cedure computed by Pool-Adjacent-Violators algo-
rithm.
• Lasso, with λ selected by minimizing Stein’s unbi-

ased risk estimate. Under orthogonal design, it is also
known as Sureshrink (Donoho and Johnstone [1995]).
• Ridge estimator with λ selected by Cross-Validation.
• Positive part of James-Stein estimator
• Classical stepwise regression, we use AIC for penalty

criterion.
• Monotone AIC: AIC that just searches for p nested

submodels, i.e., with kth submodel={1, · · · , k}
We consider the following scenarios (p = 100, σ2 = 1):

1. Signals with Decaying Size: (σ2
1 , · · · , σ2

p) are gener-
ated from decreasing order statistics of 2χ2.

2. Signals with Same Size: σ2
i = 2,∀1 ≤ i ≤ p

3. Sparse Signals: first 90% of the σ2
i are 0 and remain-

ing 10% of σ2
i are generated from decreasing order

statistics of 4χ2.
4. Signals with Increasing Size: (σ2

1 , · · · , σ2
p) are gener-

ated from increasing order statistics of 2χ2. This sce-
nario dose not satisfy our order assumption(actually,
the worst case), which is used to show the robustness
of our procedure.

With (σ2
1 , · · · , σ2

p) fixed, we adopt the following simula-
tion strategy.

1. Generate β = (β1, · · · , βp) by βi ∼ N(0, σ2
i )

2. Condition on β, generate the observation X =
(x1, · · · , xp) by xi ∼ N(βi, σ

2)

3. Use the methods discussed above to estimate the sig-
nal β and compute the mean square error.

4. Repeat 1-3 for 400 times. The average of the mean
square errors is an estimate of the Bayes risk.

Mean square error condition on different β are given below
using box plot and the middle line of each box represents
Bayes risk of each procedure. The red line in the figure
stands for the oracle risk, i.e., the Bayes risk of the oracle
Bayes rule.
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Figure 1: Signals with decaying size, i.e. {σ2
i } is decreasing. The

adaptive monotone shrinkage procedure pools signals of similar
sizes together and shrinks blockwisely and monotonically. Red
line stands for oracle Bayes risk.
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For signals with decaying size, oracle estimator shrink
monotonically with respect to the size of the signals. Uni-
form shrinkage estimators such as ridge and James-Stein
estimator are suboptimal. The proposed adaptive monotone
procedure makes use of the prior information and mimics
the oracle Bayes rule by pooling signals of similar size to-
gether so that it shrinks blockwisely and monotonically.
AIC overfits the data while monotone AIC makes use of
the order structure and therefore performs better.
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Figure 2: Signals with same size, i.e. σ2
i s are the same. This is

the case where ridge and James-Stein estimator capture the truth
with full power while our procedure will regard the σ2

i as differ-
ent(decreasing) and will generally divide the σ2

i s into more than
one blocks, which leads to slight power loss. Red line stands for
oracle Bayes risk.

For signals with same size, the oracle estimator shrink uni-
formly. Ridge and James-Stein estimator mimic the oracle
Bayes rule with full power. The proposed adaptive proce-
dure does not necessarily gaurantee uniform shrinkage but
the power loss is negligible.
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Figure 3: Sparse Signals, i.e. the size of the signals remain
decreasing while 90% of them are 0. The proposed monotone
shrinkage procedure can effectively kill the noise and shrink the
signals properly. Red line stands for oracle Bayes risk.

For sparse signals, the oracle estimator kill the noise and
shrink the signals monotonically. Monotone AIC can effi-
ciently distinguish signal and noise while does not shrink
the signals. The proposed adaptive procedure not only kills
the noise but also shrinks the real signals properly accord-
ing to their sizes. For those methods that cannot make use
of the order structure, Lasso does better in this sparse case.
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Figure 4: Signals with increasing size, i.e. {σ2
i } is increasing,

which is opposite to our assumption that the size of signals is
decaying. The adaptive monotone shrinkage procedure is robust
and performs as good as other estimators. Red line stands for
oracle Bayes risk.

For signals with increasing size, the proposed estimator
uses completely reverse order. As theorem 2 expects,
wrong prior knowledge won’t ruin our estimator. It still
mimics the best performance of the monotone shrinkage
family. However, monotone AIC, which is not as robust as
our procedure, suffers a lot from wrong prior knowledge.

5.2 Analysis of Text Processing Data

In this section, we apply the proposed adaptive monotone
shrinkage approach to text data of real estate described in
Foster et al. [2013]. The features included in the regres-
sion model are the leading 1500 principal components of
the bag-of-words of text. The response is the log transfor-
mation of the real estate price. We use the eigenvalues from
PCA to order the effect size of the features (see Figure 5 for
the absolute t-statistics of the leading 500 principal compo-
nents). Although the data dose not ideally satisfy the as-
sumptions of our model, the proposed adaptive procedure
is robust enough to leverage this rough prior knowledge.
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Figure 5: Absolute t-statistics of the leading 500 Principal Com-
ponents. Those above the red line are significant.

The sample size is 7384 and we use 10 fold cross validation
to estimate the prediction error of each procedure.
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Figure 6: Prediction error comparison of different methods. Las-
soSURE: Lasso with tunning paramter selected by minimizing
Stein’s unbiased risk estimate. LassoCV: Lasso computed by
LARS (Efron et al. [2004]) and paramter tuned by cross valida-
tion.

The result shows

• PAV outperforms Ridge regression. From Figure 5,
we can see that the signals are of different sizes. Uni-
form shrinkage method shrink the important features
too much while shrink weak signals less harshly than
it should be. PAV can adaptively pool the signals
of similar size together and shrink blockwisely and
monotonically.

• PAV outperforms LassoSure and LassoCV. Lasso can
capture the sparse pattern of the data but as sacrifice,
it might shrink important features a bit more than they
should be.

• PAV outperforms Monotone AIC. Both procedures
make use of prior information but PAV is more robust.
There are several informative principal components
corresponding to small eigenvalues so that Monotone
AIC will exclude them from the model.

6 CONCLUSIONS

In this paper, we proposed an adaptive monotone shrink-
age approach for regression with features of ordered effect
size. We showed that the procedure can be rapidly com-
puted via Pool-Adjacent-Violators algorithm and holds ora-
cle risk properties. Non-asymptotic results are established.
Furthermore, although the procedure is based on knowing
the right prior knowledge about the features, we proved
that, when the prior knowledge is wrong or in the absence
of prior knowledge, the estimator still mimics the best per-
formance of the family of monotone shrinkage estimators.
Hence, it is robust enough to use in practice.

Compared with penalized least square methods which re-
quire heavy computational effort to find the best regular-
ization paramter, the proposed adaptive procedure is tuning
free. As noticed in the analysis of text data, the monotone
shrinkage approach naturally works with PCA since the

principal components are essentially ordered and orthogo-
nal. Recent devolopments in randomized algorithms(Halko
et al. [2011]) enable us to quickly compute the PCA of a
huge matrix so that the proposed procedure can be easily
applied to large-scale datasets.

7 APPENDIX

7.1 Proof of Lemma 2.1

It is sufficient to prove the following two claims:

i) (θ̂k1 , · · · , θ̂kk)=PAV(θ̃1, · · · , θ̃k), 1 ≤ k ≤ p ii) ∀1 ≤
i, j ≤ k, θ̂ki = θ̂kj ⇒ θ̂mi = θ̂mj ,∀k ≤ m ≤ p
We prove the claim by induction:
1. It is trivial for k = 1 since θ̂1

1 = θ̃1

2. Assuming the claim holds for k. If θ̃k+1 < θ̂kk , we can
see that

k∑

i=1

fi(θ̂
k
i ) + fk+1(θ̃k+1)

= min
θ1≥···≥θk

k∑

i=1

fi(θi) + min
θk+1

fk+1(θk+1)

≤ min
θ1≥···≥θk+1

k+1∑

i=1

fi(θi)

which implies,

(θ̂k+1
1 , · · · , θ̂k+1

k+1) = (θ̂k1 , · · · , θ̂kk , θ̃k+1)

= PAV (θ̃1, · · · , θ̃k)

So we prove claim i). Notice that θ̂k+1
k+1 6= θ̂k+1

j ,∀j ≤ k,
claim ii) is true by induction.

If θ̃k+1 ≥ θ̂kk , denote j the smallest integer such that
θ̂kj = θ̂kj+1 = · · · = θ̂kk . Because the boundary condi-
tion is not active between θj−1 and θj , we can conclude
that (θ̂kj , θ̂

k
j+1, · · · , θ̂kk) = arg min

θj≥···≥θk

∑k
i=j fi(θi). Then

condition 1 implies that θ̂kj = · · · = θ̂kk =
∑k
i=j θ̃i

k−j+1 ≤ θ̃k+1.

We claim: θ̂mj = θ̂mj+1 = · · · = θ̂mk+1,∀k ≤ m ≤ p. By
induction we have already known that θ̂mj = θ̂mj+1 = · · · =
θ̂mk . If θ̂mk ≤ θ̃k+1, then by condition 1, fk+1(θk+1) is
strictly decreasing on (0, θ̂mk ), which forces θ̂mk+1 = θ̂mk .

If θ̂mk ≥ θ̃k+1, then θ̂mk+1 ≥ θ̃k+1. θ̃k+1 ≥
∑k
i=j θ̃i

k−j+1

and condition 1 force θ̂mk = θ̂mk+1. Thus we proved
θ̂mj = θ̂mj+1 = · · · = θ̂mk+1,∀m > k. Specifically,

θ̂k+1
j = θ̂k+1

j+1 = · · · = θ̂k+1
k+1 . If

∑k+1
i=j θ̃i

k−j ≤ θ̂kj−1, again

by condition 1, θ̂k+1
j = · · · = θ̂k+1

k+1 =
∑k+1
i=j θ̃i

k−j and conse-

quently θ̂k+1
i = θ̂ki , 1 ≤ i ≤ j−1. We are done because the
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solution is exactly PAV(θ̃1, · · · , θ̃k+1), which proves claim
i) and θ̂mj = θ̂mj+1 = · · · = θ̂mk+1,∀m > k implies claim

ii). If
∑k+1
i=j θ̃i

k−j > θ̂kj−1, assume i to be the smallest integer

such that θ̂ki = θ̂ki+1 = · · · = θ̂kj−1. By similar argument,
we can prove that θ̂mi = θ̂mi+1 = · · · = θ̂mk+1,∀m > k. If
∑k+1
t=i θ̃t
k−i < θ̂ki−1, we are done. If not, continue the same

argument.

7.2 Proof of Lemma 3.1

Plug in the expression of SURE(λ), we have

E[l(βλ̂, β)− SURE(λ̂)|β]

= E[
1

p

p∑

i=1

2λ̂i

σ2 + λ̂i
(β̃2
i − β̃iβi − σ2)

−(β̃2
i−σ2−β2

i )|β] = E[
1

p

p∑

i=1

2λ̂i

σ2 + λ̂i
(β̃2
i−β̃iβi−σ2)|β]

Take expectation with respect to β, we get

E{E[l(βλ̂, β)− SURE(λ̂)|β]} =

E{E[
1

p

p∑

i=1

2λ̂i

σ2 + λ̂i
(β̃2
i − β̃iβi − σ2)|β]}

Notice that βi|β̃i ∼ N(
σ2
i

σ2+σ2
i
β̃i,

σ2σ2
i

σ2+σ2
i
) and the marginal

distribution of β̃i is N(0, σ2 + σ2
i ), we change the order of

expectation and get:

E{E[l(βλ̂, β)− SURE(λ̂)|β]} =

2E[
1

p

p∑

i=1

λ̂i

σ2 + λ̂i
(

σ2

σ2 + σ2
i

β̃2
i − σ2)]

where the expectation is with respect to β̃i ∼ N(0, σ2 +
σ2
i ).

|E{E[l(βλ̂, β)− SURE(λ̂)|β]}| ≤

2σ2E|1
p

p∑

i=1

λ̂i

σ2 + λ̂i
(

β̃2
i

σ2 + σ2
i

− 1)|

≤ 2σ2E{ sup
1≥c1≥···≥cp≥0

1

p
|
p∑

i=1

ci(
β̃2
i

σ2 + σ2
i

− 1)|}

= 2σ2E{ sup
1≥c1≥···≥cp≥0

1

p
|
p∑

i=1

ci(Zi − 1)|}

where Zi ∼ i.i.d χ2. Observe that

sup
1≥c1≥···≥cp≥0

|1
p

p∑

i=1

ci(Zi − 1)|

= max
1≤j≤p

|1
p

j∑

i=1

(Zi − 1)|

which is also used in Lemma 7.2 of Li [1985] and Theorem
3.1 in Xie et al. [2012], we have:

|E{E[l(βλ̂, β)− SURE(λ̂)|β]}|

≤ 2σ2E{ max
1≤j≤p

|1
p

j∑

i=1

(Zi − 1)|}

Let Mj =
∑j
i=1(Zi − 1), then Mj is a martingale. So the

L2 maximal inequality implies:

E( max
1≤j≤p

M2
j ) ≤ 4E(M2

p ) = 8p

|E{E[l(βλ̂, β)− SURE(λ̂)|β]}|

≤ 2σ2E{ max
1≤j≤p

|1
p

j∑

i=1

(Zi − 1)|}

≤ 2σ2

p
(E( max

1≤j≤p
Mj)

2)
1
2

Combine the two inequalities, we have

|E{E[l(βλ̂, β)− SURE(λ̂)|β]}| ≤ 4

√
2

p
σ2

Since the error bound does not depend on λ̂ and σ2
i , the

lemma follows.
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Abstract

Markov chain Monte Carlo (MCMC) is a popular
and successful general-purpose tool for Bayesian
inference. However, MCMC cannot be practi-
cally applied to large data sets because of the
prohibitive cost of evaluating every likelihood
term at every iteration. Here we present Fire-
fly Monte Carlo (FlyMC) an auxiliary variable
MCMC algorithm that only queries the likeli-
hoods of a potentially small subset of the data at
each iteration yet simulates from the exact pos-
terior distribution, in contrast to recent propos-
als that are approximate even in the asymptotic
limit. FlyMC is compatible with a wide variety
of modern MCMC algorithms, and only requires
a lower bound on the per-datum likelihood fac-
tors. In experiments, we find that FlyMC gen-
erates samples from the posterior more than an
order of magnitude faster than regular MCMC,
opening up MCMC methods to larger datasets
than were previously considered feasible.

1 INTRODUCTION

The Bayesian approach to probabilistic modeling is appeal-
ing for a several reasons: the generative framework allows
one to separate out modeling assumptions from inference
procedures, outputs include estimates of uncertainty that
can be used for decision making and prediction, and it pro-
vides clear ways to perform model selection and complex-
ity control. Unfortunately, the fully-Bayesian approach to
modeling is often very computationally challenging. It is
unusual for non-trivial models of real data to have closed-
form posterior distributions. Instead, one uses approxi-
mate inference via Monte Carlo, variational approxima-
tions, Laplace approximations, or other tools.

One of the persistent challenges to Bayesian computation
is that coherent procedures for inference appear to require

examination of all of the data in order to evaluate a new hy-
pothesis regarding parameters or latent variables. For ex-
ample, when performing Metropolis–Hastings (MH), it is
necessary to evaluate the target posterior density for each
proposed parameter update, and this posterior will usually
contain a factor for each datum. Similarly, typical varia-
tional Bayesian procedures need to build local approxima-
tions for each of the data in order to update the approx-
imation to any global parameters. In both cases, it may
be necessary to perform these data-intensive computations
many times as part of an iterative procedure.

Recent methods have been proposed to partially overcome
these difficulties. Stochastic and online variational approx-
imation procedures (Hoffman et al., 2010, 2013) can use
subsets of the data to make approximations to global pa-
rameters. As these procedures are optimizations, it is pos-
sible to build on convergence results from the stochastic
optimization literature and achieve guarantees on the re-
sulting approximation. For Markov chain Monte Carlo, the
situation is somewhat murkier. Recent work has shown that
approximate transition operators based on subsets of data
can be used for predictive prefetching to help parallelize
MCMC (Angelino et al., 2014). Other work uses approxi-
mate transition operators directly, for Metropolis-Hastings
(MH) and related algorithms (Welling and Teh, 2011). Ko-
rattikara et al. (2014) and Bardenet et al. (2014) have shown
that such approximate MH moves can lead to stationary
distributions which are approximate but that have bounded
error, albeit under strong conditions of rapid mixing.

In this paper, we present a Markov chain Monte Carlo al-
gorithm, Firefly Monte Carlo (FlyMC), that is in line with
these latter efforts to exploit subsets of data to construct
transition operators. What distinguishes the approach we
present here, however, is that this new MCMC procedure
is exact in the sense that it leaves the true full-data poste-
rior distribution invariant. FlyMC is a latent variable model
which introduces a collection of Bernoulli variables – one
for each datum – with conditional distributions chosen so
that they effectively turn on and off data points in the pos-
terior, hence “firefly”. The introduction of these latent vari-
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ables does not alter the marginal distribution of the param-
eters of interest. Our only requirement is that it be possible
to provide a “collapsible” lower bound for each likelihood
term. FlyMC can lead to dramatic performance improve-
ments in MCMC, as measured in wallclock time.

The paper is structured as follows. In Section 2, we intro-
duce Firefly Monte Carlo and show why it is valid. Sec-
tion 3 discusses practical issues related to implementation
of FlyMC. Section 4 evaluates the new method on several
different problems, and Section 5 discusses its limitations
and possible future directions.

2 FIREFLY MONTE CARLO

The Firefly Monte Carlo algorithm tackles the problem of
sampling from the posterior distribution of a probabilistic
model. We will denote the parameters of interest as θ and
assume that they have prior p(θ). We assume that N data
have been observed {xn}Nn=1 and that these data are con-
ditionally independent given θ under a likelihood p(xn | θ).
Our target distribution is therefore

p(θ |{xn}Nn=1) ∝ p(θ, {xn}Nn=1) = p(θ)

N∏

n=1

p(xn|θ). (1)

For notational convenience, we will write the nth likeli-
hood term as a function of θ as

Ln(θ) = p(xn | θ) .

An MCMC sampler makes transitions from a given θ to
a new θ′ such that posterior distribution remains invariant.
Conventional algorithms, such as Metropolis–Hastings, re-
quire evaluation of the unnormalized posterior in full at ev-
ery iteration. When the data set is large, evaluating all N
likelihoods is a computational bottleneck. This is the prob-
lem that we seek to solve with FlyMC.

For each data point, n, we introduce a binary auxil-
iary variable, zn ∈ {0, 1}, and a function Bn(θ) which
is a sctrictly positive lower bound on the nth likeli-
hood: 0 < Bn(θ) ≤ Ln(θ). Each zn has the following
Bernoulli distribution conditioned on the parameters:

p(zn |xn, θ) =
[
Ln(θ)−Bn(θ)

Ln(θ)

]zn [Bn(θ)
Ln(θ)

]1−zn
.

We now augment the posterior distribution with these N
variables:

p(θ, {zn}Nn=1 | {xn}Nn=1) ∝ p(θ, {xn, zn}Nn=1)

= p(θ)

N∏

n=1

p(xn | θ) p(zn |xn, θ) .

As in other auxiliary variable methods such as slice sam-
pling, Swendsen-Wang, or Hamiltonian Monte Carlo, aug-
menting the joint distribution in this way does not damage

the original marginal distribution of interest:

∑

z1

· · ·
∑

zN

p(θ)

N∏

n=1

p(xn | θ) p(zn |xn, θ)

= p(θ)
N∏

n=1

p(xn | θ)
∑

zn

p(zn |xn, θ)

= p(θ)

N∏

n=1

p(xn | θ)

However, this joint distribution has a remarkable property:
to evaluate the probability density over θ, given a particular
configuration of {zn}Nn=1, it is only necessary to evaluate
those likelihood terms for which zn = 1. Consider factor n
from the product above:

p(xn | θ)p(zn |xn, θ)

= Ln(θ)

[
Ln(θ)−Bn(θ)

Ln(θ)

]zn [Bn(θ)
Ln(θ)

]1−zn

=

{
Ln(θ)−Bn(θ) if zn = 1

Bn(θ) if zn = 0
.

The “true” likelihood term Ln(θ) only appears in those
factors for which zn = 1 and we can think of these
data as forming a “minibatch” subsample of the full
set. If most zn = 0, then transition updates for the
parameters will be much cheaper, as these are applied
to p(θ | {xn, zn}Nn=1).

Of course, we do have to evaluate all N bounds Bn(θ) at
each iteration. At first glance, we seem to have just shifted
the computational burden from evaluating the Ln(θ) to
evaluating the Bn(θ). However, if we choose Bn(θ) to
have a convenient form, a scaled Gaussian or other expo-
nential family distribution, for example, then the full prod-
uct
∏N
n=1Bn(θ) can be computed for each new θ in O(1)

time using the sufficient statistics of the distribution, which
only need to be computed once. To make this clearer, we
can rearrange the joint distribution in terms of a “pseudo-
prior,” p̃(θ) and “pseudo-likelihood,” L̃n(θ) as follows:

p(θ, {zn}Nn=1 | {xn}Nn=1) ∝ p̃(θ)
∏

n:zn=1

L̃n(θ) (2)

where the product only runs over those n for which zn = 1,
and we have defined

p̃(θ) = p(θ)

N∏

n=1

Bn(θ) L̃n(θ) =
Ln(θ)−Bn(θ)

Bn(θ)
.

We can generate a Markov chain for the joint distribution
in Equation (2) by alternating between updates of θ con-
ditional on {zn}Nn=1, which can be done with any conven-
tional MCMC algorithm, and updates of {zn}Nn=1 condi-
tional on θ for which we discuss efficient methods in Sec-
tion 3.2. We emphasize that the marginal distribution over
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Figure 1: Illustration of the auxiliary variable representa-
tion of a single likelihood for a one-dimensional logistic
regression model. The top panel shows how the likeli-
hood function, Ln(θ), corresponding to a single datum n,
can be partitioned into two parts: a lower bound, Bn(θ),
shaded blue, and the remainder, shaded orange. The bot-
tom panel shows that we can introduce a Bernoulli ran-
dom variable zn and construct a Markov chain in this
new, higher dimensional space, such that marginalizing out
(i.e. ignoring) the zn recovers the original likelihood. If
Bn(θ) � Ln(θ) − Bn(θ), the Markov chain will tend to
occupy zn = 0 and we can avoid evaluating Ln(θ) at each
iteration.

θ is still the correct posterior distribution given in Equa-
tion (1).

At a given iteration, the zn = 0 data points are “dark”: we
simulate the Markov chain without computing their likeli-
hoods. Upon a Markov transition in the space of {zn}Nn=1,
a smattering of these dark data points become “bright” with
their zn = 1, and we include their likelihoods in subse-
quent iterations. The evolution of the chain evokes an im-
age of fireflies, as the individual data blink on and off due
to updates of the zn.

The details of choosing a lower bound and efficiently sam-
pling the {zn} are treated in the proceeding sections, but
the high-level picture is now complete. Figure 1 illustrates
the augmented space, and a simple version of the algorithm
is shown in Algorithm 1. Figure 2 shows several steps of
Firefly Monte Carlo on a toy logistic regression model.

3 IMPLEMENTATION
CONSIDERATIONS

In this section we discuss two important practical matters
for implementing an effective FlyMC algorithm: how to

choose and compute lower bounds, and how to sample the
brightness variables zn. For this discussion we will assume
that we are dealing with a data set consisting of N data
points, and a parameter set, θ, of dimension D � N . We
will also assume that it takes at least O(ND) time to eval-
uate the likelihoods at some θ for the whole data set and
that evaluating this set of likelihoods at each iteration is the
computational bottleneck for MCMC. We will mostly as-
sume that space is not an issue: we can hold the full data
set in memory and we can afford additional data structures
occupying a few bytes for each of the N data.

The goal of an effective implementation of FlyMC is to
construct a Markov chain with similar convergence and
mixing properties to that of regular MCMC, while only
evaluating a subset of the data points on average at each it-
eration. If the average number of “bright” data points isM ,
we would like this to achieve a computational speedup of
nearly N/M over regular MCMC.

3.1 Choosing a lower bound

The lower bounds, Bn(θ) of each data point’s likelihood
Ln(θ) should satisfy two properties. They should be rel-
atively tight, and it should be possible to efficiently sum-
marize a product of lower bounds

∏
nBn(θ) in a way that

(after setup) can be evaluated in time independent of N .

The tightness of the bounds is important because it deter-
mines the number of bright data points at each iteration,
which determines the time it takes to evaluate the joint pos-
terior. For a burned-in chain, the average number of bright
data points, M , will be:

M =

N∑

n=1

〈zn〉 =
N∑

n=1

∫
p(θ | {xn}Nn=1)

Ln(θ)−Bn(θ)
Ln(θ)

dθ .

Therefore it is important that the bounds are tight at values
of θ where the posterior puts the bulk of its mass.

The second important property is that the product of the
lower bounds must be easy to compute and represent. This
property emerges naturally if we use scaled exponential-
family lower bounds so that their product can be summa-
rized via a set of sufficient statistics. We should also men-
tion that the individual bounds Bn(θ) should be easy to
compute themselves, since these are computed alongside
Ln(θ) for all the bright points at each iteration. In all the
examples considered in this paper, the rate-limiting step in
computing either Ln(θ) or Bn(θ) is the evaluation of the
dot product of a feature vector with a vector of weights.
Once we have computed Ln(θ) the extra cost of comput-
ing Bn(θ) is negligible.

At this stage it is useful to consider a concrete example.
The logistic regression likelihood is

Ln(θ) = logit−1(tnθTxn) =
1

1 + exp{−tnθTxn}
,
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Algorithm 1 Firefly Monte Carlo Note: Using simple random-walk MH for clarity.

1: θ0 ∼ INITIALDIST . Initialize the Markov chain state.
2: for i← 1 . . . ITERS do . Iterate the Markov chain.
3: for j ← 1 . . . dN × RESAMPLEFRACTIONe do
4: n ∼ RandInteger(1, N) . Select a random data point.
5: zn ∼ Bernoulli(1−Bn(θi−1)/Ln(θi−1)) . Biased coin-flip to determine whether n is bright or dark.
6: end for
7: θ′ ← θi−1 + η where η ∼ Normal(0, ε2ID) . Make a random walk proposal with step size ε.
8: u ∼ Uniform(0, 1) . Draw the MH threshold.

9: if
JOINTPOSTERIOR(θ′ ; {zn}Nn=1)

JOINTPOSTERIOR(θ ; {zn}Nn=1)
> u then . Evaluate MH ratio conditioned on auxiliary variables.

10: θi ← θ′ . Accept proposal.
11: else
12: θi ← θi−1 . Reject proposal and keep current state.
13: end if
14: end for
15:
16: function JOINTPOSTERIOR(θ ; {zn}Nn=1) . Modified posterior that conditions on auxiliary variables.
17: P ← p(θ)×∏N

n=1Bn(θ) . Evaluate prior and bounds. Collapse of bound product not shown.
18: for each n for which zn = 1 do . Loop over bright data only.
19: P ← P × (Ln(θ)/Bn(θ)− 1) . Include bound-corrected factor.
20: end for
21: return P
22: end function

where xn ∈ RD is the set of features for the nth data point
and tn ∈ {−1, 1} is its class. The logistic function has
a family of scaled Gaussian lower bounds, described in
Jaakkola and Jordan (1997), parameterized by ξ, the loca-
tion at which the bound is tight:

log(Bn(θ)) = a(tnθ
Txn)

2 + b(tnθ
Txn) + c

where:

a =
−1
4ξ

(
eξ − 1

eξ + 1

)
b =

1

2

c = −a ∗ ξ2 + ξ

2
− log

(
eξ + 1

)

This is the bound shown in Fig. 1. The product of these
bounds can be computed for a given θ in O(D2) time, pro-
vided we have precomputed the moments of the data, at a
one-time setup cost of O(ND2):

1

N
log

N∏

n=1

Bn(θ) = aθTŜθ + bθTµ̂+ c

where

Ŝ =
1

N

N∑

n=1

xnx
T
n µ̂ =

1

N

N∑

n=1

tnxn .

This bound can be quite tight. For example, if we
choose ξ = 1.5 the probability of a data point being bright

is less than 0.02 in the region where 0.1 < Ln(θ) < 0.9.
With a bit of up-front work, we can do even better than this
by choosing bounds that are tight in the right places. For
example, we can perform a quick optimization to find an
approximate maximum a posteriori (MAP) value of θ and
construct the bounds to be tight there. We explore this idea
further in Section 4.

3.2 Sampling and handling the auxiliary brightness
variables

The resampling of the zn variables, as shown in lines 3 to 6
of Algorithm 1, takes a step by explicitly sampling zn from
its conditional distribution for a random fixed-size subset
of the data. We call this approach explicit resampling and
it has a clear drawback: if the fixed fraction is α (shown
as RESAMPLEFRACTION in Algorithm 1), then the chain
cannot have a mixing time faster than 1/α, as each data
point is only visited a fraction of the time.

Nevertheless, explicit resampling works well in practice
since the bottleneck for mixing is usually the exploration
of the space of θ, not space of zn. Explicit resampling has
the benefit of being a simple, low-overhead algorithm that
is easy to vectorize for speed. The variant shown in Algo-
rithm 1 is the simplest: data points are chosen at random,
with replacement. We could also sample without replace-
ment but this is slightly harder to do efficiently. Another
variant would be to deterministically choose a subset from
which to Gibbs sample at each iteration. This is more in
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Figure 2: Illustration of the FlyMC algorithm operating
on a logistic regression model of a toy synthetic data set,
a two-class classification problem in two dimensions (and
one bias dimension). The top panel shows a single itera-
tion of FlyMC, from t = 3 to t = 4, which consists of two
steps: first we sample θ, represented by the line of equal
class probability. Next we sample the zn. In this case, we
see one ‘bright’ (solid) data point become dark. The bot-
tom panel shows the trajectories of all components of θ and
z.

line with the traditional approach of stochastic gradient de-
scent optimization. Such an approach may be appropriate
for data sets which are too large to fit into memory, since
we would no longer need random access to all data points.
The resulting Markov chain would be non-reversible, but
still satisfy stationarity conditions.

Explicitly sampling a subset of the zn seems waste-
ful if M � N , since most updates to zn will leave
it unchanged. We can do better by drawing each
update for zn from a pair of tunable Bernoulli
proposal distributions q(z′n = 1 | zn = 0) = qd→b
and q(z′n = 0 | zn = 1) = qb→d, and then performing
a Metropolis–Hastings accept/reject step with the true
auxiliary probability p(zn |xn, θ). This proposal can be
efficiently made for each data point, but it is only necessary

to evaluate p(zn |xn, θ) – and therefore the likelihood
function – for the subset of data points which are proposed
to change state. That is, if a sample from the proposal
distribution sends zn = 0 to zn = 0 then it doesn’t matter
whether we accept or reject. If we use samples from a
geometric distribution to choose the data points, it is not
even necessary to explicitly sample all of the N proposals.

The probabilities qb→d and qd→b can be tuned as hyper-
parameters. If they are larger than p(zn = 0 |xn, θ)
and p(zn = 1 |xn, θ) respectively, then we obtain near-
perfect Gibbs sampling. But larger values also require
more likelihood evaluations per iteration. Since the likeli-
hoods of the bright data points have already been evaluated
in the course of the Markov step in θ we can reuse these
values and set qb→d = 1, leaving qd→b as the only hyper-
parameter, which we can set to something like M/N . The
resulting algorithm, which we call implicit resampling, is
shown as Algorithm 2.

3.3 Data structure for brightness variables

In the algorithms shown so far, we have aimed to con-
struct a valid Markov chain while minimizing the num-
ber of likelihood evaluations, on the (reasonable) assump-
tion that likelihood evaluations dominate the computational
cost. However, the algorithms presented do have some
steps which appear to scale linearly with N , even when M
is constant. These are steps such as “loop over the bright
data points” which takes time linear in N . With a well-
chosen data structure for storing the variables zn, we can
ensure that these operations only scale with M .

The data structure needs to store the values of zn for all n
from 1 to N , and it needs to support the following methods
in O(1) time:

• Brighten(n) : Set zn = 1

• ithBright(i) : Return n, the ith bright data point
(in some arbitrary ordering).

We similarly require Darken and ithDark. The data
structure should also keep track of how many bright data
points there are.

To achieve this, we use the cache-like data structure shown
in Figure 3. We store two arrays of length N . The first
is z.arr, which contains a single copy of each of the in-
dices n from 1 to N . All of the bright indices appear be-
fore the dark indices. A variable z.B keeps track of how
many bright indices there are, and thus where the bright-
dark transition occurs. In order to also acheive O(1) as-
signment of indices, we also maintain a direct lookup ta-
ble z.tab whose nth entry records the position in array
z.arr where n is held. Brighten(n) works by looking
up int z.tab the position of n in z.arr, swapping it with
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Algorithm 2 Implicit zn sampling

1: for n← 1 . . . N do . Loop over all the auxiliary variables.
2: if zn = 1 then . If currently bright, propose going dark.
3: u ∼ Uniform(0, 1) . Sample the MH threshold.
4: if

qd→b
L̃n(θ)

> u then . Compute MH ratio with L̃n(θ) cached from θ update.

5: zn ← 0 . Flip from bright to dark.
6: end if
7: else . Already dark, consider proposing to go bright.
8: if v < qd→b where v ∼ Uniform(0, 1) then . Flip a biased coin with probability qd→b.
9: u ∼ Uniform(0, 1) . Sample the MH threshold.

10: if
L̃n(θ)

qd→b
< u then . Compute MH ratio.

11: zn ← 1 . Flip from dark to bright.
12: end if
13: end if
14: end if
15: end for

the index at position z.B, incrementing z.B, and updating
z.tab accordingly.

4 EXPERIMENTS

For FlyMC to be a useful algorithm it must be able to pro-
duce effectively independent samples from posterior dis-
tributions more quickly than regular MCMC. We certainly
expect it to iterate more quickly than regular MCMC since
it evaluates fewer likelihoods per iteration. But we might
also expect it to mix more slowly, since it has extra auxil-
iary variables. To see whether this trade-off works out in
FlyMC’s favor we need to know how much faster it iter-
ates and how much slower it mixes. The answer to the first
question will depend on the data set and the model. The
answer to the second will depend on these too, and also on
the choice of algorithm for updating θ.

We conducted three experiments, each with a different data
set, model, and parameter-update algorithm, to give an im-
pression of how well FlyMC can be expected to perform.
In each experiment we compared FlyMC, with two choices
of bound selection, to regular full-posterior MCMC. We
looked at the average number of likelihoods queried at each
iteration and the number of effective samples generated per
iteration, accounting for autocorrelation. The results are
summarized in Figure 4 and Table 1. The broad conclu-
sion is that FlyMC offers a speedup of at least one order of
magnitude compared with regular MCMC if the bounds are
tuned according to a MAP-estimate of θ. In the following
subsections we describe the experiments in detail.

4.1 Logistic regression

We applied FlyMC to the logistic regression task de-
scribed in Welling and Teh (2011) using the Jaakkola-

Figure 3: Illustration of a data structure allowing for effi-
cient operations on the sets of bright and dark data points.
Data points 1 and 3 are bright, the rest are dark.

Jordan bounds described earlier. The task is to classify
MNIST 7s and 9s, using the first 50 principal compo-
nents (and one bias) as features. We used a Gaussian
prior over the weights and chose the scale of that prior by
evaluating performance on a held-out test set. To sample
over θ, we used symmetric Metropolis-Hasting proposals,
with step size chosen to yield an acceptance rate of 0.234
(Roberts et al., 1997), optimized for each algorithm sepa-
rately. We sampled the zn using the implicit Metropolis-
Hastings sampling algorithm.

We compared three different algorithms: regular MCMC,
untuned FlyMC, and MAP-tuned FlyMC. For untuned
FlyMC, we chose ξ = 1.5 for all data points. To com-
pute the bounds for the MAP-tuned algorithm, we per-
formed stochastic gradient descent optimization to find a
set of weights close the the MAP value and gave each data
point its own ξ to make the bounds tight at the MAP pa-
rameters: Ln(θMAP) = Bn(θMAP) for all n. For untuned
FlyMC, and MAP-tuned FlyMC we used qd→b = 0.1 and
qd→b = 0.01 respectively, chosen to be similar to the typi-
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Average Effective Speedup
Algorithm Likelihood queries Samples per relative to

per iteration 1000 iterations regular MCMC

Data set: MNIST Regular MCMC 12,214 3.7 (1)

Model: Logistic regression Untuned FlyMC 6,252 1.3 0.7

Updates: Metropolis-Hastings MAP-tuned FlyMC 207 1.4 22

Data set: 3-Class CIFAR-10 Regular MCMC 18,000 8.0 (1)

Model: Softmax classifcation Untuned FlyMC 8,058 4.2 1.2

Updates: Langevin MAP-tuned FlyMC 654 3.3 11

Data set: OPV Regular MCMC 18,182,764 1.3 (1)

Model: Robust regression Untuned FlyMC 2,753,428 1.1 5.7

Updates: Slice sampling MAP-tuned FlyMC 575,528 1.2 29

Table 1: Results from empirical evaluations. Three experiments are shown: logistic regression applied to MNIST digit
classification, softmax classification for three categories of CIFAR-10, and robust regression for properties of organic
photovoltaic molecules, sampled with random-walk Metropolis–Hastings, Langevin-adjusted Metropolis, and slice sam-
pling, respectively. For each of these, the vanilla MCMC operator was compared with both untuned FlyMC and FlyMC
where the bound was determined from a MAP estimate of the posterior parameters. We use likelihood evaluations as an
implementation-independent measure of computational cost and report the number of such evaluations per iteration, as
well as the resulting sample efficiency (computed via R-CODA (Plummer et al., 2006)), and relative speedup.

cal fraction of bright data points in each case.

The results are shown in Figure 4a and summarized in Ta-
ble 1. On a per-iteration basis, the FlyMC algorithms mix
and burn-in more slowly than regular MCMC by around
a factor of two, as illustrated by the autocorrelation plots.
Even on a per-likelihood basis, the naı̈ve FlyMC algorithm,
with a fixed ξ, performs worse than regular MCMC, by
a factor of 0.7, despite needing fewer likelihood evalua-
tions per iteration. The MAP-tuned algorithm was much
more impressive: after burn-in, it queried only 207 of
the 12,2214 likelihoods per iteration on average, giving
a speedup of more than 20, even taking into account the
slower per-iteration mixing time. We initialized all chains
with draws from the prior. Notice that the MAP-tuned al-
gorithm performs poorly during burn-in, since the bounds
are less tight during this time, whereas the reverse is true
for the untuned algorithm.

4.2 Softmax classification

Logistic regression can be generalized to multi-class clas-
sification problems by softmax classification. The softmax
likelihood of a data point belonging to class k of K classes
is

Ln(θ) =
exp(θT

kxn)∑K
k′=1 exp(θ

T
k′xn)

Where θ is now a K ×D matrix. The Jaakkola-Jordan
bound does not apply to this softmax likelihood, but we
can use a related bound, due to Böhning (1992), whose log
matches the value and gradient of the log of the softmax
likelihood at some particular θ, but has a tighter curvature.
Murphy (2012) has the result in full in the chapter on vari-
ational inference.

We applied softmax classification to a three-class version of
CIFAR-10 (airplane, automobile and bird) using 256 binary
features discovered by Krizhevsky (2009) using a deep au-
toencoder. Once again, we used a Gaussian prior on the
weights, chosen to maximize out-of-sample performance.
This time we used the Metropolis-adjusted Langevin algo-
rithm (MALA, Roberts and Tweedie (1996)) for our pa-
rameter updates. We chose the step sizes to yield accep-
tance rates close to the optimal 0.57 (Roberts and Rosen-
thal, 1998). Other parameters were tuned as in the logistic
regression experiment.

The softmax experiment gave qualitatively similar results
to the logistic regression experiment, as seen in Figure 4b
and Table 1. Again, the MAP-tuned FlyMC algorithm dra-
matically outperformed both the lackluster untuned FlyMC
and regular MCMC, offering an 11-fold speedup over the
latter.
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(c) OPV with Slice Sampling

Figure 4: Tuned and untuned Firefly Monte Carlo compared to regular MCMC with three different operators, data sets, and
models: (a) the digits 7 and 9 from the MNIST data are classified using logistic regression, with a random-walk Metropolis-
Hastings operator; (b) softmax classification on three classes (airplane, automobile, and bird) from the CIFAR-10 image
dataset, using Langevin-adjusted Metropolis; (c) robust regression on the HOMO-LUMO gap (as computed by density
functional theory calculations) for a large set of organic photovoltaic molecules, using slice sampling. In each subfigure,
the top shows the trace of the log posterior density to illustrate convergence, and the bottom shows the average number of
likelihoods computed per iteration. One standard deviation is shown around the mean value, as computed from five runs
of each. The blue lines are computed using the full-data posterior, and the green and orange lines show the untuned and
tuned Firefly MC traces, respectively.

4.3 Robust sparse linear regression

Linear regression with Gaussian likelihoods yields a
closed-form expression for the posterior. Non-Gaussian
likelihoods, however, like heavy-tailed distributions used in
so-called “robust regression” do not. Our final experiment
was to perform inference over robust regression weights
for a very large dataset of molecular features and computed
electronic properties. The data set, described by Hachmann
et al. (2011, 2014) consists of 1.8 million molecules, with
57 cheminformatic features each (Olivares-Amaya et al.,
2011; Amador-Bedolla et al., 2013). The task was to pre-
dict the HOMO-LUMO energy gap, which is useful for
predicting photovoltaic efficiency.

We used a student-t distribution with ν = 4 for the likeli-
hood function and we computed a Gaussian lower bound to
this by matching the value and gradient of the t distribution
probability density function value at some ξ (ξ = 0 for the
untuned case, ξ = θT

MAPx for the MAP-tuned case). We
used a sparsity-inducing Laplace prior on the weights. As
before, we chose the scales of the prior and the likelihood
to optimize out-of sample performance.

We performed parameter updates using slice sampling
(Neal, 2003). Note that slice sampling results in a variable

number of likelihood evaluations per iteration, even for the
regular MCMC algorithm. Again, we found that MAP-
tuned FlyMC substantially outperformed regular MCMC,
as shown in Figure 4c and Table 1.

5 DISCUSSION

In this paper, we have presented Firefly Monte Carlo, an
algorithm for performing Markov chain Monte Carlo us-
ing subsets (minibatches) of data. Unlike other recent pro-
posals for such MCMC operators, FlyMC is exact in the
sense that it has the true full-data posterior as its target
distribution. This is achieved by introducing binary latent
variables whose states represent whether a given datum is
bright (used to compute the posterior) or dark (not used in
posterior updates). By carefully choosing the conditional
distributions of these latent variables, the true posterior is
left intact under marginalization. The primary requirement
for this to be efficient is that the likelihoods term must have
lower bounds that collapse in an efficient way.

There are several points that warrant additional discussion
and future work. First, we recognize that useful lower
bounds can be difficult to obtain for many problems. It
would be helpful to produce such bounds automatically for
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a wider class of problems. As variational inference pro-
cedures are most often framed in terms of lower bounds
on the marginal likelihood, we expect that Firefly Monte
Carlo will benefit from developments in so-called “black
box” variational methods (Wang and Blei, 2013; Ranganath
et al., 2014). Second, we believe we have only scratched
the surface of what is possible with efficient data structures
and latent-variable update schemes. For example, the MH
proposals we consider here for zn have a fixed global qd→b,
but clearly such a proposal should vary for each datum.
Third, it is often the case that larger state spaces lead to
slower MCMC mixing. In Firefly Monte Carlo, much like
other auxiliary variable methods, we have expanded the
state space significantly. We have shown empirically that
the slower mixing can be more than offset by the faster
per-transition computational time. In future work we hope
to show that fast-mixing Markov chains on the parameter
space will continue to mix fast in the Firefly auxiliary vari-
able representation.

Firefly Monte Carlo is closely related to recent ideas in us-
ing pseudo-marginal MCMC (Andrieu and Roberts, 2009)
for sampling from challenging target distributions. If we
sampled each of the variables {zn} as a Bernoulli random
variable with success probability 0.5, then the joint pos-
terior we have been using becomes an unbiased estimator
of the original posterior over θ, up to normalization. Run-
ning pseudo-marginal MCMC using this unbiased estima-
tor would be a special case of FlyMC: namely FlyMC with
z and θ updated simultaneously with Metropolis-Hastings
updates.
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Abstract

Bayesian Optimisation has received considerable
attention in recent years as a general methodol-
ogy to find the maximum of costly-to-evaluate
objective functions. Most existing BO work fo-
cuses on where to gather a set of samples with-
out giving special consideration to the sampling
sequence, or the costs or constraints associated
with that sequence. However, in real-world
sequential decision problems such as robotics,
the order in which samples are gathered is
paramount, especially when the robot needs to
optimise a temporally non-stationary objective
function. Additionally, the state of the environ-
ment and sensing platform determine the type
and cost of samples that can be gathered. To
address these issues, we formulate Sequential
Bayesian Optimisation (SBO) with side-state in-
formation within a Partially Observed Markov
Decision Process (POMDP) framework that can
accommodate discrete and continuous observa-
tion spaces. We build on previous work using
Monte-Carlo Tree Search (MCTS) and Upper
Confidence bound for Trees (UCT) for POMDPs
and extend it to work with continuous state and
observation spaces. Through a series of experi-
ments on monitoring a spatial-temporal process
with a mobile robot, we show that our UCT-
based SBO POMDP optimisation outperforms
myopic and non-myopic alternatives.

1 INTRODUCTION

Bayesian Optimisation (BO) [1, 6, 10] is a global optimi-
sation technique that has recently gained popularity in the
machine learning community. BO possesses major advan-
tages when used to find the maximum of partially observed
objective functions that are costly to evaluate, lack gradient
information, and can only be inferred indirectly from noisy

observations. BO is robust to this setting because it builds
a statistical model over the objective. More specifically, it
places a prior over the space of functions and combines it
with noisy samples to produce an incremental prediction
for the unknown function. The prior usually takes the form
of a Gaussian Process (GP) [15], which has proved suc-
cessful in modelling spatial-temporal data [4, 9, 17]. The
key component for the effectiveness of BO is the use of
an Acquisition Function (AF) that guides the search for the
optimum by selecting the locations where samples are gath-
ered based on the posterior in each iteration.

BO can be readily applied to scenarios where the objective
function does not vary in time and sampling locations can
be chosen freely within the input domain. In real-world
robotics applications, functions are likely to change with
time [11] indicating that when to sample is as important
as where to sample. Another important aspect in realistic
settings is that the state of the environment and sampling
platform determines the reachable space for gathering the
next sample. Combined, these issues create an imperative
for finding optimal sequences of sampling locations.

Most of the existing work focuses on myopic decision-
making by evaluating one-step lookahead for objective
sampling. Non-myopic solutions have been proposed in
[5, 12], but the authors acknowledge they are considerably
expensive to evaluate and do not account for possible side-
state presence due to external conditions. An optimal so-
lution to non-myopic decision-making with side-state can
be formalised in the Partially Observed Markov Decision
Process (POMDP) framework. The key here is to consider
the state as a tuple, consisting of the unknown function and
the state of a sensing robot. However, this leaves open
the question of how one can efficiently solve the resulting
POMDP.

The online setting for POMDP planning has received in-
creased attention in recent years for helping overcome per-
ceived efficiency limitations of POMDP solutions [16].
Silver and Veness [18] show how to use UCT for large
POMDPs, however, this does not extend to continuous ob-
servations (without sampling). Porta et al [14] present
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Point-Based Value Iteration (PBVI) for continuous state,
action and observation POMDPs, however, this approach
aims for a closed-form value function that generalises over
all states, which can only be computed in more restricted
cases than the general sequential BO POMDP framework
we would like to propose in this work. A first connection
between BO and POMDPs has been noted by [20], that
solved the two-step lookahead without any efficient strate-
gies, or considering the side-state as we do. In this work
we intend to build on both [18] and [20] to apply UCT to
a general POMDP formulation of SBO with side-state and
continuous observations.

We begin by briefly describing Gaussian Processes (GPs),
BO and POMDPs. We show the connections between SBO
and POMDPs, followed by possible online solutions for
multi-step lookahead in POMDPs that aim to provide an
optimal sequence of sampling locations. In section 4 we
evaluate our model for spatial-temporal monitoring prob-
lems that clearly demonstrate the benefits of our UCT al-
gorithm for non-myopic SBO optimisation.

2 BACKGROUND

We start with a brief description of Gaussian processes as
the underlying regression technique for Bayesian optimi-
sation. We then describe BO and define notation for our
POMDP formulation.

2.1 GAUSSIAN PROCESSES

A GP is a collection of random variables with a joint Gaus-
sian distribution. A GP places a Gaussian prior over the
space of functions and is completely defined by a mean
function, m(x), and a positive semi-definite covariance
function k(x,x′), where x is an input in a D dimensional
space, x ∈ RD. A latent noisy function f can be repre-
sented as f(x) ∼ GP(m(x), k(x,x′)). Further, we assume
an additive noise model y = f(xi) + ε for noisy observa-
tions y from f , where ε iid∼ N

(
0, σ2

n

)
is an independent

Gaussian noise.

Given a set of N training inputs X = {xi}Ni=1 and cor-
responding outputs y = {yi}Ni=1 we can calculate the
predictive distribution of f at an unknown query location
x? by computing the posterior p(f(x?)|y, X,x?). For
a GP, this predictive distribution is Gaussian, f(x?) ∼
N
(
f̄?, cov(f?)

)
, where

f̄? = K(x?, X)K−1
X (y −m(X)) ,

cov(f?) = K(x?,x?)−K(x?, X)K−1
X K(X,x?) ,

(1)
and K(A,B) is a covariance matrix whose element (i, j)
is calculated as ki,j = k (xi,xj), with xi ∈ A and xj ∈ B.
KX = K(X,X) + σ2

nI is the covariance matrix between
observations, with identity matrix I .

The parameters of the mean and covariance functions can
be estimated automatically by maximising the marginal
likelihood of the data [15]. Since we will be dealing with
space-time inputs, x can be represented by space and time
components, covariance functions can be separable [19]
and learn periodic patterns [15, 21].

2.2 BAYESIAN OPTIMISATION

BO is an optimisation technique for finding the optimum
x̂ ∈ RD of an unknown, costly to evaluate and noisy func-
tion f : RD → R,

x̂ = arg max
x

f(x). (2)

In this setting f is not directly observable but we have avail-
able noisy samples from f , i.e. the ith observation can be
seen as yi = f(xi) + ε, where ε iid∼ N

(
0, σ2

n

)
is the noise

associated to each independent observation. BO uses a GP
to model f which is incrementally updated at every itera-
tion, as new observations become available. The benefit of
this approach is that for every optimum candidate location
we can evaluate an analytical expression for the expected
value of f and its variance (Equation 1). This informa-
tion is used by an Acquisition Function (AF), h(x), whose
purpose is to guide the search for the optimum. At each
iteration, one sample is gathered from f at a location se-
lected by maximising h(x), which is a simpler and faster
optimisation procedure (compared to the original problem
of optimising f ). Algorithm 1 presents the BO algorithm.

Algorithm 1 Bayesian Optimisation

Inputs: f , h
Outputs: x̂, f(x̂)

for j = 1, 2, 3, . . . {Max iterations} do
Find xj = arg maxx h(x)
yj ← f(xj) . Gather sample from f
Augment training set with (xj , yj).
Update GP
if yj > µ(x̂) then

x̂← xj . Update location of optimum
end if

end for

Many AFs have been proposed on the literature [6–8,
12]. In this paper we use the Upper Confidence Bound
(UCB) [3] acquisition function, however, none of the al-
gorithms presented here are strongly linked to this specific
AF.

2.3 PARTIALLY OBSERVABLE MDPs

POMDPs are a unified framework for sequential decision
making under uncertainty when the state is not directly ob-
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servable. A POMDP is fully represented by the following
tuple 〈S,A, T,R, Z,O〉, where:

• S : Set of states {s1, s2, . . . , sn} .

• A : Set of actions {a1, a2, . . . , an}.

• T : S × A × S → [0, 1] is a transition function that
represents the probability of transition between states
s and s′ when executing action a, i.e. T (s, a, s′) =
p(s′|s, a).

• R : S × A→ R is a reward function that encodes the
reward of executing action a on state s, i.e. R(s, a).

• Z : Finite set of observations {z1, z2, . . . , zn}.

• O : S × A × Z → [0, 1] is a observation function
that represents the probability of observing o if action
a is executed with resulting state s, i.e. O(o, a, s) =
p(o|a, s).

In POMDPs, it is well-known that a belief state summarises
all relevant information in the observation history of a
POMDP. Given a belief state bt−1(s), the belief at time t
can be updated as:

bt(s
′) ∝ P (o|s′)

∫
bt−1(s)P (s′|s, a)ds. (3)

where b0(s) = p(s) represents the initial belief state.

Solving a POMDP is equivalent to determining a policy π?

mapping belief states to actions which maximizes some ob-
jective criterion. An optimal policy over an infinite horizon
can be found by maximising the expected cumulative dis-
counted reward rt (for discount γ ∈ (0, 1]) at time step t
when executing π starting from belief state b0 := b0(s),

π? = arg max
π

E

[ ∞∑

t=0

γt · rπt |b0
]
. (4)

3 SEQUENTIAL BAYESIAN
OPTIMISATION

With the definitions above we can now extend BO to a
sequential setting. In order to apply BO to more realistic
problems we expand the existing theory to a more generic
framework and include the notion of state in the definition
of the problem. This means that at every step a generic re-
ward, r, can be obtained by sampling at x. This reward
depends on the state x of a mobile robotic sensor and the
expected value of the objective function f(x). In the gen-
eral case, because gathering each sample has an associated
reward, the order in which they are gathered has a direct
influence over the total accumulated reward for a specific
lookahead. We call this kind of optimisation technique Se-
quential Bayesian Optimisation (SBO).

D0 D1 · · · Dn

x? x2 xn

f? f2 fn

r? r2 rn

Figure 1: Bayesian network representation for SBO.

Sampling locations and their associated observations are
grouped in D, which is built incrementally as shown in
Figure 1. Using a similar treatment to plain BO, the my-
opic expectation of the reward r (ER), can be obtained by
marginalising out all unknown outcomes,

ER(x?|D0) = Ef? [r(x?, f?|D0)] (5)

=

∫
r(x?, f?|D0)p(f?|x?,D0)df? . (6)

The n-step lookahead expression is given by

ERn(x?|D0)

=

∫
· · ·
∫ (

r(x?, f?|D0) +
n∑

i=2

(r(xi, fi|Di−1))

)

p(f?|x?,D0)×
n∏

i=2

p(fi|xi)p(xi|Di−1)

df?df2 · · · dfndx2 · · · dxn ,
(7)

where we are marginalising out all future outcomes
(f?, f2 . . . fn) and locations (x2 . . .xn). This expression
has been derived in [12], however, it presents a slight mod-
ification because we are considering the whole sequence of
locations for reward calculation, not just the expected im-
provement for the last sample. It is important to note that
within the BO algorithm, ER can be seen as the acquisition
function h(x) for selecting sampling locations. ER needs
to be maximised w.r.t. x? in each iteration of the algorithm.

In real robotic deployments, decisions {xi} can be repre-
sented as continuous paths followed by the robot. We rep-
resent these paths as parametrised curves, C, over the input
space, with each curve characterised by a set of parame-
ters Θ. The following expression shows the expected re-
ward for traversing a path with parameters Θ?, and looking
ahead for n steps, i.e. considering n paths in the future and
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integrating all possible rewards,

ERn(Θ?,D0)

=

∫

f?

∫

f2

...

∫

fn

∫

Θ2

...

∫

Θn(
r(CΘ? |DN−1) +

n∑

i=2

r(CΘi |Di−1)

)

p(f?|Θ?,DN−1)
n∏

i=2

p(fi|Θi,Di−1)p(Θi|Di−1)

df?df2 · · · dfndΘ2 · · · dΘn

(8)
In this expression we are marginalising out all possible
observations and paths for n steps. Unfortunately, given
the infinite number of possible paths, this integral does not
have an analytical solution and can only be approximated.
In the following section we illustrate how SBO can be rep-
resented in a POMDP formulation and solved using online
decision making POMDP solvers.

3.1 SBO AS ONLINE POMDPs

Our SBO formulation is state-aware, i.e. it considers the
state of a mobile robot for decision making. This prob-
lem can be formulated as a POMDP problem in a similar
manner as described in [20] for regular BO. The main idea
is to include the objective function, which is partially ob-
servable, together with the state of the robot, into the state
definition. We assume the robot’s pose is fully observable
and part of the state as side information p. The decision of
where to sample f is encoded by the action space, which
is limited by the possible actions that can be performed by
the robot. In the discrete case, an action is represented by
moving to a specific cell. For the continuous case an action
means travelling along a continuous path. More formally,
the elements of the POMDP definition for side-state SBO
are:

• S : The state which is a tuple {f,p}, where f is a
latent (not directly observable) function defined over
space and time representing the unknown process.
Additionally, we include the state of the sensing robot,
p, which is fully observable, as the side information.

• A : The parametrised action space a (Θ). The actions
can be described as move according to parameters Θ
and gather a samples from f in the process. For the
discrete sampling case, Θ represents a location in the
spatial domain of f . For the continuous case, Θ are
the parameters of a continuous curve defined over the
domain of f .

• T : The transition function which is defined over
the entire state {f,p}. T ({f,p}, a (Θ) , {f ′,p′}) is
the transition probability of resulting in state {f ′,p′}
given that action a (Θ) was taken at state {f,p}. As-
suming that the robot does not affect or change the

objective function, the joint transition probability can
be decomposed into the product of two independent
transition functions:

T ({f,p}, a(Θ), {f ′,p′})
= Tf (f, a(Θ), f ′)Tp(p, a(Θ),p′)

(9)

Since f is not affected by the actions in A, the transi-
tion function Tf is the identity.

Tf (f, a(Θ), f ′) = δ(f ′ − f). (10)

The transition function Tp depends on the definition
of the action space, and can often be modeled deter-
ministically since robots can navigate with accurate
positioning and path following controllers in many
large-scale outdoor monitoring applications. When
the action space is defined as a location, the action
parameters Θ represent a location, and Tp can be cal-
culated using

Tp(p, a(Θ),p′) = δ(p′ −Θ) (11)

• R : If the objective function f is sampled at Θ then
the expected reward in an SBO POMDP belief state
is the objective value w.r.t. beliefs b(f) minus any
application-specific action cost(p,Θ) associated with
moving from p to Θ:

ER({f,p}, a(Θ)) = Eb(f)[f(x)] + cost(p, a(Θ))
(12)

When the action space is parametrised as locations the
reward can be evaluated directly. However, when the
action space is parametrised by curves, the reward as-
sociated to an action is given by the sum of the rewards
along the curve C:

R({f,p}, C(Θ)) =
∑

x∈C(Θ)

R({f,p}, C(Θ)) ,

(13)
where the sum can be replaced by an integral when the
sensing device allows continuous sampling along the
curve.

• Z : In SBO, objective observations z ∈ R are simply
noisy observations of f(Θ) as defined next.

• O : The observation function is defined according to
the action space parametrisation. When the action
space is defined as a sampling location Θ, f can be
evaluated directly on Θ.

O(z, a(Θ), {f,p}) = p(z|f(x = Θ)) (14)

We observe that for GPs, we can generate z by sam-
pling from a GP marginal for f at location Θ. When
the action space is a curve C, f is evaluated at a num-
ber of sample locations within C. The observation
function for this set of observations {zi} is

O({zi}, C(Θ), {f,p}) =
∏

xi∈C(Θ)

p(zi|f(xi)) (15)
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The belief is then the probability distribution over the space
of functions f and updated as described in equation (3). If
the model for f is a GP, the belief update for an action-
observation pair can be computed directly. The action com-
ponent can be ignored for purposes of updating a belief in
f , since as stated earlier, the robot’s physical state does not
affect or change the objective function, it only restricts the
observations that can be made regarding f . Therefore, the
belief update over f is simply computed by adding new
location-observation pairs to the GP training data set.

Next, we present a methodology to solve this POMDP by
sampling a subset of action primitives that the robot can
execute in the environment. Action primitives and maxi-
mum likelihood observation selection are the key points to
approximate Equation 8.

3.2 MCTS AND UCT FOR SBO

MCTS is a popular technique for solving large POMDPs
[2, 18]. This method can turn a tedious search in de-
cision trees into an efficient approximation using Monte-
Carlo samples from the tree. MCTS efficiently searches
reachable beliefs from a given initial belief state and is use-
ful for real-time online planning. Its main advantage over
other techniques, such as Point-Based Value Iteration is
that it does not require the overhead of maintaining alpha-
functions over all states nor choosing the states for which
alpha-functions should be maintained.

[18] have shown how MCTS can reach impressive scalabil-
ity through the use of UCT, which they call POMCP. In this
work we conserve their idea of efficient tree search. How-
ever, we consider the case where the belief update is a GP
update for f and use the maximum likelihood observation,
as it is done by [13]. The maximum-likelihood observation
assumption helps reducing the branching factor of the tree,
which would grow uncontrollably when sampling observa-
tions.

For the SBO problem, each node in the tree consists of a be-
lief representation for f and a side-state p. We define the
ith node by vi. For each action-observation pair, the be-
lief representation b(f) and side state p are updated easily
since b(f) is a GP prior and side-state transitions are de-
terministic and observable. Every new action-observation
simulation creates a new node with the updated belief and
side-state.

The tree is built incrementally starting with an initial node
v0. Figure 2 shows an example of a small tree that has been
expanded partially with two action primitives. Each ellipse
represents a node, that consists of a belief over f , b(f),
and side-state p. A node is expanded by simulating the
outcomes of executing an action. The outcomes (noisy ob-
servations of f ) are the maximum-likelihood observations.
The branching factor of the tree will be the number of ac-

v0
{b0(f),p0}

v1
{b1(f),p1}

v2
{b2(f),p2}

v3
{b3(f),p3}

v4
{b4(f),p4}

a(Θ1)
o(a(Θ1), vo)

a(Θ2)
o(a(Θ2), vo)

a(Θ1)
o(a(Θ1), v2)

a(Θ2)
o(a(Θ2), v2)

Figure 2: Example of a tree with depth 2, partially
expanded from a set of two action primitives.

tion primitives. When a node is expanded, a new node is
created using the updated belief and new side-state.

The first step in each iteration is to find a leaf node candi-
date for expansion/evaluation, which is done inside of the
function TREEPOLICY. This search is guided by the func-
tion BESTCHILD, which uses the statistics stored for each
node (accumulated reward and number of visitations) to se-
lect the most promising child. Starting from the chosen leaf
node, a random action selection is conducted until the max-
imum depth is reached, executed within DEFAULTPOLICY.
The total accumulated reward is then backed up in function
BACKUP, that updates the statistics on all the nodes visited
during the current iteration. Each iteration of the search al-
gorithm simulates a sequence of up to n actions, where n is
the maximum depth. When the iteration loop is completed,
the best action is determined by picking the best child from
the parent node v0. Algorithm 2 shows the full procedure
for building a tree and returning the best immediate action.

4 EXPERIMENTS

In this section we present experiments where a robot at-
tempts to learn the behaviour of a spatial-temporal process
by choosing actions that maximise the expected reward.
We show comparisons for two different problems, includ-
ing one with time dependent behaviour.

For illustrative purposes we simulate 2D functions in space
that can change with time, such that,

f : R3 → R
(x1, x2, t)→ y .

In these experiments, the pose p = (x1r, x2r, θr) of a robot
is the side-state for the SBO formulation and f is the un-
known function to be estimated. The belief b(f) is rep-
resented by a GP using a separable space-time covariance
function [19]. The structure of the GP’s covariance func-
tion can capture periodicity in f from the training data.
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Algorithm 2 Monte Carlo Tree Search for SBO

function a? = MCTS(b(f),p, depthmax)
v0 = NEWNODE(b(f),p, rewardmin)
i← 0
while i < {Max MCTS iterations} do

vl ← TREEPOLICY(v0)
r ← DEFAULTPOLICY(vl)
BACKUP(vl, r)

end while
return a? = BESTCHILD(v0)

end function
function vl = TREEPOLICY(a)

v ← v0

while DEPTH(v) ≤ depthmax do
if v has untried actions then

Choose a from untried actions
r ← Simulate a . Simulate Reward
Update b(f) and p.
return vl =NEWNODE(b(f),p, r)

else
v = BESTCHILD(v)

end if
end while
return v

end function
function r = DEFAULTPOLICY(vl)

r ← Get reward accumulated until vl
d← DEPTH(vl)
while d ≤ depthmax do

Select a randomly
Update b(f) and p.
ra ← Simulate a
r ← r + ra
d← d+ 1

end while
end function
function BACKUP(vl, r)

v ← vl
while v 6= v0 do

Increase visited counter for v
Increase accumulated reward for v
v ← PARENT(v)

end while
end function
function vc = BESTCHILD(vp)

V ← Children of vp
for vi ∈ V do

Np ← Visited counter of vp
Ni ← Visited counter of vi
Ri ← Accumulated reward

g(i) =
Ri
Ni

+ κMC

√
2ln(Np)

Ni
end for
vc ← arg max

vi∈V
g(i)

end function
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Figure 3: Motion primitives for a mobile robot.
Axis in km.

Since the robot travels at a certain speed ṗ, the reachable
area for sampling f depends on the side-state p.

The action space A is determined by a set of motion prim-
itives parametrised as 2D cubic splines. A cubic spline C
is a continuous function mapping from R to R2, C(u|Θ) =

[Cx1
Cx2

]
T , with u ∈ [0, 1], defined as

C = Θ
[
u3 u2 u1 1

]T
, (16)

where Θ are the parameters expressed as a 2 × 4 ma-
trix for the 2D case. With appropriate parametrisation,
the curves generate the ten primitives A = {Ci}i=1...10

shown in Figure 3 for p = p0 = (0, 0, 0). For values of
p = (x1r, x2r, θr) the curves are rotated and translated us-
ing translation and rotation matrices. We define a transition
function Tp(p, Ci,p′) = 1 for a cubic spline transformed
from p, with

p′ =

(
Ci(u = 1)x1

, Ci(u = 1)x2
,
∂Cx1

/∂u

∂Cx2
/∂u

∣∣∣∣
u=1

)
.

(17)

Before an action (curve) is selected for execution, the robot
computes the optimal action using the MCTS algorithm
(Algorithm 2). The robot gathers noisy samples from f
along C while the action is being executed.

4.1 STATIC FUNCTION

In the first example, we simulate a static function, with ex-
pression

y = f(x1, x2, t) = e−(x1−4)2e−(x2−1)2

+0.8e−(x1−1)2e−( x2−4
2.5 )

2

+4e−( x1−10
5 )

2

e−( x2−10
5 )

2

,
(18)

where x1 ∈ [0, 5], x2 ∈ [0, 5], and t ∈ [0,∞]. Figure 4
shows a plot for this function, where it is easy to distinguish
two main peaks with different amplitudes. The robot is
initially located at pose p = (0.5, 0.5, 0) and travels at a
fixed speed of 0.2m/s, gathering a sample every 5 minutes.
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Figure 4: Static goal function. Axis in km.

We first want to evaluate how the definition of the re-
ward function R within the POMDP context impacts the
action selection properties of the algorithm. We com-
pare four different reward functions based on the UCB ac-
quisition function, r(x) = µ(x) + κσ(x), where κi ∈
{1.0× 106, 200, 20, 10}. It is a well known fact that the
value of κ affects the exploration-exploitation trade off and
this is clearly reflected in the resulting paths followed by
each robot, as shown in Figure 5. The most explorative
path sequence corresponds to κ = 1.0× 106 (Figure 5a)
and the least explorative is κ = 10 (Figure 5d). Between
these two extremes there are intermediate solutions where
exploitation is favoured more strongly for lower values of
κ.

In the next experiment we focus on the depth of the action
selection search, i.e. the number n of lookahead steps for
decision making. This corresponds to the maximum depth
allowed in the search tree. We first evaluated the entire de-
cision tree, which means simulating all the possible combi-
nations of actions. This approach, which we call Full Tree
(FT) strategy, will need |A|n simulations which becomes
impractical quickly. In fact, for this paper we only consider
FT strategies with n ≤ 3. We compare the performance of
FT against MCTS (Algorithm 2) where the number of sim-
ulations is a parameter. Clearly, for a same depth, MCTS is
bounded by FT, however MCTS can find near-optimal so-
lutions much faster. For this reason we were able to exper-
iment with depths up to n ≤ 5. We compare six different
combinations of depth and algorithm type as indicated in
Table 1.

The reward function used for these simulations was r(x) =
µ(x)+1.0× 106σ(x) for all cases. Therefore, the only dif-
ference in action selection is due to the number of looka-
head steps. Figure 6 shows the paths followed by the robot
at t = 2.3 days, when it had already gathered 616 sam-
ples from f . This figure does not show all cases, only the
four most relevant ones. It is interesting to observe that
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(a) κ = 1.0× 106
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(d) κ = 10

Figure 5: Comparison of followed paths for purely explo-
ration behaviour using Full Tree and MCTS-UCT. Axis in
km. Colour scale represents the value of sampled values.

Table 1: Experiment for Depth and Algorithm Type Com-
parison

Id Algorithm Max Depth Iterations

1 FT 1 10

2 FT 2 110

3 FT 3 1110

4 MCTS 3 100

5 MCTS 4 150

6 MCTS 5 400

the search with FT Depth 1 (Figure 6a) has not achieved
a full coverage of the area and is highly susceptible to get
trapped and collide into the edges of the domain, which
is clearly sub-optimal from an exploration point of view.
On the other hand, the FT Depth 2 shows increased cover-
age capability, which is improved further for deeper search
strategies. FT Depth 3 and MCTS Depth 3 show similar
result, with the clear advantage that MCTS requires only
10% of the number of simulations of FT.

We also compare the accumulated reward over time for
each case in Figure 7. This illustrates the advantage of us-
ing a multi-step lookahead strategy in increasing the total
accumulated reward. However, it is not clear the advan-
tage of using higher depths than two, as they do not show a
clear improvement in accumulated reward. The main rea-
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Figure 6: Comparison of paths for purely exploration
behaviour using FT and MCTS-UCT. Axis in km. Colour

scale represents the value of samples.

son behind this is that f does not change over time, thus
making the problem simple enough such that any strategy
with depth greater than 1 would be very close to the optimal
solution.

4.2 DYNAMIC FUNCTION

In this second experiment we use a more complex function
that changes over time,

y = f(x1, x2, t) = e
−
(
x1−2−f1(t)

0.7

)2

e
−
(
x2−2−f2(t)

0.7

)2

,
(19)
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Figure 7: Accumulated reward for static goal function.

(a) t = 0 (b) t = 0.16 (c) t = 0.3

(d) t = 0.5 (e) t = 0.6 (f) t = 0.83

Figure 8: Dynamic goal function within one period. Axis
in km.

with f1(t) = 1.5 sin(2πt), f2(t) = 1.5 cos(2πt), x1 ∈
[0, 5], x2 ∈ [0, 5], and t ∈ [0,∞]. This expression gener-
ates a function where the peak moves over time. The peak
circles clockwise around (x1, x2) = (2, 2) periodically,
with a period of 1 day. The motivation for this example
comes from air pollution monitoring tasks where we are in-
terested in following peaks of pollution through time while
learning how the entire process evolves in space-time. Fig-
ure 8 shows the goal function for 6 time steps within one
period.

Similarly to the previous experiment, the robot is initially
located at pose p = (0.5, 0.5, 0), travels at a fixed speed
of 0.12m/s and gathers a sample every 15 minutes. The
goal in this experiment is to find and follow the maximum
of f over time. Therefore, we select the reward function
r(x) = µ(x) + 10σ(x), which according to Figure 5,
should generate paths concentrated over the maximum val-
ues of f . Ideally, the robot should learn to follow the peak
through time which would be possible for speeds greater
than 0.109m/s. We try the same set of depth-algorithm
pairs as in Section 4.1 and detailed in Table 1. We only
show results for the extreme cases with the purpose of
avoiding clutter in the figures.

Figure 9 illustrates the advantage of using multi-step looka-
head strategies. The first row shows paths for FT Depth 1,
where it can be seen that the robot does not learn how to
follow the peak around a circle within 15 days. The sec-
ond row, MCTS Depth 2, which only does 15 more simula-
tions per iteration than FT Depth 1, the robot is already able
to learn the circular pattern at t = 12 days. With deeper
search strategies, the time required to learn the pattern de-
creases significantly indicating a better exploration and ex-
ploitation solution. In fact, for MCTS Depth 5 the pattern
is learnt in t = 8 days.

Figure 10 shows the benefits of using non-myopic strate-
gies for action selection. The cumulative reward is clearly
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Figure 9: Comparison of followed paths for FT and MCTS-
UCT in a dynamic function. First row shows the paths for
FT, Depth 1; Second row shows the paths for MCTS, Depth
2; Third row shows the paths for MCTS, Depth 5. Colour
scale represents the value of samples.

larger for multi-step lookahead decision making algo-
rithms. The best solution is MCTS Depth 5, that is clearly
superior for the entire duration of the simulation. A steeper
slope for accumulated reward indicates that a method has
learnt how to follow the peak. Then from this plot it is
also clear that FT Depth 1 is not able to capture space-time
dependencies properly.

It is important also to compare FT Depth 2 with MCTS
Depth 2. The fact that FT is an upper bound for MCTS
Depth 2 can be confirmed from Figure 10. In addition, it
can be seen that both strategies accumulate similar rewards,
which is a good indication that MCTS will approximate the
FT solution, even with only 25% of the total tree.

Finally, Figure 11 shows how MCTS prioritises the search
over promising paths. The pose of the robot at this instant
is p = (1.5, 3, 0). Red paths are result of the function DE-
FAULTPOLICY that did not get further explored and blue
paths are the paths present in the tree. In can be seen how
the tree automatically grows towards potentially informa-
tive areas, i.e. where the reward is higher. The green curve
is the best branch of the tree.

5 CONCLUSION

In this paper we proposed formulating the sequential BO
problem as a POMDP. Our main contribution was to de-
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Figure 11: Example of tree built for MCTS Depth 5.

termine a non-myopic decision making solution that max-
imises reward and takes into account the belief of an un-
known space time process and the state of a mobile robot
acting as a sensor. We formulated the solution for the
POMDP analogue of SBO using a modified version of the
UCT algorithm for MCTS, which is a scalable and efficient
way of finding asymptotically optimal decisions.

We demonstrate empirically the advantage of using non-
myopic planning solutions, which becomes especially im-
portant when the objective function dynamically changes
over time.

Even though long-term decision-making under uncertainty
is a very complex problem, we solved it using a scal-
able method that works for realistic scenarios with state-
dependent restrictions and time variation. We believe that
using multi-step lookahead path planning is a convenient
and practical way for solving many robotic problems re-
quiring the accurate representation of real space-time phe-
nomena, such as environment monitoring.
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Abstract

Marginal MAP problems are known to be very
difficult tasks for graphical models and are so far
solved exactly by systematic search guided by a
join-tree upper bound. In this paper, we develop
new AND/OR branch and bound algorithms for
marginal MAP that use heuristics extracted from
weighted mini-buckets enhanced with message-
passing updates. We demonstrate the effective-
ness of the resulting search algorithms against
previous join-tree based approaches, which we
also extend to accommodate high induced width
models, through extensive empirical evaluations.
Our results show not only orders-of-magnitude
improvements over the state-of-the-art, but also
the ability to solve problem instances well be-
yond the reach of previous approaches.

1 INTRODUCTION

Graphical models provide a powerful framework for rea-
soning with probabilistic and deterministic information.
These models use graphs to capture conditional indepen-
dencies between variables, allowing a concise representa-
tion of knowledge as well as efficient graph-based query
processing algorithms. Combinatorial maximization or
maximuma posteriori(MAP) tasks arise in many applica-
tions and often can be efficiently solved by search schemes.

The marginal MAP problem distinguishes between maxi-
mization variables (called MAP variables) and summation
variables (the others). Marginal MAP is NPPP-complete
[1]; it is difficult not only because the search space is expo-
nential in the number of MAP variables, but also because
evaluating the probability of any full instantiation of the
MAP variables is PP-complete [2]. Algorithmically, this
means that the variable elimination operations (max and
sum) are applied in a constrained, often more costly order.

State-of-the-art exact algorithms for marginal MAP are

typically based on depth-first branch and bound search. A
key component of branch and bound search is the heuristic
function; while partitioning based heuristics such asmini-
bucket elimination(MBE) [3] or mini-cluster-tree elimina-
tion (MCTE) [4, 5] can be applied to the constrained elimi-
nation order, the current state-of-the-art is to use a heuristic
based on anexactsolution to anunconstrainedordering,
introduced by Park and Darwiche [6] and then refined by
Yuan and Hansen [7]. These techniques appear to work
well when the unconstrained ordering results in a smallin-
duced width. However, in many situations this is a serious
limitation. As one contribution, we extend both algorithms
to use mini-bucket partitionings schemes, enabling them to
be applied to a wider variety of problem instances.

Importantly however, exact algorithms for pure max- or
sum-inference problems have greatly improved in recent
years. AND/OR branch and bound (AOBB) algorithms ex-
plore a significantly smaller search space, exploiting prob-
lem structure far more effectively [8]. The partition-based
heuristics used by AOBB have also seen significant im-
provements – for MAP, cost-shifting [9] can be used to
tighten the heuristic, while for summation, an extension
of MBE called weighted mini-bucket(WMB) [10] uses
Hölder’s inequality and cost-shifting to significantly en-
hance the likelihood bounds. WMB is closely related to
variational bounds such as tree-reweighted belief propaga-
tion [11] and conditional entropy decompositions [12], and
similar principles have also been used recently to develop
message-passing approximations for marginal MAP [13].

Our contributions. In this paper, we develop AND/OR
branch and bound search for marginal MAP, using a heuris-
tic created by extending weighted mini-bucket to the con-
strained elimination order of marginal MAP. We evaluate
both a single-pass heuristic, which uses cost-shifting by
moment matching (WMB-MM) during construction, and
an iterative version that passes messages on the correspond-
ing join-graph (WMB-JG). We show empirically that the
new heuristic functions almost always improve over stan-
dard mini-bucket, and in many cases give tighter bounds
and faster searches than the unconstrained join-tree meth-
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ods, yielding far more empowered search algorithms.

We demonstrate the effectiveness of the proposed search
algorithms against the two previous methods at solving a
variety of problem instances derived from the recent PAS-
CAL2 Inference Challenge benchmarks. Our results show
not only orders of magnitude improvements over the cur-
rent state-of-the-art approaches but also the ability to solve
many instances that could not be solved before.

Following background and brief overview of earlier work
(Sections 2 and 3), Section 4 presents the AND/OR
search approach for marginal MAP. Section5 describes the
weighted mini-bucket schemes, Section6 is dedicated to
our empirical evaluation and Section7 concludes.

2 BACKGROUND

A graphical modelis a tupleM = 〈X,D,F〉, where
X = {Xi : i ∈ V } is a set of variables indexed by set
V andD = {Di : i ∈ V } is the set of their finite domains
of values.F = {ψα : α ∈ F} is a set of discrete positive
real-valued local functions defined on subsets of variables,
where we useα ⊆ V andXα ⊆ X to indicate thescope
of functionψα, ie, Xα = var(ψα) = {Xi : i ∈ α}. The
function scopes imply aprimal graphwhose vertices are
the variables and which includes an edge connecting any
two variables that appear in the scope of the same function.
The graphical modelM defines a factorized probability
distribution onX, P (X) = 1

Z

∏
α∈F ψα. The partition

function, Z, normalizes the probability to sum to one.

LetXS be a subset ofX andXM = X\XS be the comple-
ment ofXS . TheMarginal MAPproblem is to find the as-
signmentx∗

M to variablesXM that maximizes the value of
the marginal distribution after summing out variablesXS :

x∗
M = argmax

XM

∑

XS

∏

α∈F
ψα (1)

We callXM “MAP variables”, andXS “sum variables”.

If XS = ∅ then the problem is also known as maximuma
posteriori (MAP) inference. The marginal MAP problem
is however significantly more difficult. The decision prob-
lem for marginal MAP was shown to be NPPP-complete [1],
while the decision problem for MAP is only NP-complete
[14]. The main difficulty arises because the max and sum
operators in Eq. (1) do not commute, which restricts effi-
cient elimination orders to those in which all sum variables
XS are eliminated before any max variablesXM .

Bucket Elimination(BE) [15] solves the marginal MAP
problem exactly by eliminating the variables in sequence.
Given aconstrained elimination orderensuring the sum
variables are processed before the max variables, BE par-
titions the functions into buckets, each associated with a
single variable. A function is placed in the bucket of its

argument that appears latest in the ordering. BE processes
each bucket, from last to first, by multiplying all functions
in the current bucket and eliminating the bucket’s variable
(by summation for sum variables and by maximization for
MAP variables), resulting in a new function which is placed
in an earlier bucket. The complexity of BE is time and
space exponential in theconstrained induced widthw∗

c of
the primal graph given a constrained elimination order [15].
BE can be viewed as message passing in a join-tree whose
nodes correspond to buckets and which connects nodesa, b
if the function generated bya’s bucket is placed inb’s [16].

Mini-Bucket Elimination(MBE) [3] is an approximation
algorithm designed to avoid the space and time complex-
ity of full bucket elimination by partitioning large buckets
into smaller subsets, calledmini-buckets, each containing at
mosti (calledi-bound) distinct variables. The mini-buckets
are processed separately [3]. MBE processes sum buck-
ets and the max buckets differently. Max mini-buckets (in
XM ) are eliminated by maximization, while for variables
in XS , one (arbitrarily selected) mini-bucket is eliminated
by summation, while the rest of the mini-bucket are elim-
inated by maximization. MBE outputs an upper bound on
the optimal marginal MAP value. The complexity of the al-
gorithm, which is parametrized by thei-bound, is time and
space exponential ini only. Wheni is large enough (i.e.,
i > w∗

c ), MBE coincides with full BE. MBE is often used
to generate heuristics for branch and bound search.

Another related approximation with bounded complexity,
more similar in structure to join-tree inference, isMini-
Cluster-Tree Elimination(MCTE) [5]. In MCTE, we pass
messages along the structure of the join-tree, except that
when computing a message, rather than combining all the
functions in the cluster, we first partition it into mini-
clusters, such that each mini-cluster has a bounded num-
ber of variables (thei-bound). Each mini-cluster is then
processed separately to compute a set of outgoing mes-
sages. Like MBE, this procedure produces an upper bound
on the results of exact inference, and increasingi typically
provides tighter bounds, but at higher computational cost.
Thus, both MBE and MCTE allow the user to trade upper
bound accuracy for time and space complexity.

3 CURRENT SEARCH METHODS

The current state-of-the-art methods for marginal MAP are
based on branch and bound search using specialized heuris-
tics. In particular, Park and Darwiche [6] construct an up-
per bound on each subproblem using a modified join-tree
algorithm along anunconstrainedelimination order that in-
terleaves the MAP and sum variables. During search, the
join-tree is fully re-evaluated at each node in order to com-
pute upper bounds for all uninstantiated MAP variables si-
multaneously, which allows the use of dynamic variable or-
dering. Although this approach provides effective bounds,
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Algorithm 1: BBBT for marginal MAP
Input: Graphical modelM = 〈X,D,F〉, i-boundi, unassigned

MAP variablesXM , lower boundL, partial assignment
to MAP variables̄x

Output: Optimal marginal MAP value
if XM = ∅ then1

return Solve(M|x̄);2

else3
Xk ← SelectV ar(XM );4
Update MCTE(i) ;5
foreach valuexk ∈ Dk do6

AssignXk to xk: x̄← x̄ ∪ {Xk = xk};7
U(x̄)← extract(MCTE(i))8
if U(x̄) > L then9

L = max(L,BBBT(i,XM \ {Xk}, L, x̄);10

x̄← x̄ \ {Xk = xk};11

return L;12

the computation can be quite expensive. More recently,
Yuan and Hansen [7] proposed an incremental evaluation
of the join-tree bounds which reduces significantly their
computational overhead during search. However, this re-
quires the search algorithm to follow a static variable order-
ing. In practice, Yuan and Hansen’s method proved to be
cost effective, considerably outperforming [6]. However,
both methods require that the induced width of the uncon-
strained join tree is small enough to be feasible, which of-
ten may not be the case.

3.1 ALGORITHM BBBT

Our first two algorithms, then, can be viewed as general-
izations of [6] and [7] schemes for models with high un-
constrained induced width. In particular, we use MCTE(i)
to approximate the exact, unconstrained join-tree inference
to accommodate a maximum clique size defined by thei-
boundi. The resulting branch and bound with MCTE(i)
heuristics, abbreviated hereafter by BBBT1, for marginal
MAP is given in Algorithm1.

The algorithm is called initially as BBBT(i, XM , 0, ∅),
whereXM are the MAP variables of the input graphical
model, andi is thei-bound. The algorithm maintains the
best solution found so far, giving a lower boundL on the
optimal marginal MAP value. The algorithm searches the
simple tree of all partial variable assignments (also called
the OR tree). At each step, BBBT uses MCTE(i) to com-
pute an upper boundU(x̄) on the optimal marginal MAP
extension of the current partial MAP assignmentx̄ (lines
5-8). If U(x̄) ≤ L, then the current assignmentx̄ cannot
lead to a better solution and the algorithm can backtrack
(line 9). Otherwise, BBBT expands the current assignment
by selecting the next MAP variable in a static or dynamic

1For consistency with prior work, we use the name used in
[17], (Branch and Bound with Bucket-Tree heuristic) to denote
the same algorithm applied to pure MAP queries.

variable ordering (line 4) and recursively solves a set of
subproblems, one for each un-pruned domain value. No-
tice that when̄x is a complete assignment, BBBT calcu-
lates its marginal MAP value by solving a summation task
overM|x̄, the subproblem defined by the sum variables
conditioned on̄x (line 2). Given sufficient resources (high
enoughi-bound), this can be done by variable elimination,
but for consistency with our other algorithms, our imple-
mentation uses AND/OR search with caching [18] (see also
Section4). If a better new assignment is found then the
lower boundL is updated (line 10).

If MCTE(i) is fully re-evaluated at each iteration, it pro-
duces upper bounds for all uninstantiated MAP variables
simultaneously. In this case, BBBT can accommodate
dynamic variable orderings and can thus be viewed as a
generalization of Park and Darwiche [6]. Alternatively,
MCTE(i) can be done in an incremental manner as in [7].
In this case BBBT requires a static variable ordering and
can be viewed as a generalization of Yuan and Hansen.

4 AND/OR SEARCH

Significant improvements in search for pure MAP infer-
ence have been achieved by using AND/OR search spaces,
which often capture problem structure far better than stan-
dard OR search methods [18]. In this section, we give an
AND/OR search algorithm for marginal MAP. First, we de-
fine thepseudo treeof the primal graph, which defines the
search space and captures problem decomposition.

DEFINITION 1 (pseudo tree) A pseudo treeof an undi-
rected graphG = (V,E) is a directed rooted treeT =
(V,E′) such that every arc ofG not included inE′ is a
back-arc inT , namely it connects a node inT to one of its
ancestors. The arcs inE′ may not all be included inE.

The set of valid pseudo trees for marginal MAP is restricted
to those for which the MAP variables form astart pseudo
tree, a subgraph of pseudo treeT that has the same root
asT . Given a graphical modelM = 〈X,D,F〉 with pri-
mal graphG and pseudo treeT of G, theAND/OR search
treeST based onT has alternating levels of OR nodes cor-
responding to the variables and AND nodes correspond-
ing to the values of the OR parent’s variable, with edges
weighted according toF. Identical subproblems, identi-
fied by theircontext(the partial instantiation that separates
the subproblem from the rest of the problem graph), can
be merged, yielding anAND/OR search graph[18]. Merg-
ing all context-mergeable nodes yields thecontext minimal
AND/OR search graph, denotedCT . The size ofCT is
exponential in the induced width ofG along a depth-first
traversal ofT (i.e., the constrained induced width) [18].

A solution treex̂ of CT is a subtree that: (1) contains the
root of CT ; (2) if an internal OR noden ∈ CT is in x̂,
thenn is labeled by a MAP variable and exactly one of its
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(a) Primal graph (b) Pseudo tree

Figure 1: A simple graphical model.

children is inx̂; (3) if an internal AND noden∈CT is in x̂
then all its OR children labeled by MAP variables are inx̂.

Each noden in CT can be associated with avaluev(n); for
MAP variables,v(n) captures the optimal marginal MAP
value of the conditioned subproblem rooted atn, while for
sum variables it is the conditional likelihood of the sub-
problem. Clearly,v(n) can be computed recursively based
on the values ofn’s successors: OR nodes by maximization
or summation (for MAP or sum variables, respectively),
and AND nodes by multiplication.

Example 1 Figure 1(a) shows a simple graphical model
with XM = {A,B,C,D} andXS = {E,F,G,H}. Fig-
ure 2 displays the context minimal AND/OR search graph
based on the constrained pseudo tree from Figure1(b) (the
contexts are shown next to the pseudo tree nodes). It is
easy to see that the MAP variables form a start pseudo
tree. A solution tree corresponding to the MAP assignment
(A = 0, B = 1, C = 1, D = 0) is indicated in red.

Algorithm 2 describes the AND/OR Branch and Bound
(AOBB) for marginal MAP. We use the notation thatx̄ is
the current partial solution and the tableCache, indexed
by node contexts, holds the partial search results. The algo-
rithm assumes that variables are selected statically accord-
ing to a valid pseudo treeT . A heuristicf(x̄) calculates an
upper bound on the optimal marginal MAP extension ofx̄.

If the setX is empty, the result is trivially computed (line
1). Else, AOBB selects the next variableXk in T and if
the corresponding OR node is not found in cache, it ex-
pands it and iterates over its domain values to compute
the OR valuev(Xk) (lines 7-22). Notice that ifXk is a
MAP variable, then AOBB attempts to prune unpromis-
ing domain values by comparing the upper boundf(x̄) of
the current partial solution treēx to the current best lower
boundLwhich is maintained by the root node of the search
space (line 10). For each domain valuexk, the problem
rooted at AND node〈Xk, xk〉 is decomposed intoq in-
dependent subproblemsMl = 〈Xl,Dl,Fl〉, one for each
childXl of Xk in T . These problems are then solved inde-
pendently and their results accumulated by the AND node
valuev(Xk, xk) (lines 12-13 and 18-19). After trying all

Figure 2: AND/OR search spaces for marginal MAP.

Algorithm 2: AOBB for marginal MAP
Input: Graphical modelM = 〈X,D,F〉, pseudo treeT , partial

solution treēx, heuristic evaluation functionf(x̄)
Output: Optimal marginal MAP value
if X = ∅ then return 1;1
else2

Xk ← SelectV ar(X) according toT ;3
if v(Xk) ∈ Cache then return v(Xk);4
if Xk ∈ XM then v(Xk)← −∞;5
else v(Xk)← 0;6
foreach valuexk ∈ Dk do7

if Xk ∈ XM then8
x̄← x̄ ∪ {Xk = xk};9
if f(x̄) > L then10

v(Xk, xk)← 1;11
foreach childXl ofXk in T do12

v(Xk, xk)← v(Xk, xk)× AOBB(Ml);13

else v(Xk, vj)← −∞;14
x̄← x̄ \ {Xk = xk};15

else16
v(Xk, xk)← 1;17
foreach childXl ofXk in T do18

v(Xk, xk)← v(Xk, xk)× AOBB(Ml);19

val← w(Xk, xk)× v(Xk, xk);20
if Xk ∈ XM then v(Xk)← max(v(Xk), val);21
else v(Xk)← v(Xk) + val;22

Cache← Cache ∪ v(Xk);23
return v(Xk)24

possible values of variableXk, the marginal MAP value
of the subproblem rooted byXk is v(Xk) if Xk is a MAP
variable, and is returned (line 21). IfXk is a sum variable,
thenv(Xk) holds the likelihood value of that conditioned
subproblem (line 22). The optimal marginal MAP value to
the original problem is returned by the root node.

AOBB typically computes its heuristicf(·) using a mini-
bucket bounding scheme (see Section2), which can be pre-
compiled along the reverse order of a depth-first traversal
of the pseudo tree (which is a valid constrained elimina-
tion order). Unfortunately, our AOBB cannot use the join-
tree/MCTE(i) based heuristics of Section3, since these are
compiled along an unconstrained variable ordering which
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is not compatible, in general, with the constrained pseudo
tree that drives the AOBB search order. For this reason, we
next turn to improving our mini-bucket bounds.

5 MINI-BUCKET FOR MARGINAL MAP

In this section, we develop improved, constrained order
mini-bucket bounds compatible with AOBB search. MBE
has been effective for pure MAP, but less so for marginal
MAP; previously, its bounds appeared to be far less accu-
rate than the unconstrained join-tree bounds [6, 7]. There-
fore, we revisit the mini-bucket approach and enhance it
with recent iterative cost-shifting schemes [10, 9, 13].

5.1 WEIGHTED MINI-BUCKETS

Weighted mini-bucket elimination(WMB) [10] is a recent
algorithm developed for likelihood (summation) tasks that
replaces the naı̈ve mini-bucket bound with Ḧolder’s in-
equality. For a given variableXk, the mini-bucketsQkr
associated withXk are assigned a non-negativeweight
wkr ≥ 0, such that

∑
r wkr = 1. Then, each mini-

bucket r is eliminated using a weighted or power sum,
(
∑
Xk

f(X)1/wkr )wkr . It is useful to note thatwkr can
be interpreted as a “temperature”; ifwkr = 1, it corre-
sponds to a standard summation, while ifwkr → 0, it in-
stead corresponds to a maximization overXk. Thus, stan-
dard mini-bucket corresponds to choosing one mini-bucket
r with wkr = 1, and the rest with weight zero.

Weighted mini-bucket is closely related to variational
bounds on the likelihood, such as conditional entropy de-
compositions [12] and tree-reweighted belief propagation
(TRBP) [11]. The single-pass algorithm of Liu and Ih-
ler [10] mirrors standard mini-bucket, except that within
each bucket a cost-shifting (or reparameterization) opera-
tor is performed, which matches the marginal beliefs (or
“moments”) across mini-buckets to improve the bound.

The temperature viewpoint of the weights enables us to ap-
ply a similar procedure for marginal MAP. In particular, for
Xk ∈ XS , we enforce

∑
r wkr = 1, while forXk ∈ XM ,

we take
∑
r wkr = 0 (so thatwkr = 0 for all r). The

resulting algorithm, listed in Algorithm3, treats MAP and
sum variables differently: for sum variables it mirrors [10],
while taking the zero-temperature limit for MAP variables
we obtain the max-marginal matching operations described
for pure MAP problems in [9]. This mirrors the result of
Weiss et al. [19], that the linear programming relaxation
for MAP corresponds to a zero-temperature limit of TRBP.

5.2 ITERATIVE UPDATES

While the single-pass algorithm is often very effective, we
can further improve it using iterative updates. The iter-
ative weighted mini-bucket algorithm [10], alternates be-

Algorithm 3: WMB-MM( i)
Input: Graphical modelM = 〈X,D,F〉, MAP variablesXM ,

constrained orderingo = X1, . . . , Xn, i-boundi
Output: Upper bound on optimal marginal MAP value
foreach k ← n downto1 do1

// Create bucket Bk and mini-buckets Qkr
Bk ← {ψα|ψα ∈ F, Xk ∈ var(ψα)}; F← F \Bk;2
LetQ = {Qk1, . . . , QkR} be ani-partition ofBk;3
foreach r = 1 toR do4

ψkr =
∏
ψ∈Qkr

ψ; Yr = vars(Qkr) \Xk;5

// Moment Matching
if Xk ∈ XS then6

Assign mini-bucketr weightwkr > 0, st
∑
r wkr = 1;7

µr =
∑

Yr
(ψkr)

1/wkr ; µ =
∏
r (µr)

wkr ;8

Updateψkr = ψkr ·
(
µ
µr

)wkr

;9

else10

µr = maxYr ψkr; µ =
(∏

r µr
)1/R

;11

Updateψkr = ψkr ·
(
µ
µr

)
;12

// Downward Messages (eliminate Xk)
foreach r = 1 toR do13

if Xk ∈ XS then λkr ← (
∑
Xk

(ψkr)
1/wkr )wkr ;14

else λkr ← maxXk ψkr;15
F← F ∪ {λkr};16

return
∏
ψ∈F ψ17

tween downward passes, which look like standard mini-
bucket with cost-shifting, and upward passes, which com-
pute messages used to “focus” the cost shifting in the next
downward pass. The algorithm can be viewed as message
passing on a join graph defined by the mini-bucket cliques,
and is listed in Algorithm4.

Standard MBE computes “downward” messagesλkr =
ma→c from each cliquea = (kr) (the rth mini-bucket
for variableXk) to a single child cliquec = ch(a). For
the iterative version, we also compute “upward” messages
mc→a from cliquec to its parent cliquesa ∈ pa(c). For
wa > 0, wc > 0, these upward messages are given by [10]:

mc→a ∝
[ ∑

Yc\Ya

(ψc m∼c)
1/wc m−1/wa

a→c

]wa

whereψc =
∏
ψ∈Qc

ψ are the model factors assigned to
cliquec, andm∼c is the product of all messages intoc.

These upward messages are used during the cost-shifting
updates ofXk in later downward passes:

∀r, µkr ∝
∑

Ykr

(ψkrm∼kr)
1/wkr ; µ =

( ∏

r

(µkr)
wkr

)1/wk

∀r, ψkr ← ψkr
( µ

µkr

)γ wkr

in which we include the upward messagemch(kr)→kr in the
marginalsµkr being matched, and definewk =

∑
r wkr.

These fixed-point updates are not guaranteed to be mono-
tonic; to assist convergence, we also include a “step size”

567



γ ≤ 1. By initializing the upward messagesmch(c)→c = 1
and takingγ = 1/t, the first iteration of Alg.4 corresponds
exactly to WMB-MM (Alg. 3).

For marginal MAP, we can take the limit as some weights
wa = ǫ→ 0; then, when botha andc = ch(a) correspond
to MAP variables we have

mc→a ∝
[

max
Yc\Ya

(ψcm∼c)m
−1
a→c

]

µa=max
Ya

(ψam∼a); µ=
( ∏

a

µa
) 1

|Q| ; ψa ← ψa
( µ
µa

)γ

When cliquea corresponds to a sum variable and clique
c = ch(a) to a MAP variable, we takewc = ǫ to give:

mc→a ∝
[ ∑

Yc\Ya

σǫ(ψcm∼c)m
−1/wa
a→c

]wa

σǫ(f(X)) =
(
f(X)/max

x
f(x)

)1/ǫ

Whenǫ→ 0, σǫ becomes an indicator function of the max-
imizing arguments off , “focusing” the matching step at
parenta on configurations relevant to the max values of
child c. The resulting algorithm is also closely related to
a (tree-reweighted) mixed-product belief propagation al-
gorithm for marginal MAP [13]. Unfortunately, directly
taking ǫ= 0 can cause the objective function to be highly
non-smooth, and lead to undesirable, non-monotonic fixed-
point updates. To alleviate this, in practice we use a sched-
ule ǫ=1/t to decrease the temperature over iterations.

6 EXPERIMENTS

We empirically evaluate the proposed branch and bound
algorithms on problem instances derived from benchmarks
used in the PASCAL2 Inference Challenge [20] as well as
the original instances from [7].

Algorithms. We consider three AND/OR branch and
bound search algorithms (Section4): AOBB guided by ba-
sic MBE(i) heuristics (denoted AOBB), AOBB guided by
heuristics from WMB-MM(i) (denoted AOBB-MM), and
AOBB guided by heuristics from WMB-JG(i) (denoted by
AOBB-JG), respectively. All of the mini-bucket heuristics
were generated in a pre-processing phase, prior to search.
The weighted schemes used uniform weights. In addition,
we also tested two OR branch and bound schemes guided
by MCTE(i) heuristics, denoted BBBTi and BBBTd, re-
spectively. BBBTi performs MCTE(i) incrementally, while
BBBTd fully re-evaluates MCTE(i) at each iteration.

We compare all five algorithms against each other and
against the current state-of-the-art branch and bound with
incremental join-tree upper bounds [7], denoted by YUAN,
along with the original approach by Park and Darwiche
[6], denoted by PARK. Algorithms BBBTd and PARK

Algorithm 4: WMB-JG(i)
Input: Graphical modelM = 〈X,D,F〉, constrained ordering

o = X1, . . . , Xn, i-boundi, number of iterationsT
Output: Upper bound on optimal marginal MAP value
for t = 1 to T do1

// Downward pass with moment matching
foreach k ← n downto1 do2

LetQ = {Qa|a = kr} be the mini-buckets ofBk;3
foreach Qa ∈ Q do4

ψa =
∏
ψ∈Qa

ψ;5

Ya = vars(Qa) \Xk;6
m∼a = mch(a)→a ·

∏
p∈pa(a)mp→a;7

if Xk ∈ XS then8

foreach Qa ∈ Q do µa =
∑

Ya
(ψam∼a)

1/wa ;9

µ =
∏
Qa∈Q(µa)

wa ;10

foreach Qa ∈ Q do Updateψa = ψa · (µ/µa)wa ;11

else12
foreach Qa ∈ Q do µa = maxYa (ψam∼a);13

µ =
∏
Qa∈Q(µa)

1/|Q|;14

foreach Qa ∈ Q do Updateψa = ψa · (µ/µa);15

foreach Qa ∈ Q, c = ch(a), do16
if Xk ∈ XS then17

ma→c = (
∑
Xk

(ψa ma)
1/wa )wa ;18

else19
ma→c = maxXk (ψa ma);20

// Backward pass
foreach k ← 1 to n do21

LetQ = {Qc|c = kr} be the mini-buckets ofBk;22
foreach Qc∈Q anda∈pa(c), with c=kr, a=js do23

Y = vars(Qc) \ vars(Qa);24
if Xk ∈ XS andXj ∈ XS then25

mc→a =26

(
∑

Y(ψcm∼c)
1/wc · (ma→c)

−1/wa)wa ;

if Xk ∈ XM andXj ∈ XM then27

mc→a = (maxY(ψcm∼c) · (ma→c)
−1);28

if Xk ∈ XS andXj ∈ XM then29
mc→a =30

(
∑

Y σǫ(ψcm∼c) · (ma→c)
−1/wa)wa ;

return upper bound fromB1;31

use a dynamic variable ordering and select the next MAP
variable whose domain values have the most asymmetric
bounds. Algorithms BBBTi and YUAN are restricted to
a static variable ordering that corresponds to a post-order
traversal of the underlying join-tree. The pseudo trees guid-
ing the AND/OR algorithms were obtained by a modified
min-fill heuristic [18] that constrained the MAP variables
to form a start pseudo tree. All algorithms were imple-
mented in C++ (64-bit) and the experiments were run on a
2.6GHz 8-core processor with 80 GB of RAM.

Benchmarks. Our problem instances were derived
from three PASCAL2 benchmarks:segbin (image seg-
mentation),protein (protein side-chain interaction) and
promedas (medical diagnosis expert system). For each
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Table 1: Upper bounds (log scale) and CPU time (sec) for a typical set of instances.i = 10 andi = 20.
instance i MBE WMB-MM MCTE WMB-JG JT

5 iterations 10 iterations 100 iterations
(n,m, k, w∗

c , w
∗
u) UB/time UB/time UB/time UB/time UB/time UB/time UB/time

cpcs360 10 5.9607/0.03 -0.0228/0.04 4.3008/0.16 -0.0353/0.34 -0.0360/0.75 -0.0363/6.71 -0.0468/4.73
(360,25,2,24,20) 20 2.4871/11.4 -0.0402/1.36 -0.0468/3.45 -0.0465/47.2 -0.0467/145 -0.0468/1339
2-17-s-s 10 -44.2658/0.02 -49.5830/0.01 -40.3520/0.06 -55.4555/0.12 -55.5996/0.24 -55.6633/2.44 -55.5170/0.31
(228,69,2,20,15) 20 -55.5083/3.54 -55.5082/0.30 -55.5170/0.36 -55.7433/5.38 -55.7436/12.7 -55.7437/197
or-chain-10.fg-s 10 -10.5621/0.01 -13.2118/0.01 -6.4940/0.1 -17.2899/0.10 -18.7859/0.18 -21.3428/1.71 -21.0314/4.29
(453,135,2,22,18) 20 -18.2977/3.56 -19.3815/0.33 -9.8054/0.5 -21.3600/5.46 -21.3600/11.8 -21.3600/137
cpcs422 10 10.026/0.61 -1.3206/0.88 7.0553/1.62 -1.3764/4.06 -1.3878/8.67 -1.4275/75.1 -1.4982/41.6
(422,74,2,74,23) 20 7.9245/18.5 -1.4427/9.29 -0.1331/9.78 -1.4545/191 -1.4554/371 -1.4718/2353
2-2-s-l 10 -57.0433/0.04 -75.1643/0.03 -39.1568/0.07 -80.9224/0.17 -81.5811/0.33 -81.9044/3.56 -81.5883/0.14
(227,68,2,73,14) 20 -67.2268/5.52 -80.4492/1.68 -81.5883/0.17 -82.0108/25.0 -82.1039/58.6 -82.1960/400
or-chain-18.fg-l 10 -2.7317/0.01 -2.5168/0.02 -2.3325/0.42 -6.4279/0.36 -7.1655/0.51 -11.1244/3.78 -11.4487/0.43
(890,267,2,25,8) 20 -10.2463/0.88 -11.4534/0.07 -11.4487/0.46 -11.4534/1.48 -11.4534/2.97 -11.4534/31.7
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Figure 3: Average relative error (w.r.t. tightest upper bound) as a function ofi-bound. WMB-JG(i) ran for 10 iterations.

network, we generated two marginal MAP problem in-
stances withm MAP variables, as follows: aneasy in-
stance such that the MAP variables were selected as the
first m variables from a breadth-first traversal of a pseudo
tree obtained from a hypergraph decomposition of the pri-
mal graph (ties were broken randomly) [8], and ahard
instance where the MAP variables were selected uniformly
at random. Theeasy instances were designed such that
problem decomposition is maximized and the constrained
and unconstrained elimination orders are relatively close
to each other, thus having comparable induced widths. In
contrast, thehard instances tend to have very large con-
strained induced widths. We selected 30% of the variables
as MAP variables. In total we evaluated 120 problem in-
stances (20easy and 20hard instances per benchmark).

In all experiments we report total CPU time in seconds and
number of nodes visited during search. We also record the
problem parameters: number of variables (n), max domain
size (k), number of MAP variables (m), and the constrained
(w∗
c ) and unconstrained (w∗

u) induced widths. The best
performance points are highlighted. In each table, ’oom’
stands for out-of-memory, while ’-’ denotes out-of-time.

Results: quality of the upper bounds. We compare the
accuracy of the upper bounds obtained by the mini-bucket
schemes MBE(i), WMB-MM( i) and WMB-JG(i) against
those produced by the unconstrained join-tree scheme, de-
noted JT, and its generalization MCTE(i).

Table1 shows results on a typical set of problem instances
from botheasy (top 3) andhard (bottom 3) categories,
for two values ofi-bound: i = 10, 20. For every problem
instance, for each algorithm we report the upper bound ob-

tained (lower values are better) and CPU time in seconds.
The iterative scheme WMB-JG(i) ran for 5, 10 or 100 it-
erations, respectively. We see clearly that for all instances
WMB-MM( i) provides significantly tighter upper bounds
than the corresponding pure MBE(i) in a comparable CPU
time (see also Figure3). On the other hand, WMB-JG(i) is
able to converge to the most accurate bounds in 4 out of 6
cases, but at a much higher computational cost. JT bounds
are typically tighter than those produced by MCTE(i) and
MBE(i) which is consistent with previous studies [6, 7].

In Figure3 we plot the average relative error with respect
to the tightest upper bound obtained, as a function of the
i-bound. Since, the JT bounds were available only on a
relatively small fraction of the instances tested, they are
omitted for clarity. We observe that if given enough time
WMB-JG(i) is superior to all its competitors, especially
for larger i-bounds. However, if time is bounded, then
WMB-MM( i) provides a cost-effective alternative. No-
tice also that when the gap between the constrained and
unconstrained induced width is very large, then MCTE(i)
provides more accurate bounds than MBE(i) and WMB-
MM( i) (eg, promedashard), because MCTE(i) does less
partitioning in this case. When the gap is relatively small,
then the mini-bucket based bounds are often superior to the
MCTE(i) ones for the samei-bound (eg, segbineasy).

Results: comparison with state-of-the-art search. Ta-
bles 2 and 3 report CPU time in seconds and number of
nodes expanded by each search algorithm on a subset of
instances from the protein and promedas benchmarks. The
columns are indexed by thei-bound and the time limit was
set to 1 hour. WMB-JG(i) ran for 10 iterations. We can
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Table 2: CPU time (sec) and nodes for the protein instances. Time limit 1 hour. WMB-JG(i) ran for 10 iterations.
instance algorithm i = 2 i = 3 i = 4 i = 5 i = 6 YUAN

PARK
(n,m, kw∗

c , w
∗
u) time nodes time nodes time nodes time nodes time nodes time nodes

proteineasy instances
AOBB - - - - -

pdb1a1x AOBB-JG 539 1746192 85 314801 164 3415 3067 746 - oom
(95,28,81,14,14) AOBB-MM - - 601 7625110 709 9004715 2087 316563 oom

BBBTd - - - - -
BBBTi - - - - -
AOBB - 1533 12650401 379 1505951 228 169618 753 274565

pdb1a62 AOBB-JG - 13 35 62 35 523 35 2228 35 oom
(105,31,81,13,10) AOBB-MM 697 2437932 169 359560 114 135525 138 181286 112 1107 oom

BBBTd - - - - -
BBBTi - - - - -
AOBB - - - - -

pdb1ad2 AOBB-JG - 76 1355 227 431 3368 424 oom
(177,53,81,12,9) AOBB-MM - - 983 838218 211 13902 - oom

BBBTd - - - - -
BBBTi - - - - -
AOBB 61 119726 9 5483 4 735 21 283 154 48

pdb1aho AOBB-JG 6 6581 4 365 19 271 65 17 1251 17 299 55
(54,16,81,7,6) AOBB-MM 49 19890 10 3274 8 2057 7 593 44 17 963 16

BBBTd 7 1224 6 128 28 26 165 29 426 17
BBBTi 77 291321 949 1151691 345 35506 - 356 4679

Table 3: CPU time (sec) and nodes for the promedas instances.Time limit 1 hour. WMB-JG(i) ran for 10 iterations.
instance algorithm i = 4 i = 6 i = 10 i = 14 i = 18 i = 20 PARK

YUAN
(n,m, k, w∗

c , w
∗
u) time nodes time nodes time nodes time nodes time nodes time nodes time nodes

promedaseasy instances
AOBB - - 65 6242529 14 1871710 4 471708 7 235860

or-chain-4.fg-e AOBB-JG - 1046 75598793 9 1045873 55 5457626 6 208 19 1144 oom
(691,207,2,33,26) AOBB-MM - - 116 7354956 8 991915 1 156030 1 73526 oom

BBBTd - - 579 39989 132 4624 233 1900 425 1285
BBBTi - - - 394 2001912 - -
AOBB 447 67968093 64 12082065 3 518292 1 162224 1 1920 2 0

or-chain-17.fg-e AOBB-JG 38 3943341 57 8830508 0 72575 0 6940 3 160 6 160 87 159
(531,159,2,20,18) AOBB-MM 238 26609470 65 9743803 2 306313 0 45462 0 757 0 521 3 162

BBBTd - - 103 5520 85 2921 125 1363 148 633
BBBTi - - - 5 61467 10 29232 12 25588
AOBB - - - - - -

or-chain-22.fg-e AOBB-JG - - - 2118 183274481 - - oom
(1044,313,2,72,59) AOBB-MM - - - - - - oom

BBBTd - - - - - -
BBBTi - - - - - -

promedashard instances
AOBB - - - - - 2254 124886725

or-chain-4.fg-h AOBB-JG - - 192 5529085 11 555059 21 377992 66 215655 oom
(691,207,2,140,28) AOBB-MM - - 752 17706171 304 13152476 188 5662611 78 2134464 oom

BBBTd - - - - 1810 12397 -
BBBTi - - - - - -
AOBB - - - - - -

or-chain-8.fg-h AOBB-JG - - - - - 1786 31316917 oom
(1195,358,2,255,39) AOBB-MM - - - - - - oom

BBBTd - - - - - -
BBBTi - - - - - -
AOBB - - 67 7544343 12 1282228 13 1556793 11 606211

or-chain-17.fg-h AOBB-JG - - 42 3992210 3 212839 8 230955 29 169192 259 159
(531,159,2,72,18) AOBB-MM - - - - 7 793696 287 9274776 4 439

BBBTd - - - 412 12954 861 6003 1931 4649
BBBTi - - 477 5618175 61 494659 54 136679 106 126093

see clearly that AOBB-JG(i) is the overall best performing
algorithm, especially for relatively smalli-bounds. For ex-
ample, on thepdb1a62, AOBB-JG(3) proves optimality
in 13 seconds while AOBB(3) and AOBB-MM(3) finish in
1533 and 169 seconds, respectively. The search space ex-
plored by AOBB-JG(3) is also dramatically smaller than
those explored by AOBB(3) or AOBB-MM(3). There-
fore, the much stronger heuristics generated by WMB-
JG(i) translate into impressive time savings. When thei-
bound increases, the accuracy ceases to offset the compu-
tational overhead and the running time of AOBB-JG(i) in-
creases (e.g.,pdb1aho). In this case, AOBB-MM(i) is
a cost-effective alternative, with reduced overhead for pre-
compiling the heuristic (see also Figure4 for a profile of the

CPU time of the algorithms across all benchmarks). The
performance of algorithms YUAN and PARK is quite poor
in this domain due to the relatively large unconstrained in-
duced widths, which prevent computation of their heuristic.
In contrast, BBBTi/BBBTd with relatively higheri-bounds
are sometimes competitive and are able to solve more prob-
lem instances than YUAN/PARK.

For completeness, we also tested on the Bayesian net-
works from [7] (results omitted for space). We ob-
served that all of our proposed algorithms were competitive
with YUAN/PARK, but due to the relatively small uncon-
strained induced widths on these problems, very accurate
join-tree heuristics could be computed. Thus, there was
very little room for improvement by the new methods.
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Figure 4: Number of instances solved (top) and median CPU time (bottom) as a function ofi-bound for the segbin,
promedas and protein instances. Time limit 1 hour. WMB-JG(i) ran for 10 iterations.
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Figure 5: Number of instances solved (top) and number of
wins (bottom) by benchmark.

Summary of the experiments. Figure4 plots the num-
ber of problem instances solved from each benchmark (top)
and the median CPU time (bottom) as a function of thei-
bound. Clearly, AOBB-JG solves the largest number of in-
stances acrossi-bounds. Moreover, the running time pro-
file shows that AOBB-JG is faster at loweri-bounds due
to more accurate heuristics, while AOBB-MM is faster at
higher i-bounds due to reduced overhead. Figure5 sum-
marizes the total number of instances solved as well as the
total number of wins (defining a ‘win’ as the fastest time)
across the benchmarks, for all competing algorithms. Over-

all, we see that the proposed search algorithms consistently
solve more problems and in many cases are significantly
faster than the current approaches.

In summary, based on our empirical evaluation, we can
conclude that:

• Cost-shifting (especially the iterative version) tight-
ened significantly the MBE bounds for marginal MAP.
This yielded considerably faster AOBB search.

• The AOBB algorithms with improved mini-bucket
heuristics outperformed in many cases the previous
search methods guided by join-tree based heuristics.

7 CONCLUSION

In this paper, we develop AND/OR branch and bound
search algorithms for marginal MAP that use heuristics ex-
tracted from weighted mini-buckets with cost-shifting. We
evaluate both a single-pass version of the heuristic with
cost-shifting by moment matching as well as an iterative
version that passes messages on the corresponding join-
graph. We demonstrate the effectiveness of our proposed
search algorithms against previous unconstrained join-tree
based methods, which we also extend to apply to high
induced-width models, through extensive empirical eval-
uations on a variety of benchmarks. Our results show not
only orders of magnitude improvements over the current
state-of-the-art, but also the ability to solve many instances
that could not be solved before.
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using ḧolder’s inequality. InInternational Conference
on Machine Learning (ICML), pages 849–856, 2011.

[11] M. Wainwright, T. Jaakkola, and A. Willsky. A
new class of upper bounds on the log partition func-
tion. IEEE Trans. Info. Theory, 51(7):2313–2335,
July 2005.

[12] A. Globerson and T. Jaakkola. Approximate infer-
ence using conditional entropy decompositions. InIn-
ternational Conference on Artificial Intelligence and
Statistics (AISTATS), pages 130–138, 2007.

[13] Q. Liu and A. Ihler. Variational algorithms for
marginal MAP. Journal of Machine Learning Re-
search, 14:3165–3200, 2013.

[14] S. E. Shimony. Finding MAPs for belief networks
is NP-hard. Artificial Intelligence, 2(68):399–410,
1994.

[15] R. Dechter. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence, 113(1-
2):41–85, 1999.

[16] K. Kask, R. Dechter, J. Larrosa, and A. Dechter.
Unifying cluster-tree decompositions for reasoning
in graphical models.Artificial Intelligence, 166 (1-
2):165–193, 2005.

[17] R. Marinescu, K. Kask, and R. Dechter. Systematic vs
non-systematic algorithms for solving the MPE task.
In Uncertainty in Artificial Intelligence (UAI), pages
394–402, 2003.

[18] R. Dechter and R. Mateescu. AND/OR search spaces
for graphical models.Artificial Intelligence, 171(2-
3):73–106, 2007.

[19] Y. Weiss, C. Yanover, and T. Meltzer. MAP estima-
tion, linear programming and belief propagation with
convex free energies. InUncertainty in Artificial In-
telligence (UAI), pages 416–425, 2007.

[20] G. Elidan, A. Globerson, and U. Heinemann.
PASCAL 2011 probabilistic inference challenge.
http://www.cs.huji.ac.il/project/PASCAL/, 2012.

572



Stochastic Discriminative EM

Andrés R. Masegosa†‡

† Dept. of Computer and Information Science ‡ Dept. of Computer Science and A. I.
Norwegian University of Science and Technology University of Granada

Trondheim, Norway Granada, Spain

Abstract

Stochastic discriminative EM (sdEM) is an
online-EM-type algorithm for discriminative
training of probabilistic generative models be-
longing to the natural exponential family. In
this work, we introduce and justify this algorithm
as a stochastic natural gradient descent method,
i.e. a method which accounts for the informa-
tion geometry in the parameter space of the sta-
tistical model. We show how this learning algo-
rithm can be used to train probabilistic genera-
tive models by minimizing different discrimina-
tive loss functions, such as the negative condi-
tional log-likelihood and the Hinge loss. The re-
sulting models trained by sdEM are always gen-
erative (i.e. they define a joint probability distri-
bution) and, in consequence, allows to deal with
missing data and latent variables in a principled
way either when being learned or when making
predictions. The performance of this method is
illustrated by several text classification problems
for which a multinomial naive Bayes and a latent
Dirichlet allocation based classifier are learned
using different discriminative loss functions.

1 INTRODUCTION

Online learning methods based on stochastic approxima-
tion theory [19] have been a promising research direction
to tackle the learning problems of the so-called Big Data
era [1, 10, 12]. Stochastic gradient descent (SGD) is prob-
ably the best known example of this kind of techniques,
used to solve a wide range of learning problems [9]. This
algorithm and other versions [27] are usually employed to
train discriminative models such as logistic regression or
SVM [10].

There also are some successful examples of the use of SGD
for discriminative training of probabilistic generative mod-
els, as is the case of deep belief networks [18]. However,

this learning algorithm cannot be used directly for the dis-
criminative training of general generative models. One of
the main reasons is that statistical estimation or risk min-
imization problems of generative models involve the so-
lution of an optimization problem with a large number of
normalization constraints [24], i.e. those which guarantee
that the optimized parameter set defines a valid probabilis-
tic model. Although successful solutions to this problem
have been proposed [16, 20, 24, 31], they are based on ad-
hoc methods which cannot be easily extended to other sta-
tistical models, and hardly scale to large data sets.

Stochastic approximation theory [19] has also been used
for maximum likelihood estimation (MLE) of probabilistic
generative models with latent variables, as is the case of the
online EM algorithm [13, 29]. This method provides effi-
cient MLE estimation for a broad class of statistical mod-
els (i.e. exponential family models) by sequentially updat-
ing the so-called expectation parameters. The advantage
of this approach is that the resulting iterative optimization
algorithm is fairly simple and amenable, as it does not in-
volve any normalization constraints.

In this paper we show that the derivation of Sato’s online
EM [29] can be extended for the discriminative learning
of generative models by introducing a novel interpretation
of this algorithm as a natural gradient algorithm [3]. The
resulting algorithm, called stochastic discriminative EM
(sdEM), is an online-EM-type algorithm that can train gen-
erative probabilistic models belonging to the natural expo-
nential family using a wide range of discriminative loss
functions, such as the negative conditional log-likelihood
or the Hinge loss. In opposite to other discriminative learn-
ing approaches [24], models trained by sdEM can deal with
missing data and latent variables in a principled way either
when being learned or when making predictions, because
at any moment they always define a joint probability distri-
bution. sdEM could be used for learning using large scale
data sets due to its stochastic approximation nature and, as
we will show, because it allows to compute the natural gra-
dient of the loss function with no extra cost [3]. Moreover,
if allowed by the generative model and the discriminative

573



loss function, the presented algorithm could potentially be
used interchangeably for classification or regression or any
other prediction task. But in this initial work, sdEM is only
experimentally evaluated in classification problems.

The rest of this paper is organized as follows. Section 2
provides the preliminaries for the description of the sdEM
algorithm, which is detailed in Section 3. A brief exper-
imental evaluation is given in Section 4, while Section 5
contains the main conclusions of this work.

2 PRELIMINARIES

2.1 MODEL AND ASSUMPTIONS

We consider generative statistical models for prediction
tasks, where Y denotes the random variable (or the vector-
value random variable) to be predicted, X denotes the pre-
dictive variables, and y? denotes a prediction, which is
made according to y? = argmaxy p(y, x|θ).

Assumption 1. The generative data model belongs to a
natural exponential family

p(y, x|θ) ∝ exp(〈s(y, x), θ〉 −Al(θ))

where θ is the so-called natural parameter which belongs
to the so-called natural parameter space Θ ∈ <K , s(y, x)
is the vector of sufficient statistics belonging to a convex
set S ⊆ <K , 〈·, ·〉 denotes the dot product and Al is the log
partition function.

Assumption 2. We are given a conjugate prior distribution
p(θ|α) of the generative data model

p(θ|α) ∝ exp(〈s(θ), α〉 −Ag(α))

where the sufficient statistics are s(θ) = (θ,−Al(θ)) and
the hyperparameter α has two components (ᾱ, ν). ν is a
positive scalar and ᾱ is a vector also belonging to S [6].

2.2 DUAL PARAMETERIZATION AND
ASSUMPTIONS

The so-called expectation parameter µ ∈ S can also be
used to parameterize probability distributions of the natu-
ral exponential family. It is a dual set of the model param-
eter θ [2]. This expectation parameter µ is defined as the
expected vector of sufficient statistics with respect to θ:

µ , E [s(y, x)|θ] =
∫
s(y, x)p(y, x|θ)dydx

= ∂Al(θ)/∂θ
(1)

The transformation between θ and µ is one-to-one: µ is a
dual set of the model parameter θ [2]. Therefore, Equa-
tion (1) can be inverted as: θ = θ(µ). That is to say, for
each θ ∈ Θ we always have an associated µ ∈ S and both
parameterize the same probability distribution.

For obtaining the natural parameter θ associated to an ex-
pectation parameter µ, we need to make use of the negative
of the entropy,

H(µ) ,
∫
p(y, x|θ(µ)) ln p(y, x|θ(µ))dydx

= supθ∈Θ〈µ, θ〉 −Al(θ)
(2)

Using the above function, the natural parameter θ can be
explicitly expressed as

θ = θ(µ) = ∂H(µ)/∂µ (3)

Equations (1), (2), (3) define the Legendre-Fenchel trans-
form.

Another key requirement of our approach is that it should
be possible to compute the transformation from µ to θ in
closed form:

Assumption 3. The transformation from the expectation
parameter µ to the natural parameter θ, which can be ex-
pressed as

θ(µ) = argmax
θ∈Θ
〈µ, θ〉 −Al(θ) (4)

is available in closed form.

The above equation is also known as the maximum likeli-
hood function, because θ( 1

n

∑n
i=1 s(yi, xi)) gives the max-

imum likelihood estimation θ? for a data set with n obser-
vations {(y1, x1), . . . , (yn, xn)}.
For later convenience, we show the following relations be-
tween the Fisher Information matrices I(θ) and I(µ) for
the probability distributions p(y, x|θ) and p(y, x|θ(µ)), re-
spectively [23]:

I(θ) =
∂2Al(θ)

∂θ∂θ
=
∂µ

∂θ
= I(µ)−1 (5)

I(µ) =
∂2H(µ)

∂µ∂µ
=
∂θ

∂µ
= I(θ)−1 (6)

2.3 THE NATURAL GRADIENT

Let W = {w ∈ <K} be a parameter space on which the
function L(w) is defined. When W is a Euclidean space
with an orthonormal coordinate system, the negative gradi-
ent points in the direction of steepest descent. That is, the
negative gradient−∂L(w)/∂w points in the same direction
as the solution to:

argmin
dw

L(w + dw) subject to ||dw||2 = ε2 (7)

for sufficiently small ε, where ||dw||2 is the squared length
of a small increment vector dw connecting w and w +
dw. This justifies the use of the classical gradient descent
method for finding the minimum of L(w) by taking steps
(of size ρ) in the direction of the negative gradient:

wt+1 = wt − ρ
∂L(wt)

∂w
(8)
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However, whenW is a Riemannian space [4], there are no
orthonormal linear coordinates, and the squared length of
vector dw is defined by the following equation,

||dw||2 =
∑

ij

gij(w)dwidwj (9)

where the K ×K matrix G = (gij) is called the Rieman-
nian metric tensor, and it generally depends on w. G re-
duces to the identity matrix in the case of the Euclidean
space [4].

In a Riemannian space, the steepest descent direction is not
anymore the traditional gradient. That is, −∂L(w)/∂w is
not the solution of Equation (7) when the squared length
of the distance of dw is defined by Equation (9). Amari
[3] shows that this solution can be computed by pre-
multiplying the traditional gradient by the inverse of the
Riemannian metric G−1,

Theorem 1. The steepest descent direction or the natural
gradient of L(w) in a Riemannian space is given by

− ∂̃L(w)

∂̃w
= −G−1(w)

∂L(w)

∂w
(10)

where ∂̃L(w)/∂̃w denotes the natural gradient.

As argued in [3], in statistical estimation problems we
should used gradient descent methods which account for
the natural gradient of the parameter space, as the parame-
ter space of a statistical model (belonging to the exponen-
tial family or not) is a Riemannian space with the Fisher
information matrix of the statistical model I(w) as the ten-
sor metric [2], and this is the only invariant metric that must
be given to the statistical model [2].

2.4 SATO’S ONLINE EM ALGORITHM

Sato’s online EM algorithm [29] is used for maximum like-
lihood estimation of missing data-type statistical models.
The model defines a probability distribution over two ran-
dom or vector-valued variables X and Z, and is assumed
to belong to the natural exponential family:

p(z, x|θ) ∝ exp(〈s(z, x), θ〉 −Al(θ))

where (z, x) denotes a so-called complete data event. The
key aspect is that we can only observe x, since z is an unob-
servable event. In consequence, the loss function `(x, θ)1

is defined by marginalizing z: `(x, θ) = − ln
∫
p(z, x)dz.

The online setting assumes the observation of a non-finite
data sequence {(xt)}t≥0 independently drawn according
to the unknown data distribution π. The objective function
that EM seeks to minimize is given by the following expec-
tation: L(θ) = E [`(x, θ)|π].

1We derive this algorithm in terms of minimization of a loss
function to highlight its connection with sdEM.

Sato [29] derived the stochastic updating equation of online
EM by relying on the free energy formulation, or lower
bound maximization, of the EM algorithm [22] and on a
discounting averaging method. Using our own notation,
this updating equation is expressed as follows,

µt+1 = (1− ρt)µt + ρtEz[s(z, xt|θ(µt)]
= µt + ρt (Ez[s(z, xt|θ(µt)]− µt)

= µt + ρt
∂`(xt, θ(µt))

∂θ
(11)

where Ez[s(z, xt|θ(µt)] denotes the expected sufficient
statistics, Ez[s(z, xt|θ(µt)] =

∫
s(z, xt)p(z|xt, θ(µt))dz.

He proved the convergence of the above iteration method
by casting it as a second order stochastic gradient descent
using the following equality,

∂`(x, θ)

∂θ
=
∂µ

∂θ

∂`(x, θ(µ))

∂µ
= I(µ)−1 ∂`(x, θ(µ))

∂µ
(12)

This equality is obtained by firstly applying the chain rule,
followed by the equality shown in Equation (5). It shows
that online EM is equivalent to a stochastic gradient descent
with I(µt)

−1 as coefficient matrices [9].

Sato noted that that the third term of the equality in Equa-
tion (12) resembles a natural gradient (see Theorem 1), but
he did not explore the connection. But the key insights of
the above derivation, which were not noted by Sato, is that
Equation (12) is also valid for other loss functions different
from the marginal log-likelihood; and that the convergence
of Equation (11) does not depend on the formulation of the
EM as a “lower bound maximization” method [22].

3 STOCHASTIC DISCRIMINATIVE EM

3.1 THE sdEM ALGORITHM

We consider the following supervised learning setup. Let
us assume that we are given a data set D with n ob-
servations {(y1, x1), . . . , (yn, xn)}. We are also given a
discriminative loss function2 `(yi, xi, θ). For example, it
could be the negative conditional log-likelihood (NCLL)
`(yi, xi, θ) = − ln p(yi, xi|θ) + ln

∫
p(y, xi|θ)dy =

− ln p(yi|xi, θ). Our learning problem consists in minimiz-
ing the following objective function:

L(θ) =
n∑

i=1

`(yi, xi, θ)− ln p(θ|α)

= E [`(y, x, θ)|π]− 1

n
ln p(θ|α) (13)

where π is now the empirical distribution of D and
E [`(y, x, θ)|π] the empirical risk. Although the above

2The loss function is assumed to satisfy the mild conditions
given in [9]. E.g., it can be a non-smooth function, such as the
Hinge Loss.
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loss function is not standard in the machine learning lit-
erature, we note that when ` is the negative log-likelihood
(NLL), we get the classic maximum a posterior estimation.
This objective function can be seen as an extension of this
framework.

sdEM is presented as a generalization of Sato’s online EM
algorithm for finding the minimum of an objective function
in the form of Equation (13) (i.e. the solution to our learn-
ing problem). The stochastic updating equation of sdEM
can be expressed as follows,

µt+1 = µt − ρtI(µt)
−1 ∂

¯̀(yt, xt, θ(µt))

∂µ
(14)

where (yt, xt) denotes the t-th sample, randomly generated
from π, and the function ¯̀ has the following expression:
¯̀(yt, xt, θ(µt)) = `((yt, xt, θ(µt)) + 1/n ln p(θ(µt)). We
note that this loss function satisfies the following equality,
which is the base for a stochastic approximation method
[19], E

[
¯̀(yt, xt, θ(µ))|π

]
= L(θ(µ)).

Similarly to Amari’s natural gradient algorithm [3], the
main problem of sdEM formulated as in Equation (14) is
the computation of the inverse of the Fisher information
matrix at each step, which becomes even prohibitive for
large models. The following result shows that this can be
circumvented when we deal with distributions of the natu-
ral exponential family:
Theorem 2. In a natural exponential family, the natural
gradient of a loss function with respect to the expectation
parameters equals the gradient of the loss function with
respect to the natural parameters,

I(µ)−1 ∂
¯̀(y, x, θ(µ))

∂µ
=
∂ ¯̀(y, x, θ)

∂θ

Sketch of the proof. We firstly need to prove that I(µ) is
a valid Riemannian tensor metric and, hence, the expecta-
tion parameter space has a Riemanian structure defined by
the metric I(µ) and the definition of the natural gradient
makes sense. This can be proved by the invariant property
of the Fisher information metric to one-to-one reparame-
terizations or, equivalently, transformations in the system
of coordinates [2, 4]. I(µ) is a Riemannian metric because
it is the Fisher information matrix of the reparameterized
model p(y, x|θ(µ)), and the reparameterization is one-to-
one, as commented in Section 2.2.

The equality stated in the theorem follows directly from
Sato’s derivation of the online EM algorithm (Equation
(12)). This derivation shows that we can avoid the com-
putation of I(µ)−1 by using the natural parameters instead
of the expectation parameters and the function θ(µ).

Theorem 1 simplifies the sdEM’s updating equation to,

µt+1 = µt − ρt
∂ ¯̀(yt, xt, θ(µt))

∂θ
(15)

sdEM can be interpreted as a stochastic gradient descent
algorithm iterating over the expectation parameters and
guided by the natural gradient in this Riemannian space.

Algorithm 1 Stochastic Discriminative EM (sdEM)
Require: D is randomly shuffled.

1: µ0 = ᾱ; (initialize according to the prior)
2: θ0 = θ(µ0);
3: t = 0;
4: repeat
5: for i = 1, . . . , n do
6: E-Step: µt+1 = µt − 1

(1+λt)
∂ ¯̀(yi,xi,θt)

∂θ ;

7: Check-Step: µt+1 = Check(µt+1,S);

8: M-Step: θt+1 = θ(µt+1);
9: t = t+ 1;

10: end for
11: until convergence
12: return θ(µt);

An alternative proof to Theorem 2 based on more recent
results on information geometry has been recently given in
[25]. The results of that work indicate that sdEM could also
be interpreted as a mirror descent algorithm with a Breg-
man divergence as a proximitiy measure. It is beyond the
scope of the paper to explore this relevant connection.

3.2 CONVERGENCE OF sdEM

In this section we do not attempt to give a formal proof
of the convergence of sdEM, since very careful technical
arguments would be needed for this purpose [9]. We simply
go through the main elements that define the convergence
of sdEM as an stochastic approximation method [19].

According to Equation (14), sdEM can be seen as a
stochastic gradient descent method with the inverse of the
Fisher information matrix I(µ)−1 as a coefficient matrix
[9]. As we are dealing with natural exponential families,
these matrices are always positive-definite. Moreover, if
the gradient ∂ ¯̀(y, x, θ)/∂θ can be computed exactly (in
Section 3.4 we discuss what happens when this is not pos-
sible), from Theorem 2, we have that it is an unbiased es-
timator of the natural gradient of the L(θ(µ)) defined in
Equation 13,

E

[
∂ ¯̀(y, x, θ)

∂θ
|π
]

= I(µ)−1 ∂L(θ(µ))

∂µ
(16)

However, one key difference in terms of convergence be-
tween online EM and sdEM can be seen in Equation (11):
µt+1 is a convex combination between µt and the expected
sufficient statistics. Then, µt+1 ∈ S during all the itera-
tions. As will be clear in the next section, we do not have
this same guarantee in sdEM, but we can take advantage
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Table 1: sdEM updating equations for fully observed data (Section 3.3) .

Loss sdEM equation

NLL µt+1 = (1− ρt(1 + ν
n ))µt + ρt

(
s(yt, xt) + 1

n ᾱ
)

NCLL µt+1 = (1− ρt νn )µt + ρt
(
s(yt, xt)− Ey[s(y, xt)|θ(µt)] + 1

n ᾱ
)

Hinge µt+1 = (1− ρt νn )µt + ρt

{
1
n ᾱ if ln p(yt,xt|θ)

p(ȳt,xt|θ) > 1

s(yt, xt)− s(ȳt, xt) + 1
n ᾱ otherwise

where ȳt = argmaxy 6=yt p(y, xt|θ)

of the log prior term of Equation (13) to avoid this prob-
lem. This term plays a dual role as both “regularization”
term and log-barrier function [30] i.e. a continuous func-
tion whose value increases to infinity as the parameter ap-
proaches the boundary of the feasible region or the sup-
port of p(θ(µ)|α) 3. Then, if the step sizes ρt are small
enough (as happens near convergence), sdEM will always
stays in the feasible region S, due to the effect of the log
prior term. The only problem is that, in the initial iterations,
the step sizes ρt are large, so one iteration can jump out of
the boundary of S. The method to avoid that depends on
the particular model, but for the models examined in this
work it seems to be a simple check in every iteration. For
example, as we will see in the experimental section when
implementing a multinomial Naive Bayes, we will check at
every iteration that each sufficient statistic or “word count”
is always positive. If a “word count” is negative at some
point, we will set it to a very small value. As mentioned
above, this does not hurt the convergence of sdEM because
in the limit this problem disappears due the effect of the
log-prior term.

The last ingredient required to assess the convergence of
a stochastic gradient descent method is to verify that the
sequence of step sizes satisfies:

∑
ρt =∞, ∑

ρ2
t <∞.

So, if the sequence (µt)t≥0 converges, it will probably con-
verge to the global minimum (µ?, θ? = θ(µ?)) if L(θ) is
convex, or to a local minimum if L(θ) is not convex [9].

Finally, we give an algorithmic description of sdEM in Al-
gorithm 1. Following [11], we consider steps sizes of the
form ρt = (1 + λt)−1, where λ is a positive scalar4. As
mentioned above, the “Check-Step” is introduced to guar-
antee that µt is always in S. Like the online EM algo-
rithm [29, 13], Algorithm 1 resembles the classic expecta-

3The prior p would need to be suitably chosen.
4Our experiments suggest that trying λ ∈ {1, 0.1, 0.01,

0.001, . . .} suffices for obtaining a quick convergence.

tion maximization algorithm [15] since, as we will see in
the next section, the gradient is computed using expected
sufficient statistics. Assumption 3 guarantees that the max-
imization step can be performed efficiently. This step dif-
ferentiates sdEM from classic stochastic gradient descent
methods, where such a computation does not exist.

3.3 DISCRIMINATIVE LOSS FUNCTIONS

As we have seen so far, the derivation of sdEM is com-
plete except for the definition of the loss function. We will
discuss now how two well known discriminative loss func-
tions can be used with this algorithm.

Negative Conditional Log-likelihood (NCLL)

As mentioned above, this loss function is defined as fol-
lows:

`CL(yt, xt, θ) = − ln p(yt, xt|θ) + ln

∫
p(y, xt|θ)dy

And its gradient is computed as

∂`CL(yt, xt, θ)

∂θ
= −s(yt, xt) + Ey[s(y, xt)|θ]

where the sufficient statistic s(yt, xt) comes from the
gradient of the ln p(yt, xt|θ) term in the NCLL loss,
and the expected sufficient statistic Ey[s(y, xt)|θ] =∫
s(y, xt)p(y|xt, θ)dy, comes from the gradient of the

ln
∫
p(y, xt|θ)dy term in the NCLL loss. As mentioned

above, the computation of the gradient is similar to the ex-
pectation step of the classic EM algorithm.

The iteration equation of sdEM for the NCLL loss is de-
tailed in Table 1. We note that in the case of multi-class pre-
diction problems the integrals of the updating equation are
replaced by sums over the different classes of the class vari-
able Y . We also show the updating equation for the nega-
tive log-likelihood (NLL) loss for comparison purposes.
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Table 2: sdEM updating equations for partially observed data (Section 3.4)

Loss sdEM equation

NLL µt+1 = (1− ρt(1 + ν
n ))µt + ρt

(
Ez[s(yt, z, xt)|θ(µt)] + 1

n ᾱ
)

NCLL µt+1 = (1− ρt νn )µt + ρt
(
Ez[s(yt, z, xt)|θ(µt)]− Eyz[s(y, z, xt)|θ(µt)] + 1

n ᾱ
)

Hinge µt+1 = (1− ρt νn )µt + ρt





1
n ᾱ if ln

∫
p(yt,z,xt|θ)dz∫
p(ȳt,z,xt|θ)dz > 1

Ez[s(yt, z, xt)|θ(µt)]
−Ez[s(ȳt, z, xt)|θ(µt)] + 1

n ᾱ
otherwise

where ȳt = argmaxy 6=yt
∫
p(y, z, xt|θ)dz

The Hinge loss

Unlike the previous loss which is valid for continuous and
discrete (and vector-valued) predictions, this loss is only
valid for binary or multi-class classification problems.

Margin-based loss functions have been extensively used
and studied by the machine learning community for binary
and multi-class classification problems [5]. However, in
our view, the application of margin-based losses (different
from the negative conditional log-likelihood) for discrimi-
native training of probabilistic generative models is scarce
and based on ad-hoc learning methods which, in general,
are quite sophisticated [24]. In this section, we discuss how
sdEM can be used to minimize the empirical risk of one of
the most used margin-based losses, the Hinge loss, in bi-
nary and multi-class classification problems. But, firstly,
we discuss how Hinge loss can be defined for probabilistic
generative models.

We build on LeCun et al.’s ideas [21] about energy-based
learning for prediction problems. LeCun et al. [21] define
the Hinge loss for energy-based models as follows,

max(0, 1− (E(ȳt, xt, w)− E(yt, xt, w))

where E(·) is the energy function parameterized by a pa-
rameter vector w, E(yt, xt, w) is the energy associated
to the correct answer yt and E(ȳt, xt, w) is the energy
associated to the most offending incorrect answer, ȳt =
argminy 6=yt E(y, xt, w). Predictions y? are made using
y? = argminy E(y, xt, w

?) when the parameter w? that
minimizes the empirical risk is found.

In our learning settings we consider the minus logarithm
of the joint probability, − ln p(yt, xt|θ), as an energy func-
tion. In consequence, we define the hinge loss as follows

`hinge(yt, xt, θ) = max(0, 1− ln
p(yt, xt|θ)
p(ȳt, xt|θ)

) (17)

where ȳt denotes here too the most offending incorrect an-
swer, ȳt = argmaxy 6=yt p(y, xt|θ).

The gradient of this loss function can be simply computed
as follows

∂`hinge(yt, xt, θ)

∂θ
=





0 if ln p(yt,xt|θ)
p(ȳt,xt|θ) > 1

−s(yt, xt) + s(ȳt, xt) otherwise

and the iteration equation for minimizing the empirical risk
of the Hinge loss is also given in Table 1.

3.4 PARTIALLY OBSERVABLE DATA

The generalization of sdEM to partially observable data
is straightforward. We denote by Z the vector of non-
observable variables. sdEM will handle statistical models
which define a probability distribution over (y, z, x) which
belongs to the natural exponential family (Assumption 1).
Assumption 2 and 3 remain unaltered.

The tuple (y, z, x) will denote the complete event or com-
plete data, while the tuple (y, x) is the observed event or the
observed data. So we assume that our given data setD with
n observations is expressed as {(y1, x1), . . . , (yn, xn)}. So
sdEM’s Equation (14) and (15) are the same, with the only
difference that the natural gradient is now defined using the
inverse of the Fisher information matrix for the statistical
model p(y, z, x|θ(µ)). The same happens for Theorem 2.

The NCLL loss and the Hinge loss are equally de-
fined as in Section 3.3, with the only difference that
the computation of p(yt, xt|θ) and p(xt|θ) requires
marginalization over z, p(yt, xt|θ) =

∫
p(yt, z, xt|θ)dz,

p(xt|θ) =
∫
p(y, z, xt|θ)dydz. The updating equa-

tions for sdEM under partially observed data for the
NCLL and Hinge loss are detailed in Table 2. New
expected sufficient statistics need to be computed,
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Figure 1: Toy example (Section 4.1). The result using the NLL loss (i.e. MLE estimation) is plotted with dashed lines
which represent the densities p(y = k)N(x, µ(k), σ(k)) for both classes (i.e. when the red line is higher than the blue
line we predict the red class and vice versa). The estimated prediction accuracy of the MLE model is 78.6%. Solid lines
represent the same estimation but using the NCLL and the Hinge loss. Their estimated prediction accuracies are 90.4%
and 90.6%, respectively.
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Ez[s(yt, z, xt)|θ] =
∫
s(yt, z, xt)p(z|yt, xt, θ)dz and

Eyz[s(y, z, xt)|θ] =
∫
s(y, z, xt)p(y, z|xt, θ)dydz. As

previously, we also show the updating equation for the neg-
ative log-likelihood (NLL) loss for comparison purposes.

3.5 sdEM AND APPROXIMATE INFERENCE

For many interesting models [8], the computation of the ex-
pected sufficient statistics in the iteration equations shown
in Table 1 and 2 cannot be computed in closed form.
This is not a problem as far as we can define unbiased
estimators for these expected sufficient statistics, since
the equality of Equation (16) still holds. As it will be
shown in the next section, we use sdEM to discrimina-
tively train latent Dirichlet allocation (LDA) models [8].
Similarly to [26], for this purpose we employ collapsed
Gibbs sampling to compute the expected sufficient statis-
tics, Ez[s(yt, z, xt)|θ], as it guarantees that at convergence
samples are i.i.d. according to p(z|yt, xt, θ).

4 EXPERMINTAL ANALYSIS

4.1 TOY EXAMPLE

We begin the experimental analysis of sdEM by learning
a very simple Gaussian naive Bayes model composed by
a binary class variable Y and a single continuous predic-
tor X . Hence, the conditional density of the predictor
given the class variable is assumed to be normally dis-
tributed. The interesting part of this toy example is that
the training data is generated by a different model: π(y =
−1) = 0.5, π(x|y = −1) ∼ N(0, 3) and π(x|y = 1) ∼

0.8 · N(−5, 0.1) + 0.2 · N(5, 0.1). Figure 1 shows the
histogram of the 30,000 samples generated from the π dis-
tribution. The result is a mixture of 3 Gaussians, one in the
center with a high variance associated to y = −1 and two
narrows Gaussians on both sides associated to y = 1.

sdEM can be used by considering 6 (non-minimal) suffi-
cient statistics: N (−1) and N (1) as “counts” associated to
both classes, respectively; S(−1) and S(1) as the “sum” of
the x values associated to classes y = −1 and y = 1, re-
spectively; and V (−1) and V (1) as the “sum of squares”
of the x values for each class. We also have five param-
eters which are computed from the sufficient statistics as
follows: Two for the prior of class p(y = −1) = p(−1) =
N (−1)/(N (−1) +N (1)) and p(1) = N (1)/(N (−1) +N (1));
and four for the two Gaussians which define the condi-
tional of X given Y , µ(−1) = S(−1)/N (−1), σ(−1) =√
V (−1)/N (−1) − (S(−1)/N (−1))2, and equally for µ(1)

and σ(1).

The sdEM’s updating equations for the NCLL loss can be
written as follows

N
(k)
t+1 = N

(k)
t + ρt(I[yt = k]− pt(k|xt)) +

ρt
n

S
(k)
t+1 = (1− ρt

n
)S

(k)
t + ρtxt (I[yt = k]− pt(k|xt))

V
(k)
t+1 = (1− ρt

n
)V

(k)
t + ρtx

2
t (I[yt = k]− pt(k|xt)) +

ρt
n

where k indexes both classes, k ∈ {−1, 1}, I[·] denotes
the indicator function, pt(k|xt) is an abbreviation of p(y =
k|xt, θt), and θt is the parameter vector computed from the
sufficient statistics at the t-th iteration.
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Figure 2: Convergence trade-off of the Hinge loss ver-
sus the NCLL loss and the perplexity for a multinomial
naive Bayes model trained minimizing the Hinge loss us-
ing sdEM. Circle-lines, triangle-lines and cross-lines corre-
spond to the results with 20NewsGroup, Cade and Reuters-
R52 datasets, respectively.
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MNB) using sdEM. Red circle-lines, red triangle-lines and
red cross-lines correspond to the results of NCLL-MNB
with 20NewsGroup, Cade and Reuters-R52 datasets, re-
spectively. Same for Hinge-MNB. The three blue and the
three red solid lines detail the accuracy of logistic regres-
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Epoch

5
0

6
0

7
0

8
0

9
0

1
0
0

A
c
c
u
ra

c
y

r52

20ng

Cade

NCLL−MNB Hinge−MNB

1 3 5 7 9 11 13 15 17 19

Similarly, the sdEM’s updating equations for the Hinge loss
can be written as follows,

N
(k)
t+1 = N

(k)
t + kytρtI[ln

pt(yt|xt)
pt(ȳt|xt)

< 1] +
ρt
n

S
(k)
t+1 = (1− ρt

n
)S

(k)
t + kytρtxtI[ln

pt(yt|xt)
pt(ȳt|xt)

< 1]

V
(k)
t+1 = (1− ρt

n
)V

(k)
t + kytρtx

2
t I[ln

pt(yt|xt)
pt(ȳt|xt)

< 1] +
ρt
n

where the product kyt is introduced in the updating equa-
tions to define the sign of the sum, and the indicator func-
tion I[·] defines when the hinge loss is null.

In the above set of equations we have considered as a con-
jugate prior for the Gaussians a three parameter Normal-
Gamma prior, ν = 1 and ᾱ1 = 0 for S(k) and ᾱ2 = 1 for
V (k) [6, page 268], and a Beta prior with ν = 0 and ᾱ = 1
for N (k). We note that these priors assign zero probabil-
ity to “extreme” parameters p(k) = 0 (i.e. N (k) = 0) and
σ(k) = 0 (i.e. V (k)/N (k) − (S(k)/N (k))2 = 0).

Finally, the“Check-step” (see Algorithm 1) performed be-
fore computing θt+1, and which guarantees that all suffi-
cient statistics are correct, is implemented as follows:

N
(k)
t+1 = max(N

(k)
t+1,

ρt
n

)

V
(k)
t+1 = max(V

(k)
t+1,

(S
(k)
t+1)2

N
(k)
t+1

+
ρt
n

)

I.e., when the N (k) “counts” are negative or too small or
when the V (k) values lead to negative or null deviations
σ(k) ≤ 0, they are fixed with the help of the prior term.

The result of this experiment is given in Figure 1 and
clearly shows the different trade-offs of both loss functions
compared to maximum likelihood estimation. It is interest-
ing to see how a generative model which does not match
the underlying distribution is able to achieve a pretty high
prediction accuracy when trained with a discrimintaive loss
function (using the sdEM algorithm).

4.2 sdEM FOR TEXT CLASSIFICATION

Next, we briefly show how sdEM can be used to discrimi-
natively train some generative models used for text classifi-
cation, such as multinomial naive Bayes and a similar clas-
sifier based on latent Dirichlet allocation models [8]. Sup-
plementary material with full details of these experiments
and the Java code used in this evaluation can be download
at: http://sourceforge.net/projects/sdem/

Multinomial Naive Bayes (MNB)

MNB assumes that words in documents with the same class
or label are distributed according to an independent multi-
nomial distribution. sdEM can be easily applied to train this
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Figure 4: Convergence of the classification accuracy of
LDA classification models trained by sdEM using different
loss functions (NLL, NCLL and Hinge) over 10 different
random initializations. The two dashed lines and the single
solid line detail the maximum, minimum and mean accu-
racy of sLDA, respectively, over 10 random initializations.
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model. The sufficient statistics are the “prior class counts”
and the “word counts” for each class. The updating equa-
tions and the check step are the same as those of N (k)

t in
the previous toy example. Parameters of the MNB are com-
puted simply through normalization operations. Two dif-
ferent conjugate Dirichlet distributions were considered: A
“Laplace prior” where ᾱi = 1; and a ”Log prior” where
ᾱi = “logarithm of the number of words in the corpus”.
We only report analysis for “Laplace prior” in the case of
NCLL loss and for “Log prior” in the case of Hinge loss.
Other combinations show similar results, although NCLL
was more sensitive to the chosen prior.

We evaluate the application of sdEM to MNB with
three well-known multi-class text classification prob-
lems: 20Newsgroup (20 classes), Cade (12 classes) and
Reuters21578-R52 (52 classes). Data sets are stemmed.
Full details about the data sets and the train/test data sets
split used in this evaluation can be found in [14].

Figure 2 shows the convergence behavior of sdEM with
λ =1e-05 when training a MNB by minimizing the Hinge
loss (Hinge-MNB). In this figure, we plot the evolution of
the Hinge loss but also the evolution of the NCLL loss
and the normalized perplexity (i.e. the perplexity measure
[8] divided by the number of training documents) at each
epoch. We can see that there is a trade-off between the dif-
ferent losses. E.g., Hinge-MNB decreases the Hinge loss
(as expected) but tends to increase the NCLL loss, while it

only decreases perplexity at the very beginning.

Figure 3 displays the evolution of the classification accu-
racy of two MNBs trained minimizing the NCLL loss and
the Hinge loss using sdEM. We compare them to: the stan-
dard MNB with a “Laplace prior”; the L2-regularized Lo-
gistic Regression; and the primal L2-regularized SVM. The
two later methods were taken from the Liblinear toolkit
v.18 [17]. As can be seen, sdEM is able to train simple
MNB models with a performance very close to that pro-
vided by highly optimized algorithms.

Latent Dirichlet Allocation (LDA)

We briefly show the results of sdEM when discriminatively
training LDA models. We define a classification model
equal to MNB, but where the documents of the same class
are now modeled using an independent LDA model. We
implement this model by using, apart from the “prior class
counts”, the standard sufficient statistics of the LDA model,
i.e. “words per hidden topic counts”, associated to each
class label. Similarly to [26], we used an online Collapsed
Gibbs sampling method to obtain, at convergence, unbiased
estimates of the expected sufficient statistics (see Table 2).

This evaluation was carried out using the standard train/test
split of the Reuters21578-R8 (8 classes) and web-kb (4
classes) data sets [14], under the same preprocessing than
in the MNB’s experiments. Figure 4 shows the results
of this comparison using 2-topics LDA models trained
with the NCLL loss (NCLL-LDA), the Hinge loss (Hinge-
LDA), and also the NLL loss (NLL-LDA) following the
updating equations of Table 2. We compared these results
with those returned by supervised-LDA (sLDA) [7] using
the same prior, but this time with 50 topics because less
topics produced worse results. We see again how a sim-
ple generative model trained with sdEM outperforms much
more sophisticated models.

5 CONCLUSIONS

We introduce a new learning algorithm for discriminative
training of generative models. This method is based on
a novel view of the online EM algorithm as a stochastic
natural gradient descent algorithm for minimizing general
discriminative loss functions. It allows the training of a
wide set of generative models with or without latent vari-
ables, because the resulting models are always generative.
Moreover, sdEM is comparatively simpler and easier to im-
plement (and debug) than other ad-hoc approaches.
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Abstract

Kullback Leibler (KL) control problems al-
low for efficient computation of optimal con-
trol by solving a principal eigenvector prob-
lem. However, direct applicability of such
framework to continuous state-action sys-
tems is limited. In this paper, we propose
to embed a KL control problem in a proba-
bilistic graphical model where observed vari-
ables correspond to the continuous (possi-
bly high-dimensional) state of the system
and latent variables correspond to a dis-
crete (low-dimensional) representation of the
state amenable for KL control computation.
We present two examples of this approach.
The first one uses standard hidden Markov
models (HMMs) and computes exact opti-
mal control, but is only applicable to low-
dimensional systems. The second one uses
factorial HMMs, it is scalable to higher di-
mensional problems, but control computa-
tion is approximate. We illustrate both ex-
amples in several robot motor control tasks.

1 INTRODUCTION

Recent research in stochastic optimal control theory
has identified a class of problems known as Kullback-
Leibler (KL) control problems (Kappen et al., 2012) or
linearly solvable Markov decision problems (LSMDPs)
(Todorov, 2006). For these (discrete) problems, the
set of actions and the cost function are restricted in
a way that makes the Bellman equation linear and
thus more efficiently solvable, for instance, by solving
the principal eigenvector of a certain linear operator
(Todorov, 2009a).

However, direct applicability of this framework to con-
tinuous state-action systems, such as robot motor con-
trol, is limited. The main problem is the curse of

dimensionality, which appears because discretization
quickly leads to a combinatorial explosion. This prob-
lem has been addressed using function approxima-
tion methods in (Todorov, 2009b). Instead of directly
solving a discrete-state LSMDP, these methods ap-
proximate the so-called desirability function, which
is defined in the continuous-state space. Kinjo et al.
(2013) combined this function approximation scheme
with system identification on a real robot navigation
task. However, approaches based on the continuous-
state formulation of KL control problems have sev-
eral limitations: they require to solve a quadratic pro-
gramming problem, a more computationally demand-
ing problem than computing the principal eigenvector.
Also, there is no guarantee of convergence to a positive
solution. Alternative formulations that address these
limitations have been recently proposed (Zhong and
Todorov, 2011a,b). Zhong and Todorov (2011a) used a
soft aggregation method to solve KL-control problems
in an aggregated space. Both approaches, however,
require the model of system dynamics, which is often
not available in real-world applications (Kinjo et al.,
2013).

In this paper, we propose to embed a KL-control prob-
lem in a probabilistic graphical model with mixed con-
tinuous and discrete variables. The continuous vari-
ables correspond to the (possibly high-dimensional)
state of the system and the discrete variables corre-
spond to a latent (low-dimensional) representation of
the state which is amenable for KL control compu-
tation. The model parameters are first learned using
data from the real system running with exploring con-
trols. The control input to the real system is then
computed as a filtering step combined with the solu-
tion of the KL-control problem in the latent space.

We present two examples of this approach: the first
one uses a standard hidden Markov model (HMM)
in which inference can be computed exactly, but is
only applicable to low-dimensional continuous sys-
tems. The second one uses factorial HMMs (FHMMs)
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and is applicable to higher dimensional problems, al-
though optimal control can only be approximated. We
illustrate both examples in several robot motor control
tasks. In particular, we experimentally demonstrate
that the second example with FHMMs is scalable to
high-dimensional problems (e.g., 25 dimensional prob-
lem) that may not be solvable by other approaches.

2 KULLBACK LEIBLER CONTROL
PROBLEMS

We briefly summarize the class of KL control problems
introduced by Todorov (2006) in the infinite-horizon
average-cost formulation (see also Todorov, 2009a).

Let X = {1, . . . , N} be a finite set of states and U(x)
be a set of admissible control actions at state x ∈ X .
Consider the transition probability p(x′|x) that de-
scribes the system dynamics in the absence of con-
trol. Such uncontrolled dynamics assigns zero proba-
bility for physically forbidden state transitions. De-
note the transition probability given action u ∈ U(x)
as p(x′|x, u) and the immediate cost for being in state
x and taking action u as `(x, u) ≥ 0.

For infinite-horizon problems, the objective is to find a
control law u = π(x) that minimizes the average cost

lim
n→∞

1

n
E

[
n−1∑

t=0

`(xt, π(xt))

]
=
∑

x

Π(x)`(x, π(x)) (1)

where n is the number of time-steps and Π(x) =
limt→∞ p(xt = x|x0, π) is the stationary distribution
of states under control law π, which we assume ex-
ists and is independent of x0, i.e., p(xt = x|x0, π) is
assumed ergodic.

The following Bellman equation defined for the (dif-
ferential) cost-to-go function v(x) minimizes Eq. (1)

c + v(x) = min
u∈U(x)

{
`(x, u) + Ex′∼p(·|x,u)[v(x′)]

}
, (2)

where c is the average cost that does not depend on
the starting state.

Minimizing Eq. (2) is in general hard, but in some
cases it can be done efficiently. KL control problems
are a class of problems for which Eq. (2) becomes linear
under the following assumptions:

(i) the controls directly specify state transition prob-
abilities, i.e. p(x′|x, u) = u(x′|x). The action vec-
tor u(·|x) is a probability distribution over next states
given the current state x.

(ii) the immediate cost function has the following form

`(x, u) = αq(x) + KL (u(·|x) ‖ p(·|x)) ,

where q(x) ≥ 0 is an arbitrary state-dependent cost
and KL is the Kullback Leibler divergence between the
controlled and the uncontrolled dynamics, reflecting
how much the control changes the normal behavior of
the system. Parameter α allows to balance the two
cost terms.

Define the exponentiated cost-to-go (desirability)
function z(x) = exp(−v(x)) and the linear operator

G [z](x) =
∑

x′

p(x′|x)z(x′) = Ex′∼p(·|x,u)[z(x′)].

The resulting minimization takes the form

min
u∈U(x)

{
αq(x)+ KL

(
u(·|x)

∥∥∥∥
p(·|x)z(·)
G [z](x)

)
− log G [z](x)

}
.

At the global minimum, the Bellman equation becomes

exp(−c)z(x) = exp(−αq(x))G [z](x)

or in matrix form

λz = GPz (3)

where G is a N × N diagonal matrix with elements
exp(−αq(x)) and λ = exp(−c). From Eq. (3), it
follows that z is any eigenvector of the matrix GP
with eigenvalue λ. The optimal average cost becomes
c = − ln λ. Thus, the minimal solution is given by the
principal eigenvector of GP: the eigenvector z∗ with
largest eigenvalue, which can be efficiently computed
using the power iteration method (Todorov, 2006).
The optimal control is given by

u∗(x′|x) =
p(x′|x)z∗(x′)

G [z∗](x)
. (4)

3 LATENT KULLBACK LEIBLER
CONTROL

The previously described framework is not directly ap-
plicable for continuous systems. For such cases, we
propose to learn a discrete hidden representation and
dynamics amenable for efficient computation from the
observed continuous variables. Our approach can be
summarized in the following three steps:

1. Learn a probabilistic graphical model from data
samples obtained for the real system

2. Solve the KL control problem in the latent space
of the probabilistic graphical model

3. Compute control in the observed space
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This general method is directly applicable to arbitrary
continuous state-action systems, while in this paper
we focus on the following deterministic control-affine
systems that typically describe discrete-time robot dy-
namics:

yt+1 = yt + ∆t
(
f(yt) + B(yt)τ t

)
, (5)

where yt ∈ RD is the state variable of the system, τ t ∈
Rd is the control input, f(yt) ∈ RD is the uncontrolled
dynamics, B(yt) ∈ RD×d is the control matrix and ∆t
is the discrete-time step-size.

Two particular realizations of this general approach
are described in the next section. The first one uses
standard HMMs, which are the most natural way to
model sequences of observations. However, it is only
applicable to systems in which the relevant region of
the state-space is small, such as low-dimensional sys-
tems, or largely constrained high-dimensional systems.
The second one uses factorial HMMs, which assume
factorized uncontrolled dynamics and can scale up to
higher dimensional problems.

4 EXACT CONTROL
COMPUTATION USING HIDDEN
MARKOV MODELS

In this section, we describe an example of latent KL
control based on standard hidden Markov models.

4.1 LEARNING HMMS FOR KL
CONTROL

Consider the hidden Markov model with hidden states
xt ∈ {1, . . . , N}, stochastic state transition matrix P
with entries Pij = p(xt+1 = j|xt = i) and Gaussian
observation model p(yt|xt = k) = N (µk, Σk).

We generate sample trajectories D = {yt, . . . ,yT }
from the real system driven solely by exploration noise
(uncontrolled dynamics) and use them to learn the
parameters θHMM = {P, µ1:N , Σ1:N}. After learning,
the matrix P encodes a coarse description of the ob-
served dynamics in a latent space and the Gaussian
means and variances capture the relevant regions in
this space. More precisely, considering the system
of Eq. (5), we set exploration noise as τ t = εt for
t = 1 . . . T , where εt ∈ Rd ∼ N (0, Σε). The choice of
such a zero-mean Gaussian distribution is motivated
by the relationship between the KL action cost and
the input-norm cost: in the continuous setting the
KL cost reduces to a quadratic energy cost (Todorov,
2009a; Kappen et al., 2012), which coincides with a
commonly used input-norm cost for energy-efficient or
smooth motor control behavior (Mitrovic et al., 2010).

The covariance matrix Σε is a free parameter. For
low exploration noise, one would expect the learned
model to be a poor approximation since only a small
fraction of the state space is visited. Conversely, large
noise values would result in too flexible models with
unrealistic state transitions. The correct noise value is
therefore a trade-off between these two scenarios.

Given D, the parameters θHMM can be learned, for in-
stance, using the standard Expectation-Maximization
(EM) algorithm (Baum-Welch algorithm).

4.2 CONTROL COMPUTATION IN
LATENT SPACE

To define a KL control problem in the latent space, we
first need a state-dependent cost function expressed
in terms of the latent variable x. Let q̃(yt) and
q(xt) be the cost functions in observation and latent
spaces, respectively. We define q(xt) given q̃(yt) us-
ing exp(−q(xt)) =

∫
yt

exp(−αq̃(yt))p(yt|xt)dyt. Fur-

thermore, if q̃(yt) is given in quadratic form q̃(yt) =
(yt − µq)

T Σ−1
q (yt − µq) = ||yt − µq||2Σ−1

q
and the ob-

servation model is Gaussian p(yt|xt) = N (µx,Σx), we
can obtain q(xt) analytically:

q(xt) = − ln

{∫

yt

exp (−αq̃(yt)) p(yt|xt)dyt

}

= − ln

{ |S|1/2

|Σx|1/2
exp

[
−1

2
||µq − µx||2M−1

]}

where, S = (αΣ−1
q + Σ−1

x )−1 and M = α−1Σq + Σx.

The (latent) KL control problem can now be for-
mulated using state cost q(xt) and uncontrolled dy-
namics P as in Eq. (3). The optimal state transi-
tion u∗(xt+1|xt) under controlled dynamics is given
by Eq. (4).

4.3 CONTROL COMPUTATION IN
OBSERVED SPACE

We are now ready to describe how to use latent KL
control in the real system. Given an observation se-
quence y1:t until time t, we can compute predictive
distributions of the next observation yt+1 under both
the uncontrolled dynamics p(xt+1|xt) and the opti-
mally controlled dynamics u∗(xt+1|xt) in the latent
space as:

p(yt+1|y1:t) =
∑

xt:t+1

p(yt+1|xt+1)p(xt+1|xt)u(xt|y1:t)

u(yt+1|y1:t) =
∑

xt:t+1

p(yt+1|xt+1)u
∗(xt+1|xt)u(xt|y1:t)

where u(xt|y1:t) denotes the filtered state at time t fol-
lowing the controlled process that evolves according to
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u∗(x′|x). Since we keep the previous filtered estimate
u(xt−1|y1:t−1), this computation is simply as

u(xt|y1:t) =
p(yt|xt)

∑
xt−1

u∗(xt|xt−1)u(xt−1|y1:t−1)

u(yt|y1:t−1)
.

We finally compute the control input command to the
system such that the “difference” between the uncon-
trolled and optimal behaviors is reduced

τ t = K(ȳu
t+1|1:t − ȳp

t+1|1:t), (6)

where ȳu
t+1|1:t and ȳp

t+1|1:t are the expectations of y

over u(yt+1|y1:t) and p(yt+1|y1:t) respectively and K
is a gain matrix to be tuned. The gain K can be
optimally computed if the model of system dynamics
is available (Todorov, 2009b), however, in this paper
we focus on the model-free scenario and leave it as a
free parameter.

5 APPROXIMATE CONTROL
USING FACTORIAL HIDDEN
MARKOV MODELS

For high-dimensional problems that require to cover
large regions of the state space, the previous approach
becomes infeasible, since the cardinality required for
the latent variable grows exponentially. In this sec-
tion, we consider an alternative model with a multi-
dimensional latent variable and constrained state tran-
sitions. We consider each dimension independent from
the rest in the absence of control. These assumptions
are naturally expressed using factorial HMMs. The
advantage is that we can capture complex latent dy-
namics more efficiently. The price to pay is that ex-
act optimal control computation in the latent space is
no longer feasible and different approximation schemes
have to be used. We describe this approach in the fol-
lowing sections.

5.1 FACTORIAL HIDDEN MARKOV
MODELS

FHMM is a special type of HMM to model sequences of
observations originated from multiple latent dynami-
cal processes that interact to generate a single out-
put (Ghahramani and Jordan, 1997; Murphy, 2012).
The state is represented by a collection of variables

xt = {x
(1)
t , . . . , x

(m)
t , . . . , x

(M)
t } each of them having

K possible values. The latent state xt is thus a M -
dimensional variable with KM possible values.

We will use a 1-of-K encoding, such that each state

component x
(m)
t will be denoted using a K × 1 vector,

where each of the K discrete values corresponds to a
1 in one position and 0 elsewhere.

The assumption is that the transition model factorizes
among the individual components

p(xt|xt−1) =
M∏

m=1

p(m)(x
(m)
t |x(m)

t−1), (7)

where p(m)(x
(m)
t |x(m)

t−1) is the state transition matrix

P(m) for the m-th chain. We assume the Gaussian
observation model, which is defined as

p(yt|xt) = N

(
M∑

m=1

W(m)x
(m)
t ,Σ

)
(8)

where W(m) is a D × K weight matrix that contains
in its columns the contributions to the means for each
of the possible configurations of x

(m)
t . The marginal

over yt is thus a Gaussian mixture model, with KM

Gaussian mixture components, each having a constant
covariance matrix Σ.

The parameters θFHMM = {P1:M ,W1:M , Σ} can be
learned using EM, as before. In this case, however,
the E-step becomes intractable, since the forward-
backward step has time complexity O(TMKM+1). An
alternative approximation that works well in practice
is the structured mean field approximation, which has
time complexity O(TMK2I), where I is the number
of mean field iterations (see Ghahramani and Jordan,
1997; Murphy, 2012, for details).

5.2 CONTROL COMPUTATION IN
LATENT SPACE

In a similar way as in Section 4.2, we need first to
define a cost function in the latent space q(xt) to be
able to formulate a KL control problem. A natural way
to define q(xt) given the observation model of Eq. (8)
and the cost function in observation space q̃(yt) is

q(xt) = αq̃

(
M∑

m=1

W(m)x
(m)
t

)
. (9)

Computing the exact optimal control using Eq. (3) in
FHMMs requires to transform the model into a single
chain model with KM states, which is intractable. We
assume approximate controlled dynamics uap(xt|xt−1)
and associated stationary distribution Πap(xt) that
factorize in its components:

uap(xt|xt−1) =
M∏

m=1

u(m)
ap (x

(m)
t |x(m)

t−1)

Πap(xt) =
M∏

m=1

Π(m)
ap (x

(m)
t ).
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Figure 1: Motor control problems with simulated robots: (a) Pendulum swing up with limited torque.
The state variable is y = [θ, ω]T where ω = θ̇, |θ| ≤ π, |ω| ≤ 4π. The control input is the torque at the joint τ .
Uncontrolled dynamics and control matrix are given as f(y) = [0 1; g sin(θ)/l µ/ω], B(y) = 1/ml2, respectively.
Parameters values are m = l = 1, g = 9.8, µ = 0.25 and τmax = 5.0 that satisfies τmax < mgl; (b) Robot arm
control with obstacle. The state variable is y = [q1, q2]

T ∈ S where S is the state space that satisfies the joint
angle limits and no collisions with the obstacle. The control input is τ = ẏ . The uncontrolled dynamics and
control matrix are f(y) = [0, 0]T and B(y) = ID; (c) Multi-DOF redundant arm reaching task. The state
variable is yt = [q1(t), . . . , qJ(t)]T , qi(t) ∈ S is the i-th joint angle and S is the state space that satisfies the joint
angle limit −0.5π ≤ qi(t) ≤ 0.5π. The control input, uncontrolled dynamics and control matrix are as in (b),
but for J dimensions. In all examples we use first-order Euler method for numerical integration.

These assumptions imply that the KL cost term can
also be decomposed such that Eq. (1) becomes

∑

xt

M∏

m=1

Π(m)
ap (x

(m)
t )×

(
q(xt) +

M∑

m=1

KL
(
u(m)

ap (·|x(m)
t )

∥∥∥p(m)(·|x(m)
t )

))
.

(10)

We can minimize Eq. (10) iteratively using sequen-
tial updates: for each chain m, update the parameters

u
(m)
ap and Π

(m)
ap assuming the parameters for the other

chains fixed so that it minimizes the marginal state-
dependent cost

Q(m)(x
(m)
t ) =

∑

x
(i)
t ,i 6=m

∏

i6=m

Π(i)
ap (x

(i)
t )q(xt) (11)

and the corresponding KL cost. Each update corre-
sponds to a sub-problem of the type of Eq. (3) and
can be solved as a principal eigenvector problem. The
average cost monotonically decreases at each iteration
and its convergence is guaranteed. We call this scheme
Variational KL minimization (VKL).

Note however, VKL requires summing over all the
values of the M − 1 chains to obtain the marginal
state-dependent cost, and thus it has time complex-
ity O(KM−1), which is still intractable. We further

approximate this computation by taking the expected
state of the other chains according to their individual
stationary distributions

Q(m)(x
(m)
t ) ≈ αq̃


W(m)x

(m)
t +

∑

i 6=m

W(i)Π(i)
ap


 ,

(12)

where Π
(i)
ap is a K-dimensional vector with the station-

ary distribution of chain i. Evaluation of Eq. (12) only
requires O(KM) steps, and it is therefore tractable.
We refer this approximation as Approximate Varia-
tional KL minimization (AVKL).

We refer to the control computed using either VKL
and AVKL as u∗

ap in the rest of this section.

5.3 CONTROL COMPUTATION IN
OBSERVED SPACE

Having approximated our optimal control law in the
latent space, we need to define a control law for the real
(observed) system given sequence of observations y1:t.
We follow the same approach as in Section 4.3. First,
we obtain estimates for the expected values of the next
observed state under both controlled and uncontrolled
dynamics as ȳu

t+1|1:t and ȳp
t+1|1:t, respectively. Second,

we apply the controller of Eq. (6).
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The first step requires to solve a filtering problem to
obtain u(xt|y1:t), which is intractable for this model.
We use an approximate approach based on structured
mean field, as in the model learning step (Section
5.1, E-step). However, instead of keeping the last fil-
tered estimate u(xt−1|y1:t−1) as before, we keep the fil-
tered estimate at time-step t−H, i.e. u(xt−H |y1:t−H)
and perform offline structured mean field using the
last H observations yt−H:t. This approach improves
considerably the accuracy of the filtered estimates

u(xt|y1:t) =
∏

m u(m)(x
(m)
t |y1:t) and at the same time,

it is more efficient than structured mean field on the
entire sequence of past observations.

Once we have filtered estimates of the latent state,
the expectation of yt+1 over predictive distribution
u(yt+1|y1:t) can be approximated using samples

ȳu
t+1|1:t =

∫
yt+1u(yt+1|y1:t)dyt+1

≈ 1

L

L∑

µ=1

M∑

m=1

W(m)x̂(m)
µ

where x̂
(m)
µ are samples drawn from the posterior dis-

tribution of the latent component according to the ap-
proximated controlled dynamics

x̂(m)
µ ∼ u(m)(x

(m)
t+1|y1:t)

=
∑

x
(m)
t

u∗,(m)
ap (x

(m)
t+1|x

(m)
t )u(m)(x

(m)
t |y1:t).(13)

Similarly, we can estimate ȳp
t+1|1:t using samples from

p(m)(x
(m)
t+1|y1:t) =

∑

x
(m)
t

p(m)(x
(m)
t+1|x

(m)
t )u(m)(x

(m)
t |y1:t).

We show in the next section that for relatively small
values of the window length H and the number of sam-
ples L, the resulting controls are satisfactory.

6 SIMULATION RESULTS

In this section, we apply our method to three bench-
mark (simulated) robot motor control problems: (a)
pendulum swing-up with limited torque (Doya, 2000),
(b) robot arm control with obstacles (Sugiyama et al.,
2007), and (c) multi-degrees of freedom (DOF) redun-
dant arm reaching task (Theodorou et al., 2010). Fig-
ure 1 illustrates these problems. The first two exam-
ples correspond to the approach using HMMs of Sec-
tion 4 whereas the third shows an application using
FHMMs as described in Section 5.

For learning the HMM parameters, we use identical
and independent exploration noise in all controlled di-
mensions parameterized by σ2

ε , i.e. (Σε)ij = δijσ
2
ε .
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Figure 2: Pendulum swing-up task results: (a) Obser-
vation model after learning the HMM with N = 225
hidden states and σε = 1.5. Each hidden state cor-
responds to a two-dimensional Gaussian distribution
with mean indicated by a cross and contour with equal
probability density shown as an ellipse. (b) Typical
controlled behaviour in the phase plane. The cross and
the circle show initial and target states respectively.

Both tasks consider a two-dimensional observed con-
tinuous state and a one-dimensional latent variable.
The complexity of the method strongly depends on the
number of hidden values N . For this experiments, we
simply choose N large enough (N = 255 in both sce-
narios) to obtain a model that accurately describes the
system dynamics. We learn the full parameter vector
θHMM using EM with K-means initialization for the
Gaussian means.

6.1 PENDULUM SWING-UP TASK

This is a non-trivial problem when the maximum
torque τmax is smaller than the maximal load torque
mgl. The optimal control requires to take an energy-
efficient strategy: swing the pendulum several times to
build up momentum and also decelerate the pendulum
early enough to prevent it from falling over.
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Figure 3: Results on the robot arm with an obstacle. (a) Learned HMM with N = 225, Σε = diag{1.5, 1.5} and
T = 3 · 104 samples. (b) Controlled robot arm behavior at different time steps. The robot successfully reaches
the target posture avoiding the obstacle.

Fig. 2(a) shows the 2-dimensional observation model
after learning with exploration noise σ2

ε = 1.5. We can
see that the HMM is able to capture a discrete, coarse
representation of the continuous state.

For control computation, we define a quadratic cost
q̃(yt) = yT Σ−1

q y, where Σq = diag{0.005, 0.02}, and
set the scale parameter α = α0∆t/σ2

ε to prevent
the scaling effect of the exploration noise variance
σ2

ε in the KL cost (α0 = 0.2). The gain matrix is
K = diag{50, 10}. The eigenvector computation only
takes 3 · 10−2 seconds 1. The computation of control
input (see Section 4.3) takes 3 ·10−3 seconds per time-
step. The resulting controller successfully maintains
the pendulum in a region of |θ| ≤ 0.5 continuously in
all tested random initializations and it is optimal in
terms of energy-efficiency. A typical controlled behav-
ior of the pendulum is shown in Fig. 2(b).

For comparison, we also implemented standard value
iteration (VI) (Sutton and Barto, 1998), which re-
quires knowledge of the true pendulum dynamics and
uses a fully discretized state-action space. For consis-
tency, we choose as a cost function r(y,u) = αq̃(yt) +
1
2 ||u||2 and the same error tolerance 10−8 for both
value iteration method and power method. VI requires
a very fine discretization (N ≥ 1225 states) and at
least 20 seconds of CPU-time, which are roughly an
order of magnitude larger than the values obtained
using the proposed method.

6.2 ROBOT ARM CONTROL WITH
OBSTACLE

In this second task, we aim to control a two-joint robot
arm from an initial posture to the target posture while
avoiding an obstacle. The presence of the obstacle

1Core-i7 2.8GHz-CPU, 8GB memory and MATLAB.

makes this task difficult to solve using standard tra-
jectory interpolation methods, see Fig. 1(b) for details.

Fig. 3(a) shows the 2D observation model learned us-
ing the same setup as before. As the empty region in
the middle of the plot indicates, the model success-
fully captures the physically impossible state transi-
tions that would bring the robot arm through the ob-
stacle.

For this problem, we set the cost function as q̃(yt) =
(y − g)T Σ−1

q (y − g), where Σq = diag{0.01, 0.01} and

g = [−π/2, π/2]T . In this case, we use α0 = 0.05
and K = diag{3.0, 0.5} to set the scale parameter and
the gain matrix, respectively. Computation time of
the optimal control is approximately 0.03 seconds us-
ing the same specifications as in the previous exam-
ple. Fig. 3(b) illustrates the typical controlled robot
behavior. The robot arm first decreases the angle q2

and then modifies q1 reaching the target posture while
successfully avoiding the obstacle.

6.3 REACHING TASK

The third task consists of a multi-DOF planar robot
arm with J joints and joint-limit constraints as shown
in Fig. 1(c). The J joints are of equal length l = 1
and connected to a fixed base. Each joint dynamics of
this robot model is decoupled, and therefore suitable
for our method using FHMMs.

The goal is to control the joint angles to reach a target
position ttarget with the end-effector of the robot arm.
For J � 2 the control policy has to make a choice
among many possible trajectories in the joint space.
Moreover, considering joint-limit constraints limits di-
rect application of standard methods for inverse kine-
matic, e.g. Jacobian inverse techniques (Yoshikawa,
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Figure 4: Multi-DOF robot reaching task: Comparison between KL(exact), VKL and AVKL. VKL and
AVKL can efficiently compute near optimal controller comparable to exact KL minimization. AVKL scales to
high-dimensional problems. KL(exact) and VKL are only feasible for J < 4 and J < 6, respectively.

1990). The cost function for this task is

q̃(y) =‖ ttarget − T(y) ‖, (14)

where T(·) is the forward kinematics model that maps
a joint angle vector to the corresponding end-effector
position in the task space

T(y) =



∑J

n=1 cos
(∑n

j=1 yj

)

∑J
n=1 sin

(∑n
j=1 yj

)

 .

Although the dynamics decouples for each joint, the
cost function couples all the joint angles making the
problem difficult.

We analyze the scaling properties with the number J
of degrees of freedom, comparing the different strate-
gies described in Section 5.2: KL (exact) minimiza-
tion, VKL and AVKL. The exact solution uses KM

states and performs exact inference. For approximate
methods, we use as many latent dimensions (chains) as
joints M = J , with K = 20 and H = 2J time-steps for
approximate filtering. Note that M could be smaller
than J , as long as the learned hidden representation
captures well the underlying structure and dynamics.
We set M = J to simplify the evaluation.

Convergence of variational eigen-computations VKL
and AVKL is reached after approximately 10 itera-
tions in this task (each iteration requires an update of
all the parameters of the J joints). Learning the pa-
rameters of the FHMM is sensitive to local minima. In
practice, we choose W(m) so that each factored state
represents each joint dynamics and only learn the un-
controlled dynamics (transition probabilities). Also,

ttarget is set to one of the w
(m)
i to prevent space quan-

tization errors in this comparison.

Fig. 4 illustrates the comparison. Whereas KL (ex-
act) and VKL are only feasible for J < 5 and J < 7
respectively, AVKL is applicable to a larger number
of joints. Fig. 4(a) shows CPU-time for control com-
putation in the latent space (Section 5.2), which scales
exponentially for both KL (exact) and VKL and ap-
proximately linear for AVKL.

Fig. 4(b) shows the error Eq. (14) averaged over 200
trials with randomly initialized joints. Although ex-
act control computation can be performed for M < 5,
exact inference is only possible for M < 4. We can ob-
serve that the resulting controls are satisfactory and
errors do not differ significantly between VKL and
AVKL. Notice that the AVKL error remains approx-
imately constant as a function of M .

Fig. 4(c) shows CPU-time for the control computation
in the observed space (Section 5.3). While CPU-time
for exact computation quickly increases, our approxi-
mate approach results in a roughly linear increase.

Examples of controlled robot behaviors for a different
number of degrees of freedom are shown in Fig. 5. In
all cases, the robot successfully reaches the goal while
satisfying the joint-limit constraints starting from sev-
eral initial postures.

From these results we can conclude that it is feasible
to learn FHMMs for high-dimensional systems with
uncoupled uncontrolled dynamics and that latent KL
control is an effective method to near-optimally control
such systems.
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Figure 5: Multi-DOF robot reaching task: Examples of robot trajectories. The arm successfully reaches
the target position while satisfying the joint-limit constraints from several initializations. Green lines show
end-effector trajectories for different initializations. Blue and red lines indicate intermediate and end links.

7 DISCUSSION

We have proposed a novel solution that combines
the KL control framework with probabilistic graphi-
cal models in the infinite horizon, average cost setting.
Our approach learns a coarse, discrete representation
amenable for efficient computation to near-optimally
control continuous-state systems. We have presented
two examples, using hidden Markov models (HMMs)
and factorial HMMs (FHMMs), and we have shown
evidence that our proposed method is feasible in three
robotic tasks. In particular, we have demonstrated
that the second example with FHMMs is scalable to
higher dimensional problems.

The presented latent KL control approach (with
HMMs) resembles the one of Zhong and Todorov
(2011a) which considers an “aggregated” space sim-
ilar to the latent space of the HMM. However, note
that whereas for Zhong and Todorov (2011a) the real
model is required in the observed space, in our case
we learn an approximate model in which observations
are coupled through the latent variables. Their main
computational bottleneck is the “double” numerical
integration over the observed space for computing the
“aggregated” state transition probability. In our case,
we replace such a problem by a probabilistic graphical
model learning problem.

The control performance strongly depends on the qual-
ity of the learned model, which requires choosing a
proper exploration noise and a proper initialization of
the graphical model parameters. Current work is fo-
cused in alternative learning methods that efficiently
sample interesting regions of the state space and ex-
ploit the ergodic nature of the problems. Extension to
more complex scenarios is also being considered.
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Kappen, H. J., Gómez, V., and Opper, M. (2012). Optimal
control as a graphical model inference problem. Mach.
Learn., 87(2):159–182.

Kinjo, K., Uchibe, E., and Doya, K. (2013). Evaluation of
linearly solvable Markov decision process with dynamic
model learning in a mobile robot navigation task. Front.
Neurorobot., 7:1–13.

Mitrovic, D., Nagashima, S., Klanke, S., Matsubara, T.,
and Vijayakumar, S. (2010). Optimal feedback control
for anthropomorphic manipulators. In Proceedings of
the IEEE International Conference on Robotics and Au-
tomation (ICRA’10), pages 4143–4150.

Murphy, K. P. (2012). Machine Learning: A Probabilistic
Perspective. MIT Press.

Sugiyama, M., Hachiya, H., Towell, C., and Vijayakumar,
S. (2007). Value function approximation on non-linear
manifolds for robot motor control. In Proceedings of
the IEEE International Conference on Robotics and Au-
tomation (ICRA’07), pages 1733–1740.

Sutton, R. S. and Barto, A. G. (1998). Introduction to
Reinforcement Learning. MIT Press, Cambridge, MA,
USA, 1st edition.

Theodorou, E., Buchli, J., and Schaal, S. (2010). Rein-
forcement learning of motor skills in high dimensions:
A path integral approach. In Proceedings of the IEEE

591



International Conference on Robotics and Automation
(ICRA’10), pages 2397–2403.

Todorov, E. (2006). Linearly-solvable markov decision
problems. In Advances in Neural Information Processing
Systems (NIPS), pages 1369–1376.

Todorov, E. (2009a). Efficient computation of optimal ac-
tions. PNAS, 106(28):11478–11483.

Todorov, E. (2009b). Eigenfunction approximation meth-
ods for linearly-solvable optimal control problems. In
Proceedings of the 2nd IEEE Symposium on Adap-
tive Dynamic Programming and Reinforcement Learn-
ing, pages 161–168.

Yoshikawa, T. (1990). Foundations of Robotics: Analysis
and Control. The MIT Press.

Zhong, M. and Todorov, E. (2011a). Aggregation methods
for linearly-solvable Markov decision process. In World
Congress of the International Federation of Automatic
Control, pages 11220–11225.

Zhong, M. and Todorov, E. (2011b). Moving least-squares
approximations for linearly-solvable stochastic optimal
control problems. J. Control. Theory. Appl., 9(3):451–
463.

592



GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation

Edward Meeds
Informatics Institute

University of Amsterdam
tmeeds@gmail.com

Max Welling
Informatics Institute

University of Amsterdam
welling.max@gmail.com

Abstract

Scientists often express their understanding of
the world through a computationally demand-
ing simulation program. Analyzing the posterior
distribution of the parameters given observations
(the inverse problem) can be extremely chal-
lenging. The Approximate Bayesian Computa-
tion (ABC) framework is the standard statisti-
cal tool to handle these likelihood free problems,
but they require a very large number of simula-
tions. In this work we develop two new ABC
sampling algorithms that significantly reduce the
number of simulations necessary for posterior in-
ference. Both algorithms use confidence esti-
mates for the accept probability in the Metropo-
lis Hastings step to adaptively choose the number
of necessary simulations. Our GPS-ABC algo-
rithm stores the information obtained from every
simulation in a Gaussian process which acts as
a surrogate function for the simulated statistics.
Experiments on a challenging realistic biologi-
cal problem illustrate the potential of these algo-
rithms.

1 Introduction

The morphogenesis of complex biological systems, the
birth of neutrons stars, and weather forecasting are all nat-
ural phenomena whose understanding relies deeply upon
the interaction between simulations of their underlying pro-
cesses and their naturally observed data. Hypotheses that
posit the generation of observations evolve after critical
evaluation of the match between simulation and observa-
tion.

This hypothesis–simulation–evaluation cycle is the foun-
dation of simulation-based modeling. For all but the most
trivial phenomena, this cycle is grossly inefficient. A typ-
ical simulator is a complex computer program with a po-
tentially large number of interacting parameters that not

only drive the simulation program, but are also often the
variables of scientific interest because they play a role in
explaining the natural phenomena. Choosing an optimal
value setting for these parameters can be immensely ex-
pensive.

While a single, optimal parameter setting may be useful
to scientists, often they are more interested in the distri-
bution of parameter settings that provide accurate simula-
tion results [20, 3, 18]. The interaction between parameters
can provide insight regarding not only the properties of the
simulation program, but more importantly, the underlying
phenomena of interest. The main challenges that we ad-
dress in this paper are 1) simulation-based modeling in a
likelihood-free setting (we do not have a model in the typ-
ical machine learning sense, and therefore we do not have
a standard likelihood function), and 2) running simulations
is very expensive.

The first challenge is partly addressed by the approxi-
mate Bayesian computation (ABC) approach to sampling
in likelihood-free scenarios [25, 5]. The ABC approach
will be described in a later section, but in short it uses
the distance between simulated and observed data as a
proxy for the likelihood term in the parameter posterior.
ABC provides the necessary framework to make progress
in simulation-based modeling, but it is a very inefficient
approach, even on simple problems.

The second challenge is approached with a surrogate model
in mind. This means that every simulation (parameters and
result) is stored and used to maintain a surrogate of the
mapping from parameters to result. By carefully construct-
ing an approximate Markov chain Monte Carlo (MCMC)
sampler, we are able to sample from the parameter distri-
bution in such a way that our sampling error is controlled
and decreases over time. The main advantage of this ap-
proach is that by accepting some bias, we are able to very
efficiently sample from the approximate posterior because
parameters can sometimes be accepted within MCMC with
high confidence by relying on the surrogate and thus avoid-
ing expensive simulations.
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In this paper we present a procedure for approximate
Bayesian inference using a Gaussian process surrogate for
expensive simulation-based models. In our approach, sim-
ulations that are run over the course of the inference pro-
cedure are incorporated into a GP model, gradually im-
proving the surrogate over time. Using MCMC with a
Metropolis-Hastings (MH) accept/reject rule, our method
uses the surrogate and its uncertainty to make all MH de-
cisions. The key insight is that the uncertainty in the ac-
ceptance probability is used to determine if simulations are
required to confidently proceed to the MH step. If the un-
certainty is high, and we are likely to make an error, then
more simulations are run.

2 Approximate Bayesian Computation

The current state-of-the-art for simulation-based model in-
ference is likelihood-free or approximate Bayesian compu-
tation methods [23, 15]. In this section we briefly introduce
likelihood-free inference with a focus on MCMC inference
procedures as our modeling approach will extend naturally
from this work.

In likelihood-free sampling, we do not have a model in
the typical sense. Instead, we have access to a simulator
that generates pseudo-data that, given an accurate model
of the world, look like the observations. The goal is to
infer the parameters of the simulator which produce accu-
rate pseudo-data. Importantly, we do not have access to a
tractable likelihood function. We now describe in detail the
likelihood-free set-up and in particular MCMC sampling
techniques.

One of the primary goals of Bayesian inference is to infer
the posterior distribution of latent variables θ using its prior
π(θ) and its data likelihood π(y|θ):

π(θ|y) =
π(θ)π(y|θ)∫
π(θ)π(y|θ)dθ

(1)

where θ is a vector of latent parameters and y is the ob-
served data set. In simulation-based modeling, we do not
have access to the likelihood π(y|θ). Instead our model
of the world consists of a simulator that generates samples
x

sim∼ π(x|θ) (where we indicate that the simulator was
run with parameters θ and returns pseudo-data x). Sim-
ulation results x are then compared with the observations
y through a distribution πε(y|x,θ), which measures how
similar x is to y. The distribution is parameterized by ε
which controls the acceptable discrepancy between x and
y. We can thus approximately infer the posterior distribu-
tion as

πε(θ|y) =
π(θ)

π(y)

∫
πε(y|x)π(x|θ)dx (2)

This approximate posterior is only equal to the true pos-
terior for πε=0(y|x) = δ(y,x) where δ(·) is the delta-

function. For the exact posterior, one could apply a re-
jection sampling procedure that would repeatedly sample
θ ∼ π(θ), run a simulation x

sim∼ π(x|θ), then accept θ
only if it equals y. For continuous data, ε acts as a slack
variable because equality cannot be achieved. However, we
prefer small ε because this will improve our approximation
to the true posterior. Unfortunately, there remains an un-
avoidable trade-off between approximation bias (large for
large ε) and rejection rate (large for small ε).

2.1 Marginal and Pseudo-Marginal ABC

Instead of the rejection sampler described in the previous
section (which is hopeless in high dimensions), we now
describe two MCMC procedures, the marginal sampler and
the pseudo-marginal sampler [2]. At every iteration of
MCMC we propose a new θ

′ ∼ q(θ
′ |θ). Next we gen-

erate S samples x
′
s

sim∼ π(x
′ |θ′

), s = 1..S from the sim-
ulator. From these samples we approximate the marginal
likelihood as follows,

πε(y|θ
′
) =

∫
πε(y|x)π(x|θ′

)dx ≈ 1

S

S∑

s=1

πε(y|x(s),θ
′
)

(3)
We accept the proposed parameter θ

′
with probability

equal to,

α(θ
′ |θ) = min

(
1,
π(θ

′
)
∑
s πε(y|x

′(s),θ
′
)q(θ|θ′

)

π(θ)
∑
s πε(y|x(s),θ)q(θ′ |θ)

)

(4)
where the estimate of the marginal likelihood in the denom-
inator (based on {xs,θ}) is carried over from the previous
iteration. It can be shown that this algorithm is an instance
of the more general pseudo-marginal procedure [2] because
the estimate of the marginal likelihood is unbiased. From
this we can immediately infer that this Markov chain con-
verges to the posterior πε(θ|y). Interestingly, there is an
alternative view of this sampler [22] that interprets it as a
Markov chain over the extended state {θ,x1, ...,xS}which
also leads to the conclusion that the samples θ

′
will asymp-

totically follow the distribution πε(θ|y).

Unfortunately, it is well known that pseudo-marginal sam-
plers can suffer from slow mixing. In particular, when
through a “lucky” draw our marginal likelihood estimate in
Eqn. 3 attains a large value, then it is very difficult for the
sampler to mix away from that state. To avoid this behavior
it is sometimes beneficial to re-estimate the denominator
(as well as the numerator) in every iteration. This proce-
dure is more expensive and does not guarantee convergence
to πε(θ|y) (unless S → ∞), but can result in much better
mixing. We will call this the marginal LF MCMC method
[2].

While for the pseudo-marginal approach we can interpret
the fluctuations induced by estimating the π(y|θ) from a
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finite sample set as part of randomly proposing a new state,
this is no longer true for the approximate marginal MCMC.
For the latter it is instructive to study the uncertainty in the
acceptance probability α(θ

′ |θ) due to these fluctuations:
repeatedly estimating π(y|θ) with S samples will produce
a distribution over α. Clearly for small S the distribution
will be wider while for very large S it will approach a delta
peak. Our approach uses this distribution directly to deter-
mine the confidence in the MH accept step, allowing it to
implicitly set S based on the local uncertainty. This will be
discussed further in next sections.

Besides the marginal and pseudo-marginal approaches to
ABC, there is a large body of work using sequential Monte
Carlo sampling to approach this problem [21, 4, 26].

3 The Synthetic Likelihood

We next discuss the approximation introduced by Wood
[29], who models the simulated pseudo-data {x1, ..,xS} at
θ using a normal distribution, i.e. π(x|θ) ≈ N (x|µ̂θ, Σ̂θ).
We will later replace this with a Gaussian process. The pro-
cedure is very simple: we draw S samples from our simu-
lator and compute first and second order statistics,

µ̂θ =
1

S

∑

s

x(s) (5)

Σ̂θ =
1

S − 1

∑

s

(
x(s) − µ̂θ

)(
x(s) − µ̂θ

)T
(6)

Using estimators µ̂θ and Σ̂θ we set π(x|θ) =

N
(
µ̂θ, Σ̂θ

)
. Moreover, if we use a Gaussian kernel, then

πε(y|x) = Kε (y,x) =
1

(2πε)J/2
e−

1
2ε2

(x−y)T (x−y) (7)

where J is the dimension of y, we can then analytically
integrate over x in Eqn 2 giving the synthetic-ABC likeli-
hood:

π(y|θ) =

∫
Kε (y,x)N

(
µ̂θ, Σ̂θ

)
dx (8)

= N
(
µ̂θ, Σ̂θ + ε2I

)
(9)

which has the satisfying result that likelihood of y|θ is the
density under a Gaussian model at each simulation param-
eter setting θ.

This approximation has two advantages. First, we can take
the limit ε → 0.1 This implies that the bias introduced by
the need to use a distribution πε(y|θ) to measure the sim-
ilarity between simulations x and observations y is now

1We may not always want to do this as ε2 acts both as a prior
over and a smoother of the likelihood. In practice, smoothing the
likelihood may be necessary for mixing, and likewise, we may
have access to a prior which could make the sampler more robust.

Algorithm 1 Synthetic-likelihood ABC MH step

inputs: q,θ, π(x|θ), S, ε,y
θ

′ ∼ q(θ′ |θ)
for s = 1 : S do

x
′(s) sim∼ π(x|θ′

), x(s) sim∼ π(x|θ)
end for
Set µ̂θ′ ,Σ̂θ′ , µ̂θ, Σ̂θ using Eqns 5 and 6.
Set α using Eqn 10
if U(0, 1) ≤ α then

return θ
′

end if
return θ

removed. But this is traded off with the bias introduced by
modeling the simulations from π(x|θ) with a normal dis-
tribution. The second advantage was the main motivation
in [29], namely that this procedure is more robust for ex-
tremely irregular probability distributions as encountered
in chaotic or near chaotic simulation dynamics.

A marginal sampler based on a Gaussian approximation
(Algorithm 1) has the following acceptance probability:

α(θ
′ |θ) = min


1,

π(θ
′
)N
(
µ̂θ′ , Σ̂θ′ + ε2I

)
q(θ|θ′

)

π(θ)N
(
µ̂θ, Σ̂θ + ε2I

)
q(θ′ |θ)




(10)
As with the marginal sampler of Section 2, the fact that
we estimate first and second order statistics from a finite
sample set introduces uncertainty in the accept probabil-
ity α(θ

′ |θ): another run of S simulations would have re-
sulted in different values for these statistics and hence of
the accept probability. See Figure 1 for an illustration. In
the following section we will analyze the distribution over
α(θ

′ |θ) and develop a method to decide how many simula-
tions S we need in order to be sufficiently confident that we
are making the correct accept/reject decision. Random ac-
ceptance probability distributions have been studied in gen-
eral [16] and for the specific case of Gaussian log-energy
estimates [9].

3.1 MCMC with a Random Acceptance Probability

We now make explicit the role of randomness in the
MCMC sampler with synthetic (normal) likelihoods. At
each iteration of the MCMC sampler, we compute estima-
tors {µ̂θ, Σ̂θ, µ̂θ′ , Σ̂θ′} as before using Eqns 5 and 6. To
estimate the distribution over accept probabilities we would
need M sets of S simulations, which would be too expen-
sive. Instead, we use our Gaussian assumption to derive
that the variance of the mean is 1/S times the variance in
the sample {x1, ...,xS},

µθ ∼ N
(
µ̂θ, Σ̂θ/S

)
(11)

595



Figure 1: An example of p(α), the distribution over acceptance
probabilities (top) and its CDF shown folded at its median (bot-
tom).

and similarly for µθ′ . This shortcut is important because it
allows us to avoid a significant number of expensive simu-
lations and replace them with samples from a normal dis-
tribution.

Given our M samples of (µθ,µθ′ ), we can compute M
samples of α(θ

′ |θ) by inserting them into the expression
for the randomized MH accept probability:

α(m) = min


1,

π(θ
′
)N
(
y|µ(m)

θ′ , Σ̂θ′ + ε2I
)
q(θ|θ′

)

π(θ)N
(
y|µ(m)

θ , Σ̂θ + ε2I
)
q(θ′ |θ)




(12)
We now derive a procedure to estimate the probability of
making an error in an accept/reject decision (E(α), the
Metropolis-Hastings error) and a threshold τ for actually
making the decision. The error of making an incorrect de-
cision can either be measured conditioned on u ∼ U(0, 1)
(the uniformly distributed draw used in the MH decision),
or unconditionally, by integrating over U(0, 1). First we
start with the conditional error which trivially extends to
the unconditional error by averaging.

If u ≤ τ , then we accept the MH proposal and move to the
proposed state. The probability of making an error in this
case is P (α < u) (i.e. the probability we should actually
reject):

P (α < u) =
1

M

∑

m

[
α(m) < u

]
(13)

Similarly, if u > τ then we reject, and the error is P (α >
u) (i.e. the probability we should actually accept):

P (α > u) =
1

M

∑

m

[
α(m) ≥ u

]
(14)

The total conditional error is therefore:

Eu(α) = [u ≤ τ ]P (α < u) + [u > τ ]P (α ≥ u) (15)

and the total unconditional error is:

E(α) =

∫
Eu(α)U(0, 1)du (16)

which can again be estimated by Monte Carlo or grid values
of u. The analytic calculation of E(α) is the area under the
cumulative distribution function of p(α) folded at τ (see
Figure 1). This integral is also known as the mean absolute
deviation [30] which is minimized at the median of p(α)
(the value of α where the CDF equals 1/2), justifying our
decision threshold τ = median(α) (also determined by
samples α(m)).

With this in hand, we now have the necessary tools to con-
struct an adaptive synthetic-likelihood MCMC algorithm
that uses E(α) as a guide for running simulations (Algo-
rithm 2). At the start of each MH step, S0 simulations are
run for both θ and θ

′
; estimators are computed; then M

α(m) are sampled. Based on these samples, the median and
E(α) is computed. Note that this phase of the algorithm is
very cheap; here we are sampling from J bivariate Gaus-
sian distributions to compute Monte Carlo estimates of τ
and E(α), so M can be set high without a computational
hit, though in practice M < 100 should be fine. While
E(α) > ξ, ∆S new simulations are run and the estimators
updated, along with new draws of α(m), etc. The user-
defined error threshold ξ is a knob which controls both the
accuracy and computational cost of the MCMC. New sim-
ulations can be run at either θ or θ

′
; we run simulations at

both locations, though selecting one over the other based
on the higher individual mean uncertainty could result in
fewer simulations. As S increases, the uncertainty around
p(α) decreases such that E(α) < ξ; once this occurs, the
MH is now confident and it proceeds using the usual accep-
tance test, with τ as the acceptance threshold.

In many cases, the actual number of simulations required
at each step can be quite small, for example when one pa-
rameter setting is clearly better than another (where the me-
dian is at or close to 0 or 1). Nevertheless, there remains
a serious drawback to this algorithm for expensive simu-
lations: all simulations are discarded after each MH step;
a great waste considering the result is a single binary de-
cision. Using a Gaussian process surrogate, described in
the next section, we will remember all simulations and use
them to gradually improve the surrogate and as a conse-
quence, eventually eliminate the need to run simulations.

4 Gaussian Process Surrogate ABC

As mentioned in the introduction, in many scientific dis-
ciplines simulations can be extremely expensive. The al-
gorithms up till now all have the downside that at each
MCMC update a minimum number of simulations needs
to be conducted. This seems unavoidable unless we store
the information of previous simulations and use them to
make accept/reject decisions in the future. In particular,
we can learn the mean and covariance µθ,Σθ of the syn-
thetic likelihood as a function of θ and as such avoid hav-
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Algorithm 2 Adaptive Synthetic-likelihood ABC MH step

inputs: q,θ, π(x|θ), S0,∆S, ε,y, ξ
θ

′ ∼ q(θ′ |θ)
Init c = 1, S = S0

repeat
for s = c : c+ S do

x
′(s) sim∼ π(x|θ′

), x(s) sim∼ π(x|θ)
end for
Update c = S, S = S + ∆S
Set µ̂θ′ ,Σ̂θ′ , µ̂θ, Σ̂θ using Eqns 5 and 6.
for m = 1 : M do

Sample µ(m)

θ′ , µ(m)
θ using Eqn 11

Set α(m) using Eqn 12
end for
Set τ = median(α(m))
Set E(α) using Eqn 16

until E(α) < ξ
if U(0, 1) ≤ τ then

return θ
′

end if
return θ

ing to perform simulations to compute them. There is a
very natural tool that provides exactly this functionality,
namely the Gaussian process (GP). For our purposes, the
GP will “store” the simulation runs θn,xn for all simula-
tions conducted during the MCMC run. We will use the GP
as a “surrogate” function for the simulated statistics from
which will be able to estimate the marginal likelihood val-
ues away from regions where actual simulations were run.
Importantly, the GP provides us with uncertainty estimates
of the marginal likelihood which will inform us of the need
to conduct additional experiments in order to make confi-
dent accept/reject decisions. Going from the synthetic like-
lihood model to the GP represents a change from frequen-
tist statistics in favor of (nonparametric) Bayesian statis-
tics. Gaussian processes have recently also become a pop-
ular tool in the machine learning literature as surrogates of
expensive regression surfaces, such as log-likelihoods [17];
optimization surfaces [8, 24]; simulations of physical sys-
tems [6]; emulation of computer codes [10]; and for accel-
erating ABC [28].

Similar in spirit to our own work, [28] uses GP surro-
gates to model the ABC log-likelihood surface in succes-
sive waves of inference, each eliminating regions of im-
plausibility and producing more and more accurate mod-
els of the log-likelihood. There are two important differ-
ences. Space-filling design points are used by [28] to train
their GP models, whereas we control the simulations with
ξ, and we model all J simulation outputs versus a single
log-likelihood, which is a much larger overhead for our ap-
proach, but has advantages, e.g. enabling posterior analysis
and evaluation of the simulator.

Our surrogate model and algorithm follow directly from
the synthetic-ABC approximation and randomized accep-
tance algorithm. The main difference between the two is
that in this paper, we model the J statistics as J indepen-
dent Gaussian processes (recall J is the dimensionality of
y). We note that it would be better to model the J statis-
tics using a single joint Gaussian process. This can be done
using “co-Kriging” or variants thereof [12, 7]. Although
the independence assumption may lead to overconfidence
(because it is assuming–falsely–independent evidence), it
is also more robust in high-dimensions where the estimator
of the full output covariance has high variance (it overfits).
It may be that the mentioned multi-output GPs can provide
an appropriate solution by tying the covariance structure
across parameter space using a small number of kernel hy-
perparameters. For our experiments we found that indepen-
dent GPs worked well enough to illustrate the algorithm’s
potential. For high-dimensional outputs, modeling the log-
likelihood directly may be more appropriate [28].

For each statistic j, the surrogate provides the following
conditional predictive distribution of the expected value of
statistic j:

µθj ∼ N
(
µ̄θj , σ

2
θj

)
(17)

where the mean and covariance are determined by the set of
N training inputs {θn} andN training outputs {xn} (using
only statistic j). They are given by the usual expressions
for the GP mean and covariance,

µ̄θj = kθΘj
[
KΘΘj + σ2

j I
]−1

X[:, j] (18)

and

σ2
θj = kθθj − kθΘj

[
KΘΘj + σ2

j I
]−1

kθΘj

where kθΘj is a 1 by N vector of kernel evaluations for
the j’th Gaussian process between θ and the input train-
ing set Θ, KΘΘj is the jth kernel matrix evaluated on the
training data; σ2

j is the data noise term for the j’th statis-
tic (used below in the acceptance ratio), X is the N by J
training output data set and X[:, j] is column j from the
training data, and kθθj is a single kernel evaluation at θ for
Gaussian process j.

The GPS-ABC algorithm is now run as follows (Algo-
rithm 3). At each MH step, using Eqn 17, and for each j,M
independent draws of µθ′ and µθ are sampled from their
conditional predictive distribution. Note that this signifi-
cantly different from the SL-ABC because there are now
no default simulations to be run at each MH step; instead,
the current surrogate model is used to predict both the ex-
pectation and uncertainty in simulation output. As before,
Monte Carlo statistics are computed from acceptance prob-
abilities α(m) as follows,

α(m) = min


1,

π(θ
′
)
∏
j N

(
yj |µ(m)

θ′ j
, σ2
j + ε2

)
q(θ|θ′

)

π(θ)
∏
j N

(
yj |µ(m)

θj , σ
2
j + ε2

)
q(θ′ |θ)




(19)
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Algorithm 3 GPS-ABC MH step

inputs: q,θ, π(x|θ), S0,∆S, ε,y, ξ
θ

′ ∼ q(θ′ |θ)
repeat

for m = 1 : M do
Sample µ(m)

θ′ j
, µ(m)
θj using Eqn 17

Set α(m) using Eqn 19
end for
Set τ = median(α(m))
Set E(α) using Eqn 16
if E(α) > ξ then

Acquire new training point.
end if

until E(α) < ξ
if U(0, 1) ≤ τ then

return θ
′

end if
return θ

The error E(α) and acceptance threshold τ are computed
from the M samples; if E(α) > ξ, then a procedure for
acquiring training points (i.e. simulations) is run, with the
objective of reducing uncertainty for this specific MH step.
Again, as with the adaptive synthetic likelihood algorithm,
computing the M samples is very cheap. The procedure
is then free to select any input location to run a simulation
(whereas before we were forced to run at either θ or θ

′
),

though the new simulation should be impactful for the cur-
rent MH step. This means that we can choose locations
other than θ and θ

′
, perhaps trying to limit the number of

future simulation runs required in the vicinity. Analogous
to acquisition functions for Bayesian optimization [8], ac-
tively acquiring points has the implicit goals of speeding up
MCMC, reducing MCMC error, and limiting simulations.
We have intentionally left vague the procedure for acquir-
ing training points; for now we run simulations at θ or θ

′
,

even though this is an inefficient use of our surrogate. Once
a new training point is selected and run, the training input-
output pair is added to all J Gaussian processes and the
model hyperparameters may or may not be modified (with
a small number of optimization steps or by sampling).

The key advantage of GPS-ABC is that with increasing fre-
quency, we will not have to do any expensive simulations
whatsoever during a MH step because the GP surrogate is
sufficiently confident about the statistics’ surface in that re-
gion of parameter space.

4.1 Theoretical Aspects of GPS-ABC

Two of the main contributions of GPS-ABC are MCMC
under uncertainty and the introduction of memory into the
Markov chain; we consider these steps as the only way to
reduce the number of expensive simulations and as such

a necessary ingredient to GPS-ABC. Nevertheless, they
present major differences from typical Bayesian inference
procedures.

We now address two major theoretical aspects of the GPS-
ABC algorithm: the approximate and adaptive nature of
GPS-ABC. Although we have postponed formal proofs for
future work we have outlined their main arguments below.

GPS-ABC is approximate because at each MH-step there
is some probability that the chain will make an error, and
that this corresponds to an error in the stationary distribu-
tion of the Markov chain (i.e. it is an approximation to
the stationary distribution). In [14], another approximate
MCMC algorithm is presented and it provides a proof for
an upper bound on the error in the stationary distribution.
The main argument is that if the MH-step error is small and
bounded (along with a few other mild conditions), then the
error in stationary distribution is bounded as well. We feel
GPS-ABC fits into this same proof framework.

GPS-ABC is also adaptive since the approximation to the
stationary distribution changes as more training points are
added to the Gaussian process (we are learning the sur-
rogate as we run the MCMC). Two of the major require-
ments for a valid adaptive MCMC algorithm are diminish-
ing adaptation and ergodicity [19]. GPS-ABC satisfies the
former as the number of training points acquired over an
MCMC run rapidly decreases over time. When the adap-
tation slows and becomes insignificant, the Markov chain
resembles the algorithm in [14], which, as we stated above,
provides a proof of bounded convergence to the stationary
distribution (and hence ergodicity); therefore we believe
that GPS-ABC satisfies the latter requirement.

5 Experiments

The main goal of our experiments is to show the correct-
ness and computational gains of GPS-ABC. Our results
indicate that correct posterior samples can be obtained by
GPS-ABC with orders of magnitude fewer simulation calls
than traditional ABC sampling procedures.

We perform experiments on two simulation problems: 1)
a toy Bayesian inference problem (the exponential prob-
lem) and 2) inference of parameters in a chaotic ecological
system (the blowfly problem). In the former, the true pos-
terior distribution is known and therefore provides a useful
test-case for determining the correctness and convergence
properties of ABC algorithms. There is no ground truth in
the latter problem, making inference much more difficult,
but we can nevertheless assess it by the quality of raw simu-
lation outputs and convergence to a set of chosen statistics.

Here is a brief description of the algorithms used in
our experiments. We ran ε-tube rejection sampling
(REJ); synthetic-likelihood (SL, both marginal and pseudo-
marginal); and two adaptive ξ-ABC algorithms: adaptive
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approximate posteriors (π(θ|y) and πε(θ|y), respectively). The
horizontal lines indicate y +/- ε. The approximate posterior was
generated from ε-tube rejection sampling (ε = 2).

synthetic likelihood (ASL) and Gaussian process surrogate
ABC (GPS). Rejection sampling is a procedure where θ is
repeatedly drawn from the prior until all simulation statis-
tics are within the ε-tube. This is repeated independently
for each sample. Algorithms SL, ASL perform at least S
simulations at each MH-step of a MCMC run; for marginal
algorithms, this is 2S (the simulations at the current loca-
tion are re-run), for ASL this can be higher, depending on ξ
and due to randomness within the MH-step. Marginal ver-
sus pseudo-marginal results are indicated by the prefixes
‘m’ or ‘p’, respectively. Our MCMC algorithms are ini-
tialized with a single rejection sample, so initial simulation
counts are affected by its ε value. GPS uses a small initial
training set of size S0 = 50. For the exponential prob-
lem, this training set was generated by rejection sampling.
For the blowfly problem, a short MCMC run using SL was
used to generate higher quality training points. GPS adapts
its Gaussian process hyperparameters using MAP estimates
found by conjugate gradient methods during initialization,
and subsequently when the number of training points dou-
bles (i.e. 100, 200, 400, etc). Finally, ASL and GPS adapt
the number of simulations at each MH-step ∆S = 5. Due
to space constraints, some of the results are not shown in
the main paper, but can be found in the supplementary ma-
terial.

5.1 Inferring the parameter of an exponential
distribution

In this illustrative problem we infer the rate of an exponen-
tial distribution under a gamma prior with shape α and rate
β, having N observations at the true rate θ?; this is the ex-
ponential example in [27]. Let w be a vector of N draws
from an exponential distribution, i.e. wn ∼ Exp(θ). The
posterior is a gamma distribution with shape α + N and
rate β +

∑
wn. To use this problem with ABC, we use the

exponential draws as the simulator and the mean of w as
the statistic y and assume that N is known. The inference

problem is therefore to sample from p(θ|y, α, β,N).

For all runs we fixed α = β = 0.1; a very broad prior
over θ. Using the same random seed and θ? = 0.1, we
generated y = 10.0867, which induces the θ-MAP value
0.09916 (not quite 10 and 0.1 due to their random draw
and to a small influence from the prior). An illustration of
this problem is shown in Figure 2.

Figure 3 show the results of running REJ, SL, and GPS to
generate 50000 samples; this is repeated 10 times per al-
gorithm. These three algorithms were chosen because they
give roughly the same final error in distribution. In Fig-
ure 3a, the convergence to the (known) target posterior dis-
tribution (error), per sample, is shown. Figure 3b shows the
same convergence in error, but is overlaid with the conver-
gence per simulation call instead of per sample. Rejection
sampling, as expected, provides the best convergence per
sample (each sample is an independent sample from the
approximate posterior) but computationally performs very
poorly when ε is set to a value that gives small error in dis-
tribution.

As GPS-ABC acquires training points it is also sam-
pling from the approximate posterior. Once the surro-
gate has learned the statistic surfaces in a region of pa-
rameter space, it no longer makes any simulation calls in
that region. Eventually, the surrogate learns the surface
for all the regions of parameter space where the poste-
rior density is high. For this problem (with ξ = 0.2),
this occurs after approximately 1000 simulations. As the
MCMC run progresses, GPS-ABC gathers samples with
decreasing amounts of computation. Figure 3c shows how
the Gaussian process adaptation levels off during MCMC
runs, whereas traditional ABC algorithms require a con-
stant number of simulation calls per sample. As ξ de-
creases, more simulation calls are required for the GPS-
ABC to model the statistics surfaces with increased preci-
sion; they all, however, have adaptation curves similar to
Figure 3c.

5.2 Chaotic Ecological Systems
Adult blowfly populations exhibit dynamic behavior for
which several competing population models exist. In this
experiment, we use observational data and a simulation
model from Wood [29], based on their improvement upon
previous population dynamics theory. Population dynamics
are modeled using (discretized) differential equations that
can produce chaotic behavior for some parameter settings.
An example blowfly replicate series is shown in Figure 4a,
along with times-series generated by a sample from π(θ|y)
using GPS-ABC.

In [29] there are several explanations of the population dy-
namics, corresponding to different simulations and param-
eters. We concentrate on the equation (1) in section 1.2.3
of the supplementary information, considered “a better al-
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Figure 3: Convergence to target distribution for three algorithms: REJ (ε = 0.5), p-SL ()S = 2), and GPS (ξ = 0.2). The three have
roughly the same final error in distribution. In (a) the convergence to the target per sample is shown; in (b) this convergence is overlaid
with convergence per simulation. Around sample 1000, GPS has essentially stopped adapting, has learned the statistic surfaces, and no
longer requires simulations. In (c) the growth of simulations per time step (i.e. a sample) for the sample algorithms is shown; both REJ
and SL use a fixed number of simulations per iteration, whereas GPS stops adding new training points around time 1000. Note that we
start the plot at the 10th sample, which requires a different number of simulations, depending on the algorithm.

ternative model” by the author. The population dynamics
equation generates N1, . . . , NT using the following update
rule:

Nt+1 = PNt−τ exp(−Nt−τ/N0)et +Nt exp(−δεt)
where et ∼ G(1/σ2

p, 1/σ
2
p) and εt ∼ G(1/σ2

d, 1/σ
2
d)

are sources of noise, and τ is an integer (not to be con-
fused with the τ used as the MH acceptance threshold
in our algorithms). In total, there are 6 parameters θ =
{logP, log δ, logN0, log σd, log σp, τ}. See [29] for fur-
ther details about the significance of the parameters. We put
Gaussian priors over all the parameters (with Gaussian pro-
posal distributions), except for τ which has a Poisson prior
(and a left/right increment proposal). Time-series gener-
ated with parameters from this prior distribution produce
extremely varied results, some are chaotic, some are de-
generate, etc. Modeling this simulator is very challenging.

As with any ABC problem the choice of statistics is impor-
tant as it directly affects the quality of the results. It is also
non-trivial and requires careful thought and sometimes trial
and error. In total there are 10 statistics: the log of the mean
of all 25% quantiles of N/1000 (4 statistics), the mean of
the 25% quantiles of the first-order differences of N/1000
(4 statistics), and the maximal peaks of smoothed N , with
2 different thresholds (2 statistics). With these statistics it is
possible to reproduce time-series that appear similar to the
observations. Note that these statistics are different from
Wood’s, but they capture similar time-series features and
are sufficient to produce credible population dynamics.

The first set of experiments for the blowfly problem is
shown in Figure 4b. For these experiments we compared
REJ (ε = 5), corresponding to an acceptance rate of
roughly 2%), p-SL (S = 10), and finally GPS (ξ = 0.3).
For SL, a small ε = 0.5 was required to improve mix-
ing. This helped all algorithms, but was less important
for GPS, though it can be important if the Gaussian pro-
cesses are not properly calibrated. Each algorithm was

run 5 times collecting 10K samples each. The GPS model
for this problem consists of J = 10 independent Gaus-
sian processes with D = 6 inputs each. The GPS was
initialized with S0 = 50 samples from a short SL-ABC
MCMC run. In Figure 4b we show the posterior distri-
butions for logP , log δ, and logN0. Rejection sampling
produces much broader posteriors than both SL and GPS,
though they all share roughly the same mode. Between SL
and GPS there is little difference in mode or shape, though
GPS appears to have tighter confidence intervals. The real
difference is the computational effort required: GPS used
only 384 simulations to produce 10K, roughly 0.04 simu-
lations per sample, whereas SL and REJ require 10 and 45
simulations for a single sample, respectively. Of course,
GPS has much higher efficiency in practice, as the value
0.04 simulations per sample decreases over time and even-
tually reaches 0.

The second set of experiments examined the convergence
properties of GPS compared to the other algorithms, focus-
ing on the quality of the posterior predictive distributions
per sample versus simulation call. For the blowfly data we
do not have the ground-truth θ?, but we do have the statis-
tics of the observations for which we can monitor conver-
gence. We do this by evaluating the posterior predictive
distribution p(y|y?). Please note that we slightly change
notation when discussing posterior predictive distributions
by denoting y? the observed statistics, and y as statistics
generated by the posterior samples p(θ|y?). Pairs y and
θ are generated, with the exception of GPS, during the
MCMC run, and are exactly the quantities we require for
p(y|y?). Convergence will tell us the amount of compu-
tational effort required for an independent and (un)biased
sample.

In Figure 4c we show the convergence in expected value
of y to y? per simulation. This is calculated in an online
fashion by averaging statistics generated at θ (each pos-
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Figure 4: (a) The blowfly population time-series. The observations are in black lines and a generated time-series is shown in red.
Note that θ is a sample from the GPS posterior (ξ = 0.3). See paper for description of the statistics. (b) Blowfly p(θ|y) for different
algorithms. The top (blue) row is REJ ε = 5, the middle (green) is pseudo-marginal SL S10, and the bottom (red) is GPS ξ = 0.3.
Their respective simulations per sample ratios were: 45, 10, and 0.04. I.e. REJ had an acceptance rate of 2.2%, and GPS only used
384 simulations for 10K samples. Similar distributions were observed for ASL and other pseudo-marginal SL. (c) Convergence to y?

for different algorithms, using normalized mean-squared error. Each sub-plot shows the convergence to a single statistic as a function of
simulation calls.

terior θ sample is allowed one y). We show the log-log
plots of the normalized mean squared error (NMSE) ver-
sus number of simulations for the first 9 statistics. Algo-
rithms run in this experiment were GPS (ξ = 0.2), p-SL
(S = 10, 50), ASL (ξ = 0.3, 0.1), and REJ (ε = 5). GPS
not only converges systematically to y? but does so with
dramatically less effort. For some statistics REJ performed
reasonably well, but in general exhibited significant bias.
Both SL and ASL converged to similar biases, usually out-
performing REJ, but in some cases was worse. Parameter
settings where more computation was required for SL and
ASL did result in slightly improved convergence, but the
gain comes with a significantly higher computational cost.
In summary, GPS is able to model the statistic surfaces, en-
abling it to correctly sample from the approximate posterior
target distribution with higher precision and with orders of
magnitude fewer simulation calls than the other algorithms.

6 Discussion and Future Work
We have presented a promising framework for performing
inference in expensive, simulation-based models. Our al-
gorithms improve current state-of-the-art ABC methods in
that they require many fewer calls to the simulator, some-
times orders of magnitude fewer.

Using GPs for surrogate modeling has an appealing ele-
gance; as nonparametric Bayesian models, they naturally
incorporate both model and pseudo-data uncertainty into
the MCMC algorithms. However, there are several tech-
nical issues and modeling limitations with GPs used for
surrogate modeling. Heteroskedatic noise is more likely
the norm than the exception for complicated simulators.
The blowfly simulator is a prime example of this. Im-
provements to our GPs may be achieved using an input-
dependent noise model [11, 13], where the noise is an ad-
ditional independent Gaussian process. Another limitation

of our GP model is the output independence assumption.
A more realistic assumption is a full covariance Gaussian
process such as the convolution processes of [12, 7, 1]. One
final limitation is GP calibration. We found that initializing
the Gaussian process with rejection samples produced in-
ferior results, as it tended to adapt its hyper-parameters op-
timally for those training points and had difficulty readapt-
ing. Despite these limitations, we feel that GPS-ABC de-
serves a place within the ABC toolbox.

Our GPS-ABC uses a random-walk proposal distribution
which is inefficient for exploring the target distribution.
Using GPs offers the opportunity to use other techniques to
improve the mixing (and in turn computational cost). For
example, in [17] a Hamiltonian Monte Carlo run on the GP
surface is used to generate independent proposals. If ap-
plied to ABC, their algorithm would require the equivalent
of a full simulation at the proposed location, whereas if we
incorporated a similar technique, we would then test the GP
uncertainty to determine if a simulation was required.

There has been a recent surge in interest in Bayesian opti-
mization using Gaussian process (GP-BO) surrogates of the
objective surface [8, 24]. GP-BO is often applied to prob-
lems where simulation or sometimes user feedback guides
the surrogate’s construction. What is most interesting about
GP-BO is its use of model uncertainty to actively determine
the next simulation location implemented through acquisi-
tion functions. These ideas can be generalized to our GPS-
ABC algorithm to further reduce simulation costs, while at
the same time maintaining control of the MCMC error.
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Abstract

Lifted inference approaches can considerably
speed up probabilistic inference in Markov ran-
dom fields (MRFs) with symmetries. Given ev-
idence, they essentially form a lifted, i.e., re-
duced factor graph by grouping together indistin-
guishable variables and factors. Typically, how-
ever, lifted factor graphs are not amenable to off-
the-shelf message passing (MP) approaches, and
hence requires one to use either generic opti-
mization tools, which would be slow for these
problems, or design modified MP algorithms.
Here, we demonstrate that the reliance on mod-
ified MP can be eliminated for the class of MP
algorithms arising from MAP-LP relaxations of
pairwise MRFs. Specifically, we show that a
given MRF induces a whole family of MRFs of
different sizes sharing essentially the same MAP-
LP solution. In turn, we give an efficient algo-
rithm to compute from them the smallest one that
can be solved using off-the-shelf MP. This incurs
no major overhead: the selected MRF is at most
twice as large as the fully lifted factor graph. This
has several implications for lifted inference. For
instance, running MPLP results in the first con-
vergent lifted MP approach for MAP-LP relax-
ations. Doing so can be faster than solving the
MAP-LP using lifted linear programming. Most
importantly, it suggests a novel view on lifted in-
ference: it can be viewed as standard inference in
a reparametrized model.

1 INTRODUCTION

Probabilistic logical languages [5] provide powerful for-
malisms for knowledge representation and inference. They
allow one to compactly represent complex relational and
uncertain knowledge. For instance, in the friends-and-
smokers Markov logic network (MLN) [17], the weighted

formula 1.1 : fr(X, Y)⇒ (sm(X)⇔ sm(Y)) encodes that
friends in a social network tend to have similar smoking
habits. Yet, performing inference in these languages is ex-
tremely costly, especially if it is done at the propositional
level. Instantiating all atoms from the formulae in such
a model induces a standard graphical model (potentially)
with symmetries, i.e., with repeated factor structures for all
grounding combinations. Recent advances in lifted proba-
bilistic inference [16] such as [3, 15, 1, 14, 18] (see [9] for
an overview that also covers exact inference approaches),
have rendered many of these large, previously intractable
models quickly solvable by exploiting the induced symme-
tries. For instance, lifted message-passing (MP) approaches
such as [19, 10, 22, 8, 1] have been proven successful in
several important AI applications such as link prediction,
social network analysis, satisfiability and boolean model
counting problems. Lifted MP approaches such as lifted
Belief Propagation (BP) first automatically group together
variables and factors of the graphical model into supervari-
ables and superfactors if they have identical computation
trees (i.e., the tree-structured “unrolling” of the graphical
model computations rooted at the nodes). Then, they run
modified MP algorithms on this lifted network. These mod-
ified MP algorithms, however, can also be considered a
downside of today’s lifted MP approaches. They require
more information than is actually captured by a standard
factor graph. More precisely, lifted MP will typically expo-
nentiate a message from a supervariable to a superfactor by
the count of ground instances of this superfactor, which are
neighbors to a ground instance of the supervariable. Since
these multi-dimensional counts have to be stored in the net-
work, the lifted factor graph becomes a multigraph (i.e., a
factor graph with edge counts and self-loops), in contrast
to a standard factor graph where no multiedges or loops are
allowed. Hence, lifted factor graphs are not amenable to
off-the-shelf MP approaches. Instead, lifted MP has its own
ecosystem of lifted data structures and lifted algorithms. In
this ecosystem, considerable effort is required to keep up
with the state of the art in propositional inference.

In this paper we demonstrate that the reliance on modified
MP can be eliminated for the class of MP algorithms aris-
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ing from linear programming (LP) relaxations of MAP in-
ference (MAP-LPs) of pairwise MRFs. MAP-LPs approx-
imate the MAP problem as an LP with polynomially many
constraints [25], which is therefore tractable, and have sev-
eral nice properties. First, they yield an upper bound on the
MAP value, and can thus be used within branch and bound
methods. Second, they provide certificates of optimality,
so that one knows if the problem has been solved exactly.
Third, the LP can be solved using simple algorithms such
as coordinate descent, many of which have a nice message
passing structure. [12] Fourth, the LP relaxations can be
progressively tightened by adding gradually constraints of
a higher order. This has been shown to solve challenging
MAP problems [20].

Indeed, it is already known that MAP-LP relaxations of
MRFs can be lifted efficiently [13, 3, 14], and the resulting
lifted LPs can be solved using any off-the-shelf LP solver1.
Unfortunately, however, the liftings employed there may
not preserve the MRF structure of the underlying LP. That
is, if we lift a MAP-LP, we end up with constraints that do
not conform to the MAP-LP template as already observed
by Bui et al. (see Section 7 in [3]). In turn, existing MP
solvers for MAP-LPs such as MPLP and TRW-BP — that
have been reported to often solve the MAP-LP significantly
faster than generic LP solvers — will not work without
modifying them. Doing so, however, takes a lot effort (if
it is at all possible): it has do be done for each existing MP
approach separately; there is no general methodology for
doing this, and the extra coding itself is error prone. Hence
this “upgrading methodology” may significantly delay the
development of lifted MP approaches. Fortunately, as we
demonstrate here, the theory of lifted LPs provides us with
a way around these issues. The main insight is that a given
MRF induces actually a whole family of MRFs of different
sizes sharing essentially the same MAP-LP solution. From
these, one can select the smallest one where MAP beliefs
can be computed using off-the-shelf MP approaches. These
beliefs then are also valid (after a simple transformation)
for the original problem. Moreover, this incurs no major
overhead: the selected MRF is at most twice as large than
the fully lifted factor graph. In this way we eliminate the
need for modified MP algorithms.

To summarize, our contributions are two-fold. (1) By mak-
ing use of lifted linear programming, we show that LP-
based lifted inference in MRFs can be formulated as ground
inference on a reparametrized MRF. (2) We give an effi-
cient algorithm that given a ground MRF finds the smallest
reparametrized MRF and show that its size is not more than
twice the size of the fully lifted model.

1A similar approach has been proposed for exact MAP by
Noesner et al. [15]. Moreover, Sarkhel et al. [18] have recently
shown that MAP over MLNs can be reduced to MAP over Markov
networks if the MLN has very restrictive properties. In contrast
our approach is generic for MAP-LP relaxations.

This has several implications for lifted inference. For in-
stance, using MPLP [6] results in the first convergent MP
approach for MAP-LP relaxations, and using other MP ap-
proaches such as TRW-BP [24] actually spans a whole fam-
ily of lifted MP approaches. This suggests a novel view on
lifted probabilistic inference: it can be viewed as standard
inference in a reparametrized model.

We proceed as follows. We start off with reviewing MAP-
LP basics. Then, we touch upon equitable partitions and
lifted LPs, and use them to develop the reparametrization
approach. Before concluding we provide empirical illus-
trations, which support our theoretical results.

2 BACKGROUND

We start off by introducing MAP inference and its LP re-
laxation. Then we will touch upon equitable partitions and
recall how they can be used in lifted linear programming.

MAP Inference in MRFs. Let X = (X1, X2, . . . , Xn)
be a set of n discrete-valued random variables and let
xi represent the possible realizations of random variable
Xi. Markov random fields (MRFs) compactly represent a
joint distribution over X by assuming that it is obtained
as a product of functions defined on small subsets of vari-
ables [11]. For simplicity, we will restrict our discus-
sion to a specific subset of MRFs, namely Ising models
with arbitrary topology2. In an Ising model I = (G,θ)
on a graph G = (V,E), all variables are binary, i.e.,
Xi ∈ {0, 1}. Moreover, in an Ising model G must be
a simple graph, i.e. G must have no self-loops or multi-
ple edges between vertices. The model is then given by:
p(x) ∝ exp

[∑
ij∈E θijxixj +

∑
i θixi

]
. In the follow-

ing we will find it convenient to represent Ising models as
factor graphs. The factor graph of an Ising model combines
the structure and parameters of the model into a single bi-
partite graph. In this graph we have a variable vertex vi
for each probabilistic variable Xi and a factor vertex φi
for each θi and φij for θij . Moreover, φi is connected to
vi and φij to vi and vj . While for ground Ising models,
the factor graph does not capture any additional informa-
tion, it makes the presentation of lifted structures simpler
and reveals the essence of the conflict between lifting and
message-passing. Hence, from now on when we refer to
an Ising model I = (G,θ), by G we will mean the corre-
sponding factor graph.

The Maximum a-posteriori (MAP) inference problem is
defined as finding an assignment maximizing p(x). This
can equivalently be formulated as the following LP

µ∗ = argmax
µ∈M(G)

∑
ij∈E

µijθij +
∑

i
µiθi = θ · µ (1)

2The shorter description of MAP-LP for Ising models makes
the presentation easier. Our approach, however, can be applied to
any pairwise MRF with only minor modifications.
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(a) (b) (c) (d)

Figure 1: Lifted Structures: Example of a factor graph and
its partitions and quotients. (a) A factor graph G (variables
in circles, factors in squares) and its coarsest EP P repre-
sented by the colors. (b) The degree DM matrix of G ac-
cording to P . (c) The corresponding quotient graph G/P .
(d) The factor quotient G o P .

where the set M(G) is known as the marginal poly-
tope [25]. Even though Eq. 1 is an LP, the polytopeM(G)
generally requires an exponential number of inequalities
to describe [25], and is NP-complete to maximize over.
Hence one typically considers tractable relaxations (outer
bounds) of M(G). The outer bounds we consider are
equivalent to the standard local consistency bounds typi-
cally considered in the literature (e.g., see [25] Eq. 8.32).
However, we present them in a slightly different manner,
which simplifies our presentation. Define the following set
in [0, 1]|V |+|E|:

L(G) =




µ ≥ 0 ,∀φij ∈ G :
α(ij) ≡ µij ≤ µj , β(ij) ≡ µij ≤ µi;
γ(ij) ≡ µi + µj − µij ≤ 1



 .(2)

The polytope L(G) is sometimes referred to as the local
marginal polytope [21]. The vectors with {0, 1} coordi-
nates in L(G) are the vertices of theM(G). In other words
M(G) is the convex hull of L(G) ∩ {0, 1}|V |+|E|. We call
the relaxed inference problem over L(G) MAP-LP. Note
that whenever M(G) and L(G) do not coincide, L(G)
(which is an outer bound onM(G)) has fractional vertices
and the resulting LP may have optima which are not valid
assignments. However, all integral points in L(G) corre-
spond to valid assignments, thus if the solution µ∗ happens
to be integral, then this µ∗ solves the MAP problem.

Equitable Partitions (EPs) of Graphs and Matrices.
Lifted inference approaches essentially work with reduced
models by grouping together indistinguishable variables
and factors. In other words, they exploit symmetries. For
linear programs, Mladenov et al. [13, 14] have shown that
such symmetries can be formally captured by equitable par-
titions of weighted graphs and matrices. Since these parti-
tions also play an important part in our argument we will
next review the most relevant concepts and results.3 For an
illustration, we refer to Fig. 1.

3Note, however, that the definitions we present here are tai-
lored towards bipartite structures (e.g. factor graphs with variables
and factors, matrices with rows and columns) for the sake of clar-
ity. They are not the most general ones found in literature.

Let U = V ∪ F be a set consisting of two kinds of ob-
jects, e.g. the variables and factors of a factor graph as
in Fig. 1(a), or the row and column indices of a matrix.
A partition P = {P1, . . . , Pp} ∪ {Q1, . . . Qq} is a fam-
ily of disjoint subsets of U , such that

⋃p
i=1 Pi = V and⋃q

i=1Qi = F . In Fig. 1 the partition is indicated by the col-
ors of the nodes. A convenient data structure for performing
algebraic operations using partitions is the incidence matrix
B ∈ {0, 1}|U |×|P|. The incidence matrix shows the assign-
ment of the elements of U to the classes of P – it has one
row for every object and one column for every class. The
entry in the row of object u and the column of class Pp is

Bup = 1 if u ∈ Pp and 0 if u /∈ Pp .

We shall also make use of the normalized transpose of B,
which we denote by B̂ ∈ Q|P|×|U | and define as

B̂pu = 1/|Pp| if u ∈ Pp and 0 if u /∈ Pp .

Algebraically, B and B̂ are related as B̂ = (BTB)−1BT ,
i.e., B̂ is the left pseudoinverse of B: B̂B = I|P|.

The partitions we consider will never group elements of V
with elements in F . Thus, the matrix B will always be of
the form B =

(BP 0
0 BQ

)
, where BP and BQ correspond to

the partitions of V and F respectively. We shall also use
the notation B = (BP , BQ) to refer to this block diagonal
matrix, and similarly B̂ = (B̂P , B̂Q).

Let u ∈ R|U | be a real vector composed as u = [c,b]T , c ∈
R|V |,b ∈ R|F |. The values of u can be thought of as la-
bels for the elements of U . We say that a partition P re-
spects u if for every x, y ∈ U that are in the same class
of P , we have ux = uy . Note that if P respects u, then
(cTBP )i = |Pi|cx where x is any member of Pi (and sim-
ilarly for BQ,b). Moreover, (B̂P c)i = cx where x is any
member of Pi (and similarly for B̂Q,b).

We next define a special class of partitions of graphs and
matrices, which play a central role in our argument. Let us
first consider a bipartite graph G = (V ∪ F,E). Here V
and F are the two sides of the graph, and E are the edges
connecting them. The neighbors of a node v in this graph
are denoted by nb(v).

Definition 1 (Equitable partition of a bipartite graph).
An equitable partition of a bipartite graph G = (V ∪
F,E) given a vector u ∈ R|V |+|F | is a partition P =
{P1, . . . , Pp, Q1, . . . Qq} of the vertex set V and F such
that (a) for every pair v, v′ ∈ V in some Pm, and for ev-
ery class Qn, |nb(v) ∩ Qn| = |nb(v′) ∩ Qn|; (b) for ev-
ery pair f, f ′ ∈ F in some Qm, and for every class Pn,
|nb(f) ∩ Pn| = |nb(f ′) ∩ Pn|. Furthermore, P must re-
spect the vector u.

If we are dealing with matrices, the above definition can
be extended. Essentially, we view a matrix A ∈ Rm×n
as a weighted graph over the set {row[1], . . . , row[m]} ∪
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{col[1], . . . , col[n]}, where Aij is the weight of edge be-
tween row[i] and col[j]. More precisely:
Definition 2 (Equitable partition of a matrix). An eq-
uitable partition of a matrix A ∈ Rm×n given a vector
u is a partition P = {P1, . . . , Pp, Q1, . . . Qq} of the sets
V = {row[1], . . . , row[m]} and F = {col[1], . . . , col[n]}
s.t. (a) for every pair v, v′ ∈ V in some Pm, and for ev-
ery class Qn,

∑
f∈Qn Avf =

∑
f∈Qn Av′f and (b) for

every pair f, f ′ ∈ F in some Qm, and for every class Pn,∑
v∈Pn Avf =

∑
v∈Pn Avf ′. In addition, P must respect

u.

Note that Def. 1 is an instance of Def. 2 when we take as A
the (biparite) adjacency matrix of a graphG. An illustration
of an equitable partition of a graph is given Fig. 1(a).

One notable kind of equitable partitions (EPs) are orbit par-
titions (OPs) – the partitions that arise under the action of
the automorphism group of a graph or matrix. Their role
in MAP inference has been studied in [3]. Although OP-
based lifting is indeed practical in a number of cases or
even the only applicable one, in particular for exact infer-
ence approaches, computing them is a GI-complete prob-
lem. Because of this we will stick to EPs which are more
efficiently computable and yield more reduction (to be dis-
cussed shortly). Still, we would like to stress that our result
applies to any EP, in particular to OPs.

Using an EP of a graph or a matrix, we can derive con-
densed representations of that graph or matrix using the
partition. This is the essence of lifting: the reduced repre-
sentation is as good as the original representation for some
computational task at hand, while (potentially) having a
significantly smaller size. A key insight that we exploit
here is that there is a one-to-one relationship between EPs
of the factor graph of an Ising model (as in Def. 1) and the
EPs of its MAP-LP matrix (as in Def. 2).

One useful representation of a graph and its equitable par-
tition is via a degree matrix, as illustrated in Fig. 1(b). The
degree matrix, DM(G,P), has |P| × |P| entries, where
each entry represents how members of different classes in-
teract. More precisely, DM(G,P)ij = |nb(u)∩Pj |, where
u is any element of Pi. Due to the bipartiteness of G, this
matrix will have the block form DM(G,P) =

(
0 DV

DF 0

)
,

where DV represents the relationship of the P -classes to
the Q-classes and DF vice-versa. As a shorthand, we use
the notation DM = (DF,DV). Graphically (see Fig. 1(c)),
a degree matrix can be visualized as a quotient graph
G/P , which is a directed multi-graph. In G/P there is a
node for every class of P . Given two nodes u, v we have
|nb(u) ∩ Pj |, u ∈ Pi many edges going from u to v.
DM(G,P) is essentially the weighted adjacency matrix of
G/P .

Later on, we will be interested in the interaction of the
factors with variables rather than the other way around.
Therefore, we introduce the factor quotient graph G o P of

G, which corresponds only to the DF-block of DM(G,P)
as shown in Fig. 1(d). That is, we draw only edges going
from factor classes to variable classes, but not the other way
around. Moreover, as our MRFs are pairwise, a factor class
can have a degree of at most two to any variable class. We
will thus not write numbers on top of the arcs, but draw
double or single edges. To stay consistent with existing ter-
minology, we call the nodes ofG oP corresponding to vari-
able classes of G “supervariables”, and factor-class nodes
“superfactors”. Note that if P is the OP of G, the resulting
factor quotient is the “lifted graph” considered in [3].

Finally, to compute EPs one can use color-passing (also
known as “color refinement” or “1-dimensional Weisfeiler-
Lehman”). It is a basic algorithmic routine for graph iso-
morphism testing. It iteratively partitions, or colors, ver-
tices of a graph according to an iterated degree sequence
in the following fashion: initially, all vertices get their la-
bel in G as color, and then at each step two vertices that
so far have the same color get different colors if for some
color c they have a different number of neighbors of color c.
The iteration stops if the partition remains unchanged. For
matrices, a suitable extension was introduced in [7]. The
resulting partition is called the coarsest equitable partition
(CEP) of the graph, and can be computed asynchronously
in quasi-linear time O((n+m) log n) (e.g., see [2]).

Lifted Linear Programming and Lifted MAP-LPs. By
computing an EP of the matrix of a linear program (LP)
one can derive a smaller but equivalent LP – the “lifted”
LP – whose optimal solutions can easily be translated back
to a solution of the original LP [13, 7]. This will be key in
what follows, and is reviewed below.

Let L = (A,b, c) be a linear program, corresponding to
the optimization problem x∗ = argmaxAx≤b cTx.

Theorem 3 (Lifted Linear Programs [7]4). Let P =
{P1, . . . , Pp} ∪ {Q1, . . . , Qq} be an equitable partition
with incidence matrix B = (BP , BQ) of the rows and
columns ofA, which respects the vector u = [c,b]T . Then,
L′ = (B̂QABP , B̂Qb, B

T
P c) is an LP with fewer variables

and constraints. The following relates L and L′:

(a) If x′ is a feasible point in L′, then BPx′ is feasible in
L. If in addition x′ is optimal in L′, BPx′ is optimal in L
with the same objective value.
(b) if x is a feasible point in L, then B̂Px is feasible in L′.
If in addition x is optimal in L, B̂Px is optimal in L′ with
the same objective value.

In previous works, only part (a) has been exploited. That
is, as illustrated in Fig. 2, given any LP we construct L′

using equitable partitions, solve it (often faster than the
original one), and finally transfer the solution to the larger
problem by virtue of (a) above. This “standard” way ap-
plies to MAP-LPs as follows (see [13, 7] for more details).

4We restrict the theorem to what is relevant for the discussion.
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(a) (b)

Figure 2: Illustration of lifting MAP-LPs. (a) A factor
graph and the corresponding MAP-LP; (b) A factor quo-
tient and the corresponding lifted MAP-LP. This exam-
ple also illustrates that the lifted MAP-LP in (b) is not
amenable to standard MP anymore, since the constraint
2µP − µQ ≤ 1 does not appear in standard MAP-LPs.
However, note that the lifted structure is identical to the
one in Fig. 1(d), yet the original factor graph in (a) above is
smaller. That is, factor graphs of different sizes may share
the (structurally) same lifted MAP-LP.

Given an MRF with graph G and parameter θ, which we
denote by I = (G,θ), denote its standard MAP-LP relax-
ation by the LP defined via (A,b, c). To obtain a poten-
tially smaller LP, we calculate the equitable partition of the
LP, and its corresponding B, B̂ matrices. The LP defined
via (B̂QABP , B̂Qb, B

T
P c) is then equivalent to the origi-

nal MAP-LP in the sense of Thm. 3. We refer to this LP as
LMAP-LP(I).

Unfortunately, as we will show in the next section, LMAP-
LP(I) is not a standard MAP-LP. In turn, it is not amenable
to standard message passing based MAP-LP solvers. Fortu-
nately, by making heavily use of part (b) of Thm. 3 as well,
we will show how to produce LPs that have this special
structure. This results “lifting by reparametrization”.

3 LIFTING BY REPARAMETRIZATION

To introduce the “lifting by reparametrization” approach
we proceed in two steps. First, we introduce the class of
all MRFs whose MAP-LPs are equivalent, in the sense that
solving one such LP results in a solution to all LPs in the
class. Then, we will show how to construct the smallest
such equivalent MRFs for a given MRF in the class.

LP-equivalence of MRFs. We start off by discussing the
structure of the lifted MAP-LP (LMAP-LP). The main pur-
pose is to illustrate why lifting generally does not preserve
the message-passing structure of the LP (see also Fig. 2).
Then, as an alternative, we introduce an equivalence the-
orem in the spirit of Thm. 3. As illustrated in Fig. 3, in-
stead of relating ground (original) and lifted LPs, it re-
lates ground LPs of different sizes that have the same lift-
ing. This is the main insight underlying our “lifting by
reparametrization” approach: instead of lifting the ground
MAP-LP of an MRF at hand, we replace it by the ground

MAP-LP(J) MAP-LP(I)

LMAP-LP(J) LMAP-LP(I)

liftτ ′ = B̂JP τ

τ ′ = µ′
identical

µ = BIPµ
′unlift

Figure 3: Commutative diagram established by Thm. 6 un-
derlying our reparametrization approach to lifted inference.

LP of another equivalent MRF, hopefully of much smaller
size. In the following we will now formally define what
“equivalence” means here.

Our starting point is to note that LMAP-LP(I) only depends
on I via the structure ofG oP . To provide the formal result,
we need a few more notations. First, the graph G o P has
nodes corresponding to groups of variables in the original
factor graph, and nodes corresponding to groups of factors
in the original factor graph. We denote those by V (G o P)
and F (G o P) respectively. Second, G o P is a multigraph
and may have multiple edges between its nodes. We define
nb(Q) to be the neighbors of Q ∈ F (G o P) in G o P , with
repetitions. In other words, if there are two edges between
P,Q ∈ G o P , then nb(Q) will contain P twice.

Proposition 4. Let P = {P1, . . . , Pp} ∪ {Q1, . . . , Qq} be
an equitable partition of the variables and factors of the
MRF specified by I = (G,θ). Let G o P be the factor quo-
tient of I . Then, LMAP-LP(I) can be written as:

µ′∗ = argmax
µ′∈L′(G)

∑

P∈V (GoP)
θP |P |µP +

∑

Q∈F (GoP)
θQ|Q|µQ .

Where θP , θQ are the parameters of I for the correspond-
ing partition elements. The constraints L′(G) are defined
as the set of µ ≥ 0 such that:




∀P, P ′ ∈ V (G o P), Q ∈ F (G o P)
s.t. P, P ′ ∈ nb(Q) :

α′(Q) ≡ µQ ≤ µP ; β′(Q) ≡ µQ ≤ µP ′ ;
γ′(Q) ≡ µP + µP ′ − µQ ≤ 1





(3)

Proof. We omit a detailed proof of this proposition due to
space restrictions. Essentially, the argument is that the re-
formulation of Sec. 7 in [3] holds for any equitable parti-
tion, not just the orbit partition of an MRF. In this case, the
Q-classes generalize edge orbits while the P -classes gen-
eralize variable orbits. �

This proposition tells us that we can construct L′(G) by the
following procedure: (1) we instantiate an LP variable µP
for every variable class P ∈ V (GoP) (i.e., every supervari-
able) (2) we instantiate an LP variable µQ for every factor
class Q ∈ F (G o P) (i.e. superfactor); (3) for every pair
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Algorithm 1: Solving MRF I using an equivalent MRF J
Input: Ground MRF I and LP-equivalent MRF J
Output: MAP-LP(I) solution µ

Solve MRF J , i.e., compute1

τ = argmaxµ MAP-LP(J);
Lift the solution τ to LMAP-LP(J). That is, compute2

τ ′ = B̂JP τ (Thm. 3(b));
Recover solution of I , i.e., compute µ = BIP τ

′3

(Thm. 3(a));

of classes P,Q, if some ground variable xi ∈ P is adja-
cent to some ground factor φij ∈ Q, we add the constraint
µQ ≤ µP . For every triplet P, P ′, Q such that there exist
xi ∈ P, xj ∈ P ′ adjacent to φij ∈ Q, we add the constraint
µP + µP ′ − µQ ≤ 1.

Observe that the factor quotient graph G o P actually con-
tains exactly the necessary and sufficient information to
construct L′(G): it gives us the number of classes and the
relations between them. Hence, it would seem that L′(G)
is just L(G o P), and we are done. Unfortunately this is not
exactly the case, and we have to be a little bit more careful.

Recall our running example from Fig. 2. There can be a fac-
tor φij in some Q, whose adjacent variables xi, xj fall into
the same class, P = P ′. In terms of constraints, the cor-
responding triplet P, P ′, Q, with P = P ′ yields the con-
straint 2µP − µQ ≤ 1. Graphically, this situation occurs
wheneverGoP contains a double edge. This also happens in
our running examples (see Fig. 2(b)). Unfortunately, such
constraints have no analogue in MAP-LP(I)!

How can we deal with this? Assume for the moment that for
any ground factor φij , P(i) 6= P(j), in other words G o P
happens to be a simple graph (no edge connects at both
ends to the same vertex, and there is no more than one edge
between any two different vertices). Then we can compute
a new weight vector θ′ ∈ Rq as θ′Q = |Q|θQ, θ′P = |P |θP
(cf. Eq. 3).In this case, the MRF I ′ = (G o P,θ′) would
indeed be a smaller MRF, whose MAP-LP is identical to
the LMAP-LP of I . This enables us to view lifting as
reparametrization: (1) we compute G o P from G; (2) in-
stead of solving LMAP-LP(I), we solve MAP-LP(I ′) using
any solver we want, including message-passing algorithms
such as MPLP, TRWBP, among others; (3) because of the
equivalence, we treat the solution of MAP-LP(I ′) as a so-
lution of LMAP-LP(I ′) and unlift it using Thm. 3(a).

While our assumption does not hold in general (see e.g.
Fig. 1) — and we will indeed account for it below —
the procedure just outlined above is the main idea un-
derlying “lifting by reparametrization” method. Since the
LMAP-LP of I will potentially contain constraints such
as 2µP − µQ ≤ 1, it will not be the MAP-LP of any
simple graph. So instead, we will look for something

else, namely a proper (potentially much smaller) MRF J ,
where instead of LMAP-LP(I) =MAP-LP(J) we ask that
LMAP-LP(I) = LMAP-LP(J) . We call any pair of MRF
where this holds LP-equivalent.

Definition 5 (LP equivalent MRFs). Two MRFs I =
(G,θI) and J = (H,θJ) having simple graphs are LP-
equivalent if we can find an equitable partition P of G
with incidence matrix B = (BP , BQ) and an equitable
partition P ′ of H with incidence matrix B′ = (B′P , B

′
Q)

such that LMAP-LP(I) := (B̂TQABP , B̂
T
Qb, B

T
P c) =

( (B̂′Q)
TA′B′P , (B̂

′
Q)

Tb′, (B′P )
T c′) =: LMAP-LP(J).

Then, we apply the lifted equivalence of Thm. 3(b) and are
done. As summarized in Alg. 1, we solve the smaller MAP-
LP(J) using any MRF-structure-aware LP solver. We ob-
tain an optimal solution of LMAP-LP(J) using BTP ′ as pre-
scribed by Thm. 3(b). Due to the lifted equivalence, this
solution is also a solution of LMAP-LP(I), hence we re-
cover (or “unlift”) the solution with respect to I using BP .
In doing so, we end up with an optimal solution of MAP-
LP(I). This procedure is outlined in Fig. 3. We will shortly
prove its soundness.

Theorem 6. Let I and J be two LP-equivalent MRFs of
possibly different sizes. Then, (A) if τ is feasible in MAP-
LP(J), µ = BP B̂

′
P τ is feasible in MAP-LP(I). Moreover,

if τ is optimal, µ is optimal as well. (B) if µ is feasible
in MAP-LP(I), τ = B′P B̂Pµ is feasible in MAP-LP(J).
Moreover, if µ is optimal, τ is optimal as well.

Proof. We prove only (A) due to the symmetry of the state-
ment. Let τ be feasible in MAP-LP(J). By Thm. 3(b), τ ′ =
B′P τ is feasible in LMAP-LP(J). Due to LP-equivalence,
LMAP-LP(J) = LMAP-LP(I), τ ′ is also a solution to
LMAP-LP(I). Now, we unlift τ ′ with respect to LMAP-
LP(I). Due to Thm. 3(b), µ = BP (B̂

′
P )τ is feasible in

MAP-LP(I). Moreover, if τ is optimal in MAP-LP(J),
Thm. 3 tells us that optimallity will hold throughout the
entire chain of LPs. �

To summarize our argument so far, Thm. 6 provides us
with a way to exploit the MAP-LP equivalence between
MRFs of different sizes. What is still missing is a way to
efficiently construct such smaller LP-equivalent MRFs as
input to Alg. 1. We will now address this issue.

Finding equivalent MRFs. So far we discussed the equiv-
alence of MRFs of different sizes in terms of their (lifted)
MAP-LPs. Making use of our result, however, requires ef-
ficient algorithm to find LP-equivalent MRFs of consider-
ably smaller size. Given an MRF I and its EP, Alg. 2 finds
the smallest LP-equivalent MRF I ′ in linear time. Next to
illustrating Alg. 2 and proving that it is sound, we will also
show that the size of I ′ is at most 2|G o P|.
Let I = (G,θ) be an MRF and P be an EP of its vari-
ables and factors. We will introduce the algorithm in two
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(a) (b) (c) (d) (e) (f)

1. 2.    3     .  

Figure 4: Illustration of “lifted inference by reparametrization” as summarized in Alg. 2 and used as input to Alg. 1. (a)
input: a graph G and its coarsest equitable partition P; (b) the factor quotient G o P and the corresponding degree matrix;
(c) Step (A): representing all degree 2 factors and the corresponding degree 2 variables. (d) Step (B): instantiating degree
1 factors adjacent to degree 2 variables; (e) Step (C): instantiating the remaining classes. After this step we terminate and
output the resultH; (f) soundness:H oR is identical toG oP . Observe that the upper-right corner of DM(G,P) is different
from that of DM(H,R). (Best viewed in color.)

steps: first, we discuss how to obtain a simple graph G′

which gives the structure of an LP-equivalent MRF, i.e.
L′(G) = L′(G′). Then we show how to find weights θ′

for this graph, such that the MRF I ′ = (G′,θ′) is LP-
equivalent to I . Finally, we will show correctness and min-
imality of our approach.

Recall that in Eq. 3 the lifted Ising polytope of LMAP-
LP(I) is fully defined by the factor quotientG oP . Hence, a
necessary and sufficient condition for LP-equivalence (re-
garding the constraints of the LP, we will deal with the ob-
jective shortly) in MRFs is that the corresponding graphs
exhibit the same factor quotients for some equitable parti-
tions. Thus, the problem of finding an LP-equivalent struc-
ture boils down to finding G′ such that G o P = G′ o P ′
for some partition P ′. Moreover, to maximize the compres-
sion, we want P to be the coarsest EP ofG (resulting in the
smallest possible G oP) and that G′ is the smallest possible
LP-equivalent MRF. Let us now see how to find G′. As a
running example, we will use the factor graph in Fig 4(a).

Suppose G o P is given, e.g. computed using color-
refinement. For our running example, G o P is shown in
Fig. 4(b). Let us divide the superfactors and supervariables
of G o P into classes based on their connectivity. A super-
factor connected to a supervariable via a double edge is
called a (2)-superfactor. In Fig. 4(b), these are the cyan
and orange superfactors. Correspondingly, we call a vari-
able connected to a superfactor via a double edge a (2)-
supervariable (red and yellow in Fig. 4(b)). Next, a super-
factor connected to at least one (2)-supervariable via a sin-
gle edge is called a (1,2)-superfactor (violet and pink in
Fig. 4(b)). Finally, all other superfactors and supervariables
are (1)-superfactors and (1)-supervariables respectively
(e.g. the green supervariable).

We then computeG′ in the following way as also illustrated
in Fig. 4(c)-(e). We start with an empty graph. Then, Step

(A) as illustrated in Fig. 4(c) consists of adding for every
(2)-superfactor inG oP exactly one representative factor to
G′. Furthermore, for every (2)-supervariable, we add two
representatives in G′ and connect them to the correspond-
ing (2)-superfactor representatives whenever the supern-
odes they represent are connected in G o P . In Step (B),
see Fig. 4(d), for every (1, 2)-superfactor, we instantiate
two representatives. Moreover, for every (2)-supervariable
(all of them are already represented in G′), we match
the two (1, 2)-superfactor representatives to the two (2)-
supervariable representatives whenever the represented su-
pernodes are connected inGoP . Finally, Step (C) as shown
in Fig. 4(e) introduces one representative for every other
supernode and connects it to other representatives based on
G o P . If it happens that the represented supernode is con-
nected to a (2)-supervariable or (1, 2)-superfactor in G o P ,
we connect the representative to both representatives of the
corresponding neighbor.

This is summarized in Alg. 2 and provably computes a
minimal structure of an LP-equivalent MRF. Finally, we
must compute a parameter vector for I ′ to facilitate LP-
equivalence. Suppose P ′ is the EP of G′ induced by Alg. 2
(the partition which groups nodes inG′ together if they rep-
resent the same supernode of G o P). Let Q be any factor
class in P andQ′ be the corresponding class in P ′. We then
compute the weight θQ′ of the factors φ′ ∈ Q′ of I ′ as

θ′Q′ = (|Q|/|Q′|)θQ , (4)

where θQ is the weight associated with the classQ inP (re-
call Prop. 4). We now argue that the resulting Ising model
I ′ = (G′,θ′) is LP-equivalent to I = (G,θ).

Theorem 7 (Soundness). I ′ = (G′,θ′) as computed
above is LP-equivalent to I = (G,θ).

Proof. Following Def. 5 we must show that given I and
its EP P , there is a partition P ′ of I ′ such that the lifted
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Algorithm 2: Computing the smallest LP-equivalent MRF.
Input: Fully lifted factor graph G o P of G
Output: G′ such that ∃P ′ : G′ o P ′ = G o P .

Initialize G′ ← ∅, i.e., the empty graph;1

/* Step (A) Treat double edges */

for every (2)-superfactor Q in G o P with neighboring2

(2)-supervariable P do
Add a factor q representing Q to G′;3

Add two variables p, p′ representing P in G′ and4

connect them to the factor q;
end5

/* Step (B) To preserve degrees, treat now single

edges in G′ incident to double edges */

for every (1,2)-superfactor Q in G o P do6

Add two factors q, q′ representing Q to G′;7

Connect q to p and q′ to p′ where p, p′ are the8

representatives of a (2)-supervariable P in G o P
that is neighboring Q;

end9

/* Step (C) Add remaining nodes and edges to G′
*/

for all supervariables variables P and superfactor Q in10

G o P not represented in G′ so far do
Add a single variable p resp. factor q to G′;11

Connect p to all representatives of superfactor Q12

neighboring to P in G o P;
end13

LPs are equal. We take the partition P ′ to be the one in-
duced by Alg. 2. P ′ is equitable on G′ by construction: we
can go through Alg. 2 to verify that every two nodes in G′

representing the same supernode of G o P are connected
to the same number of representatives of every other su-
pernode of G o P (we omit this due to space restrictions).
Now, to show that LMAP-LP(I) has the same constraints
as LMAP-LP(I ′), we need G o P = G′ o P ′. To see that
this holds, observe that Alg. 2 connects p to q in G′ if only
if P is connected to Q in G o P: if Q is a (2)-superfactor,
P is a (2)-supervariable – q will be connected to p in Step
(A). If P is a (2)-supervariable and Q is (1, 2)-superfactor,
p and q will be connected in Step (B). If Q is (1, 2)- of a
(1)-superfactor and P is a (1)-supervariable, p and q will
be connected in Step (C). There are no other possible com-
binations. Hence, as P ′ consists of all representatives of P
and Q′ consists of all representatives of Q, P ′ and Q′ are
connected in G′ o P ′ iff P is connected to Q. Moreover,
representatives of (2)-superfactors are the only ones con-
nected to two representatives of the same supervariable in
G′, henceQ′ is connected to P ′ via a double edge inG′ oP ′
if and only ifQ is connected to P via a double edge inGoP .

Next, we argue that the objectives of the lifted LPs are
the same. Using the parameters calculated with Eq. 4,
the objective of LMAP-LP(I ′) is

∑
Q′∈P′ |Q′|θQ′µQ′ =∑

Q′∈P′ |Q′|(|Q|/|Q′|)θQµQ′ =
∑
Q′∈P′ |Q|θQµQ′ =

∑
Q∈P |Q|θQµQ. Observe that the final term is exactly the

objective of LMAP-LP(I) as given by Prop. 4. We conclude
LMAP-LP(I) = LMAP-LP(I ′). �

We have thus shown that Alg. 2 and Eq. 4 together produce
an LP-equivalent MRF. We will now show that this MRF is
the smallest LP-equivalent MRF to the original.

Theorem 8 (Minimality). Let I = (G,θ) be an Ising
model and an I ′ = (G′,θ′) be computed as above. Then
there is no other LP-Equivalent MRF with less factors or
less vertices than G′. Moreover, |V (G′)| ≤ 2|V (G o P)|
and G′ and |E(G′)| ≤ 2|E(G o P)|, i.e., the size of I ′ is at
most twice the size of the fully lifted model.

Proof. Let H be any graph with the same factor quotient
as G. Then, let Q be a (2)-superfactor in G o P adjacent to
some (2)-supervariable P . Due to equivalence, Q′ is a (2)-
superfactor in H o P ′ as well and P ′ is a (2)-supervariable.
Hence, the class P ′ ∈ P ′ must have at least two ground
variables from H . Next, let Q be a (1, 2)-factor in G o P
adjacent to a (2)-supervariable. Analogously,Q′ is a (1, 2)-
factor in H o P ′ and P ′ is a (2)-supervariable. As we have
established P ′ must have at least two ground elements in
H . Since P ′ is connected to Q′ via a single edge, the same
holds on the ground level: any p ∈ P ′ is connected to q ∈
Q′ via a single edge. This means that there are at least as
many q ∈ Q′ as there are p ∈ P ′, that is, at least two.
All other supernodes must have at least one representative.
These conditions are necessary for any LP-equivalent H .

Now, let G′ be computed from Alg. 2 and P ′ be the corre-
sponding partition. To see why G′ is minimal, observe that
G′ has exactly two representatives of any (2)-supervariable
in G o P (step 1) and exactly two representatives of any
(1, 2)-superfactor (step 2). All other supernodes have ex-
actly one representative (steps 1 and 3). Therefore, G′

meets the conditions with equality and is thus minimal. Fi-
nally, since we represent any supernode of G oP by at most
2 nodes in G′, G′ can have at most twice as many factors
and variables as G o P . �

Since Alg. 2 makes only one pass over the lifted factor
graph, the overall time to compute the LP-equivalent MRF
(which is then input to Alg. 1) is dominated by color-
refinement, which is quasi-linear in the size of G.

4 EMPIRICAL ILLUSTRATION

The empirical illustration of our theoretical results investi-
gates two questions. (Q1) Is reparametrization comparable
to lifted MAP-LPs in terms of time and quality when us-
ing LP solvers? (Q2) If so, can lifted MPLP and TRW by
reparametrization pay-off when solving MAP-LPs? And fi-
nally, (Q3) how does reparametrization behave in the pres-
ence of approximate evidence?
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Figure 5: Experimental illustration (for ease of compari-
son the first three plots have the same scales). From top
to bottom, from left to right: (a) Comparison (domain
size vs. end-to-end running time) of solving LPs using
GLPK (ground, fully lifted, and reparametrization). The
first block of domain sizes (5, 15, 25, 50) are from the
friends-smoker MLN; the second block (5, 10, . . . , 50) is
on the CORA MLN. (b) Performance of MPLP (ground vs.
reparametrization) on the same MLNs (same block struc-
ture). (c) Comparison (domain size vs. end-to-end running
time) of TRW and MPLP by reparametrization on CORA.
(d,e) Model sizes for exact evidence (“f”) and approxima-
tions of ranks 100 to 20 and running times.

To this aim we implemented the reparametrization ap-
proach on a single Linux machine (4 × 3.4 GHz cores, 32
GB main memory) using Python and C/C++. For evalu-
ation we considered three sets of MRFs. One was gener-
ated from grounding a modified version of a Markov Logic
Network (MLN) used for entity resolution on the CORA
dataset. Five different MRFs were generated by ground-
ing the model for 5, 10, 20, 30, 40 and 50 entities, hav-
ing 960, 4081, 13933, 27850, 4699 and 76274 factors re-
spectively. The second set was generated from a pairwise
version of the friends-smokers MLN [4] for 5, 15, 25 and
50 people, having 190, 1620, 4450 and 17650 factors. The
third set considers a simple fr(X, Y)⇒ (sm(X)⇔ sm(Y))
rule (converted to a pairwise MLN) where we used the
link common observations from the “Cornell” dataset as
evidence for fr. Then we computed different low-rank ap-
proximations of the evidence using [23] .

In all cases, there were only few additional factors due
to treating double edges. What is more interesting are the
running times and overall performances. Fig. 5(a) shows
the end-to-end running time for solving the corresponding
ground, (fully) lifted, and reparametrized LPs using GLPK.
As one can see, reparametrization is competitive to lifted
linear programming (LLP) in time. Actually, it can even
save time since it runs directly on the factor graph and

not on the LP matrix — which is larger than the factor
graph — for discovering symmetries. Moreover, in all cases
the same objective was achieved, that is, reparametriza-
tion does not sacrifice quality. In turn, question (Q1) can
clearly be answered affirmatively. Fig. 5(b) summarizes the
performance of MPLP on the reparametrized models. As
one can see, MPLP can be significantly faster than LLP
for solving MAP-LPs without sacrificing the objective; it
was always identical to the LP solutions. To illustrate than
one may also run other LP-based message-passing solvers,
Figs. 5(c) summarizes the performance of TRW on CORA.
As one can see, lifting TRW by reparametrization is pos-
sible and differences in time are likely due to initializa-
tion, stopping criterion, etc. In any case, question (Q2) can
clearly be answered affirmatively. All results so far show
that lifted LP-based MP solvers can be significantly faster
than generic LP solvers. Figs. 5(d,e) summarize the results
for low-rank evidence approximation. As one can see in
(d), significant reduction in model size can be achieved
even at rank 100, which in turn can lead to faster MPLP
running times (e). For each low-rank model, the ground
and the reparametrized MPLP achieved the same objective.
Plot (e), however, omits the time for performing BMF. It
can be too costly to first run BMF canceling the benefits
of lifted LP-based inference (in contrast to exact inference
as in [23]). Nevertheless, w.r.t. (Q3) these results illustrate
that evidence approximation can result in major speed-ups.

5 CONCLUSIONS

In this paper, we proved that lifted MAP-LP inference in
MRFs with symmetries can be reduced to MAP-LP infer-
ence in standard models of reduced size. In turn, we can use
any off-the-shelf MAP-LP inference algorithm — in partic-
ular approaches based on message-passing — for lifted in-
ference. This incurs no major overhead: for given evidence,
the reduced MRF is at most twice as large than the corre-
sponding fully lifted MRF. By plugging in different exist-
ing MAP-LP inference algorithms, our approach yields a
family of lifted MAP-LP inference algorithms. We illus-
trated this empirically for MPLP and tree-reweighted BP.
In fact, running MPLP yields the first provably convergent
lifted MP approach for MAP-LP relaxations. More impor-
tantly, our result suggests a novel view on lifted inference:
lifted inference can be viewed as standard inference in a
reparametrized model. Exploring this view for marginal in-
ference as well as for branch-and-bound MAP inference
approaches are the most attractive avenue for future work.
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Abstract

Gaussian processes (GP) are a powerful tool for
nonparametric regression; unfortunately, calcu-
lating the posterior variance in a standard GP
model requires time O(n2) in the size of the
training set. Previous work by Shen et al. (2006)
used a k-d tree structure to approximate the pos-
terior mean in certain GP models. We extend
this approach to achieve efficient approximation
of the posterior covariance using a tree clustering
on pairs of training points, and demonstrate sig-
nificant improvements in performance with neg-
ligible loss of accuracy.

1 INTRODUCTION

Complex Bayesian models often tie together many smaller
components, each of which must provide its output in terms
of probabilities rather than discrete predictions. Gaussian
process (GP) regression (Rasmussen and Williams, 2006)
is a natural fit for such systems, but its applications have
been limited by computational concerns: training a GP
model on n points requires O(n3) time, while computing
the posterior distribution at a test point requires O(n) and
O(n2) operations for the mean and variance respectively.

This paper focuses on the focuses on the fast evaluation of
GP posterior probabilities in a running inference system,
for which a model has already been trained. Fast runtime
performance is a common requirement for real-world sys-
tems; for example, a speech recognition system might be
trained once in the cloud, then run many times on a smart-
phone under a tight computational budget. Our particular
work is motivated by an application to nuclear test monitor-
ing: after training on historical seismic events, we want to
identify and localize new events in realtime by processing
signals from a worldwide sensor network. In this applica-
tion, as with many others, probabilities from a GP are com-
puted in the inner loop of a message-passing or MCMC

inference algorithm; this computation must be efficient if
inference is to be feasible.

Previous work has explored the use of space-partitioning
tree structures for efficient computation of GP posterior
means in models where the covariance kernel has a short
lengthscale or compact support (Shen et al., 2006). We ex-
tend this in several ways. First, we describe the product
tree data structure, along with an algorithm that uses this
structure to efficiently compute posterior covariances. This
provides what is to our knowledge the first account of GP
regression in which the major test-time operations (poste-
rior mean and covariance) run in time sublinear in the train-
ing set size, given a suitably sparse kernel matrix. We give
a novel cutoff rule, applicable to both mean and covariance
calculations, that guarantees provably bounded error. We
also extend the class of models to which tree-based meth-
ods can be efficiently applied, by showing how to include
a low-rank global component modeled either by an explicit
parametric representation or by an approximate GP with
inducing points (Snelson and Ghahramani, 2006). Finally,
we evaluate this work empirically, with results demonstrat-
ing significant speedups on synthetic and real-world data,
and in the process identify a simple method that often pro-
vides competitive performance to the more complex prod-
uct tree.

2 BACKGROUND

2.1 GP REGRESSION MODEL

We assume as training input a set of labeled points
{(xi, yi)|i = 1, . . . , n}, where we suppose that

yi = f(xi) + εi (1)

for some unknown function f(·) and i.i.d. Gaussian ob-
servation noise εi ∼ N (0, σ2

n). Treating the estimation of
f(·) as a Bayesian inference problem, we consider a Gaus-
sian process prior distribution f(·) ∼ GP (0, k), parame-
terized by a positive-definite covariance or kernel function
k(x, x′). Given a set X∗ containing m test points, we de-

613



rive a Gaussian posterior distribution f(X∗) ∼ N (µ∗,Σ∗),
where

µ∗ = K∗TK−1y y (2)

Σ∗ = K∗∗ −K∗TK−1y K∗ (3)

andKy = k(X,X)+σ2
nI is the covariance matrix of train-

ing set observations, K∗ = k(X,X∗) denotes the n ×m
matrix containing the kernel evaluated at each pair of train-
ing and test points, and similarly K∗∗ = k(X∗, X∗) gives
the kernel evaluations at each pair of test points. Details of
the derivations, along with general background on GP re-
gression, can be found in Rasmussen and Williams (2006).

In this work, we make the additional assumption that the
input points xi and test points x∗p lie in some metric space
(M, d), and that the kernel is a monotonically decreasing
function of the distance metric. Many common kernels
fit into this framework, including squared-exponential, ra-
tional quadratic, piecewise-polynomial and Matérn kernel
families; anisotropic kernels can be represented through
choice of an appropriate metric.

2.2 RELATED WORK

Tree structures such as k-d trees (Friedman et al., 1977)
form a hierarchical, multiresolution partitioning of a
dataset, and are commonly used in machine learning for
efficient nearest-neighbor queries. They have also been
adapted to speed up nonparametric regression (Moore
et al., 1997; Shen et al., 2006); the general approach is
to view the regression computation of interest as a sum
over some quantity associated with each training point,
weighted by the kernel evaluation against a test point. If
there are sets of training points having similar weight –
for example, if the kernel is very wide, if the points are
very close to each other, or if the points are all far enough
from the query to have effectively zero weight – then the
weighted sum over the set of points can be approximated by
an unweighted sum (which does not depend on the query
and may be precomputed) times an estimate of the typi-
cal weight for the group, saving the effort of examining
each point individually. This is implemented as a recur-
sion over a tree structure augmented at each node with the
unweighted sum over all descendants, so that recursion can
be cut off with an approximation whenever the weight func-
tion is shown to be suitably uniform over the current region.

This tree recursion can be thought of as an approximate
matrix-vector multiplication (MVM) operation; a related
method, the Improved Fast Gauss Transform (Morariu
et al., 2008), implements fast MVM for the special case
of the SE kernel. It is possible to accelerate GP training
by combining MVM methods with a conjugate gradient
solver, but models thus trained do not allow for the compu-
tation of predictive variances. One argument against MVM
techniques (and, by extension, the approach of this paper)

Figure 1: Cover tree decomposition of USA precipitation
measurement stations (see Section 5.3).

is that their efficiency requires shorter lengthscales than are
common in machine learning applications (Murray, 2009);
however, we have found them quite effective on datasets
which do have genuinely sparse covariance structure (e.g.,
geospatial data), or in which the longer-scale variation can
be represented by a low-rank component.

Another related approach is the use of local approxima-
tions, in which different GPs are trained in different regions
of the input space. There is some evidence that these can
provide accurate predictions which are very fast to evaluate
(Chalupka et al., 2013); however, they face boundary dis-
continuities and inaccurate uncertainty estimates if the data
do not naturally form independent clusters.

2.3 k-d VERSUS COVER TREES

Although related work (Moore et al., 1997; Shen et al.,
2006) has generally used k-d trees as the multiresolution
structure, this paper instead uses cover trees (Beygelz-
imer et al., 2006) to allow for non-Euclidean metrics. A
cover tree on n points can be constructed in O(n log n)
time, and the construction and query times scale only
with the intrinsic dimensionality of the data, allowing for
efficient nearest-neighbor queries in higher-dimensional
spaces (Beygelzimer et al., 2006). Figure 1 shows a cover-
tree decomposition of one of our test datasets.

We do not depend specifically on the cover tree algorithm;
any similar tree construction algorithm could be used, pro-
vided (a) there is a one-to-one correspondence between the
leaves of the tree and the training points xi ∈ X , and
(b) each non-leaf node n is associated with some point
xn ∈ M, such that all descendants of n are contained
within a ball of radius rn centered at xn. For example, a ball
tree (Uhlmann, 1991), or a tree created through agglomer-
ative clustering on the training points, could also satisfy
these criteria.
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initialize globals sum S ← 0, error ε← 0, leaf count κ← 0
function WEIGHTEDMETRICSUM(node n, query points (x∗

i , x∗
j ),

. tolerance εabs)
δn ← δ((x∗

i ,x
∗
j ), (n1, n2))

if n is a leaf then
S ← S + (K−1

y )n ·
(
k(d(x∗

i , n1)) · k(d(x∗
j , n2))

)

κ← κ+ 1
else
wmin ← kprod

lower (δn + rn)

wmax ← kprod
upper (max(δn − rn, 0))

εn ← 1
2 (wmax − wmin)S

Abs
n

if εn ≤ κn/(n− κ) · (εabs − ε) then
S ← S + 1

2 (wmax + wmin) · SUW
n

k ← κ+ κn
ε← ε+ εn

else
for each child c of n
sorted by descending δ((x∗

i ,x
∗
j ), (c1, c2)) do

WEIGHTEDMETRICSUM
(

c, (x∗
i ,x

∗
j ), εabs)

)

end for
end if

end if
end function

Figure 2: Recursive algorithm to computing GP covariance
entries using a product tree. Abusing notation, we use n
to represent both a tree node and the pair of points n =
(n1,n2) associated with that node.

3 EFFICIENT COVARIANCE USING
PRODUCT TREES

We now consider efficient calculation of the GP covari-
ance (3). The primary challenge is the multiplication
K∗TK−1y K∗. For simplicity of exposition, we will fo-
cus on computing the (i, j)th entry of the resulting matrix,
i.e., on the multiplication k∗i

TK−1y k∗j where k∗i denotes the
vector of kernel evaluations between the training set and the
ith test point, or equivalently the ith column of K∗. Note
that a naı̈ve implementation of this multiplication requires
O(n2) time.

We might be tempted to apply the vector multiplication
primitive of Shen et al. (2006) separately for each row of
K−1y to compute K−1y k∗j , and then once more to multi-
ply the resulting vector by k∗i . Unfortunately, this requires
n vector multiplications and thus scales (at least) linearly
in the size of the training set. Instead, we note that we
can rewrite k∗i

TK−1y k∗j as a weighted sum of the entries
of K−1y , where the weight of the (p, q)th entry is given by
k(x∗i ,xp)k(x∗j ,xq):

k∗i
TK−1y k∗j =

n∑

p=1

n∑

q=1

(K−1y )pqk(x∗i ,xp)k(x∗j ,xq). (4)

Our goal is to compute this weighted sum efficiently using
a tree structure, similar to Shen et al. (2006), except that
instead of clustering points with similar weights, we now
want to cluster pairs of points having similar weights.

To do this, we consider the product space M×M con-
sisting of all pairs of points fromM, and define a product

metric δ on this space. The details of the product metric
will depend on the choice of kernel function (section 3.2).
For the moment, we will assume an SE kernel, of the form
kSE(d) = exp(−d2), for which a natural choice is the 2-
product metric:

δ((xa,xb), (xc,xd)) =
√
d(xa,xc)2 + d(xb,xd)2,

which has the fortunate property

kSE(d(xa,xb))kSE(d(xc,xd)) = kSE(δ((xa,xb), (xc,xd))),

i.e., the property that evaluating the SE kernel in the prod-
uct space (the right hand side) gives us the correct weight
for our weighted sum (4) (the left hand side). Note that
this property is convenient but not necessary; Section 3.2
describes how to choose a product metric for several com-
mon kernels.

Now we can run any metric tree construction algorithm
(e.g., a cover tree) using the product metric to build a prod-
uct tree on all pairs of training points. At each leaf node
L, representing a pair of training points, we store the en-
try (K−1y )L corresponding to those two training points, and
at each higher-level node n we cache the unweighted sum
SUWn of these entries over all of its descendant leaf nodes,
as well as the sum of absolute values SAbsn (these cached
sums will be used to determine when to cut off recursive
calculations):

SUW
n =

∑

L∈leaves(n)

(K−1y )L (5)

SAbs
n =

∑

L∈leaves(n)

∣∣(K−1y )L
∣∣ . (6)

Given a product tree augmented in this way, the weighted-
sum calculation (4) is approximated by the WEIGHTED-
METRICSUM algorithm of Figure 2. It proceeds by a re-
cursive descent down the tree, where at each non-leaf node
n it computes upper and lower bounds on the weight of
any descendant, and applies a cutoff rule (Section 3.1) to
determine whether to continue the descent. Whenever the
descent is halted, we approximate the contribution from
leaves below n by 1

2 (wmax + wmin) · SUW
n , i.e., by the av-

erage weight times the unweighted sum. Otherwise, the
computation continues recursively over n’s children.

3.1 CUTOFF RULE

The decision of when to cut off the tree recursion is cru-
cial to correctness and performance. Many cutoff rules are
possible. For predictive mean calculation, Moore et al.
(1997) and Shen et al. (2006) maintain an accumulated
lower bound on the total overall weight, and cut off when-
ever the difference between the upper and lower weight
bounds at the current node is a small fraction of the lower
bound on the overall weight. By contrast, we introduce a
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rule (8) which takes into account the weights as well as
the entries of K−1y being summed over (since we expect
this matrix to be approximately sparse, some entries will
contribute much more to the sum than others), and which
provides a provable guarantee on approximation error not
available in the earlier work. First, at each node n we com-
pute an error bound

εn =
1

2
(wmax − wmin)SAbs

n , (7)

which we justify by the following lemma:
Lemma 1. The error introduced in approximating the sub-
tree at n by 1

2 (wmax + wmin)SUW
n is bounded by εn.

Proof. Let S+
n and S−n denote the sum of positive and

negative leaf entries under n, respectively, so SUW
n =

(S+
n + S-

n) and SAbs
n = (S+

n − S-
n). The worst case for the

approximation is if the true sum gives weight wmax to S+
n

and wmin to S-
n (or vice versa), yielding an approximation

error of∣∣∣∣
(
wmaxS

+
n + wminS

−
n
)
− wmax + wmin

2
SUW

n

∣∣∣∣ = εn.

Intuitively, we see that εn is small whenever the leaves be-
low n have nearly uniform weights, or when the total mass
of K−1y entries under n is small. This motivates our cutoff
rule

εn ≤ κn/(n− κ) · (εabs − ε), (8)

in which εabs is a user-specified bound on the absolute er-
ror of the overall computation, κn denotes the number of
leaves below n, n and κ denote respectively the total num-
ber of leaves in the tree and the leaves included thus far
in the partially computed sum, and ε =

∑
n∈C εn, where

C is the set of all intermediate nodes whose leaf sums we
have previously approximated, is a running upper bound on
the total error accumulated thus far in the sum. Intuitively,
(εabs − ε) gives the “error budget” remaining out of an ini-
tial budget of εabs; each cutoff is allowed to use a fraction
of this budget proportional to the number of leaves being
approximated. We show the following correctness result:
Theorem 1. Let T be a product tree constructed on K−1y ,
where Σ̂∗ij=K

∗∗
ij −WEIGHTEDMETRICSUM(T, (x∗i , x∗j ), εabs)

denotes the approximation returned by the tree recursion
to the true posterior covariance Σ∗ij . Then

∣∣∣Σ∗i,j − Σ̂∗i,j

∣∣∣ ≤
εabs.

Proof. By our cutoff rule (8), we proceed with the approx-
imation at n only if ε′ := εn + ε ≤ εabs, i.e. only if the new
error being introduced (bounded by Lemma 1), plus the er-
ror already accumulated, is still bounded by εabs.1 Thus at

1We have ignored the factor κn/(n−κ) here since it is always
≤ 1; this factor is included to help “pace” the computation and is
not necessary for correctness.

every step we maintain the invariant ε ≤ εabs, which estab-
lishes the result.

Remark. Although Theorem 1 bounds absolute error, we
can also apply it to bound relative error in the case of com-
puting a predictive variance that includes a noise compo-
nent. Since the noise variance σ2

n is a lower bound on the
predictive variance Σ∗ii, setting εabs = εrel·σ2

n is sufficient to
ensure that the approximation error is smaller than εrel·Σ∗ii.

Note that this cutoff rule and correctness proof can be eas-
ily back-ported into the WEIGHTEDSUM algorithm of Shen
et al. (2006), providing a bounded error guarantee for tree-
based calculations of GP posterior means as well as covari-
ances.

3.2 OTHER KERNEL FUNCTIONS

As noted above, the SE kernel has the lucky property that,
if we choose product metric δ =

√
d21 + d22, then the prod-

uct of two SE kernels is equal to the kernel of the product
metric δ:

kSE(d1)kSE(d2) = exp
(
−d21 − d22

)
= kSE(δ).

In general, however, we are not so lucky: it is not the case
that every kernel we might wish to use has a correspond-
ing product metric such that a product of kernels can be
expressed in terms of the product metric. In such cases, we
may resort to upper and lower bounds in place of comput-
ing the exact kernel value. Note that such bounds are all we
require to evaluate the error bound (7), and that when we
reach a leaf node representing a specific pair of points we
can always evaluate the exact product of kernels directly at
that node.

For example, consider the kernel kCS,0(d) = (1− d)
j
+

(taking j=bD2 c+1, where D is the input dimension); this
is a simple example of a more general class of piecewise-
polynomial compactly supported kernels (Rasmussen and
Williams, 2006) whose computational advantages are es-
pecially relevant to tree-based algorithms. Considering the
product of two such kernels,

kCS,0(d1)kCS,0(d2) = (1− (d1 + d2) + ∆)
j
+

where ∆ = d1d2 if (d1 < 1, d2 < 1) else 0

we notice that this is almost equivalent to kCS,0(δ) for the
choice of δ = d1 +d2, but with an additional pairwise term
∆. We bound this term by noting that it is maximized when
d1 = d2 = δ/2 (for δ < 2) and minimized whenever either
d1 = 0 or d2 = 0, so we have (δ/2)2 ≥ ∆ ≥ 0. This yields
the bounds kprod

lower and kprod
upper as shown in Table 1. Bounds for

other common kernels are obtained analogously in Table 1.

3.3 OPTIMIZATIONS

A naı̈ve product tree on n points will have n2 leaves, but
we can reduce this and achieve substantial speedups by
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Kernel k(d) k(d1)k(d2) δ(d1, d2) kprod
lower(δ) kprod

upper(δ)
SE exp

(
−d2

)
exp

(
−d21−d22

) √
d21+d22 exp

(
−(δ)2

)
exp

(
−(δ)2

)

γ-exponential exp (−dγ) exp
(
−dγ1−d

γ
2

) (
d
γ
1 +d

γ
2

)1/γ exp (−(δ)γ) exp (−(δ)γ)

Piecewise polynomial

CSD,q=0 , j=
⌊
D
2

⌋
+1

(1−d)j+ (1− (d1 + d2) + ∆)
j
+

where ∆ = d1d2
if (d1 < 1, d2 < 1) else 0

d1 + d2 (1−δ)j+
(

1−δ+ (δ)2

4

)j

+

Rational Quadratic
(

1+ d2

2α

)−α (
1+

d21+d22
2α

+
d21d

2
2

4α2

)−α √
d21+d22

(
1+

(δ)2

2α
+

(δ)4

16α2

)−α (
1+

(δ)2

2α

)−α

Matérn (ν = 3/2)
(
1+
√

3d
)

· exp
(
−
√

3d]
)

(
1+
√

3 (d1+d2) +3d1d2

)

· exp
(
−
√

3(d1+d2)
)

d1+d2

(
1+
√

3δ
)
· exp

(
−
√

3δ
) (

1+
√

3δ+3(δ/2)2
)
· exp(−

√
3δ)

Table 1: Bounds for products of common kernel functions, all from from Rasmussen and Williams (2006).

exploiting the structure of K−1y and of the product space
M×M:

Sparsity. If Ky is sparse, as with compactly supported
kernel functions, or can be well-approximated as sparse, as
when using standard kernels with short lengthscales, then it
can be shown thatK−1y may also be approximated as sparse
(Bickel and Lindner, 2012, sections 2 and 4.1). When this
is the case, the tree need include only those pairs (xp,xq)
for which (K−1y )pq is non-negligible.

Symmetry. Since K−1y is a symmetric matrix, it is redun-
dant to include leaves for both (xp,xq) and (xq,xp) in our
tree. Instead, we can build separate trees to compute the
diagonal and upper-triangular components of the sum, then
reuse the upper-triangle result for the lower triangle.

Factorization of product distances. In general, comput-
ing the product distance δ will usually involve two calls to
the underlying distance metric d; these can often be reused.
For example, when calculating both δ((xa,xb), (xc,xd))
and δ((xa,xe), (xc,xd)), we can reuse the value of
d(xa,xc) for both computations. This reduces the total
number of calls to the distance function during tree con-
struction from a worst-case n4 (for all pairs of pairs of
training points) to a maximum of n2, and in general much
fewer if other optimizations such as sparsity are imple-
mented as well.

Leaf binning at short distances. If all leaves below a node
n are within a kernel lengthscale of n, we cut off the tree
at n and just compute the exact weighted sum over those
leaves, avoiding the tree recursion.

4 MIXED LOCAL/GLOBAL GP
REPRESENTATIONS

In this section, we extend the GP model (1) to include both
a local and a global component g(xi), i.e.,

yi = h(xi) + εi = f(xi) + g(xi) + εi, (9)

where f is modeled by a short-lengthscale/compactly-
supported GP, and g is a global component of constant rank
(i.e., not directly dependent on n). We will show how to

efficiently calculate posteriors from such models using a
product tree.

Formally, we assume a GP of the form

h(X) ∼ N (φ(X)Tb, kf (X) + φ(X)TBφ(X)) (10)

where kf (X) is a sparse matrix, B is an m×m matrix and
b an m-dimensional vector, and φ(X) computes an n×m
feature representation where m � n. This “sparse+low
rank” formulation includes a wide range of models cap-
turing global and local structure. For example, we can
express the “explicit basis functions” model from section
2.7 of Rasmussen and Williams (2006) by letting φ(X) de-
note the basis functions H(X) and letting b, B denote the
mean and covariance of a Gaussian prior on their weights.
Similarly, the CS+FIC model given by Vanhatalo and Ve-
htari (2008) may be represented2 by taking φ(X) = Ku,n,
B = K−1u,u, b = 0, and letting kf (X) absorb the diagonal
term Λ. Other approximate GP models for global variation
(e.g., Quiñonero-Candela and Rasmussen, 2005; Snelson
and Ghahramani, 2007; Rahimi and Recht, 2007; Vedaldi
and Zisserman, 2010) can also be expressed in this form.

Given any model in the form of Eqn. (10), the posterior dis-
tribution h(X∗) ∼ N (µ′∗,Σ

′
∗) can be derived (Rasmussen

and Williams, 2006) as

µ′∗ = φ∗T β̄ +K∗TK−1y (y − φ∗β̄) (11)

Σ′∗ = K∗∗ −K∗TK−1y K∗

+RT (B−1 + φK−1y φT )R
(12)

where we let φ = φ(X) and φ∗ = φ(X∗), and we
have β̄ = (B−1 + φK−1y φT )−1(φK−1y y + B−1b) and
R = φ∗ − φ(X)K−1y K∗. Section 2.7 of Rasmussen and
Williams (2006) gives further details.

4.1 EFFICIENT OPERATIONS IN SPARSE+LOW
RANK MODELS

Calculating the posterior given by (11, 12) is a straight-
forward extension of the standard case. The predictive

2Here the right side of each expression follows the notation of
Vanhatalo and Vehtari.
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(a) As a function of input density for a fixed-size (5000
points) training set, with error bars at the 10th to 90th per-
centiles.

(b) As a function of training set size with constant density
v = 5.

Figure 3: Mean times to compute posterior variance on 2D synthetic data using a piecewise-polynomial CS2,2 kernel.

mean (11) can be accommodated within the framework of
Shen et al. (2006) using a tree representation of the vector
K−1y

(
y − φ∗T β̄

)
, then adding in the easily evaluated para-

metric component φ∗T β̄. In the covariance (12) we can use
a product tree to approximate K∗TK−1y K∗ as described
above; of the remaining terms, β̄ and B−1 + φK−1y φT can
be precomputed at training time, and φ∗ and K∗∗ don’t de-
pend on the training set. This leaves φK−1y K∗ as the one
remaining challenge; we note that this quantity can be com-
puted efficiently using m applications per test point of the
vector multiplication primitive from Shen et al. (2006), re-
using the same tree structure to multiply each column of
K∗ by each row of φK−1y . Thus, the full posterior distri-
bution at a test point can be calculated efficiently with no
explicit dependence on n (i.e., with no direct access to the
training points except through space-partitioning tree struc-
tures).

5 EVALUATION

We compare the use of a product tree (PT) for predictive
variance calculation with several alternatives:

Direct: sparse matrix multiplication, using a sparse repre-
sentation of K−1y and dense representation of k∗i .

Hybrid Sparse (HS): sparse matrix multiplication, using a
sparse representation of k∗i constructed by querying a cover
tree for all training points within distance r of the query
point x∗i , where r is chosen such that k(r′) is negligible for
r′ > r, and then filling in only those entries of k∗i deter-
mined to be non-negligible. Since all our experiments in-
volve kernels with compact support, we simply set r equal
to the kernel lengthscale.

Hybrid Dense (HD):3 dense matrix multiplication, using
only those entries ofK−1y that correspond to training points
within distance r of the query point. These training points
are identified using a cover tree, as above, and entries of
K−1y are retrieved from a hash table.

We do not show a comparison to the naı̈ve dense matrix
approach, since this is generally slower by orders of mag-
nitude on the datasets we consider.

Our product tree implementation is a Python extension
written in C++, based on the cover tree implementation of
Beygelzimer et al. (2006) and implementing the optimiza-
tions from Section 3.3. In all experiments we set the ap-
proximation parameter εrel to ensure an approximation er-
ror of less than 0.1% of the exact variance. All sparse ma-
trix multiplications are in CSR format using SciPy’s sparse
routines; we impose a sparsity threshold of 10−8 such that
any entry less than the threshold is set to zero. Code to
reproduce all experiments, along with the datasets, is in-
cluded in the supplementary materials.

5.1 SYNTHETIC DATA

Figures 3a and 3b compare our methods on a simple two-
dimensional synthetic data set, consisting of points sam-
pled uniformly at random from the unit square. We train a
GP on n such points and then measure the mean time per
point to compute the predictive variance at 1000 random
test points. The GP uses a piecewise-polynomial CS2,2

kernel with observation noise σ2
n = 1.0 and lengthscale

` =
√
vπ/n, where v is a parameter indicating the average

number of training points within a one-lengthscale ball of

3We are grateful to Iain Murray for suggesting this approach
for comparison.
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(a) Clumpy data with σ = 0.01, with a ball of covariance
lengthscale 1√

10π
overlayed.

(b) Mean times to compute posterior variance on data of vary-
ing clumpiness, using a piecewise-polynomial CS2,2 kernel.

Figure 4: HD versus PT on clumpy data.

a random query point.

We see from Figure 3a that the hybrid dense method per-
forms best when the kernel lengthscale is extremely short,
followed by the product tree; in the most extreme cases
these methods outperform the alternatives by an order of
magnitude. However, performance degrades as the kernel
lengthscale increases.

Figure 3b examines the scaling behavior of the algorithms
in a relatively sparse setting, v = 5, chosen to allow the
tractable inversion of large kernel matrices. Here we see
that the direct calculation scales quite steeply (though lin-
early: the runtime at n = 160000 is approximately 15ms)
with training size due to the need to explicitly compute
all n entries of k∗i . The hybrid sparse calculation avoids
this bottleneck and is significantly more efficient, but its
scaling is ultimately also linear with n, an inherent limi-
tation of sparse matrix multiplication (Bank and Douglas,
1993) since it does not have access to the geometry of the
data. By contrast, in this sparse setting the hybrid dense
and product tree approaches remain efficient even for very
large datasets, with a small constant-factor advantage for
the hybrid dense method.

5.2 CLUMPINESS

The strong performance in the previous experiments of the
hybrid dense method, relative to the product tree, is due to
the uniformity of the training data. With no natural clus-
ters, the only available optimization is to discard faraway
points. The product tree would be expected to perform bet-
ter when the data are ‘clumpy’, allowing it to merge kernel
evaluations from nearby points. This is explored in Fig-
ure 4b, which compares the two methods on a synthetic
dataset of 5000 points, sampled from a mixture of 50 Gaus-

sians each with covariance σ2I for varying clumpiness σ.
As expected, the product tree is fastest when the data are
tightly clustered and many points can be merged. Figure 4a
shows an example of a dataset at σ=0.01, the approximate
’crossover’ point at which the lower constant factor of the
hybrid dense method begins to outweigh the advantages of
the product tree.

5.3 REAL DATA

We evaluate the performance of our methods on the follow-
ing datasets, shown in Table 2:

seismic: 20000 travel-time residuals between observed P-
wave travel times to the seismic array in Alice Springs,
Australia, and the times predicted by a one-dimensional
IASPEI91 model (Kennett and Engdahl, 1991), indexed by
latitude/longitude and depth of the source event.

snow: 20000 observations of water content of California
snow pack recorded daily at 128 stations from November
1, 2011 to June 1, 2012, indexed by date, latitude/longitude
and elevation. Collected from http://cdec.water.
ca.gov/queryCSV.html.

precip: shown in Figure 1, total annual precipitation
recorded in 1995 by each of 5775 stations in the continental
US, indexed by latitude, longitude, and elevation (Vanhat-
alo and Vehtari, 2008).

tco: Total column ozone as recorded over the Earth’s sur-
face by the NIMBUS-7/TOMS satellite on October 1, 1998
(Park et al., 2011). Our experiments use a random sample
of 20000 from the full 48331 measurements.

housing: Data from the 1990 California census, as used by
Shen et al. (2006). We predict the median income of each
block group as a function of median age and median house
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value.

Table 3 compares, for each dataset, the performance of an
SE kernel to that of a piecewise-polynomial, compactly-
supported kernel CSD,2 with a hand-selected number of
FIC inducing points capturing global variation. The goal
here is to show that the CS+FIC models, which are well-
suited for fast tree-based calculations at test time, are a
reasonable modeling choice even for purely predictive rea-
sons. Model quality is measured by the Standardized Mean
Squared Error (SMSE), i.e., the squared error divided by
the squared error of the trivial predictor that just predicts
the mean of the training set, and Mean Standardized Log
Loss (MSLL), obtained by averaging − log p(y∗i |x∗i , X,y)
over the test set and subtracting the same score for a triv-
ial model which always predicts the mean and variance of
the training set. Hyperparameters for each model were ob-
tained by maximizing the marginal likelihood over a ran-
dom subset of 5000 training points using a truncated New-
ton method; a prior was used to encourage short length-
scales for the CS components of the CS+FIC models. Note
that, for each of the datasets considered in this paper, the
CS+FIC model provides better posterior probability esti-
mates (lower MSLL) than an SE model.4

In Table 4 we show, for each method and dataset, the mean
and standard deviation of posterior variance computation
time evaluated over the test set. Here the HS, HD, and PT
methods use the tree-optimized FIC calculations from Sec-
tion 4.1, while the Direct and HSN methods use a naive
FIC calculation; the latter is included explicitly for com-
parison with the tree-optimized version. Interestingly, the
hybrid dense calculation is quickest in every case, some-
times tied by the product tree, suggesting that these real
datasets do not possess the degree of clumpiness necessary
for the product tree to dominate (Table 5 directly compares
the number of terms used by the two method, showing that
the product tree succeeds in merging a significant number
of points only on the housing dataset). Both the product
tree and the hybrid dense method are generally faster than
the hybrid sparse method, with the exception of the US pre-
cipitation data in which the relative fullness of the inverse

4The SE model may still be superior in many cases, of course.
For example, we experimented with the well-known SARCOS in-
verse kinematics dataset but were unable to find a CS+FIC model
that was competitive with the SE baseline.

d ntrain ntest tbuild

seismic 3 16000 4000 4.9s
snow 4 15000 5000 4.2s
precip 3 5000 775 23.0s
tco 2 15000 5000 2.2s
housing 2 18000 2000 3.3s

Table 2: Datasets, with product tree construction times.

model K−1
y % SMSE MSLL

seismic CS+FIC (20) 0.6% 0.82 -0.20
SE 33.9% 0.84 -0.11

snow CS+FIC (20) 0.8% 0.0030 -2.91
SE 36.3% 0.0097 -2.31

precip CS+FIC (20) 45.3% 0.129 -1.17
SE 50.2% 0.125 -1.06

tco CS+FIC (90) 0.4% 0.041 -1.63
SE 34.6% 0.054 -1.45

housing CS+FIC (20) 0.5% 0.83 -0.18
SE 100% 0.80 -0.086

Table 3: Predictive performance of compactly-supported
and squared-exponential kernels on the test datasets.
Smaller is better for both SMSE and MSLL.

kernel matrix for that model (Table 3) greatly increases the
size of the product tree. Comparing HS to HSN , we see
that the tree-optimized FIC calculation provides significant
speedups on all datasets except for the precipitation data,
with an especially significant speedup for the tco data
which uses 90 inducing points.

6 CONCLUSION AND FUTURE WORK

This paper introduces the product tree, a method for effi-
cient adaptive calculation of GP covariances using a mul-
tiresolution clustering of pairs of training points. We em-
pirically evaluate the performance of several such methods
and find that a simple heuristic that discards faraway train-
ing points (the hybrid dense method described above) may
yield the best performance on many real datasets. This fol-
lows Murray (2009), who found that tree-based methods
are often unable to effectively merge points, though we do
identify a regime of clustered data in which the product
tree has an advantage. Other contributions of this paper in-
clude a cutoff rule with provable error bounds, applicable
to both mean and covariance calculations on trees, and a
description of efficient calculation in GP models incorpo-
rating both sparse and low-rank components, showing how
such models can model global-scale variation while main-
taining the efficiency of short-lengthscale GPs.

A limitation of all of the approaches considered in this pa-
per is the need to invert the kernel matrix during training;
this can be difficult for large problems. One avenue for
future work could be an iterative factorization ofKy analo-
gous to the CG training performed by MVM methods (Shen
et al., 2006; Gray, 2004; Morariu et al., 2008).

Although our work has been focused primarily on low-
dimensional applications, the use of cover trees instead of
k-d trees ought to enable an extension to higher dimen-
sions. We are not aware of previous work applying tree-
based regression algorithms to high-dimensional data, but
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Direct (ms) HSN (ms) HS (ms) HD (ms) PT (ms)
seismic 13.1 ± 1.1 4.5 ± 0.9 2.0 ± 1.6 1.5 ± 2.7 1.6 ± 2.4
precip 45.0 ± 2.0 5.0 ± 1.5 5.7 ± 2.3 3.0 ± 1.0 7.3 ± 3.4
snow 13.0 ± 1.0 4.3 ± 0.6 1.6 ± 0.4 0.9 ± 0.5 1.0 ± 0.5
tco 19.4 ± 4.9 17.4 ± 6.4 2.7 ± 1.2 1.7 ± 0.2 1.7 ± 0.5
housing 12.2 ± 1.0 4.9 ± 0.8 1.5 ± 0.3 0.8 ± 0.3 0.8 ± 0.3

Table 4: Time to compute posterior variance of a CS+FIC model at points from the test set: mean ± standard deviation.
HD PT

seismic 6912 6507
precip 21210 22849
snow 1394 1374
tco 169 177
housing 1561 670

Table 5: Mean number of nonzero terms in the approximate weighted sums computed at test points.

as high-dimensional covariance matrices are often sparse,
this may be a natural fit. For high-dimensional data that
do not lie on a low-dimensional manifold, other nearest-
neighbor techniques such as locality-sensitive hashing (An-
doni and Indyk, 2008) may have superior properties to tree
structures; the adaptation of such techniques to GP regres-
sion is an interesting open problem.
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Abstract

Communication costs, resulting from synchro-
nization requirements during learning, can
greatly slow down many parallel machine
learning algorithms. In this paper, we present
a parallel Markov chain Monte Carlo (MCMC)
algorithm in which subsets of data are pro-
cessed independently, with very little com-
munication. First, we arbitrarily partition
data onto multiple machines. Then, on each
machine, any classical MCMC method (e.g.,
Gibbs sampling) may be used to draw samples
from a posterior distribution given the data
subset. Finally, the samples from each ma-
chine are combined to form samples from the
full posterior. This embarrassingly parallel
algorithm allows each machine to act inde-
pendently on a subset of the data (without
communication) until the final combination
stage. We prove that our algorithm generates
asymptotically exact samples and empirically
demonstrate its ability to parallelize burn-in
and sampling in several models.

1 Introduction

Markov chain Monte Carlo (MCMC) methods are pop-
ular tools for performing approximate Bayesian infer-
ence via posterior sampling. One major benefit of these
techniques is that they guarantee asymptotically exact
recovery of the posterior distribution as the number
of posterior samples grows. However, MCMC meth-
ods may take a prohibitively long time, since for N
data points, most methods must perform O(N) opera-
tions to draw a sample. Furthermore, MCMC methods
might require a large number of “burn-in” steps before
beginning to generate representative samples. Further
complicating matters is the issue that, for many big
data applications, it is necessary to store and process

data on multiple machines, and so MCMC must be
adapted to run in these data-distributed settings.

Researchers currently tackle these problems indepen-
dently, in two primary ways. To speed up sampling,
multiple indepedent chains of MCMC can be run in
parallel [20, 11, 13]; however, each chain is still run on
the entire dataset, and there is no speed-up of the burn-
in process (as each chain must still complete the full
burn-in before generating samples). To run MCMC
when data is partitioned among multiple machines,
each machine can perform computation that involves a
subset of the data and exchange information at each
iteration to draw a sample [10, 14, 18]; however, this re-
quires a significant amount of communication between
machines, which can greatly increase computation time
when machines wait for external information [1, 7].

We aim to develop a procedure to tackle both prob-
lems simultaneously, to allow for quicker burn-in and
sampling in settings where data are partitioned among
machines. To accomplish this, we propose the following:
on each machine, run MCMC on only a subset of the
data (independently, without communication between
machines), and then combine the samples from each
machine to algorithmically construct samples from the
full-data posterior distribution. We’d like our proce-
dure to satisfy the following four criteria:

1. Each machine only has access to a portion of the
data.

2. Each machine performs MCMC independently, with-
out communicating (i.e. “embarrassingly parallel”).

3. Each machine can use any type of MCMC to gener-
ate samples.

4. The combination procedure yields provably asymp-
totically exact samples from the full-data posterior.

The third criterion allows existing MCMC algorithms
or software packages to be run directly on subsets of the
data—the combination procedure then acts as a post-
processing step to transform the samples to the correct
distribution. Note that this procedure is particularly
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suitable for use in a MapReduce [4] framework. Also
note that, unlike current strategies, this procedure does
not involve multiple “duplicate” chains (as each chain
uses a different portion of the data and samples from
a different posterior distribution), nor does it involve
parallelizing a single chain (as there are multiple chains
operating independently). We will show how this allows
our method to, in fact, parallelize and greatly reduce
the time required for burn-in.

In this paper we will (1) introduce and define the sub-
posterior density—a modified posterior given a subset
of the data—which will be used heavily, (2) present
methods for the embarrassingly parallel MCMC and
combination procedure, (3) prove theoretical guaran-
tees about the samples generated from our algorithm,
(4) describe the current scope of the presented method
(i.e. where and when it can be applied), and (5) show
empirical results demonstrating that we can achieve
speed-ups for burn-in and sampling while meeting the
above four criteria.

2 Embarrassingly Parallel MCMC

The basic idea behind our method is to partition a set of
N i.i.d. data points xN = {x1, · · · , xN} into M subsets,
sample from the subposterior—the posterior given a
data subset with an underweighted prior—in parallel,
and then combine the resulting samples to form samples
from the full-data posterior p(θ|xN ), where θ ∈ Rd

and p(θ|xN ) ∝ p(θ)p(xN |θ) = p(θ)
∏N
i=1 p(xi|θ).

More formally, given data xN partitioned into M sub-
sets {xn1 , . . . , xnM }, the procedure is:

1. For m = 1, . . . ,M (in parallel):
Sample from the subposterior pm, where

pm(θ) ∝ p(θ) 1
M p(xnm |θ). (1)

2. Combine the subposterior samples to produce sam-
ples from an estimate of the subposterior density
product p1···pM , which is proportional to the full-
data posterior, i.e. p1···pM (θ) ∝ p(θ|xN ).

We want to emphasize that we do not need to iterate
over these steps and the combination stage (step 3) is
the only step that requires communication between ma-
chines. Also note that sampling from each subposterior
(step 2) can typically be done in the same way as one
would sample from the full-data posterior. For exam-
ple, when using the Metropolis-Hastings algorithm, one

would compute the likelihood ratio as p(θ∗)
1
M p(xnm |θ∗)

p(θ)
1
M p(xnm |θ)

instead of p(θ
∗)p(xN |θ∗)

p(θ)p(xN |θ) , where θ∗ is the proposed move.

In the next section, we show how the combination stage
(step 3) is carried out to generate samples from the
full-data posterior using the subposterior samples.

3 Combining Subposterior Samples

Our general idea is to combine the subposterior sam-
ples in such a way that we are implicitly sampling
from an estimate of the subposterior density product
function ̂p1···pM (θ). If our density product estimator
is consistent, then we can show that we are drawing
asymptotically exact samples from the full posterior.
Further, by studying the estimator error rate, we can
explicitly analyze how quickly the distribution from
which we are drawing samples is converging to the
true posterior (and thus compare different combination
algorithms).

In the following three sections we present procedures
that yield samples from different estimates of the den-
sity product. Our first example is based on a simple
parametric estimator motivated by the Bernstein-von
Mises theorem [12]; this procedure generates approx-
imate (asymptotically biased) samples from the full
posterior. Our second example is based on a nonpara-
metric estimator, and produces asymptotically exact
samples from the full posterior. Our third example is
based on a semiparametric estimator, which combines
beneficial aspects from the previous two estimators
while also generating asymptotically exact samples.

3.1 Approximate posterior sampling with a
parametric estimator

The first method for forming samples from the full
posterior given subposterior samples involves using
an approximation based on the Bernstein-von Mises
(Bayesian central limit) theorem, an important result in
Bayesian asymptotic theory. Assuming that a unique,
true data-generating model exists and is denoted θ0,
this theorem states that the posterior tends to a normal
distribution concentrated around θ0 as the number
of observations grows. In particular, under suitable
regularity conditions, the posterior P (θ|xN ) is well
approximated by Nd(θ0, F−1N ) (where FN is the fisher
information of the data) when N is large [12]. Since we
aim to perform posterior sampling when the number of
observations is large, a normal parametric form often
serves as a good posterior approximation. A similar
approximation was used in [2] in order to facilitate fast,
approximately correct sampling. We therefore estimate
each subposterior density with p̂m(θ) = Nd(θ|µ̂m, Σ̂m)

where µ̂m and Σ̂m are the sample mean and covariance,
respectively, of the subposterior samples. The product
of the M subposterior densities will be proportional
to a Gaussian pdf, and our estimate of the density
product function p1···pM (θ) ∝ p(θ|xN ) is

̂p1···pM (θ) = p̂1···p̂M (θ) ∝ Nd
(
θ|µ̂M , Σ̂M

)
,
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where the parameters of this distribution are

Σ̂M =

(
M∑

m=1

Σ̂−1m

)−1
(2)

µ̂M = Σ̂M

(
M∑

m=1

Σ̂−1m µ̂m

)
. (3)

These parameters can be computed quickly and, if
desired, online (as new subposterior samples arrive).

3.2 Asymptotically exact posterior sampling
with nonparametric density product
estimation

In the previous method we made a parametric assump-
tion based on the Bernstein-von Mises theorem, which
allows us to generate approximate samples from the
full posterior. Although this parametric estimate has
quick convergence, it generates asymptotically biased
samples, especially in cases where the posterior is par-
ticularly non-Gaussian. In this section, we develop a
procedure that implicitly samples from the product
of nonparametric density estimates, which allows us
to produce asymptotically exact samples from the full
posterior. By constructing a consistent density product
estimator from which we can generate samples, we en-
sure that the distribution from which we are sampling
converges to the full posterior.

Given T samples1 {θmtm}Ttm=1 from a subposterior pm,
we can write the kernel density estimator p̂m(θ) as,

p̂m(θ) =
1

T

T∑

tm=1

1

hd
K

(‖θ − θmtm‖
h

)

=
1

T

T∑

tm=1

Nd(θ|θmtm , h2Id),

where we have used a Gaussian kernel with bandwidth
parameter h. After we have obtained the kernel density
estimator p̂m(θ) for M subposteriors, we define our
nonparametric density product estimator for the full
posterior as

̂p1···pM (θ) = p̂1···p̂M (θ)

=
1

TM

M∏

m=1

T∑

tm=1

Nd(θ|θmtm , h2Id)

∝
T∑

t1=1

···
T∑

tM=1

wt· Nd
(
θ
∣∣∣θ̄t·,

h2

M
Id

)
. (4)

1For ease of description, we assume each machine gener-
ates the same number of samples, T . In practice, they do
not have to be the same.

This estimate is the probability density function (pdf)
of a mixture of TM Gaussians with unnormalized mix-
ture weights wt·. Here, we use t· = {t1, . . . , tM} to de-
note the set of indices for the M samples {θ1t1 , . . . , θMtM }
(each from a separate machine) associated with a given
mixture component, and we define

θ̄t· =
1

M

M∑

m=1

θmtm (5)

wt· =

M∏

m=1

Nd
(
θmtm |θ̄t·, h2Id

)
. (6)

Although there are TM possible mixture components,
we can efficiently generate samples from this mixture
by first sampling a mixture component (based on its
unnormalized component weight wt·) and then sam-
pling from this (Gaussian) component. In order to
sample mixture components, we use an independent
Metropolis within Gibbs (IMG) sampler. This is a
form of MCMC, where at each step in the Markov
chain, a single dimension of the current state is pro-
posed (i.e. sampled) independently of its current value
(while keeping the other dimensions fixed) and then
is accepted or rejected. In our case, at each step, a
new mixture component is proposed by redrawing one
of the M current sample indices tm ∈ t· associated
with the component uniformly and then accepting or
rejecting the resulting proposed component based on
its mixture weight. We give the IMG algorithm for
combining subposterior samples in Algorithm 1.2

In certain situations, Algorithm 1 may have a low
acceptance rate and therefore may mix slowly. One
way to remedy this is to perform the IMG combina-
tion algorithm multiple times, by first applying it to
groups of M̃ < M subposteriors and then applying
the algorithm again to the output samples from each
initial application. For example, one could begin by
applying the algorithm to all M

2 pairs (leaving one
subposterior alone if M is odd), then repeating this
process—forming pairs and applying the combination
algorithm to pairs only—until there is only one set of
samples remaining, which are samples from the density
product estimate.

3.3 Asymptotically exact posterior sampling
with semiparametric density product
estimation

Our first example made use of a parametric estimator,
which has quick convergence, but may be asymptot-
ically biased, while our second example made use of

2Again for simplicity, we assume that we generate T
samples to represent the full posterior, where T is the
number of subposterior samples from each machine.

625



Algorithm 1 Asymptotically Exact Sampling via Non-
parametric Density Product Estimation

Input: Subposterior samples: {θ1t1}Tt1=1 ∼ p1(θ), . . . ,
{θMtM }TtM=1 ∼ pM (θ)

Output: Posterior samples (asymptotically, as
T →∞): {θi}Ti=1 ∼ p1···pM (θ) ∝ p(θ|xN )

1: Draw t· = {t1, . . . , tM} iid∼ Unif({1, . . . , T})
2: for i = 1 to T do
3: Set h← i−1/(4+d)

4: for m = 1 to M do
5: Set c· ← t·
6: Draw cm ∼ Unif({1, . . . , T})
7: Draw u ∼ Unif([0, 1])
8: if u < wc·/wt· then
9: Set t· ← c·

10: end if
11: end for
12: Draw θi ∼ Nd(θ̄t·, h

2

M Id)
13: end for

a nonparametric estimator, which is asymptotically
exact, but may converge slowly when the number of di-
mensions is large. In this example, we implicitly sample
from a semiparametric density product estimate, which
allows us to leverage the fact that the full posterior has
a near-Gaussian form when the number of observations
is large, while still providing an asymptotically unbi-
ased estimate of the posterior density, as the number
of subposterior samples T →∞.

We make use of a semiparametric density estimator
for pm that consists of the product of a parametric
estimator f̂m(θ) (in our case Nd(θ|µ̂m, Σ̂m) as above)
and a nonparametric estimator r̂(θ) of the correction

function r(θ) = pm(θ)/f̂m(θ) [6]. This estimator gives a
near-Gaussian estimate when the number of samples is
small, and converges to the true density as the number
of samples grows. Given T samples {θmtm}Ttm=1 from a
subposterior pm, we can write the estimator as

p̂m(θ) = f̂m(θ) r̂(θ)

=
1

T

T∑

tm=1

1

hd
K

(‖θ − θmtm‖
h

)
f̂m(θ)

f̂m(θmtm)

=
1

T

T∑

tm=1

Nd(θ|θmtm , h2Id)Nd(θ|µ̂m, Σ̂m)

Nd(θmtm |µ̂m, Σ̂m)
,

where we have used a Gaussian kernel with bandwidth
parameter h for the nonparametric component of this
estimator. Therefore, we define our semiparametric

density product estimator to be

̂p1···pM (θ) = p̂1···p̂M (θ)

=
1

TM

M∏

m=1

T∑

tm=1

Nd(θ|θmtm , hId)Nd(θ|µ̂m, Σ̂m)

hdNd(θmtm |µ̂m, Σ̂m)

∝
T∑

t1=1

···
T∑

tM=1

Wt· Nd (θ|µt·,Σt·) .

This estimate is proportional to the pdf of a mixture
of TM Gaussians with unnormalized mixture weights,

Wt· =
wt· Nd

(
θ̄t·|µ̂M , Σ̂M + h

M Id

)

∏M
m=1Nd(θmtm |µ̂m, Σ̂m)

,

where θ̄t· and wt· are given in Eqs. 5 and 6. We can
write the parameters of a given mixture component
Nd(θ|µt·,Σt·) as

Σt· =

(
M

h
Id + Σ̂−1M

)−1
,

µt· = Σt·

(
M

h
Idθ̄t· + Σ̂−1M µ̂M

)
,

where µ̂M and Σ̂M are given by Eq. 2 and 3. We can
sample from this semiparametric estimate using the
IMG procedure outlined in Algorithm 1, replacing the
component weights wt· with Wt· and the component
parameters θ̄t· and h

M Id with µt· and Σt·.

We also have a second semiparametric procedure that
may give higher acceptance rates in the IMG algo-
rithm. We follow the above semiparametric procedure,
where each component is a normal distribution with
parameters µt· and Σt·, but we use the nonparametric
component weights wt· instead of Wt·. This procedure
is also asymptotically exact, since the semiparamet-
ric component parameters µt· and Σt· approach the
nonparametric component parameters θ̄t· and h

M Id as
h→ 0, and thus this procedure tends to the nonpara-
metric procedure given in Algorithm 1.

4 Method Complexity

Given M data subsets, to produce T samples in d di-
mensions with the nonparametric or semiparametric
asymptotically exact procedures (Algorithm 1) requires
O(dTM2) operations. The variation on this algorithm
that performs this procedure M−1 times on pairs of
subposteriors (to increase the acceptance rate; detailed
in Section 3.2) instead requires only O(dTM) opera-
tions.

We have presented our method as a two step procedure,
where first parallel MCMC is run to completion, and
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then the combination algorithm is applied to the M
sets of samples. We can instead perform an online
version of our algorithm: as each machine generates a
sample, it immediately sends it to a master machine,
which combines the incoming samples3 and performs
the accept or reject step (Algorithm 1, lines 3-12). This
allows the parallel MCMC phase and the combination
phase to be performed in parallel, and does not re-
quire transfering large volumes of data, as only a single
sample is ever transferred at a time.

The total communication required by our method is
transferring O(dTM) scalars (T samples from each
of M machines), and as stated above, this can be
done online as MCMC is being carried out. Further,
the communication is unidirectional, and each machine
does not pause and wait for any information from other
machines during the parallel sampling procedure.

5 Theoretical Results

Our second and third procedures aim to draw asymp-
totically exact samples by sampling from (fully or par-
tially) nonparametric estimates of the density product.
We prove the asymptotic correctness of our estimators,
and bound their rate of convergence. This will ensure
that we are generating asymptotically correct samples
from the full posterior as the number of samples T
from each subposterior grows.

5.1 Density product estimate convergence
and risk analysis

To prove (mean-square) consistency of our estimator,
we give a bound on the mean-squared error (MSE), and
show that it tends to zero as we increase the number of
samples drawn from each subposterior. To prove this,
we first bound the bias and variance of the estimator.
The following proofs make use of similar bounds on
the bias and variance of the nonparametric and semi-
parametric density estimators, and therefore the theory
applies to both the nonparametric and semiparametric
density product estimators.

Throughout this analysis, we assume that we have T
samples {θmtm}Ttm=1 ⊂ X ⊂ Rd from each subposterior
(m = 1, . . . ,M), and that h ∈ R+ denotes the band-
width of the nonparametric density product estimator
(which is annealed to zero as T →∞ in Algorithm 1).
Let Hölder class Σ(β, L) on X be defined as the set of
all ` = bβc times differentiable functions f : X → R
whose derivative f (l) satisfies

|f (`)(θ)− f (`)(θ′)| ≤ L |θ − θ′|β−` for all θ, θ′ ∈ X .
3For the semiparametric method, this will involve an

online update of mean and variance Gaussian parameters.

We also define the class of densities P(β, L) to be

P(β, L) =

{
p ∈ Σ(β, L)

∣∣∣ p ≥ 0,

∫
p(θ)dθ = 1

}
.

We also assume that all subposterior densities pm are
bounded, i.e. that there exists some b > 0 such that
pm(θ) ≤ b for all θ ∈ Rd and m ∈ {1, . . . ,M}.
First, we bound the bias of our estimator. This shows
that the bias tends to zero as the bandwidth shrinks.

Lemma 5.1. The bias of the estimator ̂p1···pM (θ) sat-
isfies

sup
p1,...,pM∈P(β,L)

∣∣E
[
̂p1···pM (θ)

]
− p1···pM (θ)

∣∣ ≤
M∑

m=1

cmh
mβ

for some c1, . . . , cM > 0.

Proof. For all p1, . . . , pM ∈ P(β, L),

|E
[
̂p1···pM

]
− p1···pM | = |E [p̂1···p̂M ]− p1···pM |
= |E [p̂1]···E [p̂M ]− p1···pM |
≤
∣∣(p1 + c̃1h

β)···(pM + c̃Mh
β)− p1···pM

∣∣
≤
∣∣c1hβ + . . .+ cMh

Mβ
∣∣

≤
∣∣c1hβ

∣∣+ . . .+
∣∣cMhMβ

∣∣

=
M∑

m=1

cmh
mβ

where we have used the fact that |E [p̂m]− p| ≤ c̃mhβ
for some c̃m > 0.

Next, we bound the variance of our estimator. This
shows that the variance tends to zero as the number of
samples grows large and the bandwidth shrinks.

Lemma 5.2. The variance of the estimator ̂p1···pM (θ)
satisfies

sup
p1,...,pM∈P(β,L)

V
[
̂p1···pM (θ)

]
≤

M∑

m=1

(
M

m

)
cm

Tmhdm

for some c1, . . . , cM > 0 and 0 < h ≤ 1.

Proof. For all p1, . . . , pM ∈ P(β, L),

V[ ̂p1···pM ] = E
[
p̂21
]
···E

[
p̂2M
]
− E [p̂1]

2···E [p̂M ]
2

=

(
M∏

m=1

V [p̂m] + E [p̂m]
2

)
−
(

M∏

m=1

E [p̂m]
2

)

≤
M−1∑

m=0

(
M

m

)
c̃mcM−m

TM−mhd(M−m)

≤
M∑

m=1

(
M

m

)
cm

Tmhdm
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where we have used the facts that V [p̂m] ≤ c
Thd

for

some c > 0 and E [p̂m]
2 ≤ c̃ for some c̃ > 0.

Finally, we use the bias and variance bounds to bound
the MSE, which shows that our estimator is consistent.

Theorem 5.3. If h � T−1/(2β+d), the mean-squared
error of the estimator ̂p1···pM (θ) satisfies

sup
p1,...,pM∈P(β,L)

E
[∫ (

̂p1···pM (θ)− p1···pM (θ)
)2
dθ

]

≤ c

T 2β/(2β+d)

for some c > 0 and 0 < h ≤ 1.

Proof. For all p1, . . . , pM ∈ P(β, L), using the fact that
the mean-squared error is equal to the variance plus
the bias squared, we have that

E
[∫ (

̂p1···pM (θ)− p1···pM (θ)
)2
dθ

]

≤
(

M∑

m=1

cmh
mβ

)2

+
M∑

m=1

(
M

m

)
c̃m

Tmhdm

≤ kT−2β/(2β+d) +
k̃

T 1−d(2β+d) (for some k, k̃ > 0)

≤ c

T 2β/(2β+d)

for some c1, . . . , cM > 0 and c̃1, . . . , c̃M > 0.

6 Method Scope

The theoretical results and algorithms in this paper
hold for posterior distributions over finite-dimensional
real spaces. These include generalized linear models
(e.g. linear, logistic, or Poisson regression), mixture
models with known weights, hierarchical models, and
(more generally) finite-dimensional graphical models
with unconstrained variables. This also includes both
unimodal and multimodal posterior densities (such as
in Section 8.2). However, the methods and theory
presented here do not yet extend to cases such as infi-
nite dimensional models (e.g. nonparametric Bayesian
models [5]) nor to distributions over the simplex (e.g.
topics in latent Dirichlet allocation [3]). In the future,
we hope to extend this work to these domains.

7 Related Work

In [19, 2, 16], the authors develop a way to sample
approximately from a posterior distribution when only
a small randomized mini-batch of data is used at each
step. In [9], the authors used a hypothesis test to
decide whether to accept or reject proposals using a
small set of data (adaptively) as opposed to the exact

Metropolis-Hastings rule. This reduces the amount of
time required to compute the acceptance ratio. Since
all of these algorithms are still sequential, they can be
directly used in our algorithm to generate subposterior
samples to further speed up the entire sampling process.

Several parallel MCMC algorithms have been designed
for specific models, such as for topic models [18, 14] and
nonparametric mixture models [21]. These approaches
still require synchronization to be correct (or approxi-
mately correct), while ours aims for more general model
settings and does not need synchronization until the
final combination stage.

Consensus Monte Carlo [17] is perhaps the most rele-
vant work to ours. In this algorithm, data is also por-
tioned into different machines and MCMC is performed
independently on each machine. Thus, it roughly has
the same time complexity as our algorithm. However,
the prior is not explicitly reweighted during sampling
as we do in Eq 1, and final samples for the full poste-
rior are generated by averaging subposterior samples.
Furthermore, this algorithm has few theoretical guar-
antees. We find that this algorithm can be viewed as a
relaxation of our nonparametric, asymptotically exact
sampling procedure, where samples are generated from
an evenly weighted mixture (instead of each compo-
nent having weight wt·) and where each sample is set
to θ̄t· instead of being drawn from N

(
θ̄t·, hM Id

)
. This

algorithm is one of our experimental baselines.

8 Empirical Study

In the following sections, we demonstrate empirically
that our method allows for quicker, MCMC-based
estimation of a posterior distribution, and that our
consistent-estimator-based procedures yield asymptot-
ically exact results. We show our method on a few
Bayesian models using both synthetic and real data. In
each experiment, we compare the following strategies
for parallel, communication-free sampling:4

• Single chain full-data posterior samples
(regularChain)—Typical, single-chain MCMC for
sampling from the full-data posterior.
• Parametric subposterior density product
estimate (parametric)—For M sets of subpos-
terior samples, the combination yielding samples
from the parametric density product estimate.
• Nonparametric subposterior density prod-
uct estimate (nonparametric)—For M sets of
subposterior samples, the combination yielding
samples from the nonparametric density product
estimate.

4We did not directly compare with the algorithms that
require synchronization since the setup of these experiments
can be rather different. We plan to explore these compar-
isons in the extended version of this paper.
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• Semiparametric subposterior density prod-
uct estimate (semiparametric)—For M sets of
subposterior samples, the combination yielding
samples from the semiparametric density product
estimate.

• Subposterior sample average (subpostAvg)—
For M sets of subposterior samples, the average
of M samples consisting of one sample taken from
each subposterior.

• Subposterior sample pooling (subpostPool)—
For M sets of subposterior samples, the union of
all sets of samples.

• Duplicate chains full-data posterior sample
pooling (duplicateChainsPool)—For M sets of
samples from the full-data posterior, the union of
all sets of samples.

To assess the performance of our sampling and combi-
nation strategies, we ran a single chain of MCMC on
the full data for 500,000 iterations, removed the first
half as burn-in, and considered the remaining samples
the “groundtruth” samples for the true posterior den-
sity. We then needed a general method to compare the
distance between two densities given samples from each,
which holds for general densities (including multimodal
densities, where it is ineffective to compare moments
such as the mean and variance5). Following work in
density-based regression [15], we use an estimate of
the L2 distance, d2(p, p̂), between the groundtruth pos-
terior density p and a proposed posterior density p̂,

where d2(p, p̂) = ‖p− p̂‖2 =
(∫

(p(θ)− p̂(θ))2dθ
)1/2

.

In the following experiments involving timing, to com-
pute the posterior L2 error at each time point, we
collected all samples generated before a given number
of seconds, and added the time taken to transfer the
samples and combine them using one of the proposed
methods. In all experiments and methods, we followed
a fixed rule of removing the first 1

6 samples for burn-
in (which, in the case of combination procedures, was
applied to each set of subposterior samples before the
combination was performed).

Experiments were conducted with a standard cluster
system. We obtained subposterior samples by submit-
ting batch jobs to each worker since these jobs are all
independent. We then saved the results to the disk of
each worker and transferred them to the same machine
which performed the final combination.

8.1 Generalized Linear Models

Generalized linear models are widely used for many
regression and classification problems. Here we conduct
experiments, using logistic regression as a test case, on

5In these cases, dissimilar densities might have similar
low-order moments. See Section 8.2 for an example.
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Figure 1: Bayesian logistic regression posterior ovals.
We show the posterior 90% probability mass ovals for
the first 2-dimensional marginal of the posterior, the M
subposteriors, the subposterior density product (via the
parametric procedure), and the subposterior average
(via the subpostAvg procedure). We show M=10 sub-
sets (left) and M=20 subsets (right). The subposterior
density product generates samples that are consistent
with the true posterior, while the subpostAvg produces
biased results, which grow in error as M increases.

both synthetic and real data to demonstrate the speed
of our parallel MCMC algorithm compared with typical
MCMC strategies.

8.1.1 Synthetic data

Our synthetic dataset contains 50,000 observations in
50 dimensions. To generate the data, we drew each
element of the model parameter β and data matrix X
from a standard normal distribution, and then drew
each outcome as yi ∼ Bernoulli(logit−1(Xiβ)) (where
Xi denotes the ith row of X)6. We use Stan, an au-
tomated Hamiltonian Monte Carlo (HMC) software
package,7 to perform sampling for both the true poste-
rior (for groundtruth and comparison methods) and for
the subposteriors on each machine. One advantage of
Stan is that it is implemented with C++ and uses the
No-U-Turn sampler for HMC, which does not require
any user-provided parameters [8].

In Figure 1, we illustrate results for logistic regression,
showing the subposterior densities, the subposterior
density product, the subposterior sample average, and
the true posterior density, for the number of subsets
M set to 10 (left) and 20 (right). Samples generated
by our approach (where we draw samples from the
subposterior density product via the parametric pro-
cedure) overlap with the true posterior much better
than those generated via the subpostAvg (subposterior
sample average) procedure— averaging of samples ap-
pears to create systematic biases. Futher, the error in

6Note that we did not explicitly include the intercept
term in our logistic regression model.

7http://mc-stan.org
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Figure 2: Posterior L2 error vs time for logistic re-
gression. Left: the three combination strategies pro-
posed in this paper (parametric, nonparametric, and
semiparametric) reduce the posterior error much
more quickly than a single full-data Markov chain;
the subpostAvg and subpostPool procedures yield bi-
ased results. Right: we compare with multiple full-data
Markov chains (duplicateChainsPool); our method
yields faster convergence to the posterior even though
only a fraction of the data is being used by each chain.

averaging appears to increase as M grows. In Figure 2
(left) we show the posterior error vs time. A regular
full-data chain takes much longer to converge to low
error compared with our combination methods, and
simple averaging and pooling of subposterior samples
gives biased solutions.

We next compare our combination methods with mul-
tiple independent “duplicate” chains each run on the
full dataset. Even though our methods only require a
fraction of the data storage on each machine, we are
still able to achieve a significant speed-up over the full-
data chains. This is primarily because the duplicate
chains cannot parallelize burn-in (i.e. each chain must
still take some n steps before generating reasonable
samples, and the time taken to reach these n steps does
not decrease as more machines are added). However, in
our method, each subposterior sampler can take each
step more quickly, effectively allowing us to decrease
the time needed for burn-in as we increase M . We
show this empirically in Figure 2 (right), where we
plot the posterior error vs time, and compare with full
duplicate chains as M is increased.

Using a Matlab implementation of our combination
algorithms, all (batch) combination procedures take
under twenty seconds to complete on a 2.5GHz Intel
Core i5 with 16GB memory.

8.1.2 Real-world data

Here, we use the covtype (predicting forest cover types)8

dataset, containing 581,012 observations in 54 dimen-

8http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets
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Figure 3: Left: Bayesian logistic regression classifica-
tion accuracy vs time for the task of predicting forest
cover type. Right: Posterior error vs dimension on
synthetic data at 1000 seconds, normalized so that
regularChain error is fixed at 1.

sions. A single chain of HMC running on this entire
dataset takes an average of 15.76 minutes per sample;
hence, it is infeasible to generate groundtruth samples
for this dataset. Instead we show classification accu-
racy vs time. For a given set of samples, we perform
classification using a sample estimate of the posterior
predictive distribution for a new label y with associated
datapoint x, i.e.

P (y|x, yN , xN ) =

∫
P (y|x, β, yN , xN )P (β|xN , yN )

≈ 1

S

S∑

s=1

P (y|x, βs)

where xN and yN denote the N observations, and
P (y|x, βs) = Bernoulli(logit−1(x>βs)). Figure 3 (left)
shows the results for this task, where we use M=50
splits. The parallel methods achieve a higher accuracy
much faster than the single-chain MCMC algorithm.

8.1.3 Scalability with dimension

We investigate how the errors of our methods scale
with dimensionality, to compare the different esti-
mators implicit in the combination procedures. In
Figure 3 (right) we show the relative posterior error
(taken at 1000 seconds) vs dimension, for the synthetic
data with M=10 splits. The errors at each dimen-
sion are normalized so that the regularChain error
is equal to 1. Here, the parametric (asymptotically
biased) procedure scales best with dimension, and the
semiparametric (asymptotically exact) procedure is
a close second. These results also demonstrate that,
although the nonparametric method can be viewed as
implicitly sampling from a nonparametric density es-
timate (which is usually restricted to low-dimensional
densities), the performance of our method does not
suffer greatly when we perform parallel MCMC on pos-
terior distributions in much higher-dimensional spaces.
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Figure 4: Gaussian mixture model posterior samples.
We show 100,000 samples from a single 2-d marginal
(corresponding to the posterior over a single mean
parameter) of the full-data posterior (top left), all
subposteriors (top middle—each one is given a unique
color), the subposterior average via the subpostAvg

procedure (top right), and the subposterior density
product via the nonparametric procedure (bottom
left), semiparametric procedure (bottom middle), and
parametric procedure (bottom right).

8.2 Gaussian mixture models

In this experiment, we aim to show correct posterior
sampling in cases where the full-data posterior, as well
as the subposteriors, are multimodal. We will see that
the combination procedures that are asymptotically
biased suffer greatly in these scenarios. To demon-
strate this, we perform sampling in a Gaussian mixture
model. We generate 50,000 samples from a ten compo-
nent mixture of 2-d Gaussians. The resulting posterior
is multimodal; this can be seen by the fact that the com-
ponent labels can be arbitrarily permuted and achieve
the same posterior value. For example, we find af-
ter sampling that the posterior distribution over each
component mean has ten modes. To sample from this
multimodal posterior, we used the Metropolis-Hastings
algorithm, where the component labels were permuted
before each step (note that this permutation results in
a move between two points in the posterior distribution
with equal probability).

In Figure 4 we show results for M=10 splits, showing
samples from the true posterior, overlaid samples from
all five subposteriors, results from averaging the sub-
posterior samples, and the results after applying our
three subposterior combination procedures. This figure
shows the 2-d marginal of the posterior corresponding
to the posterior over a single mean component. The
subpostAvg and parametric procedures both give bi-
ased results, and cannot capture the multimodality of
the posterior. We show the posterior error vs time in
Figure 5 (left), and see that our asymptotically exact
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Figure 5: Left: Gaussian mixture model posterior error
vs time results. Right: Poisson-gamma hierarchical
model posterior error vs time results.

methods yield quick convergence to low posterior error.

8.3 Hierarchical models

We show results on a hierarchical Poisson-gamma model
of the following form

a ∼ Exponential(λ) b ∼ Gamma(α, β)

qi ∼ Gamma(a, b) xi ∼ Poisson(qiti) i = 1, . . . , N

for N=50,000 observations. We draw {xi}Ni=1 from the
above generative process (after fixing values for a, b, λ,
and {ti}Ni=1), and use M=10 splits. We again perform
MCMC using the Stan software package.

In Figure 5 (right) we show the posterior error vs
time, and see that our combination methods complete
burn-in and converge to a low posterior error very
quickly relative to the subpostAvg and subpostPool

procedures and full-data chains.

9 Discussion and Future Work

In this paper, we present an embarrassingly parallel
MCMC algorithm and provide theoretical guarantees
about the samples it yields. Experimental results
demonstrate our method’s potential to speed up burn-
in and perform faster asymptotically correct sampling.
Further, it can be used in settings where data are
partitioned onto multiple machines that have little
intercommunication—this is ideal for use in a MapRe-
duce setting. Currently, our algorithm works primarily
when the posterior samples are real, unconstrained
values and we plan to extend our algorithm to more
general settings in future work.
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Abstract

Out of the many potential factors that deter-
mine which links form in a document citation
network, two in particular are of high impor-
tance: first, a document may be cited based
on its subject matter—this can be modeled by
analyzing document content; second, a doc-
ument may be cited based on which other
documents have previously cited it—this can
be modeled by analyzing citation structure.
Both factors are important for users to make
informed decisions and choose appropriate ci-
tations as the network grows. In this paper,
we present a novel model that integrates the
merits of content and citation analyses into
a single probabilistic framework. We demon-
strate our model on three real-world citation
networks. Compared with existing baselines,
our model can be used to effectively explore
a citation network and provide meaningful
explanations for links while still maintaining
competitive citation prediction performance.

1 Introduction

Many large citation networks—Wikipedia, arXiv, and
PubMed1, to name a few—continue to quickly grow
in size, and the structure of these networks continues
to increase in complexity. To effectively explore large-
scale and complex data like these and extract useful
information, users rely more and more on various types
of guidance for help. An important type of guidance
comes from the citations (or links) in the network.
Citations serve as paths that users can easily follow,
and do not require users to specify certain keywords in
advance. In scientific research, for example, researchers

∗Work completed while at Carnegie Mellon University.
1http://www.wikipedia.org/, http://arxiv.org/,

and http://www.ncbi.nlm.nih.gov/pubmed

often find potentially interesting articles by following
citations made in other articles. In Wikipedia, users
often find explanations of certain terms by following the
links made by other Wikipedia users. Thus, generating
relevant citations is important for many users who may
frequently rely on these networks to explore data and
find useful information.

We believe that, among many, two important factors
largely determine how a document citation network is
formed: the documents’ contents and the existing cita-
tion structure. Take as an example a citation network
of computer science articles. A research paper about
“support vector machines (SVMs)”, for instance, might
be cited by several other articles that develop related
methods, based on the subject matter alone. This type
of information can be well captured by analyzing the
content of the documents. However, the existing cita-
tion structure is also important. If this SVM paper
included great results on a computer vision dataset,
for example, it might be cited by many vision papers
that are not particularly similar in content. Though
different in content, this SVM paper could be very
important to users in a different topic area, and should
be considered by these users when choosing citations.
This type of information cannot be easily captured by
analyzing document content, but can be discovered by
analyzing the existing citation structure among docu-
ments while studying the contents of the papers that
generated these citations.

Given these observations, we present a probabilistic
model to accurately model citation networks by in-
tegrating content and citation/link information into
a single framework. We name our approach a latent
random offset (LRO) model. The basic idea is as fol-
lows: we first represent the content of each document
using a latent vector representation (i.e. “topics”) that
summarizes the document content. Then, each latent
representation is augmented in an additive manner with
a random offset vector; this vector models information
from the citation structure that is not well captured
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Figure 1: Analysis of content, latent offsets, and pre-
dicted links for the Sistine Chapel document in the
Simple English Wikipedia dataset. The first row shows
an example passage from the document. The next row
shows the names of the documents that cite Sistine
Chapel. The next row shows the initial latent topics
(first column), the latent offsets learned from links
(second column), and the latent topics after applying
the offsets (third column). The final row shows inter-
pretable link predictions; for each predicted link, we
show the relative weight that each latent topic con-
tributed to the prediction.

by document content. The final augmented representa-
tion is then used to model how this document is cited
by other documents. To motivate this representation,
we present sample outputs from running LRO on the
Simple English Wikipedia.

Examples from Simple English Wikipedia.
The first graph in the top row of Figure 1 shows,
for the Sistine Chapel article in the Simple English
Wikipedia, the latent vector representation, which is
concentrated around three topics: countries (italy,
italian, china, russian), Christianity (church, christ,
jesus, god), and architecture (built, side, large, de-
sign). Here we’ve listed the top four words in each topic
(in parens). The incoming links to the Sistine Chapel ar-
ticle are also shown; these citing documents determine
the random offsets for Sistine Chapel. The random
offsets can be thought of as “corrections” to the latent
vector representation, based on the content of citing
documents—for example, the two largest positive off-
sets are Christianity (church, christ, jesus, god) and
Anglicanism (english, knight, translated, restoration),
meaning that the citing documents strongly exhibit
these two topics (compared to the Sistine Chapel arti-
cle). On the other hand, there is a large negative offset
on architecture (built, side, large, design), indicating
that the citing documents do not exhibit this topic as

much as Sistine Chapel.

Notably, the topic Anglicanism (containing words re-
lated to Christianity in England) is found in the ran-
dom offsets for Sistine Chapel, but is absent from its
latent vector representation. This is because the Sistine
Chapel is in the Vatican City, and thus its article does
not emphasize content relating to England or Anglican-
ism (even though they are all related to Christianity).
However, documents that link to Sistine Chapel, such
as Chapel, talk about the Anglican Church in England.
This is an example where pertinent information is found
in the citation structure, but not in the document con-
tent. By capturing this citation information, the LRO
model provides insights into the context surrounding a
document.

Following this idea, we can add the latent vector and
random offsets together to obtain the “augmented repre-
sentation” of a document (i.e. the “topics after random
offsets” graph in Figure 1), which takes into account
not just its content, but the content of its citing doc-
uments as well. Link predictions in the LRO model
are based upon the intuition that a document i cites
document j only if both documents have similar repre-
sentations. This intuition is captured in the bottom row
of graphs in Figure 1, which explains three out-links
predicted by the LRO model for the Sistine Chapel
document. For each predicted link, we show the topics
that contributed most to the prediction, and not sur-
prisingly, the most important topics for each link also
feature strongly in the augmented representation for
the Sistine Chapel. Knowing which topics contributed
to the prediction of links not only helps users interpret
existing links within a document corpus, but also gives
users an explanation for every new link predicted by
the LRO model—for instance, a user might invoke LRO
to recommend citations for an academic paper, and
such “link explanations” give the user a quick overview
of why each recommendation is relevant.

We note that of the three predicted out-links for Sis-
tine Chapel, two of them (Chapel, Italy) are actual
out-links in Sistine Chapel, while the third, Christian,
is obviously relevant but not found in the document.
This motivates another application of LRO: predicting
relevant but missing links in document corpora; in this
case, we are completing the references for a Wikipedia
article. Another application context is academic paper
writing: LRO can be used to recommend important
(but otherwise overlooked) citations for a newly-written
academic paper.

The rest of this paper is organized as follows: we be-
gin by formalizing latent random offset modeling, and
then show how we can use it to model citation net-
works. We then develop a fast learning algorithm
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with linear complexity in the size of the number of
citations, and empirically evaluate our approach using
three real-world citation networks. Compared with
several baselines, our model not only improves citation
prediction performance, but also provides meaningful
explanations for citations within the networks. By
studying latent random offset representations, we show
these explanations can be used to effectively interpret
why our model predicts links for given documents and
to explore citation networks.

2 Latent Random Offset Models

We introduce the general framework of latent random
offsets for citation network modeling. Suppose our
citation network consists of D documents (i.e. nodes),
D = {x1, x2, ..., xD}. We use yij = 1 or 0 to indicate
whether document i cites document j or not. Note
that yij is directed, meaning yij is not necessarily the
same as yji.

Each document xj is usually a high-dimensional vector
in RV , where V is the vocabulary size, so it is desirable
to represent xj using a low-dimensional vector θj . In
other words, the mapping

θj = θj(xj) (1)

serves as a summarization of the original document
content xj , and these summarizations can be used to
measure the content similarities of different documents.

However, in real citation networks, a document can
be cited by others for reasons outside of its content
information. For example, a target document might
provide an influential idea that can be used in many
different fields and thus be cited by a diverse set of
documents. This information is encoded not in the
document content but in the citation network structure.
We choose to model this phenomenon by allowing a
random offset vector εj to augment the low-dimensional
vector θj , which gives the augmented representation

vj = θj + εj . (2)

The offset vector εj is used to capture the network struc-
ture information that is not contained in the document’s
content. One important property of this augmented
representation is that the random offset εj is aligned in
the same space as θj . If the dimension of θj has some
semantic explanations, then εj can be understood as
modifications of those explanations.

Finally we consider using a function f to model the
citation from document i to document j, such that

f(θi, θj + εj) ≈ yij (for all i, j)

where yij is the citation indicator from document i to
document j. Notice the asymmetric structure here for
document i and j—we do not consider the offset vector
εi for document i in our function f . In real citation
networks, when a new document joins the citation
network by citing some other documents, this new
document is effectively “not in” the network. It will be
most likely to cite other documents based only on their
content and their citations, as no network information
exists for this new document. One advantage of this
formulation is that we can make citation predictions
for a brand new document by only using its content
information.

In the next two sections, we first describe how we create
the low-dimensional document content representation
θj and how we use the latent random offset model for
citation network modeling.

2.1 Probabilistic topic models for document
content representation

There are many potential ways to create the low-
dimensional document content representation described
in Eq. 1. Here we choose to use probabilistic topic mod-
els. Topic models [5] are used to discover a set of “topics”
(or themes) from a large collection of documents. These
topics are distributions over terms, which are biased
to be associated under a single theme. One notable
property of these models is that they often provide
an interpretable low-dimensional representation of the
documents [10]. They have been used for tasks like
corpus exploration [8], information retrieval [23] and
recommendation [22].

Here we describe the simplest topic model, latent Dirich-
let allocation (LDA) [7] and use it to create the low-
dimensional document content representations. As-
sume there are K topics, βk, k = 1, ...,K and each
βk is a distribution over a fixed vocabulary. For each
document j, the generative process is as follows,

1. Draw topic proportions θj ∼ Dirichlet(α)
2. For each word xjn in document j,

(a) Draw topic assignment zjn ∼ Mult(θj)
(b) Draw word xjn ∼ Mult(βzjn)

This process describes how the words of a document
are generated from a mixture of topics that are shared
by the corpus. The topic proportions θj are document-
specific and we use these topic proportions as our low-
dimensional document content representation.

Given a document collection, the only observations
are the words in the documents. The topics, topic
proportions for each document, and topic assignments
for each word, are all latent variables that have to be
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Figure 2: Left: The LRO graphical model. Only two
documents (i and j) and one citation (from i to j) are
shown. The augumented latent representation repre-
sentation for document j is vj = θj + εj . Right: An
illustration of the random offsets. We show each docu-
ment’s content vector θj (which lies on the simplex), its
offsets εj due to link structure (the superscript indicates
the dimension for εj), and the resulting augmented la-
tent representation vj .

determined from the data. LDA has been extensively
studied in the literature and many efficient algorithms
have been proposed to fit the LDA model variables [7,
12, 21]. For example, standard learning algorithms
like variational EM or Gibbs sampling can be used to
estimate these quantities [7]. These methods give us
the estimated document content representations θj in
terms of an approximate posterior distribution or point
estimates.

2.2 Modeling citations via random offsets

Having described how we represent the documents in a
low dimensional space, we now consider how to create
the augmented representations introduced in Eq. 2.
We model our latent random offset vector εj with a
multivariate Gaussian distribution

εj ∼ N (0, λ−1IK).

where λ is a scalar precision parameter for the latent
random offsets.

Using the general idea of latent random offset modeling
shown in Eq. 2 and probabilistic topic models described
in Section 2.1, our latent random offset model (LRO)
for citation network modeling has the following gen-
erative process (Figure 2 shows the graphical model).
Assuming K topics, β1:K ,

1. For each document j,

(a) Draw topic proportions θj ∼ Dirichlet(α)
(b) Draw latent random offset εj ∼ N (0, λ−1IK)

and set the document augmented representa-
tion as vj = θj + εj

(c) For each word xjn,

i. Draw topic assignment zjn ∼ Mult(θ)
ii. Draw word xjn ∼ Mult(βzjn)

2. For each directed pair of documents (i, j), draw
the citation indicator

yij ∼ N (y|wθ>i vj , τ−1ij ).

where w ∈ R+ is a global scaling parameter to account
for potential inefficiencies of the topic proportions θi,
which are constrained to the simplex.2 We chose a
Gaussian response to model the citations, in similar
fashion to [22]. Notation τ−1ij is the precision parameter
for the Gaussian distribution. Here, we choose to stray
from a formal generative process and also treat the yij
as parameters, such that τij satisfies

τij =

{
τ1 if yij = 1

τ0 if yij = 0 .

In this formulation, τ1 specifies the precision if a link
exists from document i to j, while τ0 is for the case
where the link does not exist. We set τ0 to be much
smaller (i.e. higher noise) than τ1 — this is similar to
the assumption made in [22], which models the fact
that yij = 0 could either mean it is not appropriate for
document i to cite document j, or simply that docu-
ment i should cite document j but has inadvertently
neglected to cite it. This also enables a fast learn-
ing algorithm with complexity linear in the number of
citations (See Section 3 for details).

The expectation of the citation can be computed as

E[yij ] = wθ>i vj = w(θ>i θj) + w(θ>i εj).

This reveals how likely it is for a citation from document
i to document j to occur under our model. If the
documents have similar content or document j has
certain large positive offsets, it is more likely to be
cited by document i.

For a document j, our latent representation θj is over a
simplex. In Figure 2 (right), we show how the random
offsets εj produce the augmented representation vj .

2.3 Citation prediction

In a system for citation prediction, it is more realistic
to suggest citations than to make hard decisions for
the users. This is common in many recommender
systems [13, 22]. For a particular document i, we rank
the potential citations according to the score

Sij = wθ>i vj ,

2Our experiments show that optimizing the global scal-
ing parameter w is important for obtaining good results.
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for all other documents j, and suggest citations based
on this score (excluding document i and all pre-existing
citations).

3 Learning Algorithm

We use maximum a posteriori (MAP) estimation to
learn the latent parameters of the LRO, where we
perform a coordinate ascent procedure to carry out
the optimization. Maximization of the posterior is
equivalent to maximizing the complete log likelihood
of v1:D, θ1:D and β1:K , which we can write as

L =− λ

2

∑

j

(vj − θj)>(vj − θj)−
∑

i6=j

τij
2

(yij − wθTi vj)2

+
∑

j

∑

n

log

(∑

k

θjkβk,xjn

)
.

where we have omitted a constant and set α = 1.

First, given topics β1:K and augmented representations
v1:D, for all documents, we describe how to learn the
topic proportions θj . We first define φjnk = q(zjn = k).
Then we separate the items that contain θj and apply
Jensen’s inequality,

L(θj) ≥ −
λ

2

∑

j

(vj − θj)>(vj − θj)

+
∑

n

∑

k

φjnk
(
log θjkβk,xjn − log φjnk

)

= L(θj ,φj).

where φj = (φjnk)D×Kn=1,k=1. The optimal φjnk then
satisfies

φjnk ∝ θjkβk,xjn .
The L(θj ,φj) gives the tight lower bound of L(θj). We
cannot optimize θj analytically, but we can use the
projection gradient [3] method for optimization.3

Second, given this φ, we can optimize the topics β1:K
with

βkx ∝
∑

j

∑

n

φjnk1[xjn = x].

This is the same M-step update for topics as in LDA [7].

Next, we would like to optimize the augmented repre-
sentations v1:D. We can write the component of the
log likelihood with terms containing vj as

L(vj) =− λ

2
(vj − θj)>(vj − θj)

−
∑

i,i 6=j

τij
2

(yij − wθ>i vj)2.

3On our data, we found that simply fixing θj as the es-
timate from the LDA model gives comparable performance
and saves computation.

To maximize this quantity, we take the gradient of
L(vj) with respect to vj and set it to 0, which gives an
update for vj

v∗j ←
(
λIK + w2

(
(τ1 − τ0)

∑

i∈{i:i→j}
θiθ
>
j + τ0

∑

i,i6=j
θiθ
>
j

))−1

×
(
θj + wτ1

∑

i∈{i:i→j}
θi

)
(3)

where {i : i → j} denotes the set of documents that
cite document j. For the second line of Eq. 3, we can
see that the augmented representation vj is affected by
two main parts: the first is the content from document
j (topic proportions θj) and the second is the content
from other documents who cite document j (topic
proportions θi, where i ∈ {i : i→ j}).
Next, we want to optimize the global scaling variable
w. Isolating the terms in the complete log likelihood
that contain w gives

L(w) = −
∑

i6=j

τij
2

(yij − wθ>i vj)2.

In a similar manner as the previous step, to maximize
this quantity we take the gradient of L(w) with respect
to w and set it to 0, which gives its update4

w∗ ←
(∑

j

(
(τ1 − τ0)

∑

i∈{i:i→j}
(θ>i vj)

2 + τ0
∑

i,i6=j
(θ>i vj)

2

))−1

×
(
τ1
∑

j

∑

i∈{i:i→j}
θ>i vj

)
. (4)

Empirically, we found that an optimal trade-off between
computation time and performance involves performing
LDA [7] initially to learn the latent representations θj ,
and then performing coordinate ascent to learn the
augmented representations vj and global parameter w.
We detail this procedure in Algorithm 1.

Computational efficiency. We now show that
our learning algorithm (Algorithm 1) has runtime com-
plexity linear in the number of documents and citations.

First, estimating the topic proportions θj , j = 1, ..., D
has the same complexity as the standard learning al-
gorithm for LDA, which is linear in the number of
documents.

Second, the augmented representations vj , j = 1, ..., D
and global scaling parameter w can be estimated in
linear time, via a caching strategy — this is similar to
the method adopted by [13, 22]. We now describe this
strategy.

4In theory, this update could lead to a negative value.
However, in our experiments, we did not see this happen.
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Algorithm 1 MAP Parameter Learning

Input: A citation network of documents {xj}Dj=1 with
directed links yij for i, j ∈ {1, . . . , D}, and stopping
criteria δ

Output: Latent content representations θj , link-offset
representations vj , and global scale parameter w

1: Run LDA [7] on {xj}Dj=1 to learn θ1:D
2: Initialize v1:D = θ1:D and eps =∞
3: while eps > δ do
4: Update w ← w∗ . Equation 4
5: for j = 1 to D do
6: Update vj ← v∗j . Equation 3
7: end for
8: Set eps← ‖v1:D − ṽ1:D‖
9: end while

For the augmented representation vj (Eq. 3), we cache
θ0 =

∑
i θi. This allows us to update vj (Eq. 3) using

the identity

∑
i,i 6=j θi = θ0 − θj .

Every time we update a θj , we also update the cache
θ0, and this takes constant time w.r.t. the number of
documents and citations.

For the global scaling parameter w (Eq. 4), we can
compute

∑
i,i6=j(θ

>
i vj)

2 =
∑
i,i 6=j v

>
j θiθ

>
i vj

= v>j (
∑
i,i 6=j θiθ

>
i )vj

= v>j (
∑
i θiθ

>
i )vj − v>j θjθ>j vj

in O(K2) time (constant in the number of docs and
citations) by simply caching Θ0 =

∑
i θiθ

>
i . This cache

variable also requires O(K2) time to update whenever
we modify some θj .

The remaining sums in Eqs 3,4 touch every citation
exactly once, therefore a single update sweep over all vj
and w only requires constant work per edge (treating K
as constant). We have therefore shown that Algorithm
1 is linear in the number of documents and citations.
Moreover, we have attained linear scalability without
resorting to treating missing citations as hidden data.
This gives our LRO a data advantage over methods
that hide missing citations, such as the RTM [9].

4 Related Work

Our proposed work focuses on two aspects of ci-
tation network modeling: 1) network understand-
ing/exploration and 2) citation prediction. We there-
fore divide the related work section into these two
categories.

Network understanding/exploration. Net-
work exploration is a broad empirical task concerned
with, amongst other things, understanding the over-
all structure of the network [19], understanding the
context of individual nodes [2], and discovering anoma-
lous nodes or edges [20]. In addition to methods that
operate on purely graph data, there are techniques
that leverage both the graph as well as textual content,
such as relational topic models (RTM) [9], Link-PLSA-
LDA [17], and TopicFlow [18]. The idea behind such
hybrid methods is that text and graph data are often
orthogonal, providing complementary insights [11].

Our LRO model incorporates network information by
modeling per-document random offsets that capture
topical information from connected neighbors. These
random offsets represent relevant topics that would
otherwise not be found in the documents through con-
tent analysis. The Simple English Wikipedia analysis
from the introduction provides a good example: the
Sistine Chapel article’s random offsets (the top row
of Figure 1) contain the topic Anglicanism (which is
also related to Christianity), even though the article
text’s latent topic representation makes no mention of
it. In this manner, the LRO model helps us understand
the context of network nodes (a.k.a. documents), and
helps us to detect anomalous nodes (such as documents
whose random offsets diverge greatly from their latent
topic vectors).

Citation prediction. The citation prediction task
can be approached by considering text features, network
features, or a combination of both. In the text-only set-
ting, approaches based on common text features (e.g.,
TF-IDF scores [4]) and latent space models (e.g., topic
models [5]) can be used to the measure similarities
between two documents, allowing for ranking and pre-
diction. However, text-only approaches cannot account
for citation behavior due to the network structure.

In the network-only setting without document content,
there are a number of commonly-used measures of node
similarity, such as the Jaccard Coefficient, the Katz
measure [14] and the Adamic/Adar measure [1]. La-
tent space models such as matrix factorization (MF)
methods [15] can be used here. However, when test
documents are out-of-sample with respect to the net-
work (when we consider newly-written papers with no
preexisting citations), these measures are inapplicable.

Finally, there are methods that combine both document
content and network structure to predict citations. One
such method is the relational topic models (RTM) [9],
in which link outcomes depend on a reweighted in-
ner product between latent positions (under the LDA
model). The weights are learned for each latent di-
mension (topic), but are not specific to any document,
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and thus only capture network behavior due to topic-
level interactions. In contrast, our random offsets are
learned on a per-document basis, capturing interac-
tion patterns specific to each document, which in turn
yields better predictive performance as shown in our
empirical study. In [16], in addition to the document
content, author information is also considered to model
the citation structure. In [17], citations were treated
as a parallel document (of citations) as to the docu-
ment content of words. Neither of these methods use
per-document offsets to model citation structure.

5 Empirical Study

We will empirically demonstrate the use of our model
for modeling citation networks. We will first show
quantitative results for citation prediction then present
qualitative results using our model to explore citation
networks.

Datasets. We use three citation network datasets,

1. The ACL Anthology paper citation network (ACL)
contains 16,589 documents and 94,973 citations
over multiple decades.

2. The arXiv high energy physics citation network
(arXiv) contains 34,546 arXiv/hep-th articles and
421,578 citations from January 1993 through April
2003.

3. The Simple English Wikipedia citation network
(Wikipedia) contains 27,443 articles, and 238,957
citations corresponding to user-curated hyperlinks
between articles.

5.1 Citation prediction

For citation prediction, we compare against the
RTM [9], matrix factorization (MF) [15], LDA-based
predictions [7], and three common baseline algorithms.
A detailed description is given below.

The first task is predicting held-out citations. Here
we used a five-fold cross validation: for each document
that has cited more than 5 documents, we held out
20% of the documents into test set and the rest into
the training set.

The second task is predicting citations for new docu-
ments. To simulate this scenario, we train our model
using all the citations before a certain year and predict
the citations of the new documents published in that
year. This task is important for a real citation predic-
tion system, where user may input some text without
existing citations. For this experiment, we excluded
MF from the comparisons, because it cannot perform
this task.

Evaluation metric. Our goal is to make citation
predictions, where it is more realistic to provide a rank
list of citation predictions than to make hard decisions
for the users. For a given set of M predicted citations,
we use a performance metric, Recall@M ,

Recall@M =
number of citations in the predicted set

total number of citations

which can be viewed as the proportion of “true” cita-
tions successfully predicted by a given method, when
the method is allowed to provide M guesses.

Comparison methods. We compare our model
with a number of competing strategies, starting with
the RTM [9]. In order to make predictions using the
RTM, we learn a latent representation for each docu-
ment and predict citations using a similarity function
between these representations (detailed in [9]). The
second comparison is an LDA-based prediction strategy,
in which document predictions are determined by the
similarity between the latent document representation
vectors θj . The similarity is computed using inverse of
the Hellinger distance [6]

Sij = H(θi, θj)
−1 =

√
2
∥∥√θi −

√
θj
∥∥−1 .

Third, we compare with matrix factorization (MF),
but only on the first task. (MF cannot make the
citation predictions for a brand new document.) Fi-
nally, we compare with three simple baseline methods
on both tasks. The first is that of Adamic/Adar [1],
described in Section 4. The second is based on term
frequence-inverse document frequency (TF-IDF) scores,
where citations are predicted based on similarities in
the documents’ scores [4]. The third baseline is called
“in-degree”, where each document is given a score pro-
portional to the number of times it is cited; in this case,
the same set of predictions are given for every test doc-
ument. Hyperparameters are set via cross validation.

Task one: predicting held-out citations.
Given the document contents and the remaining links,
the task is to predict the held out citations for each
document. We show results for our model and six
comparison methods on the ACL dataset in Figure 3.
Our model (LRO) achieves a significantly higher recall
over all ranges of the number of predictions, and we
observed similar results for the other two datasets.

We also wanted to determine how our method performs
across different datasets. To make the results compa-
rable, we normalized the number of predictions M by
setting it to a fraction of the total number of documents
in each respective dataset. The results are shown in
Figure 4: LRO performs well on all three datasets,
though we note that ACL has a much better score than
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Figure 3: Left: Citation prediction performance on
the ACL dataset for task one (predicting held-out cita-
tions).Right: Citation prediction performance on task
two (predicting citations for new documents) on sub-
sets of the ACL dataset for 7 years. In both cases, the
LRO yields the highest recall over all ranges.

the other two. We attribute this to the fact that ACL
contains only refereed academic papers, and is therefore
more structured than either arXiv (which is unrefereed)
or Simple English Wikipedia (whose articles are not
always subject to editorial attention).

Task two: predicting citations for new docu-
ments. The second task is to predict citations for
documents with no prior citation information, corre-
sponding to scenarios in which one needs to suggest
citations for newly written documents. This task is
often referred to as the “cold start problem” in recom-
mender systems.

We simulate the process of introducing newly written
papers into a citation network by dividing them ac-
cording to publication year. Specifically, from the ACL
citation network dataset, we select the citations and
documents that existed before the year Y as training
data, for Y ranging from 2001 to 2006. After training
on this subset, the task is then to predict the citations
occurring in year Y for the new documents written in
year Y .

For this task, we compared our model against the same
comparison methods used in the previous task, except
for matrix factorization, which cannot make citation
predictions for new documents. Figure 3 (right) shows
the results. We fix the number of citation predictions
M = 150 (other M values have similar trends). Again,
our model achieves the best performance over a major-
ity of the M values in all six years, and increases its
lead over the comparison methods in later years, after
a larger portion of the citation network has formed and
can be used as training data.

Hyperparameter sensitivity. We also study how
different hyperparameters affect performance, including
the number of topics K, precision parameters τ0 and
τ1, and latent random offset precision parameter λ
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Figure 4: Left: citation prediction performance of our
LRO model on three real-world datasets. The ACL
dataset has a better score than the other two datasets.
See main text for details. Right: citation prediction
performance for a range of hyperparameter settings,
including the number of topics K, the non-link variance
parameter τ0, and the latent random offset variance
parameter λ.

(Figure 4, right). Again, we fix M = 150. First, we
varied the number of topics from 75 to 250, and found
an optimal value of approximately 175 topics. Next, in
order to find the optimal balance between parameters τ0
and τ1, we fixed τ1 = 1 and varied τ0 from 1/10000 to 1,
finding an optimal value of approximately τ0 = 1/100.
Finally, we varied the parameter λ from 5 to 40, and
found an optimal value at approximately λ = 9.

5.2 Exploring citation networks

The latent random offsets can yield useful information
that allows for analysis and exploration of documents
in the citation network. Our model provides, for each
document, a content representation vector θj , which
captures the topics associated with the content of the
document, and a latent offset vector εj , which captures
topics not necesarily contained within the document but
expressed by others who cited the document. Highly
positive latent offsets may capture the topics where a
given document has been influential within the context
of the citation network; alternatively, negative offsets
can represent topics that are expressed highly in a
document, but that have not proven to be influential
within the context of the network.

Given a document, we can therefore explore its contents
by examining the learned set of topics, and we can ex-
plore its role in the citation network (and see the topics
of documents that it has influenced) by examining the
latent offsets. In Figures 1 and 5 we show the latent
topic representations of document contents, the learned
random offsets, and the final augmented representa-
tions (the sum of topic representations and random
offsets), for a document in each of the Simple English
Wikipedia and ACL datasets. The augmented repre-
sentations provide information on both the content
and context of a document: they incorporate infor-
mation contained in the document as well as in other
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documents that cite it.

For highly cited documents, we have a great deal of in-
formation from the citing documents (i.e. the in-links),
and this information can be used to more strongly off-
set the latent topic representations. Intuitively, the
content is like a prior belief about a document’s latent
representation, and as more sources start citing the
document, this outside information further offsets the
latent topic representations. Additionally, the offsets
do not only “add” more information to the latent rep-
resentation from the citing documents. In Figure 5
(top row), the offsets acted primarily to reduce the
weights of many of the largest topics in the content
representation, and only added weight to two topics.
Here, the offsets served to dampen many of the con-
tent topics that did not appear to be relevant to the
citing documents, and for this reason, the augmented
representation is more sparse than the initial content
representation.

Interpreting predictions. In addition to main-
taining competitive prediction performance, our model
allows for interpretable link prediction: for each pre-
dicted link we can use our latent representations to give
users an understanding of why the link was returned. In
particular, we can find the contribution that each topic
provides to the final prediction score in order to deter-
mine the “reasons” (in terms of the latent topics) why
a given document was predicted. We illustrate this in
Figures 1 and 5 (bottom row of graphs). In Figure 1, for
the Sistine Chapel document, Chapel is cited largely due
to three topics (architecture, Christianity, and
buildings), Christian is cited primarily due to a single
topic (Christianity), and Italy is mainly cited due to
six lower-weighted topics (countries, Christianity,
architecture, buildings, music, and populace).
Since Italy is a highly cited document and its aug-
mented latent representation emphasizes a large num-
ber of topics (many of those expressed by its in-links),
it was predicted due to a slight similarity in a number
of topics as opposed to a strong similarity in just a few.

In Figure 5 we show three predictions for the document
Automatic Recognition of Chinese Unknown Words
Based on Roles Tagging. We can see that each of the
predicted documents was due to a different aspect of
this paper: the document Automatic Rule Induction
For Unknown-Word Guessing was chosen primaily due
to the unknown-word topic (related to the paper’s goal
of recognizing unknown words), the document Word
Identification for Mandarin Chinese Sentences was cho-
sen primarily due to the China topic (related to the
paper’s language domain area), and the document A
Knowledge-Free Method For Capitalized Word Disam-
biguation was chosen primarily due to the pronoun

topic (related to the paper’s use of names, locations,

and roles).

Topics after Random OffsetsInitial Topics Offsets Learned from Links (Random Offsets)

Text: "This paper ... is based on the idea of 'roles tagging', to the complicated problems of Chinese 
unknown words recognition ... an unknown word is identified according to its component tokens and 
context tokens. In order to capture the functions of tokens, we use the concept of roles...We have got 
excellent precision and recalling rates, especially for person names and transliterations..."

Automatic Recognition Of Chinese Unknown Words Based On Roles Tagging  (ACL)

In-Links (Citing Documents):  (1) A...word segmentation system for Chinese, (2) Chinese lexical analysis..., (3) 
HHMM-based Chinese lexical analyzer..., (4) Chinese word segmentation...of characters, (5) Chinese 
unknown...character-based tagging...

Predicted Links: 
Automatic Rule Induction For
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Figure 5: Interpreting citation predictions for the doc-
ument Automatic Recognition Of Chinese Unknown
Words Based On Roles Tagging in the ACL dataset.
For each predicted link, we show the relative weight
that each latent topic (denoted by the top four words)
contributed to the prediction. These provide reasons
why each predicted link was chosen, in terms of the
topics.

6 Conclusion

In this paper, we proposed a probabilistic approach for
citation network modeling that integrates the merits of
both content and link analyses. Our empirical results
showed improved performance compared with several
popular approaches for citation prediction. Further-
more, our approach can suggest citations for brand new
documents without prior citations—an essential ability
for building a real citation recommendation system.

Qualitatively, our approach provides meaningful ex-
planations for how predictions are made, through the
latent random offsets. These explanations provide ad-
ditional information that can be useful for making
informed decisions. For example, in a citation rec-
ommendation system, we can inform users whether a
citation is suggested more due to content similarities or
due to the existing network structure, and we can show
the relative amounts that individual topics contributed
to the prediction. In future work, we would like to
conduct user studies to quantify how this additional
information helps users find more relevant citations in
a more efficient way.
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Abstract

We introduce the collaborative multi-output
Gaussian process (GP) model for learning
dependent tasks with very large datasets.
The model fosters task correlations by mixing
sparse processes and sharing multiple sets of
inducing points. This facilitates the applica-
tion of variational inference and the deriva-
tion of an evidence lower bound that decom-
poses across inputs and outputs. We learn
all the parameters of the model in a sin-
gle stochastic optimization framework that
scales to a large number of observations per
output and a large number of outputs. We
demonstrate our approach on a toy prob-
lem, two medium-sized datasets and a large
dataset. The model achieves superior per-
formance compared to single output learn-
ing and previous multi-output GP models,
confirming the benefits of correlating spar-
sity structure of the outputs via the inducing
points.

1 INTRODUCTION

Gaussian process models (GPs, Rasmussen and
Williams, 2006) are a popular choice in Bayesian re-
gression due to their ability to capture complex depen-
dencies and non-linearities in data. In particular, when
having multiple outputs or tasks they have proved
effective in modeling the dependencies between the
tasks, outperforming competitive baselines and sin-
gle output learners (Bonilla et al., 2008; Teh et al.,
2005; Alvarez and Lawrence, 2009; Wilson et al., 2012).
However, the prohibitive cost of performing exact in-
ference in GP models severely hinders their applica-
tion to large scale multi-output problems. For exam-
ple, näıve inference in a fully coupled Gaussian process
model over P outputs and N data points can have

a complexity of O(N3P 3) and O(N2P 2) in time and
memory, respectively.

A motivating example of a large scale multi-output ap-
plication is the tracking of movements of a robot arm
using 2 or more joint torques. If one of the robot mo-
tors malfunctions and fails to record a torque, data
collected from the other motors may be used to in-
fer the missing torque values. However, taking 100
measurements per second already results in a total of
over 40,000 data points per torque in just 7 minutes.
Clearly this problem is well beyond the capabilities
of conventional multiple output GPs. Building multi-
output GP models that can learn correlated tasks at
the scale of these types of problems is thus the main
focus of this paper.

In the single output setting previous attempts to scale
up GP inference resort to approximate inference. Most
approximation methods can be understood within a
single probabilistic framework that uses a set of induc-
ing points in order to obtain an approximate process
(or a low-rank approximate covariance) over which in-
ference can be performed more efficiently (Quiñonero-
Candela and Rasmussen, 2005). These models have
been referred to in the literature as sparse models.
Nevertheless, straightforward application of such ap-
proximate techniques will yield a computational cost
of at least O(PNM2) in time and O(PNM) in mem-
ory, where M is the number of inducing points. This
high complexity still prevents us from applying GP
models to large scale multi-output problems.

In this work we approach the challenge of building scal-
able multi-output Gaussian process models based on
the following observations. Firstly, inducing variables
are the key catalyst for achieving sparsity and dealing
with large scale problems in Gaussian process models.
In particular, they capture the sufficient statistics of
a dataset allowing the construction of sparse processes
that can approximate arbitrarily well the exact GP
model (Titsias, 2009). Secondly, the use of global la-
tent variables (such as the inducing points) allows us
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to induce dependencies in a highly correlated model
efficiently. This observation is exploited in Hensman
et al. (2013) for single output GP regression models
where, by explicitly representing a distribution over
the inducing variables, stochastic variational inference
can be used to work with millions of data points. Fi-
nally, the key to multi-output and multi-task learning
is to model dependencies between the outputs based
on realistic assumptions of what can be shared across
the tasks. It turns out that sharing “sparsity struc-
ture” can not only be a reasonable assumption but
also a crucial component when modeling dependencies
between different related tasks.

Based on these observations, we propose the collabo-
rative multi-output Gaussian Process (COGP) model
where latent processes are mixed to generate depen-
dent outputs. Each process is sparse and character-
ized by its own set of inducing points. The sparsity
structure enabling output correlations is thus created
via the shared inducing sets. To learn this structure,
we maintain an explicit representation of the posterior
over the inducing points which in turn allows inference
to be carried out efficiently. In particular, we obtain
a variational lower bound of the model evidence that
decomposes across inputs and outputs. This decom-
position makes possible the application of stochastic
variational inference, thus allowing the model to han-
dle a large number of observations per output and a
large number of outputs. Furthermore, learning of all
the parameters in the model, including kernel hyperpa-
rameters and inducing inputs, can be done in a single
stochastic optimization framework.

We analyze our multi-out model on a toy problem
where the inducing variables are shown to be con-
ducive to the sharing of information between two re-
lated tasks. Additionally, we evaluate our model on
two moderate-sized datasets in which we show that
it can outperform previous non-scalable multi-output
approaches as well as single output baselines. Finally,
on a large scale experiment regarding the learning of
robot inverse dynamics we show the substantial bene-
fits of collaborative learning provided by our model.

Related work. Most GP-based multi-output mod-
els create correlated outputs by mixing a set of inde-
pendent latent processes. The mixing can be a lin-
ear combination with fixed coefficients (see e.g. Teh
et al., 2005; Bonilla et al., 2008). This is known
in the geostatistics community as the “linear model
of coregionalization” (Goovaerts, 1997). Such mod-
els may also be reformulated in a common Bayesian
framework, for example by placing a spike and slab
prior over the coefficients (Titsias and Lázaro-Gredilla,
2011). More complex dependencies can be induced

by using input-dependent coefficients (Wilson et al.,
2012; Nguyen and Bonilla, 2013) or convolving pro-
cesses (Boyle and Frean, 2005; Alvarez and Lawrence,
2009; Álvarez et al., 2010).

While we also use the mixing construction, the key
difference in our model is the role of inducing vari-
ables. In particular, when used in previous models
to reduce the computational costs (see e.g. Alvarez
and Lawrence, 2009; Álvarez et al., 2010), the induc-
ing points are integrated out or collapsed. In contrast,
our model maintains an explicit representation of the
posterior over the inducing variables that is learned
using data from all outputs. This explicit represen-
tation facilitates scalable learning in a similar fashion
to the approach in Hensman et al. (2013), making it
applicable to very large datasets.

2 MODEL SPECIFICATION

Before diving into technical details of the model spec-
ification, we discuss the modeling philosophy behind
our collaborative multi-output Gaussian processes.
To learn the outputs jointly, we need a mechanism
through which information can be transferred among
the outputs. This is achieved in the model by allowing
the outputs to share multiple sets of inducing vari-
ables, each of which captures a different pattern com-
mon to the outputs. These variables play a double
pivotal role in the model: they collaboratively share
information across the outputs and provide sufficient
statistics so as to induce sparse processes.

Consider the joint regression of P tasks with inputs
X = {xn ∈ RD}Nn=1 and outputs y = {yi}Pi=1

where yi = {yin}Nn=1. We model each output as a
weighted combination of Q shared latent functions
{gj}Qj=1, plus an individual latent function {hi}Pi=1

unique to that output for greater flexibility. The Q
shared functions have independent Gaussian process
priors gj(x) ∼ GP(0, kj(·, ·)). Similarly, each indi-
vidual function of an output also has a GP prior,
i.e. hi(x) ∼ GP(0, khi (·, ·)).
As we want to sparsify these processes, we introduce
a set of shared inducing variables uj for each gj(x),
i.e. uj contains the values of gj(x) at the inducing
inputs Zj . Likewise, we have individual inducing vari-
ables corresponding to each hi(x), which we denote
with vi and their corresponding inducing inputs Zhi .
The inducing inputs lie in the same space as the in-
puts X. For convenience, we assume all processes have
the same number of inducing points, M . However we
emphasize that this is not imposed in practice.

We denote the collective variables: g = {gj}, h =
{hi}, u = {uj}, v = {vi}, Z = {Zj}, and Zh = {Zhi }
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where gj = {gj(xn)}, hi = {hi(xn)}. Note that we
reserve subscript i for indexing the outputs and their
corresponding individual processes (i = 1 . . . P ), j for
the shared latent processes (j = 1 . . . Q), and n for the
inputs (n = 1 . . . N).

2.1 PRIOR MODEL

From the definition of the GPs and the independence
of the processes, the prior of the multi-output model
can be written as:

p(g|u) =

Q∏

j=1

p(gj |uj) =

Q∏

j=1

N (gj ;µj , K̃j) (1)

p(u) =

Q∏

j=1

p(uj) =

Q∏

j=1

N (uj ; 0, k(Zj ,Zj)) (2)

p(h|v) =

P∏

i=1

p(hi|vi) =

P∏

i=1

N (hi;µ
h
i , K̃

h
i ) (3)

p(v) =

P∏

i=1

p(vi) =

P∏

i=1

N (vi; 0, k(Zhi ,Z
h
i )), (4)

where the corresponding means and covariances of the
Gaussians are given by:

µj = k(X,Zj)k(Zj ,Zj)
−1uj (5)

µhi = k(X,Zhi )k(Zhi ,Z
h
i )−1vi (6)

K̃j = kj(X,X)− k(X,Zj)k(Zj ,Zj)
−1k(Zj ,X) (7)

K̃h
i = khi (X,X)− k(X,Zhi )k(Zhi ,Z

h
i )−1k(Zhi ,X).

(8)

In the equations and hereafter, we omit the subscripts
j, h, i from the kernels kj(·, ·) and khi (·, ·) when it is
clear from the parameters inside the parentheses which
covariance function is in action.

Equations (2) and (4) follow directly from the proper-
ties of GPs, while the expressions for p(g|u) and p(h|v)
(Equations (1) and (3)) come from the conditionals
of the multivariate Gaussian distributions. Instead of
writing the joint priors p(g,u) and p(h,v), the above
equivalent equations are given to emphasize the suf-
ficient statistics role of u and v in the model. Here
by sufficient statistics we mean, for any sparse process
(say gj), any other set of function values is indepen-
dent of gj given the inducing variables uj .

2.2 LIKELIHOOD MODEL

As mentioned above, we assume that observations for
each output are (noisy) linear combinations of the Q
latent functions gj(x) plus an independent function
hi(x). Hence we have that the likelihood with stan-

dard iid Gaussian noise is given by:

p(y|g,h) =

P∏

i=1

N∏

n=1

N (yin;

Q∑

j=1

wijgj(xn) + hi(xn), β−1i ),

(9)

where wij are the corresponding weights and βi is the
precision of each Gaussian. As the latent values g are
specified conditioned on the inducing variables u, this
construction implies that each output is a weighted
combination of the inducing values. We note that if u
and v are marginalized out, we obtain the semipara-
metric latent factor model (Teh et al., 2005). However,
doing so is against the purpose of our model which en-
courages sharing of outputs via the inducing variables.
Furthermore, as we shall see in the next section, ex-
plicit representation of these variables is fundamental
to scalable inference of the model.

3 INFERENCE

We approximate the posterior over the latent variables
g,h,u,v given observations y using variational infer-
ence (Jordan et al., 1999). In section 3.1 we derive a
lower bound of the marginal likelihood which has the
key property of factorizing over the data points and
outputs. Section 3.2 takes advantage of this factoriza-
tion to derive stochastic variational inference, allowing
the model to scale to very large datasets. Section 3.3
compares the complexity of the model with previous
multi-output methods.

3.1 VARIATIONAL LOWER BOUND

In variational inference, we find the “closest” approxi-
mate distribution to the true posterior in terms of the
KL divergence. We first observe that the true poste-
rior distribution can be written as:

p(g,h,u,v|y) = p(g|u,y)p(h|v,y)p(u,v|y). (10)

Here we recall the modeling assumption that each set
of inducing variables is the sufficient statistics of the
corresponding latent process. This motivates replacing
the true posteriors over g and h with their conditional
distributions given the inducing variables, leading to a
distribution of the form:

q(g,h,u,v|y) = p(g|u)p(h|v)q(u,v), (11)

with

q(u,v) =

Q∏

j=1

N (uj ; mj ,Sj)︸ ︷︷ ︸
q(uj)

P∏

i=1

N (vi; m
h
i ,S

h
i )︸ ︷︷ ︸

q(vi)

. (12)
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This technique has been used by Titsias (2009) and
Hensman et al. (2013) to derive variational inference
algorithms for the single output case. Since the con-
ditionals p(g|u) and p(h|v) are known (Equations (1)
and (3)), we only need to learn q(u,v) so as to min-
imize the divergence between the approximate poste-
rior and the true posteriors. The quality of approxi-
mation depends entirely on the posterior over the in-
ducing variables, thus underlining their pivotal role in
the model as previously discussed.

To find the best q(u,v), we optimize the evidence
lower bound (ELBO) of the log marginal:

log p(y) ≥
∫
q(u,v) log p(y|u,v)dudv

−
Q∑

j=1

KL[q(uj)||p(uj)]−
P∑

i=1

KL[q(vi)||p(vi)], (13)

which is derived using Jensen’s inequality and the fact
that both of q(u,v) and p(u,v) fully factorize. Since
q(uj), q(vi), p(uj), p(vi) are all multivariate Gaussian
distributions, the KL divergence terms are analytically
tractable. To compute the expected likelihood term in
the ELBO we first see that

log p(y|u,v) ≥ 〈log p(y|g,h)〉p(g,h|u,v)

=
P∑

i=1

N∑

n=1

〈log p(yin|gn, hin)〉p(g|u)p(hi|vi) (14)

where gn = {gjn = (gj)n}Qj=1. The inequality is due
to Jensen’s inequality and the equality is due to the
factorization of the likelihood.

The ELBO can be computed by first solving for
the individual expectations 〈log p(yin|gn, hin)〉 over
p(g|u)p(hi|vi) and then substituting these into Equa-
tion (13) (see the supplementary material for details).
Hence the resulting lower bound is given by:

L =
∑

i,n

(
logN (yin; µ̃in, β

−1
i )− 1

2
βi

Q∑

j=1

w2
ij k̃jnn

− 1

2
βik̃

h
inn −

1

2
βi

Q∑

j=1

tr w2
ijSjΛjn − βi

1

2
tr Shi Λin

)

−
Q∑

j=1

(
1

2
log |KjzzS

−1
j |+

1

2
tr K−1jzz

(
mjm

T
j + Sj

))

−
P∑

i=1

(
1

2
log |Kizz(S

h
i )−1|

+
1

2
tr K−1izz

(
mh
i (mh

i )T + Shi
))

, (15)

where Kjzz = k(Zj ,Zj), Kizz = k(Zhi ,Z
h
i ), and:

µ̃in =

Q∑

j=1

wijAj(n, :)mj + Ah
i (n, :)mh

i , (16)

Λjn = Aj(n, :)
TAj(n, :), (17)

Λin = Ah
i (n, :)TAh

i (n, :), (18)

with k̃jnn = (K̃j)nn; k̃hinn = (K̃h
i )nn; µjn = (µj)n;

µhin = (µhi )n; and we have defined the auxiliary ma-
trices Aj = k(X,Zj)K

−1
jzz and Ah

i = k(Xi,Z
h
i )K−1izz

and used Aj(n, :) to denote the n-th row vector of Aj .
Notice that this ELBO generalizes the bound for stan-
dard GP regression derived in Hensman et al. (2013),
which can be recovered by setting P = Q = 1, wij = 1
and hi(x) = 0.

The novelty of the variational lower bound in Equa-
tion (15) is that it decomposes across both inputs
and outputs. This enables the use of stochastic op-
timization methods, which allow the model to handle
very large datasets for which existing GP-based multi-
output models are simply impractical.

3.2 STOCHASTIC VARIATIONAL
INFERENCE

So far in the description of the model and inference
we have implicitly assumed that every output has full
observations at all inputs X. To discern where learn-
ing occurs for each output, we make the missing data
scenario more explicit. Specifically, each output i can
have observations at a different set of inputs Xi. We
shall use oi to denote the indices of Xi (in the set X)
and use the indexing operator B(oi) to select the rows
corresponding to oi from any arbitrary matrix B. We
also overload yi as the observed targets of output i.

3.2.1 Learning the Parameters of the
Variational Distribution

We can obtain the derivatives of the ELBO in Equa-
tion (15) wrt the variational parameters for optimiza-
tion. The derivatives of L wrt the parameters of q(uj)
are given by:

∂L
∂mj

=
P∑

i=1

βiwijAj(oi)
Ty
\j
i (19)

−
[
K−1jzz +

P∑

i=1

βiw
2
ijAj(oi)

TAj(oi)

]
mj ,

∂L
∂Sj

=
1

2
S−1j −

1

2

[
K−1jzz +

P∑

i=1

βiw
2
ijAj(oi)

TAj(oi)

]
,

(20)

where y
\j
i = yi −Ah

i (oi)m
h
i −

∑
j′ 6=j wij′Aj′(oi)mj′ .
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The derivatives of L wrt the parameters of q(vi) are
given by:

∂L
∂mh

i

=βiA
h
i (oi)

Ty
\h
i

−
[
K−1izz + βiA

h
i (oi)

TAh
i (oi)

]
mi, (21)

∂L
∂Shi

=
1

2
S−1i −

1

2

[
K−1izz + βiA

h
i (oi)

TAh
i (oi)

]
, (22)

where y
\h
i = yi −

∑Q
j=1 wijAj(oi, :)mj .

It can be seen that the derivatives of the parameters
of q(vi) only involve the observations of the output
i. The derivatives of the parameters of q(uj) involve
the observations of all outputs but is a sum of con-
tributions from individual outputs. Computation of
the derivatives can therefore be easily distributed or
parallelized.

Since the optimal distributions q(uj) and q(vi) are in
the exponential family, it is more convenient to use
stochastic variational inference (Hensman et al., 2012,
2013) to perform update of their canonical parameters.
This works by taking a step of length l in the direction
of the natural gradient approximated by mini-batches
of the data. For instance, consider q(uj) whose canon-
ical parameters are Φ1 = S−1j mj and Φ2 = − 1

2S−1j .
Their stochastic update equations at time t + 1 are
given by:

Φ1(t+1) = S−1j(t)mj(t)

+ l

( P∑

i=1

βiwijAj(oi)
Ty
\j
i − S−1j(t)mj(t)

)
(23)

Φ2(t+1) = −1

2
S−1j(t) + l

(
1

2
S−1j(t) −

1

2
Λ

)
, (24)

where Λ = K−1jzz +
∑P
i=1 βiw

2
ijAj(oi)

TAj(oi).

3.2.2 Inducing Inputs and Hyper-parameters

To learn the hyperparameters, which in this model in-
clude the mixing weights, the covariance hyperparam-
eters of the latent processes, and the noise precision of
each output, we follow standard practice in GP infer-
ence. For this model this involves taking derivatives of
the ELBO and applying standard stochastic gradient
descent in alternative steps with the variational pa-
rameters, much like a variational EM algorithm. The
derivatives are given in the supplementary material.

Learning of the inducing inputs, which was not con-
sidered in the single output case in Hensman et al.
(2013), is also possible in our stochastic optimization
approach. In the supplementary material, we show

Table 1: Comparison of the time and storage com-
plexity of approximate inference of multi-output GP
models. A&W, 2009 refers to Alvarez and Lawrence
(2009). COGP is the only method with complexity
independent of the number of inputs N and outputs
P , thus it can scale to very large datasets.

METHOD TIME STORAGE
COGP, this paper O(M3) O(M2)
SLFM, (Teh et al., 2005) O(QNM2

t ) O(QNMt)
MTGP, (Bonilla et al., 2008) O(PNM2

t ) O(PNMt)
CGP-FITC (A&W, 2009) O(PNM2

t ) O(PNMt)
GPRN, (Wilson et al., 2012) O(PQN3) O(PQN2)

that the additional cost of computing the derivatives of
the lower bound wrt the inducing inputs is not signifi-
cantly higher than the cost of updating the variational
parameters. This makes optimizing the inducing loca-
tions a practical option, which can be critical in high-
dimensional problems. Indeed, our experiments on a
large scale multi-output problem show that automatic
learning of the inducing inputs can lead to significant
performance gain with little overhead in computation.

3.3 COMPLEXITY ANALYSIS

In this section we analyze the complexity of the model
and compare it to existing multi-output approaches.
For consistency, we first unify common notations used
for all models. We use P as the number of outputs; N
as the number of inputs; Q as the number of shared la-
tent processes; and Mt as the total number of inducing
inputs. It is worth noting that Mt = (P +Q)×M in
our COGP model, assuming that each sparse process
has equal number of inducing points. Also, COGP has
P additional individual processes, one for each output.

The complexity of COGP can be read off by inspect-
ing the ELBO in Equation (15), with the key observa-
tion that it contains a sum over the outputs as well as
over the inputs. This means a mini-batch containing
a small subset of the inputs and outputs can be used
for stochastic optimization. Technically, the cost is
O(M3) or O(NbM

2), where Nb is the size of the mini-
batches, depending on which is larger between M and
Nb. In practice, we may use Nb > M as a large batch
size (e.g. Nb = 1000) helps reduce stochasticity of the
optimization. However, here we use O(M3) for easier
comparison with other models whose time and storage
demands are given in Table 1. We see that COGP has
a computational complexity that is independent of the
size of the inputs and outputs, which makes it the only
method capable of handling large scale problems.
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3.4 PREDICTION

The predictive distribution of the i-th output for a test
input x∗ is given by:

p(f∗|y,x∗) = N (f∗;
Q∑

j=1

wijµj∗ + µhi∗, w
2
ijsj∗ + shi∗),

(25)

where µj∗ and sj∗ are the mean and variance of
the prediction for gj∗ = gj(x∗), i.e. p(gj∗|y,x∗) =
N (gj∗;µj∗, sj∗). Likewise, µhi∗ and shi∗ are the mean
and variance of the prediction for hi∗ = hi(x∗),
p(hi∗|y,x∗) = N (hi∗;µhi∗, s

h
i∗). These predictive

means and variances are given by:

µj∗ = kj∗zK
−1
jzzmj , (26)

sj∗ = kj∗∗ − kj∗z
(
K−1jzz −K−1jzzSjK

−1
jzz

)
kTj∗z, (27)

µhi∗ = ki∗zK
−1
izzm

h
i , (28)

shi∗ = ki∗∗ − ki∗z
(
K−1izz −K−1izzSiK

−1
izz

)
kTi∗z, (29)

where kj∗∗ = kj(x∗,x∗), ki∗∗ = khi (x∗,x∗), kj∗z is the
covariance between x∗ and Zj , and ki∗z is the covari-
ance between x∗ and Zhi .

4 EXPERIMENTS

We evaluate the proposed approach with four experi-
ments. A toy problem is first used to study the trans-
fer of learning between two related processes via the
shared inducing points. We then compare the model
with existing multi-output models on the tasks of pre-
dicting foreign exchange rate and air temperature. In
the final experiment, we show that joint learning un-
der sparsity can yield significant performance gain on
a large scale dataset of inverse dynamics of a robot
arm.

Since we are using stochastic optimization, the learn-
ing rates need to be chosen carefully. We found that
the rates used in Hensman et al. (2013) also work well
for our model. Specifically, we used the learning rates
of 0.01 for the variational parameters, 1 × 10−5 for
the covariance hyperparameters, and 1× 10−4 for the
weights, noise precisions, and inducing inputs. We also
included a momentum term of 0.9 for all of the param-
eters except the variational parameters and the induc-
ing inputs. All of the experiments are executed on an
Intel(R) Core(TM) i7-2600 3.40GHz CPU with 8GB
of RAM using Matlab R2012a.

4.1 TOY PROBLEM

In this toy problem, two related outputs are simu-
lated from the same latent function sin(x) and cor-
rupted by independent noise: y1(x) = sin(x) + ε and

y2(x) = −sin(x) + ε, ε ∼ N (0, 0.01). Each output
is given 200 observations with missing values in the
(−7,−3) interval for the first output and the (4, 8)
interval for the second output. We used Q = 1 la-
tent sparse process with squared exponential kernel,
h1(x) = h2(x) = 0, and M = 15 inducing inputs for
our model.

Figure 1 shows the predictive distributions by our
model (COGP) and independent GPs with stochas-
tic variational inference (SVIGP, one for each output).
The locations of the inducing inputs are fixed and iden-
tical for both methods. It is apparent from the figure
that the independent GPs fail to predict the functions
in the unobserved regions, especially for output 1. In
contrast, by using information from the observed in-
tervals of one output to interpolate the missing signal
of the other, COGP makes perfect prediction for both
outputs. This confirms the effectiveness of collabora-
tive learning of sparse processes via the shared induc-
ing variables. Additionally, we note that the inference
procedure learned that the weights are w11 = 1.07 and
w21 = −1.06 which accurately reflects the correlation
between the two outputs.

4.2 FOREIGN EXCHANGE RATE
PREDICTION

The first real world application we consider is to pre-
dict the foreign exchange rate w.r.t the US dollar of
the top 10 international currencies (CAD, EUR, JPY,
GBP, CHF, AUD, HKD, NZD, KRW, and MXN) and
3 precious metals (gold, silver, and platinum)1. The
setting of our experiment described here is identical to
that in Álvarez et al. (2010). The dataset consists of
all the data available for the 251 working days in the
year of 2007. There are 9, 8, and 42 days of missing
values for gold, silver, and platinum, respectively. We
remove from the data the exchange rate of CAD on
days 50–100, JPY on day 100–150, and AUD on day
150–200. Note that these 3 currencies are from very
different geographical locations, making the problem
more interesting. The 153 points are used for test-
ing, and the remaining 3051 data points are used for
training. Since the missing data corresponds to long
contiguous sections, the objective here is to evaluate
the capacity of the model to impute the missing cur-
rency values based on other currencies.

For preprocessing we normalized the outputs to have
zero mean and unit variance. Since the exchange rates
are driven by a small number of latent market forces
(see e.g. Álvarez et al., 2010), we tried different val-
ues of Q = 1, 2, 3 and selected Q = 2 which gave the
best model evidence (ELBO). We used the squared-

1Data is available at http://fx.sauder.ubc.ca
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Figure 1: Simulated data and predictive distributions of by COGP (first and third figure) and independent GPs
using stochastic variational inference (second and last figure) for the toy problem. Solid black line: predictive
mean; grey bar: two standard deviations; magenta dots: real observations; blue dots: missing data. The
black crosses show the locations of the inducing inputs. By sharing inducing points across the outputs, COGP
accurately interpolates the missing function values.
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Figure 2: Real observations and predictive distributions for CAD (left), JPY (middle), and AUD (right). The
model used information from other currencies to effectively extrapolate the exchange rates of AUD. The color
coding scheme is the same as in Figure 1.

Table 2: Performance comparison on the foreign ex-
change rate dataset. Results are averages of the 3 out-
puts over 5 repetitions. Smaller figures are better.

METHOD SMSE NLPD
COGP 0.2125 -0.8394
CGP 0.2427 -2.9474
IGP 0.5996 0.4082

exponential covariance function for the shared pro-
cesses and the noise covariance function for the indi-
vidual process of each output. M = 100 inducing in-
puts (per sparse process) were randomly selected from
the training data and fixed throughout training.

The real data and predictive distributions by our
model are shown in Figure 2. They exhibit similar
behaviors to those by the convolved model with induc-
ing kernels in Álvarez et al. (2010). In particular, both
models perform better at capturing the strong depreci-
ation of the AUD than the fluctuations of the CAD and
JPY currency. Further analysis of the dataset found
that 4 other currencies (GBP, NZD, KRW, and MXN)
also experienced the same trend during the days 150

– 200. This information from these currencies was ef-
fectively used by the model to extrapolate the values
of the AUD.

We also report in Table 2 the predictive performance of
our model compared to the convolved GPs model with
exact inference (CGP, Alvarez and Lawrence, 2009)
and independent GPs (IGP, one for each output). Our
model outperforms both of CGP and IGP in terms of
the standardized mean squared error (SMSE). CGP
has lower negative log predictive density (NLPD),
mainly due to the less conservative predictive variance
of the exact CGP for the CAD currency. For refer-
ence, the convolved GPs with approximation via the
variational inducing kernels (CGPVAR, Álvarez et al.,
2010) has an SMSE of 0.2795 while the NLPD was not
provided. Training took only 10 minutes for our model
compared to 1.4 hours for the full CGP model.

4.3 AIR TEMPERATURE PREDICTION

Next we consider the task of predicting air tempera-
ture at 4 different locations in the south coast of Eng-
land. The air temperatures are recorded by a net-
work of weather sensors (named Bramblemet, Soton-
met, Cambermet, and Chimet) during the period from
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Table 3: Performance comparison on the air tempera-
ture dataset. Results are averages of 2 outputs over 5
repetitions.

METHOD SMSE NLPD
COGP 0.1077 2.1712
CGP 0.1125 2.2219
IGP 0.8944 12.5319

July 10 to July 15, 2013. Measurements were taken
every 5 minutes, resulting in a maximum of 4320 ob-
servations. There are missing data for Bramblemet
(100 points), Chimet (15 points), and Sotonmet (1002
points), possibly due to network outages or hardware
failures. We further simulated failure of the sensors by
removing the observations from the time periods [10.2 -
10.8] for Cambermet and [13.5 - 14.2] for Chimet. The
removed data comprises 375 data points and is used
for testing. The remaining data consisting of 15,788
points is used for training. Similar to the previous ex-
periment, the objective is to evaluate the ability of the
model to use the signals from the functioning sensors
to extrapolate the missing signals.

We normalized the outputs to have zero mean and
unit variance. We used Q = 2 sparse processes with
the squared exponential covariance function and in-
dividual processes with the noise covariance function.
M = 200 inducing inputs were randomly selected from
the training set and fixed throughout training.

The real data and the predictive distributions by
our model, CGP with exact inference (Alvarez and
Lawrence, 2009), and independent GPs are shown in
Figure 3. It is clear that the independent GP model
is clueless in the test regions and thus simply uses the
average temperature as its prediction. For Camber-
met, both COGP and CGP can capture the rising in
temperature from the morning until the afternoon and
the fall afterwards. The performance of the models are
summarized in Table 3, which shows that our model
outperforms CGP in terms of both SMSE and NLPD.
It took 5 minutes on average to train our model com-
pared to 3 hours of CGP with exact inference.

It is also worth noting the characteristics of the sparse
processes learned by our model as they correspond to
different patterns in the data. In particular, one pro-
cess has an inverse lengthscale of 136 which captures
the global increase in temperature during the training
period while the other has an inverse lengthscale of 0.5
to model the local variations within a single day.

Table 4: Performance comparison on the robot inverse
dynamics dataset. In the last two lines, standard GP
is applied to output 1 and the other method is applied
to output 2. Results are averaged over 5 repetitions.

OUTPUT 1 OUTPUT 2

METHOD SMSE NLPD SMSE NLPD

COGP, learn z 0.2631 3.0600 0.0127 0.8302
COGP, fix z 0.2821 3.2281 0.0131 0.8685
GP, SVIGP 0.3119 3.2198 0.0101 1.1914
GP, SOD 0.3119 3.2198 0.0104 1.9407

4.4 ROBOT INVERSE DYNAMICS

Our last experiment is with a dataset relating to an in-
verse dynamics model of a 7-degree-of-freedom anthro-
pomorphic robot arm (Vijayakumar and Schaal, 2000).
The data consists of 48,933 datapoints mapping from a
21-dimensional input space (7 joints positions, 7 joint
velocities, 7 joint accelerations) to the corresponding
7 joint torques. It has been used in previous work (see
e.g. Rasmussen and Williams, 2006; Vijayakumar and
Schaal, 2000) but only for single task learning. Chai
et al. (2008) considered multitask learning of robot in-
verse dynamics but on a different and much smaller
dataset.

Here we consider joint learning for the 4th and 7th
torques, where the former has 2,000 points while the
latter has 44,484 points for training. The test set con-
sists of 8,898 observations equally divided between the
two outputs.

Since none of the existing multi-output models are ap-
plicable to problems of this scale, we compare with in-
dependent models that learn each output separately.
Standard GP is applied to the first output as it has
only 2,000 observations for training. For the second
output, we used two baselines. The first is the sub-
set of data (SOD) approach where 2,000 data points
are randomly selected for training with a standard GP
model. The second is the sparse GP with stochastic
variational inference (SVIGP) using 500 inducing in-
puts and a batch size of 1,000. In case of COGP, we
also used a batch size of 1,000 and 500 inducing points
for the shared process (Q = 1) and each of the indi-
vidual processes.

The performance of all methods in terms of SMSE and
NLPD is given in Table 4. The benefits of learning the
two outputs jointly are evident, as can be seen by the
significantly lower SMSE and NLPD of COGP com-
pared to the full GP for the first output (4th torque).
While the SMSE of the second output is essentially
the same for all methods, the NLPD of COGP is sub-
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Figure 3: Real data and predictive distributions by our method (COGP, left figures), the convolved GP method
with exact inference (CGP, middle figures), and full independent GPs (right figures) for the air temperature
problem. The coding color scheme is the same as in Figure 1.

stantially better than that of the independent SVIGP
model which has the same amount of training data for
this torque. These results validate the impact of col-
laborative learning under sparsity assumptions, open-
ing up new opportunities for improvement over single
task learning with independent sparse processes.

Finally, we see on Table 4 that optimizing the induc-
ing inputs can yield better performance than fixing
them. More importantly, the overhead in computa-
tion is small, as demonstrated by the training times
shown in Figure 4. For instance, the total training
time is only 1.9 hours when learning with 500 induc-
ing inputs compared to 1.6 hours when fixing them.
As this dataset is 21-dimensional, this small difference
in training time confirms that learning of the induc-
ing inputs is a practical option even when dealing with
problems of high dimensions.

5 DISCUSSION

We have presented scalable multi-output GPs for
learning of correlated functions. The formulation
around the inducing variables was shown to be con-
ducive to effective and scalable joint learning under
sparsity. We note that although our large scale exper-
iments were done with over 40,000 observations – the
largest publicly available multi-output dataset found,

100 200 300 400 500
0

0.5

1

1.5

2

No. of inducing inputs

T
ra

in
in

g
 t

im
e

 (
h

o
u

rs
)

 

 

Learn z
Fixed z

Figure 4: Learning of the inducing inputs is a practical
option as the overhead in training time is small.

the model can easily handle much bigger datasets.
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Combining predictions from linear models
when training and test inputs differ
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Abstract

Methods for combining predictions from dif-
ferent models in a supervised learning setting
must somehow estimate/predict the quality of a
model’s predictions at unknown future inputs.
Many of these methods (often implicitly) make
the assumption that the test inputs are identical to
the training inputs, which is seldom reasonable.
By failing to take into account that prediction
will generally be harder for test inputs that did
not occur in the training set, this leads to the se-
lection of too complex models. Based on a novel,
unbiased expression for KL divergence, we pro-
pose XAIC and its special case FAIC as versions
of AIC intended for prediction that use different
degrees of knowledge of the test inputs. Both
methods substantially differ from and may out-
perform all the known versions of AIC even when
the training and test inputs are iid, and are es-
pecially useful for deterministic inputs and under
covariate shift. Our experiments on linear models
suggest that if the test and training inputs differ
substantially, then XAIC and FAIC predictively
outperform AIC, BIC and several other methods
including Bayesian model averaging.

1 INTRODUCTION

In the statistical problem of model selection, we are given
a set of models {Mi | i ∈ I }, each of the form Mi =
{ gi(· | θ) | θ ∈ Θi }, where the gi(· | θ) are density func-
tions on (sequences of) data. We wish to use one of these
models to explain our data and/or to make predictions of
future data, but do not know which model explains the data
best. It is well known that simply selecting the model con-
taining the maximum likelihood distribution from among
all the models leads to overfitting, so any expression of
the quality of a model must somehow avoid this problem.
One way to do this is by estimating each model’s ability

to predict unseen data (this will be made precise below).
This approach is used by many methods for model selec-
tion, including cross-validation, AIC (Akaike, 1973) and its
many variants, Gelfand and Ghosh’s Dk (1998), and BPIC
(Ando, 2007). However, none of these methods takes into
account that for supervised learning problems, the general-
ization error being estimated will vary with the test input
variables. Instead, they implicitly assume that the test in-
puts will be identical to the training inputs.

In this paper, we derive an estimate of the generalization
error that does take the input data into account, and use
this to define a new model selection criterion XAIC, its
special case FAIC, and the variants XAICC and FAICC
(small sample corrections). We use similar assumptions
as AIC, and thus our methods can be seen as relatives of
AIC that are adapted to supervised learning when the train-
ing and test inputs differ. Our experiments show that our
methods have excellent predictive performance, better even
than Bayesian model averaging in some cases. Also, we
show theoretically that AIC’s unawareness of input vari-
ables leads to a bias in the selected model order, even in the
seemingly safe case where the test inputs are drawn from
the same distribution as the training inputs. No existing
model selection method seems to address this issue ade-
quately, making XAIC and FAIC more than “yet another
version of AIC”.

It is in fact quite surprising that, more than 40 years after its
original invention, all the forms of AIC currently in use are
biased in the above sense, and in theoretical analyses, con-
ditional model selection methods are often even compared
on a new point x constrained to be one of the x values in the
training data (see e.g. Yang (2005)), even though in most
practical problems, a new point x will not be drawn from
this empirical training data distribution, but rather should
be regarded as falling in one of the three cases considered
in this paper: (a) it is drawn from the same distribution as
the training data (but not necessarily equal to one of the
training inputs); (b) it is drawn from a different distribution
(covariate shift); (c) it is set to a fixed, observable value,
usually not in the training set, but the process that gave rise
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to this value may not be known.

1.1 GOALS OF MODEL SELECTION

When choosing among or combining predictions from
different models, one can have different goals in mind.
Whereas BIC and BMS (Bayesian model selection) focus
on finding the most probable model, methods like AIC,
cross-validation and SRM (structural risk minimization,
Vapnik (1998)) aim to find the model that leads to the best
predictions of future data. While AIC and cross-validation
typically lead to predictions that converge faster to optimal
in the sense of KL-divergence than those of BIC and BMS,
it is also well-known that, unlike BIC and BMS, such meth-
ods are not statistically consistent (i.e. they do not find the
smallest submodel containing the truth with probability 1
as n→∞); there is an inherent conflict between these two
goals, see for example Yang (2007); Van Erven et al. (2007,
2012). Like AIC, the XAIC and FAIC methods developed
here aim for predictive optimality rather than consistency,
thus, if consistency is the main concern, they should not be
used. We also stress at the outset that, unlike most other
model selection criteria, the model selected by FAIC may
depend on the new x whose corresponding y value is to
be predicted; for different x, a different model may be se-
lected based on the same training data. Since — as in many
other model selection criteria — our goal is predictive ac-
curacy rather than ‘finding the true model’, and since the
dependence on the test x helps us to get substantially better
predictions, we are not worried by this dependency.

FAIC thus cannot be said to select a ‘single’ model for a
given training set — it merely outputs a function from x
values to models. As such, it is more comparable with
BMA (Bayesian model averaging) rather than BMS (se-
lection). BMA is of course a highly popular method for
data prediction; like FAIC, it adapts its predictions to the
test input x (as we will see, FAIC tends to select a simpler
model if there are not many training points near x; BMA
predicts with a larger variance if there are not many train-
ing points near x). BMA leads to the optimal predictions
in the idealized setting where one takes expectation under
the prior (i.e., in frequentist terms, we imagine nature to
draw a model, and then a distribution within the chosen
model, both from the prior used in BMA, and then data
from the drawn distribution), and usually performs very
well in practice as well. It is of considerable interest then
that our XAIC and FAIC outperform Bayes by a fair margin
in some of our experiments in Section 5.

1.2 IN-SAMPLE AND EXTRA-SAMPLE ERROR

Many methods for model selection work by computing
some estimate of how well each model will do at predict-
ing unseen data. This generalization error may be defined
in various ways, and methods can further vary in the as-

sumptions used to find an estimate. AIC (Akaike, 1973) is
based on the expression for the generalization error

−2 EU EV log gi(V | θ̂i(U)), (1)

for modelMi = { gi(· | θ) | θ ∈ Θi }, where θ̂i(U) de-
notes the element of Θi which maximizes the likelihood
of data U, and where both random variables are indepen-
dent samples of n data points each, both following the true
distribution of the data. (We use capitals to denote se-
quences of data points, and boldface for random variables.
Throughout this paper, log denotes the natural logarithm.)
Up to an additive term which is the same for all models,
the inner expectation is the KL divergence from the true
distribution to gi(· | θ̂i(U)). An interpretation of (1) is
that we first estimate the model’s parameters using a ran-
dom sample U, then judge the quality of this estimate by
looking at its performance on an independent, identically
distributed sample V. AIC then works by estimating (1)
for each model by the asymptotically unbiased estimator

−2 log gi(U | θ̂(U)) + 2k, (2)

and selecting the model minimizing this estimate. Thus
AIC selects the model whose maximum likelihood estimate
is expected to be closest to the truth in terms of KL diver-
gence. In the sequel, we will consider only one model at a
time, and therefore omit the model index.

In supervised learning problems such as regression and
classification, the data points consist of two parts ui =
(xi, yi), and the models are sets of distributions on the out-
put variable y conditional on the input variable x (which
may or may not be random). We call these conditional
models. The conditionality expresses that we are not in-
terested in explaining the behaviour of x, only that of y
given x. Then (1) can be adapted in two ways: as the extra-
sample error

−2 EY|X EY′|X′ log g(Y′ | X ′, θ̂(X,Y)), (3)

and, replacing both X and X ′ by a single variable X , as
the in-sample error

−2 EY|X EY′|X log g(Y′ | X, θ̂(X,Y)), (4)

where capital letters again denote sequences of data points.
Contrary to (1), these quantities capture that the expected
quality of a prediction regarding y may vary with x.

An example of a supervised learning setting is given by lin-
ear models. In a linear model, an input variable x is repre-
sented by a design vector and a sequence of n inputs by an
n × p design matrix; with slight abuse of notation, we use
x and X to represent these. Then the densities g(Y | X,µ)
in the model are Gaussian with mean Xµ and covariance
matrix σ2In for some fixed σ2. Because g is of the form
e−squared error, taking the negative logarithm as in (1) pro-
duces an expression whose main component is a sum of
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squared errors; the residual sum of squared errors RSS(Y)
is the minimum for given data, which is attained by the
maximum likelihood estimator. Alternatively, σ2 may be
another parameter in addition to µ if the true variance is
unknown.

It is standard to apply ordinary AIC to supervised learning
problems, for example for linear models with fixed vari-
ance where (2) takes the well-known form

1

σ2
RSS(Y) + 2k, (5)

where k is the number of parameters in the model. But
because the standard expression behind AIC (1) makes no
mention of X or X ′, this corresponds to the tacit assump-
tion that X = X ′, so that the in-sample error is being esti-
mated.

However, the extra-sample error is more appropriate as a
measure of the expected performance on new data. AIC
was intended to correct the bias that results from evaluat-
ing an estimator on the data from which it was derived, but
because it uses the in-sample error, AIC evaluates estima-
tors on new output data, but old input data. So we see that
in supervised problems, a bias similar to the one it was in-
tended to correct is still present in AIC.

1.3 CONTENTS

The remainder of this article is structured as follows. In
Section 2, we develop our main results about the extra-
sample error and propose a new model selection criterion
based on this. It involves κX′ , a term which can be calcu-
lated explicitly for linear models; we concentrate on these
models in the remainder of the paper. Special cases of our
criterion, including a focused variant, are presented in Sec-
tion 3. In Section 4 we discuss the behaviour of our es-
timate of the extra-sample error, and find that without our
modification, AIC’s selected model orders are biased. Sev-
eral experiments on simulated data are described in Sec-
tion 5. Section 6 contains some further theoretical discus-
sion regarding Bayesian prediction and covariate shift. Fi-
nally, Section 7 concludes. All proofs are in the supple-
mentary material.1

2 ESTIMATING THE EXTRA-SAMPLE
ERROR

In this section, we will derive an estimate for the extra-
sample error. Our assumptions will be similar to those used
in AIC to estimate the in-sample error; therefore, we start
with some preliminaries about the setting of AIC.

1Posted on arXiv

2.1 PRELIMINARIES

In the setting of AIC, the data points are independent but
not necessarily identically distributed. The number of data
points in Y and Y′ is n. We define the Fisher information
matrix I(θ) as−EY′ ∂2

∂θ2 log g(Y′ | θ), and define the con-
ditional Fisher information matrix I(θ | X ′) analogously.
We write Cov(θ̂(X,Y) | X) for the conditional covari-
ance matrix EY|X [θ̂(X,Y) − EY|X θ̂(X,Y)][θ̂(X,Y) −
EY|X θ̂(X,Y)]>.

Under standard regularity assumptions, there exists a
unique parameter value θo that minimizes the KL diver-
gence from the true distribution, and this is what θ̂(Y) con-
verges to. Under this and other (not very restrictive) reg-
ularity assumptions (Shibata, 1989), it can be shown that
(Burnham and Anderson, 2002)

−2 log g(Y | θ̂(Y)) + 2t̂r
{
I(θo) Cov(θ̂(Y))

}
(6)

(where t̂r represents an appropriate estimator of that trace)
is an asymptotically unbiased estimator of (1). The model
selection criterion TIC (Takeuchi’s information criterion)
selects the model which minimizes (6).

The estimator of the trace term that TIC requires has a
large variance, making it somewhat unreliable in practice.
AIC uses the very simple estimate 2k for TIC’s trace term.
This estimate is generally biased except when the true data-
generating distribution is in the model, but obviously has
0 variance. Also, if some models are more misspecified
than others, those models will have a worse log-likelihood.
This term in AIC grows linearly in the sample size, so that
asymptotically, those models will be disqualified by AIC.
Thus AIC selects good models even when its penalty term
is biased due to misspecification of the models.

This approach corresponds to making the following as-
sumption in the derivation leading to AIC’s penalty term:

Assumption 1 The model contains the true data-
generating distribution.

It follows that θo specifies this distribution. We empha-
size that this assumption is only required for AIC’s deriva-
tion and does not mean that AIC necessarily works badly
if applied to misspecified models. Under this assumption,
the two matrices in (6) cancel, so the objective function
becomes (2), the standard formula for AIC (Burnham and
Anderson, 2002).

We now move to supervised learning problems, where the
true distribution of the data and the distributions g in the
models are conditional distributions of output values given
input values. In this setting, the data are essentially iid in
the sense that g(Y | X, θ) =

∏n
i=1 g(yi | xi, θ). That is,

the outputs are independent given the inputs, and if two in-
put variables are equal, the corresponding output variables
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are identically distributed. Also, the definition of θo would
need to be modified to depend on the training inputs, but
since Assumption 1 now implies that g(y | x, θo) defines
the true distribution of y given x for all x, we can take this
as the definition of θo for supervised learning when As-
sumption 1 holds.

For supervised learning problems, AIC and TIC silently as-
sume that X ′ either equals X or will be drawn from its
empirical distribution. We want to remove this assumption.

2.2 MAIN RESULTS

We will need another assumption:

Assumption 2 For training data (X,Y) and (unobserved)
test data (X ′,Y′),

− 1

n
EY|X log g(Y | X, θo)

= − 1

n′
EY′|X′ log g(Y′ | X ′, θo),

where n and n′ denote the number of data points in X and
X ′, respectively.

This assumption ensures that the log-likelihood on the test
data can be estimated from the training data. If X and X′

are random and mutually iid, this is automatically satis-
fied when the expectations are taken over these inputs as
well. While this assumption of randomness is standard in
machine learning, there are other situations where X and
X ′ are not random and Assumption 2 holds nevertheless.
For instance, this is the case if g(y | x, θ) is such that
yi = fθ(xi) + zi, where the noise terms zi are zero-mean
and iid (their distribution may depend on θ). This additive
noise assumption is common in regression-like settings.
Then Assumption 1 implies that Assumption 2 holds for
all X,X ′.

To get an estimator of the extra-sample error (3), we do not
make any assumptions about the process generating X and
X ′ but leave the variables free. We allow n 6= n′.

Theorem 1 Under Assumptions 1 and 2 and some stan-
dard regularity conditions (detailed in the supplementary
material), and for n′ either constant or growing with n,

− 2
n

n′
EY|X EY′|X′ log g(Y′ | X ′, θ̂(X,Y))

= −2 EY|X log g(Y | X, θ̂(X,Y)) + k + κX′ + o(1),
(7)

where κX′ = n
n′ tr

{
I(θo | X ′) Cov(θ̂(X,Y) | X)

}
.

Moreover, if the true conditional distribution of Y given
X is Gaussian with fixed variance and the conditional dis-
tributions in the models are also Gaussian with that same

variance (as is the case in linear models with known vari-
ance), then the above approximation becomes exact.

We wish to use (7) as a basis for model selection. To do
this, first note that (7) can be estimated from our training
data using

−2 log g(Y | X, θ̂(X,Y)) + k + κX′ . (8)

Theorem 1 expresses that this is an asymptotically unbiased
estimator of the extra-sample error. We see that the differ-
ence with standard AIC (2) is that the penalty 2k has been
replaced by k+κX′ . We propose to use (8) as the basis for
a new model selection criterion extra-sample AIC (XAIC),
which chooses the model that minimizes an estimator of
(8). What remains for this is to evaluate κX′ , which may
depend on the unknown true distribution, and on the test set
through X ′.

2.3 THE κX′ AND o(1) TERMS FOR LINEAR
MODELS

If the densities g are Gaussian, then κX′ does not depend on
the unknown θo because the Fisher information is constant,
so no additional estimation is necessary to evaluate it. Thus
for a linear model with fixed variance, κX′ becomes

κX′ =
n

n′
tr

{[
1

σ2
X ′
>
X ′
] [
σ2(X>X)−1

]}

=
n

n′
tr
[
X ′
>
X ′(X>X)−1

]
.

If the variance is also to be estimated, it can be easily seen
that κX′ will become this value plus one. In that case, the
approximation in Theorem 1 is not exact (as it is in the
known variance case), but the o(1) term can be evaluated
explicitly:

Theorem 2 For a linear model with unknown variance,

− 2
n

n′
EY|X EY′|X′ log g(Y′ | X ′, θ̂(X,Y))

= −2 EY|X log g(Y | X, θ̂(X,Y))

+ k + κX′ +
(k + κX′)(k + 1)

n− k − 1
,

where κX′ can again be computed from the data and equals
(n/n′) tr(X ′>X ′(X>X)−1) + 1, and k is the number of
parameters including σ2.

Theorem 2 presents an extra-sample analogue of the well-
known small sample correction AICC (Hurvich and Tsai,
1989), which is derived similarly and uses a penalty of 2k+
2k(k + 1)/(n − k − 1). We define XAICC accordingly.
Though the theorem holds exactly only in the specific case
described, we believe that the extra penalty term will lead
to better results in much more general settings in practice,
as is the case with AICC (Burnham and Anderson, 2002).
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3 MODEL SELECTION FOR
EXTRA-SAMPLE PREDICTION

In this section, we discuss several concrete model selection
methods, all based on the XAIC formula (8) and thus cor-
recting AIC’s bias.

3.1 NONFOCUSED VERSIONS OF XAIC

Except in trivial cases, the extra-sample error (3) and its
estimate (8) depend on the test inputs X ′, so some knowl-
edge of X ′ is required when choosing a model appropriate
for extra-sample prediction. In a semi-supervised learning
setting whereX ′ itself is known at the time of model selec-
tion, we could evaluate (8) directly for each model. How-
ever, X ′ might not yet be known when choosing a model.

If X′ is not known but its distribution is, we can replace κX′

by its expectation; for iid inputs, computing this reduces to
computing Ex′ I(θo | x′).

If the distribution of X′ is also unknown, we need to esti-
mate it somehow. If it is believed that X and X′ follow the
same distribution, the empirical distribution of X could be
used as an estimate of the distribution of X′. Then AIC is
retrieved as a special case. Section 4 will show that this is a
bad choice even if X and X′ follow the same distribution,
so a smoothed estimate is recommended instead.

Of course, we are not restricted to the case where X and
X′ follow similar distributions. In the setting of covariate
shift (Sugiyama and Kawanabe, 2012), the distributions are
different but known (or can be estimated). This variant of
XAIC is directly applicable to that setting, yielding an un-
biased analogue of AIC.

3.2 FOCUSED MODEL SELECTION

It turns out there is a way to apply (8) even when nothing is
known about the process generating X and X ′. If our goal
is prediction, we can set X ′ to the single point x′ for which
we need to predict the corresponding y′. Contrary to stan-
dard model selection approaches, we thus use x′ already
at the stage of model selection, rather than only inside the
models. We define the model selection criterion Focused
AIC (FAIC) as this special case of XAIC, and FAICC as its
small sample correction.

A focused model selection method implements the intu-
ition that those test points whose input is further away from
the training inputs should be predicted with more caution;
that is, with less complex models. As discussed in Sec-
tion 1.1, methods that optimize predictive performance of-
ten are not consistent; this hurts in particular for test inputs
far away from the training inputs. We expect that extra-
sample adaptations of such methods (like XAIC) are also
inconsistent, but that using the focused special case helps

to guard against this small chance of large loss.

Choosing a model specifically for the task at hand poten-
tially lets us end up with a model that performs this task
much better than a model found by a non-focused model
selection method. However, there are situations in which
focus is not a desirable property: the mapping from in-
put values to predictions given by a focused model selec-
tion method will be harder to interpret than that of a non-
focused method, as it is a combination of the models under
consideration rather than a single one of them. Thus, if
the experimenter’s goal is interpretation/transparency, a fo-
cused model selection method is not recommended; these
methods are best applied when the goal is prediction.

Evaluating the x′-dependent model selection criterion sep-
arately for each x′ leads to a regression curve which in
general will not be from any one of the candidate mod-
els, but only piecewise so. It will usually have discontinu-
ities where it switches between models. If the models con-
tain only continuous functions and such discontinuities are
undesirable, Akaike weights (Akaike, 1979; Burnham and
Anderson, 2002) may be used to get a continuous analogue
of the FAIC regression curve.

4 AIC VS XAIC (k VS κx) IN LINEAR
MODELS

Intuitively, the quantity κx that appears as a penalty term in
the XAIC formula (8) expresses a measure of dissimilarity
between the test input x and the training inputs X . This
measure is determined fully by the models and does not
have to be chosen some other way. However, its proper-
ties are not readily apparent. Because κx can be computed
exactly for linear models, we investigate some of its prop-
erties in that case.

One useful characterization of κx is the following: if we
express the design vector x of the test point in a basis that
is orthonormal to the empirical measure of the training set
X , then κx = ‖x‖2.

For given X , x may exist such that κx is either greater or
smaller than the number of parameters k. An example of
κx < k occurs for the linear model consisting of all linear
functions with known variance (so k = 2). Then κx will
be minimized when x lies at the mean of the input values
in the training set, where κx = 1.

We will now consider the case where X and x are ran-
dom and iid. We showed that the XAIC expression (8)
is an unbiased estimator of the extra-sample error. AIC
uses k in place of κx, and the above suggests the possi-
bility that maybe the instances where κx > k and those
where κx < k cancel each other out, so that AIC would
also be approximately unbiased as an estimate of the extra-
sample error. However, the following proposition shows
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that, except in a trivial case, κx is on average greater than
k. This means that in those settings, AIC underestimates
the model’s extra-sample error.

(We should mention here that if X and x are random and
mutually iid, then as n → ∞, AIC’s bias goes to 0. The
bias we show below concerns all finite n; additionally,
without focus, an extreme x could result in a very biased
AIC value even for large n.)

Proposition 3 Consider a linear model M with training
inputs X and test input x iid such that X>X is almost
surely invertible. LetM′ be the submodel obtained by re-
moving the final entry from every design vector. Then these
models are related by Eκx ≥ Eκx′ + 1, with strict in-
equality if x has at least two entries.

It follows by induction on k that for random input data, AIC
is biased as an estimate of the extra-sample error except in
a special case with k = 1. Also, the bias becomes worse
for larger models. This last fact is distressing, as it shows
that when AIC assesses a sequence of nested models, the
amount by which it overestimates their generalization abil-
ity grows with the model order. Thus the biases in the AIC
scores lead to a bias in the selected model order, which was
not evident from earlier work.

The XAIC formula (8) contains two terms that depend
on the data: minus two times the log-likelihood, and the
penalty term κX′ . The log-likelihood measures distances
between output values and is independent ofX ′, while κX′

expresses a property of input values and is largely unaf-
fected by output values; in fact, in linear models its com-
putation does not involve any (estimates based on) output
values. Hence the variance of XAIC is no greater than that
of AIC when comparing the two on fixed X,X ′, so that
XAIC’s reduction in bias does not come at the price of an
increase in variance. However, focused model selection de-
mands that X ′ is not held fixed, so that FAIC may have a
larger variance than AIC. Similarly, if the distribution of
X′ is being estimated as part of applying XAIC, the used
estimator’s quality will affect the accuracy of the estimated
generalization error.

5 EXPERIMENTS

We will now experimentally compare XAIC and FAIC
(or more precisely, their small-sample corrected versions
XAICC and FAICC) to several other model selection meth-
ods, in univariate and multivariate problems.

5.1 DESCRIPTION OF EXPERIMENTS

In the univariate experiments, linear modelsM1, . . . ,M7

with unknown variance were considered. ModelMi con-
tained polynomials of degree i−1 (and so had i+1 param-
eters). The input values x of the training data were drawn

from a Gaussian distribution with mean 0 and variance 1,
while the output values were generated as yi = f(xi) + z
with zi iid Gaussians with mean 0 and variance 0.1, and
f some unknown true function. Given 100 training data
points, each of the eight model selection methods under
consideration had to select a model. The squared risk
(ŷ − f(x))2 of the chosen model’s prediction ŷ was com-
puted for each of a range of values of the test point’s x,
averaged over 100 draws of the training data. This ex-
periment was performed for two different true functions:
f1(x) = x+ 2 and f2(x) = |x|.
In the multivariate experiments, each input variable was a
vector (u1, . . . , u6), and the models corresponded to all
possible subsets of these 6 variables. Each model also
included an intercept and a variance parameter. The true
function was given by f(u) = 2 + u1 + 0.1u2 + 0.03u3 +
0.001u4 +0.003u5, and the additive noise was again Gaus-
sian with variance 0.1. A set of n′ = 400 test inputs was
drawn from a standard Gaussian distribution, but the train-
ing inputs were generated differently in each experiment:
from the same Gaussian distribution as the test inputs; from
a uniform distribution on [−

√
3,
√

3]6; or from a uniform
‘spike-and-slab’ mixture of two Gaussians with covariance
matrices (1/5)I6 and (9/5)I6. Note that all three distribu-
tions have the same mean and covariance as the test input
distribution, making these mild cases of covariate shift. For
the Gaussian training case, we report the results for n = 60
and, after extending the same training set, for n = 100.
Squared risks were averaged over the test set and further
over 50 repeats of these experiments.

The experiments used the version of XAIC that is given a
distribution of the test inputs, but not the test inputs them-
selves. In the multivariate experiments, XAIC used the ac-
tual (Gaussian) distribution of the test inputs. In the uni-
variate case, two instances of XAIC were evaluated: one
for test inputs drawn from the same distribution as the
training inputs (standard Gaussian), and another (labelled
XAICC2) for a Gaussian test input distribution with mean
0 and variance 4.

Bayesian model averaging (BMA) differs from the other
methods in that it does not select a single model, but for-
mulates its prediction as a weighted average over them; in
our case, its prediction corresponds to the posterior mean
over all models. Weighted versions exist of other model se-
lection methods as well, such as Akaike weights (Akaike,
1979; Burnham and Anderson, 2002) for AIC and variants.
In our experiments we saw that these usually perform sim-
ilar to but somewhat better than their originals. In our uni-
variate experiments, we decided against reporting these, as
they are less standard. However, in the multivariate ex-
periments, the weighted versions were all better than their
selection counterparts, so both are reported separately to
allow fair comparisons.
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In our experiments, BMA used a uniform prior over the
models. Within the models, Jeffreys’ noninformative prior
(for which the selected µ would correspond to the maxi-
mum likelihood µ̂ used by other methods) was used for the
variable selection experiments; for the polynomial case, it
proved too numerically unstable for the larger models, so
there BMA uses a weakly informative Gaussian prior (vari-
ance 102 on µ2, . . . , µ7 with respect to the Hermite poly-
nomial basis, and Jeffreys’ prior on σ2).

Of the model selection methods included in our experi-
ments, AIC was extensively discussed in Section 2.1; as
with XAIC and FAIC, we use here the small sample cor-
rection AICC (see Section 2.3). BIC (Schwarz, 1978) and
BMS were mentioned in Section 1.1 as methods that at-
tempt to find the most probable model given the data rather
than aiming to optimize predictive performance; both are
based on BMA, which computes the Bayesian posterior
probability of each model. Three other methods were eval-
uated in our experiments; these are discussed below.

Like AIC, the much more recent focused information crite-
rion (FIC) (Claeskens and Hjort, 2003) is designed to make
good predictions. Unlike other methods, these predictions
are for a focus parameter which may be any function of
the model’s estimate, not just its prediction at some input
value (though we only used the latter in our experiments).
Unlike FAIC, it uses this focus not just for estimating a
model’s variance, but also its bias; FAIC on the other hand
uses a global estimate of a model’s bias based on Assump-
tion 2. A model’s bias for the focus parameter is evalu-
ated by comparing its estimate to that of the most complex
model available.

Another more recent method for model selection is the sub-
space information criterion (SIC) (Sugiyama and Ogawa,
2001), which is applicable to supervised learning problems
when our models are subspaces of some Hilbert space of
functions, and our objective is to minimize the squared
norm. Like FIC, SIC estimates the models’ biases by com-
paring their estimates to that of a larger model, but it in-
cludes a term to correct for this large model’s variance. In
our experiments, we used the corrected SIC (cSIC) which
truncates the bias estimate at 0.

Generalized cross-validation (GCV) (Golub et al., 1979)
can be seen as a computationally efficient approximation
of leave-one-out cross-validation for linear models. We in-
cluded it in our experiments because Leeb (2008) shows
that it performs better than other model selection methods
when the test input variables are newly sampled.

5.2 RESULTS

Results from the two univariate experiments are shown in
Figures 1 and 2 (squared risks) and in Table 1 (selected
models). Squared risk results for the multivariate experi-

Figure 1: Squared risk of different model selection methods
as a function of x when the true function is f1(x) = x+ 2.

Figure 2: Squared risk of different model selection methods
as a function of x when the true function is f2(x) = |x|.

ments are given in Table 2 for the model selection methods,
and in Table 3 for the model weighting/averaging variants.

XAIC and FAIC The characteristic behaviours of our
methods are clearly visible in the univariate experiments.
Both instances of XAIC perform well overall in both exper-
iment. Of the two, XAICC2 was set up to expect test inputs
further away from the center. As a result, it selects models
more conservatively, and obtains smaller risk at such off-
center test inputs. Its selections were very stable: in both
experiments, XAICC2 selected the same model in each of
the 100 runs.

We see that in the center of Figure 2, the simple model
chosen by XAICC2 was outperformed by more complex
models. FAIC exploits this by choosing a model adaptively
for each test input. This resulted in good risk performance
at all test inputs.

In the multivariate experiments, FAIC was the best method
for the spike-and-slab training data, where there are pro-
nounced differences in training point density surrounding
different test points, so that selecting a different model for

659



Table 1: Average selected model index per method for f1
and f2, at test inputs x′ = 0 and 4 (if different).

XAICC XAICC2 AICC BIC BMS cSIC GCV
f1 2.10 2.00 2.33 2.02 2.00 2.94 2.38
f2 4.57 3.00 6.38 5.70 4.05 4.70 6.49

FAICC FIC
x′ = 0 x′ = 4 x′ = 0 x′ = 4

f1 2.94 2.00 2.66 3.12
f2 6.56 1.54 5.29 5.35

Table 2: Multivariate: squared risk for different training
sets; model selection

spike-
Gaussian uniform and-slab Gaussian
(n = 60) (n = 60) (n = 60) (n = 100)

XAICC 0.0119 0.0123 0.0144 0.0070
FAICC 0.0123 0.0127 0.0133 0.0077
AICC 0.0125 0.0126 0.0156 0.0070
BIC 0.0113 0.0128 0.0140 0.0073
BMS 0.0120 0.0126 0.0138 0.0075
cSIC 0.0119 0.0134 0.0138 0.0074
GCV 0.0129 0.0131 0.0153 0.0072
FIC 0.0196 0.0189 0.0241 0.0111

each pays off. The performance of XAIC was more reliable
overall, comparing very favourably to each of its competi-
tors.

AIC Our methods XAIC and FAIC were derived as adap-
tations of AIC, and share its tendency to go for complex
models as soon as there is some indication that their pre-
dictions might be worthwhile. This leads to good predic-
tions on average, but also to inconsistency: when a simpler
model contains the true distribution, AIC will continue to
select more complex models with positive probability, no
matter how large n grows. This may sometimes hurt pre-
dictive performance, because the accuracy of the estimated
parameter will be smaller for more complex models; for
details, we refer to Yang (2007); Van Erven et al. (2007,
2012). XAIC makes a better assessment of the generaliza-
tion error, even when the training and test inputs follow the
same distribution, so that it overfits less than AIC and may
achieve much better risks. FAIC differs from AIC in an-
other way: its tendency to choose more complex models is
strengthened in areas where many data points are available
(so that the potential damage of picking an overly com-
plex model is smaller), while it is suppressed when few
data points are available (and the potential damage is much
greater).

This tendency is also apparent in Table 1. In the first exper-
iment, where a small model contains the true distribution,

Table 3: Multivariate: squared risk for different training
sets; model weighting/averaging

spike-
Gaussian uniform and-slab Gaussian
(n = 60) (n = 60) (n = 60) (n = 100)

XAICCw 0.0099 0.0108 0.0114 0.0063
FAICCw 0.0100 0.0110 0.0110 0.0066
AICCw 0.0101 0.0108 0.0119 0.0063
BICw 0.0096 0.0106 0.0111 0.0062
BMA 0.0100 0.0107 0.0113 0.0061

it causes FAIC to perform worse than AIC near x = 0.
However, note that the vertical axis is logarithmic, so the
difference appears larger than it is: when we average over
the training input distribution, we find that FAIC performs
better by a factor 20 in terms of squared risk.

In the multivariate experiments, XAIC again performs bet-
ter than AIC, though the difference eventually disappears as
n grows. With the notable exception of the spike-and-slab
experiment, FAIC does not perform well here: in two of
the experiments, it does worse than AIC. Part of the reason
must be our observation at the end of Section 4: FAIC’s
estimate of the generalization error, while unbiased, may
potentially have a larger variance than (X)AIC’s estimate,
and this is not always a good trade-off.

BIC and BMS/BMA BIC and BMS do not try to iden-
tify the model that will give the best predictions now, but
instead attempt to find the most probable model given the
data, which usually amounts to the simplest model con-
taining the true distribution. This leads them to be con-
servative about selecting complex models. For similar rea-
sons, Bayesian model averaging (BMA) puts only small
weight on complex models. We see this in Figure 1, where
BIC and BMA have good performance because they most
often select the optimal second model (or in the case of
BMA, give it the largest weight). However, for f2 in Fig-
ure 2, it may be outperformed by FAIC or XAIC for test
inputs away from the center. In the multivariate experi-
ments, XAIC often performs better than BMS/BMA, and
rarely much worse; the only instance of the latter is for the
spike-and-slab data, where FAIC outperforms both. (See
Section 6.1 for further discussion of BMA.)

FIC In all our experiments, FIC obtained large squared
risks, and we see in Table 1 that its selection behaviour was
the opposite of FAIC: for extreme x, FIC often selects a
more complex model than near x = 0. This seems to hap-
pen because FIC uses the most complex model’s prediction
at a given x to estimate each other model’s bias. Because
the most complex model will usually have a significant
variance, this resulted in FIC being misled in many of the
experiments we examined. In particular, in areas with few
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training inputs, FIC apparently usually believes the simpler
models will perform badly because it attributes to them a
large bias, so that the same model as elsewhere (or even a
more complex one) is selected. Conversely, FIC was often
observed to switch to an overly simple model near some in-
put value where this model’s estimate happened to coincide
with that of the most complex model.

SIC SIC obtained large risks in the univariate experi-
ments due to underfitting. Its results in three of the four
multivariate experiments were competitive, however.

GCV Based on Leeb (2008), we expected GCV might
be one of the strongest competitors to XAIC. This was not
clearly reflected in our experiments, where its performance
was very similar to that of AIC.

6 DISCUSSION

6.1 RELATION TO THE BAYESIAN PREDICTIVE
DISTRIBUTION

The quantity κx′ that occurs in FAIC has an interpretation
in the Bayesian framework. If we do linear regression with
known variance and a noninformative prior on µ, then af-
ter observing X , Y and x′, the predictive distribution of
y′ is y′ | Y, X, x′ ∼ N (x′>µ̂, σ2(1 + x′>(X>X)−1x′)).
We see that κx′ and the variance of this predictive distri-
bution obey a linear relation. Thus if BMA is allowed to
give a distribution over output values as its prediction, then
this distribution (a mixture of Gaussians with different vari-
ances) will reflect that some models’ predictions are more
reliable than others. However, if the predictive distribu-
tion must be summarized by a point prediction, then such
information is likely to be lost. For instance, if the point
prediction ŷ′ is to be evaluated with squared loss and ŷ′ is
chosen to minimize the expected loss under the predictive
distribution (as in our experiments in Section 5), then ŷ′

is a weighted average of posterior means for y′ given x′

(one mean for each model, weighted by its posterior prob-
ability). The predictive variances are not factored into ŷ′,
so that in this scenario, BMA does not use the information
captured by κX′ that XAIC and FAIC rely on.

This is not to say that BMA should use this information: the
consideration of finding the most probable model (BMS,
BIC) or the full distribution over models (BMA) is not af-
fected by the purpose for which the model will be used,
so it should not depend on the input values in the test data
through κX′ . This suggests that there is no XBIC analogue
to XAIC. For Bayesian methods such as DIC (Spiegelhal-
ter et al., 2002) and BPIC (Ando, 2007) that aim for good
predictions, on the other hand, extra-sample and focused
equivalents may exist.

6.2 RELATION TO COVARIATE SHIFT

We observed at the end of Section 4 that of the two data-
dependent terms in XAIC, the log-likelihood is indepen-
dent of X ′, while κX′ is (largely) unaffected by output val-
ues. An important practical consequence of this split be-
tween input and output values is that XAIC and FAIC look
for models that give a good overall fit, not just a good fit at
the test inputs. X ′ is then used to determine how well we
can expect these models to generalize to the test set. So if
we have two models and believe each to be able to give a
good fit in a different region of the input space, then FAIC
is not the proper tool for the task of finding these regions:
FAIC considers global fit rather than local fit when evalu-
ating a model, and within the model selects the maximum
likelihood estimator, not an estimator specifically chosen
for a local fit at input point x.

In this respect, our methods differ from those commonly
used in the covariate shift literature (see Sugiyama and
Kawanabe (2012); Pan and Yang (2010); some negative
results are in Ben-David et al. (2010)), where typically a
model (and an estimator within that model) is sought that
will perform well on the test set only, using for example
importance weighting. This is appropriate if we believe
that no available model can give satisfactory results on both
training and test inputs simultaneously. In situations where
such models are believed to exist, our methods try to find
them using all information in the training set.

7 CONCLUSIONS AND FUTURE WORK

We have shown a bias in AIC when it is applied to super-
vised learning problems, and proposed XAIC and FAIC as
versions of AIC which correct this bias. We have exper-
imentally shown that these methods give better predictive
performance than other methods in many situations.

We see several directions for future work. First, the prac-
tical usefulness of our methods needs to be confirmed by
further experiments. Other future work includes consider-
ing other model selection methods: determining whether
they are affected by the same bias that we found for AIC,
whether such a bias can be removed (possibly leading to
extra-sample and focused versions of those methods), and
how these methods perform in simulation experiments and
on real data. In particular, BPIC (Ando, 2007) is a promis-
ing candidate, as its derivation starts with a Bayesian equiv-
alent of (1). An XBPIC method would also be better able
to deal with more complex models that a variant of AIC
would have difficulty with, such as hierarchical Bayesian
models, greatly increasing its practical applicability.
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Abstract

Consider the classical problem of predicting the
next bit in a sequence of bits. A standard
performance measure is regret (loss in payoff)
with respect to a set of experts. For exam-
ple if we measure performance with respect to
two constant experts one that always predicts
0’s and another that always predicts 1’s it is
well known that one can get regret O(

√
T ) with

respect to the best expert by using, say, the
weighted majority algorithm [LW89]. But this
algorithm does not provide performance guaran-
tee in any interval. There are other algorithms
(see [BM07, FSSW97, Vov99]) that ensure regret
O(
√
x log T ) in any interval of length x. In this

paper we show a randomized algorithm that in an
amortized sense gets a regret of O(

√
x) for any

interval when the sequence is partitioned into in-
tervals arbitrarily. We empirically estimated the
constant in the O() for T upto 2000 and found it
to be small – around 2.1. We also experimentally
evaluate the efficacy of this algorithm in predict-
ing high frequency stock data.

∗This work was done while this author was at Microsoft Re-
search.

1 INTRODUCTION

Consider the following classical game of predicting a bi-
nary ±1 sequence. An algorithm A sees a binary sequence
{bt}t≥1, one bit at a time, and attempts to predict the next
bit bt from the past history b1, . . . bt−1. The payoff AT of
the algorithm in T steps is the number of correct guesses
minus the number of the wrong guesses. In other words,
let b̃t ∈ [−1, 1] be the prediction for the tth bit based on
the previous bits then:

AT :=
∑

1≤t≤T
btb̃t.

The payoff per time step btb̃t is essentially equivalent to the
well known absolute loss function |bt− b̃t| (see for example
[CBL06], chapter 8).1

One can view this game as an idealized “stock prediction”
problem as follows. In each unit time, the stock price goes
up or down by precisely $1, and the algorithm bets on this
event. If the bet is right, the player wins one dollar, and
otherwise loses one dollar. Not surprisingly, in general, it
is impossible to guarantee a positive payoff for all possible
scenarios (sequences). However, one could hope to give
some guarantees on the payoff of the algorithm based on
certain properties of the sequence.

For example one can compare the payoff to the better
of two choices (experts), which correspond to two con-
stant algorithms: first one, where b̃t = +1 and the sec-
ond one where b̃t = −1 for all t. Note that the best
of these experts gets payoff |∑1≤t≤T bt|, which corre-
sponds to the “optimal in hindsight” expert among the two
choices. The regret of an algorithm is defined as how much
worse the algorithm performs as opposed to the best of
the two experts (in hindsight, after seeing the sequence).
This has been studied in a number of papers, including

1since when |bt| = 1, |bt − b̃t| = |bt||bt − b̃t| = |1− btb̃t| =
1 − btb̃t. Thus the absolute loss function is the negative of our
payoff in one step plus a shift of 1. Also bt values from {−1, 1} or
{0, 1} are equivalent by a simple scaling and shifting transform.
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[Cov65, LW89, Cov91, ACBFS02, AB09]. A classical re-
sult says that one can obtain a regret of Θ(

√
T ) for a se-

quence of length T , via, say, the weighted majority algo-
rithm [LW89]. Formally, for a sequence X = b1, . . . , bT ,
let h(X) =

∑
1≤t≤T bt denote the “height” of the se-

quence when plotted cumulatively as a chart. Then we have
the following theorem:

Theorem 1.1 [Cov65, CBFH+97] There is an algorithm
that achieves payoff ≥ |h(X)| − α

√
T . It is also known

that the optimal value of α→
√

2/π as T →∞.

However, an algorithm that only focuses on the overall re-
gret does not exploit short term trends in the sequence and
only relies on a ‘global’ long term bias in the full string.
Consider for example a sequence that may not have a high
overall bias but has many intervals in which there may be
a high level of bias. Our result is that for any partitioning
of the sequence into intervals, one can essentially get a re-
gret proportional to

√
x for each interval of length x in an

amortized sense (Theorem 1.3). Although our results are
stated for bits they work even when bt is a real number in
[−1, 1]. We note that even though similar bounds have been
obtained before ([BM07, FSSW97, Vov99] and, more re-
cently, [HS09, KP11]), the penalty on an interval of length
x isO(

√
x log T ) in these previous results. Note that in ad-

versarial settings one is interested in a prediction algorithm
that can get a positive payoff even if the sequence departs
slightly from random; or we may ask what is the smallest
amount non-randomness that can be “noticed” by the pre-
diction algorithm. So while our result may seem like just
shaving a log T factor, the reason

√
x is much better than√

x logT is that in certain adversarial settings (like finan-
cial markets), the uptrend or downtrend in total per interval
may not be too far from that of a random sequence. Note
that a random±1 sequence of length x has a height of mag-
nitude Θ(

√
x) in expectation. So we are saying that even

if the height of a sequence of length x is some constant
multiple of

√
x, we get a positive payoff.

The bit prediction problem we consider is closely related to
the two experts problem (or multi-armed bandits problem
with full information). In each round each expert has a
payoff in the range [0, 1] that is unknown to the algorithm.
For two experts, let b1t, b2t denote the payoffs of the two
experts at time t. The algorithm pulls each arm (expert)
with probability b̃1t, b̃2t ∈ [0, 1] respectively where b̃1t +
b̃2t = 1. The (expected) payoff of the algorithm in this
setting is A′T :=

∑T
t=1 b1tb̃1t + b2tb̃2t.

We will be concerned with the following payoff function in
this paper:

Definition 1.2 (Interval payoff function: Pα)

LetX1, . . . , Xk denote a partition of the sequenceX into a
disjoint union of k intervals, that is,X is the concatenation
of these k subsequences. We will use h(Xi) to denote the

sum of the bits in the interval Xi and |Xi| to denote the
length of Xi.

The interval payoff function, Pα(X) is defined as the max-
imum value of the expression

k∑

i=1

(
|h(Xi)| − α

√
|Xi|

)

over all 1 ≤ k ≤ |X| and all partitions X1, . . . , Xk of X .

We say that a payoff function f : {−1, 1}T → R is feasible
if there is a bit prediction algorithm which on sequence X
achieves payoff at least f(X).

Theorem 1.3 (Main Theorem) There is an absolute con-
stant 0 < α < 10 independent of T such that the interval
payoff function Pα is feasible.

For the two experts problem our result translates to the fol-
lowing guarantee:

A′T ≥
k∑

i=1

(
max
j∈1,2

(∑

t∈Xi
bjt

)
− α

2

√
|Xi|

)
.

Here
∑
t∈Xi bjt is the payoff of the jth expert in the inter-

val Xi.

This result can be viewed as incurring a penalty of α
√
|Xi|

for each interval Xi. We theoretically show that the opti-
mal value of α is at most 10 (Section 2). We empirically
estimated the optimal α for T up to 2000 and found it to be
small – around 2.1 (Section 4.1).

We stress here that the algorithm doesn’t need to know the
partition or the length of the partition in advance. We also
note that our guarantee does not hold for each interval indi-
vidually but when we look at the net payoff in an amortized
sense, we may account for a regret of at most α

√
|X| for

an interval of length X . In fact, the guarantee is impossible
to achieve in a non-amortized sense. We show that if we
measure regret based on the performance of an algorithm
in a given interval then one will have to trade-off regrets at
different time scales. The following observation is proven
in the full version [PP13].

Observation 1.4 There is no prediction algorithm that can
guarantee a regret of O(

√
|Y |) on all intervals Y for all

input sequences.

Regarding the computation of Pα, we show:

Theorem 1.5 The value of Pα(S) for a particular se-
quence S of length T can be computed using dynamic pro-
gramming in time O(T 3).

For a given T , let α0(T ) denote the minimum α such that
Pα is feasible for all sequences of length T . It is possible to
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determine α0 using the following well known observation
by Cover.

Observation 1.6 (Cover [Cov65]) A payoff function f :
{−1, 1}T → R is feasible if and only if ES [f(S)] ≤ 0
where S is a uniformly random sequence in {−1, 1}T .

This is achieved by a prediction algorithm that predicts
b̃t = EU [f(s.1.U)]−EU [f(s.(−1).U)]

2 where s is the sequence
of bits seen so far, U is a suffix sequence chosen uni-
formly at random and s.b.U denotes the concatenated se-
quence starting with s followed by bit b followed by the
sequence U . Note that b̃t ∈ [−1, 1] as long as for all s,
|EU [f(s.1.U)]− EU [f(s.(−1).U)]| ≤ 2

Algorithm and Running time: Theorem 1.5 and Obser-
vation 1.6 suggest a simple algorithm for achieving payoff
function Pα. Take the sequence s seen so far, append a
+1 and then a random sequence to make it into a complete
sequence of length T . Compute Pα(S) for the resulting se-
quence S. Do this again replacing the +1 by a −1. Predict
b̃t to be the half of the difference in the two cases.

We note that a deterministic algorithm achieving the guar-
antee of Theorem 1.3 may take exponential time since it
would need to find Pα(S) for every random completion of
the bits seen so far. Alternatively, there is a simple random-
ized algorithm which achieves the same payoff in expecta-
tion by taking a different random completion for every pre-
fix. A naive implementation of this randomized algorithm
will take T 3 time for each bit being predicted. We show a
simple variant that reduces this to O(log T ) time with pre-
computation.

Theorem 1.7 There is a randomized algorithm that
achieves the payoff guarantee Pα of Theorem 1.3 in expec-
tation and spendsO(T 2) time per step. There is also a ran-
domized algorithm that achieves payoff Pα′ with α′ = cα

and spends only O(log T ) time per step. Here c :=
√
2√

2−1 .

These algorithm use pre-computed information that takes
time O(T 2) and O(T log T ) time to compute for the first
and the second algorithm respectively.

Generalization to real numbers: In the full ver-
sion [PP13], we show that a variant of the guarantee holds
in a semi-adversarial model where a string of real numbers
may be chosen instead of bits. The model combines worst
case and average case settings where the signs of the real
numbers may be chosen adversarially (that is, in the worst
case) but the magnitudes of the real numbers come from a
pre-specified distribution independently and randomly.

Experimental results: We implement our algorithm, the
weighted majority algorithm, an algorithm based on Au-
toregressive Integrated Moving Average (ARIMA) and an
algorithm of [KP11], and compare their performance when
predicting financial time series data. Specifically, we con-

sider the high frequency price data of 5 stocks, and we ap-
ply these algorithms to predict the per minute price changes
in an online fashion taking the values in each day as a sep-
arate sequence. That is we predict the next minute returns
of mid-prices for each stock based on its previous 1 minute
returns in the day. We perform this experiment over 189
trading days for each stock and find that on an average our
algorithm performs better than other prediction algorithms
based on regret minimization but is outperformed by the
ARIMA algorithm. On the other hand, as we discussed
above, our algorithm has certain provable guarantees for
every sequence which the ARIMA algorithm lacks. The
experimental setup and results are described in more detail
in Section 4.

1.1 Related work

There is large body on work on regret style analysis for pre-
diction. Numerous works including [Cov65, CBFH+97]
have examined the optimal amount of regret achievable
with respect to two or more experts. A good reference
for the results in this area is [CBL06]. It is well known
that in the case of static experts, the optimal regret achiev-
able is exactly equal to the Rademacher complexity of the
predictions of the experts (chapter 8 in [CBL06]). Re-
cent works such as [ALW06, AWY08, MS08] have ex-
tended this analysis to other settings. Measures other than
the standard regret measure have been studied in [RST10].
The question of what can be achieved if one would like
to have a significantly better guarantee with respect to a
fixed expert or a distribution of experts was asked before in
[EDKMW08, KP11]. Tradeoffs between regret and min-
imum payoff were also examined in [Vov98], where the
author studied the set of values of a, b for which an algo-
rithm can have payoff aOPT +b logN , whereOPT is the
payoff of the best arm and a, b are constants.

Regret minimization algorithms with performance guar-
antees within each interval have been studied in [BM07,
FSSW97, Vov99] and more recently in [HS09, KP11]. As
we mentioned, some of these algorithms achieve a regret
of O(

√
x log T ) for every interval of size x in a sequence

of length T . A related work which also seeks to exploit
short term trends in the sequence is [HW98], where the re-
gret bound proportional to

√
Tk in the best case where k is

the number of intervals (see [CBL06], Corollary 5.1). The
main difference between the work of [HW98] and our re-
sults is that their algorithm requires fixing the number of
intervals, k, in advance whereas our algorithm works si-
multaneously for all k. Also note that their regret guar-
antee is always higher than the payoff function Pα for a
sequence of length T achieving equality only in the special
case when all intervals are of equal length T/k.

Numerous papers (for example [Blu97, HSSW98,
AHKS06]) have implemented algorithms inspired from
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regret style analysis and applied it on financial and other
types of data.

1.2 Overview of the proof

In this section we give a high level idea of our proof, the
formal proof appears in Section 2.

To prove the main theorem we want to compute the min-
imum α such that ES [Pα(S)] ≤ 0 (See Observation 1.6).
We first introduce a variant of the payoff function Pα(S)
as follows. Instead of computing the maximum value of∑
i |h(Xi)| − α

√
|Xi| over all possible partitions, will

only allow partitions where the intervals are of the form
(2ij, 2i(j+ 1)]; that is, intervals that are obtained by divid-
ing the string into segments of length that are some power
of 2. We will refer to such intervals as ‘aligned’ intervals
(Definition 2.3). Further we will only look at T values that
is some power of 2. Note that any interval can be broken
into at most log T aligned intervals. Let PAα (S) denote the
maximum value of

∑
i |h(Xi)| − α

√
|Xi| with partitions

into aligned intervals. We first show that

Lemma 1.8 If E[PAα (S)] ≤ 0 then E[Pcα(S)] ≤ 0 where
c :=

√
2√

2−1 .

Next we show

Theorem 1.9 There is an absolute constant α ≤ 2.8 such
that E[PAα (S)] ≤ 0.

We prove Theorem 1.9 recursively for T that are increasing
powers of 2. We inductively show that the distribution of
PAα (S) is stochastically upper bounded by a shifted expo-
nential distribution (Definition 2.4) with certain parameters
(Equation 2.1), where S is a uniformly random sequence of
length T . Since we are dealing with splits into aligned in-
tervals, we can assume that either the best split for S is the
whole interval, or the mid-point of S is one of the splitting
points. For the first case, we may upper bound the payoff
function using Hoeffding’s bound (Theorem 2.2), while for
the second case we may inductively assume that the dis-
tribution of payoffs for the subsequences is stochastically
bounded by a shifted exponential distribution. We then sep-
arately bound each of these distributions by the shifted ex-
ponential distribution.

2 FEASIBILITY OF PAYOFF FUNCTION
Pα

2.1 Preliminaries

Definition 2.1 (Binomial distribution Bn) Let
x1, x2, . . . , xn ∈ {−1, 1} be uniformly and indepen-
dently distributed. Then the sum

Y :=
n∑

i=1

xi

is said to be binomially distributed. We denote the distribu-
tion as Bn.

Theorem 2.2 (Hoeffding’s bound) [Hoe63]

Pr[|Bn| ≥ y ·
√
n] ≤ 2 · exp

(
−y

2

2

)

Definition 2.3 (Aligned interval)

We assume here that T is a power of 2. An aligned interval
is one which is obtained by breaking [1, T ] into 2i equal
parts for i ∈ [0, log T ] and picking one of the parts. So
for instance the first part is always [1, T/2i]; each aligned
interval can be written as [jT/2i + 1, (j+ 1)T/2i] for non
negative integers i and j.

We denote the interval payoff function corresponding to
Definition 1.2 which allows only aligned splits as PAα .

Definition 2.4 (Shifted Exponential distribution) The
probability density function fµ,σ,n of shifted exponential
distribution with mean σ

√
n and shift µ

√
n is defined as

follows:

fµ,σ,n(y) :=
1

σ
√
n

exp

(
−y − µ

√
n

σ
√
n

)
∀y ≥ µ√n

fµ,σ,n(y) := 0 ∀y ≤ µ√n

We denote a random variable distributed according to
fµ,σ,n as Fµ,σ,n. That is, Pr[Fµ,σ,n ≥ y] =∫∞
y
fn(s) ds = exp

(
−y−µ

√
n

σ
√
n

)
when y ≥ µ

√
n and 1

otherwise.

2.2 Proof of feasibility

The following lemma is a restatement of lemma 1.8 and is
proven using a standard doubling trick

Lemma 2.5 If PAα is feasible then Pcα is also feasible,
where c :=

√
2√

2−1 .

Proof:

Let X1, X2, . . . , Xk denote a partition of a given sequence
S. We split each intervalXi into a disjoint union of aligned
intervals Yi1, . . . , Til. We will then show that the identity

l∑

j=1

√
|Yij | ≤ c ·

√
|Xi|

always holds where |I| denotes the length of the inter-
val I . This suffices to prove the theorem since h(Xi) ≤∑l
j=1 h(Yij).
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For notational simplicity, let I = Xi and x = |I|. If
I is an aligned interval we are done, otherwise we write
it as the minimal union of aligned intervals (take out the
largest aligned interval in I and repeat). There are three
possibilities:-

1. I = I1∪I2 is a union of two intervals of size x/2 each
(eg. the interval [T/4 + 1, 3T/4])

2. I = I1 ∪ I2 ∪ . . . ∪ Il, where each Ij is of a different
size. Note that all interval sizes on the right are powers
of 2 and strictly less than x

3. I = J ∪ J ′ where each J can be written as a union of
intervals as in 1 or 2 above

In the first case,

√
|I1|+

√
|I2| ≤ 2 ·

√
x/2 =

√
2 · √x

In the second case,

l∑

j=1

√
|Ij | ≤

√
x ·

∞∑

j=1

√
1/2j =

1√
2− 1

· √x

In the third case,

√
|J |+

√
|J ′| ≤ 1√

2− 1
·
√
|J | +

1√
2− 1

·
√
|J ′| ≤

√
2√

2− 1
· √x

We are now ready to prove Theorem 1.9.

Proof: [Proof of Theorem 1.9] We need to show that for all
T ≥ 1, Ex∈{−1,1}T [PAα (x)] ≤ 0. After that, the theorem
follows from Observation 1.6 (it is easy to check that the
condition required for required for b̃t ∈ [−1, 1] given in
Observation is satisfied by PAα ).

We will prove the theorem by induction. We will show that
when n is a power of 2,

∀y ∈ R Pr
x∈{−1,1}n

[PAα (x) ≥ y] ≤ Pr[Fµ,σ,n ≥ y]

(2.1)

for some µ := µ(α) and σ := σ(α). Here Fµ,σ,n is as in
Definition 2.4.

Note that this would imply Ex∈{−1,1}n [PAα (x)] ≤
E[Fµ,σ,n] = (µ + σ)

√
n. We will show that for a suit-

able choice of α, the term µ + σ ≤ 0, and this suffices to
prove the theorem.

It remains to prove Equation 2.1. For the base case, n = 1,
we see that the equation is satisfied for µ ≥ 1 − α, σ > 0.
We will now show that it is satisfied for 2n whenever it is
satisfied for n (for appropriate µ and σ).

Now, for a sequence x := (x1, x2) ∈ {−1, 1}n×{−1, 1}n,
PAα (x) = max(PAα (x1) + PAα (x2), |h(x)| − α ·

√
2n). So

for every x such that PAα (x) ≥ y we must have either
PAα (x1) +PAα (x2) ≥ y or that h(x)−α ·

√
2n ≥ y. Thus,

Pr
x∈{−1,1}2n

[PAα (x) ≥ y] (2.2)

≤ Pr
x1,x2∈{−1,1}n

[PAα (x1) + PAα (x2) ≥ y] (2.3)

+ Pr
x∈{−1,1}2n

[h(x)− α ·
√

2n ≥ y] (2.4)

≤Pr[Fµ,σ,n + F ′µ,σ,n ≥ y] (2.5)

+ Pr
x∈{−1,1}2n

[h(x)− α ·
√

2n ≥ y] (2.6)

Here F and F ′ are independent random variables dis-
tributed as in Definition 2.4. We will show that the first and
second term are each bounded by 1

2 Pr[F2n ≥ y] which is
sufficient to prove Equation 2.1. Note that we only need to
consider y ≥ µ

√
2n since for smaller values of y we have

Pr
x∈{−1,1}2n

[PAα (x) ≥ y] ≤ Pr[F2n ≥ y] = 1

Henceforth, we will use shorthands fn := fµ,σ,n and
Fn := Fµ,σ,n.

The first term can be written as:-

Pr[Fn + F ′n ≥ y] =

∫ ∞

y

∫ ∞

−∞
fn(s) · fn(w − s) dsdw

=

∫ ∞

y

∫ w−µ√n

µ
√
n

fn(s) · fn(w − s) dsdw

where the second equation follows from the fact that
fn(s) = 0 for s < µ

√
n and fn(w − s) = 0 for
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s > w − µ√n. Thus, we need to show for all y ≥ µ
√

2n:-

∫ ∞

y

∫ w−µ√n

µ
√
n

fn(s) · fn(w − s) dsdw ≤ 1

2
Pr[F2n ≥ y]

⇐=
1

σ2n

∫ ∞

y

∫ w−µ√n

µ
√
n

exp

(−w + 2µ
√
n

σ
√
n

)
dsdw

≤ 1

2
exp

(
−y − µ

√
2n

σ
√

2n

)

⇐=
1

σ2n

∫ ∞

y

∫ w−µ√n

µ
√
n

exp

(
−w − 2µ

√
n

σ
√
n

)
dsdw

≤ 1

2
exp

(
−y − µ

√
2n

σ
√

2n

)

⇐=
1

σ2n

∫ ∞

y

(w − 2µ
√
n) exp

(
−w − 2µ

√
n

σ
√
n

)
dw

≤ 1

2
exp

(
−y − µ

√
2n

σ
√

2n

)

In the third line we implicitly assume that y ≥ 2µ
√
n, since

otherwise the left hand side is less than 0 and the equation
is satisfied.

Note that the integral is of the form
∫
u · e−cu which inte-

grates to −
(
u+1/c
c

)
· e−cu. Thus, integrating and substi-

tuting z := y − 2µ
√
n we need to show for all z ≥ 0,

1

σ
√
n
· (z + σ

√
n) · exp

(
− z

σ
√
n

)

≤ 1

2
exp

(
−z + (

√
2− 1)µ

√
2n

σ
√

2n

)

⇐=
2z

σ
√
n

+ 2

≤ exp

(
z

σ
√
n
− z + (

√
2− 1)µ

√
2n

σ
√

2n

)

⇐=
2z

σ
√
n

+ 2

≤ exp

(
(
√

2− 1)z

σ
√

2n

)
· exp

(
(
√

2− 1)
−µ
σ

)

Substituting w := z
σ
√
n

, we need for all w ≥ 0,

2w + 2

≤ exp

(
(
√

2− 1)w√
2

)
· exp

(
(
√

2− 1)
−µ
σ

)

⇐=
2w + 2

exp
(

(
√
2−1)w√

2

) ≤ exp

(
(
√

2− 1)
−µ
σ

)

The left hand side is maximized at w = 1/
√

2 and the
value of left hand side at that point is around 2.78. Thus, if
(−µ/σ) ≥ 2.47 then the equation is always satisfied.

We now turn to bounding the second term 2.6. We need to
show for all y ≥ µ

√
2n,

Pr
x∈{−1,1}2n

[|x| − α ·
√

2n ≥ y] ≤ 1

2
Pr[F2n ≥ y]

⇐= Pr[|B2n| ≥ y + α ·
√

2n] ≤ 1

2
Pr[F2n ≥ y]

⇐= Pr[|B2n| ≥ (z + α) ·
√

2n] ≤ 1

2
Pr[F2n ≥ z ·

√
2n]

⇐=2 · exp

(
− (z + α)2

2

)
≤ 1

2
Pr[F2n ≥ z ·

√
2n]

where the last line follows from Theorem 2.2, and in the
second last line we substitute z := y/

√
2n.

Thus, we need to show for all z ≥ µ,

4 · exp

(
− (z + α)2

2

)
≤ exp

(
−z
√

2n− µ
√

2n

σ
√

2n

)

Substituting w := z − µ, we need to show for all w ≥ 0,

exp

(
− (w + µ+ α)2

2
+
w

σ

)
≤ 0.25

⇐=− (w + µ+ α)2

2
+
w

σ
≤ −1.4

The left hand side is maximized at w + µ + α = 1/σ and
for that value of w the inequality is given by

−1

2σ2
+

1/σ − µ− α
σ

≤ −1.4⇐= µ+ α ≥ 1.4σ +
0.5

σ

Also, recall that to bound the first term we needed −µ
α ≥

2.47. Let’s set µ := −2.47σ. Then we need
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α ≥ (1.4 + 2.47)σ +
0.5

σ
= 3.87σ +

0.5

σ

The right hand side is minimized at σ = 1√
2·3.87 ≈ 0.36,

and substituting we get that α = 2.8 is feasible. Recall that
we also needed µ + α ≥ 1 from the base case which is
already satisfied for this choice of parameters.

3 ALGORITHM AND RUNNING TIME

We will now prove theorem 1.5.

Proof: [Proof of Theorem 1.5] We give a simple O(T 2)
space and O(T 3) time algorithm.

For every subinterval (i, j) of the sequence, i, j ∈ [T ] the
DP table stores Pα(Sij) where Sij is the subsequence of S
containing bits from position i to position j, inclusive. For
i = j, this value is always 1−α. For j > i, to compute the
value of Pα(Sij), we need to take the maximum over two
quantities. The first quantity is |h(Sij)| − α ·

√
j − i+ 1

which corresponds to splitting the subsequence into a sin-
gle interval. This can be readily computed in constant
time if we pre-compute the height of every subsequence,
which can be done in O(T 2) space and time. The second
quantity is the maximum over all k ∈ {i, i + 1, . . . , j} of
Pα(Sik) + Pα(Skj). This corresponds to splitting the sub-
sequence at k and then recursively computing the best pay-
off in each of the two intervals created. This quantity can
be computed in time j− i+ 1 since for each k we just need
to read off the appropriate values (Pα(Sik) and Pα(Skj))
from the DP table.

Next we prove Theorem 1.7

Proof: [Proof of Theorem 1.7]

Let X ∈ {−1, 1}T be the input sequence we are required
to predict. Using Observation 1.6, it is easy to see that the
following algorithm achieves payoff Pα(X) in expectation.
For every t ∈ {0, 1, . . . , T − 1}:

1. Let s ∈ {−1, 1}t be the sequence of bits seen so far.

2. Let Ut be a sequence drawn uniformly at random from
{−1, 1}T−t−1 (independently for each t). Let s1 :=
s · 1 · U and s−1 := s · (−1) · U .

3. Make the prediction b̃ := (Pα(s1) − Pα(s−1)/2 for
the next bit.

The key idea is that we will draw a random sequence of
length T and use its suffix of length {−1, 1}T−t−1 asUt. In
advance we pre-compute enough information to make the

prediction as fast as possible. For each t ∈ {0, 1, . . . , T −
1} we pre-compute the following information for each Ut:-

1. h(U1
t ) for every prefix U1

t of Ut

2. Pα(U2
t ) for every suffix U2

t of Ut

The pre-computation takes O(T 2) time as Pα is computed
only for each suffix.

Let’s describe how to use this pre-computed information to
compute Pα(s1) at time t (the computation of Pα(s−1) is
similar). Let 1 ≤ i ≤ t and t+ 2 ≤ j ≤ T . Then it is easy
to check that

Pα = maxi,j(Pα(s1i) + Pα(UjT )
+
∣∣h(s(i+1)t)

∣∣+
∣∣h(U(t+1)(j−1))

∣∣− α · √j − i− 1)

Here for a sequence S, Sij is the subsequence of S contain-
ing bits from position i to position j, inclusive. Note that
we think of Ut as being indexed from t+ 1 to T where the
(t+1)th bit is 1 (since we are dealing with s1). The second
and fourth term are part of our pre-computation. The first
and third terms can be computed on the fly and stored in the
table as we increase t from 1 to T . Thus, for each i and j
we can compute this expression in constant time and hence
we can produce a prediction in O(T 2) time per step.

The second part of the theorem is proved in a similar
manner by using only aligned intervals for splitting the
sequence (Definition 2.3) and observing that the number
of aligned intervals spanning a given position is at most
O(log T ). The algorithm achieves payoff at least Pα′ be-
cause of Lemma 1.8.

4 EXPERIMENTAL RESULTS

In this section we describe our experimental setup and find-
ings.

The first part of the experiment is to experimentally esti-
mate the value of α0. In general we may think of α0 as a
function of T . In Section 2 we saw that α0(T ) is bounded
from above by an absolute constant for all T . In Section
4.1 below we estimate the values of α0 for a range of T .

The second part of the experiment is to implement our al-
gorithm and compare its performance against 3 other pre-
diction algorithms. This is described in Section 4.2 below.

4.1 Computation of α0

We denote by α0(T ) the minimum value of α such that the
payoff function Pα is feasible for sequences of length T .
For a particular T , this value can be computed using The-
orem 1.5. While Theorem 1.5 requires us to compute the
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payoff function over all sequences of length T (to compute
the expectation), we can experimentally approximate this
by taking sufficiently many random sequences of length T
and looking at the expectation of the sample. We are in-
terested in T = 389 which is the number of minutes in a
trading day for which we have returns data (there are 390
minutes in a typical trading day and the returns for the first
minute is undefined).

Note that the standard error of the sample mean is obtained
as the sample standard deviation divided by

√
n where n =

400 is the number of trials. The chart on the left shows the
mean payoff and standard error for various values of α for
T = 389.

From the figure we see that α = 1.96 is a good estimate
for α0(T ) for T = 389. The figure on the right shows
estimated values of α0 for various T .

4.2 Comparison of predictive performance

The algorithms we consider are:-

1. The baseline buy and hold strategy that achieves pay-
off equal to the height (height)

2. The algorithm described in this paper (interval)

3. Weighted Majority algorithm (WM)

4. The algorithm of [KP11] (Algorithm 4, section 5)
(boundedloss)

5. An algorithm based on Auto Regressive Integrated
Moving Average (arima)

Note that algorithms 2-4 are based on ideas from regret
minimization with provable guarantees while the fifth is
a commonly used model for predicting time series data.
To implement the fourth algorithm we use the function
AUTO.ARIMA() in R which is part of the library FORE-
CAST.

The prediction task we consider is to predict the next
minute returns for a stock over a single trading day using
only the previous 1 minute returns of the given stock for the
given day. More precisely, we define the price of a stock at
a given time taking the average of the best bid price and best
ask price at that time as reported by the New York Stock
Exchange (NYSE). We perform this prediction experiment
over 189 days for the following 5 US stocks/ETFs from
various sectors: MSFT, GE, GLD, QQQ and WMT. This
gives us performance data for each algorithm for a total of
389×189×5 = 367, 605 data points. The results obtained
are shown in the figure below.

We note that while our algorithm performs better in prac-
tice than other regret minimization based prediction algo-
rithms with provable guarantees, it is outperformed by the
ARIMA model.
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Abstract

A popular approach for online decision making
in large MDPs is time-bounded tree search. The
effectiveness of tree search, however, is largely
influenced by the action branching factor, which
limits the search depth given a time bound. An
obvious way to reduce action branching is to
consider only a subset of potentially good ac-
tions at each state as specified by a provided
partial policy. In this work, we consider offline
learning of such partial policies with the goal of
speeding up search without significantly reduc-
ing decision-making quality. Our first contribu-
tion is to study learning algorithms based on re-
ducing our learning problem to i.i.d. supervised
learning. We give a reduction-style analysis of
three such algorithms, each making different as-
sumptions, which relates the supervised learning
objectives to the sub-optimality of search using
the learned partial policies. Our second contribu-
tion is to describe concrete implementations of
the algorithms within the popular framework of
Monte-Carlo tree search. Finally, the third con-
tribution is to evaluate the learning algorithms in
two challenging MDPs with large action branch-
ing factors, showing that the learned partial poli-
cies can significantly improve the anytime per-
formance of Monte-Carlo tree search.

1 INTRODUCTION

Lookahead tree search is a common approach for time-
bounded decision making in large Markov Decision Pro-
cesses (MDPs). Actions are selected by estimating ac-
tion values at the current state by building a finite-horizon
lookahead tree using an MDP model or simulator. A va-
riety of algorithms are available for building such trees,
including instances of Monte-Carlo Tree Search (MCTS)
such as UCT (Kocsis and Szepesvári, 2006), Sparse Sam-

pling (Kearns et al., 2002), and FSSS (Walsh et al., 2010),
along with model-based search approaches such as RTDP
(Barto et al., 1995) and AO* (Bonet and Geffner, 2012).
Given time constraints, however, the performance of these
approaches depends on the action branching factor, which
is often considerable and greatly limits the feasible search
depth. An obvious way to address this problem is to pro-
vide prior knowledge for explicitly pruning bad actions
from consideration. In this paper, we consider offline learn-
ing of such prior knowledge in the form of partial policies.

A partial policy is a function that quickly returns an action
subset for each state and can be integrated into search by
pruning away actions not included in the subsets. Thus, a
partial policy can significantly speedup search if it returns
small action subsets, provided that the overhead for apply-
ing the partial policy is small enough. If those subsets typ-
ically include high-quality actions, then we might expect
little decrease in decision-making quality. Although learn-
ing partial policies to guide tree search is a natural idea, it
has received surprisingly little attention, both in theory and
practice. In this paper we formalize this learning problem
from the perspective of “speedup learning”. We are pro-
vided with a distribution over search problems in the form
of a root state distribution and a search depth bound. The
goal is to learn partial policies that significantly speedup
depth D search, while bounding the expected regret of se-
lecting actions using the pruned search versus no pruning.

In order to solve this learning problem, there are at least
two key choices that must be made: 1) Selecting a train-
ing distribution over states arising in lookahead trees, and
2) Selecting a loss function that the partial policy is trained
to minimize with respect to the chosen distribution. The
key contribution of our work is to consider a family of
reduction-style algorithms that answer these questions in
different ways. In particular, we consider three algorithms
that reduce partial policy learning to i.i.d. supervised learn-
ing problems characterized by choices for (1) and (2). Our
main results bound the sub-optimality of tree search using
the learned partial policies in terms of the expected loss of
the supervised learning problems. Interestingly, these re-
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sults for learning partial policies mirror similar reduction-
style results for learning (complete) policies via imitation,
e.g. (Ross and Bagnell, 2010; Syed and Schapire, 2010;
Ross et al., 2011).

We empirically evaluate our algorithms in the context of
learning partial policies to speedup MCTS in two chal-
lenging domains with large action branching factors: 1)
the classic dice game, Yahtzee, and 2) a real-time strategy
game, Galcon. The results show that using the learned par-
tial policies to guide MCTS leads to significantly improved
anytime performance in both domains. Furthermore, we
show that several other existing approaches for injecting
knowledge into MCTS are not as effective as using partial
policies for action pruning and can often hurt search per-
formance rather than help.

2 PROBLEM SETUP

We consider sequential decision making in the framework
of Markov Decision Processes (MDPs) and assume basic
familiarity. An MDP is a tuple (S,A, P,R), where S is a
finite set of states, A a finite set of actions, P (s′|s, a) is the
transition probability of arriving at state s′ after executing
action a in state s, and R(s, a) ∈ [0, 1] is the reward func-
tion giving the reward of taking action a in state s. The
typical goal of MDP planning and learning is to compute a
policy for selecting an action in any state, such that follow-
ing the policy (approximately) maximizes some measure of
long-term expected reward.

In practice, regardless of the long-term reward measure, for
large MDPs, the offline computation of high-quality poli-
cies over all environment states is impractical. In such
cases, a popular action-selection approach is online tree
search, where at each encountered environment state, a
time-bounded search is carried out in order to estimate ac-
tion values. Note that this approach requires the availabil-
ity of either an MDP model or an MDP simulator in order
to construct search trees. In this paper, we assume that a
model or simulator is available and that online tree search
has been chosen as the action selection mechanism. Next,
we formally describe the paradigm of online tree search,
introduce the notion of partial policies for pruning tree
search, and then formulate the problem of offline learning
of such partial policies.

Online Tree Search. We will focus on depth-bounded
search assuming a search depth bound of D throughout,
which bounds the length of future action sequences to be
considered. Given a state s, we denote by T (s) the depth
D expectimax tree rooted at s. T (s) alternates between
layers of state nodes and action nodes, labeled by states
and actions respectively. The children of each state node
are action nodes for each action in A. The children of an
action node a with parent labeled by s are all states s′ such
that P (s′|s, a) > 0. Figure 1(a) shows an example of a

depth two expectimax tree. The depth of a state node is the
number of action nodes traversed from the root to reach it,
noting that leaves of T (s) will always be action nodes.

The optimal value of a state node s at depth d, denoted
by V ∗d (s), is equal to the maximum value of its child ac-
tion nodes, which we denote by Q∗d(s, a) for child a. We
define Q∗d(s, a) to be R(s, a) if d = D − 1 (i.e. for
leaf action nodes) and otherwise R(s, a) + E

[
V ∗d+1(s′)

]
,

where s′ ∼ P (·|s, a) ranges over children of a. The opti-
mal action policy for state s at depth d will be denoted by
π∗d(s) = arg maxaQ

∗
d(s, a). Given an environment state s,

online search algorithms such as UCT or RTDP attempt to
completely or partially search T (s) in order to approximate
the root action values Q∗0(s, a) well enough to identify the
optimal action π∗d(s). It is important to note that optimality
in our context is with respect to the specified search depth
D, which may be significantly smaller than the expected
planning horizon in the actual environment. This is a prac-
tical necessity that is often referred to as receding-horizon
control. Here we simply assume that an appropriate search
depthD has been specified and our goal is to speedup plan-
ning within that depth.

Search with Partial Policies. One way to speedup depth
D search is to prune actions from T (s). In particular, if
a fixed fraction σ of actions are removed from each state
node, then the size of the tree would decrease by a factor of
(1−σ)D, potentially resulting in significant computational
savings. For this purpose we will utilize partial policies.
A depth D (non-stationary) partial policy ψ is a sequence
(ψ0, . . . , ψD−1) where each ψd maps a state to an action
subset. Given a partial policy ψ and root state s, we can
define a pruned tree Tψ(s) that is identical to T (s), except
that each state s at depth d only has subtrees for actions in
ψd(s), pruning away subtrees for any child a /∈ ψd(s). Fig-
ure 1(b) shows a pruned tree Tψ(s), where ψ prunes away
one action at each state. It is straightforward to incorporate
ψ into a search algorithm by only expanding actions at state
nodes that are consistent with ψ.

We define the state and action values relative to Tψ(s)

the same as above and let V ψd (s) and Qψd (s, a) denote
the depth d state and action value functions. We will de-
note the highest-valued, or greedy, root action of Tψ(s) by
Gψ(s) = arg maxa∈ψ0(s)Q

ψ
0 (s, a). This is the root action

that a depth D search procedure would attempt to return in
the context of ψ. Note that a special case of partial policies
is when |ψd(s)| = 1 for all s and d, which means that ψ de-
fines a traditional (complete) deterministic MDP policy. In
this case, V ψd andQψd represent the traditional depth d state
value and action value functions for policies. We say that a
partial policy ψ subsumes a partial policy ψ′ if for each s
and d, ψ′d(s) ⊂ ψd(s). In this case, it is straightforward to
show that for any s and d, V ψ

′

d (s) ≤ V ψd (s).

Clearly, a partial policy can reduce the complexity of
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search. However, we are also concerned with the quality of
decision making using Tψ(s) versus T (s), which we will
quantify in terms of expected regret. The regret of select-
ing action a at state s relative to T (s) is equal to V ∗0 (s) −
Q∗0(s, a), noting that the regret of the optimal action π∗0(s)
is zero. We prefer partial policies that result in root deci-
sions with small regret over the root state distribution that
we expect to encounter, while also supporting significant
pruning. For this purpose, if µ0 is a distribution over root
states, we define the expected regret of ψ with respect to
µ0 as REG(µ0, ψ) = E [V ∗0 (s0)−Q∗0(s0, Gψ(s0)], where
s0 ∼ µ0.

Learning Problem. We consider an offline learning set-
ting where we are provided with a model or simulator of
the MDP in order to train a partial policy that will be used
later for online decision making. That is, the learning prob-
lem provides us with a distribution µ0 over root states (or a
representative sample from µ0) and a depth bound D. The
intention is for µ0 to be representative of the states that
will be encountered during online use. In this work, we are
agnostic about how µ0 is defined for an application. How-
ever, a typical example and one used in our experiments,
is for µ0 to correspond to the distribution of states encoun-
tered along trajectories of a receding horizon controller that
makes decisions based on unpruned depth D search.

Given µ0 and D, our “speedup learning” goal is to learn
a partial policy ψ with small expected regret REG(µ0, ψ),
while providing significant pruning. That is, we want to
approximately imitate the decisions of depth D unpruned
search via a much less expensive depth D pruned search.
In general, there will be a tradeoff between the potential
speedup and expected regret. At one extreme, it is always
possible to achieve zero expected regret by selecting a par-
tial policy that does no pruning and hence no speedup. At
the other extreme, we can remove the need for any search
by learning a partial policy that always returns a single ac-
tion (i.e. a complete policy). However, for many complex
MDPs, it can be difficult to learn computationally efficient,
or reactive, policies that achieve small regret. Rather, it
may be much easier to learn partial policies that prune away
many, but not all actions, yet still retain high-quality ac-
tions. While such partial policies lead to more search than
a reactive policy, the regret can be much less.

In practice, we seek a good tradeoff between the two ex-
tremes, which will depend on the application. Instead of
specifying a particular trade-off point as our learning ob-
jective, we develop learning algorithms in the next section
that provide some ability to explore different points. In
particular, the algorithms are associated with regret bounds
in terms of supervised learning objectives that measurably
vary with different amounts of pruning.

Algorithm 1 A template for learning a partial policy ψ =
(ψ0, . . . , ψD−1). The template is instantiated by specifying
the pairs of distributions and cost functions (µd, Cd) for
d ∈ {0, . . . , D−1}. LEARN is an i.i.d. supervised learning
algorithm that aims to minimize the expected cost of each
ψd relative to Cd and µd.

1: procedure PARTIALPOLICYLEARNER({(µd, Cd)})
2: for d = 0, 1, . . . , D − 1 do
3: Sample a training set of states Sd from µd
4: ψd ← LEARN(Sd, Cd)
5: end for
6: return ψ = (ψ0, ψ1, . . . , ψD−1)
7: end procedure

3 LEARNING PARTIAL POLICIES

Given µ0 and D, we now develop reduction-style algo-
rithms for learning partial policies. The algorithms reduce
partial policy learning to a sequence of D i.i.d. supervised
learning problems, each producing one partial policy com-
ponent ψd. The supervised learning problem for ψd will be
characterized by a pair (µd, Cd), where µd is a distribution
over states, andCd is a cost function that, for any state s and
action subset A′ ⊆ A assigns a prediction cost Cd(s,A′).
The cost function is intended to measure the quality of A′

with respect to including actions that are high quality for s.
Typically the cost function is monotonically decreasing in
A′ and Cd(s,A) = 0.

In this section we assume the availability of an i.i.d. su-
pervised learner LEARN that takes as input a set of states
drawn from µd, along with Cd, and returns a partial pol-
icy component ψd that is intended to minimize the ex-
pected cost of ψd on µd, i.e. minimize E [Cd(s, ψd(s))]
for s ∼ µd. In practice, the specific learner will depend
on the cost function and we describe our particular imple-
mentations in Section 4. Rather, in this section, we focus
on defining reductions that allow us to bound the expected
regret of ψ by the expected costs of the ψd returned by
LEARN. The generic template for our reduction algorithms
is shown in Algorithm 1.

In the following, our state distributions will be specified in
terms of distributions induced by (complete) policies. In
particular, given a policy π, we let µd(π) denote the state
distribution induced by drawing an initial state from µ0 and
then executing π for d steps. Since we have assumed an
MDP model or simulator, it is straightforward to sample
from µd(π) for any provided π. Before proceeding we state
a simple proposition that will be used to prove our regret
bounds.

Proposition 3.1. If a complete policy π is subsumed by
partial policy ψ, then for any initial state distribution µ0,
REG(µ0, ψ) ≤ E [V ∗0 (s0)]− E [V π0 (s0)], for s0 ∼ µ0.
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(a) Unpruned expectimax tree T (s) with D = 2 (b) Pruning T with partial policy ψ gives Tψ where a
third of the actions have been pruned.

Figure 1: Unpruned and pruned expectimax trees with depth D = 2 for an MDP with |A| = 3 and two possible next states.

Proof. Since π is subsumed by ψ, we know that
Qψ0 (s,Gψ(s)) = V ψ0 (s) ≥ V π0 (s). Since for any
a, Q∗0(s, a) ≥ Qψ0 (s, a), we have for any state s,
Q∗0(s,Gψ(s)) ≥ V π0 (s). The result follows by negating
each side of the inequality, followed by adding V ∗0 (s), and
taking expectations.

Thus, we can bound the regret of a learned ψ if we can
guarantee that it subsumes a policy whose expected value
has bounded sub-optimality. Next we present three reduc-
tions for doing this, each having different requirements and
assumptions.

3.1 OPI : OPTIMAL PARTIAL IMITATION

Perhaps the most straightforward idea for learning a par-
tial policy is to attempt to find a partial policy that is usu-
ally consistent with trajectories of the optimal policy π∗.
That is, each ψd should be learned so as to maximize the
probability of containing actions selected by π∗d with re-
spect to the optimal state distribution µd(π

∗). This ap-
proach is followed by our first algorithm called Optimal
Partial Imitation (OPI). In particular, Algorithm 1 is instan-
tiated with µd = µd(π

∗) (noting that µ0(π∗) is equal to
µ0 as specified by the learning problem) and Cd equal to
zero-one cost. Here Cd(s,A′) = 0 if π∗d(s) ∈ A′ and
Cd(s,A

′) = 1 otherwise. Note that the expected cost of
ψd in this case is equal to the probability that ψd does
not contain the optimal action, which we will denote by
e∗d(ψ) = Prs∼µd(π∗) (π∗d(s) /∈ ψd(s)).

A naive implementation of OPI is straightforward. We can
generate length D trajectories by drawing an initial state
from µ0 and then selecting actions (approximately) accord-
ing to π∗d using standard unpruned search. Defined like this,
OPI has the nice property that it only requires the ability to
reliably compute actions of π∗d , rather than requiring that
we also estimate action values accurately. This allows us
to exploit the fact that search algorithms such as UCT of-
ten quickly identify optimal actions, or sets of near-optimal
actions, well before the action values have converged.

Intuitively we should expect that if the expected cost e∗d is

small for all d, then the regret of ψ should be bounded,
since the pruned search trees will generally contain opti-
mal actions for state nodes. The following clarifies this
dependence. For the proof, given a partial policy ψ, it is
useful to define a corresponding complete policy ψ+ such
that ψ+

d (s) = π∗d(s) whenever π∗d(s) ∈ ψd(s) and other-
wise ψ+

d (s) is the lexicographically least action in ψd(s).
Note that ψ+ is subsumed by ψ.

Theorem 3.2. For any initial state distribution µ0 and par-
tial policy ψ, if for each d ∈ {0, . . . , D − 1}, e∗d(ψ) ≤ ε,
then REG(µ0, ψ) ≤ εD2.

Proof. Given the assumption that e∗d(ψ) ≤ ε and that
ψ+ selects the optimal action whenever ψ contains it,
we know that e∗d(ψ

+) ≤ ε for each d ∈ {0, . . . , D}.
Given this constraint on ψ+ we can apply Lemma 31 from
(Syed and Schapire, 2010) which implies E[V π

+

0 (s0)] ≥
E[V ∗0 (s0)] − εD2, where s0 ∼ µ0. The result follows by
combining this with Prop. 3.1.

This result mirrors work on reducing imitation learning to
supervised classification (Ross and Bagnell, 2010; Syed
and Schapire, 2010), showing the same dependence on
the planning horizon. While space precludes details, it is
straightforward to construct an example problem where the
above regret bound is shown to be tight. This result moti-
vates a learning approach where we have LEARN attempt
to return ψd that each maximizes pruning (returns small ac-
tion sets) while maintaining a small expected cost.

3.2 FT-OPI : FORWARD TRAINING OPI

OPI has a potential weakness, similar in nature to issues
identified in prior work on imitation learning (Ross and
Bagnell, 2010; Ross et al., 2011). In short, OPI does not
train ψ to recover from its own pruning mistakes. Consider
a node n in the optimal subtree of a tree T (s0) and suppose

1The main result of (Syed and Schapire, 2010) holds for
stochastic policies and requires a more complicated analysis that
results in a looser bound. Lemma 3 is strong enough for deter-
ministic policies.
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that the learned ψ erroneously prunes the optimal child ac-
tion of n. This means that the optimal subtree under n will
be pruned from Tψ(s), increasing the potential regret. Ide-
ally, we would like the pruned search in Tψ(s) to recover
from the error gracefully and return an answer based on the
best remaining subtree under n. Unfortunately, the distri-
bution used to train ψ by OPI was not necessarily repre-
sentative of this alternate subtree under n, since it was not
an optimal subtree of T (s). Thus, no guarantees about the
pruning accuracy of ψ can be made under n.

In imitation learning, this type of problem has been dealt
with via “forward training” of non-stationary policies (Ross
et al., 2011) and a similar idea works for us. The Forward
Training OPI (FT-OPI) algorithm differs from OPI only in
the state distributions used for training. The key idea is
to learn the partial policy components ψd in sequential or-
der from d = 0 to d = D − 1 and then training ψd on a
distribution induced by ψ0:d−1 = (ψ0, . . . , ψd−1), which
will account for pruning errors made by ψ0:d−1. Specifi-
cally, recall that for a partial policy ψ, we defined ψ+ to
be a complete policy that selects the optimal action if it is
consistent with ψ and otherwise the lexicographically least
action. The state distributions used to instantiate FT-OPI is
µd = µd(ψ

+
0:d−1) and the cost function remains zero-one

cost as for OPI. We will denote the expected cost of ψd
in this case by e+

d (ψ) = Prs∼µd(ψ+
0:d−1) (π∗d(s) /∈ ψd(s)),

which gives the probability of pruning the optimal action
with respect to the state distribution of ψ+

0:d−1.

Note that as for OPI, we only require the ability to compute
π∗ in order to sample from µd(ψ

+
0:d−1). In particular, note

that when learning ψd, we have ψ0:d−1 available. Hence,
we can sample a state for µd by executing a trajectory of
ψ+

0:d−1. Actions for ψ+
d can be selected by first computing

π∗d and selecting it if it is in ψd and otherwise selecting the
lexicographically least action.

As shown for the forward training algorithm for imitation
learning (Ross et al., 2011), we give below an improved
regret bound for FT-OPI under an assumption on the max-
imum sub-optimality of any action. The intuition is that if
it is possible to discover high-quality subtrees, even under
sub-optimal action choices, then FT-OPI can learn on those
trees and recover from errors.

Theorem 3.3. Assume that for any state s, depth d, and
action a, we have V ∗d (s) − Q∗d(s, a) ≤ ∆. For any initial
state distribution µ0 and partial policy ψ, if for each d ∈
{0, . . . , D − 1}, e+

d (ψ) ≤ ε, then REG(µ0, ψ) ≤ ε∆D.

Proof. The theorem’s assumptions imply that ψ+ and the
search tree T (s) satisfies the conditions of Theorem 2.2 of
(Ross et al., 2011). Thus we can infer that E[V π

+

0 (s0)] ≥
E[V ∗0 (s0)] − ε∆D, where s0 ∼ µ0. The result follows by
combining this with Proposition 3.1.

Thus, when ∆ is significantly smaller than D, FT-OPI has
the potential to outperform OPI given the same bound on
zero-one cost. In the worst case ∆ = D and the bound will
equal to that of OPI.

3.3 FT-QCM: FORWARD TRAINING Q-COST
MINIMIZATION

While FT-OPI addressed one potential problem with OPI,
they are both based on zero-one cost, which raises other po-
tential issues. The primary weakness of using zero-one cost
is its inability to distinguish between highly sub-optimal
and slightly sub-optimal pruning mistakes. It was for this
reason that FT-OPI required the assumption that all action
values had sub-optimality bounded by ∆. However, in
many problems, including those in our experiments, that
assumption is unrealistic, since there can be many highly
sub-optimal actions (e.g. ones that result in losing a game).
This motivates using a cost function that is sensitive to the
sub-optimality of pruning decisions.

In addition, it can often be difficult to learn a ψ that
achieves both, a small zero-one cost and also provides sig-
nificant pruning. For example, in many domains, in some
states there will often be many near-optimal actions that
are difficult to distinguish from the slightly better optimal
action. In such cases, achieving low zero-one cost may re-
quire producing large action sets. However, learning a ψ
that provides significant pruning while reliably retaining at
least one near-optimal action may be easily accomplished.
This again motivates using a cost function that is sensitive
to the sub-optimality of pruning decisions, which is accom-
plished via our third algorithm, Forward Training Q-Cost
Minimization (FT-QCM)

The cost function of FT-QCM is the minimum sub-
optimality, or Q-cost, over unpruned actions. In particu-
lar, we use Cd(s,A′) = V ∗d (s) − maxa∈A′ Q∗d(s, a). Our
state distribution will be defined similarly to that of FT-
OPI, only we will use a different reference policy. Given
a partial policy ψ, define a new complete policy ψ∗ =
(ψ∗0 , . . . , ψ

∗
D−1) where ψ∗d(s) = arg maxa∈ψd(s)Q

∗
d(s, a),

so that ψ∗ always selects the best unpruned action. We
define the state distributions for FT-QCM as the state dis-
tribution induced by ψ∗, i.e. µd = µd(ψ

∗
0:d−1). We

will denote the expected Q-cost of ψ at depth d to be
∆d(ψ) = E

[
V ∗d (sd)−maxa∈ψd(sd)Q

∗
d(sd, a)

]
, where

sd ∼ µd(ψ∗0:d−1).

Unlike OPI and FT-OPI, this algorithm requires the abil-
ity to estimate action values of sub-optimal actions in or-
der to sample from µd. That is, sampling from µd re-
quires generating trajectories of ψ∗d , which means we must
be able to accurately detect the action in ψd(s) that has
maximum value, even if it is a sub-optimal action. The
additional overhead for doing this during training depends
on the search algorithm being used. For many algorithms,

676



near-optimal actions will tend to receive more attention
than clearly sub-optimal actions. In those cases, as long as
ψd(s) includes reasonably good actions, there may be little
additional regret. The following regret bound motivates the
FT-QCM algorithm.

Theorem 3.4. For any initial state distribution µ0 and par-
tial policy ψ, if for each d ∈ {0, . . . , D − 1}, ∆d(ψ) ≤ ∆,
then REG(µ0, ψ) ≤ 2D

3
2

√
∆.

Proof. Consider any pair of non-negative real numbers
(ε, δ) such that for any d, the probability is no more than ε
of drawing a state from µd(ψ

∗) with Q-cost (wrt ψ) greater
than δ. That is Pr(Cd(sd, ψd(sd)) ≥ δ) ≤ ε. We will first
bound REG(µ0, ψ) in terms of ε and δ.

Let Πδ be the set of policies for which all selected actions
have regret bounded by δ. It can be shown by induction on
the depth that for any π ∈ Πδ and any state s, V π0 (s) ≥
V ∗0 (s) − δD. For the chosen pair (ε, δ) we have that for
a random trajectory t of ψ∗ starting in a state drawn from
µ0 there is at most an εD probability that the Q-cost of ψ∗
on any state of t is greater than δ. Thus, compared to a
policy that always has Q-cost bounded by δ, the expected
reduction in total reward of ψ for initial state distribution
µ0 is no more than εD2. This shows that

E
[
V ψ
∗

0 (s0)
]
≥ min

π∈Πδ
E [V π0 (s0)]− εD2

≥ E [V ∗0 (s0)]− δD − εD2

Since ψ∗ is subsumed by ψ, Proposition 3.1 implies that
REG(µ0, ψ) ≤ δD + εD2.

We now reformulate the above bound in terms of the bound
on expected Q-cost ∆ assumed by the theorem. Since Q-
costs are non-negative, we can apply the Markov inequality
to conclude that Pr(Cd(sd, ψd(sd)) ≥ δ) ≤ ∆d(ψ)

δ ≤ ∆
δ .

The pair (∆
δ , δ) then satisfies the above condition for ψ∗.

Thus, we get REG(µ0, ψ) ≤ δD + ∆
δ D

2. The bound is
minimized at δ =

√
D∆, which yields the result.

FT-QCM tries to minimize this regret bound by minimizing
∆d(ψ) via supervised learning at each step. Importantly,
as we will show in our experiments, it is often possible to
maintain small expected Q-cost with significant pruning,
while the same amount of pruning would result in a much
larger zero-one cost. It is an open problem as to whether
this bound is tight in the worst case.

4 IMPLEMENTATION DETAILS

In this section, we describe our concrete implementation of
the above abstract algorithms using the MCTS algorithm
UCT (Kocsis and Szepesvári, 2006) for tree search.

UCT is a popular MCTS algorithm, perhaps most famous
for leading to significant advances in computer Go (Gelly
et al., 2006; Gelly and Silver, 2007). Space precludes a

complete description and we only outline the high-level
ideas and issues relevant to our work. Given a root state
and a time budget, UCT executes a series of Monte-Carlo
simulations in order to build an asymmetric search tree that
explores more promising parts of the tree first, compared to
less promising parts. The key idea behind UCT is to utilize
a variant of the multi-armed bandit algorithm UCB (Auer
et al., 2002) for selecting actions during the Monte-Carlo
simulations. The objective is to balance the exploration
of less frequently visited parts of the tree versus exploring
nodes that look most promising. State and action values
for nodes in the UCT tree are estimated based on the aver-
age reward of Monte-Carlo trajectories that go through the
nodes. In the limit, UCT will converge to optimal state and
action values. In practice, the values computed in a UCT
tree after a finite time budget are most accurate for higher
quality actions, since they tend to be explored more often.
It is straightforward to integrate a partial policy into UCT,
by simply removing pruned actions from consideration.

Partial Policy Representation. Our partial policies op-
erate by simply ranking the actions at a state and then
pruning a percentage of the bottom actions. Specifically,
partial policy components have the form ψd(s | wd, σd),
parameterized by an n-dimensional weight vector wd and
pruning fraction σd ∈ [0, 1). Given a state s, each ac-
tion a is ranked according to the linear ranking function
fd(s, a) = wTd φ(s, a), where φ(s, a) is a user provided
n-dimensional feature vector that describes salient prop-
erties of state-action pairs. Using fd we can define a
total order over actions, breaking ties lexicographically.
ψd(s | wd, σd) is then equal to the set of the d(1− σd)|A|e
highest ranked actions. This representation is useful as it
allows us to separate the training of fd from the selection
of the pruning fraction.

Generating Training States. Each of our algorithms re-
quires sampling training states from trajectories of partic-
ular policies that either require approximately computing
π∗d (OPI and FT-OPI) or also action values for sub-optimal
actions (FT-QCM). Our implementation of this is to first
generate a set of trees using substantial search, which pro-
vides us with the required policy or action values and then
to sample trajectories from those trees.

More specifically, our learning algorithm is provided with
a set of root states S0 sampled from the target root distri-
bution µ0. For each s0 ∈ S0 we run UCT for a specified
time bound, which is intended to be significantly longer
than the eventual online time bound. Note that the result-
ing trees will typically have a large number of nodes on
the tree fringe that have been explored very little and hence
will not be useful for learning. Because of this we select a
depth bound D for training such that nodes at that depth or
less have been sufficiently explored and have meaningful
action values. The trees are then pruned until depth D.
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Given this set of trees we can then generate trajectories us-
ing the MDP simulator of the policies specified for each
algorithm. For example, OPI simply requires running tra-
jectories through the trees based on selecting actions ac-
cording to the optimal action estimates. The state at depth
d along each trajectory is added to the data set for train-
ing ψd. FT-QCM samples states for training ψd by gen-
erating length d trajectories of ψ∗0:d−1. Each such action
selection requires referring to the estimated action values
and returning the best one that is not pruned. The final
state on the trajectory is then added to the training set for
ψd. Note that since our approach generates multiple trajec-
tories from each tree the training sets for each ψd are not
truly i.i.d. This is an acceptable trade-off in practice since
tree construction is expensive and this approach allows for
many examples to be generated per tree.

Supervised Learner. It remains to specify how we imple-
ment the LEARN procedure. Each training set will consist
of pairs {(si, ci)} where si is a state and ci is a vector that
assigns a cost to each action. For OPI and FT-OPI the cost
vector assigns 0 to the optimal action and 1 to all other
actions. For FT-QCM the ci give the Q-costs of each ac-
tion. We learn the partial policy by first learning the rank-
ing function in a way that attempts to rank low-cost actions
as highly as possible and then select an appropriate pruning
percentage based on the learned ranker.

For rank learning, we follow a common approach of con-
verting the problem to cost-sensitive binary classification.
In particular, for a given example (s, c) we create a cost-
sensitive classification example for each pair of actions a1

and a2 of the form (φ(s, a1) − φ(s, a2), c(a2) − c(a1)).
Learning a linear classifier for such an example will attempt
to rank a1 above or below a2 according to the cost differ-
ence. We apply an existing cost-sensitive learner (Lang-
ford, 2011) to learn a weight vector based on the pairwise
data. Note that for zero-one loss, we do not create pairwise
examples involving just sub-optimal actions since their cost
difference will always be zero.

Finally, after learning the ranking function for a particular
ψd, we must select an appropriate pruning percentage σd.
In practice, we do this by analyzing the expected cost of
ψd for a range of pruning values and select a pruning value
that yields reasonably small costs. Section 6 gives details
of the selections for our experiments.

5 RELATED WORK

While there is a large body of work on integrating learning
and planning, to the best of our knowledge, we do not know
of any work on learning partial policies for speeding up
online MDP planning.

There are a number of efforts that study model-based re-
inforcement learning (RL) for large MDPs that utilize tree

search methods for planning with the learned model, e.g.
RL using FSSS (Walsh et al., 2010), Monte-Carlo AIXI
(Veness et al., 2011), and TEXPLORE (Hester and Stone,
2013). However, these methods focus on model/simulator
learning and do not attempt to learn to speedup tree search
using the learned models, which is the focus of our work.

A more related body of work is on learning search
control knowledge in deterministic planning and games.
One thread of work has been on learning knowledge for
STRIPS-style deterministic planners, e.g. learning heuris-
tics and policies for guiding best-first search (Yoon et al.,
2008) or state ranking functions (Xu et al., 2009). The
problem of learning improved leaf evaluation heuristics has
also been studied in the context of deterministic real-time
heuristic search (Bulitko and Lee, 2006). As one more ex-
ample, evaluation functions have been learned for game
tree search based on learning from “principle variations”
of deep searches (Veness et al., 2009). The training data
for this approach is similar in spirit to that of our OPI algo-
rithm. Since these algorithms have been developed for de-
terministic settings, it is not straightforward to adapt them
to the general MDP setting. Further, none of these exist-
ing methods, to our knowledge, have provided a theoretical
analysis of the possible regret of using the learned knowl-
edge, which is one of our main contributions.

There have been a number of efforts for utilizing domain-
specific knowledge in order to improve/speedup MCTS,
many of which are covered in a recent survey (Browne
et al., 2012). A popular technique is to use a bias term
f(s, a) for guiding action selection during search. f is
hand-provided in (Chaslot et al., 2007; Couëtoux et al.,
2011) and learned in (Gelly and Silver, 2007; Sorg et al.,
2011). Generally there are a number of parameters that
dictate how strongly f(s, a) influences search and how that
influence decays as search progresses. In our experience,
tuning the parameters for a particular problem can be te-
dious and difficult to do in a domain-independent way.
Similar issues hold for the approach in (Gelly and Sil-
ver, 2007) which attempts to learn an approximation of
Q∗ and then initializes search nodes with the estimate. In
(Sorg et al., 2011), control knowledge is learned via policy-
gradient techniques in the form of a reward function and
used to guide MCTS with the intention of better perfor-
mance given a time budget. So far, however, the approach
has not been analyzed formally and has not been demon-
strated on large MDPs. Experiments in small MDPs have
also not demonstrated improvement in terms of wall clock
time over vanilla MCTS.

Finally, MCTS methods often utilize hand-coded or learned
“default policies” (e.g., MoGo (Gelly et al., 2006)) to im-
prove anytime performance. While this has shown some
promise in specific domains such as Go, where the policies
can be highly engineered for efficiency, we have found that
the computational overhead of using learned default poli-
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cies is often too high a price to pay. In particular, most such
learned policies require the evaluation of a feature vector at
each state encountered, or for each state-action pair. This
may cause orders of magnitude fewer trajectories to be ex-
ecuted compared to vanilla MCTS. In our experience, this
can easily lead to degraded performance per unit time. Fur-
thermore, there is little formal understanding about how to
learn such rollout policies in principled ways, with straight-
forward approaches often yielding decreased performance
(Silver and Tesauro, 2009).

6 EXPERIMENTS

We consider learning partial policies in two domains.

Yahtzee is a classic dice game with ≈ 17 actions on av-
erage. Actions correspond to selecting subsets of dice to
roll and selecting categories to score. The objective is to
maximize the sum of category scores. We use 26 features
for learning the partial policy which encode the impact of a
roll action or select action for each of the 13 categories.

Galcon is a two-player real-time strategy game with ap-
proximately 174 actions per move on average (max. ≈
800). The objective is to maximize one’s own population
on a 2-D grid of planets by directing variable-sized fleets
of units between planets to capture enemy planets or fortify
one’s own. Transitions are stochastic when opposing pop-
ulations battle over a planet. We use 20 real-valued state-
action features that coarsely encode the impact of an action
on population size, planet ownership, etc.

In what follows, we experiment with the two extreme al-
gorithms, OPI and FT-QCM. The intermediate algorithm
FT-OPI is excluded in this paper due to the time required to
perform large-scale evaluations across a wide spectrum of
time bounds. Preliminary experiments suggest that FT-OPI
performs between OPI and FT-QCM.

Setup. For training we provide our learning algorithms
with root states generated by playing 100 full games al-
lowing UCT 64 seconds per move per tree. This produces
thousands of root states along with the search trees, which
we use for training as described in Section 4. Due to the
large action and stochastic branching factors, even with 64
seconds per move, we selectedD = 3 for learning since the
value estimates produced by UCT for deeper nodes were
not accurate. Note that in our evaluations we do not limit
the rollouts of UCT to depth 3, rather the rollouts proceed
until terminal states, which provide a longer term heuristic
evaluation for tree nodes.2 In order to select the pruning
fractions σd, in results not shown for space reasons, we
plotted the supervised losses achieved for various learned
ranking functions for a variety of σd. We found that in

2When UCT generates tree nodes at depths greater than D, in
these experiments we prune using ψD . However, we have con-
firmed experimentally that typically such nodes are not visited
frequently enough for pruning to have a significant impact.

Galcon a value of σd = 0.75 provided a good trade-off
point since the supervised average costs began to sharply
increase beyond that point. For Yahtzee we found that
σd = 0.75 was a good trade-off point for all depths except
the root. At the root we used a less aggressive pruning frac-
tion σ0 = 0.5 since the cost increased more quickly with
σ0. Finally, all of our online evaluations of the learned par-
tial policies within UCT are averaged across 1000 games
and 95% confidence intervals are plotted.

FT-QCM v OPI. Figures 2(a) and 2(d) compare the search
performance of UCT given various amounts of time per
move, when using the partial policies learned by FT-QCM
to that learned by OPI. FT-QCM has clear wins across most
of the anytime curve, with OPI achieving parity at suffi-
ciently large budgets in both domains. In results not shown
for space reasons, we repeated this experiment for a vari-
ety of sets of the pruning fraction σd. In all cases, OPI
never outperforms FT-QCM for any setting of σd and at
best, achieves parity. Based on this result the remainder of
our experimental evaluation is based on FT-QCM.

FT-QCM v baselines. We now compare the performance
of pruning with FT-QCM partial policies to other ap-
proaches for injecting control knowledge into UCT. Most
other approaches require an action scoring function of
some form, for which we use the ranking function f0

learned for the root partial policy by FT-QCM. The first
baseline is vanilla UCT without any knowledge injection.
Second, we use (decaying) heuristic bias (HB) in UCT
as discussed in the related work, using the best settings
found by experimenting with different methods of setting
the bias component. Our third baseline uses a softmax
policy, parameterized by f0, as the default policy (DP).
During a rollout, an action is sampled with probability
exp(f0(s, a))/

∑
a′∈A(s) exp(f0(s, a′)) instead of uniform

random selection. Our fourth and last baseline, greedy,
does not search and selects root actions greedily accord-
ing to the learned root ranking function. Note that this final
baseline can be viewed as an attempt to apply traditional
imitation learning to our problem.

Figures 2(b) and 2(e) give the results for Galcon and
Yahtzee. For Galcon, which is two-player, the curves cor-
respond to each method playing against vanilla UCT us-
ing the same budget on wall-clock time. The heuristic
bias (HB) technique is unable to show any improvement
over vanilla when evaluated in terms of performance ver-
sus wall-clock time. This is likely due to f0 being inaccu-
rate and highly biased when used as an evaluation func-
tion. Furthermore, tuning the complex interaction of Q
estimates, exploration bonus and noisy bias terms is chal-
lenging and time-consuming. Note that HB does not de-
crease search performance unlike the informed default pol-
icy (DP) baseline. Here, the cost of using the expensive
softmax rollout policy dwarfs any benefit. DP only seems
to “pay for itself” at the largest budgets where parity is
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Figure 2: The first column shows a comparison between partial policies learned by FT-QCM and OPI when used inside
UCT for different time bounds. In (a), the baseline player is OPI instead of vanilla (b,c). The second column shows the
main experimental result where FT-QCM consistently outperforms baselines in both domains. DP and HB are surprisingly
bad when knowledge costs are taken into account. The third column shows performance under zero knowledge costs by
measuring the budget in simulation counts. Again, FT-QCM does well consistently but now DP and HB perform better.

achieved with the other baselines. The last baseline greedy
demonstrates the limited strength of the reactive policy
which is only competitive in Galcon when the search is
very time-constrained. In Yahtzee, greedy is not compet-
itive at any budget. We note that we have attempted to
apply alternative imitation learning approaches to arrive at
improved reactive policies, with little improvement. It ap-
pears that our feature representation is not powerful enough
to accurately discriminate optimal actions. By relaxing our
goal to learning a partial policy and integrating with search,
we are able to benefit significantly from learning.

In both domains, FT-QCM outperforms every baseline at
every budget considered. In Galcon, it has large wins on
the left of the anytime curve and smaller wins on the right
(not visible due to scale). In Yahtzee as well, FT-QCM
achieves higher scores consistently. Furthermore, it contin-
ues to improve even at the largest budgets. In Yahtzee, in-
creasing average score above 200 is extremely challenging
and FT-QCM’s performance improvement is significant.

The cost of knowledge. It is initially surprising that the
heuristic bias and informed default policy methods do not
improve over vanilla MCTS. It turns out these methods do
well as long as the cost of using knowledge is set to zero.
That is, budgets are specified in terms of the number of
simulations conducted by UCT instead of wall-clock time.

The difference is shown in Figures 2(c) and 2(f) where all
the planners were re-run using simulations instead of time.
Now HB outperforms vanilla in both domains while DP
is competitive or wins by small amounts. However, our
method FT-QCM is again better across most of the anytime
curve in both domains. This result shows the importance
of evaluating in terms of wall-clock time, which has not
always been common practice in prior work.

7 SUMMARY
We have shown algorithms for offline learning of partial
policies for reducing the action branching factor in time-
bounded tree search. The algorithms leverage a reduction
to i.i.d supervised learning and are shown to have bounds
on the worst case regret. Experiments on two challenging
domains show significantly improved anytime performance
in Monte-Carlo Tree Search. One line of future work in-
volves more sophisticated uses of partial policies during
search (e.g., progressive widening, time-aware search con-
trol) for further improvements in anytime performance. We
are also interested in iterating the learning process, where
we use a learned ψ to guide deeper search in order to gen-
erate training data for learning an even better ψ.
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Abstract

We consider the question of how unlabeled data
can be used to estimate the true accuracy of
learned classifiers. This is an important question
for any autonomous learning system that must es-
timate its accuracy without supervision, and also
when classifiers trained from one data distribu-
tion must be applied to a new distribution (e.g.,
document classifiers trained on one text corpus
are to be applied to a second corpus). We first
show how to estimate error rates exactly from
unlabeled data when given a collection of com-
peting classifiers that make independent errors,
based on the agreement rates between subsets of
these classifiers. We further show that even when
the competing classifiers do not make indepen-
dent errors, both their accuracies and error de-
pendencies can be estimated by making certain
relaxed assumptions. Experiments on two data
real-world data sets produce estimates within a
few percent of the true accuracy, using solely un-
labeled data. These results are of practical signif-
icance in situations where labeled data is scarce
and shed light on the more general question of
how the consistency among multiple functions is
related to their true accuracies.

1 INTRODUCTION

Estimating accuracy of classifiers is central to machine
learning and many other fields. Traditionally, one esti-
mates accuracy of a function based on its performance over
a set of labeled test examples. This paper considers the
question of under what conditions is it possible to esti-
mate accuracy based instead on unlabeled data. We show
that accuracy can be estimated exactly from unlabeled data
in the case that at least three different approximations to
the same function are available, so long as these functions
make independent errors and have better than chance ac-

curacy. More interestingly, we show that even if one does
not assume independent errors, one can still estimate ac-
curacy given a sufficient number of competing approxima-
tions to the same function, by viewing the degree of inde-
pendence of those approximations as an optimization cri-
terion. We present experimental results demonstrating the
success of this approach in estimating classification accu-
racies to within a few percentage points of their true value,
in two diverse domains.

We consider a “multiple approximations” problem set-
ting in which we have several different approximations,
f̂1, . . . , f̂N , to some target boolean classification function,
f : X → {0, 1}, and we wish to know the true accuracies
of each of these different approximations, using only unla-
beled data. The multiple functions can be from any source
- learned or manually constructed. One example of this set-
ting that we consider here is taken from the Never Ending
Language Learning system (NELL) [Carlson et al., 2010].
NELL learns classifiers that map noun phrases (NPs) to
boolean categories such as fruit, food and vehicle. For each
such boolean classification function, NELL learns several
different approximations based on different views of the
NP. One approximation is based on the orthographic fea-
tures of the NP (e.g., if the NP ends with the letter string
“burgh”, it may be a city), whereas another uses phrases
surrounding the NP (e.g., if the NP follows the word se-
quence “mayor of”, it may be a city). Our aim in this paper
is to find a way to estimate the error rates of each of the
competing approximations to f , using only unlabeled data
(e.g., many unlabeled NPs in the case of NELL).

2 RELATED WORK

Other researchers have considered variants of this “mul-
tiple approximations” setting. For example, [Blum and
Mitchell, 1998] introduced the co-training algorithm which
uses unlabeled data to train competing approximations to a
target function by forcing them to agree on classifications
of unlabeled examples. Others have used the disagreement
rate between competing approximations as a distance met-
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ric to perform model selection and regularization [Schu-
urmans et al., 2006; Bengio and Chapados, 2003]. Bal-
can et al. [2013] used disagreement along with an ontol-
ogy to estimate the error of the prediction vector for multi-
class prediction, from unlabeled data, under an assump-
tion of independence of the input features given the label-
ing. Parisi et al. [2014] proposed a spectral method used to
rank classifiers based on accuracy and combine their out-
puts to produce one final label, also under an assumption
of independence of the input features given the labeling.
Moreover, there has been work at developing more robust
semi-supervised learning algorithms by using the concept
of agreement rates [Collins and Singer, 1999] or some task
specific constraints [Chang et al., 2007] to decide what
should be added to the training data set. However, very
few have tried to directly estimate actual per function er-
ror rates using agreement rates. In [Dasgupta et al., 2001]
the authors PAC-bound the error rates using the pairwise
agreement rates only, under the assumption that the func-
tions make independent errors, and [Madani et al., 2004]
estimate the average error of two predictors using their dis-
agreements. [Donmez et al., 2010] is one of the few to es-
timate per-function error rates from unlabeled data. Here,
the authors estimate the prediction risk for each function
under the assumption that the true probability distribution
of the output labels is known. Much of the emphasis of
their work is on methods that use the known label distribu-
tion to estimate the error rate even of a single classifier, but
agreements are used as well, especially under the assump-
tion of conditional independence. In contrast, we propose
here several methods for estimating actual function error
rates from agreement rates, without making these assump-
tions.

The main contributions of this paper include: (1) formulat-
ing the problem of estimating the error rate of each of sev-
eral approximations to the same function, based on their
agreement rates over unlabeled data, as an optimization
problem, (2) providing two different analytical methods
that estimate error rates from agreement rates in this set-
ting, one based on a set of simultaneous equations relating
accuracies, agreements, and error dependencies, and a sec-
ond, based on maximizing data likelihood, and (3) demon-
strating the success of these two methods in two very differ-
ent real-world problems. We consider our proposed meth-
ods a first step towards developing a self-reflection frame-
work for autonomous learning systems.

3 PROPOSED METHODS

We introduce two different methods to estimate the error
rates of binary functions in the multiple approximations
setting described in section 1. Both methods are based on
the idea of looking at the consistency between the different
functions’ predictions in order to determine the error rates
of those functions. The first method consists of matching

the sample agreement rates of the functions with the exact
formulas of those agreement rates written in terms of the
functions’ error rates. For the second method, we formu-
late the functions’ predictions consistency as a probabilis-
tic model and solve for the maximum likelihood estimate
(MLE) of their error rates. Both methods estimate the in-
dividual error rates for each function, as well as the joint
error rates of all possible subsets of those functions, based
on the predictions made by these functions over a sample
of unlabeled instances X1, . . . , XS .

In the following sections we denote the input data by X
and the true binary output label by Y . We assume the
input data X are drawn from some unknown distribution
P (X) = D, and Y ∈ {0, 1}. Let us consider N functions,
f̂1 (X) , . . . , f̂N (X) which attempt to model the mapping
from X to Y . For example, each function might be the
result of a different learning algorithm, or might use a dif-
ferent subset of the features of X as input. We define the
error event EA of a set of functions A as an event in which
every function in A makes an incorrect prediction:

EA =
∩

i∈A

[
f̂i (X) ̸= Y

]
, (1)

where ∩ denotes the set intersection operator and where A
contains the indices of the functions. We define the error
rate of a set of functions A (i.e. the probability that all
functions in A make an error together) as:

eA = PD (EA) , (2)

where PD (·) denotes the probability of an event under the
distribution over the input data X .

3.1 AGREEMENT RATES METHOD

Let us define the agreement rate aA, for a set of functions
A as the probability that all of the functions’ outputs1 are
the same:

aA = PD
({

f̂i (X) = f̂j (X) ,∀i, j ∈ A : i ̸= j
})

. (3)

This quantity can be defined in terms of the error rates of
the functions in A. In order to understand how we can write
the agreement rate in terms of error rates let us consider a
simple example where A = {i, j} (i.e. consider just the
pairwise agreement rate between the functions fi and fj .).
The probability of two functions agreeing is equal to the
probability that both make an error, plus the probability that
neither makes an error:

a{i,j} = PD
(
E{i} ∩ E{j}

)
+ PD

(
Ē{i} ∩ Ē{j}

)
, (4)

where ·̄ denotes the complement of a set. By using De Mor-
gan’s laws and the inclusion-exclusion principle we obtain,

1Here, “outputs” is equivalent to “predictions”.
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using the notation defined in equation (2), an expression for
the agreement rate between the two functions, in terms of
their individual error rates, and their joint error rate:

a{i,j} = 1 − e{i} − e{j} + 2e{i,j}. (5)

In the same way we obtain the following general result for
the agreement rate of a set of functions A of arbitrary size:

aA = PD

( ∩

i∈A
Ei

)
+ PD

( ∩

i∈A
Ēi

)
,

= eA + 1 − PD

( ∪

i∈A
Ei

)
,

= eA + 1 +

|A|∑

k=1

[
(−1)

k
∑

I⊆A
|I|=k

eI

]
,

(6)

where ∪ denotes the set union operator and |·| denotes the
number of elements in a set. For the first line we used the
fact that the two events,

{∩
i∈A Ei

}
and

{∩
i∈A Ēi

}
, are

mutually exclusive, for the second line we used one of De
Morgan’s laws and for the last line we used the inclusion-
exclusion principle.

In the next section we examine the most basic case, as-
suming that functions make independent errors and have
error rates below 0.5, showing that we can solve exactly
for the error rates provided that we have at least 3 different
functions. In the subsequent section we examine the most
general case, assuming that we have N functions that make
errors with unknown inter-dependencies, and show that we
can formulate this as a constrained numerical optimization
problem whose objective function reflects a soft prior as-
sumption regarding the error dependencies. Experimental
results presented in a later section demonstrate the practi-
cal utility of this approach, producing estimated error rates
that are within a few percentage points of the true error
rates, using only unlabeled data.

3.1.1 3 Functions That Make Independent Errors

When we have 3 functions that make independent errors
we can replace the e{i,j} term in equation (5) with the
term e{i}e{j}. In this case we have only 3 unknown vari-
ables (i.e. the individual function error rates) and we have
(32) = 3 equations (i.e. equation (5), for 1 ≤ i < j ≤ 3).
Therefore, we can directly solve for each error rate in terms
of the three observed agreement rates:

e{i} =
c ±

(
1 − 2a{j,k}

)

±2
(
1 − 2a{j,k}

) , (7)

where i ∈ {1, 2, 3}, j, k ∈ {1, 2, 3} \i with j < k and:

c =
√(

2a{1,2} − 1
) (

2a{1,3} − 1
) (

2a{2,3} − 1
)
, (8)

where, for a set B and an element of that set b, the notation
B\b denotes the set containing all elements in B except
b. In practical applications, we can estimate the agreement
rates among the competing functions, using a sample of
unlabeled data X1, . . . , XS , as follows:

â{i,j} =
1

S

S∑

s=1

I
{

f̂i (Xs) = f̂j (Xs)
}

, (9)

where I {·} evaluates to one if its argument statement is true
and to zero otherwise.

In most practical applications the competing functions do
not make independent errors. We next consider the more
difficult problem of estimating the error rates from agree-
ment rates, but without assuming independence of the func-
tion error events.

3.1.2 N Functions That Make Dependent Errors

When we have N functions that make dependent errors we
rely on the agreement rate equation (6). We consider the
agreement rates for all sets A = {A ⊆ {1, . . . , N} : |A| ≥
2} of functions (the agreement rate is uninformative for less

..

KEY IDEA

The significance of equations (5) and (6) is that they relate the different agreement rates aA, which are easily estimated
from unlabeled data, to the true error rates eA of the functions, which are difficult to estimate without labeled data.
Note that if we have a system of such equations with rank equal to the number of error rates mentioned, then we can
solve exactly for these error rates in terms of the observed agreement rates. This is not the case in general, because
given a set of functions, f̂1, . . . , f̂N , we obtain 2N − N − 1 agreement rate equations (one for each subset of two or
more functions) expressed in terms of 2N − 1 error rates (one for each none-empty subset of functions). However, if we
assume that the errors made by the N individual functions are independent, then we can express all of the 2N − 1 error
rates in terms of N single-function error rates (e.g., e{i,j} = e{i}e{j}) and we can then solve exactly for all error rates
(given the additional assumption that error rates are better than chance). Furthermore, if we are unwilling to make the
strong assumption that errors of individual functions are independent, then we can instead solve for the set of error rates
that minimize the dependence among errors (e.g., among the infinite solutions to the underdetermined set of equations,
we choose the solution that minimizes

∑
i,j(e{i,j} − e{i}e{j})

2 - this idea can be easily extended to larger subsets than
simply pairs of functions). The key idea in this paper is that the correspondence between easily-observed agreement
rates and hard-to-observe error rates given by these equations can be used as a practical basis for estimating true error
rates from unlabeled data.
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than two functions) and we obtain 2N − N − 1 equations
by matching equation (6) to the sample agreement rate for
each possible subset of functions. Given a sample of un-
labeled data X1, . . . , XS , the sample agreement rate is de-
fined as:

âA =
1

S

S∑

s=1

I
{

f̂i(Xs)= f̂j(Xs), ∀i, j ∈A : i ̸= j
}

, (10)

and is an unbiased estimate of the true agreement rate.
Moreover, our unknown variables are all the individual
function error rates along with all of the possible joint func-
tion error rates (let us denote the vector containing all those
variables by e); that is a total of 2N −1 unknown variables.

The set of 2N −N −1 equations involving 2N −1 unknown
variables yields an underdetermined system of equations
with an infinite number of possible solutions. We there-
fore cast this problem as a constrained optimization prob-
lem where the agreement equations form constraints that
must be satisfied and where we seek the solution that min-
imizes the following objective:

c(e) =
∑

A:|A|≥2

(
eA −

∏

i∈A
ei

)2

. (11)

It can be seen that we are basically trying to minimize the
dependence between the error events2, while satisfying all
of the agreement rates constraints. We saw in section 3.1.1
that if we assume that the error events are independent, then
we can obtain an exact solution. By defining our optimiza-
tion problem in this way we are effectively relaxing this
constraint by saying that we want to find the error rates that
satisfy our constraints and that are, at the same time, as
independent as possible. Most existing methods trying to
estimate function error rates using only unlabeled data as-
sume that the error events are independent; the main nov-
elty of this method lies in the fact that we relax all those
assumptions and make no hard or strict assumptions about
our functions.

Note that we could also define different objective functions
based on information we might have about our function ap-
proximations or based on different assumptions we might
want to make. For example, one could try minimizing the
sum of the squares of all the error rates (i.e. the L2 norm
of e) in order to obtain the most optimistic error rates that
satisfy the agreement rates constraints. The novelty of our
method partly lies in the formulation of the error rates esti-
mation problem using only unlabeled data as a constrained
optimization problem.

In this section we defined the model we are using for this
method and the optimization problem we wish to solve.
We call this method the AR method (i.e. Agreement Rates

2That can be seen from the fact that when the error events are
independent we have that eA =

∏
i∈A ei.

method). In section 3.3 we define additional constraints
that both this method and the maximum likelihood method
(described in the next section) use.

3.2 MAXIMUM LIKELIHOOD METHOD

In this section we define a probabilistic model of the con-
sistency in the functions’ outputs, considering the most
general case of having N functions that make potentially
dependent errors. Let us denote the outputs of the func-
tions on an i.i.d. sample of data X1, . . . , XS by Ŷ s =[
f̂1 (Xs) , . . . , f̂N (Xs)

]
, for s ∈ {1, . . . , S}. The Ŷ s’s

are independent and therefore we can define the likelihood
of our model as:

L (e) = PD
(
Ŷ 1, . . . , Ŷ S |e

)
=

S∏

s=1

PD
(
Ŷ s|e

)
, (12)

where the parameter vector e contains all of the possible
error events probabilities. More specifically, it contains all
the eI , for all I ⊆ {1, . . . , N} and |I| ∈ {1, . . . , N}.

Now, Ŷ s contains all the function outputs given data sam-
ple Xs. In order to compute PD(Ŷ s|e) we need to consider
the following two cases:

1. All functions agree with each other (i.e. Ŷ s is a vector
of all 1’s or all 0’s).

2. The functions can be split into two non-empty groups:
those that output 1 and those that output 0.

The groups of functions with the same output can also be
viewed as maximal cliques in the graph whose nodes con-
sist of the functions and whose edges consist of the agree-
ments between the functions (i.e. when there is an agree-
ment between two functions there is an edge connecting
their corresponding nodes in the graph and when there is no
agreement between them there is no edge). By using this
representation we call the first case the “one clique case”
and the second case the “two cliques case”. We are now
going to consider those two cases separately.

One Clique Case: Let us denote the set of all function
indices in the clique by C (i.e. C = {1, . . . , N}). In this
case, either all functions make an error or none of them
does. Therefore, for the probability of the current sample
we have that:

PD(Ŷ s|e) = PD

( ∩

i∈C
Ei

)
+ PD

( ∩

i∈C
Ēi

)
,

= eC + 1 − PD

( ∪

i∈C
Ei

)
,

= eC + 1 +

|C|∑

k=1

[
(−1)

k
∑

I⊆C
|I|=k

eI

]
,

(13)
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following an equivalent derivation to the one we used when
defining the agreement rates in section 3.1.

Two Cliques Case: Let us denote the set of function in-
dices in the first clique by C1 and those in the second clique
by C2. Then, we have two possible events:

1. All functions in C1 make an error and none of the func-
tions in C2 makes an error.

2. All functions in C2 make an error and none of the func-
tions in C1 makes an error.

Let P1
D(Ŷ s|e) denote the probability of Ŷ s given that the

first event of those two occurs, and let P2
D(Ŷ s|e) denote

the probability of Ŷ s given that the second event of those
two occurs. It can be easily seen that those two events
are mutually exclusive and so we have that PD(Ŷ s|e) =

P1
D(Ŷ s|e) + P2

D(Ŷ s|e).

Following an equivalent derivation to the one we used when
defining the agreement rates in section 3.1 we have that:

P1
D(Ŷ s|e) = PD

([ ∩

i∈C1

Ei

]
∩

[ ∩

j∈C2

Ēj

])
,

= PD

([ ∩

i∈C1

Ei

]
∩

[ ∪

j∈C2

Ej

])
,

= eC1 +

|C2|∑

k=1

[
(−1)

k
∑

I⊆C2

|I|=k

e{I∪C1}

]
.

(14)

..

A

.
B1

.
B2

Figure 1: Venn diagram
for the simple example
used to explain our last
step in equation (14).

For the second line we used
one of De Morgan’s laws
and for the last line we
used a modified form of
the inclusion-exclusion prin-
ciple. To understand the step
we used to obtain the last line
in the above equation let us
consider a simple case with
example events A, B1 and
B2. It is clear from the Venn
diagram in figure 1, on the
right, that:

P(A ∩ [B1 ∪ B2]) = P (A)

− P (A ∩ B1) − P (A ∩ B2)

+ P (A ∩ B1 ∩ B2) .

(15)

Our last step in equation (14) follows from extending this
result using the inclusion-exclusion principle. In the same
way we also get that:

P2
D

(
Ŷ s|e

)
= eC2 +

|C1|∑

k=1

[
(−1)

k
∑

I⊆C1

|I|=k

e{I∪C2}

]
. (16)

Having defined our likelihood function all that remains is
to describe the optimization problem that we are solving to
obtain the maximum likelihood estimate for e. We use the
negative of the natural logarithm of the likelihood function
(i.e. the log-likelihood function) as our objective function,
which we want to minimize, and the details of how we per-
form the optimization are described in section 3.3. We call
this the MLE method.

3.2.1 Regularization

In this subsection we define a method which is a slight
modification of the above MLE method, in that it uses a
modified objective function. The objective function con-
sidered in our MLE method is non-convex and hence has
many local maxima. In order to avoid getting stuck into one
of those local maxima, or at least try to avoid it, we here add
a regularization term to the objective function. Following
the same argument we used in constructing the objective
function of the AR method, we define our new objective
function, which we wish to minimize, as:

c(e) = − log L (e) + λ
∑

A:|A|≥2

(
eA −

∏

i∈A
ei

)2

, (17)

where λ is a hyperparameter whose value can be chosen
arbitrarily. We call this the maximum a posteriori (MAP)
method because the added term is equivalent to adding a
Gaussian prior of a special form to the error rates esti-
mates3. As we will see in the experiments section the per-
formance of this method will depend on the value chosen
for λ.

3.3 OPTIMIZATION

In sections 3.1 and 3.2 we defined the optimization prob-
lems corresponding to each of our methods. For all meth-
ods we use the TOMLAB Base Module v.7.7 “conSolve”
solver. In the following sections we discuss: (1) some addi-
tional constraints that apply to all methods, (2) extensions
of our approach to the case where multiple approximations
are learned for each of several different target functions,
and (3) an approximation that can make our methods much
faster, more scalable and maybe even more accurate.

3.3.1 Error Rates Constraints

Our unknown variables include both individual function er-
ror rates and joint function error rates of those events. We
need to impose constraints on the values that the joint func-
tion error rates can take. These constraints follow from
basic rules of probability and set theory; they represent
bounding joint event probabilities using the corresponding
marginal event probabilities. These constraints are defined

3λ can be interpreted as a function of the variance of that prior.

686



by the following equation:

eA ≤ min
i∈A

eA\i, (18)

for |A| ≥ 2. Furthermore, regarding the individual func-
tion error rates, it is easy to see that if we transform all
ei, for i = 1, . . . , N , to 1 − ei, the resulting agreement
rates are equal to the original ones. A similar result holds
for the likelihood function. In order to make our mod-
els identifiable we add the constraint that ei ∈ [0, 0.5),
for i = 1, . . . , N , which simply means that our func-
tions/binary classifiers perform better than chance. It is
thus a very reasonable constraint4.

3.3.2 Dealing With Multiple Classification Problems

Up to this point we have assumed that there is a single
target function and multiple approximations to that func-
tion. More generally though, we might have multiple target
functions, or problem settings, and a common set of learn-
ing algorithms used for learning each one of those. For
example, this is the case in NELL, where the different tar-
get functions correspond to different boolean classification
problems (e.g., classifying NPs as “cities” or not, as “loca-
tions” or not, etc.). Multiple learning methods are utilized
to approximate each one of those target functions (e.g., a
classifier based on the NP orthography, a second classifier
based on the NP contexts, etc.), so that each such classifica-
tion problem, or target function, corresponds to an instance
of our “multiple approximations” problem setting.

Of course we can apply our AR or our MLE methods to
estimate accuracies separately for each target classification
problem (and that is what we actually did in our experi-
ments described in section 4). However, when we have
multiple target functions to be learned and multiple lean-
ing methods shared across each, there is an interesting op-
portunity to further couple the error estimates across these
different target functions. In equations (11) and (17) we
introduced terms to minimize the dependency between the
error rates of competing approximations. In the case where
we have multiple target functions, we might introduce ad-
ditional terms to capture other relevant assumptions. For
example, we could introduce a term to minimize the dif-
ference in error dependencies between two learning meth-
ods across multiple classification problems (e.g., we could
choose to minimize the difference in error dependencies
between orthography-based and context-based classifiers
trained for different classification problems).

3.3.3 Approximating High Order Error Rates

Once the agreement rate estimates (number of occurrences
of each clique formation in the case of the MLE method

4It is important to understand here that in order for our meth-
ods to work in the first place, this constraint must hold for the
classifiers that we are considering.

and the MAP method) have been calculated, the execu-
tion time of the optimization procedure for all proposed
methods does not depend on the number of provided data
samples5, S. It does however depend on the number of
functions, N . This can be easily seen by considering the
number of unknown variables we have which is equal to
2N − 1. As will be shown in section 4, the performance of
all methods, in terms how good the obtained function error
rate estimates are, increases with an increasing number of
functions, N . It is therefore not a good idea to try to reduce
N . So, we instead propose a way to reduce the execution
time of the optimization procedure by approximating high
order error rates, instead of estimating them directly.

We can estimate high order joint function error rates6 us-
ing lower order function error rates by using the following
formula, for |A| > Me, where Me is chosen arbitrarily:

eA =
1

|A|
∑

i∈A
eA\iei. (19)

With a high value of Me we obtain better estimates but exe-
cution time is larger, and vice-versa. This estimate is based
on the fact that the higher the order of the function error
rates, the less significant the impact of an independence as-
sumption between them.

Furthermore, the only available information regarding high
order error rates comes from high order sample agreement
rates6, âA, which will likely be very noisy estimates of the
true agreement rates. That is because there will be very
few data samples were all of the functions in A will agree
and therefore the sample agreement rate will be computed
using only a small number of data samples resulting in a
noisy estimate of the true agreement rate. This motivates
not directly estimating high order error rates, but instead
approximating them using low order error rates. In fact,
in the case that the sample agreement rates are too noisy,
this approximation might even increase the quality of the
obtained error rate estimates. By approximating high order
error rates in the way described earlier, we are effectively
ignoring the corresponding high order sample agreement
rates (i.e. they are not used in our estimation) for the AR
method.

5Even the execution time of the optimization procedure for the
MLE method, which seems to depend on S, does not actually de-
pend on it because there is only a fixed number of possible clique
combinations one can obtain for a given number of functions, N .
That number is equal to 2N−1. In a large data sample we will
have a lot of repeated samples in terms of the maximal cliques
that they result in. We can compute the log-likelihood term for
each one of those cliques only once and multiply it by the number
of samples in which they each appear. This way our algorithm’s
execution time only depends on N .

6By “order” of an error rate, eA, or agreement rate, aA, we
mean the number of functions in set A, or simply |A|.
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4 EXPERIMENTS

We present here experiments using two very different data
sets, to explore the ability of our methods to estimate error
rates in realistic settings without domain-specific tuning.
For both data sets we used a set of labeled data examples to
perform our experiments. We used the data samples with-
out their corresponding labels to estimate agreement rates,
and to then estimate error rates using our methods. We used
the same examples with their labels to estimate each func-
tion’s true error rate, which we call from here on the ”true
error rate” of the function.

NELL Data Set: This data set consists of data samples
where we use four binary logistic regression (LR) classi-
fiers to predict whether a NP belongs to a specific cate-
gory in the NELL knowledge base (e.g. is Monongahela a
river?). The domain in this case is defined by the category
(e.g. “beverage” and “river” are two different domains) and
the four classifiers used were the following: (1) ADJ: A LR
classifier that uses as features the adjectives that occur with
the NP over millions of web pages, (2) CMC: A LR clas-
sifier that considers orthographic features of the NP (e.g.
does the NP end with the letter string “burgh”? - more de-
tails can be found in [Carlson et al., 2010]), (3) CPL: A
LR classifier that uses as features words and phrases that
appear with the NP, and (4) VERB: A LR classifier that
uses as features verbs that appear with the NP. Table 1 lists
the NELL categories that we used as the domains in our
experiments, along with the number of labeled examples
available per category. Note the NP features used by these
four classifiers are somewhat independent given the correct
classification label.

Brain Data Set: Functional Magnetic Resonance Imag-
ing (fMRI) data were collected while 8 subjects read a
chapter from a popular novel [Rowling, 2012], one word
at a time. The classification task is to find which of two
40 second long story passages correspond to an unlabeled
40 second time series of fMRI neural activity. For this bi-
nary classification task, we consider eight different classi-
fiers, each making its prediction based on a different rep-
resentation of the text passage (e.g., the number of letters
in each word of the text passage, versus the part of speech
of each word, versus emotions experienced by characters in
the story, etc.). In this case different domains correspond to
11 different locations in the brain and we have 924 labeled
examples per location. Additional details can be found in
[Wehbe et al., 2014].

Our experimental results for both data sets are presented
and discussed in the following two sections. As a perfor-
mance measure we use the mean absolute deviation (MAD)
between the true function error rates and the function error
rates estimated from unlabeled data (i.e. we sum the abso-
lute values of the element-wise differences of the true error

Table 1: A listing of the 15 NELL categories we used as
the domains in our experiments, along with the number of
labeled examples available per category.

Category # Examples
animal 20,733

beverage 18,932
bird 19,263

bodypart 21,840
city 21,778

disease 21,827
drug 20,452
fish 19,162

Category # Examples
food 19,566
fruit 18,911

muscle 21,606
person 21,700
protein 21,811
river 21,723

vegetable 18,826

rates vector and the estimated error rates vector). We com-
pute the MAD for the individual function error rates alone,
for the pairwise function error rates (i.e. for |A| = 2) alone
and for all function error rates together. Note the higher
order error rates are quite small, because it is rare for ev-
ery one of the competing functions to simultaneously err.
Therefore, we consider the individual and pairwise func-
tion error rates to be most diagnostic of how well our ap-
proach is working.

4.1 NELL DATA SET RESULTS

We initially applied the AR method using only the ADJ, the
CPL and the VERB classifiers, while assuming that they
make independent errors. The method for estimating error
rates in this case is described in section 3.1.1. In this case
we estimate only the individual function error rates. The
resulting MAD is 2.82 × 10−2; that is, the average error
estimate is within a few percent of the true error. Although
encouraging, this MAD is poor in comparison to our less
restricted methods described below, and indicates that the
assumption that the classifiers make independent errors is
an incorrect in this case (and in most other cases as a mat-
ter of fact). Some of the obtained error rates are not even
within the interval [0, 0.5] and are thus obviously incorrect,
since we know by the construction of the problem that the
true error rates lie in this interval. From now on we con-
sider only the more general case of N functions that make
dependent errors, thus making no independence assump-
tions.

Table 2 presents results for all three of our methods used
with the entire NELL data set. It includes the results ob-
tained when using all available data samples (i.e. the num-
bers shown in table 1) and when using only 50 data sam-
ples per category. It is clear from this table that the more
data samples we have the better our methods perform, pre-
sumably due to the the more accurate estimates of the true
agreement rates for the AR method, and for the other two
methods, to the larger volume of evidence we have to in-
corporate into our likelihood. Furthermore, we see that the
AR method performs significantly better than the other two
methods. This could possibly be attributed to the fact that
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Figure 2: True errors (red bars) versus errors estimated from unlabeled data using AR method (blue bars), for four com-
peting function approximations (ADJ, CMC, CPL and VERB), to five different target function domains (i.e. “bodypart”,
”beverage”, ”bird”, ”person” and“protein”) using the NELL data set. Note each plot uses a different vertical scale to make
it easier to observe the accuracy of the error rates estimates.

Table 2: Mean absolute deviation (MAD) of individual
(Ind.), pairwise (Pair.) and all function error rates for the
NELL data set, for all three proposed methods and for the
cases where we use all of the available data samples and
only 50 data samples per domain.

×10−2 All Data Samples 50 Data Samples
Ind. Pair. All Ind. Pair. All

AR 0.49 0.31 0.29 0.82 0.39 0.40
MLE 2.77 2.19 1.84 20.06 19.96 15.42
MAP 1.54 1.30 1.08 13.11 15.17 11.14

for this method we solve a convex optimization problem,
whereas for the other two we solve a non-convex one and
we possibly get stuck in local minima. Better numerical
optimization solvers could possibly help with that. Finally,
the MAP method performs better than the MLE method,
presumably reflecting the correctness of our prior which at-
tempts to minimize dependencies in errors across compet-
ing approximations. We did discover that the performance
of the MAP method depends strongly on the choice of the λ
parameter. In this case we selected λ = 10 simply because
that value gave the regularization term the same order of
magnitude as the log-likelihood term in the objective func-
tion. Moreover, now it becomes clear why the 2.82 × 10−2

MAD that we obtained when we assumed independent er-
ror events is quite a bad result. The AR method manages to
achieve an MAD that is almost 6 times better than that.

We also run an experiment by using the approximation de-
scribed in section 3.3.3 and setting Me = 2 (i.e. consid-
ering only pairwise agreement rates). The individual func-
tions MAD in this case was 0.52 × 10−2, the pairwise one
was 0.35 × 10−2 and the overall one was 0.31 × 10−2.
These results are worse than the ones we obtained with-
out using this approximation, as expected, but they are still
very good. This is important because it shows that this pro-
posed approximation method is useful (there was a signifi-
cant speedup as well - the code run 3 times faster).

From these results it is clear that the AR method, which
also happens to be the simplest and fastest of the three
methods we propose, performs better than the other pro-
posed methods, for this data set, and also does not require
tuning any parameters (as opposed to the MAP method).

..

INDEPENDENCE ASSUMPTION WEAKNESS

In order to make it more clear that the independence
assumption is not very appropriate even in the case of
NELL where a significant amount of effort has been put
into having the NELL classifiers make independent er-
rors, we provide here a measure of that dependence.
We compute the following quantity for each domain:

1

Z

∑

i,j

∣∣∣∣
e{i,j}

e{i}e{j}
− 1

∣∣∣∣ , (20)

where Z is the total number of terms in the sum, and
we average over all domains. That gives us a mea-
sure of the average dependence of the functions error
rates across all domains. If the functions make indepen-
dent errors, then this quantity should be equal to 0. We
computed this quantity for the NELL data set using the
sample error rates, which are an estimate of the true
error rates (a pretty accurate estimate since we have
about 20, 000 data samples per domain), and we ob-
tained a value of 8.1770, which is indeed quite far from
0. That indicates why our methods, and especially the
AR method, do so much better than the exact solution
when assuming independent errors.

Figure 2 provides a plot of the estimated error rates for the
AR method, along with the true error rates for five ran-
domly selected NELL classification problems (plots for all
regions are not included in this paper due to space con-
straints). This plot gives an idea of how good the AR es-
timates are, and helps to make sense of the reported MAD
values. As is easily seen in this plot, irrespective of the
exact error estimate the ranking of the competing function
approximations based on error rate is recovered exactly by
using the AR method. And that is in fact true for each
of the 15 NELL target function classification problems we
evaluated – not only for the five shown in this figure.

4.2 BRAIN DATA SET RESULTS

Table 3 presents results for the brain data set, obtained
when using 4 of the 8 competing function approximations
(randomly selected to be classifiers 1, 3, 4 and 5) and when
using all 8 of them. It is clear from that table that the
more competing classifiers used, the better the quality of
the resulting estimates. When using all 8 classifiers the
AR method performs significantly better than the other two
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Figure 3: True errors (red bars) versus errors estimated from unlabeled data using AR method (blue bars), for eight
competing function approximations (based on different story features), to three different target function domains (using
neural activity from three different brain regions) using the brain data set. Note estimates from unlabeled data are quite
close to true errors.

Table 3: Mean absolute error (MAE) of individual (Ind.),
pairwise (Pair.) and all function error rates for the brain
data set, for all three proposed methods and for the cases
where we use 4 classifiers and 8 classifiers.

×10−2 4 Classifiers 8 Classifiers
Ind. Pair. All Ind. Pair. All

AR 10.97 6.60 6.50 4.36 4.14 2.01
MLE 10.60 8.34 7.64 32.02 12.33 4.50
MAP 9.61 18.19 11.16 27.95 18.60 7.26

methods. We have also included a plot of the estimated er-
ror rates for the AR method, along with the true error rates,
for three randomly selected brain regions (i.e. domains), in
figure 3 (it is clear from the figure that we can recover the
ranking of the classifiers based on error rate, using the AR
method, for this data set as well).

Note for this data set, for the case when we use 8 clas-
sifiers, the MLE method and the MAP method both per-
form poorly. This can probably be attributed to the opti-
mization algorithm not being able to deal with those prob-
lems very well, due to their high dimensionality and non-
convexity. These results could probably be improved by
choosing a different optimization algorithm better suited
for those problems. It is interesting to note that when we
use only 4 classifiers the MLE and the MAP methods per-
form slightly better than the AR method in estimating the
individual function error rates. However, they perform sig-
nificantly worse when dealing with higher order error rates
and so, overall, the AR method still dominates. Note than
for this data set, for the MAP method, we also selected
λ = 10 for the same reasons as for the NELL data set.

We also ran an experiment using the approximation de-
scribed in section 3.3.3 and setting Me = 2 (i.e. consid-
ering only pairwise agreement rates). The individual func-
tions MAD in this case was 4.40 × 10−2, the pairwise one
was 4.06×10−2 and the overall one was 1.90×10−2. These
results are slightly better than the ones we obtained with-
out using this approximation. This is important because it
shows once again that this proposed approximation method
is useful (there was a significant speedup as well - the code
run 8 times faster). The better accuracy could possibly be
attributed to two factors: (i) the problem is of much lower
dimensionality and so the optimization algorithm might be

dealing better with it and (ii) the high order sample agree-
ment rates might have been bad estimates of the true agree-
ment rates due to insufficient data and so they might have
affected our methods negatively.

5 CONCLUSION

We have introduced the concept of estimating the error rate
of each of several approximations to the same function,
based on their agreement rates over unlabeled data and we
have provided three different analytical methods to do so:
the AR method, the MLE method and the MAP method.
Our experiments showed that the AR method performs sig-
nificantly better than the other two methods for both data
sets we considered. Our results are very encouraging and
suggest that function agreement rates are indeed very use-
ful in estimating function error rates. We consider this work
to be a first step towards developing a self-reflection frame-
work for autonomous learning systems.

There are several directions we would like to pursue to fur-
ther improve upon the methods introduced here. Firstly,
we wish to explore other interesting natural objectives one
can aim to optimize, as described in section 3.1.2. It would
also be very interesting to explore possible generalizations
of our models to non-boolean, discrete-valued functions,
or even to real-valued functions. Finally, apart from sim-
ply estimating function error rates, we want to explore how
the obtained error rate estimates can be used to improve the
learning ability of a system such as NELL, for example. In
this context, we could try using our estimates in order to
develop a more robust co-training framework. One very
direct application of our methods would be to use the esti-
mated error rates and their dependencies in order to com-
bine the functions’ outputs and obtain one final output.
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Abstract

In this paper we study a general version of re-
gression where each covariate itself is a func-
tional data such as distributions or functions.
In real applications, however, typically we do
not have direct access to such data; instead
only some noisy estimates of the true co-
variate functions/distributions are available
to us. For example, when each covariate is
a distribution, then we might not be able
to directly observe these distributions, but it
can be assumed that i.i.d. sample sets from
these distributions are available. In this pa-
per we present a general framework and a k-
NN based estimator for this regression prob-
lem. We prove consistency of the estimator
and derive its convergence rates. We further
show that the proposed estimator can adapt
to the local intrinsic dimension in our case
and provide a simple approach for choosing
k. Finally, we illustrate the applicability of
our framework with numerical experiments.

1 INTRODUCTION

Machine learning has undergone a paradigm shift in
the recent times. Traditional machine learning tech-
niques focused on simple form of data such as features
modeled as vectors in Rp. However, with the advent of
modern data collection methods datasets have not only
become huge but also more complex, often involving
objects like distributions, functions, and sets. Con-
sider the example of brain connectivity mapping data.
The brain contains billions of neurons with several tril-
lion physical connections. Neuroimaging approaches
like Di�usion Spectrum Imaging (DSI) attempt to vi-
sualize the underlying anatomical architecture of neu-
ral pathways by creating 3D probability distributions
of water di�usion along nerve fiber bundles. In this ex-

ample the input data consists of distributions, instead
of simple finite dimensional vectors. Likewise, there
are many instances where the training data consists of
functions. For example, whenever we encounter with
time series data (e.g. time series of commodity’s price,
patient’s health monitor, energy usage data), then we
can always think of the instances as functions whose
domain is the time.

Unfortunately, our understanding of algorithms for
such complex data is still limited. Most of the ex-
isting machine learning and statistical techniques can-
not handle such data, often resorting to ad-hoc ap-
proaches; thereby ignoring the underlying rich struc-
ture in the data. This necessitates the development of
a di�erent machine learning paradigm where the true
structure in the complex data can be exploited. The
goal of this paper is to further advance our knowledge
of such algorithms.

One of the central issues working with complex func-
tional data is that it is typically di�cult to obtain the
exact data (functions or distributions). Hence, our
access to the data is often restricted to some noisy
estimate of the data. For example, when the input
variables are distributions, then it is more natural to
assume that we only have finite samples from the dis-
tributions, but the true distributions (such as their pdf
or cdf) are unknown to us. The empirical distribution
can be viewed as a noisy estimate of the distribution.
Similarly, in the case of function regression, we have
the function values at some selected points rather than
whole the function itself. We use the terms “measure-
ment error” and “error in variable” to emphasize this
issue of noise in the data.

Although, there have been a few attempts to tackle
the issues of “error in variables” [3], most of the ear-
lier works do not fully exploit the scenario where we
have control over the measurement error. This is par-
ticularly relevant to the applications we are interested
in such as distribution regression, where we can obtain
more accurate measurements of the data by obtaining
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more samples from the distribution.

While working with complex data, it is often desirable
to have a simple yet powerful algorithms. One such
algorithm often used in traditional machine learning
is the k-Nearest Neighbor (k-NN) regression estima-
tion. k-NN based algorithms are easy to use and ro-
bust. Furthermore, thanks to the extensive research on
nearest neighbor search, there are many e�cient algo-
rithms for finding the nearest neighbors [1, 22, 5]. Ad-
ditionally, k-NN estimators have the virtue of adapt-
ing to the local structure of the data [10]. Due to
these factors, k-NN estimators are well-suited for com-
plex data. However, very little is understood about
these estimators in the context of functional data. To
this end, we study the problem of k-NN regression on
functional data with measurement error. We present
our results in a rather broad framework since working
within a general framework allows us to use the same
tools across di�erent settings and understand the un-
derlying principles of k-NN estimators.

Main Contributions: Our contributions can be
summarized as follows: (i) We provide a general frame-
work for analysis of k-NN estimators for functional
data. (ii) We prove consistency of the estimators un-
der weak assumptions. (iii) We derive convergence
rates for the estimators. (iv) We provide probabilistic
bounds which exploit the local intrinsic structure of
the probability measure. (v) We provide an adaptive
procedure to select k by exploiting the local intrinsic
structure. (vi) We apply the framework in two in-
teresting settings, namely distribution regression and
function regression. Due to space constraints, we rel-
egate few longer proofs to the appendix.

2 RELATED WORK

Our work is related to functional data analysis, a new
exciting field of statistics. We refer interested readers
to [4, 17] for a comprehensive treatment of the topic.
However, note that most of these works assume direct
access to the covariates without any measurement er-
ror. This does not fit our framework for regression
over distributions or functions.

One popular approach to deal with distribution co-
varaites in ML tasks is to first embed the distribu-
tions into a reproducing kernel Hilbert space (RKHS)
and then solve the learning problem using the stan-
dard machinery of kernel methods [20, 6, 18]. There
are both parametric and non-parametric methods pro-
posed along these lines. Parametric methods usually
fit a parametric model to distributions for estimating
inner products [9, 8, 12]. Few non-parametric methods
for distributions also exist. For example, set kernels
(since the samples from the distributions are repre-

sented by sets) or kernels over distributions may be
used. In this context, it is worthwhile to note that the
representer theorem was recently generalized for the
space of probability distributions [13].

More recently, Póczos et al. [16] proposed a kernel re-
gression approach for solving the regression problem
with distribution covariates and real-valued responses.
Convergence and sample complexity of the estimator
were analyzed in the paper. Oliva et al. [14] provided a
similar analysis for the case where the response is also a
distribution. Function regression has also gained con-
siderable interest recently. Oliva et al. [15] provided
a functional analogue to the LASSO and studied the
statistical properties of the estimator. The functional
output case has been studied in [11]. None of these
works, however, provide an adaptive algorithm which
exploits the local structure of the data, such as the
local intrinsic dimensionality. This is an important is-
sue, because this dimension plays an important role in
the convergence rate. To design e�cient algorithms,
it is important to be able to adapt to the local intrin-
sic dimensions. Another important di�erence between
these algorithms and the estimator we propose here is
that none of these algorithms are based on k-NN.

Our work is also related to the error in variables model
[3]. However, unlike the latter case where the error is
O(1) and is not decreasing, we have control over the
error and hence, can obtain very accurate (but expen-
sive) measurements. This is true in the applications of
our interest like distribution and function regression.
As we will see later, we can exploit this additional flex-
ibility to obtain faster rates of convergence.

There has been fairly extensive research on k-NN es-
timators for regression problem. Kpotufe at al. [10]
study k-NN regression and show that it adapts to local
intrinsic dimension. Furthermore, they also provide a
simple method to choose k that nearly achieves the
minimax rate. But these works do not address the
problem of our concern, namely k-NN estimators for
functional data with error in measurement.

Notation: The symbol P(E) is used to denote the
probability of event E. We use X ≥ P to denote that
the random variable X has probability distribution P.
We use the [n] and i : j to denote the set {1, . . . , n}
and {i, . . . , j} respectively. The symbol E(X) is used
to denote the expectation of random variable X. We
use B(P, r) to denote a ball of radius r centered around
P (where P is a point in some metric space).

3 PRELIMINARIES

We start this section with a formal discussion of k-NN
based regression estimators. We denote by (P, fl) a
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metric space P with distance measure fl. We assume
that the space with this metric fl is bounded, i.e., there
exists a ‹ > 0 such that fl(P,Q) Æ ‹ for all P,Q œ P.
In a typical regression setting, we have m i.i.d samples
(P,Y) = {(Pi, Yi)}mi=1 from some unknown distribu-
tion over (P ◊ R), which is the space of input-output
pairs. For example, many machine learning applica-
tions usually deal with finite dimensional Euclidean
spaces, i.e., P = Rp and fl is the Euclidean distance.
We assume that for our observations {Yi} it holds that

Yi = f(Pi) + “i, i œ [m],

where f is a regression function f : P æ R, and “i’s are
noise variables with E[“i] = 0 and variance E[“2

i ] = ‡2.
We assume that the functional f is L-Lipschitz, i.e.,
|f(P ) ≠ f(P Õ)| Æ Lfl(P, P Õ) for all P, P Õ œ P. We use
µ and µm to denote the marginal distribution and the
empirical distribution on P respectively. k-NN based
regression is fairly well-understood when P = Rp and
fl is the Euclidean distance [7].

In functional data analysis, as mentioned earlier, it is
usually not possible to obtain the samples Pi exactly,
and hence we have to deal with a noisy representation
of Pi. Our goal, however, is still the same as in stan-
dard regression problems: to recover the function f .
The type of representation generally depends on the
application. For example, in the case of distribution
regression (i.e., P is the space of continuous distribu-
tions), we only have access to the samples from the
distributions (and not the distributions themselves).

To formalize the notion of noisy representation of the
input data, assume that we have m i.i.d. samples
(‚P,Y) = {( ‚Pi, Yi)}mi=1 instead of (P,Y). Here ‚Pi de-
notes the empirical estimation of distribution Pi.

In what follows, we will discuss the details of k-NN
regression for functional data. We first look at the case
of fixed k (given as an input). We will later investigate
an approach to adaptively select k. The regression
estimate at P (function or distribution) using (‚P,Y)
is defined as follows:

f̂(P, ‚P1, . . . , ‚Pm) =
mÿ

j=1
YjWj(P, P̂1, . . . , P̂m), (1)

where

Wj(P, P̂1, . . . , P̂m) =
I

1
k if P̂j is k-NN of P
0 otherwise.

(2)

For the sake of brevity, we use f̂(P ) and Wj to denote
f̂(P, P̂1, . . . , P̂m) and Wj(P, P̂1, . . . , P̂m) respectively.
It should also be noted that more general approaches,
such as the generalized version of k-NN with non-
uniform weights can also be used through the means

of a kernel function [10]. For simplicity we only ana-
lyze the case of uniform weight in this paper, but all
of our results can be extended to the aforementioned
scenario.

Before we delve into the technical details of the regres-
sion estimator in Equation (1), we have to introduce
the definition of doubling dimension, which will help
us deriving upper bounds on the generalization error
of the estimator. We just briefly describe the defini-
tion here, and refer interested readers to [10] for more
details.
Definition 1. (Doubling Dimension) The marginal
distribution µ on P has a doubling dimension at most
d if there exists a constant C such that for all P œ P
and r Ø 0, we have µ(B(P, r)) Æ C‘≠dµ(B(P, ‘r)).

To illustrate the concept, it is instructive to look at
the simple case of Euclidean space Rd and uniform
measure over a closed ball. In this case, it is easy
to see that the doubling dimension is d. While this
describes a global notion of doubling dimension (since
it holds uniformly over all region), we will also define
and use a local notion in a later section. With this
setting in mind, we now analyze the consistency and
convergence rates of our estimator in a rather broad
framework.

4 GENERAL FRAMEWORK FOR
ANALYSIS OF k-NN
ESTIMATORS

In this section, we first analyze consistency and con-
vergence rates of the k-NN based estimator in Equa-
tion (1) within a general framework. We will investi-
gate probabilistic bounds which depend on the local
intrinsic structure of the measure µ on P. Finally, we
develop an approach which adapts to the local intrin-
sic dimension by carefully choosing k. Upper bounds
on the convergence rates will also be derived for this
estimator.

In this general framework, we assume certain applica-
tion specific bounds on the estimation of P̂i. In par-
ticular, we assume the following:

(i) E[fl(Pi, P̂i)] Æ �.

(ii) P(fl(Pi, P̂i) ≠ E[fl(Pi, P̂i)] > ‘) Æ Âi(‘).

These bounds � and Âi will be instantiated for the
cases of distribution and function regression in later
sections. The first term provides an upper bound on
how close Pi is to P̂i in expected sense, while the
second term measures how far the random variable
fl(Pi, P̂i) is from its expected value.
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4.1 CONSISTENCY OF ESTIMATOR

In this section we analyze the L2-consistency of the
k-NN estimator in Equation (1). In order to prove the
consistency of our estimator, we assume that k æ Œ
but k/m æ 0 asm æ Œ. This assumption is typical in
k-NN like estimators [7]. Additionally, we also assume
that � æ 0 as m æ Œ. Using these assumptions, we
prove the following consistency result.
Theorem 1. Suppose k æ Œ and limmæŒ k/m = 0.
Furthermore, we assume that � æ 0 as m æ Œ. Then
f̂ is consistent, i.e., limmæŒ E[|f̂(P ) ≠ f(P )|2] = 0.

Proof. The proof is in the appendix.

4.2 CONVERGENCE RATES

We now turn our attention towards the convergence
rates of the estimator. In particular, we prove that
if the measure µ has finite doubling dimension, then
we can get a nonparametric convergence rate that
depends on this dimension. We already know that
E[fl(P̂i, Pi)] is bounded by �. Lemma 5 in the Supple-
mentary material provides a bound for uniform con-
vergence.

Let �(‘0) denote the event that fl(P̂i, Pi) Æ � + ‘0
for all i œ [m]. From Lemma 5, we know that this
event occurs with at least probability 1 ≠ q

i Âi(‘0).
For feasibility, we assume that ‘0 is large enough such
that

q
i Âi(‘0) < 1.

Theorem 2. Let d Ø 3, mÕ = Âmk Ê, and �, ‘0 be
such that ‹≠d Æ mÕ Æ (4(� + ‘0))≠d and

q
i Âi(‘0) Æ

1
m‹≠d. Then the following holds:

E[|f̂(P ) ≠ f(P )|2] Æ ‡2

k
+ 2C ÕL2mÕ≠2/d + 2L2�2.

for some constant C Õ.

Proof. The proof is in the appendix.

4.3 LOCAL INTRINSIC BOUNDS FOR
ESTIMATOR

We establish probabilistic convergence bounds for our
estimators in this section, building on the work of [10].
Our rates exploit the local intrinsic dimension of the
measure µ.

In order to obtain uniform bounds over P, we assume
additional structure in our problem setting. We as-
sume that the VC-dimension of class B of balls on
(P, fl) is ‹B. To capture the notion of local intrinsic
dimension, let us define the following.

Definition 2. (Local Doubling Dimension) We say the
measure µ has local doubling dimension dl on B(P, r) if
we have µ(B(P, rÕ)) Æ C‘≠dlµ(B(P, ‘rÕ)) for all rÕ Æ r
and 0 < ‘ < 1.

Additionally, similar to [10], we assume a noise model
that has uniformly bounded tails and variance. More
formally, we have for all ” > 0, there exists t > 0
such that supPœP PY |P (|Y ≠ f(P )| > t) Æ ”. Infimum
amongst all such t is denoted by T (”). Our goal is to
obtain a probabilistic upper bound on |f̂(P ) ≠ f(P )|.
The proof uses results from [10] with additional com-
plexity arising due to the estimation error in the vari-
ables themselves. We capture the notion of local in-
trinsic dimension by the doubling dimension at the
neighborhood of the point P . We have the following
result for the consistency of the estimator:
Theorem 3. Suppose µ has local doubling dimension
dl on B(P, r). Let ‘ = (3Ck/mµ(B(P, r)))1/dl and
–m = (‹B log(2m) + log(16/”))/m. Also, let ”Õ = ” +q

i Âi(‘0). Suppose µ(B(P, ‘r)) Ø ‘dlµ(B(P, r))/C Ø
3k/m. Then the following holds with uniformly over
all P œ P with probability at least 1 ≠ ”Õ,

|f̂(P ) ≠ f(P )|2 Æ 2‹BT 2(”/4m) log(4m/”) + 16‡2

k

+ 2L2(r + 2(� + ‘0))2
3

3Ck
mµ(B(P, r))

42/dl
.

Proof. Let f̃(P ) =
qm

i=1Wif(Pi). Using f̃(P ), we get
the following:

|f̂(P ) ≠ f(P )|2 Æ 2 |f̂(P ) ≠ f̃(P )|2¸ ˚˙ ˝
Variance

+2 |f̃(P ) ≠ f(P )|2¸ ˚˙ ˝
Bias

This is obtained by simple application of AM-GM in-
equality. We first derive an upper bound for the bias
and then deal with the variance. We have:

|f̃(P ) ≠ f(P )| =
---
mÿ

i=1
Wi(f(Pi) ≠ f(P ))

---

Æ
mÿ

i=1
Wi|(f(Pi) ≠ f(P ))| Æ L

mÿ

i=1
Wifl(P, Pi).

The first step follows from the fact that
qm

i=1Wi = 1.
The second and third steps follow from triangle in-
equality and Lipschitz continuity of f respectively.
Consider the index set J = {i1, . . . , ik} which repre-
sents the nearest neighbors of P amongst {P̂1, . . . , P̂m}
where ij is used to denote the index of the jth near-
est neighbor of P amongst {P̂1, . . . , P̂m}. Similarly,
let us denote by iÕj and J Õ, the index of jth nearest
neighbor of P amongst {P1, . . . , Pm} and correspond-
ing index set respectively. Furthermore, we use rk to
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denote fl(P, PiÕ
k
). In order to obtain an upper bound

on the bias we need to analyze maxjœJ fl(P, Pj).

Let E represent the event that maxiD(Pi, P̂i) Æ �+‘0
for all i œ [m]. We know that this event occurs with
probability at least 1 ≠ q

i Âi(‘0). Conditioned on the
event E , we have the following:

fl(P, P̂i) Æ fl(P, Pi) + fl(Pi, P̂i) Æ fl(P, Pi) + � + ‘0.

for all i œ [m]. This holds due to triangle inequal-
ity and the definition of the event E . Let By similar
argument, we also have fl(P, Pi) Æ fl(P, P̂i) + � + ‘0.

The rest of the argument is conditioned on the event
E . Using the above relation, we get the following:
maxiœJ Õ fl(P, P̂i) Æ rk + � + ‘0. This is due to the
fact that fl(P, P̂i) Æ fl(P, Pi) + � + ‘0 for all i œ [m]
and the definition of rk. Using the above relation, we
get the following inequality:

max
iœJ

fl(P, P̂i) Æ max
iœJ Õ

fl(P, P̂i) Æ rk + � + ‘0.

The first step holds since J are the indices for the k
nearest neighbors of P amongst {P̂1, . . . , P̂m}. But we
also have fl(P, Pi) Æ fl(P, P̂i) + (� + ‘0) for all i œ [m]
(since we condition on E). From above argument, the
following holds:

max
iœJ

fl(P, Pi) Æ max
iœJ

fl(P, P̂i) + (� + ‘0)

Æ rk + 2(� + ‘0).

In order to complete our analysis for the bias, we need
to bound the distance rk. To this end, we appeal
to the bound obtained in [10]. In particular, since
µ(B(P, ‘r)) Ø 3k/m, by invoking Lemma 10 we have
µm(B(P, ‘r)) Ø k/m. Therefore, with probability at
least 1 ≠ ”, we have rk Æ ‘r. Finally, by using union
bound over the event above and E , we get the required
bound on the bias.

To establish a bound on the variance, we resort to
the bound from [10]. We derive the bounds here for
the sake of completeness. We need to bound the term
|f̂(P ) ≠ f̃(P )| = |qm

i=1Wi(Yi ≠ f(Pi))|. The key step
is to utilize the classical VC-theory to obtain a bound
on |Yi ≠ f(Pi)|.
More formally, let us first condition on the P =
{P1, . . . , Pm}. By using the concept of VC-dimension
and applying union bound, we can obtain the final re-
sult. We further restrict our attention to the event
where |Yi ≠ f(Pi)| < T (”0) for all i œ [m]. Note that
this event occurs with probability at least 1 ≠ m”0 >
0.5. This is obtained by and simple application of
union bound. From Markov inequality, we have:

P(÷P s.t. |f̂(P ) ≠ f̃(P )| > 2E(|f̂(P ) ≠ f̃(P )|) + ‘) Æ
P(÷P s.t. |f̂(P ) ≠ f̃(P )| > E(|f̂(P ) ≠ f̃(P )|) + ‘|E)

Also note that,

P(÷P s.t. |f̂(P ) ≠ f̃(P )| > E(|f̂(P ) ≠ f̃(P )|) + ‘|E)
Æ n‹B exp(≠2k‘2/T 2(”0))

This is due to the following facts: (i) changing any of
the Yi’s changes the function |f̂(P )≠ f̃(P )| by at most
T (”0)/k and (ii) VC-dimension of the class of balls B
over P is ‹B. Hence, using McDiamard’s inequality
and union bound we get the above result. Let us take
”0 = ”/2m. Now using a union bound over aforemen-
tioned events and rewriting the result using AM-GM
inequality, we have with probability at least 1 - ”

|f̂(P ) ≠ f̃(P )|2 < 8E[|f̂(P ) ≠ f̃(P )|2]

+T 2(”/2m)
k

(‹B log(2m/”))

To complete the proof, we need to obtain an upper
bound on the expected value E[|f̂(P ) ≠ f̃(P )|2]. This
is obtained in the following manner:

E[|f̂(P )≠f̃(P )|2] = E[|
ÿ

i

(WiYi ≠ f(Pi))|2]

=
ÿ

i

W 2
i E[|Yi ≠ f(Pi)|2] Æ ‡2/k

The second equality is obtained from the fact that Yi≠
f(Pi) are i.i.d random variables. The last inequality is
obtained from the assumption that variance of Y |P is
bounded by ‡2. Combining, the bounds obtained for
the bias and variance, we get the required result.

Note the dependence of bounds on dl, the local dou-
bling dimension rather than d. When dl π d, we have
obtain much better rates of convergence locally.

4.4 SELECTION OF k AND ADAPTIVE
CONVERGENCE RATES

In the previous section, we obtained convergence guar-
antees which depend on the local intrinsic dimension
for k-NN estimators. A natural question to investi-
gate is whether these bounds provide any principled
approach to choose k. Intuitively, we can see that
such an approach should respect the local structure at
the query point P . We derive an approach to choose
k by handling the bias-variance tradeo�. Here, � and

Algorithm 1 Adaptive Selection of k
1: Let ◊ Æ log(4m/”), � and ‘0 be given.
2: Let r̂i be ith nearest neighbor amongst
{P̂1, . . . , P̂m}.

3: k = arg mini
!
◊/i+ r̂2i + 16(� + ‘0)2r̂i

"
.

‘0 are parameters to the algorithm. � can be ob-
tained through upper bound on the error or through
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estimation procedures. Intuitively, the above approach
can be seen as choosing k which minimizes our upper
bound. We make this intuition more formal by the
following result.
Theorem 4. Suppose µ has local doubling dimension
dl on B(P, r). Suppose k is chosen according to Algo-
rithm 1 for each P œ P and f̂(P ) is the k-NN estimate.
Assume ((‹B log(2m)+log(16/”))/◊ < m4/(6+3dl). Let
”Õ = ” +

q
i Âi(‘0). Furthermore, let r < R and

µ(B(P, r)) > 6Cm≠1/3. Then the following statement
holds with probability at least 1 ≠ ”Õ simultaneously for
all P œ P.

|f̂(P ) ≠ f(P )|2 Æ 2
3
C

◊
+ L2

4

◊
A

(1 + 16R2)
3

3C◊

mµ(B(P, r))

4 2
2+dl

+ 48(� + ‘0)2
B

where C = ‹BT 2(”/4m) log(4m/”) + 8‡2.

Proof. We have the following bound on |f̂(P )≠f(P )|2
holds with probability at least 1 ≠ ”:

|f̂(P )≠f(P )|2 Æ 2C
k

+ 2L2(rk + 2(� + ‘0))2

Æ 2C
k

+ 2L2(r̂k + 4(� + ‘0))2

Æ
3

2C
◊

+ 2L2
4 3

◊

k
+ (r̂k + 4(� + ‘0))2

4

The first and second inequalities holds from Theorem 3
and the fact that |rk ≠ r̂k| Æ 2(� + ‘0) where rk and
r̂k denote the distance of kth nearest neighbor of P
amongst {P1, . . . , Pm} and {P̂1, . . . , P̂m} respectively.
Note that the procedure we use exactly minimizes ◊

k +
(r̂k + 4(� + ‘0))2. In order to complete the proof,
we need to derive an upper bound for the estimator,
we need to provide a bound on the minimum value of
◊
k + (r̂k + 4(� + ‘0))2. To this end, we borrow ideas
from [10] (Theorem 3), which provides a upper bound
on the minimum value by explicitly constructing a k
that has low objective value. We provide all the details
here for sake of completeness.

Let · = ◊dl/(2+dl)
1
mµ(B(P,r))

3C

22/(2+dl)
Using our

assumption on local doubling dimension, we have
µ(B(P, r)) > 6C◊m≠dl/(2+dl) Ø 6c·/m. Let ‘ =1

3C·
mµ(B(P,r))

21/dl
. It is easy to see that from the above

relationship that ‘ < 1. Moreover,we have

µ(B(P, ‘r)) Ø ‘dlµ(B(P, r))/C Ø 3·/m,

–m = (‹B log(2m) + log(8/”))/m Æ ◊

m
m4/6+3dl

Æ ◊

m
m4/6+3dl Æ ·

m
.

Therefore, using Lemma 10, we have µm(B(P, ‘r)) Ø
·
m with probability at least 1 ≠ ”. This in turn implies
that rk Æ ‘r for all k Æ · .

The following argument shows a bound on r2k. First,
observe that if k Æ · , we have

r2k Æ (‘r)2 Æ
3

3C·

mµ(B(P, r))

42/dl
R2 = R2◊

·
Æ R2◊

k
.

The first and last inequalities holds since k Æ · . Let k0
be the highest integer for which the above inequality
holds. It can be proved that that either k0 or k0 + 1
is larger than · . If k0 > · , then the above statement
is obviously true. For the case of k0 Æ · , it is easy to
see that k0 + 1 > · since k0 is the highest integer for
which r2k Æ R2◊

k and this holds for all k Æ · .

Suppose k0 Æ · . Let k1 = k0+1 then ◊/(k1) < ‘2 since
◊/k1 < ◊/· = ‘2 when k1 > · . Moreover, rk1 Æ 21/dl‘r
since µ(B(P, 21/dl‘r)) Ø 6·/m which in turn implies
µm(B(P, 21/dl‘r)) Ø 2·/m Ø k1/m (by Lemma 10 and
the fact that k1 Æ 2·).

In the other case of k0 > · , by similar argument, we
can prove that ◊/k0 < ◊/· = ‘2 and r2k0

Æ R2‘2.

Therefore, either k0 or k1, satisfy the following:
!
◊/k + 4r2k

"
Æ (1 + 16R2)‘2 (3)

Since k is chosen in such a way that it mini-
mizes

!
◊/k + (r̂k + 4(� + ‘0))2

"
, we have the follow-

ing bound:

|f̂(P ) ≠ f(P )|2 Æ
12C

◊
+ 2L2

2 1
◊

k
+ (r̂k + 4(� + ‘0))2

2

Æ min
k0,k1

12C
◊

+ 2L2
2 1

◊

k
+ (r̂k + 4(� + ‘0))2

2

Æ min
k0,k1

12C
◊

+ 2L2
2 1

◊

k
+ (2r̂2k + 32(� + ‘0)2)

2

Æ
12C

◊
+ 2L2

2 !
(1 + 16R2)‘2 + 48(� + ‘0)2

"

The first and second inequalities follow from the fact
that |r̂k≠rk| Æ 2(�+‘0) and the criteria of choosing k.
The final inequality follows from Equation (3). This
gives us the required result.

The above result shows adaptive convergence rates for
the k-NN estimators. We now proceed towards appli-
cations of the general framework we just discussed.

5 APPLICATIONS

We discuss specific applications of the general frame-
work introduced in the previous section. More specif-
ically, we look at distribution regression and function
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regression settings. We will see that by using appropri-
ate instantiation of the bounds � and Âi in the general
framework, the results for both these case follow in a
straightforward manner.

5.1 DISTRIBUTION REGRESSION

We describe distribution regression problem in this
section. We consider a regression problem where
the input variables are from the space of continu-
ous 1≠Lipschitz probability distributions (i.e., |P (x)≠
P (y)| Æ Îx ≠ yÎ) on a compact subset K µ Rp

(denoted by D). In this case, P = D and we as-
sume fl to the L1 distance between distributions, i.e.,
fl(P,Q) = ÎP ≠ QÎ1 =

s
|P (x) ≠ Q(x)|dx. Note

that f : D æ R. We assume that class of balls B
on D have finite VC-dimension ‹B. Here, we have
Yi = f(Pi) + “i for all i œ [m].

The measurement error comes into play due to the
fact that we do not have access to the probability
distributions Pi directly; rather we observe samples
Xi1, . . . ,Xini ≥ Pi. From these samples, we estimate
the probability distributions through one of the several
density estimation procedures like kernel density esti-
mation, data clustering. Let P̂1, . . . , P̂m be estimated
probability distributions corresponding to P1, . . . , Pm
respectively. To summarize, we think of observations
as (P,Y) = {(P̂i, Yi)}mi=1 and our goal is to infer the
function f . For ease of exposition, we assume that the
number of samples observed for all the distributions,
i.e., n = ni for all i œ [m]. To apply our framework,
we need to instantiate the bounds � and Âi.

Bound �: We have the following bound on the ex-
pected error of estimation of the distributions.
Lemma 1. Under above conditions, we have

E[fl(P̂i, Pi)] Æ C̃n≠1/(2+p)

where C̃ is a constant.

Using this result we can take � = C̃n≠1/(2+p). Refer
[19] for details of the proof.

Bound Âi: We obtain the following bound Âi by using
McDiamard’s inequality.
Lemma 2. Under above conditions, we have

P(fl(P̂i, Pi) > E[fl(P̂i, Pi)] + ‘) Æ e≠n‘2/2

Therefore, Âi(‘) = exp(≠n‘2/2) (see [2] for details).

By using the above bounds, we present the main re-
sults for distribution regression. Our first result is the
consistency of the estimator f̂ . From Theorem 1, we
have the following result. We set � = C̃n≠1/(2+p) and
‘0 = n≠1/(2+p).

Theorem 5. (Consistency of Estimator) Suppose
k æ Œ and limmæŒ k/m = 0. Furthermore, we as-
sume that n = �(log(2+p)/p(m)). Then f̂ is consistent,
i.e., limmæŒ E[|f̂(P ) ≠ f(P )|2] = 0.

The next result provides convergence rates for distri-
bution regression by directly appealing to Theorem 2.
Theorem 6. (Convergence Rate) Let d Ø 3 and mÕ =
Âmk Ê. Assume n Ø (2 log(m) + 2d log(‹))(2+p)/p and
d log(1/‹) Æ log(mÕ) Æ d log(n)/(2 + p) ≠ d(log(4 +
4C̃))). Then the following holds:

E[|f̂(P ) ≠ f(P )|2] Æ ‡2

k
+ 2C ÕL2

mÕ2/d + 2 C̃2L2

n2/(2+p) .

for some constant C Õ.

The following result shows that the convergence rates
in fact depend on the local intrinsic dimension of the
probability measure µ. This is obtain from Theorem 3
of the general framework.
Theorem 7. (Adaptive Convergence Rates) Suppose
µ has local doubling dimension dl on B(P, r). Let
‘ = (3Ck/mµ(B(P, r)))1/dl and –m = (‹B log(2m) +
log(16/”))/m. Let ”Õ = ” +m exp (≠np/(p+2)/2). Sup-
pose µ(B(P, ‘r)) Ø ‘dlµ(B(P, r))/C Ø 3k/m. Then
the following holds with uniformly over all P œ P with
probability at least 1 ≠ ”Õ,

|f̂(P ) ≠ f(P )|2 Æ 2‹BT 2(”/4m) log(4m/”) + 16‡2

k

+ 2L2
3
r + 2 (C̃ + 1)

n1/(2+p)

42 3
3Ck

mµ(B(P, r))

42/dl
.

The final result for distribution regression shows that
by using Algorithm 1, we obtain reasonable adaptive
convergence rates.
Theorem 8. (k-Selection Convergence Rates) Sup-
pose µ has local doubling dimension dl on B(P, r).
Suppose k is chosen according to Algorithm 1 for
each P œ P and f̂(P ) is the k-NN estimate. As-
sume ((‹B log(2m) + log(16/”))/◊ < m4/(6+3dl). Let
”Õ = ” +m exp (≠np/(p+2)/2). Furthermore, let r < R
and µ(B(P, r)) > 6Cm≠1/3. Then the following state-
ment holds with probability at least 1 ≠ ”Õ simultane-
ously for all P œ P.

|f̂(P ) ≠ f(P )|2 Æ 2
3
C0
◊

+ L2
4

◊
A

(1 + 16R2)
3

3C◊

mµ(B(P, r))

4 2
2+dl

+ 48(C̃ + 1)2
n≠2/(2+p)

B

where C0 = ‹BT 2(”/4m) log(4m/”) + 8‡2.
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5.2 FUNCTION REGRESSION

In this section, we describe another interesting
application—function regression. Here, the input
variables belong to the class of 1-Lipschitz (w.r.t
Euclidean distance) functions on [0, 1] (denoted by
F). For this case, we use fl(P,Q) = ÎP ≠ QÎ2 =Òs 1

0 (P (x) ≠Q(x))2dx (norm in L2 space of func-
tions). We again focus only on the case when class of
balls B on P = F have finite VC-dimension ‹B. The
model is Yi = f(Pi) + “i for all i œ [m] where Pi are
functions. Similar to the distribution regression, we
usually do not have access to the function themselves
but only the ability to obtain noisy estimates of func-
tion value at certain points. For simplicity, we assume
a deterministic design where we query at the points
{Xij}nj=1 where Xij = j/n for all i œ [m] (see [21]
for more details about deterministic design). There-
fore, we have Zij = Pi(Xij)+ ’ij where ’ij is the noise
variable with E(’ij) = 0 and variance ‡̃2.

We can intuitively think of function regression as 2-
stage regression problem. We first estimate the func-
tions themselves and then perform another regression
on these functions to obtain the functional of inter-
est f . From {(Xij , Zij)}nj=1, we can obtain estimated
functions P̂1, . . . , P̂m corresponding to P1, . . . , Pm re-
spectively. This model now fits our framework per-
fectly once we have appropriate bounds � and Âi. To
obtain these bounds, we directly appeal to the follow-
ing well-known bounds for regression.

Bound �: We have the following bound for � in the
case of function regression.
Lemma 3. Under the conditions mentioned above, we
have

E[fl(P̂i, Pi)] Æ C̄n≠1/3

where C̄ is a constant.

Proof. From Jensen’s inequality, we have

E[fl(P̂i, Pi)]2 Æ E[fl2(P̂i, Pi)] Æ C̄2n≠2/3.

The last inequality follows from Corollary 1.2 of [21].

Bound Âi: To obtain bound Âi, we resort to McDia-
mard’s inequality and obtain the following bound.
Lemma 4. Under the conditions mentioned above, we
have

P(fl(P̂i, Pi) > E[fl(P̂i, Pi)] + ‘) Æ e≠n‘2/2

Proof. The result follows from simple application of
McDiamard’s inequality.

We now state the main results for function regres-
sion by appealing to the general framework. We set
� = C̄n≠1/3 and ‘0 = n≠1/3. The following result
shows consistency of estimator f̂ in case of function
regression. This is obtained from Theorem 1.
Theorem 9. (Consistency of Estimator) Suppose
k æ Œ and limmæŒ k/m = 0. Furthermore, we as-
sume that n = �(log3(m)). Then ‚f is consistent, i.e.,
limmæŒ E[| ‚f(P ) ≠ f(P )|2] = 0.

The next result provides convergence rates for function
regression by directly using Theorem 2.
Theorem 10. (Convergence Rate) Let d Ø 3 and
mÕ = Âmk Ê. Assume n Ø (2 log(m) + 2d log(‹))3 and
d log(1/‹) Æ log(mÕ) Æ d log(n)/3 ≠ d(log(4 + 4C̄))).
Then the following holds:

E[|f̂(P ) ≠ f(P )|2] Æ ‡2

k
+ 2C ÕL2

mÕ2/d + 2C̄2L2

n2/3 .

for some constant C Õ.

The following result shows that the convergence rates
in fact depend on the local intrinsic dimension of the
probability measure µ.
Theorem 11. (Adaptive Convergence Rates) Suppose
µ has local doubling dimension dl on B(P, r). Let
‘ = (3Ck/mµ(B(P, r)))1/dl and –m = (‹B log(2m) +
log(16/”))/m. Let ”Õ = ” +m exp (≠n1/3/2). Suppose
µ(B(P, ‘r)) Ø ‘dlµ(B(P, r))/C Ø 3k/m. Then the fol-
lowing holds uniformly over all P œ P with probability
at least 1 ≠ ”Õ,

|f̂(P ) ≠ f(P )|2 Æ 2‹BT 2(”/4m) log(4m/”) + 16‡2

k

+ 2L2
3
r + 2(C̄ + 1)

n1/3

42 3
3Ck

mµ(B(P, r))

42/dl
.

The final result for distribution regression shows that
by using Algorithm 1, we obtain reasonable adaptive
convergence rates.
Theorem 12. (k-Selection Convergence Rates) Sup-
pose µ has local doubling dimension dl on B(P, r).
Suppose k is chosen according to Algorithm 1 for
each P œ P and f̂(P ) is the k-NN estimate. As-
sume ((‹B log(2m) + log(16/”))/◊ < m4/(6+3dl). Let
”Õ = ” +m exp (≠n1/3/2). Furthermore, let r < R and
µ(B(P, r)) > 6Cm≠1/3. Then the following holds with
probability at least 1≠”Õ simultaneously for all P œ P.

|f̂(P ) ≠ f(P )|2 Æ 2
3
C0
◊

+ L2
4

◊
A

(1 + 16R2)
3

3C◊

mµ(B(P, r))

4 2
2+dl

+ 48(C̄ + 1)2
n≠2/3

B

where C0 = ‹BT 2(”/4m) log(4m/”) + 8‡2.
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Before ending our discussion of technical results, it is
worthy to note two points: (i) Our rates are faster than
the logarithmic rates that are sometimes obtained in
measurement error nonparametric regression models
as in [3]. As mentioned earlier, this is due to the fact
that the measurement error corresponds to fl(P̂i, Pi)
which is not Gaussian for finite ni and which decreases
when ni increases. (ii) Typically, it is di�cult to esti-
mate the distance fl(P,Q) exactly. This presents addi-
tional level of complexity but it can be handled grace-
fully within our framework by viewing it as another
measurement error.

6 EXPERIMENTS

Although the main contribution of our paper is to pro-
vide theoretical insights in k-NN based estimation for
functional data, we also provide numerical evidence
showing the empirical benefits of these estimators.
We consider two distribution regression tasks: Beta
distribution skewness and Gaussian distribution en-
tropy estimation. In our experiments, we set all the
n, n1, . . . , nm set sizes to the same values, which will be
specified below. In the first experiment, we generated
325 sample sets from Beta(a, 3) distributions where a
was varied between [3, 20] randomly. We constructed
m = 250 sample sets for training, 25 for validation, and
50 for testing. Each sample set contained n = 500 i.i.d
samples from Beta(a, 3). Our task in this experiment
was to learn the skewness of Beta(a, b) distributions,
f = 2(b≠a)

Ô
a+b+1

(a+b+2)
Ô
ab

. We considered the noiseless case,
i.e., “ was set to zero. Our estimator is oblivious of the
fact that the sample sets are coming from Beta distri-
butions, and it does not know the skewness function
values in the test sets either; its values are available
only in the training and validation sets.

For obtaining the empirical probability distribution,
we use kernel density estimation with Gaussian kernel.
The optimal bandwidth is of the kernel is obtained by
cross validation. To estimate the L2 distances between
p̂i and p, we calculated their estimated values in 4096
points on a uniformly distributed grid between the min
and max values in the sample sets, and then estimated
the integral

s
(p(x) ≠ p̂i(x))2d(x) with the rectangle

method for numerical integration. To find the appro-
priate k, we selected the value from {1, . . . , 10} that
lead to minimum MSE on validation set. Figure 1(a)
displays the predicted values for the 50 test sample
sets, and we also show the true values of the skewness
functions. As we can see the true and the estimated
values are very close to each other.

In the next experiment, our task was to learn the en-
tropy of Gaussian distributions. We chose a 2 ◊ 2 co-
variance matrix � = AAT , where A œ R2◊2, and Aij

was randomly selected from the uniform distribution
U [0, 1]. Just as in the previous experiments we con-
structed 325 sample sets from {N (0, R(–i)�1/2)}325

i=1.
Where R(–i) is a 2d rotation matrix with rotation
angle –i = ifi/325. From each N (0, R(–i)�1/2) dis-
tribution we sampled 500 2-dimensional i.i.d. points.
Similarly to the previous experiment, 250 points was
used for training, 25 for selecting appropriate band-
width parameters, and 50 for training. Our goal
was to learn the entropy of the first marginal dis-
tribution: f = 1

2 ln(2fie‡2), where ‡2 = M1,1 and
M = R(–i)�RT (–i) œ R2◊2. µ was zero in this ex-
periment as well. Figure 1(b) displays the learned en-
tropies of the 50 test sample sets. The true and the
estimated values are close to each other in this exper-
iment as well.
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Figure 1: (a) Learned skewness of Beta(a, 3) distribu-
tion. Axis x: parameter a in [3, 20]. Axis y: skewness
of Beta(a, 3). (b) Learned entropy of a 1d marginal dis-
tribution of a rotated 2d Gaussian distribution. Axes
x: rotation angle in [0,fi]. Axis y: entropy. The MSE
in two cases are 7.1◊10≠3 and 8.6◊10≠2 respectively.

7 CONCLUSION

We presented a general framework for k-NN esti-
mators for functional data with measurement er-
ror. We proved consistency of the estimator and de-
rived upper bounds on the risk. We also analyzed
probabilistic bounds capturing the local intrinsic di-
mension. Furthermore, we presented an algorithm
for adaptively choosing k. Two interesting appli-
cations of our framework—distribution and function
regression—were presented.

In future work, we would like to study lower bounds for
the problem and compare our results with the minimax
bounds. From practical point of view, it would also
be interesting to use these estimators in conjunction
with cover trees [1] to obtain fast k-NN estimators.
Analyzing the empirical performance on large datasets
is another interesting direction.
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Abstract

We present new polynomial time algorithms
for inference problems in Bayesian networks
(BNs) when restricted to instances that satisfy
the following two conditions: they have bounded
treewidth and the conditional probability table
(CPT) at each node is specified concisely using
an r-symmetric function for some constant r. Our
polynomial time algorithms work directly on the
unmoralized graph. Our results significantly ex-
tend known results regarding inference problems
on treewidth bounded BNs to a larger class of
problem instances. We also show that relaxing
either of the conditions used by our algorithms
leads to computational intractability.

1 INTRODUCTION

Bayesian Networks (BNs) represent dependencies among
a collection of probabilistic domain variables (Darwiche,
2009; Koller and Friedman, 2009; Pearl, 1988). Struc-
turally, a BN G(V,E) is a directed acyclic graph (dag) in
which each node v ∈ V represents a stochastic variable
xv; a directed edge (u, v) in E indicates that variable xv
depends on xu. Each node v is also associated with a table
which gives the probability distribution of xv conditioned
on the variables on which xv depends. Thus, a BN pro-
vides a simple graphical representation of the dependencies
among domain variables.

BNs can be used to formulate and solve many problems
in the context of stochastic decision support systems. For
example, in the inference problem, the input is an obser-
vation (i.e., the observed values of a nonempty subset of
variables) and the goal is to compute the conditional proba-
bility distribution for one specified variable. Such problems
are useful in many application domains including medical
diagnosis, weather forecasting, design of diagnosis-and-
repair modules in computer systems, etc. (Darwiche, 2009;
Koller and Friedman, 2009; Pearl, 1988).

Formal definitions of inference problems for BNs are pro-
vided in Section 2. In general, obtaining exact or approxi-
mate solutions to these problems is known to be computa-
tionally intractable (Abdelbar et al. (2000); Cooper (1990);
Dagum and Luby (1993); Darwiche (2009); de Campos
(2011)). Given the practical importance of these problems,
researchers have tried to identify restricted versions of the
problems which are useful in practice and which can be
solved in polynomial time. An important development in
this direction is the result of Lauritzen and Spiegelhalter
(1988) who showed that for BNs of bounded treewidth, the
inference problems can be solved in polynomial time using
dynamic programming. Their approach uses the moralized
form of the network, where for any node v, the parents of
v are connected together as a clique. As a consequence, a
moralized BN has bounded treewidth only when the maxi-
mum indegree in the unmoralized BN is also bounded.

Our Contributions: Our main result is a new dynamic
programming approach that extends the class of BNs for
which various inference problems can be solved in polyno-
mial time. In particular, our approach does not use mor-
alization. Instead, it works with the given BN and its
tree decomposition. Thus, our algorithms are applicable to
treewidth-bounded BNs, even when the indegrees of nodes
are not bounded. Allowing nodes of unbounded indegree
introduces a difficulty, namely that a fully specified CPT
at a node may be exponentially large. To overcome this
difficulty, we require the conditional probability tables at
each node to be specified concisely using certain restricted
classes of functions, called r-symmetric functions for some
fixed integer r. As will be explained in Section 2, any
CPT for a BN with maximum indegree d can be speci-
fied as a d-symmetric function. In other words, CPTs for
BNs with bounded indegrees are a restricted form of r-
symmetric functions. Thus, our approach identifies a larger
class of BNs for which inference problems can be solved
efficiently. Our results also extend the earlier results in
(Bacchus et al., 2003; Courcelle et al., 2001; Fischer et al.,
2008; Samer and Szeider, 2007) as discussed below. The
results in (Courcelle et al., 2001; Fischer et al., 2008; Samer
and Szeider, 2007) when combined with those of (Bacchus
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et al., 2003) can be used to obtain polynomial time results
for treewidth bounded BNs, with no a priori bound on inde-
gree but whose CPTs are specified using certain threshold
functions. As will be explained in Section 2.3, the class
of r-symmetric functions is a strict superset of the class of
threshold functions.

We also present hardness results that provide an indication
of the tightness of our efficient solvability results. In partic-
ular, we show that if the conditional probability tables are
not necessarily r-symmetric, then the inference problems
remain computationally intractable (#P-hard) even when
the BN is a directed tree (whose treewidth is 1). We also
show that if the treewidth of the BN is not bounded, the in-
ference problems remain computationally intractable even
when each conditional probability table is expressed as a
symmetric function. In other words, relaxing either of the
assumptions (treewidth boundedness or r-symmetric func-
tions) makes the problems computationally intractable. We
note that the necessity of bounded treewidth for efficient
inference in BNs was proven in Kwisthout et al. (2010) un-
der a different assumption regarding complexity classes,
namely, the Exponential Time Hypothesis (Impagliazzo
and Paturi, 2001).

The remainder of this paper is organized as follows. Sec-
tion 2 defines the necessary graph theoretic terms and
presents formulations of several computations problems for
BNs. It also discusses some related work on these prob-
lems. For space reasons, Section 3 presents our algorithm
assuming that each CPT is a 1-symmetric function. Ex-
tensions of the result to other inference problems and r-
symmetric functions (for any r ≥ 2) are discussed in a
longer version of this paper (Rosenkrantz et al., 2014). Sec-
tion 4 mentions our hardness results whose proofs also ap-
pear in Rosenkrantz et al. (2014). Section 5 summarizes
the paper and provides directions for future work.

2 DEFINITIONS AND PREVIOUS WORK

2.1 BAYESIAN NETWORKS

As mentioned earlier, a Bayesian network (BN) consists of
a directed acyclic graph G(V,E), where nodes represent
stochastic domain variables and directed edges represent
dependencies between variables. For simplicity, we will as-
sume that each node represents a Boolean variable; the re-
sults in this paper can be extended to variables that assume
values from a finite domain. Also, we do not distinguish be-
tween a node of the graph and the corresponding Boolean
variable. When there is a directed edge (u, v) ∈ E, we say
that u is a parent of v. The indegree of a node v is the
number of parents of v.

At each node v, there is a conditional probability table
(CPT) Tv which specifies the probability values for the
variable v, conditioned on the parents of v. For a node
v with indegree t, there are 2t different combinations of

Boolean values for the parents of v. For each such combi-
nation, the table specifies the probability of v being 1 (or
0) conditioned on the parents assuming the given combina-
tion of values. Thus, the number of entries in Tv is 2t. For
a node v with indegree 0 (i.e., a node which does not have
any parent), the table Tv specifies simply the probability of
v assuming the value 1 (or 0).

Our formulation of the computational problems for BNs
follows the presentation in (Bodlaender, 2004). For a node
v, let P(v) denote the set of parents of v. Given a BN
G(V,E), a configuration cV is an assignment of Boolean
values to each variable in V . Given a subset O ⊆ V , a
partial configuration cO on O specifies a value for each
variable in O. Given a configuration cV (or a partial con-
figuration cO), we use cV (v) (cO(v)) to denote the value
of variable v in that configuration (partial configuration).
With a slight abuse of notation, we also extend this nota-
tion to subsets of variables. Thus, given a configuration
cV (or a partial configuration cO), and a subset W ⊆ V
(W ⊆ O), cV (W ) (cO(W )) denotes the combination of
values assigned to the variables in W . Given a configura-
tion cV , its probability Pr{cV } is given by

Pr{cV } =
∏

v∈V
Pr{cV (v) | cV (P(v))}.

A configuration cV is an extension of a partial configura-
tion cO if for each variable v that is assigned a value in cO,
cV (v) = cO(v). Thus, an extension of a partial configu-
ration cO is obtained by specifying values for the variables
that are not assigned a value in cO.

We now provide formal definitions of two commonly con-
sidered problems in the context of BNs. In all these prob-
lems, we are given a partial configuration cO (also called
an observation) on a set of nodes O ⊆ V .

Definition 2.1 Let G(V,E) denote the given BN.

1. Inference Problem (denoted by INF): Given an ob-
servation cO and a variable v, find Pr{v = 1 | cO},
that is, the probability that v assumes the value 1 con-
ditioned on the observation cO.

2. Most Probable Explanation Problem (denoted by
MPE): Given an observation cO, find an extension of
cO which has the maximum probability among all the
extensions of cO.

For ease of exposition, we will also consider the follow-
ing problem, which we call the Probability Computation
Problem (denoted by PROB): Given an observation cO,
find the probability of cO, that is, the sum of the probabil-
ities of all configurations that are extensions of cO. (Thus,
when an observation does not specify a value for any vari-
able, the answer to the PROB problem is 1.) The reasons for
considering the PROB problem are twofold. First, the so-
lution to INF problem for a node v and observation cO can
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be obtained using two calls to the PROB problem: compute
Pr{cO} and Pr{v = 1 ∧ cO} using the algorithm for PROB
and use the fact that

Pr{v = 1 | cO} =
Pr{v = 1 ∧ cO}

Pr{cO}
.

Second, an algorithm for the MPE problem can be devised
along lines that are similar to that for the PROB problem.
The main modification is that while the algorithm for the
PROB problem computes sums of probability values at var-
ious steps, the algorithm for the MPE problem computes
the maximum of the probability values.

2.2 TREE DECOMPOSITIONS

We now recall the standard definition of tree decomposition
and treewidth from (Bodlaender, 1993), which will be used
throughout this paper.

Definition 2.2 Given a BN G(V,E), a tree decomposi-
tion of G is a pair ({Xi | i ∈ I}, T = (I, F )), where
{Xi | i ∈ I} is a family of subsets of V and T = (I, F ) is
an undirected tree with the following properties:

1.
⋃
i∈I Xi = V .

2. For every directed edge e = (v, w) ∈ E, there is a
subset Xi, i ∈ I , with v ∈ Xi and w ∈ Xi.

3. For all i, j, k ∈ I , if j lies on the path from i to k in
T , then Xi

⋂
Xk ⊆ Xj .

The treewidth of a tree decomposition ({Xi | i ∈ I}, T ) is
maxi∈I{|Xi| − 1}. The treewidth of a graph is the mini-
mum over the treewidths of all its tree decompositions.

A class of graphs is treewidth bounded if there is a con-
stant k such that the treewidth of every graph in the class
is at most k.

A number of problems that are NP-hard on general graphs
can be solved efficiently when restricted to the class of
treewidth-bounded graphs. A considerable amount of work
has been done in this area (see for example (Bodlaen-
der, 1997, 1993; Courcelle and Mosbah, 1993; Gottlob and
Szeider, 2008; Robertson and Seymour, 1986) and the ref-
erences therein).

As mentioned earlier, our approach works on the given (un-
moralized) BN. To illustrate the effect of moralization on a
BN, consider the class of directed star graphs defined as
follows. For each n ≥ 2, a directed star graph has n nodes
and n− 1 directed edges; there is one center node and each
of the other n − 1 nodes has just one outgoing edge to the
center node. Thus, the center node has n−1 parents and the
moralized graph has a clique of size n − 1. Consequently,
the moralized graph is not treewidth-bounded. On the other
hand, it can be seen that according to Definition 2.2, this
class of graphs has a treewidth of 1.

2.3 SPECIFYING CPTs CONCISELY

For a node v with q parents, the CPT Tv has 2q entries. For
BNs in which the maximum indegree is bounded, the CPTs
can be given explicitly, since the size of each table is just a
constant. However, when we consider BNs in which node
indegrees may not be bounded, the size of a fully specified
table may be exponential in the size of the BN. Thus, we
need a method of specifying the CPTs concisely. We do
this by identifying restricted classes of functions to specify
the tables.

Consider a node v with q parents w1, w2, . . ., wq . A
CPT Tv for v specifies a probability value (i.e., the value
Pr{v = 1}) for each combination of values of the parents
of v. Thus, Tv represents a function from {0, 1}q to the set
of real values in [0, 1]. By restricting the class of functions,
we can specify Tv concisely. We will now present some
examples of such restrictions.

Definition 2.3 Let q be an integer ≥ 1. A function f from
{0, 1}q to the set of real values in [0, 1] is said to be sym-
metric if the value of f depends only on the number of in-
puts which are 1.

Thus, a symmetric function f of q variables can be con-
cisely described by specifying q + 1 probability values p0,
p1, . . ., pq , where pi is the probability value when i of the
inputs are 1, 0 ≤ i ≤ q.

Example: Consider the BN shown in Figure 1. In that
figure, nodes v1, v2 and v3 don’t have any parents. So,
the probability values assigned to them can be thought of
as symmetric functions where the only possible value for
the number of parents is zero. Node v4 has three parents.
Hence, the CPT for v4 shows the value of Pr{v4 = 1}when
0, 1, 2 or 3 parents of v4 are assigned the value 1. 2

For any integer t ≥ 0, a t-threshold Boolean function on q
inputs takes on the value 1 iff at least t of the inputs are 1. It
is easy to see that each t-threshold function is a symmetric
function. Thus, the class of symmetric functions contains
all threshold functions.

One can define a further generalization of the class of sym-
metric functions as follows (Barrett et al., 2007b).

Definition 2.4 Let r ≥ 1 be a fixed integer. Let q be an
integer ≥ 1. A function f from {0, 1}q to the set of real
values in [0, 1] is said to be r-symmetric if the set of in-
puts can be partitioned into r classes such that the value of
f depends only on the number of 1-valued inputs in each
class.

Note that any symmetric function is 1-symmetric. It can
also be seen that for any r ≥ 1, any r-symmetric function
f of q variables can be concisely described by specifying
O(qr) probability values. Since r is fixed, the size of the
specification of any r-symmetric function is a polynomial
in the size of the BN.
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v1 v2 v3

v4

Pr{v1 = 1} = Pr{v2 = 1} = Pr{v3 = 1} = 1/2

CPT for node v4:

|P(v4)| Pr{v4 = 1 | P(v4)}
0 1/2
1 1/3
2 1/4
3 1/5

Figure 1: An Example of a BN where each CPT is a sym-
metric function. (Recall that P(v4) denotes the set of par-
ents of node v4.)

When a node has a bounded indegree, say d, the corre-
sponding CPT can be thought of as a d-symmetric func-
tion, where each of the d classes contains exactly one input.
Thus, the class of BNs in which each node has a bounded
indegree is a special case of BNs in which each CPT is
specified by an r-symmetric function for some fixed r.

2.4 OTHER RELATED WORK

Motivated by the practical importance of inference prob-
lems (Darwiche (2009); Koller and Friedman (2009); Pearl
(1988)), research in this area has proceeded along two pri-
mary directions. The first direction focuses on the develop-
ment of efficient heuristics that can be used to obtain fast
solutions to problems that arise in practice (see for exam-
ple (Chavira, 2007; Dechter, 1999) and the references cited
therein). The second direction is the identification of re-
stricted versions of inference problems that can be solved
efficiently. As mentioned earlier, an important step in that
direction is the work of Lauritzen and Spiegelhalter (1988)
which provides an efficient algorithm for inference prob-
lems for treewidth bounded (moralized) BNs. Other refer-
ences that consider inference problems for restricted ver-
sions of BNs include (Bacchus et al., 2003; Boutilier et al.,
1996; Dechter, 1999; Jensen et al., 1990). The notion of
causal independence used in Zhang and Poole (1996) relies
on conditional probability tables that are essentially sym-
metric functions. We note that symmetric functions have
also been used in the context of lifted inference (Jha et al.,
2010; Milch et al., 2008).

Another approach, called parent divorcing, for dealing
with nodes of large indegrees was introduced in Olesen
et al. (1989). The basic idea of this approach is to modify a
given BN in the following manner: when a node has a large
indegree, the subgraph consisting of the node and its pre-
decessors is replaced by a directed tree in which each node

has a small indegree. An example to illustrate this approach
is shown in Figure 2. There are two main difficulties with
this approach. The first is that the treewidth of the resulting
BN can be much larger than that of the given BN. The sec-
ond difficulty is that the size of domain from which newly
added nodes take on values may become large. These two
aspects can significantly increase the running time of the
algorithms for the inference problems. Our algorithms can
handle nodes with unbounded indegrees without modify-
ing the given BN, provided all the CPTs are described by
r-symmetric functions for some fixed integer r.

ba c

e

a b c dd

e3

e1 e2

Figure 2: An Example for Parent Divorcing Approach

3 POLYNOMIAL TIME ALGORITHMS
FOR TREEWIDTH-BOUNDED BNs
WITH SYMMETRIC CPTs

3.1 OVERVIEW

This section presents polynomial time algorithms for in-
ference problems for treewidth-bounded BNs where each
probability table is represented as symmetric function. We
assume that a BN is given along with its tree decompo-
sition of treewidth k, for some fixed integer k ≥ 1. We
will present the details of the algorithm for the PROB prob-
lem. The modifications needed to solve the INF and MPE
problems and the extension of the algorithm to handle r-
symmetric CPTs for any fixed r ≥ 1 are presented in
Rosenkrantz et al. (2014).

3.2 NOTES ON TREE DECOMPOSITION

This section mentions some known facts about tree decom-
positions and also reviews some related terminology.

We assume that one of the nodes of the tree decompo-
sition is selected as the root so that the tree decomposi-
tion can be viewed as a rooted tree. When a graph G has
bounded treewidth, it is well known that a tree decomposi-
tion ({Xi | i ∈ I}, T = (I, F )) of G can be constructed
in time that is a polynomial in the size of G. Moreover,
this can be done so that all of the following conditions hold
(Barrett et al., 2007a,b; Bodlaender, 1997): (a) T is a bi-
nary tree; that is, each node of T has at most two children.
(b) The number of nodes of T with fewer than two children
is≤ n, the number of nodes inG. (c) The number of nodes
of T with two children is ≤ n. Our algorithm relies on this
special form of tree decomposition.
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2

1

3

{v2, v4}

{v3, v4}

{v1, v4}

Tree Xi Y inhi Y orgi Y hidi
Node
1 {v1, v4} {v4} {v1} ∅
2 {v2, v4} {v4} {v2} {v1}
3 {v3, v4} ∅ {v3, v4} {v1, v2}

Figure 3: A Tree Decomposition for the BN shown in Fig-
ure 1. For each tree node i, Xi, Y inhi , Y orgi and Y hidi de-
note respectively the set of explicit, inherited, originating
and hidden nodes respectively, 1 ≤ i ≤ 3.

The following terminology regarding nodes in tree decom-
positions is from (Barrett et al., 2007a,b). Let T be the
given tree decomposition of a BN G. For a given node i of
T , the nodes of G in Xi are called explicit nodes of i. If
a given explicit node v of i is also an explicit node of the
parent of i, then v is referred to as an inherited node of i;
and if v does not occur in the parent of i, then v is called an
originating node of i.

We refer to the set of all explicit nodes occurring in the
subtree of T rooted at i that are not explicit nodes of i as
hidden nodes of i. (Thus, the hidden nodes of i are the
union of the originating and hidden nodes of the children
of i.) For any node i in T , we use Y inhi , Y orgi and Y hidi

to denote respectively the set of inherited nodes, the set of
originating nodes and the set of hidden nodes of i.

Example: A tree decomposition for the BN of Figure 1 is
shown in Figure 3. The tree decomposition has three nodes.
For each tree node, the set of explicit nodes is shown. The
table in Figure 3 also shows the explicit, inherited, origi-
nating and hidden sets for each tree node. 2

3.3 CONFIGURATIONS AND SIGNATURES

For all of the computational problems we consider, we are
given a BN G(V,E) and an observation cO. As mentioned
earlier, we also assume that each CPT is specified as a sym-
metric function.

Definition 3.1 (a) Let Y be a set of nodes of the given
BN G. We refer to a partial configuration on Y as a Y –
configuration.

(b) Let Y and W be not necessarily disjoint sets of nodes
of the given BN G. We say that a given Y –configuration
α and a given W–configuration β are consistent if for all
nodes z in Y ∩W , Y (z) = W (z).

(c) Given the observation (i.e., O–configuration) cO, we

say that a given Y -configuration α is valid if for all nodes
w assigned values in both cO and α, cO(w) = α(w), i.e.,
α and cO are consistent.

(d) ΓY denotes the set of all valid Y –configurations.

(e) Let Y and W be sets of nodes of the given BN G such
that W ⊆ Y . Let α be a Y –configuration. We define the
restriction of α to W , denoted as α |W , to be the W–
configuration obtained by restricting α to the members of
W .

The concept of a signature, defined below for the case
where each CPT is a symmetric function, plays an impor-
tant role in our algorithm.

Definition 3.2 Let Y and W be not necessarily disjoint
sets of nodes of the given BN G. (a) Let α be a Y –
configuration. The signature of α with respect to W , de-
noted as sig(α,W ), specifies for each w ∈W , the number
of parents of w that are set to 1 by α. We refer to such a
signature as a (Y,W )–signature.

(b) Suppose Γ is a set of Y –configurations. The signature
of Γ with respect toW is the union of the signature of each
γ ∈ Γ with respect to W .

(c) We say that a given (Y,W )–signature is valid if it is
sig(α,W ) for some valid Y –configuration α.

(d) HY,W denotes the set of all valid (Y,W )–signatures.

Example: Consider the BN shown in Figure 1. Let Y =
{v2, v3} and W = {v1, v4}. Consider the Y -configuration
γ which sets v2 = 0 and v3 = 1. It is easy to see that
γ sets 0 of v1’s parents to 1 and exactly one of v4’s par-
ents to 1. So sig(γ,W ), the signature of γ with respect
to W , can be represented as [v1 : 0, v4 : 1]. Suppose
that the given observation cO does not specify the value of
any node. Then ΓY contains four Y –configurations. By
computing the union of the signatures of these four Y –
configurations, it can be seen that HY,W is the set {[v1 :
0, v4 : 0], [v1 : 0, v4 : 1], [v1 : 0, v4 : 2]}. 2

If σ is (Y,W )–signature, then for any w ∈ W , we use
σ(w) to denote the value specified by σ for w. Using this
notation, we define some operations on signatures which
produce new signatures. These operations are used by our
algorithm.

Definition 3.3 Let G be a BN and let W be a subset of
nodes of G.

(a) Let σ and σ′ be two signatures with respect to a node
set W . The sum of the two signatures is another sig-
nature denoted by σ + σ′, such that for each w ∈ W ,
(σ + σ′)(w) = σ(w) + σ′(w).

(b) Let σ be a signature with respect to a node set W and
let Y be a subset of W . The restriction of σ to Y is an-
other signature denoted by σ|Y , such that for each y ∈ Y ,
(σ|Y )(y) = σ(y).
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(c) Let σ be a signature with respect to a node set W
and let X be a superset of W . The extension of σ to
X is another signature denoted by ext(g,X), which is
defined as follows: for each x ∈ X , if x ∈ W , then
ext(σ,X)(x) = σ(x); otherwise, ext(σ,X)(x) = 0.

Suppose w is a node of G and η is a partial configuration
that specifies a value (namely, η(w)) for w and for every
parent of w. Given these values, the CPT for w speci-
fies a probability value for η(w), which will be denoted
by pη(w). Suppose W is a subset of nodes of G and η is
a partial configuration that specifies a value for every node
w ∈ W and for every parent of every node w ∈ W . Thus,
for every node w ∈ W , the value pη(w) is defined. We
define pη(W ) by

pη(W ) =
∏

w∈W
pη(w). (1)

We also need a slight extension of the definition given by
Equation (1). Let X and Y be disjoint sets of nodes of G.
Let η be a X–configuration, and σ be a (Y,X)-signature.
Suppose that for a given node w in X , all the parents of
w are in X ∪ Y . Because the CPT for w is given by a
symmetric function, given the values that η assigns to those
parents of w that are in X , and the value that σ assigns to
w, the CPT for w assigns a probability value to η(w). We
denote this probability value as pη,σ(w). Suppose that W
is a subset of X , such that for every node w in W , all the
parents of w are in X ∪ Y . (Thus, for every node w in W ,
the value pη,σ(w) is defined.) Now, we define pη,σ(W ) by

pη,σ(W ) =
∏

w∈W
pη,σ(w). (2)

3.4 ALGORITHM FOR THE PROB PROBLEM

Recall that in the PROB problem, we are given a BN
G(V,E) and an observation cO. The goal is to find the
probability of cO, that is, the sum of the probabilities of all
(complete) configurations that are extensions of cO. Let the
constant k denote the treewidth ofG. We assume that a tree
decomposition ({Xi | i ∈ I}, T = (I, F )) of G satisfying
all the conditions mentioned in Section 3.2 is also given
and that each CPT is specified as a symmetric function.

3.4.1 Information Maintained by the Algorithm

Our algorithm solves the PROB problem for G by using
bottom-up dynamic programming on the tree decomposi-
tion T . The algorithm maintains information for each node
of T , as summarized in Table 1, and described below.

For each node i of T , the algorithm maintains the two sets
of signatures HY hidi ,Xi and H(Y hidi ∪Y orgi ),Y inhi

, plus two
tables of probability values, which we denote as Qi and
Ri. We now provide a description of these signature sets
and tables for each tree node i.

(a) HY hidi ,Xi is the set of all valid (Y hidi , Xi)–signatures.
(Recall that Y hidi is the set of hidden nodes of i, and
Xi is the set of explicit nodes of i.)

(b) H(Y hidi ∪Y orgi ),Y inhi
is the set of all valid (Y hidi ∪

Y orgi , Y inhi )–signatures . (Recall that Y inhi is the set
of inherited nodes of i.)

(c) Table Qi contains a probability value for each pair in
ΓXi ×HY hidi ,Xi .

Consider a given element of table Qi, say Qi[α, σ],
where α is a valid Xi–configuration and σ is a valid
(Y hidi , Xi)–signature. The value of Qi[α, σ] is de-
fined by

Qi[α, σ] =
∑

β

pα∪β(Y hidi ) (3)

where the summation is over all β such that β is a
valid Y hidi –configuration and sig(β,Xi) = σ.

Note that the definition of a tree decomposition en-
sures that every parent of a hidden node of i is either
an explicit node or a hidden node of i, so each proba-
bility value occurring in Equation (3) is well defined.

(d) Table Ri contains an entry for each pair in ΓY inhi
×

H(Y hidi ∪Y orgi ),Y inhi
.

Consider a given element of table Ri, say Ri[ψ, θ],
where ψ is a valid Y inhi –configuration and θ is a valid
(Y hidi ∪Y orgi , Y inhi )–signature. The value ofRi[ψ, θ]
is defined by

Ri[ψ, θ] =
∑

β

pψ∪β(Y hidi ∪ Y orgi ) (4)

where the summation is over all β such that β is a valid
(Y hidi ∪ Y orgi )–configuration and sig(β, Y inhi ) = θ.

Note that the definition of a tree decomposition en-
sures that every parent of an hidden or originating
node of i is either an explicit node or a hidden node of
i, so each probability value occurring in Equation (4)
is well defined.

Equation (3) represents the definition of each entry of Qi.
However, for a given α and σ, one cannot use the equation
directly to efficiently compute the value of Qi[α, σ], since
the number of valid configurations to be considered may
be exponential in the number of nodes of G. A similar
comment applies to the computation of Ri[ψ, σ] directly
using Equation (4). How these values can be computed
efficiently is discussed below.

3.4.2 Description of the Algorithm

Having described the information maintained by the algo-
rithm, we can now describe the the bottom-up construction
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Table 1: Notation used in Describing the Dynamic Programming Algorithm for the PROB Problem

Symbol Explanation
Xi The set of explicit nodes of tree node i.
Y inhi The set of inherited nodes of tree node i.
Y orgi The set of originating nodes of tree node i.
Y hidi The set of hidden nodes of tree node i.
ΓXi The set of valid partial configurations on the explicit nodes of i

ΓY inhi
The set of valid partial configurations on the inherited nodes of i

HY hidi ,Xi The set of signatures of all valid partial configurations of the hidden nodes of i
with respect to the explicit nodes of i.

H(Y hidi ∪Y orgi ),Y inhi
The set of signatures of all valid partial configurations of the hidden and originat-
ing nodes of i with respect to the inherited nodes of i.

Qi[ΓXi , HY hidi ,Xi ] Qi[α, σ] maps valid partial configuration α on the explicit nodes of i and signature
σ ∈ HY hidi ,Xi to a probability value.

Ri[ΓY inhi
, H(Y hidi ∪Y orgi ),Y inhi

] Ri[ψ, θ] maps valid partial configuration ψ on the inherited nodes of i and signa-
ture θ ∈ H(Y hidi ∪Y orgi ),Y inhi

to a probability value.

of the signature sets and tables for each node of the tree de-
composition. We present the construction in the following
order.

1. First, we describe the computation of the setHY hidi ,Xi

and the Qi table for a leaf node i of the tree decom-
position.

2. Next, we describe the computation of set
H(Y hidi ∪Y orgi ),Y inhi

and the Ri table for an arbi-
trary node i of the tree decomposition, given set
HY hidi ,Xi and table Qi.

3. Then we describe the computation of set HY hidi ,Xi

and tableQi for a nonleaf node i of the tree decompo-
sition, given the H(Y org ∪Y hid),Y inh sets and R tables
for the children of node i in the tree decomposition.

4. Finally, we indicate how the solution for the PROB
problem can be computed from the values computed
for the root of the tree decomposition.

We now present the details for each of the four parts above.
The operations on signatures defined in Section 3.3 are
used in the following description.

Part 1: Consider a leaf node i of the tree decomposition.
Note that leaf node i contains no hidden nodes. Conse-
quently, HY hidi ,Xi consists of a single signature σ, which
maps each node of Xi into the value 0.

For each valid Xi–configuration α, the table entry Qi[α, σ]
is given the value 1. Pseudocode for Part 1 is presented in
Figure 4.

Part 2: For any node i of the tree decomposition, given set
HY hidi ,Xi and table Qi, set H(Y hidi ∪Y orgi ),Y inhi

and table
Ri can be constructed as follows.

1. HY hidi ,Xi = {σ}, where σ is the signature that maps
each node x ∈ Xi into the value 0.

2. For each valid partial configuration α on Xi,
Qi[α, σ] = 1.

Figure 4: Pseudocode for Part 1 of the Algorithm for the
PROB Problem

Recall that ΓY orgi
denotes the set of all valid Y orgi –

configurations, and that for any γ ∈ ΓY orgi
, sig(γ, Y inhi )

denotes the signature of γ with respect to Y inhi .

Computation of H(Y hidi ∪Y orgi ),Y inhi
: This quantity is

computed using the following equation

H(Y hidi ∪Y orgi ),Y inhi
=

⋃

γ,σ′

sig(γ, Y inhi ) + (σ′ |Y inhi )

where the union is over each pair γ, σ′ such that γ ∈ ΓY orgi

and σ′ ∈ HY hidi ,Xi .

Computation of Ri: Consider an entry in theQi table, say
Qi[α, σ]. The valid Xi–configuration α can be considered
to be the disjoint union of the valid Y inhi –configuration
ψ = α |Y inhi and the valid Y orgi –configuration γ =
α |Y orgi . Similarly, the (Y hidi , Xi)–signature σ can be
considered to be the disjoint union of the (Y hidi , Y inhi )–
signature σ′ = σ |Y inhi and the (Y hidi , Y orgi )–signature
σ′′ = σ |Y orgi . Let θ be the (Y hidi ∪ Y orgi , Y inhi )–
signature σ′ + sig(γ, Y inhi ). The entry Qi[α, σ] of the
Qi table contributes to the value of the entry Ri[ψ, θ] of
the Ri table. The value of this contribution is the product
Qi[α, σ] ∗ pα,σ(Y orgi ).
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The value Ri[ψ, θ] can be computed using the following
equation.

Ri[ψ, θ] =
∑

Qi[α, σ] ∗ pα,σ(Y orgi )

where the summation is over each α ∈ ΓXi and σ ∈
HY hidi ,Xi such that (ψ = α |Y inhi ) ∧ (θ = (σ|Y inhi ) +

sig(α |Y orgi , Y inhi )).

Alternatively, the Ri table can be computed by first setting
all the entries in the table to zero, and then scanning the
Qi table, adding the contribution of each entry in the Qi

table to the appropriate entry in the Ri table. Pseudocode
for Part 2, using this approach to computing the Ri table,
is shown in Figure 5.

Computation of H(Y hidi ∪Y orgi ),Y inhi
:

1. Initialization: H(Y hidi ∪Y orgi ),Y inhi
= ∅.

2. for each valid Y orgi –configuration γ do
(i) Compute σ′ = sig(γ, Y inhi ), the signature of γ

with respect to Y inhi .
(ii) for each signature σ ∈ HY hidi ,Xi do

(a) σ′′ = σ′ + (σ |Y inhi ).
(b) H(Y hidi ∪Y orgi ),Y inhi

=
H(Y hidi ∪Y orgi ),Y inhi

∪ {σ′′}.

Computation of Ri:

for each valid Y inhi –configuration ψ do
for each signature θ ∈ H(Y hidi ∪Y orgi ),Y inhi

do
Ri[ψ, θ] = 0.

for each valid Xi–configuration α do
1. ψ = α |Y inhi .
2. for each signature σ ∈ HY hidi ,Xi do

(a) Compute θ′ = sig(α |Y orgi , Y inhi ),
the signature of α |Y orgi with respect to Y inhi .

(b) θ = (σ |Y inhi ) + θ′.
(c) Ri[ψ, θ] = Ri[ψ, θ] +Qi[α, σ] ∗ pα,σ(Y orgi ).

Figure 5: Pseudocode for Part 2 of the Algorithm for the
PROB Problem

Part 3: We now consider computing set HY hidi ,Xi and ta-
ble Qi for a nonleaf node i of the tree decomposition.

Case 1: Nonleaf node i has only one child.

Let i1 denote the child of i in the tree decomposition. We
compute HY hidi ,Xi as

HY hidi ,Xi = { ext(θ1, Xi) | θ1 is inH(Y hidi1
∪Y orgi1

),Y inhi1
}.

Given the table Ri1 for i1, the table Qi is constructed
as follows. Consider a given entry Qi[α, σ], for Xi–

configuration α and (Y hidi , Xi)–signature σ. The value of
this entry is set to the value of Ri1 [α |Y inhi1

, σ |Y inhi1
].

Case 2: Nonleaf node i has two children.

Let i1 and i2 denote the children of i in the tree decompo-
sition. We compute HY hidi ,Xi as

HY hidi ,Xi =
⋃

θ1,θ2

ext(θ1, Xi) + ext(θ2, Xi).

where the union is over all pairs θ1 and θ2 such that
θ1 ∈ H(Y hidi1

∪Y orgi1
),Y inhi1

and θ2 ∈ H(Y hidi2
∪Y orgi2

),Y inhi2
.

The tables Ri1 and Ri2 for tree nodes i1 and i2 are com-
bined to produce tableQi for tree node i as follows. For any
θ1 ∈ H(Y hidi1

∪Y orgi1
),Y inhi1

and θ2 ∈ H(Y hidi2
∪Y orgi2

),Y inhi2
, let

σ = ext(θ1, Xi) + ext(θ2, Xi).

For any valid Xi–configuration α, the table entries
Ri1 [α|Y inhi1

, θ1] andRi2 [α|Y inhi2
, θ2] together contribute to

the value of Qi[α, σ]. The value of this contribution is
Ri1 [α|Y inhi1

, θ1] ∗Ri2 [α|Y inhi2
, θ2].

Consider a given a valid Xi–configuration α and signature
σ in HY hidi ,Xi . We can compute Qi[α, σ] as a sum of prod-
ucts:

Qi[α, σ] =
∑

θ1,θ2

Ri1 [α|Y inhi1 , θ1] ∗ Ri2 [α|Y inhi2 , θ2]

where the summation is over all pairs θ1 and θ2 such that
θ1 ∈ H(Y hidi1

∪Y orgi1
),Y inhi1

, θ2 ∈ H(Y hidi2
∪Y orgi2

),Y inhi2
and

σ = ext(θ1, Xi) + ext(θ2, Xi).

Alternatively, the Qi table can be computed by first setting
all the entries in the table to zero, and then scanning the
Ri1 and Ri2 tables, adding the contribution of each pair
of entries in these tables to the appropriate entries in the
Ri table. Pseudocode for Part 3, using this approach to
computing the Qi table, is shown in Figure 6.

Part 4: Let r be the root node of the tree decomposition.
The root node has no inherited nodes, so Y inhr = ∅. Con-
sequently, ΓY inhr

contains only the empty partial configura-
tion, which we denote as ψ∅. Also, set H(Y orgr ∪Y hidr ),Y inhr

contains only the empty signature, which we denote as σ∅.
Table Rr consists of a single entry, Rr[ψ∅, σ∅]. The value
of Rr[ψ∅, σ∅] is the solution to the PROB problem.

3.4.3 Running Time Analysis

We now state a result that which gives the running time of
the algorithm presented in the previous section. A proof of
this result appears in Rosenkrantz et al. (2014).

Lemma 3.4 The dynamic programming algorithm for the
PROB problem runs in O(n2k+3) time, where n is the num-
ber of nodes in the given Bayesian network G and k is the
treewidth of G.
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Case 1: Node i has only one child i1 in the tree decom-
position.

Computation of HY hidi ,Xi :

1. Initialization: HY hidi ,Xi = ∅.

2. for each signature θ1 ∈ H(Y hidi1
∪Y orgi1

),Y inhi1
do

HY hidi ,Xi = HY hidi ,Xi ∪ {ext(θ1, Xi)}.

Computation of Qi:

for each valid Xi–configuration α do
for each signature σ ∈ HY hidi ,Xi do

Qi[α, σ] = Ri1 [α |Y inhi1
, σ |Y inhi1

].

Case 2: Node i has two children i1 and i2 in the tree
decomposition.

Computation of HY hidi ,Xi :

1. Initialization: HY hidi ,Xi = ∅.

2. for each signature θ1 ∈ H(Y hidi1
∪Y orgi1

),Y inhi1
do

for each signature θ2 ∈ H(Y hidi2
∪Y orgi2

),Y inhi2
do

(a) σ = ext(θ1, Xi) + ext(θ2, x1).
(b) HY hidi ,Xi = HY hidi ,Xi ∪ {σ}.

Computation of Qi:

for each valid Xi–configuration α do
for each signature σ ∈ HY hidi ,Xi do

Qi[α, σ] = 0.

for each signature θ1 ∈ H(Y hidi1
∪Y orgi1

),Y inhi1
do

for each signature θ2 ∈ H(Y hidi2
∪Y orgi2

),Y inhi2
do

(a) σ = ext(θ1, Xi) + ext(θ2, Xi).
(b) for each valid Xi–configuration α do

Qi[α, σ] = Qi[α, σ] +Ri1 [α|Y inhi1
, θ1]∗

Ri2 [α|Y inhi2
, θ2].

Figure 6: Pseudocode for Part 3 of the Algorithm for the
PROB Problem

Since k is fixed, our algorithm for the PROB problem runs
in polynomial time. Thus, the following theorem summa-
rizes the main result of Section 3.4.

Theorem 3.5 The PROB problem can be solved efficiently
for the class of treewidth-bounded BNs where each CPT is
specified as a symmetric function.

4 HARDNESS RESULTS

The results in the previous section show that inference
problems for treewidth bounded BNs can be solved effi-
ciently even when the indegrees of nodes are not bounded,
provided each CPT is expressed as a symmetric function.
The following result points out the tightness of these re-
sults; in particular, the result shows that the problems re-
main computationally intractable even if one of the con-
ditions is violated. A proof of this result appears in
Rosenkrantz et al. (2014).

Proposition 4.1 (a) If CPTs are not required to be r-
symmetric, then the PROB problem is #P-hard even when
the BN is a directed tree (whose treewidth is 1).

(b) When the treewidth of the BN is not bounded, the PROB
problem is #P-hard even when the CPT at each node is
given by a symmetric function.

5 CONCLUSIONS

We presented efficient algorithms for exact inference prob-
lems for BNs when the unmoralized graph is treewidth-
bounded and each CPT is an r-symmetric function for a
fixed r. We also observed that if either of these conditions
is relaxed, the inference problems are computationally in-
tractable.

We conclude by mentioning two general directions for fur-
ther research. First, dynamic programming algorithms for
treewidth-bounded BNs require memory that grows ex-
ponentially with the treewidth. It will be useful to de-
velop practical techniques that can significantly reduce the
amount of memory needed. Second, it is of interest to iden-
tify additional restrictions on BNs (based on problem in-
stances that arise in practice) that can lead to practical al-
gorithms for large problem instances.
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Abstract

We study the problem of a user who has both
public and private data, and wants to re-
lease the public data, e.g. to a recommenda-
tion service, yet simultaneously wants to pro-
tect his private data from being inferred via
big data analytics. This problem has previ-
ously been formulated as a convex optimiza-
tion problem with linear constraints where
the objective is to minimize the mutual in-
formation between the private and released
data. This attractive formulation faces a
challenge in practice because when the un-
derlying alphabet of the user profile is large,
there are too many potential ways to distort
the original profile. We address this funda-
mental scalability challenge. We propose to
generate sparse privacy-preserving mappings
by recasting the problem as a sequence of lin-
ear programs and solving each of these in-
crementally using an adaptation of Dantzig-
Wolfe decomposition. We evaluate our ap-
proach on several datasets and demonstrate
that nearly optimal privacy-preserving map-
pings can be learned quickly even at scale.

1 Introduction

Finding the right balance between privacy risks and
big data rewards is one of the biggest challenges fac-
ing society today. Big data creates tremendous oppor-
tunity, especially for all of the services that offer per-
sonalized advice. Recommendation services are ram-
pant today and offer advice on everything including
movies, TV shows, restaurants, music, sleep, exercise,
vacation, entertainment, shopping, and even friends.
On one hand, people are willing to part with some of
their personal data (e.g. movie watching history) for
the sake of these services. On the other hand, many
users have some data about themselves they would
prefer to keep private (e.g. their political affiliation,
salary, pregnancy status, religion). Most individuals
have both public and private data and hence they need
to maintain a boundary between these different ele-

ments of their personal information. This is an enor-
mous challenge because inference analysis on publicly
released data can often uncover private data [27, 6, 21].

A number of research efforts have explored the idea of
distorting the released data [29, 26, 17, 7, 11, 3] to pre-
serve user’s privacy. In some of these prior efforts,
distortion aims at creating some confusion around user
data by making its value hard to distinguish from other
possible values; in other efforts, distortion is designed
to counter a particular inference threat (i.e. a specific
classifier or analysis). Recently [7] proposed a new
framework for data distortion, based on information
theory, that captures privacy leakage in terms of mu-
tual information. Minimizing the mutual information
between a user’s private data and released data is at-
tractive because it reduces the correlation between the
private data and the publicly released data, and thus
any inference analysis that tries to learn the private
data from the public data is rendered weak, if not use-
less. In other words, this approach is agnostic to the
type of inference analysis used in a given threat.

This promising framework, while theoretically sound,
faces some challenges in terms of bridging the gap
between theory and practicality. Distorting data, in
the context of recommendation systems, means alter-
ing a user’s profile. The framework casts this privacy
problem as a convex optimization problem with lin-
ear constraints, where the number of variables grows
quadratically with the size of the underlying alphabet
that describes user’s profiles. In real world systems,
the alphabet can be huge, thus the enormous number
of options for distorting user profiles presents a scala-
bility challenge, that we address in this paper.

We make two contributions to handle scalability. First,
by studying small scale problems, both analytically
and empirically, we identify that mappings to dis-
tort profiles are in fact naturally sparse. We leverage
this observation to develop sparse privacy-preserving
mappings (SPPM). Second, we propose an algorithm,
called SPPM that handles scalability through two in-
sights. Although the underlying optimization problem
has linear constraints, its objective function is non-
linear. We use the Frank-Wolfe algorithm that approx-
imates the objective via a sequence of linear approx-
imations that can be solved quickly. To do this, we
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adapt the Dantzig-Wolfe decomposition to the struc-
ture of our problem. Overall we reduce the number
of variables from quadratic to linear in the number of
user profiles. To the best of our knowledge, this work
is the first to apply large scale linear programming op-
timization techniques to privacy problems.

A salient feature of our novel approach is that the dis-
tortion applied to each user is personalized, meaning
that it is tailored for that user. Our solution does
not require applying distortion to profiles in a uniform
way, nor requires any monotonistic behavior such as
mapping a profile to a far neighbor with decreasing
likelihood (such as in [19]. We will see that the flex-
ibility our system allows for a better use of the dis-
tortion budget where it is needed, and avoids wasting
this budget on unnecessary distortions.

Our third contribution is a detailed evaluation on three
datasets, in which we compare our solution to an opti-
mal one (when feasible) and to a state-of-the-art solu-
tion based on differential privacy (called the Exponen-
tial Mechanism [19]). We find that our solutions are
close to optimal, and consistently outperform the ex-
ponential mechanism (ExpMec) approach in that we
achieve more privacy with less distortion. We show
that our methods scale well with respect to the num-
ber of user profiles and their underlying alphabet.

Related Work. We consider the framework for pri-
vacy against statistical inference in [7, 18, 24]. In [24],
a method based on quantization was proposed to re-
duce the number of optimization variables. It was
shown that the reduction in complexity does not affect
the privacy levels that can be achieved, but comes at
the expense of additional distortion. In [18], privacy
mappings in the class of parametric additive noise were
considered, which allow the number of optimization
variables to be reduced to the number of noise parame-
ters. However, this suboptimal solution is not suitable
for perfect privacy, as it requires a high distortion. In
this paper, we propose to exploit the structure of the
optimization to achieve computational speed-ups that
will allow scalability. To the best of our knowledge,
this is the first paper that evaluates the privacy-utility
framework in [7] on such a large scale.

Our use of the information theoretic framework [7] re-
lies on a local privacy setting, where users do not trust
the entity collecting data, thus each user holds his
data locally, and passes it through a privacy-preserving
mechanism before releasing it to the untrusted entity.
Local privacy dates back to randomized response in
surveys [28], and has been considered in privacy for
data mining and statistics [2, 12, 20, 16, 4, 7, 18, 9].
Information theoretic privacy metrics have also been
considered in [23, 29, 12, 22, 25]. Finally, differen-
tial privacy [10] is currently the prevalent notion of
privacy in privacy research. In particular, the expo-

nential mechanism, to which we compare our privacy
mapping in Section 4.3, was introduced in [19].

The general problem of minimizing a convex function
under convex constraints has been studied extensively,
and is of crucial importance in many machine learn-
ing tasks. The idea of a sparse approximate solutions
to those problems has also been studied in the litera-
ture and is often called Sparse Greedy Approximation
[8, 15, 14, 13, 30]. This type of algorithm has been
used with success in many applications such as Neu-
ral Network [15], Matrix Factorization [14], SVM [13],
Boosting [30], etc. We apply this approach to a new
problem and adapt it to efficiently handle our scala-
bility challenges. Another common approach to mini-
mizing a convex function is stochastic gradient descent
[31]. This approach is preferable when the feasible set
has a simple form and is easy to project to. In our
case, the feasible set is defined by many constraints,
thus we opted for the Frank-Wolfe algorithm.

2 Problem Statement and Challenges

Privacy-Utility Framework: We consider the set-
ting described in [7], where a user has two kinds of
data: a vector of personal data A ∈ A that he would
like to remain private, e.g. his income level, his po-
litical views, and a vector of data B ∈ B that he is
willing to release publicly in order to receive a use-
ful service (such as releasing his media preferences to
a recommender service to receive content recommen-
dations). A and B are the sets from which A and
B can assume values. We assume that the user pri-
vate attributes A are linked to his data B by the joint
probability distribution pA,B. Thus, an adversary who
would observe B could infer some information about
A. To reduce this inference threat, instead of releasing
B, the user releases a distorted version of B, denoted
B̂ ∈ B̂, generated according to a conditional prob-
abilistic mapping pB̂|B, called the privacy-preserving

mapping. Note that the set B̂ may differ from B.
This setting is reminiscent of the local privacy setting
(e.g. randomized response, input perturbation) [28],
where users do not trust the entity collecting data,
thus each user holds his data locally, and passes it
through a privacy-preserving mechanism before releas-
ing it. The privacy mapping pB̂|B is designed to render

any statistical inference of A based on the observation
of B̂ harder, while preserving some utility to the re-
leased data B̂, by limiting the distortion caused by the
mapping. Following the framework for privacy-utility
against statistical inference in [7], the inference threat

is modeled by the mutual information I(A; B̂) between
the private attributes A and the publicly released data
B̂, while the utility requirement is modeled by a con-
straint on the average distortion EB,B̂[d(B, B̂)] ≤ ∆,

for some distortion metric d : B×B̂ → R+, and ∆ ≥ 0.
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In the case of perfect privacy (I(A; B̂) = 0), the pri-

vacy mapping pB̂|B renders the released data B̂ statis-

tically independent from the private data A.

In general, a system that provides privacy protection
does not know in advance the inference algorithm that
the adversary will run on released data. This frame-
work is appealing because it works regardless of the
inference algorithm used by an adversary. In addition,
this framework allows for the use of any distortion
metric, either generic metrics such as Hamming, lp,
or weighted norms, or specific utility metrics tailored
to a given learning algorithm that will run on the re-
leased user data. The use of a generic distance in the
utility constraint is relevant in several cases. First, the
learning algorithm that will run on the released data
may not be known in advance to the system providing
privacy protection, as it may be proprietary informa-
tion that belongs to the service provider. Second, the
released user data may be used by numerous analyses
tasks based on multiple different ML algorithms, in
which case the utility constraint should not be limited
to one specific distortion metric.

Both the mutual information I(A; B̂) and the average

distortion EB,B̂[d(B, B̂)] depend on both the prior dis-
tribution pA,B and the privacy mapping pB̂|B, since

A → B → B̂ form a Markov chain. To stress these
dependencies, we will denote I(A; B̂) = J(pA,B, pB̂|B).

Consequently, given a prior pA,B linking the private at-
tributes A and the data B, the privacy mapping pB̂|B
minimizing the inference threat subject to a distortion
constraint is obtained as the solution to the following
convex optimization problem [7] 1

minimize
pB̂|B∈Simplex

J(pA,B, pB̂|B)

s.t. EpB,B̂

[
d(B, B̂)

]
≤ ∆,

(1)

where Simplex denotes the probability simplex
(
∑

x p(x) = 1, p(x) ≥ 0 ∀x).

Sparsity of the privacy mapping: When apply-
ing the aforementioned privacy-accuracy framework
to large data, we encounter a challenge of scalabil-
ity. Designing the privacy mapping requires charac-
terizing the value of pB̂|B(b̂|b) for all possible pairs

(b, b̂) ∈ B × B̂, i.e. solving the convex optimization

problem over |B||B̂| variables. When B̂ = B, and the
size of the alphabet |B| is large, solving the optimiza-
tion over |B|2 variables may become intractable.

1Solving Optimization (1) for different values of ∆ al-
lows to generate the whole privacy-utility curve, as in
Fig. 2. Any point on or above this curve is achievable.
Using this curve, one can efficiently solve the related prob-
lem of maximizing utility given a constraint on privacy: for
a given privacy requirement, the curve gives the operating
point corresponding to the smallest loss in utility.
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Figure 1: Optimal mappings for Toy example

A natural question is whether B̂ = B is a necessary as-
sumption to achieve the optimal privacy-utility trade-
off. In other words, does Optimization (1) need to be
solved over |B|2 variables to achieve optimality? The
following theoretical toy example motivates a sparser
approach to the design of the privacy mapping.

Example: Let A ∈ {0, 1}, and B ∈ {1, 2, . . . , 2m},
and define the joint distribution pA,B such that p(A =
0) = p(A = 1) = 1

2 , and for i ∈ {1, 2, . . . , 2m}, let

p(B = i|A = 0) = 1
2m−1 if i ≤ 2m−1, 0 otherwise, and

let p(B = i|A = 1) = 1
2m−1 if i > 2m−1, 0 otherwise.

For this example, the privacy threat is the worse it
could be, as observing B determines deterministically
the value of the private random variable A (equiva-
lently, I(A; B) = H(A) = 1). In Fig. 2, we consider

an l2 distortion measure d(B; B̂) = (B− B̂)2 and illus-
trate the optimal mappings solving Problem ((1)) for
different distortion values. For small distortions, the
red diagonal in Figure 2 shows that most points B = b
are only mapped to themselves B̂ = b. As we increase
the distortion level, each point B = b gets mapped to
a larger number of points B̂ = b̂.

This theoretical example, as well as experiments on
real world datasets such as the census data have shown
that the optimal privacy preserving mapping may turn
out to be sparse, in the sense that the support of
pB̂|B(b̂|b) may be of much smaller size than B, and

may differ for different values of B = b. We propose
to exploit sparsity properties of the privacy mapping
to speed up the computation, by picking the support of
pB̂|B(b̂|b), i.e. the set of points B̂ = b̂ to which B = b

can be mapped with a non-zero probability, in an it-
erative greedy way. Although we a priori motivate the
sparse approach using one theoretical example, and
limited empirical evidence from some datasets, our ex-
perimental results demonstrate, a posteriori, that the
sparse approach performs close to optimally on other
datasets, and thus justifies empirically its relevance.

3 Sparse and Greedy Algorithm

Before we describe our algorithm, we rewrite Opti-
mization (1) compactly. Let X be a n × n matrix
of optimized variables, whose entries are defined as
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xi,j = pB̂|B(b̂i | bj), and let xj be the j-th column

of X. To highlight the optimization aspect of our
problem, we write the objective function J(pA,B, pB̂|B)

as a function f(X), with the understanding that f
depends on pA,B, which is not optimized, and on
X, which is optimized. Similarly the distortion con-
straint can be written as

∑n
j=1 dT

jxj ≤ ∆, where each

dj = pB(bj)(d(b̂1, bj), d(b̂2, bj), . . . , d(b̂n, bj))
T is

a vector of length n that represents the distortion
metric scaled by the probability of the correspond-
ing symbol bj. The marginal of B is computed as
pB(bj) =

∑
a pA,B(a, bj). Finally, the simplex con-

strain can be written as 1nxj = 1 for all j, where 1n is
an all-ones vector of length n. Given the new notation,
our original problem (1) can be written compactly as:

minimize
X

f(X) (2)

subject to

n∑

j=1

dT

jxj ≤ ∆

1T

nxj = 1 ∀j = 1, . . . , n

X ≥ 0

where X ≥ 0 is an entry-wise inequality.

3.1 Franke-Wolfe Linearization

The optimization problem (1) has linear constraints
but its objective function is non-linear. In this paper,
we solve the problem as a sequence of linear programs,
also known as the Frank-Wolfe method. Each iteration
ℓ of the method consists of three major steps. First,
we compute the gradient ∇Xf(Xℓ−1) at the solution
from the previous step Xℓ−1. The gradient is a n ×
n matrix C, where ci,j = ∂

∂xi,j
f(Xℓ−1) is a partial

derivative of the objective function with respect to the
variable xi,j . Second, we find a feasible solution X′ in
the direction of the gradient. This problem is solved
as a linear program with the same constraint as the
original problem:

minimize
X

n∑

j=1

cT

jxj (3)

subject to

n∑

j=1

dT

jxj ≤ ∆

1T

nxj = 1 ∀j = 1, . . . , n

X ≥ 0

where cj is the j-th column of C. Finally, we find the
minimum of f between Xℓ−1 and X′, Xℓ, and make
it the current solution. Since f is convex, this mini-
mum can be found efficiently by ternary search. The
minimum is also feasible because the feasible region is
convex, and both X′ and Xℓ−1 are feasible.

Algorithm 1 SPPM: Sparse privacy preserving maps

Input: Starting point X0, number of steps L

for all ℓ = 1, 2, . . . , L do
C← ∇Xf(Xℓ−1)
V ← DWD
Find a feasible solution X′ in the direction of the
gradient C:

minimize
X

n∑

j=1

cT

jxj (4)

subject to
n∑

j=1

dT

jxj ≤ ∆

1T

nxj = 1 ∀j = 1, . . . , n

X ≥ 0

xi,j = 0 ∀(i, j) /∈ V

Find the minimum of f between Xℓ−1 and X′:

γ∗ ← argmin
γ∈[0,1]

f((1− γ)Xℓ−1 + γX′) (5)

Xℓ ← (1 − γ∗)Xℓ−1 + γ∗X′

Output: Suboptimal feasible solution XL

3.2 Sparse Approximation

The linear program (3) has n2 variables and there-
fore is hard to solve when n is large. In this section,
we propose an incremental solution to this problem,
which is defined only on a subset of active variables
V ⊆ {1, 2, . . . , n} × {1, 2, . . . , n}. The active variables
are the non-zero variables in the solution to the prob-
lem (3). Therefore, solving (3) on active variables V is
equivalent to restricting all inactive variables to zero.
The corresponding linear program is shown in (4) in
Algorithm 1. This linear program has only |V| vari-
ables. Now the challenge is in finding a good set of
active variables V . This set should be small, and such
that the solutions of (3) and (4) are close.

We grow the set V greedily using the dual linear pro-
gram of (4). In particular, we incrementally solve the
dual by adding most violated constraints, which corre-
sponds to adding most beneficial variables in the pri-
mal. The dual of (4) is (6) in Algorithm 2, where λ ∈ R
is a variable associated with the distortion constraint
and µ ∈ Rn is vector of n variables associated with the
simplex constraints. Given a solution (λ∗, µ∗) to the
dual, the most violated constraint for a given j is the
one that minimizes:

ci,j − λ∗di,j − µ∗
j . (8)

This quantity, called the reduced cost, has an intuitive
interpretation. We choose an example i in the direc-
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Algorithm 2 DWD: Dantzig-Wolfe decomposition

Initialize the set of active variables:
V ← {(1, 1), (2, 2), . . . , (n, n)}

while the set V grows do
Solve the master problem for λ∗ and µ∗:

maximize
λ,µ

λ∆ +
n∑

j=1

µj (6)

subject to λ ≤ 0

λdi,j + µj ≤ ci,j ∀(i, j) ∈ V

for all j = 1, 2, . . . , n do
Find the most violated constraint in the master
problem for fixed j:

i∗ = argmin
i

[ci,j − λdi,j − µj ] (7)

if (ci∗,j − λdi∗,j − µj < 0) then
V ← V ∪ {(i∗, j)}

Output: Active variables V

tion of the steepest gradient of f(X), so ci,j is small;
which is close to j, so di,j is close to zero (as λ∗ ≤ 0).
The search for the most violated constraint leverages
the problem structure. Therefore, our approach can be
viewed as an instance of Dantzig-Wolfe decomposition.

The pseudocode of our search procedure is in Algo-
rithm 2. This is an iterative algorithm, where each
iteration consists of three steps. First, we solve the
reduced dual linear program (6) on active variables.
Second, for each point j, we identify a point i∗ that
minimize the reduced cost. Finally, if the pair (i∗, j)
corresponds to a violated constraint, we add it to the
set of active variables V .

The pseudocode of our final solution is in Algorithm 1.
We refer to Algorithm 1 as Sparse Privacy Preserving
Mappings (SPPM), because of the mappings learned by
the algorithm. Algorithm 2 is a subroutine of Algo-
rithm 1, which identifies the set of active variables V .
SPPM is parameterized by the number of iterations L.

3.3 Convergence

Algorithm SPPM is a gradient descent method. In each
iteration ℓ, we find a solution X′ in the direction of the
gradient at the current solution Xℓ−1. Then we find
the minimum of f between Xℓ−1 and X′, and make it
the next solution Xℓ. By assumption, the initial so-
lution X0 is feasible in the original problem (1). The
solution X′ to the LP (4) is always feasible in (1), be-
cause it satisfies all constraints in (1), and some addi-
tional constraints xi,j = 0 on inactive variables. After
the first iteration of SPPM, X1 is a convex combina-

tion of X0 and X′. Since the feasible region is convex,
and both X0 and X′ are feasible, X1 is also feasible.
By induction, all solutions Xℓ are feasible.

The value of f(Xℓ) is guaranteed to monotonically de-
crease with ℓ. When the method converges, f(Xℓ) =
f(Xℓ−1). The convergence rate of the Frank-Wolfe al-
gorithm is O(1/L) in the worst case [5].

3.4 Computational Efficiency

The computation time of our method is dominated
by the search for n2 violated constraints in Algo-
rithm 2. To search efficiently, we implement the fol-
lowing speedup in the computation of the gradients
ci,j . The marginal and conditional distributions:

pB̂(b̂) =
∑

a,b

pA,B(a, b)pB̂|B(b̂ | b)

pB̂|A(b̂ | a) =

∑
b pA,B(a, b)pB̂|B(b̂ | b)
∑

b pA,B(a, b)

are precomputed, because these terms are common for
all elements of C. Then each gradient is computed as:

∂

∂p(b̂i | bj)
J(pa,b, pb̂|b) =

∑

a

p(a, bj) log
p(b̂i | a)

p(b̂i)

+
∑

a

p(a, b̂)

(
p(bj | a)

p(b̂i | a)
− p(a, bj)

p(b̂i)

)
.

Since all marginals and conditionals are precomputed,
each gradient can be computed in O(|A|) time.

The space complexity of our method is O(|V|), because
we operate only on active variables V .

We point out that the complexity of the algorithm
is closely linked to the sparsity of the optimal solu-
tion, which itself is related to the value of the distor-
tion constraint ∆. This means that some distortion
regimes may not be achievable with a given computa-
tional budget. Therefore one has to reduce ∆ in order
to have a sparser solution. In practice however, we did
not run into problems, and were able to generate map-
pings efficiently even when high distortion was needed
to drive the mutual information close to 0.

4 Evaluation

4.1 Datasets

Census Dataset: The Census dataset is a sample of
the United States population from 1994, and contains
both categoric and numerical features. Each entry in
the dataset contains features such as age, workclass,
education, gender, and native country, as well as in-
come category (smaller or larger than 50k per year).
For our purposes, we consider the information to be
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Figure 2: Left. Effect of parameters on privacy-distortion tradeoff. Synthetic data. Middle. Privacy distortion
tradeoff. Census data. Right. Privacy distortion tradeoff. Movie data.

released publicly as the seven attributes shown in Ta-
ble 1, while the income category is the private infor-
mation to be protected. In this dataset, roughly 76%
of the people have an income smaller than 50k. Due to
the categorical nature of these features, a natural dis-
tortion metric for this data is the Hamming distance,
and thus we use this metric in our experiments on this
data. Fig. 3 shows that the user profile consisting of
these 7 attributes can be a threat to income; the ROC
curve illustrates the success rate of a simple classifier
that tries to guess a user’s income category when there
is no privacy protection.

Movie Dataset: The well known MovieLens dataset
[1] consists of 1M ratings of 6K users on 4K movies.
Each movie comes annotated with metadata indicating
its genre. In MovieLens, there are 19 genres, that we
expanded as follows. We gathered the more extended
set of 300 genre tags from Netflix. From these, we se-
lect those that appear in at least 5% of movies, yielding
31 genres. For user j, we compute the preference for
genre i as the probability that the user chooses a movie
from the genre times the reciprocal of the number of
movies in that genre. We capture the user profile using
a binary vector of length 31; the bits corresponding to
the six most prefered genres are set to one. We treat
the preference vector as public but the gender of the
user as private. The fact that this profile can be a
threat to gender is illustrated in Fig. 4 which shows
the success of a classifier that tries to guess gender
when there is no privacy protection. Once more, as
the features are categorical, we use the Hamming dis-
tance for our evaluations on this dataset.

Synthetic Dataset: We consider synthetic data as
well since this allows us to freely vary the problem
size. The input distribution is specified in our exam-
ple in Sec. 2, namely the private attribute is a binary
variable A ∈ {0, 1}, and the public attribute B is per-
fectly correlated with A. By varying the parameter m
as defined in the example, we modify the size of the
alphabet of B, which allow us to asses the scalability.

The distortion metric is the squared l2 distance.

4.2 Benchmarks

Optimal mapping: The optimal mapping is the
solution to (1); for small scale problems we were able
to compute this using CVX without running out of
memory. On our server, we could solve optimally (1)
with alphabet size up to |B| = 212 = 4096.

Exponential Mechanism: The differential privacy
metric is most commonly used in a database privacy
setting, in which an analyst asks a query on a private
database of size n containing data from n users. The
privacy-preserving mechanism, which computes and
releases the answer to the query, is designed to satisfy
differential privacy under a given notion of neighbor-
ing databases. In the strong setting of local differential
privacy [16], users do not trust the entity collecting
the data in a database, thus each user holds his data
locally, and passes it through a differentially private
mechanism before releasing it to the untrusted entity.
In this case, the privacy-preserving mechanism works
on a database of size n = 1, and all possible databases
are considered to be neighbors. This local differential
privacy setting, based on input perturbation at the
user end, is comparable to our local privacy setting,
where user data is distorted before its release, but it
differs from our setting by the privacy metric that the
privacy mechanism is required to satisfy. More pre-
cisely, the local differential privacy setting considers a
database of size 1 which contains the vector b of a user.
The local differentially private mechanism pDP satis-
fies pDP (b̂|b) ≤ eε pDP (b̂|b′), ∀b, b′ ∈ B and ∀b̂ ∈ B̂.

As the non-private data in our 3 datasets is categor-
ical, we focus on the exponential mechanism [19], a
well-known mechanism that preserves differential pri-
vacy for non-numeric valued queries. More precisely,
in our experiments, we use the exponential mecha-
nism pDP (b̂|b) that maps b to b̂ with a probability

that decreases exponentially with the distance d(b̂, b)
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Figure 3: ROC for Naive Bayes Classifier with ∆ = 0.02 (Left), 0.14 (Middle) and 0.44 (Right). Census Data.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False positive rate
T

ru
e

 p
o

s
it
iv

e
 r

a
te

SPPM : L=100

No privacy

ExpMec

Uninformed guess

Figure 4: ROC for Logistic Regression with ∆ = 0.04 (Left), 0.13 (Middle) and 0.22 (Right). Movie Data.

pDP (b̂|b) ∝ exp
(
−βd(b̂, b)

)
, where β ≥ 0. Let dmax =

supb,b̂∈B d(b̂, b). This exponential mechanism satisfies

(2βdmax)-local differential privacy. Intuitively, the dis-

tance d(b̂, b) represents how appealing substituting b̂

for b is: the larger the distance d(b̂, b), the less ap-
pealing the substitution. To make a fair comparison
between the exponential mechanism and SSPM, the
distance d(b̂, b) used to define the exponential mech-
anism will be the same as the distance used in the
distortion constraint of the optimization problem (1).

In Section 4.3, d(b̂, b) will be the Hamming distance
for experiments on the census and the movie datasets,
and the squared l2 distance for the synthetic datasets.

In [7], it was shown that in general, differential pri-
vacy with some neighboring database notion, does not
guarantee low information leakage I(A; B̂) , for all pri-
ors pA,B. However, it was also shown in [18], that
strong ε-differential privacy, i.e. ε-differential privacy
under the neighboring notion that all databases are
neighbors, implies that I(A; B̂) ≤ ε. Local differential
privacy is a particular case of strong differential pri-
vacy. Consequently, the mutual information between
private A and the distorted B̂DP resulting from the
exponential mechanism pDP will be upperbounded as

I(A; B̂DP ) <= 2βdmax. We acknowledge that differ-
ential privacy was not defined with the goal of mini-
mizing mutual information. However, regardless of the
mechanism, mutual information is a relevant privacy
metric [7, 18, 24, 25, 22, 12], thus we can compare
these 2 algorithms with respect to this metric.

4.3 Results

Parameter Choices. Using synthetic data, we ex-
plore the privacy distortion tradeoff curve (in Fig. 2
Left) for different values of our algorithm’s parameter
L. First we observe that for small values of distortions,
the difference between the various curves is insignifi-
cant, which suggests that in this regime the optimal
mapping is indeed sparse. Second, as we increase L
accuracy improves as we approach the optimal solu-
tion. Since the gain of using L = 500 compared to
L = 100 seems small, and using 100 rather than 500
approximations is clearly much faster, we elect to use
L = 100 for further experiments.

Privacy Performance. We provide two ways of com-
paring SSPM and our benchmarks on two datasets.
We first compare them in Fig. 2 terms of tradeoff be-
tween privacy leakage, as measured by I(A; B̂), and
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distortion. Then we draw another more general, mean-
ingful, and fair comparison, in Fig. 3 and Fig. 4, by
comparing the ability of SSPM and our benchmarks
to defeat two different inference algorithms that would
try to infer private data by using the privatized data B̂.
ROC curves are agnostic and meaningful measures pri-
vacy that do not a priori favor a privacy metric (dif-
ferential privacy or mutual information).

We start by illustrating the privacy versus distortion
tradeoff for SPPM and our benchmarks, on the Cen-
sus dataset, in which each user is represented by a
vector of 7 attributes. We do not consider all possi-
ble values of this vector, as it would be prohibitive for
an exact solver and prevent us from comparing to an
optimal solution. Instead, we restrict the alphabet |B|
to the 300 most probable vectors of 7 attributes, since
we are mainly focused on a relative comparison. In
Fig. 2(Middle) we see that SPPM is nearly indistin-
guishable from the optimal solution whereas the expo-
nential mechanism (ExpMec) is much further away. To
bring the mutual information down from 0.5 to 0.07,
SPPM needs 0.05 distortion to achieve perfect privacy,
while ExpMec needs more than 8 times as much. Note
that for a given level of distortion, e.g. 0.1, 0.2, SPPM
achieves much better privacy than ExpMec as the mu-
tual information is significantly lower.

Next we consider the Movie dataset which is one order
of magnitude larger than the Census dataset. The re-
sults in Fig. 2(Right) mirror what we observed with
the Census data, namely that a given level of privacy
can be achieved with less distortion using SPPM as
opposed to ExpMec. For example, to reduce our pri-
vacy leakage metric from 0.6 to 0.05, SPPM requires
roughly 0.03 distortion whereas ExpMec needs approx-
imately 0.17, nearly 6 times as much. For both the
Census and Movie datasets, SPPM can achieve per-
fect or near-perfect privacy with a small distortion.

Differential privacy does not aim to minimize mutual

information, which explains why ExpMec does not per-
form as well as SSPM in Fig. 2. Another metric to
gage the success of our privacy mapping is to consider
its impact on a classifier attempting to infer the pri-
vate attribute. Recall that the goal of our mapping is
to weaken any classifier that threatens to infer the pri-
vate attribute. First, we consider a simple Naive Bayes
classifier that analyzes the Census data to infer each
user’s income category. We quantify the classifier’s
success, in terms of true positives and false negatives
(in an ROC curve) in Fig. 3. Recall that in an ROC
curve, the y = x line corresponds to a blind classi-
fier that is no better than an uninformed guess. The
weaker a classifier the closer it is to this line, and it
becomes useless when it matches this line. We con-
sider three bounds on distortion that allow us to ex-
plore the extremes of nearly no distortion (∆ = 0.02
in Fig. 3(a)), a large amount of distortion (∆ = 0.44
in Fig. 3(c)), and something in between (∆ = 0.14
in Fig. 3(b)). In the case of small distortion, all algo-
rithms make modest improvements over the no privacy
case. However even in this scenario, SPPM performs
close to optimal, unlike ExpMec that only slightly out-
performs the no privacy case. With only a very small
amount of distortion, not even the optimal solution
can render the classifier completely useless (i.e. equiv-
alent to the blind uninformed guess). On the other
hand, when a large distortion is permitted, then all al-
gorithms do naturally well (Fig. 3(c)). For a value of
∆ between these extremes, SPPM is close to optimal,
while ExpMec can only weaken the classifier a little.

In a second scenario, we study a logistic regression
classifier that analyzes the movie dataset to infer gen-
der. We focus on logistic regression for movie data
because it has been shown to be an effective classi-
fier for inferring gender [27]. Again we see in Fig. 4
that the findings essentially mimic those of the previ-
ous case. We thus conclude that, for a given distor-
tion budget, SPPM is more successful against inference
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threats because it can diminish the success of a clas-
sifier more than the exponential mechanism. In other
words, SPPM can provide more privacy than the ex-
ponential mechanism for the same level of distortion.

Why is it that SPPM consistently outperforms Exp-
Mec? Fig. 5 illustrates how these mappings work.
We plot the average probability of being mapped to
the kth closest point, together with the standard er-
ror that measures the variability among points. In
ExpMec, the probability of mapping one point to an-
other decreases exponentially with distance and the
same mapping is applied to all points (in other words
the standard deviation is null). With SPPM, many
points are mapped to themselves. This means that
the privacy of these points cannot be improved within
the distortion constraint. This can happen if a given
profile is already very private, or if there is no hope of
providing privacy. In both cases, the distortion budget
should not be wasted on such profiles, and SPPM is
able to detect these cases and save its budget for other
cases. ExpMec wastes some distortion on those points
which are forced to be mapped to close neighbours.
The key difference between SPPM and ExpMec is that
SPPM is not required to apply the same mapping to
each user, and can thus personalize the distortion, or
adapt it as needed. This flexibility leads to a fair bit of
variance as seen in Fig. 5. Because the probability of
mapping to another point does not decrease with the
distance from that point, we see a non-monotonically
decreasing curve with distance: some points are bet-
ter off being mapped to far neighbors rather than close
ones; e.g. users whose profile is hard to disguise.

To further understand the effect of the mappings that
SPPM proposes, we examine which features in a user
profile are impacted most by our distortions. In Tab. 1
we list the mutual information between a single pub-
lic feature (e.g., Education) and the private attribute
we wish to hide (e.g., income category). We see that
I(A; F ) is largest for Education, Marital status and
Occupation, indicating these features are the most cor-
related with the private attribute. This is intuitive
as, for example, more highly educated people tend to
make larger salaries. The table shows that these 3 fea-
tures experience the largest reduction in mutual infor-
mation after distortion, indicating that SPPM spent
its distortion budget on the biggest threats. This in-
tuitive property shows that the mappings learned de-
pend on the underlying prior distribution in a smart
way, such that with limited distortion budget the pri-
ority is on the biggest privacy threats. Another point
can be easily seen in the movie data in Tab. ??; here
the single features mutual information are rather low,
whereas the mutual information of the full vector of
features is significant. This means that a big part of
the privacy threat comes from co-occurrence of fea-
tures rather than individual features. This explains

I(A;F )
Feature F Examples before after
Age 10-20, 20-30,... 0.1064 0.0408
Education Bachelor, PhD,... 0.1502 0.0702
Marital status Divorced, Married,... 0.1241 0.0440
Occupation Manager, Scientist,... 0.1126 0.0367
Race Black, White,... 0.0192 0.0084
Gender Female, Male 0.0123 0.0082
Country Mexico, USA,... 0.0470 0.0203

Table 1: Mutual information between private at-
tribute A and public attributes F before and after
SPPM on Census dataset.

why it is not enough to simply reduce the mutual in-
formation of a single feature to obtain good privacy.

Scalability. Having established good privacy perfor-
mance, we now assess how the runtime performance
scales in terms of the size of the problem, shown in
Fig. 6. We fix the distortion constraint to be propor-
tional to the size of the problem, in order to keep a
similar difficulty as we grow the size. As stated in
Sec. 3.1, the time complexity is linear in L. This
trend is evident as we observe the gaps between the
lines for L = 3, 10, and 100. Importantly, we see that
our method scales with problem size better than the
optimal solution. We observe that the computation
speed of the exponential mechanism is very quick, and
note that indeed this is one of the salient properties
of this mechanism. Overall, this figure shows that our
method is indeed tractable and can compute the dis-
tortion maps within a few minutes for problems whose
alphabet size is on the order of tens of thousands.

Recall that we designed for computation efficiency by
smartly selecting a limited number of alternate user
profiles to map each original profile to. This corre-
sponds to the support size of p(B̂|bi) for all bi. In
Fig. 7 we show the histogram of the support sizes for
our SPPM mapping on the movie data. Although the
initial alphabet size is very large (above 3500), for most
users we don’t consider more than 10 alternate pro-
files, and in the worst case we consider up to 30. This
amounts to huge savings in computation and memory,
without sacrificing privacy.

5 Conclusion

In this paper, for the first time, we apply large scale LP
optimization techniques to the problem of data distor-
tion for privacy. We show that our privacy-preserving
mappings can be close to optimal, and consistently
outperform a state of the art technique called the Ex-
ponential Mechanism. Our solution achieves better
privacy with less distortion than existing solutions,
when privacy leakage is measured by a mutual infor-
mation metric. We demonstrated that our method can
scale, even for systems with many users and a large
underlying alphabet that describes their profiles.
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Abstract

We consider the problem of recovering sparse
correlated data on networks. To improve accu-
racy and reduce costs, it is strongly desirable
to take the potentially useful side-information of
network structure into consideration. In this pa-
per we present a novel correlated compressive
sensing method called CorrCS for networked
data. By naturally extending Bayesian compres-
sive sensing, we extract correlations from net-
work topology and encode them into a graphical
model as prior. Then we derive posterior infer-
ence algorithms for the recovery of jointly sparse
and correlated networked data. First, we design
algorithms to recover the data based on pairwise
correlations between neighboring nodes in the
network. Next, we generalize this model through
a diffusion process to capture higher-order cor-
relations. Both real-valued and binary data are
considered. Our models are extensively tested
on several real datasets from social and sensor
networks and are shown to outperform baseline
compressive sensing models in terms of recovery
performance.

1 INTRODUCTION

Networked data, from domains such as social network
of friends, hyper-linked networks of webpages and dis-
tributed network of sensors, are becoming increasingly per-
vasive and important in modern signal processing and ma-
chine learning. Recent research has demonstrated com-
pelling approaches to extract useful information from
these networked data, including latent structure of social
links (Kemp et al., 2004), community detection (Fortunato,
2010), etc. However, with the massive amount of data gen-
erated at an exploding rate, conventional ways of collect-
ing networked data are being challenged, particularly when
measurements are expensive and/or data are redundant.

Figure 1: A graphical illustration of Compressive Sensing
(CS) and Correlated Compressive Sensing (CorrCS) on
networked data. In CS, each sparse signal xi is recovered
independently as yi; in CorrCS, they are recovered jointly
with the network structure.

A significant finding of a large class of high-dimensional
data over the last two decades is their inherent spar-
sity (Candès and Wakin, 2008). As a robust tool to leverage
the sparsity, Compressive Sensing (CS) (Donoho, 2006)
has been developed to collect high-dimensional sparse data
from their low-dimensional projections. With sufficiently
sparse signals, compressive sensing is guaranteed to re-
cover the original signal from fewer samples required by
Shannon-Nyquist limit (Candès, 2006). Compressive sens-
ing has therefore been sucessfully applied to attack vari-
ous problems of data collection in a wide range of fields,
such as medical imaging (Lustig et al., 2008), low-level vi-
sion (Yang et al., 2008), etc.

Successful attempts have been made to apply compressive
sensing to collect and analyze sparse networked data. For
example, in studying large-scale sensor networks, the pi-
oneering work by Luo et al. (2009) shows a successful
scheme to efficiently gather spatially sparse sensor read-
ings. For social networks, Compressive Network Anal-
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ysis (Jiang et al., 2011) proposes a novel framework for
clique detection. These approaches typically require find-
ing a proper basis over the network topology so that data
could be sparsely represented.

In many cases, however, it is unclear how the network
topology could imply the sparse structure of the data, and
therefore difficult to identify the sparse basis. Take the
social network for example. It has been known that so-
cial influence and correlation exist at a large statistical
level (Backstrom et al., 2006), but it turns out hard to di-
rectly model due to unobserved latent factors (Anagnos-
topoulos et al., 2008). An interesting question would be,
under uncertainty about correlation of sparse data across
the network, is it possible to seriously incorporate the net-
work structure into compressive sensing and hopefully to
improve recover performance?

In this paper, we present Correlated Compressive Sensing
(CorrCS) to solve this problem. In particular, the setting
in Figure 1 is considered. Each node i is equipped with a
sensor, and we aim to recover the original high-dimensional
data xi from its low-dimensional measurements yi. In-
stead of independently recover sparse signals, CorrCS in-
corporates side-information of the network structure and
build correlation into signal modeling jointly with the in-
herent sparsity. By adopting a probabilistic approach, we
show that it is possible to exploit the flexibility of graphical
models to improve compressive sensing. Our approach is
extensively tested on several real datasets, including prod-
uct review data from social trust networks, social polling
data and Air Quality Index from distributed sensors. The
results show that CorrCS outperforms CS in terms of re-
cover performance and demonstrates the usefulness of cor-
relation in sensing networked data.

2 PRELIMINARY

In a typical sensing problem, the data of interest is regarded
as a signal, which is a vector x in a high-dimensional
space Rr. A measurement of x is a low-dimensional vec-
tor y ∈ Rm (m ≤ r) from which the information of x can
be extracted. From a Bayesian point of view, this corre-
sponds to inferring p(x | y) ∝ p(y | x)p(x). The likeli-
hood term p(y | x) describes a sensing model, which is the
noisy measurement process, and the term p(x) corresponds
to a signal model, which represents the prior knowledge.

2.1 THE SENSING MODEL

A large body of sensing methods focus on the linear system

y = V x (1)

with the goal to recover x from y accurately. However,
since r � m, the inversion problem is highly ill-posed due
to the undetermined solutions. One way to deal with the

uncertainty is to adopt a Gaussian generative model for y
as follows,

y | x ∼ N (V x, β), (2)

where β is the variance controlling the precision of mea-
surement.

2.2 THE SIGNAL MODEL

Many natural signals x ∈ Rr can be sparsely represented
under some basis Φ = [φ1,φ2, ...,φK ] as

x = Φz (3)

where z is the sparse coefficients such that ||z||0 = S �
K. Compressive sensing (Donoho, 2006; Candès and
Wakin, 2008) shows that if the signal x is sufficiently
sparse, one can recover it effectively through minimizing
the number of non-zero components in z:

min ||z||0
s.t. y = Mz (4)

where M = VΦ. In practice, it is often hard to solve
the non-convex objective in (4) exactly, and a `1 relaxation
is usually adopted, which corresponds to the basis pursuit
(BP) algorithm (Chen et al., 1998). Candès et al. (2006)
have proved that, under certain isometry properties, one can
recover x perfectly from m = Ω(S log r) observations y
through BP.

To allow extra flexibility that we would exploit later, the
framework of CS could be reformulated approximately as
a Bayesian inference problem (Ji et al., 2008), and its goal
is to design a signal model p(z;Γ) with some parameter Γ
so that z is controlled to be sufficiently sparse. Below we
describe two common sparse signal models in social and
sensor networks.

`1 prior for real-valued z. Using sparsity-favoring
Laplace priors on the coefficients (Babacan et al., 2010),
one could use the following signal model:

p(z;λ) =
λK/2

2K
exp

(
−
√
λ||z||1

)
(5)

In practice, it is often inconvenient that the Laplace prior
is not conjugate to the Gaussian signal model. However,
one can show that (5) is equivalent to a hierarchical conju-
gate model parametrized by Γ = ({γk}Kk=1, λ) (Seeger and
Nickisch, 2008).

p(z;Γ) =
K∏

k=1

N (zk; 0, γk)

p(Γ) = Gamma(γk; 1,
λ

2
) (6)

The inference of z for (6) can be efficient via the EM algo-
rithm (Dempster et al., 1977).
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Beta process for binary z. An efficient way to charac-
terize the sparsity of binary-valued coefficients is the Beta
process (Paisley and Carin, 2009). In practice, a finite trun-
cation of the process is used and leads to the following hi-
erarchical conjugate model:

p(z;Γ) =
K∏

k=1

Bernoulli(zk;πk) (7)

p(Γ) =

K∏

k=1

Beta(πk;
a

K
, b(1− 1

K
))

where Γ = ({πk}Kk=1, a, b) and a, b are hyper-prior af-
fecting sparsity. The exact posterior inference of (7) is in-
tractable, but can be approximated through MCMC (Mo-
hamed et al., 2011) or mean-field variational infer-
ence (Paisley and Carin, 2009).

3 CORRELATED COMPRESSIVE
SENSING

Now, consider the problem of collecting data distributed
on a network of n nodes. When the network structure is
known, it can be described by a graph G(V,E), where the
edges have weight

Eij =

{
wij , node i and j are adjacent
0, otherwise , (8)

where wij encodes the side-information about the correla-
tion between the node i and j. In practice, such weight can
either be collected directly from network or be computed
through some metrics such as Pearson correlation and some
function of geographic distance. When this weight is not
exactly available, it is convenient to set wij = 1 for all
edges uniformly. Let (Z,X,Y ) = {zi,xi,yi}ni=1, the
Bayesian formulation of sensing is generalized as the fol-
lowing principle

p(Z|Y ) ∝ p(Z)

N∏

i=1

N (M izi, β). (9)

Instead of applying compressive sensing independently to
each node (i.e. p(Z) =

∏
i p(z

i)), Correlated Compres-
sive Sensing (CorrCS) fuses the network structure G into
recovery as side-information. To fulfill this goal, a joint
distribution p(Z) is explored in this section to capture the
notion of joint sparsity and correlation.

3.1 PAIRWISE CORRELATION

The simplest form of correlation among networked data
is pairwise according to the edge connecting neighbor-
ing nodes. Inspired by graphical models, we con-
sider a range of pairwise Correlated Compressive Sensing

(CorrCS-Pair) that can be formulated as the Gibbs dis-
tribution

p(Z | Γ) ∝ exp
(
−
∑

i

Si− c
∑

(i,j)∈E
Cij(zi, zj)

)
. (10)

where Si is the sparsity of individual node zi controlled by
hyper-parameter Γ and Cij models the pairwise correlation
between two neighboring signal coefficients zi, zj . The
parameter c controls prior on the strength of correlation.

Notice when c = 0, equation (10) reduces to independently
applying BCS to each node. And the bigger c is, more cor-
relation between neighboring nodes is favored over spar-
sity. On networked data with inherent correlation, we
would expectedly improve the recovery performance with
proper choice of positive c. However, if c→∞, the model
would totally neglect sparsity, and therefore be undesirable.
This variation of the recovery performance happens in ac-
tual experiments, as will be discussed later.

Below we consider two specific forms of CorrCS for real-
valued and binary networked data. We discuss their infer-
ence algorithm in section 3.3.

Laplace-GRF Model. Assume Z = Rk×n. Often we
have the prior knowledge that neighboring sparse coeffi-
cient zi, zj are close. This intuition leads to combining
Laplace prior and Gaussian Random Field (GRF). Let

Si = ||zi||1
Cij = wij ||zi − zj ||2 .

The distribution p(Z ; Γ) is jointly Gaussian.

Beta-Ising Model. Assume Z = {0, 1}k×n. This case
is appealing for potential social network applications. For
example, zij could be a latent feature indicating whether
user i likes the product j. The Beta process (7) enforces the
sparsity of binary coefficients. And based on similar idea
of closeness, the Ising model shows a way to incorporate
pairwise correlation into the model:

Cij =
K∑

k=1

wij(2zik − 1)(2zjk − 1). (11)

3.2 DIFFUSION PROCESS

We show that the pairwise correlation for real-valued sig-
nals can be generalized through a Diffusion Process (DP)
on the graph G. The Correlated Compressive Sensing with
Diffusion Process (CorrCS-DP) characterizes the covari-
ant structure of the latent signals with a generative model,
whose zeroth-order approximation is compressive sensing,
and first-order approximation is pairwise CorrCS.

Diffusion Process. For any graph G(V,E), a value func-
tion f : V → R can be defined. Diffusion Process (DP)
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is a natural class of stochastic processes on graphs that
yields covariance structure of the function f (Kondor and
Lafferty, 2002). First, we extend our value function as a
function of time t: define f [t] be the snapshot vector of
[f(v1), f(v2), ..., f(vn)] at time t. Next, a diffusion gen-
erator H is defined as a Laplacian matrix of graph G as:

Hij =





wij for i 6= j and j ∈ A(i)
−∑i′ wii′ for i = j
0 otherwise.

(12)

Then H is applied to the value function in the following
way

∂f [t]

∂t
= αHf [t]. (13)

Solving (13), we obtain

f [t] = Kf [0], (14)

where K = exp(αtH) is the Diffusion Kernel. Notice that
heat kernel is always invertible, which means given f [t] at
any time t it is easy to compute f [0] = exp(−αtH)f [t].
Notice that when t = 0, K = I; when t is small, we have
the first-order approximation K = I − αtH .

Correlation via Diffusion. In CorrCS, we can define fk :
V → R for each dimension of the features as f ik = zik,
so the snapshot fk is a vector. By studying the statistical
characteristics of fk, k = 1, 2, ...,K, we can then build a
correlated sparse signal model p(Z), which is the core of
CorrCS-DP.

Imagine that fk is generated through the following process:
Initially fk[0] is sparse. This means each entry f ik[0] is
distributed i.i.d as

f ik[0] ∼ N
(

0, γik

)
, ∀vi ∈ V (15)

Hyper-parameters γik control the sparsity of each entry.
They are both drawn from hyper-priors according to equa-
tion (6).

A diffusion process is then run on the graph G(V,E) and
stops at some time t producing fk[t] = Kfk[0]. Using
the diffusion-based generative model, the inference prob-
lem (9) for real-valued signals becomes

p(Z | Y ;Γ) ∝ Pr(Γ) exp
(
− 1

2

∑

k

(fk)>(K−1)>DkK
−1fk

−1

2
β
∑

i

(yi −Mixi)
>(yi −Mixi)

)
(16)

where Dk = diag(γk)−1. Notice that in this formulation,
we no longer need constant c to control the extent of corre-
lation, since it is directly induced by the prior uncertainty
γik. A few observations can be made about the connec-
tion of CorrCS-DP to other compressive sensing methods
summarized as follows.

Proposition 3.1. Using zeroth-order approximation K :=
I , where I is the identity matrix, CorrCS-DP subsumes
BCS.

Proof. Straightforward. By replacing K := I in (16), the
posterior p(X|Y ) is exactly the same as BCS.

Proposition 3.2. Using first-order approximation K :=
I −αtH , CorrCS-DP reduces to Laplace-GRF model.

Proof. This claim is induced by the general property of
Laplacian H that f>k Hf =

∑
ij wij(f

i
k − f jk)2. Using

the first order approximation, we have

− log p(Z|Y ;Γ)=
1

2

∑

ik

(
fki
γki

)2 − αt
∑

k

(fk)>DkHf
k

+Const (17)

Let dki = 1/(γki )2. Notice H is a Laplacian matrix,

−(fk)>DH
k f

k=
∑

ij

wij

(
dki (fki )2 + dkj (fkj )2

−(dki + dkj )fki f
k
j

)

=
∑

ij

wij(
di + dj

2
)(fki − fkj )2

−αt
2

∑

i

(Hdk)i

Let
S =

1

2

∑

ik

(fki )2((I − αt

2
)dk)i

and

Cij = wij(
di + dj

2
)(fki − fkj )2,

then p(X|Y ;Γ) ∝ exp(−S − ∑
ij Cij) shows that

Corr-DP reduces to a pairwise correlation model.

3.3 INFERENCE ALGORITHM

The exact inference of CorrCS is largely intractable due to
two reasons. First, the signal model and the sensing model
is not in same conjugate family. Second, even if p(X;Γ) is
jointly Gaussian, in real applications either the number of
nodes or the dimension of features is big.

Instead, we resort to approximation methods and de-
velop the posterior inference based on Variational Bayes
EM (Bernardo et al., 2003). In particular, we use the
mean-field approximation p(X|Y ;Γ) =

∏
ik q(zik;Γ)

and perform the following two-step scheme. In the E-
step, we propagate information across nodes to spread cor-
relation, which can be related to a message-passing pro-
cess (Donoho et al., 2009); in the M-step, we update Γ to
enforce sparsity. The details are outlined in Algorithm 1.
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Algorithm 1 Correlated Compressive Sensing

1: Input: Network G(V,E), Y = [y1,y2, ...,yn], basis
Φ, measurement matrices V i and iter.

2: for i = 1→ n do
3: compute M i = V iΦ for all i = 1, 2, ..., n.
4: initialize zi = (M i)>yi.
5: end for
6: for j = 1→ iter do
7: for i = 1→ n do
8: for k = 1→ k do
9: Update factor qik(zik) using equation (19), (20),

(21).
10: end for
11: end for
12: for i = 1→ n do
13: For binary case, use equation (22) to update πi;

for real-valued case, use equation (24) to update
γi.

14: end for
15: end for

E-Step: Spread Correlation.

In the pairwise case, the update algorithm in general is

qi(z
i
k) ∝ exp

(
Eq(zi¬k)[

1
2β||yi −Mizi||2 + Si]

+c
∑

j∈A(i)

Eqj(zj)[Cij + Cji]
)
. (18)

where zi¬k denotes all variables in zi except zik. Intuitively,
the first expectation in (18) propagates information across
dimensions of zi, while the second expectation in (18)
spreads correlation among different nodes on the graph via
the edges in between. Notice that for directed networks
wij 6= wji, the information propgates forward and back-
ward the edge in the same way, due to the symmetry of
Cij + Cij .
Specifically, for Beta-Ising model,

q(zik = 1) ∝ πik exp
(
− 1

2β(M i
k)>(M i

k)

−2(M i
k)>(yi −M i

¬kE[zi¬k])

+c
∑

j∈A(i)

(wij + wji)(2z
i
k − 1)

)

q(zik = 0) ∝ 1− πik.

(19)

Similarly for Laplace-GRF model, the mean-field up-
date for each factor is qik(zik) = N (µik, σ

i
k), where

σik= (β(M i
k)>M i

k + 1/γik)−1

µik= σik ·
(
β(M i

k)>(yi −M i
¬kµ

i
¬k)

+c
∑

j∈A(i)

(wij + wji)µ
j
k

)
.

(20)

where µi¬k denotes all entries in µi except µik. For the ex-
tention of Laplace-GRF model, CorrCS-DP contains
long-range interaction among the node, so all other nodes
contribute to the distribution of the current node being up-
dated. As in Laplace-GRF, we still have qik(zik) =
N (µik, σ

i
k), but instead

σik=
(
β(M i

k)>M i
k + Ukii

)−1

µik= σik ·
(
β(M i

k)>(yi −M i
¬kµ

i
¬k)

+
∑
j∈V

(Uk¬i + (Uk)>¬i)
>ujk

)
.

(21)

where Uk = K−TDkK
−1 and uk = [µ1

k, µ
2
k, ..., µ

n
k ].

Iteratively updating the factors according to equation (20),
(19) and (21) guarantees convergence (Wainwright and Jor-
dan, 2008).

M-Step: Update hyper-parameters. With the expec-
tation of current belief about the signal to recover, we
can further update the hyper-parameters Γ to enforce spar-
sity based on EM algorithm (Dempster et al., 1977). For
Beta-Ising, we update the parameters of the Bernoulli
prior πik as follows

πik ∼
a/K + E[zk]− 1

a/K + b(1− 1/K)− 1
. (22)

For Laplace-GRF, we update the global parameters

γik = − 1

2λ2
+

√
1

4λ2
+

(σik + (µik)2)

λ
. (23)

The update of γik in CorrCS-DP is similar to
Laplace-GRF. Specifcally, let Qk be a diagonal matrix
at time t such thatQkii = σik, compute Q̃k = K−1QkK−>,
which can be regarded as the uncertainty about fk[0]. Then
we modify (24) as

γik = − 1

2λ2
+

√
1

4λ2
+
Q̃kii
λ
. (24)

Combining E-step and M-step, we can jointly optimize Γ
and infer Z, which eventually recovers the networked data
on the graph G.

4 EXPERIMENT

We evaluate Correlated Compressive Sensing (CorrCS)
empirically on real datasets from social and sensor net-
works with pairwise or Diffusion-like correlation.
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4.1 SOCIAL NETWORK DATA WITH PAIRWISE
CORRELATION

Using compressive sensing with pairwise correlation,
we test the two recovery models Laplace-GRF and
Beta-Ising on two datasets: product review on Epin-
ion 1 and consumer polling data in Michigan.

4.1.1 Performance on different datasets

Michigan Polling Data. The social polling data is col-
lected from a survey of consumers in Michigan with 500
monthly telephone calls from January, 1978 to December
2012. The data is real-valued aggregation of four hundred
economic indices. It has been known that pairwise corre-
lation exists in these indices. Using half of the dataset as
past history, this pairwise correlation is computed through
Pearson correlation and taken as the weightwij . Therefore,
we establish a graph of features representing their inherent
correlation. Furthermore, the data is continuous real values
and to sparsify it, we use online sparse matrix factoriza-
tion (Mairal et al., 2010) to find a set of sparse basis.

We test Laplace-GRF model on the Michigan polling
data with a = 1, b = 0.1 and c = 1. As measurements,
we randomly select a fraction of the polling data for each
feature. We refer to the dimension of the selected data ver-
sus the dimension of the original data as measurement ra-
tio. The performance is evaluated via Mean Squared Error
(MSE) of the recover signal with respect to the original one.
The MSE is normalized by the 2-norm of the original sig-
nal. For independent compressive sensing, we include two
popular choices – Bayesian Compressive Sensing (Ji et al.,
2008)(BCS) and Orthogonal Matching Pursuit (Tropp and
Gilbert, 2007)(OMP) – as baseline algorithms. Notice that
some baseline implementations of compressive sensing,
such as Basis Pursuit (Chen et al., 1998)(BP), are too slow
and impractical for networked data.

The result is reported in Figure 2. As we can see,
Laplace-GRF outperforms BCS and OMP largely for
small measurement ratios (less than 0.6). When the mea-
surement ratio is large (exceed 0.6), Laplace-GRF will
have a performance similar to BCS, and it still outperform
OMP to a big extent. Correlation is less useful for large
measurement ratios, mainly because the numbers of obser-
vations are already sufficient for sparse recovery. However,
since in practice, people usually use a measure ratio in the
rang [0.2, 0.5], and rarely measure more than 60% of the
data for recovering. Hence, this will not have strong influ-
ence on Laplace-GRF’s practical use.

To measure the superiority of Laplace-GRF for small
measurement ratio, we could compare the minimum mea-
surement ratio that is needed to achieve a fixed accuracy
level (i.e. MSE level) for different models. Like in this

1Available at trustlet.org.
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Figure 2: Performance of Laplace-GRF model versus
the BCS model and OMP on the polling data.

dataset, we compare the minimum measurement ratio for
different models to achieve a MSE not more than 0.2: our
Laplace-GRF needs a measurement ratio of 0.23, BCS
needs 0.32, while the most common baseline algorithm
OMP needs 0.56. We could see that, to achieve this same
recovery effect, Laplace-GRF needs 21% less measure-
ments than BCS, and 59% less measurements than OMP.
This result may imply that Laplace-GRF model could
have valuable practical use since we could use a small num-
ber of measurements to recover a polling result, which is
very close to the original ones. And by considering the in-
herent correlation between these indices, we could reduce
the number of measurements by a ratio of 21% to recover
a result with MSE 0.2 on this data, which means we could
save a great deal of costs for this poll.

Epinion Data. The Epinion data is derived from the social
product review network Epinions with 17,022 customers
and 139,738 products. The graph G is built from the trust-
list of all users: wij = 1 if and only if user i trusts user j,
and therefore it is directed. To reduce the dimensionality of
features, we select a subset of the most 100 popular prod-
ucts. Then zij represents whether customer i liked product
j. The dataZ is inherently sparse with only 5 to 10 nonzero
per column, because the fraction of products rated by each
customer is small. As measurements, each column zi is
projected to a low-dimensional space.

We test Beta-Ising model on the Epinion dataset
against Bayesian Compressive Sensing (BCS) with beta
prior. We choose λ = 1, c = 0.3. For the binary Epin-
ion data, MSE is not a good choice because the data is zero
almost everywhere. Instead, we regard the recovery as pre-
dicting label zij and use F1 score from classifier evalua-
tions, which is the harmonic mean of precision (ratio of
number of correct 1’s we recover over the total number of
1’s in our recovery result) and recall (ratio of number of
correct 1’s we recover over the total number of 1’s in the
ground truth).
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Figure 3: Performance of Beta-Ising model versus the
Bayesian-Compressive Sensing on the Epinion data.

Figure 3 shows the result under F1 score. It can be seen that
with correlation, the performance of BCS can be improved
with a varying number of measurement ratios.

In our experiment, Beta-Ising model takes approximately
the same amount of time for one iteration as BCS does,
which indicates that it is a feasible and practical method
for recovering binary networked data.

4.1.2 Sensitivity evaluation

Impact of parameters. In these two datasets, all parame-
ters we could set are the parameter of the hierarchical con-
jugate prior a, b, λ and weight c. As has been discussed in
BCS (Ji et al., 2008), our models are not sensitive the pa-
rameters a, b, λ. So in this paper, we focus on the impact of
the weight parameter c on the performance of the CorrCS
models.

The choice of c is the key to CorrCS, which can be viewed
as a regularization parameter controlling the tradeoff with
sparsity. To evaluate the impact of the c on the perfor-
mance, we test the variation of the behavior of the CorrCS
model on different scenario. For example, consider the
Beta-Ising model on the Epinion data, we compare
the variation of the recovery F1 score corresponding to
the change of c when some reasonable measurement ra-
tios are selected (15%, 25% and 35%). Figure 4 shows that
among all these 3 measurement ratios, the performance of
this model will be improved when c starts to grow from
0, and will be demoted when c pass some specific values.
This result accords with our discussion about c in Section
3.1. This kind of variation of the performance according to
c’s variation is reasonable since different values of c imply
different extents that we care about the inherent correlation
between nodes in the network structure. This experiment
show us that the performance will have the same trends of
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Figure 4: Relationship between the performance of the
Beta-Ising model and the parameter c on different measure
ratios.

variation on different measurement ratios when c is chang-
ing.

It is worth noting that among the 3 reasonable measurement
ratios, the best c’s that will induce an optimal performance
are very close. As shown in Figure 4, the model will pos-
sess an optimal performance when c is some value among
0.3. If c = 0.3, then the model will always have a nearly
optimal recovery result as long as the measurement ratio is
in a reasonable range. Therefore, in this model, we could
choose an optimal choice of c that works well on all rea-
sonable cases.

Impact of noise on the measured data. To test the ro-
bustness of these two models, we test the performance of
our model on the two datasets when noises are added. More
precisely, we add a Gaussian noise at each dimension of the
observation y, where the standard deviation of this noise at
each dimension is κ times the original value of this dimen-
sion, where κ is Signal-to-Noise Ratio. We test the perfor-
mance of the two models as κ increases from 0 to 0.5 on
different scenarios (i.e. different measure ratios and weight
parameters). As can be seen in Figure 5, this two models
possess strong robustness on the two datasets since even if
κ goes to 0.5 the recovery result will not vary too much.
The Beta-Ising model on the Epinion dataset has a
slightly better robustness than that of the Laplace-GRF
model on the polling dataset since it deals with binary vari-
ables, whose robust recovery turns out to be easier.

4.2 POLLUTION DATA FROIM SENSOR
NETWORK

The Beijing pollution data includes a network of 22 mon-
itoring stations collecting data in the same time window
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Figure 5: Robustness of CorrCS on the 2 datasets when
some noise is added to the measure. (a). Robustness of the
Laplace-GRF model on the Polling dataset. (b). Robust-
ness of the Beta-Ising model on the Epinion dataset
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Figure 6: Performance of CorrCS-DP on Air Quality
Dataset. Recovery accuracy of CorrCS-DP compared with
BCS and OMP.

from Feb. 8th 2013 to Dec. 17 2013. The Air Quality
Indexes (AQI) PM2.5 is recorded at an interval of 1 hour.
The geography information of the sensors are available as
GPS coordinates (gi, li), which we use to compute the edge
weight of the sensor network through their euclidean dis-
tance eij = exp(−θ

√
(gi − gj)2 + (li − lj)2).

The time sequence data is divided into 22 chunks, with
2 weeks of pollution data each chunk. The data is then
split into two parts. Then we use 11 chunks to train a
set of sparse basis using online sparse matrix factoriza-
tion (Mairal et al., 2010), and also as cross-validation to
find the best choice of diffusion time t = 0.1 and c = 5.
The rest 11 chunks are used to test CorrCS and its coun-
terparts. To simulate a real setting of measurement, we ran-
domly select a portion of the samples as measurement and
try to recover the rest. To test recovery accuracy in vari-
ous situations, we change the ratio of measurement from 0
to 1 and compute the mean square error of the recovered
signals.

Figure 6 and 7 shows the recovery accuracy and conver-
gence rate of CorrCS-DP on the pollution dataset with
comparison to the compressive sensing counterparts. The
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Figure 7: Convergence of recovery accuracy with number
of iterations.

Objective MSE CorrCS-DP OMP BCS
0.1 0.30 0.60 0.54

0.15 0.18 0.41 0.43
0.2 0.13 0.29 0.35

Table 1: Minimum measurement ratio to reach some partic-
ular values of MSE on the AQI dataset on different models

results are averaged over 10 independent runs. From Figure
6 we can see that CorrCS largely improves the recovery
accuracy for various ratio of measurement, due to exploit-
ing the correlation among different nodes. To measure the
improvement of CorrCS-DP comparing to the other two
models precisely, we could again compare the necessary
minimum measurement ratio to reach some particular val-
ues of MSE on this data set on different models. As shown
in Table 1, to reach the same MSE, CorrCS-DP could
measure at least 40% less data than the other two models.
Furthermore, as shown in Figure 7, CorrCS converges in
about 3-4 steps. The convergence is faster than both OMP
and BCS, and therefore demonstrates CorrCS-DP to be an
efficacious and pragmatic correlated-recovery model.

5 RELATED WORK

Last two decades have witnessed significant advances in
the theory and application of sensing sparse signals. Com-
pressive sensing exploited the fact that natural signals
are sparse and compressive under proper basis and de-
signed sampling algorithms beyond the Nyquist-Shannon
limit (Candès and Wakin, 2008). The theory of compres-
sive sensing was developed by Candès et al. (2006) to
explain this novel recovery performance. This theory was
further improved by Candès and Tao (2006) to account for
noisy measurements. The underlying property empower-
ing sparse recovery is Restricted Isometry Property (RIP)
of measurement matrices (Candès, 2008). On the algorith-
mic side, the first attempts to solve compressive sensing
problems rely on `1 minimization under linear program-
ming (Chen et al., 1998; Candès and Tao, 2005). Instead
of optimizing with a large number of constraints, Orthog-
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onal Matching Pursuit (Tropp and Gilbert, 2007) used a
greedy heuristic to find solutions close to `0 optimum. To
facilitate large-scale applications, Donoho et al. (2009) bor-
rowed ideas from graphical models and derived a message
passing algorithm for compressive sensing.

The Bayesian formulation of compressive sensing (BCS)
is first proposed by Ji et al. (2008), which used a tractable
conjugate Gamma prior on signal precision to enforce spar-
sity. It was shown that Bayesian compressive sensing al-
lows uncertainty estimate and adaptive sampling. Based
on BCS, Ji et al. (2009) developed a multi-tasking com-
pressive sensing algorithm that allows simultaneously data
collection from multiple sensors. Babacan et al. (2010)
showed that stronger sparsity can be achieved for BCS with
an conjugate prior on signal variance that is equivalent to
the Laplace prior. As a counterpart of Laplace prior, beta
prior is also commonly used (Paisley and Carin, 2009),
with an additional latent variable controlling the support of
signals. By comparing Laplace and Beta priors for sparse
representation, Mohamed et al. (2011) concluded that Beta
prior enforced stronger sparsity than the Laplace prior.

Real data is typically not sparse and therefore one must
take effort in finding the appropriate basis. With a data-
drive approach, dictionary learning for sparse basis orig-
inated from efforts in reproducing V1-like visual neu-
rons through sparse coding (Olshausen and Field, 1997).
Aharon et al. (2006) generalized the K-means clustering al-
gorithm, and computed sparse decomposition by iteratively
updating sparse coefficients and dictionary items. Mairal
et al. (2009) proposed online dictionary learning methods,
which leads to efficient computation of sparse coding.

Compressed sensing has find great applications in sensor
networks. It was first successfully applied to network mon-
itoring for optical and all-IP networks (Coates et al., 2007).
In terms of data gathering, Luo et al. (2009) constructed
a sensor network with a sink collecting compressed mea-
surements, which is equivalent to a random matrix projec-
tion. Xu et al. (2013) considered more general compressed
sparse functions for sparse representation of signals over
graphs. Other than collecting data, compressive sensing
was also used as a network analysis tool to identify social
community on graphs (Jiang et al., 2011).

The topic of correlation in compressive sensing has been
explored preliminarily in various ways. Shahrasbi et al.
(2011) used belief propagation to handle time-correlated
signals with compressive sensing. Arildsen and Larsen
(2014) explores the correlation of signal and measurement
noise. In terms of networked data, Feizi et al. (2010) con-
siders a distributed setting and a joint recovery model. As
far as we know, our work is the first to explicitly incorpo-
rate graph structure as a hint of correlation.

Diffusion process has long been used as a general tool
to capture correlation among data (Kondor and Lafferty,

2002). Ma et al. (2008) used diffusion process to model
marketing candidate selection in social networks. The dif-
fusion process may also be utilized to produce an represent-
ing wavelet basis on graphs and manifolds (Bremer et al.,
2006). Using diffusion wavelets, it is possible to sparsify
signals on different graph topologies and allow compres-
sive sensing (Haupt et al., 2008). However, our correlated
compressive sensing does not rely on the strong assump-
tion that data on the network should be sparse under some
basis, but rather weakly correlated.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present Correlated Compressive Sensing
(CorrCS) to leverage correlation among networked data
and to empower better sparse recovery. Using a Bayesian
approach, CorrCS allows flexible representation of prior
knowledge about correlation via a graphical model. Two
common types of correlation of networked data are consid-
ered: pairwise and diffusion-based. We have shown the
diffusion-based formulation subsumes the pairwise case
via a low-order approximation. Through extensive empir-
ical evaluation on real data on social and sensor networks,
we have demonstrated the advantage of correlated com-
pressive sensing over its counterparts.

As future work, we are interested in showing bounds in its
recovery performance to better understand its properties.
Also we are interested in developing nonparametric exten-
sions of the current approach to allow adaptive inference of
key parameters and the basis for sparse representation.
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Abstract
The existing work on densification of one permu-
tation hashing [24] reduces the query processing
cost of the (K, L)-parameterized Locality Sen-
sitive Hashing (LSH) algorithm with minwise
hashing, from O(dKL) to merely O(d + KL),
where d is the number of nonzeros of the data
vector, K is the number of hashes in each hash
table, and L is the number of hash tables. While
that is a substantial improvement, our analy-
sis reveals that the existing densification scheme
in [24] is sub-optimal. In particular, there is no
enough randomness in that procedure, which af-
fects its accuracy on very sparse datasets.

In this paper, we provide a new densification pro-
cedure which is provably better than the existing
scheme [24]. This improvement is more signifi-
cant for very sparse datasets which are common
over the web. The improved technique has the
same cost of O(d + KL) for query processing,
thereby making it strictly preferable over the ex-
isting procedure. Experimental evaluations on
public datasets, in the task of hashing based near
neighbor search, support our theoretical findings.

1 Introduction
Binary representations are common for high dimensional
sparse data over the web [8, 25, 26, 1], especially for text
data represented by high-order n-grams [4, 12]. Binary
vectors can also be equivalently viewed as sets, over the
universe of all the features, containing only locations of
the non-zero entries. Given two sets S1, S2 ⊆ Ω =
{1, 2, ..., D}, a popular measure of similarity between sets
(or binary vectors) is the resemblance R, defined as

R =
|S1 ∩ S2|
|S1 ∪ S2|

=
a

f1 + f2 − a
, (1)

where f1 = |S1|, f2 = |S2|, and a = |S1 ∩ S2|.
It is well-known that minwise hashing belongs to the Lo-
cality Sensitive Hashing (LSH) family [5, 9]. The method

applies a random permutation π : Ω → Ω, on the given
set S, and stores the minimum value after the permutation
mapping. Formally,

hπ(S) = min(π(S)). (2)

Given sets S1 and S2, it can be shown by elementary prob-
ability arguments that

Pr(hπ(S1) = hπ(S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

= R. (3)

The probability of collision (equality of hash values), un-
der minwise hashing, is equal to the similarity of interest
R. This property, also known as the LSH property [14, 9],
makes minwise hash functions hπ suitable for creating hash
buckets, which leads to sublinear algorithms for similarity
search. Because of this same LSH property, minwise hash-
ing is a popular indexing technique for a variety of large-
scale data processing applications, which include duplicate
detection [4, 13], all-pair similarity [3], fast linear learn-
ing [19], temporal correlation [10], 3-way similarity & re-
trieval [17, 23], graph algorithms [6, 11, 21], and more.

Querying with a standard (K,L)-parameterized LSH al-
gorithm [14], for fast similarity search, requires comput-
ing K × L min-hash values per query, where K is the
number of hashes in each hash table and L is the num-
ber of hash tables. In theory, the value of KL grows
with the data size [14]. In practice, typically, this number
ranges from a few hundreds to a few thousands. Thus, pro-
cessing a single query, for near-neighbor search, requires
evaluating hundreds or thousands of independent permuta-
tions π (or cheaper universal approximations to permuta-
tions [7, 22, 20]) over the given data vector. If d denotes
the number of non-zeros in the query vector, then the query
preprocessing cost is O(dKL) which is also the bottleneck
step in the LSH algorithm [14]. Query time (latency) is
crucial in many user-facing applications, such as search.

Linear learning with b-bit minwise hashing [19], requires
multiple evaluations (say k) of hπ for a given data vec-
tor. Computing k different min-hashes of the test data costs
O(dk), while after processing, classifying this data vector
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(with SVM or logistic regression) only requires a single in-
ner product with the weight vector which is O(k). Again,
the bottleneck step during testing prediction is the evalua-
tion of k min-hashes. Testing time directly translates into
the latency of on-line classification systems.

The idea of storing k contiguous minimum values after one
single permutation [4, 15, 16] leads to hash values which
do not satisfy the LSH property because the hashes are not
properly aligned. The estimators are also not linear, and
therefore they do not lead to feature representation for lin-
ear learning with resemblance. This is a serious limitation.

Recently it was shown that a “rotation” technique [24]
for densifying sparse sketches from one permutation hash-
ing [18] solves the problem of costly processing with min-
wise hashing (See Sec. 2). The scheme only requires a
single permutation and generates k different hash values,
satisfying the LSH property (i.e., Eq.(3)), in linear time
O(d + k), thereby reducing a factor d in the processing
cost compared to the original minwise hashing.

Our Contributions: In this paper, we argue that the exist-
ing densification scheme [24] is not the optimal way of den-
sifying the sparse sketches of one permutation hashing at
the given processing cost. In particular, we provide a prov-
ably better densification scheme for generating k hashes
with the same processing cost of O(d + k). Our contribu-
tions can be summarized as follows.

• Our detailed variance analysis of the hashes obtained
from the existing densification scheme [24] reveals
that there is no enough randomness in that procedure
which leads to high variance in very sparse datasets.

• We provide a new densification scheme for one per-
mutation hashing with provably smaller variance than
the scheme in [24]. The improvement becomes more
significant for very sparse datasets which are common
in practice. The improved scheme retains the com-
putational complexity of O(d + k) for computing k
different hash evaluations of a given vector.

• We provide experimental evidences on publicly avail-
able datasets, which demonstrate the superiority of
the improved densification procedure over the exist-
ing scheme, in the task of resemblance estimation and
as well as the task of near neighbor retrieval with LSH.

2 Background

2.1 One Permutation Hashing

As illustrated in Figure 1, instead of conducting k inde-
pendent permutations, one permutation hashing [18] uses
only one permutation and partitions the (permuted) feature
space into k bins. In other words, a single permutation π
is used to first shuffle the given binary vector, and then the
shuffled vector is binned into k evenly spaced bins. The

k minimums, computed for each bin separately, are the k
different hash values. Obviously, empty bins are possible.

 

 

 

Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 

Ê:¹; 0    1   2    3      4     5    6    7        8   9   10  11 12  13  14  15 16  17  18  19 20  21  22 23 

 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

Ê:�Ú) 0 0 0 0 0 1 0 1  0 0 0 0 0 0 1 1  1 0 1 0 0 1 1 0 

Ê:�Û) 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0  1 1 0 0 0 0 0 0 

OPH(�Ú) E      1 E 2       0 1 

OPH(�Û) E      1 E 0       0 E 

Figure 1: One permutation hashes [18] for vectors S1 and
S2 using a single permutation π. For bins not containing
any non-zeros, we use special symbol “E”.

For example, in Figure 1, π(S1) and π(S2) denote the state
of the binary vectors S1 and S2 after applying permutation
π. These shuffled vectors are then divided into 6 bins of
length 4 each. We start the numbering from 0. We look
into each bin and store the corresponding minimum non-
zero index. For bins not containing any non-zeros, we use
a special symbol “E” to denote empty bins. We also denote

Mj(π(S)) =

{
π(S) ∩

[
Dj

k
,
D(j + 1)

k

)}
(4)

We assume for the rest of the paper that D is divisible by
k, otherwise we can always pad extra dummy features. We
define OPH

j
(“OPH” for one permutation hashing) as

OPH
j

(π(S)) =

{
E, if π(S) ∩

[
Dj
k , D(j+1)

k

)
= ϕ

Mj(π(S)) mod D
k , otherwise

(5)

i.e., OPH
j

(π(S)) denotes the minimum value in Bin j,

under permutation mapping π, as shown in the exam-
ple in Figure 1. If this intersection is null, i.e., π(S) ∩[

Dj
k , D(j+1)

k

)
= ϕ, then OPH

j
(π(S)) = E.

Consider the events of “simultaneously empty bin” Ij
emp =

1 and “simultaneously non-empty bin” Ij
emp = 0, between

given vectors S1 and S2, defined as:

Ij
emp =

{
1, if OPH

j
(π(S1)) = OPH

j
(π(S2)) = E

0 otherwise
(6)

Simultaneously empty bins are only defined with respect to
two sets S1 and S2. In Figure 1, I0

emp = 1 and I2
emp = 1,

while I1
emp = I3

emp = I4
emp = I5

emp = 0. Bin 5 is only
empty for S2 and not for S1, so I5

emp = 0.

Given a bin number j, if it is not simultaneously empty
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(Ij
emp = 0) for both the vectors S1 and S2, [18] showed

Pr

(
OPH

j
(π(S1)) = OPH

j
(π(S2))

∣∣∣∣Ij
emp = 0

)
= R

(7)

On the other hand, when Ij
emp = 1, no such guarantee ex-

ists. When Ij
emp = 1 collision does not have enough infor-

mation about the similarity R. Since the event Ij
emp = 1

can only be determined given the two vectors S1 and S2

and the materialization of π, one permutation hashing can-
not be directly used for indexing, especially when the data
are very sparse. In particular, OPH

j
(π(S)) does not lead

to a valid LSH hash function because of the coupled event
Ij
emp = 1 in (7). The simple strategy of ignoring empty

bins leads to biased estimators of resemblance and shows
poor performance [24]. Because of this same reason, one
permutation hashing cannot be directly used to extract ran-
dom features for linear learning with resemblance kernel.

2.2 Densifying One Permutation Hashing for
Indexing and Linear Learning

[24] proposed a “rotation” scheme that assigns new values
to all the empty bins, generated from one permutation hash-
ing, in an unbiased fashion. The rotation scheme for filling
the empty bins from Figure 1 is shown in Figure 2. The
idea is that for every empty bin, the scheme borrows the
value of the closest non-empty bin in the clockwise direc-
tion (circular right hand side) added with offset C.

�

Bin�0� Bin�1� Bin�2� Bin�3� Bin�4� Bin�5�

H(S1)� 1+C� �����1� 2+C� 2� ������0� 1�

H(S2)� 1+C� �����1� 0+C� 0� ������0� 1+2C�
�

�

Figure 2: Densification by “rotation” for filling empty bins
generated from one permutation hashing [24]. Every empty
bin is assigned the value of the closest non-empty bin, to-
wards right (circular), with an offset C. For the configu-
ration shown in Figure 1, the above figure shows the new
assigned values (in red) of empty bins after densification.

Given the configuration in Figure 1, for Bin 2 correspond-
ing to S1, we borrow the value 2 from Bin 3 along with
an additional offset of C. Interesting is the case of Bin 5
for S2, the circular right is Bin 0 which was empty. Bin 0
borrows from Bin 1 acquiring value 1 + C, Bin 5 borrows
this value with another offset C. The value of Bin 5 finally
becomes 1+2C. The value of C = D

k +1 enforces proper
alignment and ensures no unexpected collisions. Without
this offset C, Bin 5, which was not simultaneously empty,
after reassignment, will have value 1 for both S1 and S2.
This would be an error as initially there was no collision
(note I5

emp = 0). Multiplication by the distance of the non-
empty bin, from where the value was borrowed, ensures

that the new values of simultaneous empty bins (Ij
emp = 1),

at any location j for S1 and S2, never match if their new
values come from different bin numbers.

Formally the hashing scheme with “rotation”, denoted by
H, is defined as:

Hj(S) =





OPH
j

(π(S)) if OPH
j

(π(S)) ̸= E

OPH
(j+t) mod k

(π(S)) + tC otherwise
(8)

t = min z, s.t. OPH
(j+z) mod k

(π(S)) ̸= E (9)

Here C = D
k + 1 is a constant.

This densification scheme ensures that whenever Ij
emp = 0,

i.e., Bin j is simultaneously empty for any two S1 and
S2 under considerations, the newly assigned value mimics
the collision probability of the nearest simultaneously non-
empty bin towards right (circular) hand side making the fi-
nal collision probability equal to R, irrespective of whether
Ij
emp = 0 or Ij

emp = 1. [24] proved this fact as a theorem.

Theorem 1 [24]

Pr (Hj(S1) = Hj(S2)) = R (10)

Theorem 1 implies that H satisfies the LSH property and
hence it is suitable for indexing based sublinear similarity
search. Generating KL different hash values of H only re-
quires O(d + KL), which saves a factor of d in the query
processing cost compared to the cost of O(dKL) with tra-
ditional minwise hashing. For fast linear learning [19] with
k different hash values the new scheme only needs O(d+k)
testing (or prediction) time compared to standard b-bit min-
wise hashing which requires O(dk) time for testing.

3 Variance Analysis of Existing Scheme

We first provide the variance analysis of the existing
scheme [24]. Theorem 1 leads to an unbiased estimator
of R between S1 and S2 defined as:

R̂ =
1

k

k−1∑

j=0

1{Hj(S1) = Hj(S2)}. (11)

Denote the number of simultaneously empty bins by

Nemp =
k−1∑

j=0

1{Ij
emp = 1}, (12)

where 1 is the indicator function. We partition the event
(Hj(S1) = Hj(S2)) into two cases depending on Ij

emp.
Let MN

j (Non-empty Match at j) and ME
j (Empty Match

at j) be the events defined as:

MN
j = 1{Ij

emp = 0 and Hj(S1) = Hj(S2)} (13)

ME
j = 1{Ij

emp = 1 and Hj(S1) = Hj(S2)} (14)
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Note that, MN
j = 1 =⇒ ME

j = 0 and ME
j = 1 =⇒

MN
j = 0. This combined with Theorem 1 implies,

E(MN
j |Ij

emp = 0) = E(ME
j |Ij

emp = 1)

= E(ME
j + MN

j ) = R ∀j (15)

It is not difficult to show that,

E
(
MN

j MN
i

∣∣i ̸= j, Ij
emp = 0 and Ii

emp = 0
)

= RR̃,

where R̃ = a−1
f1+f2−a−1 . Using these new events, we have

R̂ =
1

k

k−1∑

j=0

[
ME

j + MN
j

]
(16)

We are interested in computing

V ar(R̂) = E





1

k

k−1∑

j=0

[
ME

j + MN
j

]



2

 − R2 (17)

For notational convenience we will use m to denote the
event k − Nemp = m, i.e., the expression E(.|m) means
E(.|k −Nemp = m). To simplify the analysis, we will first
compute the conditional expectation

f(m) = E





1

k

k−1∑

j=0

[
ME

j + MN
j

]



2 ∣∣∣∣ m


 (18)

By expansion and linearity of expectation, we obtain

k2f(m) = E


∑

i ̸=j

MN
i MN

j

∣∣∣∣m


 + E


∑

i ̸=j

MN
i ME

j

∣∣∣∣m




+E


∑

i ̸=j

ME
i ME

j

∣∣∣∣m


 + E

[
k∑

i=1

[
(MN

j )2 + (ME
j )2

] ∣∣∣∣m
]

MN
j = (MN

j )2 and ME
j = (ME

j )2 as they are indicator
functions and can only take values 0 and 1. Hence,

E




k−1∑

j=0

[
(MN

j )2 + (ME
j )2

] ∣∣∣∣m


 = kR (19)

The values of the remaining three terms are given by the
following 3 Lemmas; See the proofs in the Appendix.

Lemma 1

E


∑

i ̸=j

MN
i MN

j

∣∣∣∣m


 = m(m − 1)RR̃ (20)

Lemma 2

E


∑

i ̸=j

MN
i ME

j

∣∣∣∣m


 = 2m(k − m)

[
R

m
+

(m − 1)RR̃

m

]

(21)

Lemma 3

E


∑

i ̸=j

ME
i ME

j

∣∣∣∣m


 = (k − m)(k − m − 1)

×
[

2R

m + 1
+

(m − 1)RR̃

m + 1

]
(22)

Combining the expressions from the above 3 Lemmas and
Eq.(19), we can compute f(m). Taking a further expec-
tation over values of m to remove the conditional depen-
dency, the variance of R̂ can be shown in the next Theorem.

Theorem 2

V ar(R̂) =
R

k
+ A

R

k
+ B

RR̃

k
− R2 (23)

A = 2E
[

Nemp

k − Nemp + 1

]

B = (k + 1)E
[
k − Nemp − 1

k − Nemp + 1

]

The theoretical values of A and B can be computed using
the probability of the event Pr(Nemp = i), denoted by Pi,
which is given by Theorem 3 in [18].

Pi =
k−i∑

s=0

(−1)sk!

i!s!(k − i − s)!

f1+f2−a−1∏

t=0

D
(
1 − i+s

k

)
− t

D − t

4 Intuition for the Improved Scheme
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Figure 3: Illustration of the existing densification
scheme [24]. The 3 boxes indicate 3 simultaneously non-
empty bins. Any simultaneously empty bin has 4 possi-
ble positions shown by blank spaces. Arrow indicates the
choice of simultaneous non-empty bins picked by simul-
taneously empty bins occurring in the corresponding posi-
tions. A simultaneously empty bin occurring in position 3
uses the information from Bin c. The randomness is in the
position number of these bins which depends on π.

Consider a situation in Figure 3, where there are 3 simul-
taneously non-empty bins (Iemp = 0) for given S1 and
S2. The actual position numbers of these simultaneously
non-empty bins are random. The simultaneously empty
bins (Iemp = 1) can occur in any order in the 4 blank
spaces. The arrows in the figure show the simultaneously
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non-empty bins which are being picked by the simultane-
ously empty bins (Iemp = 1) located in the shown blank
spaces. The randomness in the system is in the ordering of
simultaneously empty and simultaneously non-empty bins.

Given a simultaneously non-empty Bin t (It
emp = 0),

the probability that it is picked by a given simultaneously
empty Bin i (Ii

emp = 1) is exactly 1
m . This is because

the permutation π is perfectly random and given m, any
ordering of m simultaneously non-empty bins and k − m
simultaneously empty bins are equally likely. Hence, we
obtain the term

[
R
m + (m−1)RR̃

m

]
in Lemma 2.

On the other hand, under the given scheme, the probability
that two simultaneously empty bins, i and j, (i.e., Ii

emp =

1, Ij
emp = 1), both pick the same simultaneous non-empty

Bin t (It
emp = 0) is given by (see proof of Lemma 3)

p =
2

m + 1
(24)

The value of p is high because there is no enough random-
ness in the selection procedure. Since R ≤ 1 and R ≤ RR̃,
if we can reduce this probability p then we reduce the value
of [pR + (1 − p)RR̃]. This directly reduces the value
of (k − m)(k − m − 1)

[
2R

m+1 + (m−1)RR̃
m+1

]
as given by

Lemma 3. The reduction scales with Nemp.

For every simultaneously empty bin, the current scheme
uses the information of the closest non-empty bin in the
right. Because of the symmetry in the arguments, changing
the direction to left instead of right also leads to a valid
densification scheme with exactly same variance. This
is where we can infuse randomness without violating the
alignment necessary for unbiased densification. We show
that randomly switching between left and right provably
improves (reduces) the variance by making the sampling
procedure of simultaneously non-empty bins more random.

5 The Improved Densification Scheme
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Figure 4: Illustration of the improved densification scheme.
For every simultaneously empty bin, in the blank position,
instead of always choosing the simultaneously non-empty
bin from right, the new scheme randomly chooses to go
either left or right. A simultaneously empty bin occurring
at position 2 uniformly chooses among Bin a or Bin b.

Our proposal is explained in Figure 4. Instead of using the
value of the closest non-empty bin from the right (circular),

we will choose to go either left or right with probability 1
2 .

This adds more randomness in the selection procedure.

In the new scheme, we only need to store 1 random bit for
each bin, which decides the direction (circular left or cir-
cular right) to proceed for finding the closest non-empty
bin. The new assignment of the empty bins from Figure 1
is shown in Figure 5. Every bin number i has an i.i.d.
Bernoulli random variable qi (1 bit) associated with it. If
Bin i is empty, we check the value of qi. If qi = 1, we
move circular right to find the closest non-empty bin and
use its value. In case when q = 0, we move circular left.

�

Bin�0� Bin�1� Bin�2� Bin�3� Bin�4� Bin�5�

�

�

Direction�

Bits�(q)�

0� 1� 0� 0� 1� 1�

H
+
(S1)� 1+C� �����1� 1+C� 2� ������0� 1�

H
+
(S2)� 0+2C� �����1� 1+C� 0� ������0� 1+2C�

Figure 5: Assigned values (in red) of empty bins from Fig-
ure 1 using the improved densification procedure. Every
empty Bin i uses the value of the closest non-empty bin,
towards circular left or circular right depending on the ran-
dom direction bit qi, with offset C.

For S1, we have q0 = 0 for empty Bin 0, we therefore
move circular left and borrow value from Bin 5 with offset
C making the final value 1 + C. Similarly for empty Bin 2
we have q2 = 0 and we use the value of Bin 1 (circular left)
added with C. For S2 and Bin 0, we have q0 = 0 and the
next circular left bin is Bin 5 which is empty so we continue
and borrow value from Bin 4, which is 0, with offset 2C. It
is a factor of 2 because we traveled 2 bins to locate the first
non-empty bin. For Bin 2, again q2 = 0 and the closest
circular left non-empty bin is Bin 1, at distance 1, so the
new value of Bin 2 for S2 is 1 + C. For Bin 5, q5 = 1, so
we go circular right and find non-empty Bin 1 at distance
2. The new hash value of Bin 5 is therefore 1 + 2C. Note
that the non-empty bins remain unchanged.

Formally, let qj j = {0, 1, 2, ..., k −1} be k i.i.d. Bernoulli
random variables such that qj = 1 with probability 1

2 . The
improved hash function H+ is given by

H+
j (S) =





OPH
(j−t1)mod k

(π(S)) + t1C

if qj = 0 and OPH
j

(π(S)) = E

OPH
(j+t2)mod k

(π(S)) + t2C

if qj = 1 and OPH
j

(π(S)) = E

OPH
j

(π(S)) otherwise

(25)
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where

t1 = min z, s.t. OPH
(j−z) mod k

(π(S)) ̸= E (26)

t2 = min z, s.t. OPH
(j+z) mod k

(π(S)) ̸= E (27)

with same C = D
k +1. Computing k hash evaluations with

H+ requires evaluating π(S) followed by two passes over
the k bins from different directions. The total complexity
of computing k hash evaluations is again O(d + k) which
is the same as that of the existing densification scheme. We
need an additional storage of the k bits (roughly hundreds
or thousands in practice) which is practically negligible.

It is not difficult to show that H+ satisfies the LSH property
for resemblance, which we state as a theorem.

Theorem 3

Pr
(
H+

j (S1) = H+
j (S2)

)
= R (28)

H+ leads to an unbiased estimator of resemblance R̂+

R̂+ =
1

k

k−1∑

j=0

1{H+
j (S1) = H+

j (S2)}. (29)

6 Variance Analysis of Improved Scheme

When m = 1 (an event with prob
(

1
k

)f1+f2−a ≃ 0), i.e.,
only one simultaneously non-empty bin, both the schemes
are exactly same. For simplicity of expressions, we will
assume that the number of simultaneous non-empty bins is
strictly greater than 1, i.e., m > 1. The general case has an
extra term for m = 1, which makes the expression unnec-
essarily complicated without changing the final conclusion.

Following the notation as in Sec. 3, we denote

MN+
j = 1{Ij

emp = 0 and H+
j (S1) = H+

j (S2)} (30)

ME+
j = 1{Ij

emp = 1 and H+
j (S1) = H+

j (S2)} (31)

The two expectations E
[∑

i ̸=j MN+
i MN+

j

∣∣∣∣m
]

and

E
[∑

i ̸=j MN+
i ME+

j

∣∣∣∣m
]

are the same as given by

Lemma 1 and Lemma 2 respectively, as all the arguments
used to prove them still hold for the new scheme. The only

change is in the term E
[∑

i̸=j ME
i ME

j

∣∣∣∣m
]

.

Lemma 4

E


∑

i ̸=j

ME+
i ME+

j

∣∣∣∣m


 = (k − m)(k − m − 1)

×
[

3R

2(m + 1)
+

(2m − 1)RR̃

2(m + 1)

]
(32)

The theoretical variance of the new estimator R̂+ is given
by the following Theorem 4.

Theorem 4

V ar(R̂+) =
R

k
+ A+ R

k2
+ B+ RR̃

k2
− R2 (33)

A+ = E
[
Nemp(4k − Nemp + 1)

2(k − Nemp + 1)

]

B+ = E

[
2k3 + N2

emp − Nemp(2k2 + 2k + 1) − 2k

2(k − Nemp + 1)

]

The new scheme reduces the value of p (see Eq.(24)) from
2

m+1 to 1.5
m+1 . As argued in Sec. 4, this reduces the overall

variance. Here, we state it as theorem that V ar(R̂+) ≤
V ar(R̂) always.

Theorem 5

V ar(R̂+) ≤ V ar(R̂) (34)

More precisely,

V ar(R̂) − V ar(R̂+)

=E
[

(Nemp)(Nemp − 1)

2k2(k − Nemp + 1)
[R − RR̃]

]
(35)

The probability of simultaneously empty bins increases
with increasing sparsity in dataset and the total number of
bins k. We can see from Theorem 5 that with more simul-
taneously empty bins, i.e., higher Nemp, the gain with the
improved scheme H+ is higher compared to H. Hence,
H+ should be significantly better than the existing scheme
for very sparse datasets or in scenarios when we need a
large number of hash values.

7 Evaluations

Our first experiment concerns the validation of the theoreti-
cal variances of the two densification schemes. The second
experiment focuses on comparing the two schemes in the
context of near neighbor search with LSH.

7.1 Comparisons of Mean Square Errors

We empirically verify the theoretical variances of R and
R+ and their effects in many practical scenarios. To
achieve this, we extracted 12 pairs of words (which cover
a wide spectrum of sparsity and similarity) from the web-
crawl dataset which consists of word representation from
216 documents. Every word is represented as a binary vec-
tor (or set) of D = 216 dimension, with a feature value of
1 indicating the presence of that word in the corresponding
document. See Table 1 for detailed information of the data.

For all 12 pairs of words, we estimate the resemblance us-
ing the two estimators R and R+. We plot the empirical
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Figure 6: Mean Square Error (MSE) of the old scheme R̂ and the improved scheme R̂+ along with their theoretical values
on 12 word pairs (Table 1) from a web crawl dataset.

Table 1: Information of 12 pairs of word vectors. Each
word stands for a set of documents in which the word is
contained. For example, “A” corresponds to the set of doc-
ument IDs which contained word “A”.

Word 1 Word 2 f1 f2 R
HONG KONG 940 948 0.925
RIGHTS RESERVED 12,234 11,272 0.877
A THE 39,063 42,754 0.644
UNITED STATES 4,079 3,981 0.591
TOGO GREENLAND 231 200 0.528
ANTILLES ALBANIA 184 275 0.457
CREDIT CARD 2,999 2,697 0.285
COSTA RICO 773 611 0.234
LOW PAY 2,936 2,828 0.112
VIRUSES ANTIVIRUS 212 152 0.113
REVIEW PAPER 3,197 1,944 0.078
FUNNIEST ADDICT 68 77 0.028

Mean Square Error (MSE) of both estimators with respect
to k which is the number of hash evaluations. To validate
the theoretical variances (which is also the MSE because
the estimators are unbiased), we also plot the values of the
theoretical variances computed from Theorem 2 and Theo-
rem 4. The results are summarized in Figure 6.

From the plots we can see that the theoretical and the em-
pirical MSE values overlap in both the cases validating
both Theorem 2 and Theorem 4. When k is small both
the schemes have similar variances, but when k increases

the improved scheme always shows better variance. For
very sparse pairs, we start seeing a significant difference in
variance even for k as small as 100. For a sparse pair, e.g.,
“TOGO” and “GREENLAND”, the difference in variance,
between the two schemes, is more compared to the dense
pair “A” and “THE”. This is in agreement with Theorem 5.

7.2 Near Neighbor Retrieval with LSH

In this experiment, we evaluate the two hashing schemes
H and H+ on the standard (K,L)-parameterized LSH al-
gorithm [14, 2] for retrieving near neighbors. Two publicly
available sparse text datasets are described in Table 2.

Table 2: Dataset information.

Data # dim # nonzeros # train # query
RCV1 47,236 73 100,000 5,000
URL 3,231,961 115 90,000 5,000

In (K, L)-parameterized LSH algorithm for near neighbor
search, we generate L different meta-hash functions. Each
of these meta-hash functions is formed by concatenating K
different hash values as

Bj(S) = [hj1(S);hj2(S); ...; hjK(S)], (36)

where hij , i ∈ {1, 2, ..., K}, j ∈ {1, 2, ..., L}, are KL re-
alizations of the hash function under consideration. The
(K, L)-parameterized LSH works in two phases:
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1. Preprocessing Phase: We construct L hash tables
from the data by storing element S, in the train set,
at location Bj(S) in hash-table j.

2. Query Phase: Given a query Q, we report the
union of all the points in the buckets Bj(Q) ∀j ∈
{1, 2, ..., L}, where the union is over L hash tables.

For every dataset, based on the similarity levels, we chose a
K based on standard recommendation. For this K we show
results for a set of values of L depending on the recall val-
ues. Please refer to [2] for details on the implementation of
LSH. Since both H and H+ have the same collision prob-
ability, the choice of K and L is the same in both cases.

For every query point, the gold standard top 10 near neigh-
bors from the training set are computed based on actual re-
semblance. We then compute the recall of these gold stan-
dard neighbors and the total number of points retrieved by
the (K,L) bucketing scheme. We report the mean com-
puted over all the points in the query set. Since the exper-
iments involve randomization, the final results presented
are averaged over 10 independent runs. The recalls and the
points retrieved per query are summarized in Figure 7.
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Figure 7: Average number of points scanned per query and
the mean recall values of top 10 near neighbors, obtained
from (K, L)-parameterized LSH algorithm, using H (old)
and H+ (Imp). Both schemes achieve the same recall but
H+ reports fewer points compared to H. Results are aver-
aged over 10 independent runs.

It is clear from Figure 7 that the improved hashing scheme
H+ achieves the same recall but at the same time retrieves
less number of points compared to the old scheme H. To
achieve 90% recall on URL dataset, the old scheme re-
trieves around 3300 points per query on an average while
the improved scheme only needs to check around 2700
points per query. For RCV1 dataset, with L = 200 the
old scheme retrieves around 3000 points and achieves a re-

call of 80%, while the same recall is achieved by the im-
proved scheme after retrieving only about 2350 points per
query. A good hash function provides a right balance be-
tween recall and number of points retrieved. In particular, a
hash function which achieves a given recall and at the same
time retrieves less number of points is desirable because it
implies better precision. The above results clearly demon-
strate the superiority of the indexing scheme with improved
hash function H+ over the indexing scheme with H.

7.3 Why H+ retrieves less number of points than H ?

The number of points retrieved, by the (K,L) parameter-
ized LSH algorithm, is directly related to the collision prob-
ability of the meta-hash function Bj(.) (Eq.(36)). Given
S1 and S2 with resemblance R, the higher the probability
of event Bj(S1) = Bj(S2), under a hashing scheme, the
more number of points will be retrieved per table.

The analysis of the variance (second moment) about the
event Bj(S1) = Bj(S2) under H+ and H provides some
reasonable insight. Recall that since both estimators under
the two hashing schemes are unbiased, the analysis of the
first moment does not provide information in this regard.

E
[
1{Hj1(S1) = Hj1(S2)} × 1{Hj2(S1) = Hj2(S2)}

]

= E
[
MN

j1MN
j2 + MN

j1ME
j2 + ME

j1M
N
j2 + ME

j1M
E
j2

]

As we know from our analysis that the first three terms in-
side expectation, in the RHS of the above equation, behaves
similarly for both H+ and H. The fourth term E

[
ME

j1M
E
j2

]

is likely to be smaller in case of H+ because of smaller
values of p. We therefore see that H retrieves more points
than necessary as compared to H+. The difference is vis-
ible when empty bins dominate and ME

1 ME
2 = 1 is more

likely. This happens in the case of sparse datasets which
are common in practice.

8 Conclusion

Analysis of the densification scheme for one permutation
hashing, which reduces the processing time of minwise
hashes, reveals a sub-optimality in the existing procedure.
We provide a simple improved procedure which adds more
randomness in the current densification technique leading
to a provably better scheme, especially for very sparse
datasets. The improvement comes without any compro-
mise with the computation and only requires O(d+k) (lin-
ear) cost for generating k hash evaluations. We hope that
our improved scheme will be adopted in practice.
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A Proofs

For the analysis, it is sufficient to consider the configura-
tions, of empty and non-empty bins, arising after throwing
|S1 ∪ S2| balls uniformly into k bins with exactly m non-
empty bins and k−m empty bins. Under uniform throwing
of balls, any ordering of m non-empty and k − m empty
bins is equally likely. The proofs involve elementary com-
binatorial arguments of counting configurations.

A.1 Proof of Lemma 1

Given exactly m simultaneously non-empty bins, any two
of them can be chosen in m(m − 1) ways (with order-
ing of i and j). Each term MN

i MN
j , for both simultane-

ously non-empty i and j, is 1 with probability RR̃ (Note,
E

(
MN

i MN
j

∣∣i ̸= j, Ii
emp = 0, Ij

emp = 0
)

= RR̃).

A.2 Proof of Lemma 2

The permutation is random and any sequence of simulta-
neously m non-empty and remaining k − m empty bins
are equal likely. This is because, while randomly throw-
ing |S1 ∪ S2| balls into k bins with exactly m non-empty
bins every sequence of simultaneously empty and non-
empty bins has equal probability. Given m, there are total
2m(k − m) different pairs of empty and non-empty bins
(including the ordering). Now, for every simultaneously
empty bin j, i.e., Ij

emp = 1, ME
j replicates MN

t corre-
sponding to nearest non-empty Bin t which is towards the
circular right. There are two cases we need to consider:

Case 1: t = i, which has probability 1
m and

E(MN
i ME

j |Ii
emp = 0, Ij

emp = 1) = E(MN
i |Ii

emp = 0) = R

Case 2: t ̸= i, which has probability m−1
m and

E(MN
i ME

j |Ii
emp = 0, Ij

emp = 1)

=E(MN
i MN

t |t ̸= i, Ii
emp = 0, It

emp = 0) = RR̃

Thus, the value of E
[∑

i ̸=j MN
i ME

j

∣∣∣∣m
]

comes out to be

2m(k − m)

[
R

m
+

(m − 1)RR̃

m

]

which is the desired expression.

A.3 Proof of Lemma 3

Given m, we have (k − m)(k − m − 1) different pairs of
simultaneous non-empty bins. There are two cases, if the
closest simultaneous non-empty bins towards their circu-
lar right are identical, then for such i and j, ME

i ME
j = 1

with probability R, else ME
i ME

j = 1 with probability RR̃.
Let p be the probability that two simultaneously empty

bins i and j have the same closest bin on the right. Then

E
[∑

i ̸=j ME
i ME

j

∣∣∣∣m
]

is given by

(k − m)(k − m − 1)
[
pR + (1 − p)RR̃

]
(37)

because with probability (1 − p), it uses estimators from
different simultaneous non-empty bins and in that case the
ME

i ME
j = 1 with probability RR̃.

Consider Figure 3, where we have 3 simultaneous non-
empty bins, i.e., m = 3 (shown by colored boxes). Given
any two simultaneous empty bins Bin i and Bin j (out of
total k − m) they will occupy any of the m + 1 = 4 blank
positions. The arrow shows the chosen non-empty bins for
filling the empty bins. There are (m + 1)2 + (m + 1) =
(m + 1)(m + 2) different ways of fitting two simultaneous
non-empty bins i and j between m non-empty bins. Note,
if both i and j go to the same blank position they can be
permuted. This adds extra term (m + 1).

If both i and j choose the same blank space or the first
and the last blank space, then both the simultaneous empty
bins, Bin i and Bin j, corresponds to the same non-empty
bin. The number of ways in which this happens is 2(m +
1) + 2 = 2(m + 2). So, we have

p =
2(m + 2)

(m + 1)(m + 2)
=

2

m + 1
.

Substituting p in Eq.(37) leads to the desired expression.

A.4 Proof of Lemma 4

Similar to the proof of Lemma 3, we need to compute
p which is the probability that two simultaneously empty
bins, Bin i and Bin j, use information from the same bin.
As argued before, the total number of positions for any two
simultaneously empty bins i and j, given m simultaneously
non-empty bins is (m + 1)(m + 2). Consider Figure 4, un-
der the improved scheme, if both Bin i and Bin j choose the
same blank position then they choose the same simultane-
ously non-empty bin with probability 1

2 . If Bin i and Bin j
choose consecutive positions (e.g., position 2 and position
3) then they choose the same simultaneously non-empty
bin (Bin b) with probability 1

4 . There are several boundary
cases to consider too. Accumulating the terms leads to

p =
2(m+2)

2 + 2m+4
4

(m + 1)(m + 2)
=

1.5

m + 1
.

Substituting p in Eq.(37) yields the desired result.

Note that m = 1 (an event with almost zero probability)
leads to the value of p = 1. We ignore this case because it
unnecessarily complicates the final expressions. m = 1 can
be easily handled and does not affect the final conclusion.
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Abstract

Open-universe probability models, representable
by a variety of probabilistic programming lan-
guages (PPLs), handle uncertainty over the ex-
istence and identity of objects—forms of uncer-
tainty occurring in many real-world situations.
We examine the problem of extending a declar-
ative PPL to define decision problems (specifi-
cally, POMDPs) and identify non-trivial repre-
sentational issues in describing an agent’s ca-
pability for observation and action—issues that
were avoided in previous work only by making
strong and restrictive assumptions. We present
semantic definitions that lead to POMDP speci-
fications provably consistent with the sensor and
actuator capabilities of the agent. We also de-
scribe a variant of point-based value iteration for
solving open-universe POMDPs. Thus, we han-
dle cases—such as seeing a new object and pick-
ing it up—that could not previously be repre-
sented or solved.

1 INTRODUCTION

The development of probabilistic programming languages
or PPLs (Koller, McAllester, and Pfeffer, 1997; Milch et
al., 2005; Goodman et al., 2008) has greatly expanded the
expressive power of formal representations for probability
models. In particular, PPLs express open-universe prob-
ability models, or OUPMs, which allow uncertainty over
the existence and identity of objects. OUPMs are a natu-
ral fit to tasks such as vision, natural language understand-
ing, surveillance, and security, where the set of relevant ob-
jects is not known in advance and the observations (pixels,
strings, radar blips, login names) do not uniquely identify
the entities in question.

It is natural, therefore, to consider whether the same bene-
fits can be obtained for decision models, thereby providing
a broader foundation for rational agents. A general decision

model—a partially observable Markov decision process or
POMDP—includes a specification of what the agent can do
and what it will perceive in any given state, as well as the
reward functions.

For less expressive languages such as Bayesian networks
and closed-universe first-order languages, the extension
from probability models to decision models is relatively
straightforward. For open-universe models, however, there
are significant difficulties in defining POMDP representa-
tions that are both expressive enough to model the real
world and mean exactly what is intended. When sensors
supply sentences about named objects and actuators receive
commands to act on named objects, problems arise if the
formal names have uncertain referents. Consider the fol-
lowing example:

The sensors of an airport security system include passport
scanners at check-in kiosks, boarding pass scanners, X-ray
scanners, etc. A person passing through the airport gen-
erates observations from each of these scanners. Thus,
the passport scanner at location A may generate obser-
vations of the form IDName(pA,1) = “Bond”, IDNum-
ber(pA,1) = 174666007, HeightOnID(pA,1) = 185cm,
. . .; a boarding-pass scanner at B may generate a se-
quence of the form Destination(pB,7) = “Paris”, ID-
Number(pB,7) = 174666007, and finally, an X-ray scan-
ner at C may generate observations of the form Mea-
suredHeight(pC,32) = 171cm, MeasuredHeight(pC,33) =
183cm.

In these observation streams, the symbols pA,i, pB,j and
pC,k are place-holder identifiers (essentially Skolem con-
stants or “gensyms” in Lisp terminology). Although each
use of a given symbol necessarily corresponds to the same
individual, different symbols may or may not correspond
to different individuals; thus, it is possible that pA,1 and
pC,32 refer to the same person, while it is also possible that
pA,1 and pB,7 refer to different people even though they are
carrying documents with the same ID number.

The problems in modeling such a scenario are not limited to
probabilistic models and can be illustrated using first-order
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logic alone. For the observation model, we might want to
say that, “Everyone in the security line will get scanned”:

∀x InLine(x)→ Scanned(x)

and “For everyone who gets scanned, we will observe a
measured height”:
∀x Scanned(x)→ Observable(MeasuredHeight(x)).

(1)
So far, so good. Now, suppose we know, “Bond and his
fiancee are in the security line.” While it is true, in a sense,
that we will get a measured height for Bond’s fiancee, it is
not true that the X-ray scanner will tell us:

MeasuredHeight(Fiancee(Bond)) = 171cm.

Technically, the problem arises because we are trying to
substitute Fiancee(Bond) for x in the universally quanti-
fied sentence (1), but one occurrence of x is inside Observ-
able(·), which is a modal operator; thus, we have a failure
of referential transparency—perhaps not surprising as we
are trying to model what the agent will come to know. Prac-
tically, the problem arises because the sensor doesn’t know
who Bond’s fiancee is. The same issue can arise on the
action side: telling the security guard to “Arrest Bond’s fi-
ancee” doesn’t work if the guard doesn’t know who Bond’s
fiancee is. Thus, any proposed formal approach has to pro-
vide solutions to three fundamental problems: how to in-
corporate detected objects in an agent’s belief while allow-
ing identity uncertainty; how to accurately state what can
be sensed, and how to ensure that arguments in commands
refer to something meaningful for actuators.

In fact, communication between the physical layer and the
formal model requires a restricted vocabulary whose terms
are guaranteed to be meaningful. This is because in a prob-
ability model, an observation has to be true to be condi-
tioned on. The problem is that an OUPOMDP framework
needs to ensure this even when the observations use uncer-
tain references. We formally define the terms that will be
meaningful, and therefore suitable for use in communica-
tion with the physical layer, using the concept of rigid des-
ignators from modal logic. This notion facilitates a frame-
work where observations are true statements, without being
restrictive. Our solution is analogous to modeling uncertain
observations of a property as certain observations about a
noisy version of that property.

We begin in §2.1 by showing, as a “warm-up exercise,”
how POMDPs may be defined on a substrate of dynamic
Bayesian networks (DBNs). §2.2 provides additional back-
ground on first-order, open-universe probability models. §3
describes our proposed semantics for a decision-theoretic
extension of the BLOG language. We show that the re-
sulting framework models sensor and actuator specifica-
tions accurately. §4 describes a variant of the point-based
value iteration (PBVI) algorithm designed to handle open-
universe POMDPs, and §5 describes experiments in a sim-
ple domain that illustrate the ability of the formalism and

algorithm to handle problems that previous formalisms (§6)
cannot express and previous algorithms cannot solve. It
has been possible for many years to program a robot to
walk into a room, see something, and pick it up; now, it
is possible for the robot to do this without leaving the for-
mal framework of rational decision making.

2 BACKGROUND

2.1 POMDPs

A POMDP defines a decision-theoretic planning problem
for an agent. At every step, the agent executes an action,
then the environment enters a new state, then the agent re-
ceives an observation and a reward.
Definition 1. A POMDP is defined as
〈X,U,O, T,Ω, R, γ〉, where X,U,O are finite sets
of states, actions and observations; T (Xt+1 =x′ |
Xt =x, Ut =u) defines the transition model, i.e., the
probability of reaching state x′ if action u is applied in
state x; Ω(Ot+1 = o | Xt+1 =x′, Ut =u) defines the
observation model, i.e., the probability of receiving an
observation o when state x′ is reached via action u; and
R : X ×U → R defines the reward that the agent receives
on applying a given action at a given state.

The agent’s belief state at any timestep is the probability
distribution over X at that timestep, given the initial be-
lief and the history of executed actions and obtained ob-
servations. POMDP solutions typically map observation
histories to actions (Kaelbling, Littman, and Cassandra,
1998). We will refer to such solutions as observation-
history policies. On the other hand, belief-state policies
map the agent’s belief states to actions. Both solution rep-
resentations are equally expressive because the belief state
constitutes a sufficient statistic for the agent’s history and
the initial belief (Astrom, 1965). An optimal POMDP pol-
icy policy maximizes the expected value of the aggregate
reward

∑
i= 1...∞ γi ·r(i) where r(i) is the reward obtained

at timestep i and γ ≤ 1.

A DBN (Dean and Kanazawa, 1989) describes a factored,
homogeneous, order-1 Markov process as a “two-slice”
Bayesian network showing how variables at time t+ 1 de-
pend on variables at t. At each timestep, any subset of vari-
ables may be observed. To represent POMDPs, Russell and
Norvig (1995) assume a fixed set of always-observable evi-
dence nodes and define dynamic decision networks (DDNs)
by adding to each timestep of a DBN the following vari-
ables:

• An action variable Ut whose values are the possible
actions at time t. For now, assume this set of actions is
fixed. The POMDP’s transition model is represented
through the conditional dependence of variables at t+
1 on the value of Ut and other variables at t.
• A reward variable Rt, which depends deterministi-
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cally on Ut and other variables at time t.

This definition of POMDPs by DDNs is not, however, com-
pletely general, since it does not allow for the observabil-
ity of a variable to depend on the state. Clearly, different
observability conditions correspond to different POMDPs.
To handle state-dependent observability, one can define for
each variable Xi that may be observed, a second Boolean
variable ObsXi that captures whether or not Xi is ob-
served1. This factors out dependencies for observability
from dependencies for the variable values. Thus, in order
to define POMDPs we can define DDNs consisting of the
following nodes in addition to the action and reward nodes:

• A Boolean observability variable ObsXi for each or-
dinary variableXi. Each observability variable is nec-
essarily observed at each time step, and ObsXi is true
iff Xi is observed. Observability variables may have
as parents other observability variables, ordinary vari-
ables, or the preceding action variable. The DBN with
Xi and ObsXi variables defines Ω.

In this model, an always-observable Xi has an ObsXi with
a deterministic prior set to 1.

In order to define first-order OUPOMDPs, we need to ex-
tend first-order OUPMs in a manner analogous to the DDN
extension of DBNs. However, as we will show below, the
analogous extension leads to conflicts with what may be
known to the agent during decision making, and results in
the models of sensors and actuators with unintentionally
broad capabilities as seen in the introduction.

2.2 OPEN-UNIVERSE PROBABILITY MODELS

First-Order Vocabularies Given a set of types
T = {τ1, . . . τk}, a first-order vocabulary is a set of func-
tion symbols with their type signatures. Constant symbols
are viewed as zero-ary function symbols and predicates as
Boolean functions. A possible world is defined as a tuple
〈U , I〉 where the universe U = 〈U1, . . .Uk〉 and each Ui is
a set of elements of type τi ∈ T . The interpretation I has,
for each function symbol in the vocabulary, a function of
the corresponding type signature over U1, . . . ,Uk. The set
of types includes the type Timestep, whose elements are the
natural numbers. Functions whose last argument is of type
timestep are called fluents. A state is defined by the values
of all static functions and fluents at a particular timestep in
a possible world.

1Observability variables capture the full range of possibilities
in the spectrum from missing-completely-at-random (MCAR) to
not-missing-at-random (NMAR) data (Little and Rubin, 2002).
An alternative would be to say that “null” values are observed
when a variable is not observable. However, this approach has
distinct disadavantages as it requires (a) unnecessarily large par-
ent sets for evidence variables capturing when null values may be
obtained, and (b) additional mechanisms for handling dependen-
cies of child nodes of variables that may get a null value.

1 Type Urn, Ball;
2 origin Urn Source(Ball);
3 #Urn ∼ Poisson(5);
4 #Ball(Source = u) {
5 if Large(u) then ∼ Poisson(10)
6 else ∼ Poisson(2)};
7 random Boolean Large(Urn u)
8 ∼ Categorical{true->0.5, false->0.5};

Figure 1: A BLOG model illustrating number statements.

Open-Universe Probability Models in BLOG Our
approach can be applied to formal languages for gen-
erative, open-universe probability models (OUPMs).
BLOG (Milch et al., 2005; Milch, 2006) is one such lan-
guage. We refer the reader to the cited references for de-
tails on this system, and discuss briefly the components rel-
evant to this paper. A BLOG model consists of two types
of statements: (1) number statements, which specify con-
ditional probability distributions (cpds) for the number of
objects of each type in the universe of a structure; and (2)
dependency statements, which specify cpds for the values
of functions applied on the elements of the universe.

Each type can have multiple number statements and each
number statement can take other objects as arguments.
Fig. 1 shows a simple example of a BLOG model with two
types, Urn and Ball. This model expresses a distribution
over possible worlds consisting of varying numbers of urns
with varying numbers of balls in each urn. The number of
urns follows a Poisson(5) distribution (line 3). The num-
ber of balls in an urn depends on whether or not the urn is
Large. Origin functions map the object being generated to
the arguments that were used in the number statement that
was responsible for generating it. In Fig. 1, Source maps a
ball to the urn it belongs to. The number of balls in an urn
follows a Poisson(10) distribution if the urn is Large, and
a Poisson(2) distribution otherwise (lines 4-6). Finally, the
probability of an urn being Large is 0.5 (lines 7 & 8).

Evidence statements in BLOG provide first-order sentences
in the model’s vocabulary as observations; e.g.,

obs (exists Ball b exists Urn u Source(b)==u & Large(u)) = true

states that there exists a large urn that has a ball.

A set evidence statement provides a concise syntax for
naming all the distinct objects satisfying a certain predi-
cation; e.g.,

obs {Ball b: exists Urn u Source(b)==u & !Large(u)}={b1, b2}

states that the set of balls in small urns consists of exactly
two balls, referred to by the constant symbols b1 and b2.

We denote the execution of an action u(x) at a timestep t
using the fluent apply u(x̄, t). The effects of an action are
represented by defining the value of all fluents affected by
the action at timestep t+ 1 in terms of the fluents and non-
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fluents at timestep t. The reward function can be expressed
as a fluent in a similar manner. This notation is similar to
successor-state axioms in situation calculus (Reiter, 2001).
For example, a sendToScanner(p, t) action may result in
the person p going to the scanner. Let followedInstruc-
tionCPD, leftScannerCPD and defaultScannerCPD denote
respectively the probability distribution that a person fol-
lows instructions, that s/he has left the scanner and that
s/he is already at the scanner. We express the effect of
this action on the predicate atScanner using the fluent ap-
ply sendToScanner(x, t) as follows:
atScanner(Person p, Timestep t+1) {

if apply sendToScanner(p,t)
then ∼ followedInstructionCPD()

else if atScanner(p, t) then ∼ leftScannerCPD()
else ∼ defaultAtScannerCPD()};

Representation theorems for BLOG ensure that every well-
founded specification (that does not create cyclic depen-
dency statements or infinite ancestor sets) corresponds to a
unique probability distribution over all possible worlds.

3 DECISION-THEORETIC BLOG

In this section we present the key components of decision-
theoretic BLOG (DTBLOG), which adds to the BLOG lan-
guage decision variables for representing actions and meta-
predicates for representing observability.

3.1 SOLUTION APPROACH

A natural generalization of the ObsXi idea dis-
cussed in §2.1 is to write dependencies of the form:
Observable(ψ(x̄)) {if ϕ(x̄) then ∼ cpd1}, where w.l.o.g.,
ϕ and ψ can be considered to be predicates defined using
FOL formulas with variables in x̄ as free variables. The
interpretation of this formula would be “ψ(x̄) is observed
with probability given by cpd1 when ϕ(x̄) holds”. As
noted in the introduction, this formulation leads to prob-
lems associated with referential transparency in first-order
reasoning. In order to model the sensor accurately, we want
to describe a belief state where Vesper = Fiancee(Bond),
Scanned(Vesper) = Scanned(Fiancee(Bond)) = true,
Observable(MeasuredHeight(Vesper)) = true, but
Observable(MeasuredHeight(Fiancee(Bond))) = false.
However, these statements will be inconsistent in any
system based on first-order reasoning. This is because
first-order logic enforces all terms to be referentially
transparent, as a consequence of the application of the
axiom of universal instantiation on the substitution axioms
for equality. The axiom of universal instantiation states
that if ∀x α(x) is true, then for any ground term t, α(t/x)
(the version of α(x) with all free occurrences of x replaced
by t) is also true. Different truth values for the observ-
ability statements above stem from the fact that the sensor
knows who Vesper is, but not who Fiancee(Bond) is. This
indicates that the knowledge of sensors and actuators needs

to be taken into account while determining the possible
effects of communicating with them.

To address this problem, we draw upon modal logic, where
knowledge of the agent is taken into account (Levesque and
Lakemeyer, 2000). The modal logic version of the axiom
of universal instantiation states that if ∀x α(x) is true, then
for any ground term t whose value is known, α(t/x) holds.
In order to determine which terms are known, modal logic
develops the notion of rigid designators: terms that have
unique interpretations in all possible worlds according to
the agent’s knowledge. Our formulation ensures that only
the modal logic version of the axiom of universal instan-
tiation is used with statements involving observability and
doability. In practice, we use a modal logic of observations,
so that a term is considered to be known to a system iff its
value is predefined or has been observed. Our framework
to ensure that (a) observations are true statements and are
thus suitable for conditioning, and (b) terms used in the in-
terface with actuators have well-defined values.

3.2 FORMAL SPECIFICATIONS

We begin our formal solution with elementary descriptions
of physical sensors and actuators that clarify the types of
rigid designators that sensors (actuators) can provide (act
upon). We assume that the vocabulary always includes, as
rigid designators, constant symbols for elements of stan-
dard types such as natural numbers and strings; e.g., the
constant symbol 1 represents the natural number 1 in every
possible world. We also assume that standard mathemati-
cal and string operations have fixed interpretations and that
terms that are applications of fixed functions on rigid des-
ignators are therefore also rigid designators (e.g., 1 + 2).
As explained in the following sections, observations may
add to the set of rigid designators.

Any physical sensor can be described in terms of the types
of symbols it can generate and the type signatures of the
properties that it can report:

Definition 2. A sensor specification S is a tuple 〈T̄S , τS〉
where T̄S is a tuple of types for the observation values that
S produces and and τS denotes the type of new symbols
that S may generate.

E.g., an X-ray scanner can be specified as:
scanner= 〈〈PersonRef, Length〉, 〈PersonRef〉〉. Such
a scanner can generate new symbols of type PersonRef
and returns observation tuples of the type 〈PersonRef,
Length〉; elements of type Length are real numbers with
units (not terms such as Height(Bond)). Note that such
a specification indicates that rigid designators of type T̄S
and τs are meaningful to the sensor, but arbitrary terms of
the same types may not be.

A physical actuator can be specified similarly:

Definition 3. An actuator specificationA is a tuple of types
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T̄A denoting the types of its arguments.

E.g., an actuated camera may be able to take a
picture given an orientation and focusing distance:
TakePhoto = 〈Orientation,Length〉.
Let B be a set of beliefs, U be a set of actions, and O be
a set of observations. A strategy tree TB,U,O = 〈`U , `O〉 is
defined by a mapping `U : B → 2U , which defines the set
of possible actions at each belief state, and a mapping `O :
B,U → 2O, which defines the set of possible observations
when an action is applied on a belief state. Given a set
of sensors S and actuators A, an actuator mapping αA :
U → A denotes the actuator responsible for executing each
u ∈ U and a sensor mapping σS : O → S denotes the
sensor responsible for generating o. We drop the subscripts
S and A when they are clear from context.

Definition 4. A term is a rigid designator in a belief state
b if it has a unique value in all possible worlds that have
nonzero probability (in a discrete setting) or nonzero den-
sity (in a continuous setting) in b.

Definition 5. A strategy tree TB,U,O = 〈`U , `O〉 is well-
defined w.r.t. a set of sensor specifications S, actuator spec-
ificationsA, a sensor mapping σ, and an actuator mapping
α iff for every b ∈ B:

• Every u ∈ `U (b) uses as terms only the rigid designa-
tors of type T̄A in b, where A=α(u).
• For every u ∈ `U (b), every o ∈ `O(b, u) is either the

observation of symbol of type τS or uses as terms only
the rigid designators of type T̄S in b, where S=σ(o).

In other words, a strategy tree is well-defined iff the ac-
tions and observations that it specifies at each step are truly
possible. A framework for solving OUPOMDPs therefore
needs to ensure that the strategy trees it defines and uses
in its solution algorithms are well-defined w.r.t. the given
sensors and actuators. We now present our formulation of
sensors and actuators for achieving this objective.

3.3 MODELING SENSORS

In this section we describe our formulation for a sensor
S= 〈T̄S , τS〉. Recall that τS is the set of symbols generated
by S. By definition, such symbols evaluate to themselves
(just like integers) and are therefore rigid designators. We
specify S using the following components in DTBLOG:

• A predicate VS with arguments T̄S , t, representing the
tuples returned by the sensor.
• The statement ObservableType(τS); denoting that

symbols of type τS are returned by the sensor. Num-
ber statements for τS constitute a generative model for
the elements generated by S. Each number statement
for symbols of type τS includes an origin function
τS time which maps the symbol to the time when it
was generated.

0 #Person ˜ Poisson[10]; LocKnownDuration=4;
1 #PersonRef(Src = p, PersonRef_Time=t) {
2 if AtScanner(t)=p ˜Bernoulli(0.5)
3 else = 0};
4 observableType(PersonRef);
5 observable(MeasuredHt(p_ref, t))=
6 (AtScanner(t) == Src(p_ref));
7 MeasuredHt(p_ref, t) ˜ Normal[Ht(Src(p_ref)), 5];
8 Ht(prsn) ˜ Normal[160, 30];
9

10 decision apply_TakePhoto(Orientation o, Distance d,
11 Timestep t);
12 PictureTaken(Person p, Timestep t){
13 if exists d, o RelativeDistance(TrueLoc(p, t)) == d &
14 RelativeOrientation(TrueLoc(p, t)) == o &
15 apply_takePhoto(o, d) then = true
16 else = False};
17
18 //Entrance model
19 AtScanner(t) ˜ UniformChoice({Person prsn:
20 !Entered(prsn, t)});
21 Entered(prsn, t){
22 if t>0 & (AtScanner(t-1)=prsn) then = true
23 elseif t>0 then = Entered(prsn, t-1)
24 elseif t=0 then = false};
25 TrueLoc(Person p, t) ˜ MovementModel(TrueLoc(p, t-1));
26 Location(p_ref, t) {
27 if PersonRef_Time(p_ref) < Horizon+1 &
28 & t<= PersonRef_Time(p_ref)+LocKnownDuration
29 then ˜ TrueLoc(Src(p_ref, t))
30 else = null};

Figure 2: A DTBLOG model for the airport domain

• A dependency for Observable(VS(T̄S ,Timestep)), in-
dicating the factors influencing the probability that S
generates an observation.

For ease in representation, we also allow syntax for cap-
turing sensors that return values of functions declared in
the model’s vocabulary, rather than the default VS predi-
cate. Such observations also create rigid designators. For
instance, it may be convenient to represent the scanner
as a sensor that provides values of the measured height,
captured by the function MeasuredHtscanner(p, t). In this
case, the relational observability statements would provide
dependencies for Observable(MeasuredHtscanner(p, t)).
Lines 4-6 in Fig. 2 capture the DTBLOG specification
for such a scanner. If the agent receives an observation
of the form MeasuredHtscanner(pref10,1, 7) = 171cm, then
MeasuredHtscanner(pref10,1, 7) gets a unique interpreta-
tion, and thus becomes a rigid designator.

3.3.1 GENERATION OF OBSERVATIONS

Intuitively, if the environment is in state q at timestep t, and
Observable(ϕ(x̄)) (or ObservableType(τS)) is true in q,
then the value of ϕ(x̄) (or the symbols of type τS generated
at a timestep t) must be obtained as evidence at timestep t.
We operationalize this intuition through two types of ob-
servations in DTBLOG: observations of the symbols gen-
erated by sensors, and observations about properties of the
observed symbols.

Symbol observations All elements generated via a sen-
sor’s symbol observability statement are assigned unique
names and provided to the agent as an evidence statement.
Suppose the model includes an observability declaration of
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the form ObservableType(τS). For every possible world w
at timestep t, this declaration results in the generation of a
set evidence statement of the following form:

obs {τS c:τS time(c) == t} = {ct,1, . . . , ct,k(t)};

where k(t) = #{τS x : τS time(x) == t} in w. Such
a set evidence statement models the observation of a set
of symbols generated by the sensor S. The semantics of
BLOG ensure that c1, . . . , ck(t) are interpreted as distinct
objects; e.g., the scanner declaration in Fig. 2 results in the
generation of a set of PersonRef objects at each timestep.
The number of such symbols is given by the CPD for the
number statement for PersonRef. At timestep 10, this ob-
servation could be:
obs {PersonRef x: PersonRef Time(x)==10} = {pref10,1};

Relational observations For every true
Observable(ϕ(x̄)) atom in a state, the DTBLOG en-
gine creates an observation statement of the form:
obs ϕ(x̄) = v;

where all arguments and the value v are rigid des-
ignators. E.g., if in a possible world Observ-
able(MeasuredHt scanner(pref10,1, 10))=true and Mea-
suredHt scanner(pref10,1, 10)=171cm, the generated rela-
tional observation would be:
obs MeasuredHt scanner(pref10,1, 10) = 171cm;

Each argument in such evidence statements has to be
a rigid designator. Returning to the informal exam-
ple described in the introduction, suppose Bond and
Vesper were generated PersonRefs. The DTBLOG
engine will not generate an observation of the form
MeasuredHeight(Fiancee(Bond), t) = 150cm if the value
of Fiancee(Bond) has not been observed (unless Fiancee is
a fixed function, which would be quite unusual), even when
MeasuredHeight() is observable for all PersonRefs. Thus,
the agent being modeled will not “expect” an observation
of the form “MeasuredHeight(Fiancee(Bond), t)=150cm”.
On the other hand, if the agent receives an observation of
the form Fiancee(Bond)=Vesper, the term on the left be-
comes a rigid designator and future user-provided obser-
vations and system-generated decisions may use the term
Fiancee(Bond).

We summarize our formulation of sensor models by noting
that the set of all observations corresponding to a sensor S,
σ−1(S), consists of the set evidence statements of type τS
and value evidence statements for the predicate VS (or its
functional representation as noted above).

3.4 MODELING ACTUATORS

We represent an actuatorA= T̄A in a DTBLOG model as a
decision function apply A(T̄A, t). Decision functions are
declared using the keyword decision; e.g., an actuated cam-
era TakePhoto = 〈Orientation,Length〉 can be specified as:
decision apply TakePhoto(Orientation, Distance, Timestep);

The space of all possible actions in a belief state could be
defined using all possible substitutions of the arguments of
decision variables with terms. However, without any fur-
ther restrictions, this would lead to unintended situations
where the user provides a decision of the form:
apply TakePhoto(Orientation(Loc(Src(pref10,1),t)),

DistanceTo(Loc(Src(pref10,1),t)),t)=true;

even when Loc(Src(pref10,1),t) has not been observed.
Such a decision would not only be meaningless to the ac-
tuator, it can lead to “fake” solutions, e.g., if the desired
objective was to determine the current location of the per-
son who generated pref10,1 and take their photo. We elim-
inate such situations by allowing only rigid designators as
arguments of decision functions. Lines 10-16 in Fig. 2 cap-
ture the DTBLOG specification for a camera. The remain-
der of Fig. 2 completes the specification with dependencies
for the persons’ locations and their movement through the
scanner. Since a PersonRef is generated when the someone
is at the scanner, the location (of the person) corresponding
to a PersonRef is known for a brief period.

We summarize our formulation of actuator models by not-
ing that the set of all decisions corresponding to an actua-
tor A, α−1(A), consists of decision functions of the form
apply A(T̄A).

3.5 OUPOMDP DEFINED BY A DTBLOG MODEL

Let M(S,A) be a DTBLOG model defined using the sets
S and A of sensors and actuators respectively. Let VM be
the first-order vocabulary used in M . Then, M defines an
OUPOMDP 〈X,U,O, T,Ω, R〉where the set of statesX is
the set of all timestep-indexed states corresponding to the
possible worlds of vocabulary VM . U is the set of all in-
stantiated decision functions corresponding to A that are
allowed in some state x ∈ X and O is the set of all instan-
tiated functions corresponding to sensor specifications in S
that are allowed in some state x ∈ X . The transition func-
tion T and observation function Ω are defined by the prob-
abilistic dependency statements in M . This formulation
does not place any requirements on distributions of the val-
ues of observations or the effects of actions. Every BLOG
model must include dependencies for every declared func-
tion; the dependencies for the values of sensor-predicates
and fluents affected by decisions can be defined to capture
arbitrary physical processes.

Strategy tree generated by a DTBLOG model DT-
BLOG represents belief states using collections of sam-
pled, possible states. BLOG’s existing sampling subrou-
tines are used to sample possible worlds corresponding to
the initial state specified in the BLOG model. The seman-
tics developed above implicitly define the strategy tree for
a DTBLOG model: the application of a decision on a be-
lief updates each possible world in the belief to the next
timestep using the stated dependencies. When the belief
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state is updated w.r.t. to a decision, the DTBLOG engine
generates the set of observations corresponding to each
possible updated state.

The following results follow from the semantics above.

Lemma 1. The semantics of DTBLOG ensure that in a be-
lief b, (a) every generated observation statement o is either
a set evidence statement for symbols of type τσ(o) or an ob-
servation statement utilizing only rigid designators of type
specified by T̄σ(o), and (b) every possible decision u uses
only arguments that are rigid designator tuples of the type
T̄α(u).

Theorem 1. Let M(S,A) be a DTBLOG model defined
using sensor and actuator specifications S and A respec-
tively, such that σS and αA are its sensor and actua-
tor mappings. If M satisfies BLOG’s requirements for
well-defined probabilistic models then it generates a well-
defined strategy tree w.r.t. S,A, σS , and αA.

3.6 MODELING REAL-WORLD SITUATIONS

We now show that various non-trivial modes of sensing and
acting can be expressed easily in the presented framework.

Observations of composed functions Consider a hu-
man operator who reads the passport of a passenger im-
mediately after she exits the height scanner, and reports
the date of birth along with the person reference gener-
ated by the height scanner. Intuitively, the human op-
erator provides observations of a function composition:
DOB(PassportID(Src(PersonRef ))), where DOB maps a
passport number to the date of birth mentioned within.
This appears to be a problem since the use of function
application terms is specifically disallowed in our frame-
work unless each such term has been observed. How-
ever, the situation can be modeled by defining the hu-
man operator as a sensor 〈〈PersonRef,Date〉, 〈〉〉, that re-
ports observations about the derived function DOBonPPof-
Src(x)=DOB(PassportID(Src(x))). In fact, our formulation
correctly ensures that the agent will not expect an observa-
tion of DOB(PassportID(Src(x))) from a sensor that reports
the DOB(y) function (perhaps a swipe-through scanner).

Actions on sensor-generated symbols In the real world,
agents need to act upon objects that are detected through
their sensors. Clearly, actuators can be specified to directly
take inputs of the type generated by a sensor. Most com-
monly however, physical actuators such as a robot’s grip-
per cannot act upon symbols. In such situations, sensor-
generated symbols can be used in actions that can be com-
piled down to primitive actions respecting the semantics
defined above. Consider a situation where the scanner re-
ports the estimated Location of the person generating a per-
son reference in addition to their measured heights. Let the
functions RelativeOrientation and CamDistance map posi-
tions to the orientation and distance relative to the camera,
respectively. We can define a camera action that takes a

snapshot given a PersonRef as follows:
apply TakePhotoPRef(p ref,t) :=

apply TakePhoto(RelativeOrientation(Location(p ref)),
CamDistance(Location(p ref)),t)

Every instance of apply TakePhotoPRef () is compiled out
into the primitive action apply TakePhoto().

Actuators that gain knowledge Although this frame-
work cannot capture completely the beliefs of actuators or
sensors with their own reasoning abilities, it can model
actuators and sensors whose knowledge evolves. Con-
sider an actuator that can dial phone numbers. Sup-
pose this actuator models a human operator, who can
read the phone book to obtain the phone number for any
name. Our system correctly allows decisions such as
apply Dial(phoneNumber(“John”), t) only if an observa-
tion of PhoneNumber(“John”) is received. However, they
should also be allowed if the operator has been able to look
up John’s phone number in the phone book. The non-trivial
part in designing such a system is to model the growth in
knowledge of the operator.

Such a phone operator can be specified as 〈String,Time〉.
The corresponding decision variable takes the form ap-
ply Dial(s, t). The restrictions developed above, on possi-
bly substitutions for s, apply here. The effects of this action
are determined by a predicate:
dialNumber(n, t) {

if exists String s apply Dial(s, t)
and n == lookedUpNumber(s, t) then = true

else = false};
where lookedUpNumber(s, t) is either the number repre-
sented by s if s is the string representation of a number, or,
if s is a name, then it is the looked up number for that name
according to a certain distribution:
lookedUpNumber(String s, Time t) {

if strToNumber(s) != null then = strToNumber(s)
else if exists t’<t operatorLookedUp(s, t’)

then ∼ phoneBookCPD(s)
else = null };

With this formulation, the application of decisions like ap-
ply dialNumber(“John”) will result in a correctly updated
belief state, contingent upon whether or not the operator
performed a lookup.

4 SOLVING OUPOMDPS: OU-PBVI

In order to illustrate the efficacy of our framework, we
developed and implemented an open-universe version of
point-based value iteration (PBVI) (Pineau et al., 2003).
OU-PBVI is designed to handle the main aspects of
OUPOMDPs that prevent a direct application of POMDP
algorithms: (a) belief states are infinite dimensional ob-
jects, and (b) the set of possible observations is unbounded.
Thus, standard POMDP algorithms, which rely upon car-
rying out analytical backup operations using the domain’s
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transition function cannot be applied in general (although
closed form backups for special cases may be possible).
The following description focuses upon the key enhance-
ments made to PBVI; a description of PBVI itself can be
found in the cited reference.

PBVI restricts the Bellman backup of the value function
for POMDPs to a finite set of sampled belief states, B. The
‖X‖-dimensional α vector for a policy represents its value
function in terms of the expected value of following the
policy for each state x ∈ X . PBVI approaches construct
t + 1 step policies by computing the t + 1 step value
function for each b ∈ B:

V t+1(b) = maxu{Eb[r(s, u)] + γEΩ(o|b,u)[V
t
max(buo )]},

where V tmax(buo ) =maxα∈Vtα·buo , and buo is the belief state
after action u is applied in b and observation o is obtained.
V t+1(b) represents a 1-step backup of V for b.

In order to apply these ideas to OUPOMDPs, OU-PBVI
represents belief states as sampled sets of possible worlds.
Action application and the generation of observations pro-
ceeds as discussed in detail in the preceding sections. Thus,
for each sampled state in a belief state b, action applica-
tion results in a set of observations corresponding to the
sampled states in b. We use a particle filter with Np par-
ticles for belief propagation, and replace expectations by
sample averages (Srivastava et al., 2012). In addition, we
evaluate α vectors lazily. In our implementation, the num-
ber of keys (possible worlds) in α may reach a bound of
Np · ‖B‖. We also store the policy corresponding to each
α vector. This allows us to dynamically compute missing
components of the vector, as needed. More precisely, dur-
ing backup, if the value of a policy π is required for a state
that is not in the current set of states captured by απ , that
state is added to απ and its value is computed by carrying
out NE simulations of the execution of that policy. Dur-
ing each simulation, after each step of policy execution and
observation generation, if the resulting sampled state x is
present in απ′ where π′ is the subpolicy of π that remains
to be executed, απ′(x) is used and the simulation termi-
nates. The estimates of policy value functions converge to
the true value functions as the Np, NE →∞.

5 TEST PROBLEM AND RESULTS

We conducted experiments to investigate whether point-
based approaches could be used for solving OUPOMDPs.
As a test problem we developed an open-universe version
of the Tiger problem. The agent is surrounded by 4 zones
with an unknown, unbounded number of tigers who may
move among zones at each timestep. Multiple tigers may
be in a zone and the objective is to enter a zone without a
tiger. The agent has two actions, a listen(Timestep t) ac-
tion that allows it to make inaccurate observations about
the growls made by tigers at timestep t, and an enter(Zone

z, Timestep t) action which it can use to enter a zone. When
listen is applied, the agent obtains a growl from each tiger
with probability 0.5.
observableType(Growl);
#Growl(Source = m, Time Growl = t) {

if apply listen(t-1) then ∼ Bernoulli(0.5)
else = 0};

The listen action also gives a noisy estimate of the zones
from which growls came. If a growl is made by a tiger
in z, the probability of observing that a growl was made
at z is 0.75, and that of observing that a growl was made
at each of the zones (z + 1 mod 4) and (z − 1 mod 4) is
0.25. At each timestep, each tiger independently either
stays in its zone with probability 0.4 or moves to each of
the neighboring zones with probability 0.3. The agent re-
ceives a reward 10 for entering a door without tiger, −1 for
listening, and −100 for entering a zone with a tiger. The
number of tigers follows a Poisson(1) distribution. The ob-
jective is to find a policy for the belief state specified in the
DTBLOG model. The unknown, unbounded numbers of
tigers and relevant observations, as well as the independent
movements of tigers make this a difficult OUPOMDP that
cannot be expressed using existing approaches.

For our evaluation, we fixed NE = 100, γ= 0.9 and the
time horizon at 5. Fig. 3 shows the values of the obtained
policies for varying values of ‖B‖ and Np, averaged over
10 different runs of the algorithm. To compute estimates of
policy values, we carried out NE simulations of the com-
puted policy on each of 5000 samples for the initial state.
The results show that the variance in policy value-estimates
decrease as Np and ‖B‖ increase.

Since no other existing approach addresses OUPOMDPs,
we used a belief-state query (BSQ) policy (Srivastava et
al., 2012) as a baseline. BSQ policies map first-order prob-
abilistic queries to belief states. Although such policies are
more succinct than observation-history policies, evaluating
them is non-trivial because the action to be applied at each
step depends on the posterior probability of a first-order
query rather than just the observation history. Algorithms
for policy evaluation are discussed in detail in the cited ref-
erence. For our experiments we used the following, intu-
itively simple BSQ policy:
if Pr(no tiger behind d1 at t) > θ, enter(d1, t)
else if Pr(no tiger behind d2 at t) > θ, enter(d2, t)
...
else listen(t)

We found that θ= 0.9 resulted in the highest expected value
for this BSQ policy, shown using the dashed line in Fig. 3.
Our experiments show that OU-PBVI’s computed policies
approach the best value of our hand-written, parameterized
BSQ policy as Np and ‖B‖ increase.

The average runtimes for OU-PBVI ranged from 420s for 8
beliefs and 200 particles to 106, 800s for 1000 particles and
128 beliefs. At least 80% of the time was spent in proba-
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Figure 3: Expected values for OU-PBVI. Solid lines represent
different numbers of particles used for the belief state representa-
tion (see text for details).

bilistic inference for carrying out belief propagation. Since
we utilize PPLs to express OUPOMDPs, our approach will
automatically scale with improvements in their inference
engines. Indeed, using compiler techniques for improv-
ing inference in PPLs is an active area of research, and has
shown speed-ups of up to 200x in preliminary experiments.
We expect the runtimes of our algorithm to reduce to a frac-
tion of the current estimates as a result of such advances.

These experiments demonstrate that our framework can be
used to effectively express OUPOMDPs and solve them.

6 DISCUSSION

To the best of our knowledge, Moore (1985) presented
the first comprehensive FOL formulation of actions that
did not make the unique names assumption and allowed
terms in the language to be partially observable, in a non-
probabilistic framework. In Moore’s formulation actions
could be executed by an agent only if they were “known” to
it. This notion of epistemic feasibility of an action was also
used in later work (Morgenstern, 1987; Davis, 1994, 2005).
These approaches used a significantly larger axiomatiza-
tion to address the problem of syntactically proving and
communicating facts about knowledge. However, they can-
not be used in open-universe probabilistic languages due
to the requirement of reifying possible worlds and terms
as objects in a universe. Further, they do not address the
problems of expressing observability and action availabil-
ity while conforming to a given agent specification.

Our formulation of action effects uses update rules sim-
ilar to successor-state axioms (SSAs) (Reiter, 2001) with
a significant enhancement: they allow compact expression
of the so-called factored representations that are difficult to
express using SSAs (Sanner and Kersting, 2010). More-
over, usually employed assumptions like having a “closed
initial database” in that line of work preclude the possibility
of expressing identity uncertainty: distinct terms like Ves-
per and Fiancee(Bond) can never represent the same ob-
ject. Sanner and Kersting (2010) use this framework for
first-order POMDPs and make the additional assumption

that all non-fluent terms are fully observable. They suggest
a same-as(t1, t2) predicate for representing identity uncer-
tainty between fluent terms. However, it is not clear how
this predicate can be used in conjunction with their unique
names axioms for actions, which assert that instances of
an action applied on distinct terms must be distinct. The
RDDL language (Sanner, 2010) used in recent probabilis-
tic planning competitions can also express closed-universe
POMDPs as relational extensions of DBNs, under the as-
sumptions that a fixed set of predicates will be observed at
every time step and that all ground terms are unique and
known. Wang and Khardon (2010) present a relational rep-
resentation for closed-universe POMDPs where action ar-
guments have to be in a known 1-1 mapping with actual ob-
jects in the universe. Kaelbling and Lozano-Pérez (2013)
present an approach where action specifications include
preconditions in the form of belief-state fluents. However,
the solution approach requires action-specific regression
functions over the probabilities of such queries. The ap-
proaches discussed so far assume that a POMDP definition
is available. Recent work by Doshi-Velez (2010) addresses
the problem of learning the transition and observation dis-
tributions for an unfactored POMDP with a potentially un-
bounded number of states.

In contrast to these approaches, our formulation allows an
agent to plan and act upon objects discovered through its
sensors. We presented the first framework for accurately
expressing OUPOMDPs and solving them. The central
idea of our solution is that representing observations and
decisions using terms with unique meanings clarifies com-
munication without being restrictive. We utilized this idea
to construct strategy trees reflecting the true capabilities
of an agent—something that could not be achieved by ex-
tending the existing formalisms. We also showed that this
framework facilitates general algorithms for solving a large
class of decision problems that capture real-world situa-
tions and could not previously be expressed or solved. A
number of directions exist for future work. The notion of
high-level actions can be developed further. For instance,
one could define an action that determines the maximum
likelihood estimate for the position of the person who gen-
erated a reference, and takes a picture of that location. Such
actions have to be specified outside the DTBLOG model
since they need to execute queries on the model to construct
their arguments. However, probabilistic effects of such ac-
tions have to be defined in the model in a manner consistent
with their external definitions.
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Abstract

In this paper we develop a Hierarchi-
cal Switching Linear Dynamical System
(HSLDS) for the detection of sepsis in
neonates in an intensive care unit. The Fac-
torial Switching LDS (FSLDS) of Quinn et al.
(2009) is able to describe the observed vital
signs data in terms of a number of discrete
factors, which have either physiological or ar-
tifactual origin. In this paper we demonstrate
that by adding a higher-level discrete variable
with semantics sepsis/non-sepsis we can de-
tect changes in the physiological factors that
signal the presence of sepsis. We demonstrate
that the performance of our model for the
detection of sepsis is not statistically differ-
ent from the auto-regressive HMM of Stan-
culescu et al. (2013), despite the fact that
their model is given “ground truth” annota-
tions of the physiological factors, while our
HSLDS must infer them from the raw vital
signs data.

1 INTRODUCTION

In condition monitoring, we are often interested in in-
ferring when a dynamical system “switches” its mode
of operation. Inside Neonatal Intensive Care Units
(NICUs), one the most important “switches” is as-
sociated with the start of late onset neonatal sepsis
(LONS). LONS is a bloodstream infection, usually
bacterial, which generally occurs after the third day of
life. It is a major cause of mortality, lifelong neurodis-
ability and increased health care costs (Modi et al.,
2009).

Since early clinical signs are subtle, making the diag-
nosis of infection is a great challenge. A deterioration
of the baby’s condition prompts clinicians to take a

blood sample for laboratory testing. However, labora-
tory culture results can take up to a day before becom-
ing available. This delay is known to prevent effective
treatment (Griffin et al., 2003). Thus, a dependable
early sepsis detector would have a major impact on
NICU care. In this work, we discuss a solution which
relies exclusively on vital signs monitoring data.

We propose a Hierarchical Switching Linear Dynam-
ical System (HSLDS) to model a dynamical system
with complex interactions between modes of operation.
The structure of the model is shown in Fig. 1. In the
HSLDS, the switch state is represented as a two-level
discrete hierarchical structure. The top layer switch
variables control the transition matrices used by the
lower discrete layer, whose variables are assumed to be
conditionally independent given the top layer. Condi-
tioned on the hidden discrete structure, the model is
a Linear Dynamical System (LDS), which models con-
tinuous hidden state variables and continuous obser-
vations. The observations are assumed to come from
readings of the monitoring equipment.

The HSLDS can be applied for the real-world task of
detecting neonatal sepsis. The discrete top layer deter-
mines the state of the infection and the lower-level dis-
crete factors are baby-generated physiological events.
The physiological events we monitor for sepsis detec-
tion are:

• bradycardia: a spontaneous fall in heart rate mea-
surements (Figure 2a), and

• desaturation: a drop in the concentration of oxy-
gen in arterial blood (Figure 2b).

The problem of detecting neonatal sepsis from moni-
toring data has been previously studied. Griffin et al.
(2003) and Moorman et al. (2011) have found a posi-
tive skew in the inter-beat (RR) interval histograms in
the hours before the clinical suspicion of sepsis, and an
absence of skew during normal periods. They used this
finding to build features subsequently fed to a logistic
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regression classifier. However, this work does not use
other vital signs apart from the heart rate and also
assumes access to the high-frequency RR data. The
work of Stanculescu et al. (2013) is probably closest to
our approach. They propose using an auto-regressive
HMM (AR-HMM) to capture trends of increased phys-
iological event incidence. Unlike the HSLDS, their
model uses annotations of physiological events as in-
put, which limits the possibility of model deployment.

The main contributions of this work are: (i) to de-
velop the FSLDS model of Quinn et al. (2009) into
a HSLDS in a “deep learning” style by adding a set
of higher-level variables to model correlations in the
physiological factors in order to detect sepsis, and (ii)
to demonstrate that the performance of our model for
the detection of sepsis is almost as good as the auto-
regressive HMM of Stanculescu et al. (2013), despite
the fact that their model is given “ground truth” anno-
tations of the physiological factors, while our HSLDS
must infer them from the raw vital signs data.

The structure of the remainder of the paper is as fol-
lows: In Section 2 we describe the proposed model, and
discuss inference, learning and related work. Section 3
explains how the HSLDS can be used to obtain early
predictions about neonatal sepsis and inferences about
clinical events. Experimental results are presented in
Section 4 and we provide a discussion in Section 5.

2 THE HSLDS

In order to facilitate the introduction of our hierarchi-
cal model, we begin with a brief review of the Switch-
ing LDS (SLDS). The SLDS is a generative model for
sequential data which switches between several differ-
ent modes of operation. Each mode of operation is
modelled as a LDS (Kalman filter), and thus the SLDS
can be thought of as a dynamical mixture of LDS mod-
els. As the switch settings are hidden, often the main
task is to recover them given the observations. For-
mally, at time t the SLDS has a discrete-continuous
hybrid hidden state consisting of a hidden switch vari-
able st and a hidden continuous state xt ∈ Rdx . This
hybrid state attempts to explain how measurements
yt ∈ Rdy are generated. More precisely, the switch
setting st determines the set of LDS parameters used
at time t:

xt ∼ N (A(st)xt−1,Q(st)), (1)

yt ∼ N (C(st)xt,R(st)), (2)

where A(st) and Q(st) are the dynamics and dynam-
ics noise covariance matrices, and C(st) and R(st) are
the observation and observation noise covariance ma-
trices. The switch settings are sampled from a Markov
transition matrix p(st|st−1).
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Figure 1: HSLDS with K = 2. Squares represent dis-
crete variables and circles represent continuous ones.
Shaded nodes are observed variables.

The FSLDS assumes a set of K discrete factors
f
(1)
t , f

(2)
t , . . . , f

(K)
t are collectively affecting the data.

The model is obtained by representing the switch vari-

able of the SLDS as the cross product f
(1)
t ⊗f (2)t ⊗ ...⊗

f
(K)
t . An important assumption made by the FSLDS

is that the factors are a priori independent:

p(st|st−1) =
K∏

k=1

p(f
(k)
t |zt, f (k)t−1)

In the HSLDS, we propose relaxing this assumption
by introducing a hierarchical structure for the discrete
hidden variables. The discrete state is now repre-
sented by two layers of variables (see Figure 1). The
top layer variable zt controls the Markovian dynamics

p(f
(·)
t |zt, f (·)t−1) used by each factor. Conditional on the

setting of the top layer switch variable zt, the model
becomes equivalent to an FSLDS. Thus, the HSLDS
can be thought of as a dynamical mixture of FSLDS
models. If we define a full expansion of the discrete

hidden state as st , zt ⊗ f (1)t ⊗ f (2)t ⊗ ...⊗ f (K)
t , then

the joint distribution of the HSLDS can be written as:

p(s1:T ,x1:T ,y1:T ) = p(s1)p(x1|s1)p(y1|x1, s1)

T∏

t=2

p(st|st−1)p(xt|xt−1, st)p(yt|xt, st), (3)

where

p(s1) = p(z1)

K∏

k=1

p(f
(k)
1 |z1),

p(st|st−1) = p(zt|zt−1)
K∏

k=1

p(f
(k)
t |zt, f (k)t−1),
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s1:T , s1, s2, . . . , sT , and x1:T and y1:T are similarly
defined.

Note that the top hidden layer is conditionally inde-
pendent of the continuous variables given the factor
settings: x1:T ,y1:T ⊥⊥ z1:T |f1:T , where we have de-

fined ft , [f
(1)
t , f

(2)
t , . . . , f

(K)
t ]. This simplifies both

learning and inference.

2.1 RELATED WORK

The basic SLDS model has a long history, see e.g.
Shumway and Stoffer (1991), and has been used in
many applications. Factorization of the SLDS discrete
state gives the Factorial Switching LDS (FSLDS),
which has been used for neonatal condition moni-
toring by Williams et al. (2006) and Quinn et al.
(2009), in speech recognition (Deng, 2006) and in mu-
sic transcription (Cemgil et al., 2006). This mirrors
the development of the factorial hidden Markov model
(FHMM) of Ghahramani and Jordan (1997) from the
standard HMM.

The HMM model has also been elaborated hierarchi-
cally by Fine and Singer (1998) to give the hierarchical
hidden Markov model (HHMM). A similar construc-
tion can be used to create a hierarchical switching LDS
(HSLDS). The only previous example of this model we
are aware of in the literature is the work of Zoeter and
Heskes (2003) which used a HSLDS for visualization
of time-series data. Their motivation is to allow a
successive refinement of a visualization, starting from
projecting onto a single LDS with a two-dimensional
(2-d) hidden space. This can be broken down into a
SLDS of 2-d LDSes, and then each 2-d LDS can be fur-
ther independently decomposed into a SLDS. Thus, a
set of lower-level states correspond to one higher-level
state. Also note that their use case involves interaction
from the user to initialise the decomposition.

In contrast, we more naturally think of building our
model bottom up, first identifying a set of factors for
the FSLDS, and then modelling their correlations with
a top-level variable. Notice that in our work the state
of the top-level variable affects all of the second-level
variables below it.

There are also some similarities between our work
and the paper by Taylor et al. (2010). Under their
approach, the x dynamics are modelled by an Im-
plicit Mixture of Conditional Restricted Boltzmann
Machines (imCRBM). This is similar to us in that the
CRBM part of the model uses a number of discrete
latent variables (analogous to our f ’s) to affect the x
dynamics. The implicit mixture variable (analogous to
our z) switches between different dynamics models. Of
course, the details of the model are quite different as

it is in part undirected, and that there are no explicit
discrete latent variable chains through time, instead
these variables “hang off” the x chain.

2.2 INFERENCE

Since real-time inference is the major concern in physi-
ological condition monitoring, we are mainly interested
in marginal filtering distributions. More precisely, we
require sepsis predictions of the form p(zt|y1:t) and

clinical event posteriors p(f
(·)
t |y1:t). These marginal

posteriors can be immediately obtained from the filter-
ing distribution of the fully expanded state p(st|y1:t).
Thus, running SLDS inference suffices for HSLDS in-
ference. Note that the more general goal of SLDS fil-
tering is inferring p(x1:t, s1:t|y1:t).

Exact SLDS inference requires computing Gaussian
mixtures with a number of components exponential
in the length of the sequence. Clearly, this is com-
putationally intractable for most practical purposes
(Lerner and Parr, 2001). Several approximate SLDS
inference methods have been previously proposed:
Gaussian sum approximations (Murphy, 1998; Barber
and Mesot, 2007), Rao-Blackwellised Particle Filtering
(Murphy and Russell, 2001; de Freitas et al., 2004),
variational inference (Ghahramani and Hinton, 2000)
or expectation propagation (Zoeter and Heskes, 2003).

Here, we apply the Gaussian Sum approximation
described in Murphy (1998). The method ensures
tractability by using moment matching to collapse a
Gaussian mixture onto a single Gaussian. At any time
step, each p(xt|st,y1:t) is approximated by a single
Gaussian, which corresponds to p(xt|y1:t) being ap-
proximated by a mixture of Gaussians.

When the hidden discrete state is a cross-product of
variables, we can speed up inference by allowing at
most one variable to change its setting at each time
step. This procedure has been previously discussed in
Quinn et al. (2009) or Kolter and Jaakkola (2012).

A particular aspect of the baby monitoring application
is the presence of several missing data sources. The
treatment of this problem will be discussed in detail
in Section 3.3.

2.3 LEARNING

HSLDS learning is similar to FSLDS learning to a
large extent. Here, we first emphasize the most signif-
icant common aspects and then discuss HSLDS learn-
ing specifics.

For our application we assume that there are a number
of interpretable regimes for which labelled data are
available. Labelled data for the HSLDS model are of
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the form {yt, zt, f (1)t , f
(2)
t , . . . , f

(K)
t }.

As in the FSLDS case, the availability of labelled data
makes learning equivalent to learning one LDS model
for each switch setting. In general, we parameterise
LDS dynamics as autoregressive processes and use Ex-
pectation Maximisation (EM) for training (Ghahra-
mani and Hinton, 1996). Learning is performed inde-
pendently for each factor, and then the fitted param-
eters are carefully combined for each switch setting.
This procedure is greatly simplified by considering the
interactions between factors. For instance, the acti-
vation of one factor might “overwrite” any effect of
another factor on certain observation channels. In the
neonatal monitoring application, domain knowledge is
used to define a factor overwriting ordering, as further
discussed in Section 3.2.

For the HSLDS in particular, we use the conditional in-
dependence between the continuous variables and the
top layer discrete variables to further simplify learn-
ing. This means that the (parameters of the) continu-
ous variable distributions (eqs. 1 and 2) do not depend
on the setting of zt.

A straightforward way of learning the Markov tran-

sition matrices for individual factors p(f
(·)
t |zt, f (·)t−1)

would be to make use of the labelled data and maxi-
mize the conditional likelihood p(f1:T |z1:T ). Estimates
of the factor transition probabilities have the form:

p(f
(·)
t = j|zt = l, f

(·)
t−1 = i) =

nijl + n0∑
j′(nij′l + n0)

, (4)

where nijl is the number of transitions from state i to
state j for factor f (·) under the z-regime l counted over
all the training data. The constant count n0 comes
from placing a Dirichlet prior which prevents proba-
bilities from being too close to zero.

However, we have found that an alternative “deep
learning” style method can give rise to better results
(Section 4.1). Although the f data is available at train-
ing time, at test time these labels must be inferred
from the y data. Hence it makes sense to build a
model which looks at the actual inferences of the fac-
tors, rather than the ground truth labels.

If Y is the training set of sequences and the corre-
sponding F are treated as hidden variables, we could
use EM and attempt to optimise p(Y|Z). The M-
step is equivalent to maximizing the expected complete
data log likelihood:

Q = Ep(X,F|Y,Z) log p(Y,X,F|Z), (5)

where p(X,F|Y,Z) was computed in the preceding E-
step using the old parameter settings. Factor transi-

tion estimates are of the from:

p(f
(·)
t = j|zt = l, f

(·)
t−1 = i) =

ñijl + n0∑
j′(ñij′l + n0)

, (6)

where

ñijl =
∑

t

p(f
(·)
t−1 = i, f

(·)
t = j|Y,Z)I(zt = l)

is commonly referred to as a “soft” data count, I is
the indicator function, and the sum is taken over all
t’s in the training data.

Running EM until convergence is likely to be unsatis-
factory, as there are no guarantees that the learnt fac-
tor transition matrices would produce good factor pos-
teriors. Our solution is to approximate p(F|Y,Z), by
pFSLDS(F|Y). Here, the FSLDS model is trained us-
ing the standard learning routine of Quinn et al. (2009)
and the factor models discussed in Section 3.2, and is
thus unaware of the existence of multiple z-regimes. In
practice, we found it sufficient to obtain “soft” counts

of pairwise filtering marginals pFSLDS(f
(·)
t−1, f

(·)
t |y1:t)

for each training sequence. Since FSLDS posteriors
do not depend on the learnt HSLDS parameters, the
method is non-iterative.

This procedure follows ideas in the “deep learning” lit-
erature (Hinton et al., 2006) where layer-wise training
of a model is carried out. Similar ideas can also be
found e.g. in Karklin and Lewicki (2005) or Farhadi
et al. (2009), although in all these cases the models are
not for time series.

Finally, estimates of the Markov transition matrix
p(zt|zt−1) are learnt from the z-labels. Also note that
in the absence of the labelled data, unsupervised learn-
ing for the full model would be possible using EM.

3 AN HSLDS FOR NEONATAL
CONDITION MONITORING

This section is concerned with applying the HSLDS for
condition monitoring in NICUs. We begin with a brief
description of baby monitoring, focusing on the early
detection of neonatal sepsis. We then explain how the
problem can be solved by formulating it as learning
and inference in an HSLDS.

3.1 NICU MONITORING AND SEPSIS
DETECTION

NICU babies are born several months prematurely and
are intrinsically unstable. They are nursed in incuba-
tors, and their vital signs are continuously displayed
on bedside screens. Clinicians apply their expertise
to interpret patterns in the monitoring traces and use
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this information in support of their diagnostic infer-
ence. The task is challenging for reasons including the
amount, dimensionality and frequency of the data, and
the need to analyse patient physiology across multiple
time scales.

The present application focuses on the early detec-
tion of neonatal sepsis based on the information con-
tained in the monitoring data. The hypothesis is that
an increased incidence of baby generated physiologi-
cal events is a symptom of sepsis. In current clini-
cal practice, the laboratory result of a blood culture
is taken taken as the “gold standard” for diagnosing
neonatal sepsis. Here, we adopted the laboratory re-
sult interpretation proposed by Modi et al. (2009) and
also discussed by Stanculescu et al. (2013).

The measurement channels used in this work moni-
tor several vital physiological systems. The heart rate
measures the cardiovascular system. It is available
from two sources: the ECG leads - HR (beats per
minute - bpm) and the pulse oximeter - PR (bpm).
The core and peripheral temperatures, TC (◦C) and
TP (◦C), monitor the thermoregulatory system. The
saturation of oxygen in arterial blood, SO (%), reflects
the evolution of the respiratory system. All channels
are sampled second-by-second (1Hz).

Our data samples are monitoring windows with a du-
ration of 30 hours, and fall into either a sepsis group
or a control group. Sepsis samples have been chosen
such that the time the positive blood sample was col-
lected occurs precisely 24 hours after the start of the
window. For control samples, there was no suspicion
of sepsis in a consecutive 3 day period around the se-
lected windows, and no blood sample had been taken
for laboratory testing.

3.2 LEARNING A SEPSIS DETECTION
MODEL

We now detail how the baby monitoring HSLDS is
trained. We first discuss parameter fitting for the con-
tinuous variable distributions and then continue with
learning the hidden discrete layers of the HSLDS.

Learning continuous variable distributions

A natural classification of the regimes appearing in
the NICU monitoring application is: stability, known
factors and unknown factors.

Babies within the NICU are in a stable condition for
much of the time, generally being asleep and motion-
less. We call this regime stability and separately fit
univariate LDSes to each measurement channel. Thus,
the dynamics parameters A and Q will have a block
diagonal structure (see Quinn et al. (2009) for details).
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Figure 2: Examples of physiological events. They are
notable for the lack of artifact.

When clinical events associated with stereotypical pat-
terns occur on the monitoring traces, the regimes will
be referred to as known factors. Here, we model two
physiological events: braydcardias and desaturations
(see Figure 2 for examples). Both are characterised by
a drop in the monitored signal (a slowing of the heart
rate for bradycardias, and a decrease in the saturation
of oxygen in arterial blood for desaturations), after
which measurements rise back. We model these fac-
tors as two-stage events. The first stage corresponds
to measurements dropping and can be explained by
an exponential decay, the discrete time equivalent of
which is an AR(1) process. To set the mean of the de-
cay process we first compute the empirical distribution
F of minimum channel measurements during events.
The quantile q∗ of F corresponding to F (q∗) = 0.05 is
chosen to be the decay mean. In the second stage of
the event the measurements rise back. This will be re-
ferred to as the recovery stage. Recovery dynamics are
also modelled as an AR(1) process, where the mean is
now the same as the channel’s stability mean. The
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Table 1: Overwriting Ordering of Factors
Channel Bradycardia Desaturation X Stability

HR • • •
SO • • •

parameters for both decay and recovery models are
learnt by running EM, where we chose the dynamics
initialisation A = 0.

Finally, certain events cannot be explained by either
stability or by any of the known factors. These pat-
terns represent either novel dynamics or their low in-
cidence makes them impractical to model as known
factors. Here, we follow the approach of Quinn et al.
(2009), where they propose a factor explaining these
“known unknowns”, the X-factor. It shares the same
dynamics matrix with stability, but uses an inflated
system noise covariance matrix. As the X-factor can
claim patterns of both physiology and artifact, we do
not use it directly for inferring the presence of sepsis.

Once the factor models have been separately learnt,
they are combined using the overwriting order shown
in Table 1. For each measurement channel, factors
placed towards the left of the table overwrite factors
placed towards the right.

Learning discrete variable distributions

In the baby monitoring application the top discrete
layer of the HSLDS models the state of the sepsis in-
fection. Here, we assume zt is a binary variable taking
on values zt = sepsis or zt = normal. We first explain
how labels of the form {yt, zt} have been defined. We
then discuss how these labels are used to train the
HSLDS’s discrete variable layers.

The task of providing labels for the sepsis indicator
variable is non-trivial. For patients in the sepsis group,
clinicians only hold records for the exact time of the
positive blood test. It is almost certain that the onset
of the infection occurred in the hours prior to this time
stamp. However, the onset cannot be assumed to be an
instantaneous switch. The following labelling scheme
has been proposed for samples belonging to the sepsis
group; see Stanculescu et al. (2013). First, a period
of 6 hours before the time of the positive blood test is
labelled as sepsis. Second, we introduce a transition
period during which the baby progresses from being
in the normal state to being in the sepsis state. The
transition period is defined as the 12 hour interval be-
tween 18 and 6 hours before the positive test. We do
not assign a label for this period and it is not used
for either training or testing the discrete layers of the
HSLDS. Third, the monitoring data before the tran-
sition period (i.e. the first 6 hours of a sample in the

Table 2: Missing Data Sources Affecting Baby-
generated Physiological Events.

Bradycardia Desaturation
Handling • •

Oximeter error •
HR dropout •
SO dropout •

sepsis group) is labelled as normal. Fourth, we do not
assign a label to data after the positive test, as these
measurements are likely to be affected by the patient’s
response to treatment and have less relevance for the
task of real-time sepsis detection. Finally, all the data
in the control group is assigned the normal label.

Using the sepsis labels, an estimate of p(zt|zt−1) can be
directly obtained using data counts. For learning the
z-conditioned known factors’ transition matrices, we
apply the procedure explained in Section 2.3; see eq. 5
and the surrounding text . The X-factor’s incidence is
assumed to be independent of the state of the infection,
and thus the factor transition matrix is copied from the
previously learnt FSLDS.

3.3 INFERENCE WITH MISSING DATA

We reiterate that this work is centred on the idea of
monitoring baby-generated bradycardias and desatu-
rations in order to predict sepsis. However, there are
periods of time during which labels for these events
cannot be provided even by an expert annotator. We
will treat such periods as missing data. There are
three distinct sources of missing data: probe dropouts,
oximeter errors and patient handling. We first describe
these sources and then explain how inference can be
performed during such periods.

During probe dropouts measurements are not available
due to either malfunctioning or temporary removal of
the monitoring devices. They can be readily recog-
nised by the zero values on the recorded channels.

An oximeter error occurs when there is a disagreement
between the HR and PR traces. This indicates a tem-
porary unreliability of the SO trace, and thus the im-
possibility to monitor desaturations. Here, we adopt
the approach in Stanculescu et al. (2013), where an au-
tomated oximeter error detection algorithm has been
applied as a preprocessing step.

Patients are regularly handled by clinical staff (e.g. for
changing nappies). During such episodes, we usually
see an increased variability in the monitoring chan-
nels and often patterns of bradycardia or desatura-
tion. We cannot distinguish whether such instances
are caused merely by handling an extremely frag-
ile baby, or they actually reflect the patient’s true
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Table 3: Population Demographics: Gestation, Birth
Weight (BW) and Post Partum Age

Group Statistic Gestation BW Age

Sepsis
mean 27.2 weeks 873 gr 14.5 days

std.dev. 1.5 weeks 256 gr 8.5 days

Control
mean 26.7 weeks 837 gr 15.2 days

std.dev. 1.7 weeks 139 gr 14 days

state of health. Thus, for sepsis detection we analyse
only physiological events happening outside handling
episodes. Our work still relies on having expert anno-
tations for handling. Quinn et al. (2009) have shown
that these episodes can be inferred by monitoring envi-
ronmental channels such as the incubator’s humidity,
but such channels have not been available in this work.

Table 2 shows how physiological events are affected by
the presence of each missing data source.

For running inference with missing data, we extend
the ideas in Quinn et al. (2009). Whenever a miss-
ing data source is present, the measurements do not
carry information about the true physiology of the pa-
tient, and thus should not influence the hidden state
estimates. The latter continue to evolve according to
the dynamics equations, but without measurement up-
date. Technically, rows of the observation matrix are
set to zero whenever there is missing data on the cor-
responding measurement channel. For these channels
the Kalman gain will be zero. Thus, the corresponding
hidden continuous state dimensions will be estimated
with increasing uncertainty before reaching the stable
state of the Kalman filter.

4 EXPERIMENTS

This section describes the experiments we have per-
formed to assess the neonatal condition monitoring
model introduced in Section 3. The detection of sepsis
is discussed in Section 4.1. Section 4.2 is concerned
with the quality of physiological event posteriors.

The dataset we use in this work consists of data col-
lected exclusively from very low birth weight patients
(VLBW, birth weight < 1500 grams). It has been pre-
viously used by Stanculescu et al. (2013), and contains
36 monitoring samples equally split between the sepsis
and the control groups. All sepsis samples come from
different patients. In the control group we have two
samples from each of 9 different babies. Three patients
have samples in both groups, corresponding to a total
of 24 different patients. The demographics of the two
groups are shown in Table 3.

Expert annotations have been obtained for all the
data. A summary of the annotation process is pro-

Table 4: Clinical Event Incidence
Event Group Incidence Total Median

Bradycardia
Sepsis 1718 24 hrs 39 sec
Control 1133 12 hrs 35 sec

Desaturation
Sepsis 738 32 hrs 101 sec
Control 231 11 hrs 132 sec

X-factor
Sepsis 226 10 hrs 94 sec
Control 171 7 hrs 114 sec

Handling
Sepsis 204 44 hrs 530 sec
Control 210 55 hrs 592 sec

Ox. err.
Sepsis 4051 45 hrs 16 sec
Control 3395 36 hrs 18 sec

vided in Table 4. The total amount of data for each
group is 18 × 30 = 540 hours and only baby gener-
ated physiological events have been considered. Im-
portantly, the incidence of baby generated bradycar-
dias and desaturations is higher in the sepsis group.
As expected, the differences for the X-factor are much
smaller. In terms of missing data sources, the amounts
of handling and oximeter error are similar between pa-
tient groups. Probe dropout statistics are different for
each channel, but on average we lack observations for
2% of the time. In addition, a stability period of 15−30
minutes was marked near the start of each sample.

In order to reduce bias, we test our predictions using
N -fold cross-validation. Considering the size of our
dataset we decided to use N = 9 folds. Each fold
contains 4 data samples, 2 from each patient group.
The 2 control samples are chosen such that they belong
to the same patient. Apart from these constraints, the
folds have been randomly chosen.

4.1 SEPSIS DETECTION

To gain a better understanding of the HSLDS’s effec-
tiveness, we compare its predictions against filtering
results obtained with the AR-HMM model of Stan-
culescu et al. (2013). While the HSLDS infers the pos-
terior distributions of bradycardias and desaturations,
the AR-HMM uses expert annotations of these events
as input. Note that in the AR-HMM it was possible
to run inference exactly and also marginalise over the
missing data exactly. For the purposes of this work,
the central question is how well the HSLDS inferences
match the AR-HMM ones.

In the following we discuss two HSLDS models. The
HSLDS learnt as explained in Section 2.3 will be re-
ferred to as HSLDSdeep. We will compare it against
an HSLDS where the factor transitions for baby-
generated events are learnt directly from the expert
annotations, HSLDSkf (known factors).

We provide the second-by-second sepsis inferences pro-
duced by both the AR-HMM and HSLDSdeep in Fig-
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Figure 3: Sepsis filtering distributions obtained using 9-fold Cross-Validation. On the x-axis, 0 denotes the
time the positive blood sample was taken. For each group, the top row represents the sepsis labelling: normal
periods are white (probability 0), sepsis periods are black (probability 1); transitioning and treatment periods
are not assigned labels. For each data sample the top row corresponds to the AR-HMM model, the bottom row
corresponds to HSLDSdeep.

Table 5: Sepsis Inference Summaries Using 9-fold
Cross-Validation

Second-by-second Episode-based
Model AUC EER AP F-score

AR-HMM 0.72 0.34 0.62 0.65
HSLDSdeep 0.69 0.37 0.51 0.54
HSLDSkf 0.62 0.41 0.45 0.47

ure 3. In general, there is strong correlation between
the predictions of the two models and we find the in-
ferences of HSLDSdeep to be a good match to the
AR-HMM ones. However, in samples s2, s7 and s11

HSLDSdeep detects sepsis noticeably later than the
AR-HMM, and in samples , s4 and s6 it does so ear-
lier. In the control group, HSLDSdeep does slightly
worse on samples c7 and c18, but outperforms the AR-
HMM on samples c4 and c13.

For quantifying those results, we project the inferences
onto two different metrics. This opens the possibility
to reveal different aspects of performance.

Firstly, we are mainly interested in the second-by-
second inferences produced by our hierarchical models
and use the z-labels to draw ROC curves. The AUC
(area under the ROC curve) and EER1 computed by
aggregating predictions over folds are shown in Ta-

1EER is the error rate computed for the threshold at
which the false positive rate (FPR) equals the false nega-
tive rate (FNR).

ble 5. Compared to HSLDSkf, HSLDSdeep produced
results much closer to the AR-HMM benchmark.

We obtained more insight into how the HSLDS pre-
dictions compare against the AR-HMM results via
an N -fold cross-validated paired t test on the AUC.
We found the performance difference between the AR-
HMM and our proposed HSLDSdeep model not to be
statistically significant (p = 0.552). This is a good
indication that the HSLDSdeep model can be used in-
stead of the AR-HMM, and thus significantly reduce
the need for expert input needed to detect sepsis. At
the same time the performance difference between the
AR-HMM and the HSLDSkf model is statistically sig-
nificant (p = 0.0064). This suggests HSLDSkf should
not be used instead of the AR-HMM.

Secondly, we analyse the inferred episodes of infection
and draw precision-recall (PR) curves. This analysis
has been proposed by Stanculescu et al. (2013), where
they argue that it could be more relevant in clinical
practice than a second-by-second one. Here we report
average precision (AP) and the maximum F-score (see
Table 5). Again, the performance of HSLDSdeep is
closer to the AR-HMM than the HSLDSkf.

4.2 PHYSIOLOGICAL EVENT
POSTERIORS

We can obtain filtering distributions for physiologi-
cal events by marginalising the sepsis variable from
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Figure 4: Median weighted number of true and inferred bradycardias separately computed for each patient group.
The counts were computed hourly and summarize the preceding 3 hour period. Error bars mark first and third
quartiles. The small offset between the two patient groups was used to improve readability.

Table 6: Factor Inference Summaries Using 9-fold
Cross-Validation

Brady. Desat. X

FSLDS
AUC 0.85 0.81 0.63
EER 0.21 0.28 0.40

HSLDSdeep
AUC 0.86 0.82 0.60
EER 0.21 0.27 0.42

HSLDS posteriors. As we have labelled data for the
predicted factors, we can we compare HSLDS posteri-
ors against FSLDS ones. Summary results computed
by aggregating predictions obtained with 9-fold cross-
validation are shown in Table 6. Even though the
FSLDS has been trained solely for inferring clinical
events, there is very little difference between the per-
formance of the two models.

Bradycardia and X-factor inferences obtained using
an FSLDS have been previously assessed in (Quinn
et al., 2009). The bradycardia results reported here
are very similar to that work, but X-factor predictions
are worse. Results on oxygen desaturation have not
been previously reported.

We also found it interesting to compare the true in-
cidence of baby-generated physiological events against
the inferred one. For this purpose we obtained inferred
events by binarising factor posteriors. Figure 4 shows a
comparative visualisation of the time evolution of an-
notated and inferred bradycardias. The counts have
been weighted in accordance to the amount of missing
data in the analysed 3 hour periods. On both plots,
there is a clear increase in the incidence of bradycar-
dias in the hours before the sepsis diagnosis.

5 CONCLUSION

In this paper, we have proposed a framework for con-
dition monitoring in situations when the factors that
govern the data can be organised in a hierarchy. The
structure of our model allows domain knowledge to be
naturally incorporated. In addition, we have described
a “deep learning” inspired training method.

The effectiveness of our model has been demonstrated
for the difficult task of detecting the onset of sepsis in
NICU patients. When compared against an AR-HMM
model which heavily relies on expert annotations, we
found the performance difference not to be statistically
significant.

The are several directions in which this work could
be extended. It would be interesting to run (H)SLDS
smoothing, e.g. as described by Barber and Mesot
(2007). This would prove useful both as a retrospec-
tive analysis of sepsis detection, and for refining our
approach to learning factor transitions. Explicit mod-
elling of event duration could improve the results, as
demonstrated by Stanculescu et al. (2013). While
we showed that the HSLDS performs similarly to the
AR-HMM, sepsis predictions still need improvement.
Finally, the X-factor predictions indicate more work
could be done on novelty detection.

Acknowledgements

We would like to thank Prof. Neil McIntosh for provid-
ing expert insight and supervising with data annota-
tion. Author IS was funded by the Scottish Informatics
and Computer Science Alliance and the Engineering
and Physical Sciences Research Council.

760



References

Barber, D. and Mesot, B. (2007). A Novel Gaus-
sian Sum Smoother for Approximate Inference in
Switching Linear Dynamical Systems. In Schölkopf,
B., Platt, J., and Hoffman, T., editors, Advances
in Neural Information Processing Systems 19, pages
89–96. MIT Press, Cambridge, MA.

Cemgil, A. T., Kappen, H. J., and Barber, D. (2006).
A generative model for music transcription. IEEE
Transactions on Audio, Speech and Language Pro-
cessing, 14(2):679–694.

de Freitas, N., Dearden, R., Hutter, F., Morales-
Menendez, R., Mutch, J., and Poole, D. (2004). Di-
agnosis by a waiter and a Mars explorer. Proceedings
of the IEEE, 92(3):455–468.

Deng, L. (2006). Dynamic Speech Models: Theory,
Algorithms, and Applications. Synthesis Lectures on
Speech and Audio Processing. Morgan & Claypool
Publishers.

Farhadi, A., Endres, I., Hoiem, D., and Forsyth, D.
(2009). Describing objects by their attributes. In
Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Fine, S. and Singer, Y. (1998). The Hierarchical Hid-
den Markov Model: Analysis and Applications. In
Machine Learning, pages 41–62.

Ghahramani, Z. and Hinton, G. E. (1996). Parameter
Estimation for Linear Dynamical Systems. Techni-
cal report, University of Toronto.

Ghahramani, Z. and Hinton, G. E. (2000). Variational
Learning for Switching State-Space Models. Neural
Computation, 12(4):831–864.

Ghahramani, Z. and Jordan, M. I. (1997). Factorial
Hidden Markov Models. Machine Learning, 29:245–
273.

Griffin, M. P., O’Shea, T. M., Bissonette, E. A.,
Harrell, F. E., Lake, D. E., and Moorman, J. R.
(2003). Abnormal Heart Rate Characteristics Pre-
ceding Neonatal Sepsis and Sepsis-Like Illness. Pe-
diatr Res, 53(6):920–6.

Hinton, G. E., Osindero, S., and Teh, Y. W. (2006). A
fast learning algorithm for deep belief nets. Neural
Computation, 18:1527–1554.

Karklin, Y. and Lewicki, M. S. (2005). A hierarchi-
cal Bayesian model for learning non-linear statistical
regularities in non-stationary natural signals. Neural
Computation, 17(2):397–423.

Kolter, J. Z. and Jaakkola, T. (2012). Approximate
Inference in Additive Factorial HMMs with Appli-
cation to Energy Disaggregation. In Lawrence, N. D.

and Girolami, M., editors, AISTATS, volume 22 of
JMLR Proceedings, pages 1472–1482. JMLR.org.

Lerner, U. and Parr, R. (2001). Inference in hybrid net-
works: Theoretical limits and practical algorithms.
In UAI, pages 310–318.
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Abstract

The Brown clustering algorithm (Brown et al.,
1992) is widely used in natural language process-
ing (NLP) to derive lexical representations that
are then used to improve performance on vari-
ous NLP problems. The algorithm assumes an
underlying model that is essentially an HMM,
with the restriction that each word in the vocab-
ulary is emitted from a single state. A greedy,
bottom-up method is then used to find the clus-
tering; this method does not have a guarantee of
finding the correct underlying clustering. In this
paper we describe a new algorithm for clustering
under the Brown et al. model. The method relies
on two steps: first, the use of canonical correla-
tion analysis to derive a low-dimensional repre-
sentation of words; second, a bottom-up hierar-
chical clustering over these representations. We
show that given a sufficient number of training
examples sampled from the Brown et al. model,
the method is guaranteed to recover the correct
clustering. Experiments show that the method
recovers clusters of comparable quality to the al-
gorithm of Brown et al. (1992), but is an order of
magnitude more efficient.

1 INTRODUCTION

There has recently been great interest in the natural lan-
guage processing (NLP) community in methods that de-
rive lexical representations from large quantities of unla-
beled data (Brown et al., 1992; Pereira et al., 1993; Ando
and Zhang, 2005; Liang, 2005; Turian et al., 2010; Dhillon
et al., 2011; Collobert et al., 2011; Mikolov et al., 2013a,b).
These representations can be used to improve accuracy on
various NLP problems, or to give significant reductions in
the number of training examples required for learning. The
Brown clustering algorithm (Brown et al., 1992) is one of
the most widely used algorithms for this task. Brown clus-
tering representations have been shown to be useful in a

diverse set of problems including named-entity recognition
(Miller et al., 2004; Turian et al., 2010), syntactic chunking
(Turian et al., 2010), parsing (Koo et al., 2008), and lan-
guage modeling (Kneser and Ney, 1993; Gao et al., 2001).

The Brown clustering algorithm assumes a model that is
essentially a hidden Markov model (HMM), with a restric-
tion that each word in the vocabulary can only be emitted
from a single state in the HMM (i.e, there is a deterministic
mapping from words to underlying states). The algorithm
uses a greedy, bottom-up method in deriving the cluster-
ing. This method is a heuristic, in that there is no guarantee
of recovering the correct clustering. In practice, the algo-
rithm is quite computationally expensive: for example in
our experiments, the implementation of Liang (2005) takes
over 22 hours to derive a clustering from a dataset with 205
million tokens and 300,000 distinct word types.

This paper introduces a new algorithm for clustering un-
der the Brown et al. model (henceforth, the Brown model).
Crucially, under an assumption that the data is generated
from the Brown model, our algorithm is guaranteed to re-
cover the correct clustering when given a sufficient num-
ber of training examples (see the theorems in Section 5).
The algorithm draws on ideas from canonical correlation
analysis (CCA) and agglomerative clustering, and has the
following simple form:

1. Estimate a normalized covariance matrix from a cor-
pus and use singular value decomposition (SVD)
to derive low-dimensional vector representations for
word types (Figure 4).

2. Perform a bottom-up hierarchical clustering of these
vectors (Figure 5).

In our experiments, we find that our clusters are compara-
ble to the Brown clusters in improving the performance of
a supervised learner, but our method is significantly faster.
For example, both our clusters and Brown clusters improve
the F1 score in named-entity recognition (NER) by 2-3
points, but the runtime of our method is around 10 times
faster than the Brown algorithm (Table 3).

The paper is structured as follows. In Section 2, we discuss
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Input: corpus with N tokens of n distinct word types
w(1), . . . , w(n) ordered by decreasing frequency; number of clus-
ters m.
Output: hierarchical clustering of w(1), . . . , w(n).

1. Initialize active clusters C = {{w(1)}, . . . , {w(m)}}.

2. For i = m+ 1 to n+m− 1:

(a) If i ≤ n: set C = C ∪ {{w(i)}}.
(b) Merge c, c′ ∈ C that cause the smallest decrease in the

likelihood of the corpus.

Figure 1: A standard implementation of the Brown cluster-
ing algorithm.

related work. In Section 3, we establish the notation we
use throughout. In Section 4, we define the Brown model.
In Section 5, we present the main result and describe the
algorithm. In Section 6, we report experimental results.

2 BACKGROUND
2.1 THE BROWN CLUSTERING ALGORITHM

The Brown clustering algorithm (Brown et al., 1992) has
been used in many NLP applications (Koo et al., 2008;
Miller et al., 2004; Liang, 2005). We briefly describe the
algorithm below; a part of the description was taken from
Koo et al. (2008).

The input to the algorithm is a corpus of text withN tokens
of n distinct word types. The algorithm initializes each
word type as a distinct cluster, and repeatedly merges the
pair of clusters that cause the smallest decrease in the like-
lihood of the corpus according to a discrete hidden Markov
model (HMM). The observation parameters of this HMM
are assumed to satisfy a certain disjointedness condition
(Assumption 4.1). We will explicitly define the model in
Section 4.

At the end of the algorithm, one obtains a hierarchy of
word types which can be represented as a binary tree as
in Figure 2. Within this tree, each word is uniquely identi-
fied by its path from the root, and this path can be com-
pactly represented with a bit string. In order to obtain
a clustering of the words, we select all nodes at a cer-
tain depth from the root of the hierarchy. For exam-
ple, in Figure 2 we might select the four nodes at depth
2 from the root, yielding the clusters {apple,pear},
{Apple,IBM}, {bought,run}, and {of,in}. Note that
the same clustering can be obtained by truncating each
word’s bit string to a 2-bit prefix. By using prefixes of var-
ious lengths, we can produce clusterings of different gran-
ularities.

A naive implementation of this algorithm has runtime
O(n5). Brown et al. (1992) propose a technique to re-
duce the runtime toO(n3). Since this is still not acceptable
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Figure 2: An example of a Brown word-cluster hierarchy
taken from Koo et al. (2008). Each node in the tree is la-
beled with a bit string indicating the path from the root node
to that node, where 0 indicates a left branch and 1 indicates
a right branch.

for large values of n, a common trick used for practical
implementation is to specify the number of active clusters
m � n, for example, m = 1000. A sketch of this imple-
mentation is shown in Figure 1. Using this technique, it is
possible to achieve O(N + nm2) runtime. We note that
our algorithm in Figure 5 has a similar form and asymp-
totic runtime, but is empirically much faster. We discuss
this issue in Section 6.3.1.

In this paper, we present a very different algorithm for de-
riving a word hierarchy based on the Brown model. In
all our experiments, we compared our method against the
highly optimized implementation of the Brown algorithm
in Figure 1 by Liang (2005).

2.2 CCA AND AGGLOMERATIVE CLUSTERING

Our algorithm in Figure 4 operates in a fashion similar to
the mechanics of CCA. CCA is a statistical technique used
to maximize the correlation between a pair of random vari-
ables (Hotelling, 1936). A central operation in CCA to
achieve this maximization is SVD; in this work, we also
critically rely on SVD to recover the desired parameters.

Recently, it has been shown that one can use CCA-style
algorithms, so-called spectral methods, to learn HMMs
in polynomial sample/time complexity (Hsu et al., 2012).
These methods will be important to our goal since the
Brown model can be viewed as a special case of an HMM.

We briefly note that one can view our approach from the
perspective of spectral clustering (Ng et al., 2002). A spec-
tral clustering algorithm typically proceeds by constructing
a graph Laplacian matrix from the data and performing a
standard clustering algorithm (e.g., k-means) on reduced-
dimensional points that correspond to the top eigenvalues
of the Laplacian. We do not make use of a graph Laplacian,
but we do make use of spectral methods for dimensionality
reduction before clustering.

Agglomerative clustering refers to hierarchical grouping
of n points using a bottom-up style algorithm (Ward Jr,
1963; Shanbehzadeh and Ogunbona, 1997). It is com-
monly used for its simplicity, but a naive implementation
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requires O(dn3) time where d is the dimension of a point.
Franti et al. (2000) presented a faster algorithm that re-
quires O(γdn2) time where γ is a data-dependent quan-
tity which is typically much smaller than n. In our work,
we use a variant of this last approach that has runtime
O(γdmn) where m � n is the number of active clus-
ters we specify (Figure 5). We also remark that under our
derivation, the dimension d is always equal to m, thus we
express the runtime simply as O(γnm2).

3 NOTATION
Let [n] denote the set {1, . . . , n}. Let [[Γ]] denote the indi-
cator of a predicate Γ, taking value 1 if Γ is true and 0 oth-
erwise. Given a matrix M , we let

√
M denote its element-

wise square-root and M+ denote its Moore-Penrose pseu-
doinverse. Let Im×m ∈ Rm×m denote the identity ma-
trix. Let diag(v) denote the diagonal matrix with the vector
v ∈ Rm appearing on its diagonal. Finally, let ‖v‖ de-
note the Euclidean norm of a vector v, and ‖M‖ denote the
spectral norm of a matrix M .

4 BROWN MODEL DEFINITION
A Brown model is a 5-tuple (n,m, π, t, o) for integers n,m
and functions π, t, o where

• [n] is a set of states that represent word types.

• [m] is a set of states that represent clusters.

• π(c) is the probability of generating c ∈ [m] in the
first position of a sequence.

• t(c′|c) is the probability of generating c′ ∈ [m] given
c ∈ [m].

• o(x|c) is the probability of generating x ∈ [n] given
c ∈ [m].

In addition, the model makes the following assumption on
the parameters o(x|c). This assumption comes from Brown
et al. (1992) who require that the word clusters partition the
vocabulary.

Assumption 4.1 (Brown et al. assumption). For each x ∈
[n], there is a unique C(x) ∈ [m] such that o(x|C(x)) > 0
and o(x|c) = 0 for all c 6= C(x).

In other words, the model is a discrete HMM with a many-
to-one deterministic mapping C : [n] → [m] from word
types to clusters. Under the model, a sequence of N tokens
(x1, . . . , xN ) ∈ [n]N has probability

p(x1, . . . , xN ) = π(C(x1))×
N∏

i=1

o(xi|C(xi))

×
N−1∏

i=1

t(C(xi+1)|C(xi))

1

1

dog cat

ate

drank

dog
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ate
drank

(a) (b)

1

Figure 3: Illustration of our clustering scheme. (a) Original
rows of

√
O. (b) After row-normalization.

An equivalent definition of a Brown model is given by orga-
nizing the parameters in matrix form. Under this definition,
a Brown model has parameters (π, T,O) where π ∈ Rm is
a vector and T ∈ Rm×m, O ∈ Rn×m are matrices whose
entries are set to:

• πc = π(c) for c ∈ [m]

• Tc′,c = t(c′|c) for c, c′ ∈ [m]

• Ox,c = o(x|c) for c ∈ [m], x ∈ [n]

Throughout the paper, we will assume that T,O have rank
m. The following is an equivalent reformulation of As-
sumption 4.1 and will be important to the derivation of our
algorithm.

Assumption 4.2 (Brown et al. assumption). Each row of
O has exactly one non-zero entry.

5 CLUSTERING UNDER THE BROWN
MODEL

In this section, we develop a method for clustering words
based on the Brown model. The resulting algorithm
is a simple two-step procedure: an application of SVD
followed by agglomerative hierarchical clustering in Eu-
clidean space.

5.1 AN OVERVIEW OF THE APPROACH
Suppose the parameter matrixO is known. Under Assump-
tion 4.2, a simple way to recover the correct word clustering
is as follows:

1. Compute M̄ ∈ Rn×m whose rows are the rows of
√
O

normalized to have length 1.

2. Put words x, x′ in the same cluster iff M̄x = M̄x′ ,
where M̄x is the x-th row of M̄ .

This works because Assumption 4.2 implies that the rows
of
√
O corresponding to words from the same cluster lie

along the same coordinate-axis in Rm. Row-normalization
puts these rows precisely at the standard basis vectors. See
Figure 3 for illustration.
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In Section 5.2, we prove that the rows of
√
O can be recov-

ered, up to an orthogonal transformation Q ∈ Rm×m, just
from unigram and bigram word probabilities (which can be
estimated from observed sequences). It is clear that the cor-
rectness of the above procedure is unaffected by the orthog-
onal transformation. Let M denote the row-normalized
form of

√
OQ>: then M still satisfies the property that

Mx = Mx′ iff x, x′ belong to the same cluster. We give an
algorithm to estimate this M from a sequence of words in
Figure 4.

5.2 SPECTRAL ESTIMATION OF OBSERVATION
PARAMETERS

To derive a method for estimating the observation parame-
ter
√
O (up to an orthogonal transformation), we first define

the following random variables to model a single random
sentence. Let (X1, . . . , XN ) ∈ [n]N be a random sequence
of tokens drawn from the Brown model, along with the
corresponding (hidden) cluster sequence (C1, . . . , CN ) ∈
[m]N ; independently, pick a position I ∈ [N − 1] uni-
formly at random. Let B ∈ Rn×n be a matrix of bigram
probabilities, u, v ∈ Rn vectors of unigram probabilities,
and π̃ ∈ Rm a vector of cluster probabilities:

Bx,x′ := P (XI = x,XI+1 = x′) ∀x, x′ ∈ [n]

ux := P (XI = x) ∀x ∈ [n]

vx := P (XI+1 = x) ∀x ∈ [n]

π̃c := P (CI = c) ∀c ∈ [m].

We assume that diag(π̃) has rank m; note that this assump-
tion is weaker than requiring diag(π) to have rank m. We
will consider a matrix Ω ∈ Rn×n defined as

Ω := diag(u)−1/2Bdiag(v)−1/2 (1)

Theorem 5.1. Let U ∈ Rn×m be the matrix of m left sin-
gular vectors of Ω corresponding to nonzero singular val-
ues. Then there exists an orthogonal matrix Q ∈ Rm×m
such that U =

√
OQ>.

To prove Theorem 5.1, we need to examine the structure of
the matrix Ω. The following matrices A, Ã ∈ Rn×m will
be important for this purpose:

A = diag(Oπ̃)−1/2Odiag(π̃)1/2

Ã = diag(OTπ̃)−1/2OTdiag(π̃)1/2

The first lemma shows that Ω can be decomposed into A
and Ã>.
Lemma 5.1. Ω = AÃ>.

Proof. It can be algebraically verified from the definition
of B, u, v that B = Odiag(π̃)(OT )>, u = Oπ̃, and v =
OTπ̃. Plugging in these expressions in Eq. (1), we have

Ω = diag(Oπ̃)−1/2Odiag(π̃)1/2

(
diag(OTπ̃)−1/2OTdiag(π̃)1/2

)>
= AÃ>.

The second lemma shows that A is in fact the desired ma-
trix. The proof of this lemma crucially depends on the
disjoint-cluster assumption of the Brown model.
Lemma 5.2. A =

√
O and A>A = Im×m.

Proof. By Assumption 4.2, the x-th entry of Oπ̃ has value
Ox,C(x)×π̃C(x), and the (x,C(x))-th entry ofOdiag(π̃)1/2

has value Ox,C(x) ×
√
π̃C(x). Thus the (x,C(x))-th entry

of A is

Ax,C(x) =
Ox,C(x)

√
π̃C(x)√

Ox,C(x)π̃C(x)

=
√
Ox,C(x)

The columns of A have disjoint supports since A has the
same sparsity pattern asO. Furthermore, the l2 (Euclidean)
norm of any column of A is the l1 norm of the correspond-
ing column of O. This implies A>A = Im×m

Now we give a proof of the main theorem.

Proof of Theorem 5.1. The orthogonal projection matrix
onto range(Ω) is given by UU> and also by Ω(Ω>Ω)+Ω>.
Hence from Lemma 5.1 and 5.2, we have

UU> = Ω(Ω>Ω)+Ω>

= (AÃ>)(ÃA>AÃ>)+(AÃ>)>

= (AÃ>)(ÃÃ>)+(AÃ>)> = AΠA>

where Π = Ã(Ã>Ã)+Ã> is the orthogonal projec-
tion matrix onto range(Ã). But since Ã has rank m,
range(Ã) = Rm and thus Π = Im×m. Then we have
UU> = AA> where both U and A have orthogonal
columns (Lemma 5.2). This implies that there is an or-
thogonal matrix Q ∈ Rm×m such that U = AQ>.

5.3 ESTIMATION FROM SAMPLES

In Figure 4, we give an algorithm for computing an esti-
mate of M from a sample of words (x1, . . . , xN ) ∈ [n]N

(where M is described in Section 5.1). The algorithm es-
timates unigram and bigram word probabilities u, v,B to
form a plug-in estimate Ω̂ of Ω (defined in Eq. (1)), com-
putes a low-rank SVD of a sparse matrix, and normalizes
the rows of the resulting left singular vector matrix.

The following theorem implies the consistency of our algo-
rithm, assuming the consistency of Ω̂.
Theorem 5.2. Let ε := ‖Ω̂ − Ω‖/σm(Ω), where σm(Ω)
is the m-th largest singular value of Ω. If ε ≤
0.07 minx∈[n]{O1/2

x,C(x)}, then the word embedding f :

x 7→ M̂x (where M̂x is the x-th row of M̂ ) satisfies the
following property: for all x, x′, x′′ ∈ [n],

C(x) = C(x′) 6= C(x′′)

=⇒ ‖f(x)− f(x′)‖ < ‖f(x)− f(x′′)‖;
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Input: sequence of N ≥ 2 words (x1, . . . , xN ) ∈ [n]N ; number
of clusters m; smoothing parameter κ.
Output: matrix M̂ ∈ Rn×m defining f : x 7→ M̂x ∀x ∈ [n].

1. Compute B̂ ∈ Rn×n, û ∈ Rn, and v̂ ∈ Rn where

B̂x,x′ :=
1

N − 1

N−1∑

i=1

[[xi = x, xi+1 = x′]] ∀x, x′ ∈ [n]

ûx :=
1

N − 1

N−1∑

i=1

[[xi = x]] +
κ

N − 1
∀x ∈ [n]

v̂x :=
1

N − 1

N−1∑

i=1

[[xi+1 = x]] +
κ

N − 1
∀x ∈ [n]

2. Compute rank-m SVD of the sparse matrix

Ω̂ := diag(û)−1/2 B̂ diag(v̂)−1/2.

Let Û ∈ Rn×m be a matrix of m left singular vectors of Ω̂
corresponding to the m largest singular values.

3. Let M̂ be the result of normalizing every row of Û to have
length 1.

Figure 4: Estimation of M from samples.

(i.e., the embedding of any word x is closer to that of other
words x′ from the same cluster than it is to that of any word
x′′ from a different cluster).

The property established by Theorem 5.2 (proved in the ap-
pendix) allows many distance-based clustering algorithms
to recover the correct clustering (e.g., single-linkage,
average-linkage; see Balcan et al., 2008). Moreover, it is
possible to establish the finite sample complexity bounds
for the estimation error of Ω̂ (and we do so for a simplified
scenario in the (supplementary) Appendix C).

In practice, it is important to regularize the estimates û and
v̂ using a smoothing parameter κ ≥ 0. This can be viewed
as adding pseudocounts to alleviate the noise from infre-
quent words, and has a significant effect on the resulting
representations. The practical importance of smoothing is
also seen in previous methods using CCA (Cohen et al.,
2013; Hardoon et al., 2004).

Another practical consideration is the use of richer context.
So far, the context used for the token XI is just the next
token XI+1; hence, the spectral estimation is based just on
unigram and bigram probabilities. However, it is straight-
forward to generalize the technique to use other context—
details are in the appendix. For instance, if we use the pre-
vious and next tokens (XI−1, XI+1) as context, then we
form Ω̂ ∈ Rn×2n from B̂ ∈ Rn×2n, û ∈ Rn, v̂ ∈ R2n;
however, we still extract M̂ ∈ Rn×m from Ω̂ in the same
way to form the word embedding.

Input: vectors µ(1), . . . , µ(n) ∈ Rm corresponding to word types
[n] ordered in decreasing frequency.
Output: hierarchical clustering of the input vectors.
Tightening: Given a set of clusters C, the subroutine tighten(c)
for c ∈ C consists of the following three steps:

nearest(c) := arg min
c′∈C:c′ 6=c

d(c, c′)

lowerbound(c) := min
c′∈C:c′ 6=c

d(c, c′)

tight(c) := True

Main body:
1. Initialize active clusters C = {{µ(1)}, . . . , {µ(m)}} and

call tighten(c) for all c ∈ C.
2. For i = m+ 1 to n+m− 1:

(a) If i ≤ n: let c := {µ(i)}, call tighten(c), and let
C := C ∪ {c}.

(b) Let c∗ := arg minc∈C lowerbound(c).
(c) While tight(c∗) is False,

i. Call tighten(c∗).
ii. Let c∗ := arg minc∈C lowerbound(c).

(d) Merge c∗ and nearest(c∗) in C.
(e) For each c ∈ C: if nearest(c) ∈ {c∗, nearest(c∗)}, set

tight(c) := False.

Figure 5: Variant of Ward’s algorithm from Section 5.4.

5.4 AGGLOMERATIVE CLUSTERING
As established in Theorem 5.2, the word embedding ob-
tained by mapping words to their corresponding rows of
M̂ permits distance-based clustering algorithms to recover
the correct clustering. However, with small sample sizes
and model approximation errors, the property from Theo-
rem 5.2 may not hold exactly. Therefore, we propose to
compute a hierarchical clustering of the word embeddings,
with the goal of finding the correct clustering (or at least
a good clustering) as some pruning of the resulting tree.
Simple agglomerative clustering algorithms can provably
recover the correct clusters when idealized properties (such
as that from Theorem 5.2) hold (Balcan et al., 2008), and
can also be seen to be optimizing a sensible objective re-
gardless (Dasgupta and Long, 2005). These algorithms also
yield a hierarchy of word types—just as the original Brown
clustering algorithm.

We use a form of average-linkage agglomerative clustering
called Ward’s algorithm (Ward Jr, 1963), which is particu-
larly suited for hierarchical clustering in Euclidean spaces.
In this algorithm, the cost of merging clusters c and c′ is
defined as

d(c, c′) =
|c||c′|
|c|+ |c′| ||µc − µc′ ||

2 (2)

where |c| refers to the number of elements in cluster c and
µc = |c|−1∑u∈c u is the mean of cluster c. The algorithm
starts with every point (word) in its own cluster, and repeat-
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edly merges the two clusters with cheapest merge cost.

Figure 5 sketches a variant of Ward’s algorithm that only
considers merges among (at most) m+ 1 clusters at a time.
The initial m + 1 (singleton) clusters correspond to the
m+ 1 most frequent words (according to û); after a merge,
the next most frequent word (if one exists) is used to initial-
ize a new singleton cluster. This heuristic is also adopted
by the original Brown algorithm, and is known to be very
effective.

Using an implementation trick from Franti et al. (2000), the
runtime of the algorithm is O(γnm2), where γ is a data-
dependent constant often much smaller thanm, as opposed
to O(nm3) in a naive implementation in which we search
for the closest pair among O(m2) pairs at every merge.

The basic idea of Franti et al. (2000) is the following. For
each cluster, we keep an estimation of the lower bound on
the distance to the nearest cluster. We also track if this
lower bound is tight; in the beginning, every bound is tight.
When searching for the nearest pair, we simply look for
a cluster with the smallest lower bound among m clusters
instead of O(m2) cluster pairs. If the cluster has a tight
lower bound, we merge it with its nearest cluster. Oth-
erwise, we tighten its bound and again look for a cluster
with the smallest bound. Thus γ is the effective number of
searches at each iteration. At merge, the bound of a cluster
whose nearest cluster is either of the two merged clusters
becomes loose. We report empirical values of γ in our ex-
perimental study (see Table 3).

6 EXPERIMENTS

To evaluate the effectiveness of our approach, we used the
clusters from our algorithm as additional features in super-
vised models for NER. We then compared the improvement
in performance and also the time required to derive the
clusters against those of the Brown clustering algorithm.
Additionally, we examined the mutual information (MI) of
the derived clusters on the training corpus:

∑

c,c′

count(c, c′)
N

log
count(c, c′)N

count(c)count(c′)
(3)

where N is the number of tokens in the corpus, count(c)
is the number of times cluster c appears, and count(c, c′)
is the number of times clusters c, c′ appear consecutively.
Note that this is the quantity the Brown algorithm directly
maximizes (Brown et al., 1992).

6.1 EXPERIMENTAL SETTINGS

For NER experiments, we used the scripts provided by
Turian et al. (2010). We used the greedy perceptron for
NER experiments (Ratinov and Roth, 2009) using the stan-
dard features as our baseline models. We used the CoNLL

Table 1: Performance gains in NER.
vocab context dev test

Baseline — — 90.03 84.39
Spectral 50k LR1 92 86.72

(κ = 200) 300k LR2 92.31 87.76
Brown 50k — 92 88.56

300k 92.68 88.76

Table 2: Mutual information computed as in Eq. (3) on the
RCV1 corpus.

vocab size context MI
Spectral 50k LR2 1.48

(κ = 5000) 300k LR2 1.54
Brown 50k — 1.52

300k — 1.6

2003 dataset for NER with the standard train/dev/test split.

For the choice of unlabeled text data, we used the Reuters-
RCV1 corpus which contains 205 million tokens with 1.6
million distinct word types. To keep the size of the vocab-
ulary manageable and also to reduce noise from infrequent
words, we used only a selected number of the most frequent
word types and replaced all other types in the corpus with
a special token. For the size of the vocabulary, we used
50,000 and 300,000.

Our algorithm can be broken down into two stages: the
SVD stage (Figure 4) and the clustering stage (Figure 5).
In the SVD stage, we need to choose the number of clus-
ters m and the smoothing parameter κ. As mentioned, we
can easily define Ω to incorporate information beyond one
word to the right. We experimented with the following con-
figurations for context:

1. R1 (Ω ∈ Rn×n): 1 word to the right. This is the
version presented in Figure 4.

2. LR1 (Ω ∈ Rn×2n): 1 word to the left/right.

3. LR2 (Ω ∈ Rn×4n): 2 words to the left/right.

6.2 COMPARISON TO THE BROWN
ALGORITHM: QUALITY

There are multiple ways to evaluate the quality of clusters.
We considered the improvement in the F1 score in NER
from using the clusters as additional features. We also ex-
amined the MI on the training corpus. For all experiments
in this section, we used 1,000 clusters for both the spectral
algorithm (i.e., m = 1000) and the Brown algorithm.

6.2.1 NER

In NER, there is significant improvement in the F1 score
from using the clusters as additional features (Table 1).
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Table 3: Speed and performance comparison with the Brown algorithm for different numbers of clusters and vocabulary
sizes. In all the reported runtimes, we exclude the time to read and write data. We report the F1 scores on the NER dev set;
for the spectral algorithm, we report the best scores.

m vocab Spectral runtime Brown runtime Ratio (%) Spectral F1 Brown F1
γ SVD cluster total

200 50k 3.35 4m24s 13s 4m37s 10m37s 43.48 91.53 90.79
400 5.17 6m39s 1m8s 7m47s 37m16s 20.89 91.73 91.21
600 9.80 5m29s 3m1s 8m30s 1h33m55s 9.05 91.68 91.79
800 12.64 9m26s 6m59s 16m25s 2h20m40s 11.67 91.81 91.83
1000 12.68 11m10s 10m25s 21m35s 3h37m 9.95 92.00 92.00
1000 300k 13.77 59m38s 1h4m37s 2h4m15s 22h19m37s 9.28 92.31 92.68

The dev F1 score is improved from 90.03 to 92 with ei-
ther spectral or Brown clusters using 50k vocabulary size;
it is improved to 92.31 with the spectral clusters and to
92.68 with the Brown clusters using 300k vocabulary size.
The spectral clusters are a little behind the Brown clusters
in the test set results. However, we remark that the well-
known discrepancy between the dev set and the test set in
the CoNLL 2003 dataset makes a conclusive interpretation
difficult. For example, Turian et al. (2010) report that the
F1 score using the embeddings of Collobert and Weston
(2008) is higher than the F1 score using the Brown clus-
ters on the dev set (92.46 vs 92.32) but lower on the test set
(87.96 vs 88.52).

6.2.2 MI

Table 2 shows the MI computed as in Eq. (3) on the RCV1
corpus. The Brown algorithm optimizes the MI directly
and generally achieves higher MI scores than the spectral
algorithm. However, the spectral algorithm also achieves
a surprisingly respectable level of MI scores even though
the MI is not its objective. That is, the Brown algorithm
specifically merges clusters in order to maximize the MI
score in Eq. (3). In contrast, the spectral algorithm first
recovers the model parameters using SVD and perform hi-
erarchical clustering according to the parameter estimates,
without any explicit concern for the MI score.

6.3 COMPARISON TO THE BROWN
ALGORITHM: SPEED

To see the runtime difference between our algorithm and
the Brown algorithm, we measured how long it takes to ex-
tract clusters from the RCV1 corpus for various numbers of
clusters. In all the reported runtimes, we exclude the time
to read and write data. We report results with 200, 400,
600, 800, and 1,000 clusters. All timing experiments were
done on a machine with dual-socket, 8-core, 2.6GHz Intel
Xeon E5-2670 (Sandy Bridge). The implementations for
both algorithms were written in C++. The spectral algo-
rithm also made use of Matlab for matrix calculations such
as the SVD calculation.

Table 3 shows the runtimes required to extract these clus-
ters as well as the F1 scores on the NER dev set obtained
with these clusters. The spectral algorithm is considerably
faster than the Brown algorithm while providing compa-
rable improvement in the F1 scores. The runtime differ-
ence becomes more prominent as the number of clusters
increases. Moreover, the spectral algorithm scales much
better with larger vocabulary size. With 1,000 clusters and
300k vocabulary size, the Brown algorithm took over 22
hours whereas the spectral algorithm took 2 hours, 4 min-
utes, and 15 seconds—less than 10% of the time the Brown
algorithm takes.

We also note that for the Brown algorithm, the improve-
ment varies significantly depending on how many clusters
are used; it is 0.76 with 200 clusters but 1.97 with 1,000
clusters. For the spectral algorithm, this seems to be less
the case; the improvement is 1.5 with 200 clusters and 1.97
with 1,000 clusters.

6.3.1 Discussion on Runtimes

The final asymptotic runtime isO(N+γnm2) for the spec-
tral algorithm and O(N + nm2) for the Brown algorithm,
where N is the size of the corpus, n is the number of dis-
tinct word types, m is the number of clusters, and γ is a
data-dependent constant. Thus it may be puzzling why the
spectral algorithm is significantly faster in practice. We ex-
plicitly discuss the issue in this section.

The spectral algorithm proceeds in two stages. First, it con-
structs a scaled covariance matrix in O(N) time and per-
forms a rank-m SVD of this matrix. Table 3 shows that
SVD scales well with the value of m and the size of the
corpus.

Second, the algorithm performs hierarchical clustering in
O(γnm2) time. This stage consists of O(γnm) calls to an
O(m) time function that computes Eq. (2), that is,

d(c, c′) =
|c||c′|
|c|+ |c′| ||µc − µc′ ||

2

This function is quite simple: it calculates a scaled distance
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Figure 6: Effect of the choice of κ and context on (a) MI and (b) NER dev F1 score. We used 1,000 clusters on RCV1 with vocabulary
size 50k. In (a), the horizontal line is the MI achieved by Brown clusters. In (b), the top horizontal line is the F1 score achieved with
Brown clusters and the bottom horizontal line is the baseline F1 score achieved without using clusters.

computeL2usingOld(s, t, u, v, w) = L2[v][w]

− q2[v][s]− q2[s][v]− q2[w][s]− q2[s][w]

− q2[v][t]− q2[t][v]− q2[w][t]− q2[t][w]

+ (p2[v][s] + p2[w][s]) ∗ log((p2[v][s] + p2[w][s])/((p1[v] + p1[w]) ∗ p1[s]))
+ (p2[s][v] + p2[s][w]) ∗ log((p2[s][v] + p2[s][w])/((p1[v] + p1[w]) ∗ p1[s]))
+ (p2[v][t] + p2[w][t]) ∗ log((p2[v][t] + p2[w][t])/((p1[v] + p1[w]) ∗ p1[t]))
+ (p2[t][v] + p2[t][w]) ∗ log((p2[t][v] + p2[t][w])/((p1[v] + p1[w]) ∗ p1[t]))
+ q2[v][u] + q2[u][v] + q2[w][u] + q2[u][w]

− (p2[v][u] + p2[w][u]) ∗ log((p2[v][u] + p2[w][u])/((p1[v] + p1[w]) ∗ p1[u]))
− (p2[u][v] + p2[u][w]) ∗ log((p2[u][v] + p2[u][w])/((p1[v] + p1[w]) ∗ p1[u]))

Figure 7: A O(1) function that is called O(nm2) times in
Liang’s implementation of the Brown algorithm, account-
ing for over 40% of the runtime. Similar functions ac-
count for the vast majority of the runtime. The values in
the arrays L2,q2,p2,p1 are precomputed. p2[v][w] =
p(v, w), i.e, the probability of cluster v being followed by
cluster w; p1[v] = p(v) is the probability of cluster v;
q2[v][w] = p(v, w) log((p(v)p(w))−1p(v, w)) is the con-
tribution of the mutual information between clusters v and
w. The function recomputes L2[v][w], which is the loss in
log-likelihood if clusters v and w are merged. The function
updates L2 after clusters s and t have been merged to form
a new cluster u. There are many operations involved in this
calculation: 6 divisions, 12 multiplications, 36 additions
(26 additions and 10 subtractions), and 6 log operations.

between two vectors in Rm. Moreover, it avails itself read-
ily to existing optimization techniques such as vectoriza-
tion.1 Finally, we found that the empirical value of γ was
typically small: it ranged from 3.35 to 13.77 in our experi-
ments reported in Table 3 (higher m required higher γ).

In contrast, while the main body of the Brown algorithm
requires O(N + nm2) time, the constant factors are high
due to fairly complex book-keeping that is required. For
example, the function in Figure 7 (obtained from Liang’s

1Many linear algebra libraries automatically support vector-
ization. For instance, the Eigen library in our implementation
enables vectorization by default, which gave a 2-3 time speedup
in our experiments.

implementation) is invoked O(nm2) times in total: specif-
ically, whenever two clusters s and t are merged to form
a new cluster u (this happens O(n) times), the function is
called O(m2) times, for all pairs of clusters v, w such that
v and w are not equal to s, t, or u. The function recom-
putes the loss in likelihood if clusters v and w are merged,
after s and t are merged to form u. It requires a relatively
large number of arithmetic operations, leading to high con-
stant factors. Calls to this function alone take over 40% of
the runtime for the Brown algorithm; similar functions ac-
count for the vast majority of the algorithm’s runtime. It is
not clear that this overhead can be reduced.

6.4 EFFECT OF THE CHOICE OF κ AND
CONTEXT

Figure 6 shows the MI and the F1 score on the NER dev
set for various choices of κ and context. For NER, around
100-200 for the value of κ gives good performance. For the
MI, the value of κ needs to be much larger.

LR1 and LR2 perform much better than R1 but are very
similar to each other across the results, suggesting that
words in the immediate vicinity are necessary and nearly
sufficient for these tasks.

7 CONCLUSION

In this paper, we have presented a new and faster alterna-
tive to the Brown clustering algorithm. Our algorithm has a
provable guarantee of recovering the underlying model pa-
rameters. This approach first uses SVD to consistently es-
timate low-dimensional representations of word types that
reveal their originating clusters by exploiting the implicit
disjoint-cluster assumption of the Brown model. Then ag-
glomerative clustering is performed over these represen-
tations to build a hierarchy of word types. The resulting
clusters give a competitive level of improvement in perfor-
mance in NER as the clusters from the Brown algorithm,
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but the spectral algorithm is significantly faster.

There are several areas for the future work. One can try to
speed up the algorithm even more via a top-down rather
than bottom-up approach for hierarchical clustering, for
example recursively running the 2-means algorithm. Ex-
periments with the clusters in tasks other than NER (e.g.,
dependency parsing), as well as larger-scale experiments,
can help further verify the quality of the clusters and high-
light the difference between the spectral algorithm and the
Brown algorithm.
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A INCORPORATING RICHER
CONTEXT

We assume a function φ such that for i ∈ [N ], it returns a
set of positions other than i. For example, we may define
φ(i) = {i− 1, i+ 1} to look at one position to the left and
to the right. Let s = |φ(i)| and enumerate the elements of
φ(i) as j1, . . . , js. Define B(j) ∈ Rn×n, v(j) ∈ Rn for all
j ∈ φ(i) as follows:

B
(j)
x,x′ = P (Xi = x,Xj = x′) ∀x, x′ ∈ [n]

v(j)x = P (Xj = x) ∀x ∈ [n]

The new definitions of B ∈ Rn×ns, v ∈ Rns are given by
B = [B(j1), . . . , B(js)] and v = [(v(j1))>, . . . , (v(js))>]>.
Letting Ω ∈ Rn×ns as in Eq. (1), it is easy to verify Theo-
rem 5.1 using similar techniques.

B PROOF OF THEOREM 5.2

Write the rank-m SVD of Ω as Ω = USV >, and similarly
write the rank-m SVD of Ω̂ as Û ŜV̂ >. Since Ω has rank
m, it follows by Eckart-Young that

‖Û ŜV̂ > − Ω̂‖ ≤ ‖Ω− Ω̂‖.

Therefore, by the triangle inequality,

‖Û ŜV̂ > − USV >‖ ≤ 2‖Ω− Ω̂‖ = 2εσm(Ω).

This implies, via applications of Wedin’s theorem and
Weyl’s inequality,

‖U>⊥ Û‖ ≤ 2ε and ‖Û>⊥U‖ ≤
2ε

1− 2ε
(4)

where U⊥ ∈ Rn×(n−m) is a matrix whose columns form
an orthonormal basis for the orthogonal complement of the

range of U , and Û⊥ ∈ Rn×(n−m) is similarly defined (and
note that ε < 1/2 by assumption).

Recall that by Theorem 5.1, there exists an orthogonal
matrix Q ∈ Rm×m such that U =

√
OQ>. Define

Q̂ := Û>
√
O = Û>UQ, and, for all c ∈ [m], q̂c := Q̂ec.

The fact that ‖UQec‖ = 1 implies

‖q̂c‖ =

√
1− ‖Û⊥Û>⊥UQec‖2 ≤ 1.

Therefore, by Eq. (4),

1 ≥ ‖q̂c‖ ≥ ‖q̂c‖2 ≥ 1−
(

2ε

1− 2ε

)2

. (5)

We also have, for c 6= c′,

q̂>c q̂c′ ≤ ‖Û>⊥UQec‖‖Û>⊥UQec′‖ ≤
(

2ε

1− 2ε

)2

, (6)

where the first inequality follows by Cauchy-Schwarz, and
the second inequality follows from (4). Therefore, by
Eq. (5) and Eq. (6), we have for c 6= c′,

‖q̂c − q̂c′‖2 ≥ 2

(
1− 2

(
2ε

1− 2ε

)2
)
. (7)

Let ōx := O
1/2
x,C(x). Recall that

√
O
>
ex = ōxeC(x) ∈ Rm,

so Q̂
√
O
>
ex = ōxq̂C(x) and ‖Q̂

√
O
>
ex‖ = ōx‖qC(x)‖.

By the definition of Q̂, we have

Û −
√
OQ̂> = Û − UU>Û = U⊥U

>
⊥ Û

This implies, for any x ∈ [n],

‖Û>ex − ōxq̂C(x)‖ = ‖(Û −
√
OQ̂>)>ex‖

= ‖Û>U⊥U>⊥ ex‖ ≤ 2ε (8)

by Eq. (4). Moreover, by the triangle inequality,

|‖Û>ex‖ − ōx‖qC(x)‖| ≤ 2ε. (9)

Since M̂>ex = ‖Û>ex‖−1Û>ex, we have

‖M̂>ex − q̂C(x)‖ =

∣∣∣∣∣

∣∣∣∣∣
1

‖Û>ex‖
Û>ex − q̂C(x)

∣∣∣∣∣

∣∣∣∣∣

≤ 1

ōx
‖Û>ex − ōxq̂C(x)‖+ |1− ‖q̂C(x)‖|

+
|ōx‖q̂C(x)‖ − ‖Û>ex‖|

ōx

≤ 4ε

ōx
+

(
2ε

1− 2ε

)2

, (10)

where the first inequality follow by the triangle inequal-
ity and norm homogeneity, and the second inequality uses
Eq. (8), Eq. (9), and Eq. (5). Using Eq. (10), we may up-
per bound the distance ‖M̂>ex − M̂>ex′‖ when C(x) =
C(x′); using Eq. (7) and Eq. (10), we may lower bound the
distance ‖M̂>ex − M̂>ex′′‖ when C(x) 6= C(x′′). The
theorem then follows by invoking the assumption on ε.
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Abstract

The continuous time Bayesian network
(CTBN) enables temporal reasoning by rep-
resenting a system as a factored, finite-state
Markov process. The CTBN uses a tra-
ditional Bayesian network (BN) to specify
the initial distribution. Thus, the complex-
ity results of Bayesian networks also apply
to CTBNs through this initial distribution.
However, the question remains whether prop-
agating the probabilities through time is, by
itself, also a hard problem. We show that
exact and approximate inference in continu-
ous time Bayesian networks is NP-hard even
when the initial states are given.

1 INTRODUCTION

Currently, little theoretical work has been done on the
complexity of inference in CTBNs. Most of what is
known about the complexity of CTBNs is derived from
the fact that a Bayesian network is used to specify the
initial distribution. However, despite the similarity in
the names, inference in CTBNs is different than in-
ference in Bayesian networks because the CTBN must
reason over continuous time. The question becomes
whether this problem of calculating evolving probabil-
ities through time is also NP-hard, independent of the
initial distribution.

The only known exact inference procedure for CTBNs
is exponential in the number of nodes, but this does
not necessarily imply that there does not exist an al-
ternative approach for exact inference that performs in
polynomial time even for the worst case. Furthermore,
what expectations might we have about the various ap-
proximate inference algorithms that have been devel-
oped for CTBNs? Does the accuracy vs. complexity
trade-off of these approximation algorithms avoid the
NP-hardness of their discrete-time counterparts? In

this work, we prove that exact and approximate in-
ference in CTBNs are both NP-hard, even when the
initial states are given. Thus, the complexity is also in
reasoning over the factored Markov process, not just in
reasoning over the Bayesian network for determining
the probabilities for the initial states.

2 BACKGROUND

To place our work in context, we begin by present-
ing background information on Bayesian networks, dy-
namic Bayesian networks, and then CTBNs.

2.1 BAYESIAN NETWORKS

Bayesian networks are probabilistic graphical models
that use nodes and arcs in a directed acyclic graph
to represent a joint probability distribution over a set
of variables (Koller & Friedman, 2009). Let P (X)
be a joint probability distribution over n variables
X1, . . . , Xn ∈ X. A Bayesian network B is a directed,
acyclic graph in which each variable Xi is represented
by a node in the graph. Let Pa(Xi) denote the parents
of node Xi in the graph. The graph representation of
B factors the joint probability distribution as:

P (X) =

n∏

i=1

P (Xi|Pa(Xi)).

2.2 DYNAMIC BAYESIAN NETWORKS

The traditional Bayesian network is a static model.
However, we can introduce the concept of time (or at
least sequence) into the network by assigning discrete
timesteps to the nodes to create a dynamic Bayesian
network.

A dynamic Bayesian network (DBN) is a type of
Bayesian network that uses a series of connected
timesteps, each of which contains a copy of a Bayesian
network Xt indexed by timestep t. The probability
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distribution of a variable at a given timestep can be
conditionally dependent on states of that variable or
other variables throughout previous timesteps. For
first-order DBNs, dependence does not go further than
the immediately previous timestep. Therefore, the
joint probability distribution for a first-order DBN of
T timesteps factors as:

P (X0, . . . ,XT−1) = P (X0)

T−1∏

t=0

P (Xt+1|Xt).

2.3 CONTINUOUS TIME BAYESIAN
NETWORKS

As can be seen from the preceding section, the DBN is
restricted to discrete timesteps. The CTBN avoids dis-
cretizing time by using conditional Markov processes
instead of conditional probability tables. We now for-
mally define the CTBN and then survey its inference
algorithms and applications.

2.3.1 CTBN Definition

Let X be a set of Markov processes {X1, X2, . . . , Xn},
where each process Xi has a finite number of discrete
states. A continuous time Bayesian network is a tuple
N = 〈B, C〉. The Bayesian network B has nodes corre-
sponding to X and is used only for determining P (X0),
the initial distribution of the process. Evidence at the
initial time (t = 0) is incorporated by setting evidence
in B and performing Bayesian network inference. The
continuous-time transition model C describes the evo-
lution of the process from this initial distribution and
is specified as:

• A directed (possibly cyclic) graph G with nodes
X1, X2, . . . , Xn, where Pa(Xi) denotes the par-
ents of Xi in G,

• A set of conditional intensity matrices (CIMs)
AX|Pa(X) associated with X for each possible
combination of state instantiations of Pa(X).

Each conditional intensity matrix AX|Pa(X) gives the
dynamics of node X when the states of Pa(X) are
fixed. Each entry ai,j ≥ 0, i 6= j gives the transition
intensity of the node moving from state i to state j,
and each entry ai,i < 0 controls the amount of time
the node remains in state i. With the diagonal entries
constrained to be non-positive, the probability density
function for the node remaining in state i is given by
|ai,i| exp(ai,it), with t being the amount of time spent
in state i, making the probability of remaining in a
state decrease exponentially with respect to time. The
expected sojourn time for state i is 1/ |ai,i|. Each row
is constrained to sum to zero,

∑
j ai,j = 0 ∀ i, meaning

that the transition probabilities from state i can be
calculated as ai,j/ |ai,i| ∀ j, i 6= j.

2.3.2 CTBN Inference Algorithms

The only exact inference algorithm that exists so far
for CTBNs combines all of the conditional intensity
matrices into the single full joint intensity matrix, with
states as the Cartesian product of all of the node’s
states (Fan, Xu, & Shelton, 2010). Thus, the size of
this matrix is exponential in the number of nodes and
the number of states. Because this method ignores
the factored nature of the network, research on CTBN
inference has focused exclusively on approximation al-
gorithms.

Expectation propagation (Nodelman, Koller, & Shel-
ton, 2005; Saria, Nodelman, & Koller, 2007) has been
developed for CTBNs, in which neighboring nodes em-
ploy a message-passing scheme for each interval of ev-
idence. The messages are approximate “marginals,”
a projection of a node’s conditional intensity matrix
onto a single, approximating unconditional intensity
matrix. Messages are continually passed until all of
the nodes have a consistent distribution over the in-
terval of evidence.

There have been a number of sample-based inference
algorithms developed for CTBNs, including impor-
tance sampling (Fan et al., 2010; Fan & Shelton, 2008;
Weiss, Natarajan, & Page, 2013) and Gibbs sampling
(El-Hay, Friedman, & Kupferman, 2008; Rao & Teh,
2013). Importance sampling answers queries from a set
of weighted samples that are generated in conformance
to the evidence. The weight of each sample is the like-
lihood of the sample given the evidence. Gibbs sam-
pling, by contrast, is a sampling procedure that takes
a Markov Chain Monte Carlo (MCMC) approach. For
each variable over each interval of evidence, the states
in the Markov blanket (that is, the node’s parents, chil-
dren, and children’s parents) are held constant and a
random walk is performed on the state of the node.
After sufficient sampling, the distribution of the ran-
dom walk will converge to the true distribution for that
interval of evidence.

Methods using variational techniques, such as mean-
field approximation (Cohn, 2009; Cohn, El-Hay, Fried-
man, & Kupferman, 2009) and belief propagation (El-
Hay, Cohn, Friedman, & Kupferman, 2010) have also
been developed. These methods propagate the prod-
ucts of inhomogeneous Markov processes to approxi-
mate the distribution using systems of ordinary differ-
ential equations.
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2.3.3 CTBN Applications

CTBNs have found use in a wide variety of temporal
applications. For example, CTBNs have been used for
inferring users’ presence, activity, and availability over
time (Nodelman & Horvitz, 2003); robot monitoring
(Ng, Pfeffer, & Dearden, 2005); modeling server farm
failures (Herbrich, Graepel, & Murphy, 2007); mod-
eling social network dynamics (Fan & Shelton, 2009;
Fan, 2009); modeling sensor networks (Shi, Tang, &
You, 2010); building intrusion detection systems (Xu
& Shelton, 2010; Xu, 2010; Xu & Shelton, 2008); pre-
dicting the trajectory of moving objects (Qiao et al.,
2010); and diagnosing cardiogenic heart failure and an-
ticipating its likely evolution (Gatti, Luciani, & Stella,
2011; Gatti, 2011).

2.4 PREVIOUS COMPLEXITY RESULTS

As mentioned, most of the complexity theory sur-
rounding CTBNs is derived from the Bayesian net-
work for the initial distribution. However, one com-
plexity result specific to CTBNs arises from the dif-
ference between BN and CTBN structure learning.
In structure learning, it is common to assign a scor-
ing function to arcs in the network that quantifies
how well the network topology matches the training
data. Nodelman (2007) gives a polynomial-time algo-
rithm for finding the highest-scoring set of k parents
for a CTBN node. The corresponding problem in a
Bayesian network has been shown to be NP-hard, even
for k = 2, due to the acyclic constraint of Bayesian net-
works (Chickering, 1996). Essentially, because cycles
are allowed in CTBNs, each node can maximize its
score independently.

Because the CTBN is relatively new, much of the com-
plexity theory surrounding CTBNs has yet to be fully
explored. This work intends to expand the complexity
theory of CTBN inference. The work builds on the
complexity results of BNs, which we now review.

Theorem 2.1. (Cooper, 1990) Exact inference in
Bayesian networks is NP-hard.

Proof. Cooper proved the NP-hardness of Bayesian
network inference via a reduction from 3SAT. The
3SAT problem consists of a set of m clauses C =
{c1, c2, . . . , cm} made up of a finite set V of n Boolean
variables. Each clause contains a disjunction of three
literals over V , for example, c3 = (v2 ∧¬v3 ∧ v4). The
3SAT problem is determining whether there exists a
truth assignment for V such that all the clauses in C
are satisfied.

The 3SAT problem can be reduced to a Bayesian
network decision problem of whether, for a
True(T )/False(F ) node X in the network,

P (X = T ) > 0 or P (X = T ) = 0. We can rep-
resent any 3SAT instance by a Bayesian network
as follows. For each Boolean variable vi in V ,
we add a corresponding True(T )/False(F ) node
Vi to the network such that P (Vi = T ) = 1

2 and
P (Vi = F ) = 1

2 . For each clause Cj , we add a
corresponding True(T )/False(F ) node Cj to the
network as a child of the three nodes corresponding
to its three Boolean variables. Let wj be the clause
corresponding to the state of the three parents of Cj ,
and let eval(wj) be the truth function for this clause.
The conditional probabilities of the node are

P (Cj = T |wj) =

{
1 if eval(wj) = T

0 if eval(wj) = F

Finally, for each clause Ck, we add a
True(T )/False(F ) node Dk. Each Dk is condi-
tionally dependent on Ck and on Dk−1 (except for
D1). The conditional probabilities for D1 are

P (D1 = T |C1) =

{
1 if C1 = T

0 otherwise
.

Similarly, the conditional probabilities for Dk (k > 1)
are

P (Dk = T |Ck, Dk−1) =

{
1 if Ck = T ∧Dk−1 = T

0 otherwise
.

Figure 1 shows the BN topology and conditional prob-
ability tables for determining the satisfiability of the
clause (v1∨v2∨v3)∧ (¬v1∨¬v2∨v3)∧ (v2∨¬v3∨v4).

Importantly, the construction of this Bayesian net-
work is polynomial in the length of the Boolean ex-
pression. For a 3SAT instance of |V | variables and
|C| clauses, the corresponding Bayesian network has
|V | + 2|C| nodes. Furthermore, each node of the
Bayesian network has no more than three parents,
constraining the largest conditional probability table
to have no more than 16 entries, for a maximum of
2|V |+ 16|C|+ 8(|C| − 1) + 4 entries for the entire net-
work.

The probabilities of the V nodes allow for every combi-
nation of truth assignments to the Boolean variables.
From there, the C and D nodes enforce the logical rela-
tions of the clauses using the Bayesian network’s condi-
tional probability tables. As such, the 3SAT instance
is satisfiable if and only if P (Dm = T ) > 0, that is, if
and only if there is a non-zero probability that some
instantiation of the V nodes to T and F will cause all
of the clauses to be satisfied. Thus, if an algorithm ex-
ists that is able to efficiently compute the exact prob-
abilities in arbitrary Bayesian networks, the algorithm
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Figure 1: Network with conditional probability tables for example reduction from 3SAT to BN inference.

can efficiently decide whether P (Dm = T ) > 0 for
the specially constructed networks that can represent
arbitrary instances of 3SAT.

Furthermore, it is known that even absolute and rel-
ative approximations in BNs is NP-hard (Dagum &
Luby, 1993). These approximations are defined for-
mally as follows. Suppose we have a real value ε be-
tween 0 and 1, a BN with binary-valued nodes V , and
two nodes X and Y in V instantiated to x and y, re-
spectively.

Definition 2.1. A relative approximation is an esti-
mate 0 ≤ Z ≤ 1 such that

P (X = x|Y = y)

(1 + ε)
≤ Z ≤ P (X = x|Y = y)(1 + ε).

Definition 2.2. An absolute approximation is an es-
timate 0 ≤ Z ≤ 1 such that

P (X = x|Y = y)− ε ≤ Z ≤ P (X = x|Y = y) + ε.

The proof of NP-hardness for relative approximation
follows directly from the proof for exact inference. Sat-
isfiability of the clause is determined whether Z = 0
or Z > 0, which is not influenced by the choice of ε.

Theorem 2.2. (Dagum & Luby, 1993) Absolute ap-
proximate inference in Bayesian networks is NP-hard.

The proof of NP-hardness for absolute approximation
starts with the reduction for exact inference as above,
representing the variables and clauses with the same
network and parameters. This time, one by one a
truth assignment is set for each Boolean variable vi,
and the corresponding node Vi is removed from the

network. The truth assignment for vi is determined
by the higher probability of P (Vi = T |Dm = T ) and
P (Vi = F |Dm = T ). However, if there exists an ef-
ficient approximate BN inference algorithm that can
guarantee to be within ε = 1

2 of the exact probability
on arbitrary Bayesian networks, this algorithm can be
used to efficiently determine satisfying truth assign-
ments to all Boolean variables of an arbitrary instance
of 3SAT. Furthermore, any approximation with ε ≥ 1

2
for a two-state node (the simplest case) is no better
than random guessing.

These proofs are for Bayesian networks, which apply
to the initial distribution of a CTBN. While the CTBN
and DBN are formulated differently, Cohn, El-Hay,
Friedman, and Kupferman (2010) prove that a DBN
becomes asymptotically equivalent to a CTBN as the
interval of time between timesteps approaches zero.
One might be tempted to argue that the Bayesian net-
work complexity proofs therefore apply to the CTBN.
However, it is not always clear that moving from a dis-
crete space to a continuous space preserves the com-
plexity results. For example, take the difference be-
tween linear programming and integer linear program-
ming, the former being solvable in polynomial time
with the latter being NP-hard. Thus, we prove the
complexity results for CTBNs explicitly.

3 EXACT INFERENCE IN CTBNS

We show that exact inference in CTBNs is NP-hard,
even when given the exact initial states, following a
similar reduction as the proof for BNs but using the
conditional intensity matrices of the CTBN instead of
the conditional probability tables. Figure 2 shows the
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Figure 2: Network with conditional intensity matrices for example reduction from 3SAT to CTBN inference.

CTBN topology and conditional intensity matrices for
determining the satisfiability of the clause (v1 ∨ v2 ∨
v3) ∧ (¬v1 ∨ ¬v2 ∨ v3) ∧ (v2 ∨ ¬v3 ∨ v4).

Theorem 3.1. Exact inference in Continuous Time
Bayesian Networks is NP-hard even when given the
initial states.

Proof. The CTBN topology matches that of the BN
for representing variables and clauses, but the nodes
are specified differently. For each Boolean variable vi
in V , we add a corresponding three-state node Vi to
the network. The three states in order are True(T ),
False(F ), and Start(S), which is the initial state for
node Vi. We set the unconditional intensity matrix of
Vi to be

AVi =




0 0 0
0 0 0
c/2 c/2 −c




for some constant c > 0.

For each clause Cj , we add a corresponding
True(T )/False(F ) node Cj to the network as a child
of the three nodes corresponding to its three Boolean
variables. As before, let wj be the clause correspond-
ing to the state of the three parents of Cj , and let
eval(wj) be the truth function for this clause. The
function eval is extended to return False whenever
the clause wj contains a node in state S. The condi-
tional intensity matrices of Cj are

ACj |eval(wj)=T =

(
0 0
c −c

)

and

ACj |eval(wj)=F =

(
0 0
0 0

)
.

We set the initial state of each Cj to be the F state
(the second row of the matrices).

Finally, for each clause Ck, we add a
True(T )/False(F ) node Dk. Each Dk is condi-
tionally dependent on Ck and on Dk−1 (except for
D1). The conditional intensity matrices for Dk are

ADk|eval(Ck∧Dk−1)=T =

(
0 0
c −c

)

and

ADk|eval(Ck∧Dk−1)=F =

(
0 0
0 0

)
.

As with the Cj nodes, we set the initial state of each
Dk to be the F state.

The conditional intensity matrices of the CTBN en-
force the logical constraints of the Boolean expres-
sion, replacing the conditional probability tables of the
Bayesian network. As before, a 3SAT instance of |V |
variables and |C| clauses generates |V |+ 2|C| nodes in
the corresponding CTBN. Each node still has no more
than three parents but now each intensity matrix has
9 or 4 entries, meaning that there is a maximum of
9|V | + 108|C| + 16(|C| − 1) + 8 conditional intensity
matrix entries for the entire network.

Let Dm(t) be the state of Dm at time t. The 3SAT
instance is satisfiable if and only if P (Dm(t) = T ) > 0
for any time t > 0. Assume that the Boolean expres-
sion is satisfiable by some combination of T/F state
assignments to the variables in V . The Vi nodes start
in the S state at time t = 0. The time that each vari-
able remains in S is exponentially distributed, after
which the variables transition to either T or F with
equal probability and remain in that state. There-
fore, there is a non-zero probability for each combi-
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nation of T/F states in the Vi’s at t > 0. Whenever
three of these states satisfy a clause Cj , there is a
non-zero probability for Cj to transition from F to T
when t > 0. Likewise, once the parents of Dk are in
T there is a non-zero probability for Dk to transition
from F to T when t > 0. Thus, if the Boolean expres-
sion is satisfiable, there is a non-zero probability that
each each clause is satisfied at t > 0, and therefore
P (Dm(t) = T ) > 0. On the other hand, assume that
the Boolean expression is not satisfiable. Then there
exists some clause Cj that remains in F for all t > 0.
Therefore, Dk will remain in F for all k ≥ j, which
means that P (Dm(t) = T ) = 0 for all t ≥ 0.

4 APPROXIMATE INFERENCE IN
CTBNS

We prove similar results for approximate inference
with CTBNs as well.

Theorem 4.1. Relative approximate inference in
Continuous Time Bayesian Networks is NP-hard even
when given the initial states.

Proof. Because the determination is whether
P (Dm(t) = T ) = 0 or P (Dm(t) = T ) > 0, a
relative approximation for P (Dm(t) = T ) with any
error bound also gives a solution to the satisfiability
of the Boolean expression.

We now turn to the absolute approximation. Be-
cause even approximate inference in BNs is NP-hard,
it seems reasonable to suspect that a similar conclu-
sion also holds for approximate inference in CTBNs.
We now show how an absolute error approximation
algorithm for CTBNs can be used to find a satisfying
assignment to the Boolean expression or to determine
that it is not satisfiable.

Theorem 4.2. Absolute approximate inference in
Continuous Time Bayesian Networks is NP-hard even
when given the initial states.

Proof. We start by assuming that the expression has
at least one satisfying assignment. A satisfying truth
assignment can be found one variable at a time by
choosing t > 0 conditioning on Dm(t) = T . Let t′ ≥ t.
By construction, P (Vi(t

′) = S|Dm(t) = T ) = 0.
This is important, because it ensures that P (Vi(t

′) =
T |Dm(t) = T ) + P (Vi(t

′) = F |Dm(t) = T ) = 1.

Let a ∈ {T, F}, and let P̂ ia denote the absolute error
approximation with ε for the probability P (Vi(t

′) =
a|Dm(t) = T ). Without loss of generality, assume that
Vi can be satisfied only when a = T . Then P (Vi(t

′) =
T |Dm(t) = T ) = 1 and P (Vi(t

′) = F |Dm(t) = T ) = 0.

Therefore, it must be that P̂ iT > P̂ iF whenever ε < 1
2 .

We compute both P̂ iT and P̂ iF and change the initial

state of Vi to T if P̂ iT > P̂ iF and to F otherwise. This
process continues for i = 1, . . . , |V | to determine truth
assignments for all variables in the Boolean expression.
Therefore, if there exists a polynomial-time approxi-
mation algorithm for CTBN inference with ε < 1

2 that
can condition on evidence, it can be used to solve arbi-
trary instances of 3SAT in polynomial time as well.

5 EMPIRICAL VALIDATION

We can empirically validate these theoretical results by
taking Boolean expressions and performing inference
in the corresponding CTBN. Specifically, we demon-
strate three Boolean expressions, listed as follows.

BE1 = (v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ v3)

∧(v2 ∨ ¬v3 ∨ v4)

BE2 = (v1 ∨ v1 ∨ v1) ∧ (¬v2 ∨ ¬v2 ∨ ¬v2)

∧(v3 ∨ v3 ∨ v3)

BE3 = (v1 ∨ v1 ∨ v2) ∧ (v1 ∨ v1 ∨ ¬v2)

∧(¬v1 ∨ ¬v1 ∨ v2) ∧ (¬v1 ∨ ¬v1 ∨ ¬v2)

Note that BE1 is the Boolean expression given as an
example earlier and with the CTBN shown in Figure 2.
A total of 10 out of its 16 possible truth assignments
satisfy the expression. Note that BE2 has a single
satisfying assignment and that BE3 is unsatisfiable.

To determine the satisfiability of each of these expres-
sions using the corresponding CTBN, we performed
forward sampling with 100,000 samples and c = 100
over the interval time [0, 0.2). We queried the propor-
tion of samples with which Dm(t) = T for t = 0 to
t = 0.2 in increments of 0.01. The results are shown
in Figure 3. For the two satisfiable expressions, BE1
and BE2, P (Dm(t) = T ) > 0 for t ≥ 0.01, while for
the unsatisfiable query BE3, P (Dm(t) = T ) = 0 for
all t ∈ [0, 0.2).

Also note the values to which the probabilities are con-
verging. For BE1, the probability ended at an esti-
mated 0.622, whereas the proportion of satisfying as-
signments is 10/16 = 0.625. For BE2, the probability
ended at an estimated 0.127, whereas the proportion
of satisfying assignments is 1/8 = 0.125. As the num-
ber of samples increases, the probabilities converge to
the proportion of satisfying assignments.

Next, we validate the approach through which an ap-
proximation of P (Vi(t) = T |Dm(t) = T ) is able to
determine a satisfying assignment to each Vi. Because
we are conditioning on evidence, we use importance
sampling (Fan et al., 2010) and smooth zero entries in
the unconditional intensity matrices with ±10−6. We
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Figure 3: Empirical satisfiability results for the three
Boolean expressions.

Table 1: Empirical results for approximating
P (Vi(0.2) = T |Dm(0.2) = T )

V1 V2 V3 V4

BE1 ≈ 0.50 ≈ 0.60 ≈ 0.60 ≈ 0.60

BE2 1 0 1 -

BE3 NaN NaN - -

ignore samples with infinitesimal weights, as an in-
finitesimal weight implies that the corresponding sam-
ple contains a transition that violates the Boolean ex-
pression. The results with 100,000 samples are shown
in Table 1.

The table shows that the importance sampling al-
gorithm was correctly able to determine a satisfying
truth assignments to each variable or determine that
no truth assignments was possible. For BE1, by set-
ting v2, v3, and v4 to T , the Boolean expression is
satisfied regardless of the value of v1, which is why the
estimate was approximately 0.5, that is, either T or F
is equally probably for satisfying the expression. For
BE2, the importance sampling algorithm determined
the single satisfying truth assignment. For BE3, no
feasible samples could be generated because it is condi-
tioned on an impossible event Dm(0.2) = T , indicating
that the expression is unsatisfiable.

While we showed that we are able to solve these in-
stances of 3SAT by CTBN sampling methods, the
complexity is still exponential in the length of the
Boolean expression. To demonstrate this, we show the
average sample count necessary to determine the sat-
isfiability of the Boolean expression

∧

i=1,...,n

(vi ∨ vi ∨ vi)

Figure 4: Sample complexity for CTBN inference.

for n = 2, . . . 9. Each expression has exactly one truth
assignment that satisfies it (all variables set to True).
We count the number of samples generated until we
have the first sample for which Dm(0.2) = T , making
P (Dm(0.2) = T ) > 0 and thus showing that the 3SAT
instance is satisfiable. For each number of variables,
we average the number of samples generated over 100
runs. The average sample counts along with confidence
intervals for α = 0.01 are plotted in Figure 4. The
log2 scale on the y-axis shows that the algorithm is
exponential in the length of the expression.

6 CONCLUSION

We have shown that exact and approximate inference
in CTBNs is NP-hard, even when given the initial
states. Thus, the difficulty of CTBN inference is found
not only in Bayesian network inference for calculating
the initial distribution, but also in accurately propa-
gating the probabilities forward in time. Given the
similar results with Bayesian networks, these results
are not surprising. However, as with Bayesian net-
works, further research may reveal special cases of the
CTBN, whether in their structures or their parame-
ters, which admit polynomial-time algorithms for ap-
proximate or even exact inference.

References

Chickering, D. M. (1996). Learning Bayesian networks
is NP-complete. In Learning from data (pp. 121–
130). Springer.

Cohn, I. (2009). Mean field variational approximations
in continuous-time markov processes. Unpub-
lished doctoral dissertation, The Hebrew Univer-
sity.

Cohn, I., El-Hay, T., Friedman, N., & Kupferman, R.
(2009). Mean field variational approximation for

778



continuous-time Bayesian networks. In Proceed-
ings of the twenty-fifth conference annual con-
ference on uncertainty in artificial intelligence
(uai-09) (pp. 91–100). Corvallis, Oregon: AUAI
Press.

Cohn, I., El-Hay, T., Friedman, N., & Kupferman, R.
(2010). Mean field variational approximation for
continuous-time Bayesian networks. The Journal
of Machine Learning Research, 11 , 2745–2783.

Cooper, G. (1990). The computational complexity
of probabilistic inference using Bayesian belief
networks. Artificial intelligence, 42 (2), 393–405.

Dagum, P., & Luby, M. (1993). Approximating prob-
abilistic inference in Bayesian belief networks is
NP-hard. Artificial intelligence, 60 (1), 141–153.

El-Hay, T., Cohn, I., Friedman, N., & Kupferman, R.
(2010). Continuous-time belief propagation. In
Proceedings of the 27th international conference
on machine learning (icml).

El-Hay, T., Friedman, N., & Kupferman, R. (2008).
Gibbs sampling in factorized continuous-time
Markov processes. In Proceedings of the twenty-
fourth conference annual conference on uncer-
tainty in artificial intelligence (uai-08) (pp. 169–
178). Corvallis, Oregon: AUAI Press.

Fan, Y. (2009). Continuous time bayesian network
approximate inference and social network appli-
cations. Unpublished doctoral dissertation, Uni-
versity of California.

Fan, Y., & Shelton, C. (2008). Sampling for approxi-
mate inference in continuous time Bayesian net-
works. In Tenth international symposium on ar-
tificial intelligence and mathematics.

Fan, Y., & Shelton, C. (2009). Learning continuous-
time social network dynamics. In Proceedings
of the twenty-fifth conference on uncertainty in
artificial intelligence (uai-09) (pp. 161–168).

Fan, Y., Xu, J., & Shelton, C. R. (2010). Importance
sampling for continuous time Bayesian networks.
The Journal of Machine Learning Research, 99 ,
2115–2140.

Gatti, E. (2011). Graphical models for continu-
ous time inference and decision making. Un-
published doctoral dissertation, Università degli
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Abstract

When an imperfect model is used to generate
sample rollouts, its errors tend to compound –
a flawed sample is given as input to the model,
which causes more errors, and so on. This
presents a barrier to applying rollout-based plan-
ning algorithms to learned models. To ad-
dress this issue, a training methodology called
“hallucinated replay” is introduced, which adds
samples from the model into the training data,
thereby training the model to produce sensible
predictions when its own samples are given as
input. Capabilities and limitations of this ap-
proach are studied empirically. In several exam-
ples hallucinated replay allows effective planning
with imperfect models while models trained us-
ing only real experience fail dramatically.

1 INTRODUCTION

Online Monte Carlo-based planning algorithms such as
Sparse Sampling (Kearns et al. 2002), UCT (Kocsis &
Szepesvári 2006), and POMCP (Silver & Veness 2010) are
attractive in large problems because their computational
complexity is independent of the size of the state space.
This type of planning has been successful in many domains
where a perfect model is available to the agent, but there is
a fundamental barrier in the way of applying these meth-
ods to learned models. The core operation in Monte Carlo
planning is sampling possible futures by composing the
model’s one-step predictions (in a process called rollout).
When an imperfect model is used, errors in one sampled
observation cause more errors in the next sample, and so on
until the rollout bears little or no resemblance to any plau-
sible future, making it worthless for planning purposes.

To illustrate, consider the following simple planning prob-
lem, which will serve as a running example throughout the
paper. In “Mini-Golf” (pictured in Figure 1a), the agent’s

observations are 20 × 3 binary images. The image shows
a ball, a wall, and a pit. A cover slides back and forth over
the pit. The agent selects between two actions: no-op and
hit; once the hit action is selected, only the no-op action
is available thereafter. When the ball is hit, it travels to
the right, knocks the wall down (i.e., the wall disappears),
bounces back to the left, hits the left edge, and bounces
back to the right. If the cover is in the correct position,
the ball reaches the right side, the episode ends, and the
agent receives 1 reward. Otherwise, the ball falls into the
pit which ends the episode with no reward.

Imagine that the agent learns a factored model over pixels.
There is a separate component model responsible for pre-
dicting each pixel; the prediction for the full image is the
product of the component models’ predictions. The com-
ponent model at position 〈x, y〉 is given the pixel values in
an n×m neighborhood centered at 〈x, y〉 for the previous
two time-steps, as well as the most recent two actions.

If n = 9 and m = 3, there is enough information to make
perfectly accurate predictions, but imagine that n = 7. This
simulates the common situation that the minimum set of
features necessary for perfect accuracy is either unknown
or computationally impractical. The consequences of the
limitation are illustrated in Figure 1b. The main problem
is that a pixel immediately adjacent to the ball cannot tell
if the ball is next to a wall, and therefore whether the ball
will bounce back. As a result, the model for this pixel is
uncertain whether the pixel will be black or white.

Figure 2 shows a rollout from a perfect model (n = 9)
on the left and a rollout from an imperfect model (n = 7)
in the center. When the model is very accurate, rollouts
are plausible futures. When the model is imperfect, the
model’s limitation eventually causes an error – a pixel next
to the ball stochastically turns black, as if the ball were
bouncing back. This creates a context for the nearby pixel
models that is unlike any they have seen before. This
causes new artifacts to appear in the next sample, and so
on. The meaningful structure in the observations is quickly
obliterated making it impossible to tell whether the ball will
eventually reach the other side.
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Figure 1: a) The Mini-Golf problem. b) The pixel marked with the ? cannot be predicted perfectly with a 7×3 neighborhood
(shaded) because it cannot tell if the ball will bounce off of a wall.

This issue can be framed as a mismatch between the
model’s training data and test data. Specifically, the
model’s training data is drawn from real world experience
but when it is actually used for planning (i.e., “tested”), the
inputs to the model are samples generated from the model
itself, which may be very different than real observations.
In a sense, the model in this example has overfit to the real
world! The approach taken in this paper to address this
train/test mismatch is to mix samples from the model into
the training data. The resulting method is called “halluci-
nated replay,” in analogy to “experience replay” (Lin 1992).
On the right of Figure 2 is a rollout of a model trained using
hallucinated replay. Note that it makes the same initial er-
ror (a spurious black pixel still appears), but it has learned
that lone black pixels should turn white. In effect, it has
learned to correct for its own sampling errors.

This paper has two main goals. The first is to highlight the
dramatic impact of this mismatch between real inputs and
sampled inputs on model-based reinforcement learning. In
several examples seemingly innocuous model limitations
cause catastrophic planning failures. The second is to em-
pirically investigate hallucinated replay as an approach to
addressing this issue. Most notably, hallucinated replay
will be used to learn imperfect models that can neverthe-
less be used for effective planning. These results indicate
that this method may be an important tool for model-based
reinforcement learning in problems where one cannot ex-
pect to learn a perfect model.

2 ENVIRONMENTS AND MODELS

The development of hallucinated replay will focus on the
setting of multi-dimensional, discrete, deterministic dy-
namical systems. Time proceeds in discrete steps. At
each step t, the agent selects an action at from a finite
set of actions A. Given the action, the environment de-
terministically produces an observation vector ot. Let
O = O1×O2× . . .×On be the observation space, where
Oi is the finite set of possible values for component i of
the observation. Note that not all o ∈ O will necessarily
be reachable in the world. Let OE ⊆ O be the subset of
observations that the environment can ever produce. For
example, in Mini-Golf, O would be the set of all 20 × 3
binary images, and OE would be the set of binary images
with a ball, a pit, and either a wall or no wall.

Let H be the set of all sequences a1o1 . . . akok for all

lengths k and let ot = T (at, ht−1) where ht−1 =
a1o1 . . . at−1ot−1 is the history at time t − 1 and T is the
transition function T : A ×H → OE . Note that typically
not all sequences in H are reachable. Let HE ⊆ H be
the set of histories that could be produced by taking some
action sequence in the environment.

At each step the environment also produces a reward value
rt and, in the episodic case, a Boolean termination sig-
nal ωt. For simplicity’s sake, these values are assumed
to be contained in the observation vector ot so correctly
predicting the next observation also involves correctly pre-
dicting the reward and whether the episode will termi-
nate. Assume that if ωt = True then ωt′ = True and
rt′ = 0 for all t′ > t. The goal of an agent in this en-
vironment is to maximize the expected discounted return
E
[∑∞

t=1 γ
t−1rt

]
, where γ ∈ [0, 1] is the discount factor

and the expectation is over the agent’s behavior (the envi-
ronment is deterministic).

Note that even though the environment is assumed to be
deterministic, it may be too complex to be perfectly cap-
tured by a model. Thus models will, in general, be stochas-
tic. Also note that because OE and HE are unknown a
priori, models will be defined over the full spaces O and
H instead. So, an imperfect model not only has an incor-
rect probability distribution over possible observations, but
it may assign positive probability to impossible observa-
tions, as seen in the Mini-Golf example. Furthermore, dur-
ing rollouts the model will have to make predictions given
histories inH\HE , though no amount of experience in the
environment will provide guidance about what those pre-
dictions should be.

In an abstract sense, a model M provides a conditional
probability TM (o | ha) for every observation vector o ∈
O, action a ∈ A, and history sequence h ∈ H. As as-
sumed above, predicting the next observation also involves
predicting the reward value and whether the episode will
terminate. Note that the history h is an arbitrarily long
and ever expanding sequence of actions and observations.
Most practical models will rely upon some finite dimen-
sional summary of history c(ha), which is hereafter called
the model’s context. For the sake of simplifying notation,
let ct = c(ht−1at). For instance, a Markov model’s con-
text would include the most recent action and observation
and a POMDP model’s context would include the belief
state associated with the history.
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Figure 2: Rollouts using a perfect model (left), a model trained with only real experience (center) and a model trained with
hallucinated replay (right). Hallucinated replay makes the model robust to its own errors.

3 HALLUCINATED REPLAY

Consider learning a model using a set of training trajecto-
ries {h1, . . . , hk}, where trajectory hi is of length |hi|. The
training data can be seen as a set of training pairs for a su-
pervised learning algorithm: {〈cit,oit〉 | i = 1 . . . k, t =
1 . . . |hi|}, where the context cit is the input and the ob-
servation oit is the target output. Let M be the space of
possible models, or the model class. Most model learning
methods aim to find the modelM∗ ∈M, which maximizes
the log-likelihood:

M∗ = argmax
M∈M

k∑

i=1

|hi|∑

t=1

log(TM (oit | c(hit−1ait)))

= argmax
M∈M

k∑

i=1

|hi|∑

t=1

log(TM (oit | cit))

If a perfect model exists in M, one for which TM (oit |
cit) = 1 for all i and t, then M∗ is a perfect model. So in
this case M∗ is a sensible learning target for the purposes
of model-based reinforcement learning.

If there is no perfect model inM, M∗ may not be a very
good model for planning. Note that the log-likelihood only
measures the accuracy of the model’s one-step predictions
given contexts produced by the environment. However, as
seen above, in order to prevent errors from compounding
during planning, the model must make sensible predictions
in contexts the environment will never produce. As will be
demonstrated empirically, a model that accomplishes this
may yield better planning performance than M∗, even if it
incurs more prediction error (lower log-likelihood).

The high-level idea behind hallucinated replay is to train
the model on contexts it will see during sample rollouts in
addition to those from the world. Hallucinated replay aug-
ments the training data by randomly selecting a context cit
from the training set, replacing it with a “hallucinated” con-
text ĉit that contains sampled observations from the model,
and finally adding the training pair 〈ĉit,oit〉 to the training
set. The model is trained with inputs that are generated

from its own predictions, but outputs from real experience.

The experiments below consider three concrete instantia-
tions of this abstract idea, which are described below and
illustrated in Figure 3. All three begin by randomly se-
lecting a trajectory i and timestep t to select the “output”
component of the new training pair.

Shallow Sample: The simplest form of hallucinated replay
is to replace the observation at step t − 1 with a sample
ôit−1 ∼ TM (· | cit−1). Then the hallucinated context is
ĉit = c(hit−2a

i
t−1ô

i
t−1a

i
t). This approach essentially imag-

ines that there might be errors in the first sample of a rollout
(the sampled observation placed at the end of history) and
trains the model to behave reasonably despite those errors
(i.e., to predict the true next observation).

Deep Sample: A flaw in the above approach is that, even
if a rollout recovers from an error the erroneous obser-
vation will still persist in history, possibly affecting pre-
dictions deeper in the rollout. A simple fix is to ran-
domly select an observation in recent history (not just
the most recent one) to replace with a sample. Specif-
ically, randomly select an offset j > 0 and replace
the observation at step t − j with a sample ôit−j ∼
TM (· | cit−j) to generate the hallucinated context ĉit =

c(hit−j−1a
i
t−j ô

i
t−ja

i
t−j+1o

i
t−j+1 . . . a

i
t−1o

i
t−1a

i
t). If the

model is Markovian (that is, if its context only consid-
ers the most recent observation), then these two strategies
are equivalent. In the experiments, the model is 2nd-order
Markov, so j is either 1 or 2.

Deep Context: The above approaches have the draw-
back that they only introduce a single sampled observa-
tion into the context, whereas the contexts encountered by
the model during a rollout will largely consist entirely of
sampled observations. Even if the context only makes use
of one observation, the above approaches sample that ob-
servation as if it is the first in the rollout, whereas the
contexts encountered by the model will largely be sam-
pled after a long rollout. To address this, randomly se-
lect a rollout length l and sample observations ôij for
j = t − l . . . t − 1. Then the hallucinated context is
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Figure 3: Methods for producing hallucinated contexts, illustrated with a 2nd-order Markov context. Samples are shaded;
dashed arrows indicate the contexts which generated the samples. Actions are not shown.

ĉit = c(hit−l−1a
i
t−lô

i
t−l . . . a

i
t−1ô

i
t−1a

i
t). In the experi-

ments below, l > 0 is drawn with probability Pr(l) = 1
2l

.
This biases the distribution toward short rollouts, since long
rollouts are expected to produce very noisy observations.

3.1 IMPORTANCE OF DETERMINISM

Note that hallucinated replay as described can not sensi-
bly be applied to stochastic environments. In a determin-
istic environment, the only reason ĉit can differ from cit is
that the model is imperfect. In a stochastic environment,
even a perfect model could generate ĉit 6= cit by sampling
a different stochastic outcome. In that case, training on the
pair 〈ĉit,oit〉 could harm the model by contradicting tem-
poral dependencies the model may have correctly identi-
fied. One exception to this limitation is when the source
of stochasticity is “measurement error,” noise that is uncor-
rolated over time and does not affect the evolution of the
underlying state. In that case, hallucinated replay would
re-sample the noise to no ill effect. This work focuses on
the case of stochastic models of deterministic environments
(assuming the environment may be too complex to model
perfectly). This is, in itself, a large and interesting class of
problems. The possibility of extending the idea to stochas-
tic environments is briefly discussed in Section 5.2.

4 EXPERIMENTS

This section contains the main results of the paper, an em-
pirical exploration of the properties of hallucinated replay
under different modeling conditions. The experiments will
be performed on variations of the Mini-Golf problem de-
scribed in the introduction. One of the key features of this
domain is that, though it is a simple planning problem (the
agent needs only to select hit at the right moment), a long
rollout is necessary to sample the eventual reward value and
determine whether it is better to hit or no-op. The exper-
iments employ the simple 1-ply Monte Carlo algorithm:

at each step, for each available action a, perform 50 roll-
outs of length at most 80 that begin with a and uniformly
randomly select actions thereafter. After the rollouts, ex-
ecute the action that received the highest average return.
In these experiments model learning and planning are both
performed online – at each step, the planner uses the cur-
rent model, which is then updated with the resulting train-
ing pair. All of the replay strategies train on 5 additional
pairs from past experience per step.

The model of the pixels is factored, as described in the in-
troduction. If a neighborhood contains pixels outside the
boundaries of the image they are encoded with a special
“out of bounds” color. In all the experiments data is shared
across all positions, providing some degree of positional
invariance in the predictions. To predict the reward and ter-
mination signals rt and ωt (which do not have positions on
the screen) the context is the pixel values at all positions
in ot and ot−1, as well as the actions at and at−1. During
sampling the pixel values are sampled before reward and
termination so the sampled image can be supplied as input.

In most of the experiments below the Context Tree Weight-
ing (CTW) algorithm (Willems et al. 1995) is used to learn
the component models, similar to the FAC-CTW algorithm
(Veness et al. 2011), which was also applied in a model-
based reinforcement learning setting. Very briefly, CTW
maintains a Bayesian posterior over all prunings of a fixed
decision tree. Amongst its attractive properties are compu-
tationally efficient updates, a lack of free parameters, and
guaranteed zero asymptotic regret with respect to the max-
imum likelihood tree in the model class. In order to ap-
ply CTW, an ordering must be selected for the variables in
the context tree. In all cases the actions and observations
were ordered by recency. For the pixel models, neighbor-
ing pixels within a timestep were ordered by proximity to
the pixel being predicted. For the reward and termination
models, pixel values were in reverse column-major order
(bottom-to-top, right-to-left).
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Mini-Golf: Small Neighborhoods, CTW

Figure 4: CTW results in Mini-Golf with small neighborhoods, averaged over 30 independent trials. Curves are smoothed
using a sliding average of width 50. Unsmoothed data is shown in faint colors. The legends list the replay method in
decreasing order of the value of the curve at episode 200 (in both cases, higher is better). Note the log scale in the
prediction performance graph. These conventions are maintained in subsequent figures.

4.1 CORRECTING SAMPLE ERRORS

The first experiment considers the setting described in the
introduction in which models are learned with 7× 3 neigh-
borhoods. Figure 4 shows the results of training with the
three hallucinated replay variations proposed above and
training with pure “Experience replay” (re-training on ran-
domly selected training pairs from past experience without
modifying the context). The results of training with only
the agent’s experience (“No Replay”) are also provided as
a baseline to show the effects of replay alone.

The most dramatic result can be seen in the planning per-
formance (Figure 4a): the models trained only with expe-
rience from the environment (regardless of whether replay
was used) result in behavior that is no better than an agent
that chooses actions uniformly randomly (indicated by the
solid black line). As can be seen in Figure 4b, the mod-
els trained using hallucinated replay achieve no better (and
in one case much worse) prediction accuracy, as measured
by average per-step log-likelihood over the training data
(not counting replay). Nevertheless, they all result in near
perfect planning performance. This matches the intuition
described above, and indeed the rollouts in Figure 2 were
generated using these learned models.

It is unsurprising that the Deep Sample replay strategy
would outperform the Shallow Sample strategy – it was in-
deed important that sampled observations appear in both
positions in the context. It is somewhat surprising that
Deep Sample outperformed Deep Context as well. The
hypothesis that it would be important for the model to be
trained on contexts sampled far into a rollout is not sup-
ported by these results. It may be that the noisy samples ob-
tained from long rollouts, especially early in training, were
misleading enough to harm performance. It is also possi-
ble that this effect is an artifact of this example. Neverthe-
less, these qualitative findings were consistent across the
variations explored below so, to reduce clutter, only Deep
Sample results are reported in the subsequent experiments.

4.2 FULL NEIGHBORHOODS

The previous experiment is an example of hallucinated re-
play making meaningful planning possible when a perfect
model is not contained within the model class. This is the
most common case in problems of genuine interest. Never-
theless, it is relevant to ask what effect it has when a perfect
model is in the class.

Figures 5a and 5b show the results in the Mini-Golf prob-
lem when the models used 9× 3 neighborhoods (sufficient
to make accurate predictions). Both the Experience Replay
and No Replay models are able to support planning, and
experience replay clearly improves sample efficiency. The
Hallucinated Replay model has consistently lower predic-
tion accuracy and lags behind the Experience Replay model
in planning performance, though it eventually catches up.
Noting that the hallucinated contexts in the very beginning
of training are likely to be essentially meaningless, Figure
5 also shows the results of performing experience replay
for the first 50 episodes, and hallucinated replay thereafter.
This model’s planning performance is nearly identical to
that of the Experience Replay model. Once the model has
had some time to learn, the sampled observations become
more and more like real observations, so this similarity is
not surprising.

Note that though a perfect model is in the class, the in-
termediate models during learning are imperfect and their
sampling errors do impact planning performance. It is in-
teresting that hallucinated replay does not aid planning per-
formance by making the model more robust to these errors.
One hypothesis might be that if the rollouts were much
longer, errors would be more likely to affect planning, and
hallucinated replay might have more of an impact.

Figures 5c and 5d show the results of a variation on Mini-
Golf that is the same in every respect, except that there are
6 walls to knock down rather than 1. Thus rollouts must
be much longer for successful planning. First note that the
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Mini-Golf: Full Neighborhoods, CTW

Figure 5: CTW results in Mini-Golf with full neighborhoods, both with 1 wall and with 6 walls.

hypothesis that longer rollouts will cause more sampling
errors is borne out. For a comparable level of prediction
accuracy, the models achieve substantially better planning
performance in the 1 wall version than the 6 wall version.
Still, hallucinated replay was not able to mitigate the im-
pact of the model errors.

The errors produced by these “models-in-training” tend to
be “salt-and-pepper” noise caused by pixel models that all
assign small but positive probability to the incorrect out-
come. This is a relatively unstructured type of noise in
comparison to that seen in the first experiment. It may sim-
ply be that more data is required to learn to correct for the
noise than to simply improve accuracy. Or, since objects in
this problem consist of only a few pixels, this type of noise
may be too destructive to be compensated for.

4.3 A DIFFERENT MODEL CLASS

In order to validate that the benefits of hallucinated replay
are robust to the choice of model class, Figure 6 shows
the results of training feed forward neural networks in the
Mini-Golf domain. The same model architecture was used
except here the pixel, reward, and termination models are
neural networks with 10 logistic hidden units and a lo-
gistic output layer, trained using standard backpropagation
(Rumelhart et al. 1986). Several values of the learning rate
α were tested and the results using the best value of α for
each method are presented. Figures 6a and 6b show the
planning and prediction performance of the neural network
models when given 7 × 3 neighborhoods. The results are
very similar to those using CTW models. Figures 6c and
6d show the results using 9 × 3 neighborhoods. Here, un-
like with CTW, the hallucinated replay training does not
seem to cause a significant loss in performance. The neural

network is likely less sensitive to the initially uninforma-
tive hallucinated samples because it is easily able to ignore
irrelevant features.

Notably, waiting to start hallucinated replay hurts perfor-
mance rather than helps. The reason for this can be seen
in the prediction performance graphs: a large drop in pre-
diction performance is observed when hallucinated replay
begins – this is because the hidden units must adjust to a
sudden change in the distribution of input vectors. This in-
dicates that the compatibility of a model learning method
with hallucinated replay may depend on its ability to grace-
fully handle the non-stationarity it creates in the training
data. No-regret algorithms like CTW may be particularly
well-suited for that reason.

Neural network models also provide an opportunity to ex-
amine another source of model error. Figure 7 shows the re-
sults (planning only) of using neural network models with
too few hidden nodes (but with full neighborhoods). In
Figure 7a, the networks have 5 hidden nodes. The mod-
els trained with experience replay are able to learn quickly,
but level off at sub-optimal behavior. Training with hal-
lucinated replay is slower, but planning performance ulti-
mately surpasses that of the experience replay model. In
Figure 7b, the average score of the last 100 episodes (out of
5000) is shown for various numbers of hidden nodes. The
best learning rate for each method and each number of hid-
den nodes is used. With a small number of hidden nodes,
the model is unable to make good predictions or correct
for errors. With a large number, an accurate model can be
learned and hallucinated replay is unnecessary. For inter-
mediate values hallucinated replay is able to compensate
somewhat for the model’s representational deficiency.
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Mini-Golf: Feed Forward Neural Networks (10 Hidden Nodes)

Figure 6: Neural network results in Mini-Golf with 10 hidden nodes.

4.4 ADDITIONAL EXAMPLES

Finally, as additional examples of model impairments that
hallucinated replay can help to overcome, consider two
variations on the Mini-Golf domain.

4.4.1 DECEPTIVELY INFORMATIVE FEATURES

In the first variation, a score display is added. The obser-
vations are now 20 × 6 images. The bottom three rows of
the image are blank for the most part, but at the end of an
episode the 3 × 3 area in the bottom right displays a digit
(“0” or a “1”) to show the reward received.

As can be seen in Figure 8a, when the model is trained us-
ing only real experience this seemingly innocuous addition
causes severe planning problems, even though the pixel
models are given sufficient contexts to perfectly model the
dynamics of the game. The problem arises because the
neighborhood size is not sufficient to model the score dis-
play. When trained only on real experience, the reward and
termination models rightly learn that the score display is a
reliable predictor. However, during rollouts, those pixels
no longer behave as they do in the world, and the reward
and termination models make erratic predictions.

In contrast, the models trained with hallucinated replay
learn that the score display pixels cannot be relied upon
and focus instead on other relevant contextual information
(such as the ball’s position). This allows the models to pro-
vide meaningful predictions that result in good planning
performance. Note again that hallucinated replay has not
fixed the errors. The hallucinated replay models are no bet-

ter at predicting what the score display will do. They are
able to make good predictions about the reward and termi-
nation signals despite sample errors in the score display.

4.4.2 COMPLICATED, IRRELEVANT FEATURES

In the second variation, an irrelevant but hard-to-predict
component is added to the image. Specifically, the images
are 21 × 3 where the last column displays a set of “blink-
ing lights.” Only one pixel in the last column is white on
any given step, but the pattern of which pixel is white is
3rd-order Markov. Since the model is 2nd-order Markov,
it cannot reliably predict the light pattern. That said, the
lights have no impact on the rest of the dynamics and the
models have sufficient context to make perfect predictions
for every other pixel. Nevertheless, as can be seen in Figure
8b, this addition once again causes the model trained only
on real experience to fail when used for planning.

In this case the problem is that rollout samples of the blink-
ing lights will not resemble those seen in the world. In
the world, only one light can be on a time but in samples
lights stochastically turn on and off, causing novel config-
urations. The pixel models neighboring these unfamiliar
configurations have higher uncertainty as a result, and the
now familiar error compounding process ensues, corrupt-
ing the important parts of the sampled image as well as
the unimportant parts. The models trained using halluci-
nated replay, in contrast, learn to make predictions given
the distribution of light configurations that will actually be
encountered during a rollout.
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Figure 7: Neural network results in Mini-Golf with full neighborhoods but too few hidden nodes.

5 DISCUSSION

The results have shown that even mildly limited fac-
tored models that can accurately predict nearly every
aspect of the environment’s dynamics can dramatically
fail when used in combination with Monte-Carlo plan-
ning. Since factored models and Monte-Carlo planning
are both important, successful tools in problems with large
state/observation spaces, resolving this issue may be a key
step toward scaling up model-based reinforcement learn-
ing. Overall, hallucinated replay was effective in its pur-
pose: to train models to be more robust to their own sam-
pling errors during rollouts.

When a perfect model was contained within the class (a
rare occurrence in problems of genuine interest), halluci-
nated replay was comparable to (but slightly less effective
than) pure experience replay. Though in this case the mod-
els are imperfect during training, hallucinated replay did
not seem to be effective at compensating for the type of
wide-spread, unstructured noise that resulted from transient
parameter settings (as opposed to the more systematic er-
rors resulting from class limitations in other examples).

It was also observed that when the model class is extremely
limited (e.g. the neural network models with only 2 hid-
den nodes), hallucinated replay may be ineffective at com-
pensating for errors because the model simply cannot learn
to make meaningful predictions at all. Of course, in this
case the model is ineffective no matter how it is trained.
It seems that hallucinated replay is most effective when the
model can capture some but not all of the environment’s dy-
namics. When a model is performing poorly hallucinated
replay may be able to magnify the impact of improving the
model’s expressive power (as was seen when the neural net-
works were given more hidden nodes).

5.1 RELATED WORK

Other authors have noted that the most accurate model in a
limited class may not be the best model for planning. Sorg,

Singh & Lewis (2010) argue that when the model or plan-
ner are limited, reward functions other than the true reward
may lead to better planning performance. Sorg, Lewis &
Singh (2010) use policy gradient to learn a reward func-
tion for use with online planning algorithms. Joseph et al.
(2013) make a similar observation regarding the dynamics
model and use policy gradient to learn model parameters
that lead to good planning, rather than low prediction er-
ror (demonstrating that the two do not always coincide).
The results presented here add to the evidence that simply
training to maximize one-step prediction accuracy may not
yield the best planning results.

Siddiqi et al. (2007) addressed the problem of learning sta-
ble dynamics models of linear dynamical systems. The
key idea was to project the learned dynamics matrix into
the constrained space of matrices with spectral radius of at
most 1, and which therefore remain bounded even when
multiplied with themselves arbitrarily many times. Though
certainly conceptually related (their work has the same goal
of learning a model whose predictions are sensible when
given its own output as input), their specific approach is
unlikely to apply to the setting considered here, as the con-
cept of “stability” is not so easily quantified.

There is a long history in the supervised learning setting
of adding noise to training data (or otherwise intention-
ally corrupting it) to obtain regularization and generaliza-
tion benefits (see e.g. Matsuoka 1992, Burges & Schölkopf
1997, Maaten et al. 2013). There the issue is not typically
prediction composition but more broadly the existence of
inputs that the training set may not adequately cover. With-
out access to the true distribution over inputs, noise is typ-
ically generated via some computationally or analytically
convenient distribution (e.g. Gaussian) or via a distribution
that incorporates prior knowledge about the problem. In
contrast, we have access to the model which generates its
own inputs, and can thus sample corrupting noise from a
learned, but more directly relevant distribution.

Ross & Bagnell (2012) observed a similar train/test mis-
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Figure 8: CTW results in two variations of Mini-Golf (described in text).

match in the model-based reinforcement learning setting
when the model is trained on a fixed batch of data. In that
case, the plan generated using the model may visit states
that were underrepresented in training, resulting in poor
performance. Their algorithm DAgger mixes experience
obtained using model-generated plans into the training data
as the model learns, thereby closing the gap between train-
ing and test distributions. Roughly speaking, they prove
that their approach achieves good planning performance
when a model in the class has low prediction error. In the
examples considered here no model in the class has low
prediction error, but near perfect planning performance is
nevertheless possible.

5.2 FUTURE DIRECTIONS

The results indicate that, in addition to one-step accuracy,
a model’s robustness to its own errors should be a key con-
cern for model based reinforcement learning. They also in-
dicate that training a model on its own outputs is a promis-
ing approach to addressing this concern. These observa-
tions open the door to a number of interesting questions
and issues for further study.

As discussed in Section 3, hallucinated replay is not im-
mediately applicable in stochastic domains. While a lot of
perceived stochasticity can be attributed to unmodeled (but
deterministic) complexity, it would nevertheless be valu-
able to explore whether this approach can be applied to in-
herently stochastic dynamics. The main challenge in this
case is forcing the model’s hallucinated data to choose the
same stochastic outcome that was observed in the real data.
It may be that this could be accomplished by learning re-
verse correlations from real world outcomes to hallucinated
contexts and applying rejection sampling when generating
hallucinated data.

The hallucinated replay algorithm presented in this paper
is simple and offers no theoretical guarantees. It may,
however, be possible to incorporate the basic idea of hal-
lucinated replay into more principled algorithms that ad-
mit more formal analysis. For instance, it may be possible
to extend the DAgger algorithm given by Ross & Bagnell

(2012) using a form of hallucinated replay. This would al-
low the analysis to take into account the learned model’s
robustness (or lack thereof) to its own errors. It would also
be valuable, if possible, to develop algorithms that have the
benefits of hallucinated replay but are able to promise that
the hallucinated data will not harm asymptotic performance
if an accurate model is in the class.

Perhaps most important would be to develop a more for-
mal understanding of the relationships between accuracy,
robustness, and planning performance. In sufficiently inter-
esting environments, model errors will be inevitable. Suc-
cessfully planning despite those errors is key to applying
model based reinforcement learning to larger, more com-
plex problems. A characterization of the properties beyond
simple accuracy that make a model good for planning and a
more nuanced understanding of which types of model error
are acceptable and which are catastrophic could yield im-
proved forms of hallucinated replay, or other model learn-
ing approaches that have good planning performance as an
explicit goal rather than an implicit effect of accuracy.

6 CONCLUSIONS

Hallucinated replay trains a model using inputs drawn from
its own predictions, making it more robust when its pre-
dictions are composed. This training methodology was
empirically shown to substantially improve planning per-
formance compared to using only real experience. The
results suggest that hallucinated replay is most effective
when combined with model-learning methods that grace-
fully handle non-stationarity and when the model class’
limitations allow it to capture some but not all of the en-
vironment’s dynamics.
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Abstract

Learning the structure of probabilistic graphi-
cal models for complex real-valued domains is
a formidable computational challenge. This in-
evitably leads to significant modelling compro-
mises such as discretization or the use of a sim-
plistic Gaussian representation. In this work we
address the challenge of efficiently learning truly
expressive copula-based networks that facilitate
a mix of varied copula families within the same
model. Our approach is based on a simple but
powerful bivariate building block that is used to
highly efficiently perform local model selection,
thus bypassing much of computational burden in-
volved in structure learning. We show how this
building block can be used to learn general net-
works and demonstrate its effectiveness on var-
ied and sizeable real-life domains. Importantly,
favorable identification and generalization per-
formance come with dramatic runtime improve-
ments. Indeed, the benefits are such that they
allow us to tackle domains that are prohibitive
when using a standard learning approaches.

1 INTRODUCTION

Probabilistic graphical models [Pearl, 1988] in general and
Bayesian networks (BNs) in particular, have become popu-
lar as a flexible and intuitive framework for modeling mul-
tivariate densities, a central goal of the data sciences. At
the heart of the formalism is a combination of a qualitative
graph structure that encodes the regularities (independen-
cies) of the domain and quantitative local conditional den-
sities of a variable given its parents in the graph. The result
is a decomposable model that facilitates relatively efficient
inference and estimation. Unfortunately, learning the struc-
ture of such models remains a formidable challenge, partic-
ularly when dealing with real-valued domains that are non-
Gaussian. The computational bottleneck lies in the need to

assess the merit of many candidate structures, each requir-
ing potentially costly maximum likelihood evaluation.

The situation is further compounded in realistic domains
where we also want to allow for the combination of differ-
ent local representations within the same model. Specifi-
cally, such a scenario requires that we perform non-trivial
local model selection within an already challenging struc-
ture learning procedure. In practice, with as few as tens of
variables, learning any real-valued graphical model beyond
the simple linear Gaussian BN can be computationally im-
practical. At the same time, it is clear that, for many do-
mains, the Gaussian representation is too restrictive. Our
goal in this work is to overcome this barrier and to effi-
ciently learn the structure of expressive networks that do
not only go beyond the Gaussian, but that also allow for a
mix of varied local representations.

In the search for expressive representations, several recent
works use copulas as a building block within the framework
of graphical models [Kirshner, 2007, Elidan, 2010, Wil-
son and Ghahramani, 2010]. Briefly, copulas [Joe, 1997,
Nelsen, 2007] flexibly capture distributions of few dimen-
sions: easy to estimate univariate marginals are joined to-
gether using a copula function that focuses solely on the
dependence pattern of the joint distribution. Appealingly,
regardless of the dependency pattern, any univariate repre-
sentation can be combined with any copula. In all of the
above works, the resulting copula graphical model proved
quite effective at capturing complex high-dimensional do-
mains, far surpassing the Gaussian representation.

Recently, Elidan [2012] proposed a structure learning
method that is tailored to the so called copula network rep-
resentation, and that is essentially as efficient as learning a
simple linear Gaussian BN. However, an important draw-
back of the approach is that it constrains all local copulas in
the model to be of the same type. Tenzer and Elidan [2013]
offer a slight improvement but their method is inherently
limited to few (2-3) of specific local representations and to
tree-structured networks. Clearly, to take advantage of the
plethora of dependency patterns captured by different cop-
ula families, we would like to have greater flexibility.
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Unfortunately, selection of the right copula family, or de-
pendence pattern, can be hard even for just two random
variables. Typical approaches (e.g., [Huard et al., 2006,
Fermanian, 2005, Hering and Hofert, 2010, Justel et al.,
1997, Genest and Rivest, 1993]) require costly computa-
tions such as maximum likelihood estimation, Bayesian in-
tegration, simulation, etc. (see Section 3 for details). While
such methods can be used to perform model selection for a
distribution with few variables, they are impractical when
faced with a large number of local model selection tasks
that underlie global structure learning. In this work we in-
troduce HELM: a method for Highly Efficient Learning of
Mixed copula networks.

Intuitively, for the task of model selection, the maximum
likelihood density defined by a particular copula family is
in fact a nuisance parameter, and we are only interested in
detecting the dependency pattern of the copula. Further,
since most copulas have a functional form with few param-
eters (or even just one), identifying between different copu-
las only requires a crude view of the distribution. Building
on this intuition, we build a copula-to-multinomial map-
ping that is independent of a particular domain. Then, when
faced with the model selection task given training samples,
we use a comparison of the empirical multinomial signa-
ture to the precomputed mapping in order to choose the
most promising copula family. Appealingly, for the build-
ing block task of choosing a copula family for two vari-
ables, our approach is effective, highly efficient, and comes
with finite sample guarantees.

With this model selection building block in hand, we are
still faced with the task of learning the global structure of
the model, which in turn requires costly maximum likeli-
hood computations. Fortunately, the same mechanism we
use for selection suggests a highly efficient and effective
proxy to the exact computation, when learning tree net-
works. Further, the method also gives rise to a natural
heuristic generalization that allows us to highly efficiently
learn networks with a general structure.

We demonstrate the benefit of our HELM approach for
learning expressive networks that combine a varied set of
copulas for several sizeable real-life datasets. Specifically,
we show that our procedure is not only accurate in terms
of identifying the best copula family, but also leads to
learned probabilistic graphical models that generalize well.
Importantly, this favorable performance comes with dra-
matic runtime speedups that facilitate learning of models
in domains where maximum likelihood structure learning
is computationally impractical.

2 BACKGROUND

In this section we briefly describe copulas, their relation-
ship to Spearman’s ρs measure of association, and the cop-
ula network construction.

Figure 1: Samples from the bivariate Gaussian copula with
ρ = 0.25. (left) with Gaussian marginals; (right) with a
mixture of Gaussian and Gamma marginals.

Copulas
A copula function joins univariate marginals into a
joint real-valued multivariate distributions. Formally, let
U1, . . . , Un be random variables marginally uniformly dis-
tribution on [0, 1]. A copula function C : [0, 1]n →
[0, 1] is a joint distribution Cθ(u1, . . . , un) = P (U1 ≤
u1, . . . , Un ≤ un), where θ are the parameters of the cop-
ula distribution function.

Now let X = {X1, . . . Xn} be an arbitrary set of real-
valued random variables. Sklar [1959] states that for any
CDF FX (x), there exists a copula C such that

FX (x) = C(F1(x1), . . . , Fn(xn)).

When Fi(xi) are continuous, C is uniquely defined.

The constructive converse is of particular interest from a
modeling perspective: Since Fi(Xi) ∼ U([0, 1]), any cop-
ula function taking any marginals {Fi(Xi)} defines a valid
joint cumulative distribution with marginals {Fi(Xi)}.
Thus, copulas are “distribution generating” functions that
allow us to separate the choice of the univariate marginals
and that of the dependence.

To derive the joint density f(x) = ∂nF (x1,...,xn)
∂x1...∂xn

from the
copula construction, assuming F has n-order partial deriva-
tives (true almost everywhere when F is continuous), and
using the chain rule, we have

f(x) =
∂nC(F1(x1), . . . , Fn(xn))

∂F1(x1) . . . ∂Fn(xn)

∏

i

fi(xi)

≡ c(F1(x1), . . . , Fn(xn))
∏

i

fi(xi),

where we use c(F1(x1), . . . , Fn(xn)) to denote the copula
density function.

Example 2.1.: The extremely popular Gaussian copula is
defined as

CΣ({Ui}) = ΦΣ

(
Φ−1(U1), . . . ,Φ−1(UN )

)
, (1)

where Φ is the standard Gaussian, and ΦΣ is a zero mean
Gaussian with correlation matrix Σ.
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Copulas and Spearman’s Rho
Copulas are intimately connected to many dependence con-
cepts such as Spearman’s ρs measure of association

ρs(X1, X2) =
cov(FX1 , FX2)

STD(FX1
)STD(FX2

)
,

which is simply Pearson’s correlation applied to the cumu-
lative distributions ofX1 andX2. For the copula associated
with the joint FX1,X2(x1, x2), we have

ρs(X1, X2) = ρs(C) ≡ 12
∫ ∫

C(u, v)dudv − 3.

Thus, Spearman’s ρs is monotonic in the copula cumula-
tive distribution function associated with the joint distribu-
tion of X1 and X2. See [Nelsen, 2007, Joe, 1997] for an
in-depth exploration of the framework of copulas and its
relationship to dependence measures.

Copula Networks
Similarly to a standard Bayesian network [Pearl, 1988], a
copula network uses a directed acyclic graph G to encode
the independencies I(G) = {(Xi ⊥ NonDesci | Pai)},
where Pai are the parents of Xi in G, and NonDesci are
its non-descendants. I(G) implies a decomposition of the
joint density into a product of local conditional densities
of each variable given its parents: fX (X1, . . . , Xn) =∏
i fi(Xi | Pai).

In copula networks, the local densities are defined via the
copula ratio

fi(Xi | Pai) =
cθ(Fi(Xi), {Fj(Xj)}j∈Pai)

cθ({Fj(Xj)}j∈Pai)
fi(Xi). (2)

Appealingly, for copulas the denominator can be easily
computed from the numerator without the need for inte-
gration. Thus, the representation relies solely on the esti-
mation of joint copulas. See [Elidan, 2010] for more details
on the construction and its merits.

3 RELATED WORKS

Broadly speaking, methods for performing copula model
selection can be split into three groups. Most commonly,
model selection is carried out via (penalized) maximum
likelihood estimation, which can be costly due to the need
to evaluate the maximum likelihood parameters. In fact, as
will be demonstrated in Section 7, even when the maximum
likelihood parameters have a simple closed form, the ac-
tual computation of the maximum likelihood value can be
time consuming in the context of structure learning, where
this task is repeated numerous times. A second group of
works relies on a measure of deviation between the copula,
or some of its statistical properties, from the empirical es-
timators. Genest and Rivest [1993], for example, use the
deviation of Kendall’s τ estimates from the population val-
ues to select between Archimedean copulas. Unfortunately,

for most copulas, characterizing the Kendall distribution re-
quires simulation and can be computationally demanding
[Hering and Hofert, 2010]. Another example first employs
Rosenblatt’s transformation, followed by a deviation mea-
surement relative to the uniform distribution [Justel et al.,
1997], a process that can also be computationally intensive.

Fermanian [2005] suggests an alternative in the form of a
goodness-of-fit test that is based on kernel density estima-
tion. This, however, still requires tedious numerical inte-
gration. Finally, Huard et al. [2006] presents a Bayesian
approach that, like our method, is quite generic as it avoids
estimation of the maximum likelihood parameters. Poste-
rior computations, however, still require costly integration
over the support of Kendall’s τ values. In contrast to all
of these works, our HELM method uses extremely sim-
ple statistics that are easily computed for any copula. As
demonstrated in Section 7, this leads to effective perfor-
mance while offering dramatic speedups.

4 EXPRESSIVE TREE NETWORKS

Our goal is to efficiently learn the structure of copula-based
probabilistic graphical models while allowing for different
copula families within the same model. We start by consid-
ering in this section the building block task of performing
selection for bivariate copulas, and show how this building
block can be used to learn tree structured networks. Then,
after deriving in Section 5 finite sample guarantees for the
bivariate case, in Section 6 we propose an extension for
learning general networks.

4.1 MULTINOMIAL-BASED SELECTION

Recall that, intuitively, for the purpose of choosing a partic-
ular dependence pattern, the distribution is a nuisance pa-
rameter and it may be possible to forgo precise estimation.
As an example, Figure 2(top) shows the grid frequency of
samples from the bivariate Clayton and Gumbel copulas
with ρs = 0.5. The greater emphasis of the Clayton copula
on the lower tail is evident as is the converse for the Gumbel
copula. Thus, it is possible to choose between the copulas
based on simple statistics. Motivated by this example, our
selection procedure involves three steps:

1. Precompute a multinomial signature for each copula
family under consideration.

2. Given a set of training instances, compute an empiri-
cal multinomial signature.

3. Choose the copula whose multinomial signature is
closest (in some sense) to the empirical one.

We now briefly describe the details involved in each of
these three stages.
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Clayton Gumbel

Figure 2: An example of the multinomial mapping for
ρs = 0.5. (top) shows the distribution for the Clayton
and Gumbel families, overlaid with a 4× 4 grid. (bottom)
shows the corresponding multinomial signatures defined by
this grid for the two copula families.

Precomputing The Multinomial Signatures
We start by recalling the monotonic relationship, within
a copula family, between Spearman’s ρs and the copula
parameter. This allows us to use the notation Cρs to re-
fer to a particular instance of the copula family Cθ(ρs).
To define the copula-to-multinomial mapping, for a cop-
ula family Cρs , we partition the unit cube into N partitions
{A1, . . . , AN} and define a multinomial random variable
X via

PCρs (X = i) =

∫

Ai

cρs(u, v)dudv,

where cρs is the corresponding copula density. This map-
ping defines an N-valued multinomial representation of the
copula which we denote by π(cρs). In principle, comput-
ing P (X = i) requires integration. However, for copulas
the cumulative distribution function is explicit and, if each
Ai is chosen as a rectangular region, then P (X = i) can
be readily computed.

For simplicity, we use a generic partition into equal K×K
squares is illustrated in Figure 2(top) for K = 4. Fi-
nally, since we map the copula to a crude coarsening as
it is, in practice we compute the above only for ρs ∈
{−1,−0.95, . . . , 0.95, 1}, and use interpolation to define
the mapping for intermediary values. This also ensures ro-
bustness to small fluctuations in the ρs estimate. We use
π(cρs) to denote the resulting multinomial distribution.

Choosing A Copula Family
Given a set of M observations for two random variables
X,Y , our task is now to compute the empirical multino-
mial signature and compare it to the template ones in order
to choose the closest copula family. Let C be the set of

candidate copula families from which we wish to choose
the most appropriate copula. Omitting the explicit depen-
dence on the data for readability, we use π̂ and ρ̂s to denote
the empirical multinomial frequency over the K ×K grid
and the empirical Spearman’s ρs estimate, respectively. We
choose the copula family C̃ as the one that minimizes the
distance between the empirical and template signatures.1

That is:
C̃ = argminCρ̂d (π̂‖π(cρ̂s)) , (3)

where d(·‖·) is a divergence measure between distributions.
Several possible choices for this measure come to mind.
The KL [Kullback and Leibler, 1951] distance is the diver-
gence of choice between distributions, but can be sensitive
to small probabilities which can occur in some of the multi-
nomial grid cells. The L1-norm measure is less sensitive to
outliers but does not measure relative deviation. In Sec-
tion 5 we explore the theoretical properties of both choices,
and in Section 7 we demonstrate their empirical merit.

4.2 LEARNING A TREE NETWORK

We now turn to our goal of learning the structure of a
high-dimensional tree copula networks. Consider a tree
structured model overN variables [Kirshner, 2007, Elidan,
2012] where the joint density can be written as

fX (x1, . . . , xn) =
∏

(i,j)∈T
cij(Fi(xi), Fj(xk))

∏

i

fi(xi),

where cij is the copula associated with the edge (i, j) in the
network. Learning the optimal tree structure can be easily
carried our using a maximum spanning tree algorithm once
the merit of each theO(N2) candidate edges has been com-
puted. However, even if we have already made the choice
of the copula family for each pair of variables, we still need
to estimate the maximum likelihood parameters of the cop-
ula, and then compute the maximum likelihood score. That
is, taking the log of the density, for each pair of variables
in the network Xi and Xj , we need to compute

Score(i, j)≡
M∑

m=1

log cθ̂(FXi(xi[m]), FXj (xj [m])),

(4)
where the sum is over instances and θ̂ are the maximum
likelihood parameters. As we report in Section 7, the over-
all computations for the entire network can be demanding.

To overcome this difficulty, we again note that the precise
bivariate distribution, defined via θ̂, is a nuisance parame-
ter. In fact, all that we need is a proxy to the above score
that will reasonably rank candidate edges.2 Recalling that

1In the unlikely case that more than one copula minimizes this
mesure, we randomly choose between the minimizing copulas.

2We note that the ρs-based proxy of Elidan [2012] cannot be
used since it assumes the same copula for all edges.
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Gene Secom

Figure 3: Edge score ranks using maximum likelihood (y-
axis) vs. our multinomial proxy score (x-axis) for two of
the real-life datasets used in Section 7.

our multinomial mapping roughly approximates the den-
sity, it is natural to use the implied multinomial likelihood
as a proxy score. Concretely, using Ci,j to denote the
chosen copula for the variable pair Xi and Xj , instead of
Eq. (4), we use

ScoreMult(i, j) =
∑
k π̂i,j [k] log π(ci,j)[k], (5)

where π̂i,j is the empirical multinomial distribution in-
duced by Xi and Xj .

To gauge the quality of this proxy score, Figure 3 compares
the ranks of Eq. (5) and Eq. (4) for pairs of variables in two
large datasets that we use in our experimental evaluation,
Gene and Secom (see Section 7 for details). It is easy to
see that our proxy score is near perfect for the purpose of
ranking the benefit of candidate edges. Importantly, com-
putation of π̂ is linear in the (small) number of cells of the
multinomial signature. Consequently, computation of our
proxy score is significantly faster than the computation of
the likelihood score. As we shall see in Section 7, this re-
sults in dramatic speedups of the learning procedure.

5 FINITE SAMPLE BOUNDS

Before describing how our approach can be extended to
general structures, in this section we consider the theo-
retical properties of our building block copula selection
method. Clearly, asK is increased in the multinomial map-
ping, we capture the density at an increasingly better gran-
ularity and, assuming continuity, asymptotic recovery fol-
lows from standard considerations. In fact, even for fixed
small partitions such as K = 4, most standard copula fam-
ilies will disagree on some of the K×K multinomial bins,
and asymptotic recovery can be easily guaranteed. We are
more interested, however, in providing finite sample guar-
antees for our algorithm, both when using the Kullback-
Leibler divergence and the L1-norm in Eq. (3). To the best
of our knowledge ours are the first finite-sample bounds in
the context of copula model selection.

We assume ρs is known (or has been measured) and omit
it from the notation for clarity. Let C be a finite copula
family hypothesis class of cardinality |C| = L and let D be
a set of M i.i.d training instances sampled from C∗ ∈ C.
Denote by π̂ the empirical multinomial signature of D and
by C̃(D) the copula family chosen by our algorithm. The
probability of mistakingly identifying the copula family is:

err(D) = PC∗(C̃(D) 6= C∗),

where we use PC∗ as a shorthand for PD∼C∗ . We will now
bound number of instances needed to ensure that the error
is below a constant err(D) ≤ α.

5.1 KULLBACK-LEIBLER DIVERGENCE

Assume that the data was generated by a specific copula
family C0 ∈ C. We will later allow C0 to be any copula
in C. We start by observing that deciding between C0 and
some other Cj ∈ C based on the KL distance from π̂ is
equivalent to a hypothesis test:

H0 : π̂ ∼ C0 H1 : π̂ ∼ Cj ,
where, using the likelihood ratio test, the rejection region

is defined via λ(C0, C1;D) =
Pπ(cj)

(D)

Pπ(c0)(D) > 1. Thus, clas-
sification error can be cast in terms of type I error, giving
rise to a finite sample bound:
Lemma 5.1.: Assume D ∼ C0 or equivalently π̂ ∼ π(c0).
There exists a constant δ0(j) such that for any α > 0 and
Cj ∈ C, if M ≥ log

(
1
α

)
1

δ0(j) then

PC0

(
dKL(π̂||π(cj)) ≤ dKL(π̂||π(c0))

)
≤ α

Proof: By Sanov’s theorem [Cover and Thomas, 1991] we
have that the type I error is 2−MdKL(π0||π(c0)), where π0

is the closest multinomial to π(c0) that is in the rejection
region of the above test. π0 is given explicitly by:

π0[k] =
π(c0)[k]λπ(cj)[k]1−λ∑
k′ π(c0)[k′]λπ(cj)[k′]1−λ

, λ ∈ R,

where [k] is the k’th multinomial component, and λ is cho-
sen so that dKL(π0||π(c0))− dKL(π0||π(cj)) = 0. Taking
δ0(j) to be dKL(π̂||π(cj)) (see Cover and Thomas [1991]
for details on how λ, δ0(j) can be computed) we get the
desired result. Note that π0 does not depend on α.

Defining δ0 = minj 6=0δ0(j), we then have:
Corollary 5.2.: Let D ∼ C0. If M ≥ log2

(
L−1
α

)
1
δ0

, then
the classification error is bounded from above by α.

Proof: Using the union bound we have:

PC0
(∃j : d(π̂||π(cj)) ≤ d(π̂||π(c0)))

≤
∑

Cj∈C
PC0(d(π̂||π(cj)) ≤ d(π̂||π(c0)))

≤
∑

Cj∈C,j 6=0

α

L− 1
= α
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where, for compactness d() ≡ dKL(). The second inequal-
ity follows from the above lemma by using α = α

L−1 so
that M ≥ log

(
L−1
α

)
1

δ0(j) for all j.

Finally, we can drop the assumption that the specific gener-
ating copula family is known and, appealingly, get a bound
that grows logarithmically with 1

α :
Theorem 5.3. : Define δC = mini:Ci∈Cδi. If
M ≥ log2

(L(L−1)
α

)
1
δC

then the misclassification error is
bounded from above by α.

5.2 L1 DISTANCE

We now develop parallel bounds for the case of the L1-
norm. Denote by π(ci)[k] the k-th component of the multi-
nomial defined by Ci, and define δ0(i)[k] = |π(c0)[k] −
π(ci)[k]| for C0, Ci ∈ C.
Lemma 5.4.: Let D ∼ C0, and let δ0 = mini 6=0,kδ0(i)[k].

If the number of samples satisfies M ≥ log
( 2(L−1)K2

α

)
1
δ20

,
then the probability of a classification error is bounded
from above by α.

Proof: For compactness define ∆i[k] = |π̂[k] − π(ci)[k]|.
Then, since π̂ ∼ π(c0), and using simple union bounds, the
probability of misclassification is:

PC0

(
∃i 6= 0 :

∑

k

∆i[k] ≤
∑

k

∆0[k]
)

≤
∑

i 6=0

PC0

(∑

k

∆i[k]
)
≤
∑

k

∆0[k]
)

≤
∑

i 6=0,k

PC0
(∆i[k] ≤ ∆0[k])

Next, by definition ∆i[k] ≤ ∆0[k] ⇔ ∆0[k] ≥ δ0(i)[k].
Also, since D ∼ C0, we have E(π̂[k]) = π(c0)[k]. Using
Hoeffding’s inequality we then have:

PC0

(
∆i[k] ≤ ∆0[k]

)
= PC0

(
∆0[k] ≥ δ0(i)[k]

)

≤ 2e−2Mδ20 .

If we now choose the number of samples to be M ≥
log
( 2(L−1)K2

α

)
1
δ20

, the result easily follows.

Now, using a similar argument to the KL case, we have
Theorem 5.5. : Define δC = miniδi. For all α, if
M ≥ log2

(L(L−1)K2

α

)
1
δ2C

, then the misclassification error
is bounded from above by α.

As an example consider sample data that is distributed ac-
cording to AMH copula with Spearman’s rho equals 0.6.
Assuming the copula hypothesis class consists of AMH,
Clayton, Gumbel and Plackett copulas. Then using k = 2,
it is easily verified that δ0 = 0.0713. Thus, according to
5.4, in order to bound the classification error by α = 0.05,
at lest 1217 samples are needed.

6 LEARNING GENERAL NETWORKS

We now show how our structure learning approach of Sec-
tion 4 can be adapted to the more elaborate task of learn-
ing a copula graphical model with a general structure. As
is commonly done, due to the super-exponential nature of
the search space, we learn the structure via a greedy search
procedure that involves local modifications to the structure
(e.g., add/delete/reverse an edge). Similarly to the case of
trees, we start by generalizing the local copula selection
building block and then explain how this can be used when
learning a global structure.

6.1 CHOOSING THE COPULA

Recall that in order to choose a copula family in the bivari-
ate case, we first evaluate the empirical measure of associ-
ation ρ̂s, as well as the bivariate statistics of the data, and
then choose the copula family signature that is closest to the
empirical distribution for ρ̂s. In a nutshell, we will choose
a copula family for more than two variables by aggregating
bivariate distances.

Before doing so, however, we need to evaluate ρ̂. For the
Gaussian copula, our path is obvious since each bivariate
marginal is characterized by it’s own dependence param-
eters Σi,j , and the corresponding measure of association
ρ̂i,j can be computed as before. However, the situation is
quite different for other copula families. For example, all
bivariate marginals of an n-dimensional Archimedean cop-
ula have the same dependence parameter so that we require
ρ̂i,j = ρ̂ for all i, j. Thus, a natural choice in the common
case of a one parameter family is to estimate ρ̂ using

ρ̂ =
∑

Xi,Xj ,i<j

(
n

2

)−1

ρ̂Xi,Xj .

Note that this is one of the standard generalizations of
Spearman’s rho [Schmid and Schmidt, 2007]. Then, with
ρ̂i,j = ρ̂ in hand, we select the copula family that mini-
mizes the sum of distances between the empirical and tem-
plate multinomials signatures, similarly to Eq. (3):

C̃ = argminCρ̂

∑

Xi,Xj, i<j

d
(
π̂‖π(cρ̂i,j )

)
.

6.2 EVALUATING THE STRUCTURE SCORE

As in bivariate case, after choosing the copula family, we
still face the challenge of comparing the benefit of different
candidate structural changes. Concretely, using Eq. (2),
we we need to evaluate the conditional likelihood score:

Score(i,Pai) ≡
M∑

m=1

log
cθ̂(Fi(xi[m]), {Fj(xj [m])}j∈Pai)

cθ({Fj(xj [m])}j∈Pai)
,
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N F G C A M
N 0.87 0.06 0.02 0.00 0.02 0.02
F 0.05 0.89 0.01 0.00 0.02 0.04
G 0.01 0.01 0.98 0.00 0.00 0.00
C 0.00 0.00 0.00 0.97 0.02 0.01
A 0.02 0.02 0.00 0.03 0.92 0.01
M 0.02 0.03 0.00 0.00 0.02 0.94

N F G C A M
N 0.93 0.01 0.01 0.00 0.03 0.03
F 0.14 0.74 0.00 0.00 0.04 0.08
G 0.13 0.00 0.87 0.00 0.00 0.00
C 0.13 0.00 0.00 0.84 0.03 0.00
A 0.01 0.01 0.00 0.00 0.96 0.02
M 0.00 0.00 0.00 0.00 0.02 0.98

N F G C A M
N 0.96 0.02 0.00 0.00 0.00 0.01
F 0.02 0.94 0.00 0.00 0.00 0.048
G 0.00 0.00 1.00 0.00 0.00 0.00
C 0.00 0.00 0.00 1.00 0.00 0.00
A 0.04 0.12 0.00 0.02 0.79 0.02
M 0.02 0.03 0.00 0.00 0.00 0.98

HELM Huard Costly ML

Figure 4: Copula family selection performance for synthetically generated data with 1000 samples. Methods compared
are our HELM, that of Huard [Huard et al., 2006], and time consuming ML estimation. Each confusion matrix shows the
percentage of the predicted family (columns) given the generating family (rows).

where θ̂ are the maximum likelihood parameters of the cop-
ula associated with Xi and its parents.

Once again, we face the bottleneck of maximum likelihood
estimation. Whenever an analytically simple relationship
between ρ̂ ((or Kendall’s τ ) and θ̂ exists, we use the heuris-
tic proposed by [P.Embrechts and M.Hofert, 2010] and
simply invert the average association measure described
above. For other copula families (e.g. Ali-Mikhail), we re-
sort to a standard optimization procedure such as conjugate
gradient. Note that even in this case, we perform costly es-
timation only for the chosen copula family, and are thus still
significantly more efficient than a full maximum likelihood
selection and estimation procedure.

6.3 ADJUSTING THE SCALE OF THE SCORE

To learn a structure that allows for several parents for each
variable, all family scores must obviously lie on the same
scale. However, the proxy score we use in the case of
a single parent is based on a discrete multinomial likeli-
hood (Eq. (5)), while for multiple parents we use a real-
valued conditional likelihood (Eq. (6)). Thus, to rank can-
didate structural changes, we must somehow calibrate these
scores relative to each other.

Fortunately, as is clearly evident in Figure 3, our single
parent proxy scores are almost linearly correlated to the
exact maximum likelihood scores. Consequently, all that
is required in order to accurately approximate the needed
scores is to recover this linear transformation via straight-
forward regression. Concretely, we randomly choose few
(e.g. 10%) of the variables pairs, and solve the following
regression problem:

β̂ = argmin
β

∑

i,j

(
Score(i, j)−β0−β1Score

Mult(i, j)
)2

We then use β̂ to calibrate our bivariate scores:

S̃core(i, j) = β0 + β1 · ScoreMult(i, j).

To summarize: starting with the empty graph G∅, we rank

the differentO(N2) candidate edges using our multinomial
approximation score. Next, we calibrate these scores using
the regression coefficients β. These calibrated score are
then used together with the multi-parent scores to guide the
greedy structure learning procedure.

7 EXPERIMENTAL EVALUATION

We now evaluate the ability of our HELM approach to ef-
ficiently learn expressive copula networks that generalize
well. We start by evaluating the merit of the HELM model
selection building block in the case where the generating
distribution is known. We then demonstrate the power of
HELM when learning high-dimensional structures for siz-
able real-life domains.

7.1 COPULA MODEL SELECTION

To evaluate our HELM copula model selection building
block, we synthetically generate i.i.d. instances from dif-
ferent copula families and attempt to identify the gener-
ating family from the samples. We compare our HELM
approach to the standard maximum likelihood (ML) ap-
proach (using an inversion of the empirical Kendall tau or
Spearman’s rho for fast estimation where possible), and to
a Bayesian approach from the copula community suggested
by Huard [Huard et al., 2006].

Similarly to Huard et al. [2006], we consider a collec-
tion of copula families that exhibit varied dependence pat-
terns: Normal (N), Frank (F), Gumbel (G), Clayton (C),
Ali-Mikhail-Haq (A),and Farlie-Gumbel-Morgenstern (M)
(see [Joe, 1997, Nelsen, 2007] for details of these copulas).
For each family, we precompute its multinomial signature
as described in Section 4. To cover a wide range of depen-
dence levels, we generate the synthetic data as follows: for
values of Spearman’s ρs ranging from 0.25 to 0.95, we ran-
domly choose a copula family C, and generate M = 1000
i.i.d samples from Cρs . We repeat this 1000 times for each
value of ρs and use the different methods to predict the
generating copula family.
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Tree Networks Non-tree Networks

Tree Networks

Gaussian Our ML Speed
copula method Factor

Crime 67.31 71.2 72.75 175
(0.84) (0.79) (0.76)

Secom 368.19 389.12 390.36 182
(3.68) (3.73) (3.58)

SP500 119.36 128.73 129.15 307
(3.15) (3.18) (3.26)

Gene 372.43 490.56 – ∞
(4.61) (4.83)

Non-tree Networks

Gaussian Our ML Speed
copula Method Factor

Crime 83.16 85.79 86.12 78
(0.92) (0.86) (0.89)

Secom 420.72 428.96 435.74 76.3
(3.35) (3.83) (3.79)

SP500 144.27 146.94 147.52 59.9
(3.45) (3.38) (3.41)

Gene 432.42 517.25 – ∞
(4.72) (4.63)

Figure 5: Comparison of copula networks learned using the different methods for tree and non-tree networks. (left top)
shows the distribution of the chosen copula families when learning using standard maximum likelihood (ML) for the
Secom dataset. (left middle/bottom) summarizes the average test log-probability per instance performance of our method
(white bars), ML (black bars) and the Gaussian copula baseline (gray bar). (right) detailed generalization performance
along with standard deviation across random folds (in parentheses) and speedup factor of our method relative to ML.

In Figure 4 we report average results in the form of con-
fusion matrices that show the distribution of the predicted
copula family (columns) for each generating copula family
(rows). Results for our approach are with K = 8 and using
KL (results were qualitatively similar using K = 4 and the
L1 distance). As can be seen, HELM surpasses Huard on
average and is not far beyond the much slower ML. This
is to be expected since we intentionally took a crude but
efficient view of the distribution, a crucial step toward the
goal of performing global structure learning.

The above competitiveness comes with substantial compu-
tational advantages. A single model selection task when
using ML took 1.08 × 10−2 seconds on average. Using
HELM this took only 1.1545× 10−4 seconds on average,

a two orders of magnitude speedup. Advantages are even
greater for K = 4 since HELM is quadratic in K. In this
case, HELM is close to 200 faster than ML, while suf-
fering negligible decrease in predictive performance. Fi-
nally, while Huard does reasonably well in terms of pre-
dictive performance, this comes at an enormous computa-
tional cost, taking an average of 0.28 seconds, or 4 orders
of magnitude slower than HELM.

7.2 LEARNING EXPRESSIVE NETWORKS

We now evaluate the merit of HELM for learning expres-
sive copula networks for real-life domains that benefit from
a rich mix of local representations. We consider four real-
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life datasets that are quite sizable in the context of structure
learning of non-Gaussian real-valued models:

• Crime (UCI repository). 1994 instances of 100 census
variables ranging from household size to fraction of chil-
dren born out of marriage, for 1994 U.S. communities.

• Secom (UCI repository). 1567 instances of 362 variables
collected from sensors during a semi-conductor manu-
facturing process, corresponding to key factors that ef-
fect downstream yield.

• SP500. End of day changes of the 500 Standard and
Poor’s index stocks (variables) over a period of close to
2000 trading days (samples).

• Gene. A compendium of gene expression. We focus
on 999 genes (variables) that have at most one missing
experiment, resulting in 2000 samples.

For each domain, we learn a copula network model us-
ing HELM as well as using standard maximum likeli-
hood (using fast inversion of ρs or τK where possible). In
both cases, we allow for a mix of Gaussian, Frank, Gum-
bel, Clayton, arch12, arch14, Ali-Mikhail and FGM cop-
ulas. To make comparison to the costly ML feasible, we
learn networks with up to two parents. For the univariate
marginals for both methods, we use a standard kernel-based
approach [Parzen, 1962] with the common Gaussian kernel
(see, for example, [Bowman and Azzalini, 1997] for de-
tails). As an additional baseline, we also consider learning
only with a Gaussian copula, which is the strongest of all
single family baselines. Finally, we note that due to its sig-
nificant computational demands, the Bayesian method of
Huard could not be used in these experiments.

We start by qualitatively demonstrating the real-life need
for expressive modeling, or for the combination of differ-
ent local representations wihin the same model. As an ex-
ample Figure 5(left top) shows the distribution of the cop-
ula families chosen when learning a mixed model using the
ML method for the Secom dataset. Obviously, the learned
model is a rich one.

Quantitatively, Figure 5(left middle/bottom) shows that a
mixed ML model (black bar) also leads to better general-
ization relative to the best single family baseline (gray bar)
in terms of test set log-probability per instance. Also shown
is the performance of HELM (white bar). As can be seen,
HELM is competitive with the costly ML method. The
table on the right includes the average test performance re-
sults along with standard deviations (in parentheses) across
10 folds. Importantly, note that the improvement over the
single family baseline is significant since the scale of im-
provement is in bits per instances. Thus, an improvement
of, for example, 10 bits per instance is equivalent to each
test instance being on average 210 more likely.

Recall that our goal was not simply to learn competitive
expressive networks but to do so highly efficiently so as to
facilitate scaling up of structure learning. Speed up factors
of HELM relative to ML are reported in the right-hand col-
umn of the tables in Figure 5. As can be seen, the runtime
improvements are dramatic at over two orders of magni-
tudes when learning tree networks. To make these numbers
concrete, for example, using HELM to learn a mixed tree
for the SP500 domain took less than a minute, while for
ML the average runtime was nearly 5 hours. For the Gene
data set with 1000 variables, although learning a mixed net-
work with HELM took only around 4.5 minutes, ML did
not terminate after two days. A substantial runtime im-
provement is also evident for more general structures. For
example, learning using HELM took around an hour and
a half for SP500, while learning using ML took over three
days. Dramatically, although HELM was able to learn a
mixed Gene network model in less than two hours, learn-
ing a model for this domain using ML proved impractical,
and did not terminate within a week.

8 SUMMARY

We presented HELM, an algorithm for efficiently learning
copula networks that allows for a rich mix of varied cop-
ula families within the same model. We demonstrated the
substantial computational advantages of using our multi-
nomial signature based approach when learning complex
models for several varied sizeable real-life domains.

Our contribution is three fold. First, we presented a
straightforward but powerful copula model selection build-
ing block that, even in the simple bivariate case, is com-
petitive with maximum likelihood and other estimation ap-
proaches while offering dramatic runtime improvements.
We further derive finite-sample guarantees for this building
block. To the best of our knowledge, these are the first such
guarantees in the context of copula model selection.

Second, we showed how our building block gives rise ac-
curate and efficient ranking of candidate structures, result-
ing in highly efficient global structure learning. Third, the
computational advantages allows us to scale up structure
learning and easily cope with domains that are prohibitive
if tackled using standard procedures. Indeed, to the best of
our knowledge, ours is the first structure learning method
that allows for a mix of local real-valued representations
and that has been applied to domains of this size.
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Abstract

We investigate the geometrical structure of
probabilistic generative dimensionality reduction
models using the tools of Riemannian geometry.
We explicitly define a distribution over the natu-
ral metric given by the models. We provide the
necessary algorithms to compute expected metric
tensors where the distribution over mappings is
given by a Gaussian process. We treat the corre-
sponding latent variable model as a Riemannian
manifold and we use the expectation of the met-
ric under the Gaussian process prior to define in-
terpolating paths and measure distance between
latent points. We show how distances that respect
the expected metric lead to more appropriate gen-
eration of new data.

1 MOTIVATION

One way of representing a high dimensional data set is
to relate it to a lower dimensional set of latent variables
through a set of (potentially nonlinear) functions. If the ith
data point and the jth feature is represented by yi,j , it might
be related to a q dimensional vector of latent variables xi,:
as

yi,j = fj(xi,:) + εi,

where fj(·) is a nonlinear function mapping to the jth fea-
ture of the data set and εi is a noise corruption of the un-
derlying function. A manifold derived from a finite data
set can never be precisely determined across the entire in-
put range of x. We consider posterior distributions defined
over fj(·) and we focus on the uncertainty defined over the
local metric of the manifold itself. This allows us to de-
fine distances that are based on metrics that take account
of the uncertainty with which the manifold is defined. We
use these metrics to define distances between points in the
latent space that respect these metrics.

∗Also at Sheffield Institute for Translational Neuroscience,
SITraN. Sheffield, UK

 

 

Straight line interpolant

Expected Riemannian geodesic

Figure 1: The latent space from a GP-LVM that was trained
over a dataset of artificially rotated digits. Black dots repre-
sent the latent points. The dashed brown line show the com-
monly used straight-line interpolant, and the green curve is
the suggested expected Riemannian geodesic. This figure
is best viewed in colour.

When the mappings fj(·) are nonlinear, the latent variable
model (LVM) can potentially capture non-linearities on the
data and thereby provide an even lower dimensional repre-
sentation as well as a more useful view of the data. While
this line of thinking is popular, it is not without its prac-
tical issues. As an illustrative example, Fig. 1 shows the
latent representation of a set of artificially rotated images
obtained through a Gaussian process latent variable model
(GP-LVM). It is clear from the display that the latent repre-
sentation captures the underlying periodic structure of the
process which generated the data (a rotation). If we want
to analyse the data in the latent space, e.g. by interpolat-
ing latent points, our current tools are insufficient. As can
be seen, fitting a straight line in the latent space between
the two-points leads to a solution that does not interpolate
well in the data space: the interpolant goes through regions
where the data does not reside, regions where the actual
functions, fj(·), cannot be well determined.

This observation raises several related questions about the
choice of interpolant: 1) what is the natural choice of inter-
polant in the latent space? And, 2) if the natural interpolant
is not a straight line, are Euclidean distances still meaning-
ful? We answer these questions for the GP-LVM, though
our approach is applicable to other generative models as
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well. We consider here a metric which reflects the intrinsic
properties of the original data and recovers some informa-
tion loss due to the nonlinear mapping performed by the
model. We find that for smooth LVMs the metric from the
observation space can be brought back to the latent space
in the form of a random Riemannian metric. We then pro-
vide algorithms for computing distances and shortest paths
(geodesics) under the expected Riemannian metric. With
this the natural interpolant becomes a curve, which follows
the trend of the data.

Overview In Section 2 we introduce the concepts of Rie-
mannian geometry, the tool on which we rely on later on
in the paper. Section 3 provides an overview of the state of
the art in probabilistic dimensionality reduction, introduc-
ing the class of models to which the proposed methodol-
ogy can be extended. In Section 4 we use the probabilistic
nature of the generative LVMs to explicitly provide distri-
butions over the metric tensor; first, we provide the general
expressions, then we specialise these to the GP-LVM as an
example. Finally, we show how to compute shortest paths
(geodesics) over the latent space. Experimental results are
provided in Section 5, and the paper is concluded with a
discussion in Section 6.

2 CONCEPTS OF RIEMANNIAN
GEOMETRY

We study latent variable models (LVMs) as embeddings
of uncertain surfaces (or manifolds) into the observation
space. From a machine learning point of view, we can inter-
pret this embedded manifold as the underlying support of
the data distribution. To this end, we review the basic ideas
of differential geometry, which study surfaces through lo-
cal linear models.

Gauss’ study [1827] of curved surfaces are among the
first examples of (deterministic) LVMs. He noted that a
q-dimensional surface embedded in a p-dimensional Eu-
clidean space1 is well-described through a mapping f :
Rq → Rp. The q-dimensional representation of the surface
is known as the chart (in machine learning terminology,
this corresponds to the latent space). In general, the map-
ping f between the chart and the embedding space is not
isometric, e.g. the Euclidean length of a straight line l in
the chart does not match the length of the embedded curve
f(l) as measured in the embedding space. Intuitively, the
chart provides a distorted view of the surface (see Fig. 2 for
an illustration). To rectify this view, Gauss noted that the

1Historically, Gauss considered the case of two-dimensional
surfaces embedded in R3, while the extension to higher dimen-
sional manifolds is due to Bernhard Riemann.

Figure 2: An illustration of the standard surface model; f
maps the chart into the embedding space.

length of a curve is

Length (f(l)) =

∫ 1

0

∥∥∥∥
∂f(l(t))

∂t

∥∥∥∥ dt =

∫ 1

0

∥∥∥∥J
∂l(t)

∂t

∥∥∥∥ dt,
(1)

where J denotes the Jacobian of f , i.e.

[J]i,j =
∂fi
∂lj

. (2)

Measurements on the surface can, thus, be computed in the
chart locally, and integrated to provide global measures.
This gives rise to the definition of a local inner product,
known as a Riemannian metric.

Definition (Riemannian Metric). A Riemannian metric G
on a manifoldM is symmetric and positive definite matrix
which defines a smoothly varying inner product

〈a,b〉x = a>J>Jb = a>G(x)b (3)

in the tangent space TxM, for each point x ∈ M and
a,b ∈ TxM. The matrix G is called the metric tensor.

Remark The Riemannian metric need not be restricted
to G = J>J and can be any smoothly changing sym-
metric positive definite matrix [do Carmo, 1992]. We re-
strict ourselves to the more simple definition as it suffices
for our purposes, but note that the more general approach
has been used in machine learning, e.g. in metric learning
[Hauberg et al., 2012] and information geometry [Amari
and Nagaoka, 2000].

From this definition, Eq. 1 reduces to

Length (γ) =

∫ 1

0

√
〈γ′(t), γ′(t)〉γ(t)dt (4)

for a general curve γ : [0, 1]→ Rp.

Definition (Geodesic curve). Given two points x1,x2 ∈
M, a geodesic is a length-minimising curve connecting the
points

γg = argmin
γ

Length(γ), γ(0) = x1, γ(1) = x2. (5)
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It can be shown [do Carmo, 1992] that geodesics satisfy the
following second order ordinary differential equation

γ′′ = −1

2
G−1

[
∂ vecG

∂γ

]>
(γ′ ⊗ γ′), (6)

where vecG stacks the columns of G and ⊗ denotes the
Kronecker product. The Picard-Lindelöf theorem [Tenen-
baum and Pollard, 1963] then implies that geodesics exist
and are locally unique given a starting point and an initial
velocity.

3 PROBABILISTIC DIMENSIONALITY
REDUCTION

Nonlinear dimensionality reduction methods [Lee and Ver-
leysen, 2007] provide a flexible data representation which
can provide a more faithful model of the observed mul-
tivariate datasets than the linear ones. One approach is
to perform probabilistic nonlinear dimensionality reduction
defining a model that introduces a set of unobserved (or la-
tent) variables X that can be related to the observed ones Y
in order to define a joint distribution over both. These mod-
els are known as latent variable models (LVMs). The latent
space is dominated by a prior distribution p(X) which in-
duces a distribution over Y under the assumption of a prob-
abilistic mapping

yi,j = fj(xi) + εi, (7)

where xi is the latent point associated with the ith obser-
vation yi, j is the index of the features of Y, and εi is a
noise term, accounts for both noise in the data as well as
for inaccuracies in the model. The noise is typically cho-
sen as Gaussian distributed ε ∼ N (0, β−1), where β is the
precision.

One of the advantages of this approach is that it accommo-
dates dimensionality reduction in an intuitive manner, if we
assume that the dimensionality of the latent space is signifi-
cantly lower than that of the observation space. In this case,
the reduced dimensionality provides us with both implicit
regularisation and a low-dimensional representation of the
data, which can be used for visualisation (and, therefore,
for data exploration [Vellido et al., 2011]) if the dimension
is low enough.

If the mapping f =W is taken to be linear:

yi,j = w>j xi + εi, (8)

and the prior p(X) to be Gaussian, this model is known
as probabilistic principal component analysis [Tipping and
Bishop, 1999]. The conditional probability of the data
given the latent space can be written as

p(yi | xi,W, β) = N (yi |Wxi, β
−1I). (9)

With a further assumption of independence across data
points, the marginal likelihood of the data is

p(Y) =

∫ N∏

i=1

p(yi | xi,W, β)p(xi)dX. (10)

In general, this approach can be applied to both lin-
ear and nonlinear dimensionality reduction models, lead-
ing to the definition of, for instance, Factor Analysis
[Bartholomew, 1987], Generative Topographic Mapping
(GTM) [Bishop et al., 1998], or Gaussian Process-LVM
(GP-LVM) [Lawrence, 2005] to name a few.

One example that generalises from the linear case to the
nonlinear one is the GTM, in which the noise model is
taken to be a linear combinations of a set of M basis func-
tions

yi,j =
M∑

m=i

w>j φm(xi) + εi. (11)

This model can be seen as a mixture of distributions
(usually Gaussian radial basis distributions) whose centres
are constrained to lay on an intrinsically low-dimensional
space. These centres can be interpreted as data prototypes
or cluster centroids that can be further agglomerated in
a full blown clustering procedure. In this manner, GTM
mixes the functionalities of Self-Organising Maps and mix-
ture models by providing both data visualisation over the
latent space and data clustering [Olier and Vellido, 2008].
If the prior over the latent space is chosen to be Gaussian,
this model leads, in a similar way of probabilistic PCA, to
a Gaussian conditional distribution of the data

p(yi | xi,W, β) = N
(

yi

∣∣∣∣∣
M∑

m=i

w>j φm(xi), β
−1I

)
.

(12)

In the classic approach the latent variables are marginalised
and the parameters are optimised by maximising the model
likelihood. An alternative (and equivalent) approach pro-
poses to marginalise the parameters and optimise the la-
tent variables, leading to Gaussian Process Latent Variables
Model (GP-LVM).

In terms of applications, Grochow et al. [2004] animate hu-
man poses using style-based inverse kinematics based on a
GP-LVM model. The animation is performed under a prior
towards small Euclidean motions in the latent space, i.e.
under the same assumptions as those leading to a straight-
line interpolant. As the Euclidean metric does not match
that of the observation space, this prior is difficult to inter-
pret. In a related application, Urtasun et al. [2005] track
the pose of a person in a video sequence with a similar
prior and, hence, similar considerations hold. Recently,
Gonczarek and Tomczak [2014] track human poses in im-
ages under a Brownian motion prior in the latent space.
Again, this relies on a meaningful metric in the latent space.
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In all of the above application, it is beneficial if the metric
in the latent space is related to that of the observation met-
ric.

4 METRICS FOR PROBABILISTIC LVMs

The common approach to estimate local metrics rely on as-
sumptions over the neighbourhoods defined in the observed
space (see e.g. [Hastie and Tibshirani, 1996, Ramanan and
Baker, 2011]). This might be less efficient in presence of
high dimensional noise, because the induced distances may
not be reliable. One way to deal with this problem is to de-
fine a noise model (7) and to assume a global belief over the
geometry of the data. This way, the resulting models have
the advantage of providing an intrinsic local metric which
is able to deal with noise.

In this paper we only consider smooth generative models
for manifold learning. This contrasts with prior approaches
such as [Bregler and Omohundro, 1994, Tenenbaum, 1997,
Tenenbaum et al., 2000] that use metrics which vary dis-
cretely across the space (see also [Lawrence, 2012] for re-
lations to Gaussian models).

We define here the local metric tensor for generative LVMs.
We then illustrate the specific case of GP-LVM, providing
an algorithm to compute shortest path.

4.1 THE DISTRIBUTION OF THE NATURAL
METRIC

When the mapping f in Eq. 7 is differentiable, it can be
interpreted as the mapping between the chart (or latent
space) and the embedding space (c.f. Section 2). Then it
is possible to explicitly compute the natural Riemannian
metric of the given model.

Let J be the Jacobian (as in Eq. 2), then the tensor

G = J>J

defines a local inner product structure over the latent space
according to Eq. 3.

In the case of LVMs where the conditional probability over
the Jacobian follow a Gaussian distribution, this naturally
induces a distribution over the local metric tensor G. As-
suming independent rows of J

p(J | X, f , β) =
p∏

j=1

N (µJ(j,:),ΣJ), (13)

the resulting random variable follow a non-central Wishart
distribution [Anderson, 1946]:

G =Wq(p,ΣJ ,E[J>]E [J]), (14)

where p represents the number of degrees of freedom; the
quantity Σ−1J E[J>]E [J] is know as the non-centrality ma-

trix and it is equal to zero in the central Wishart distribu-
tion. The Wishart distribution is a multivariate generalisa-
tion of the Gamma distribution.

4.2 GP-LVM LOCAL METRIC

A Gaussian Process (GP) is used to describe distributions
over functions and it is defined as a collection of ran-
dom variables, any finite number of which have a joint
Gaussian distribution [Rasmussen and Williams, 2006].
Given a vector x ∈ Rq , a GP determined by its mean
function and its covariance function is denoted f(x) ∼
GP(m(x), k(x,x′)). From this, it is possible to generate
a random vector f which is Gaussian distributed with co-
variance matrix given by (K)i,j = k(xi,xj).

Gaussian Processes have been used in probabilistic nonlin-
ear dimensionality reduction to define a prior distribution
over the mapping f (in Eq. 7), leading to the formulation
of GP-LVM. This way, the likelihood of the data Y given
X is computed by marginalising the mapping and optimis-
ing the latent variables:

p(Y | X, f , β) =
p∏

j=1

N (y:,j ,K+β−1I) =
p∏

j=1

N (y:,j , K̃).

(15)

To follow the notation introduced in Section 3, the noise
model is defined by

yi,j = K(xi,X)KY:,j + εi, (16)

Due to the linear nature of the differential operator, the
derivative of a Gaussian process is again a Gaussian pro-
cess ([Rasmussen and Williams, 2006] §9.4), as long as the
covariance function is differentiable. This property allows
inference and predictions about derivatives of a Gaussian
Process, therefore the Jacobian J of the GP-LVM mapping
can be computed over continuum for every latent point x∗
and we denote with ∂y∗

∂x(i) the partial derivative of y(x∗)
with respect to the ith component in the latent space. We
call J> = ∂y∗

∂x =
[
∂y∗
∂x(1) ; · · · ; ∂y∗

∂x(q)

]
, where ∂y∗

∂x is a
q × p matrix whose columns are multivariate normal dis-
tributions. We now consider the jointly Gaussian random
variables

[
Y
∂y∗
∂x

]
∼ N

(
0,

[
K̃x,x ∂K̃x,∗
∂K̃>x,∗ ∂2K̃∗,∗

])
, (17)

where ∂K∗,x, ∂2K∗,∗ are a matrices given by

(∂Kx,∗)n,l =
∂k(xn,x∗)

∂x(l)
,

n = 1, · · · , N
l = 1, · · · , q (18)

(∂2K∗,∗)i,l =
∂2k(x∗,x∗)

∂x(i)∂x(l)
.

i = 1, · · · , q
l = 1, · · · , q (19)

The GP-LVM model provides an explicit mapping from the
latent space to the observed space. This mapping defines
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the support of the observed data Y as a q dimensional man-
ifold embedded into Rp. If the covariance function of the
model is continuous and differentiable, the Jacobian of the
GP-LVM mapping is well-defined and the natural metric
follows Eq. 14.

It follows from Eq. 17 and the properties of the GPs that
the distribution of the Jacobian of the GP-LVM mapping
is the product of p independent Gaussian distributions (one
for each dimension of the dataset) with mean µJ(j,:) and
covariance ΣJ . For a every latent point x∗ the Jacobian
takes the following form:

p(J | Y,X,x∗) =
p∏

j=1

N (µJ(j,:),ΣJ) (20)

=

p∏

j=1

N (∂K>x,∗K̃
−1
x,xY:,j , ∂

2K∗,∗ − ∂K>x,∗K̃
−1
x,x∂Kx,∗),

which (c.f. Eq. 14) gives a distribution over the metric ten-
sor G

G =Wq(p,ΣJ ,E[J>]E[J]). (21)

From this distribution, the expected metric tensor can be
computed as

E[J>J] = E[J>]E[J] + p ΣJ . (22)

Note that the expectation of the metric tensor includes a co-
variance term. This implies that the metric tensor expands
as the uncertainty over the mapping increases. Hence,
curve lengths also increases when going through uncertain
regions, and as a consequence geodesics will tend to avoid
these regions.

The metric tensor defines the local geometric properties
of the GP-LVM model and it can be used as a tool to
data exploration. One way to visualise the tensor metric
is through the differential volume of the high dimensional
parallelepiped spanned by GP-LVM; this, for a latent di-
mension q = 2 is known as magnification factor and it has
been introduced by [Bishop et al., 1997] for generative to-
pographic mapping (and self organising maps). Its explicit
formulation for GP-LVM is given by

MF =
√
det (E[J>J]). (23)

An example of the magnification factor is shown in Fig. 3.

4.3 COMPUTING GEODESICS

Given a latent space endowed with an expected Rieman-
nian metric, we now consider how to compute geodesics
(shortest paths) between given points. Once a geodesic is
computed its length can be evaluated through numerical in-
tegration of Eq. 4.

 

 
MF
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Figure 3: GP-LVM latent space for the motion capture data
(see section 5 for details). White dots denote latent points
xn and the background colour is proportional to the mag-
nification factor (23).

The obvious solution to the shortest path problem is to
discretise the latent space and compute shortest paths on
the resulting graph using e.g. Dijkstra’s algorithm [Cormen
et al., 1990]. The computational complexity of this ap-
proach, however, grows exponentially with the dimension-
ality of the latent space and the approach quickly becomes
infeasible. Further, this approach will also introduce dis-
cretisation errors due to the finite size of the graph.

Instead we solve the geodesic differential equation (6)
numerically. This scales more gracefully as it only in-
volves a discretisation of the geodesic curve which is al-
ways one-dimensional independently of the dimension of
the latent space. The 2nd order ODE in (6) can be rewrit-
ten in a standard way as a system of 1st order ODEs,
which we can solve using a four-stage implicit Runge-
Kutta method[Kierzenka and Shampine, 2001]2. This gives
a smooth solution which is fifth order accurate. Alterna-
tively, such equations can be solved by repeated Gaussian
process regression [Hennig and Hauberg, 2014].

To evaluate Eq. 6 we need the derivative of the expected
metric:

∂ vecE[G(x)]

∂x
=
∂ vec(E[J>]E[J] + p · cov(J,J))

∂x
.

(24)
For the GP-LVM this reduces to computing the derivatives
of the covariance function k. Given two vectors x1,x2 ∈
Rq , a widely used covariance function is the squared expo-
nential (or RBF) kernel

k(x1,x2) = α exp
(
−ω
2
‖ x1 − x2 ‖22

)
. (25)

2We use an off-the-shelf numerical solver (bvp5c in
Matlabr); runnig times and computational cost are provided in
the reference.
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We choose here the RBF as an illustrative example, but our
approach apply to any other kernel that leads to a differen-
tial mapping. This function is differentiable in x and will
be used here (and in Section 5) to provide a specific algo-
rithm. We explicitly compute Eq. 18 and 19 for the squared
exponential kernel to have an explicit form of Eq. 20:

(∂Kx1,x2
)1,j = −ω(x(j)1 − x

(j)
2 ) k(x1,x2) (26)

(
∂2Kx1,x2

)
i,l

= (27)

=

{
ω(x

(i)
1 − x

(i)
2 )(x

(l)
1 − x

(l)
2 ) k(x1,x2), i 6= l

ω(ω(x
(i)
1 − x

(i)
2 )2 − 1) k(x1,x2), i = l

Due to symmetry, the upper triangular of the Hessian ma-
trix is sufficient to the computation. Note that, for our
choice of kernel, the Hessian is diagonal and constant for
x1 = x2, which is the case of ∂2K∗,∗, so there is no need
to compute its derivative (which appears in the expression
of ∂ vecG).

5 EXPERIMENTS AND RESULTS

Section 1 shows a first motivating example: a single im-
age of a hand-written digit is rotated from 0 to 360 degrees
to produce 200 rotated images. We then estimate3 a GP-
LVM model with a q = 2 dimensional latent space; the
latent space is shown in Fig. 1. We interpolate two points
using either a straight line or a geodesic, and reconstruct
images along these paths. The results in Fig. 4 show the
poor reconstruction of the straight-line interpolator. The
core problem with this interpolator is that it goes through
regions with little data support, meaning the resulting re-
construction will be similar to the average of the entire data
set.

In the next two sections we consider experiments on real
data, but our results are similar to the synthetic digit exper-
iment. First, we consider images of rotating objects (Sec-
tion 5.1), and then motion capture data (Section 5.2).

5.1 IMAGES OF ROTATING OBJECTS

We consider images from the COIL data set [Nene et al.,
1996], which consist of images from a fixed camera depict-
ing 100 different objects on a motorised turntable against a
black background. Each image is acquired after a 5 degree
rotation of the turntable, giving a total of 72 images per ob-
ject. Here we consider the images of object 74 (a rubber
duck), but similar results are attained for other objects.

We estimate a q = 2 dimensional latent space using
GP-LVM, and interpolate two latent points using either a
straight line or a geodesic. Reconstructed images along the

3Software from the Machine Learning group, Uni-
versity of Sheffield http://staffwww.dcs.shef.ac.uk/people
/N.Lawrence/software.html

Figure 4: Rotated digit. Inference after sampling over the
latent space following the Geodesic distance (top row) and
the Euclidean distance (bottom row); see also Fig. 1. Im-
ages are inverted and bicubically upscaled for improved
viewing.

Figure 5: COIL image reconstruction. Inference after sam-
pling over the latent space following the geodesic (top row)
and the Euclidean straight line (bottom row).

interpolated paths are shown in Fig. 5. It is clear that the
geodesic gives a better interpolation as it avoids regions
with high uncertainty.

To measure the quality of the different interpolators we re-
construct 50 images equidistantly along each interpolating
path and measure the distance to the nearest neighbour in
the training data. This is shown in Fig. 6, which, for ref-
erence, also shows the average reconstruction error of the
latent representations of the training data,

Avg. training error =
1

N

N∑

n=1

‖E [f(xn)]− yn‖. (28)

It is clear that the straight line interpolator performs poorly
away from the end-points, while the geodesic provides er-
rors which are comparable to the average error of the latent
representation of the training data.

5.2 HUMAN MOTION CAPTURE

We next consider human motion capture data from the
CMU Motion Capture Database4. Specifically, we study
motion 16 from subject 22, which is a repetitive jumping
jack motion. Each time instance of this data consist of a
human pose as acquiried by a marker-based motion cap-
ture system; see Fig. 9 for example data. We represent each

4http://mocap.cs.cmu.edu/
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Figure 6: COIL reconstruction error. Inference after sam-
pling over the latent space following the geodesic (green)
and the Euclidean straight line (brown). For reference,
the average reconstruction error of the latent observations
is shown as well (dashed). This figure is best viewed in
colour.

pose by the three-dimensional joint positions, i.e. as a vec-
tor yn,: ∈ R3P , where P denotes number of joint positions.

We estimate a GP-LVM using dynamics [Damianou et al.,
2011] as is common for this type of data [Wang et al.,
2008]. The resulting latent space is shown in Fig. 7, and
the metric tensor is shown in Fig. 3. As can be seen, the
latent points xn,: follow a periodic pattern as expected for
this motion, and the metric tensor is generally smaller in
regions of high data density.

We pick two latent extremal points of the motion (x1 and
xT ) and interpolate them using the Euclidean straight line
and the expected Riemannian geodesic. Fig. 7 show the
interpolants: again, the geodesic follow the trend of the
data while the straight line goes through regions with high
model uncertainty. Reconstructed poses along the inter-
polants are shown in Fig. 10 and 11. A comparison with the
intermediate poses (x2 . . .xT−1) in the training sequence
(see Fig. 9) show that the geodesic interpolant is a more
truthful reconstruction compared to that of the straight line.

To measure the quality of the reconstruction we note that
the length of the subject’s limbs should stay constant
throughout the sequence. Our representation does, how-
ever, not enforce this constraint. Fig. 8 show the length of
the subjects forearm for the two reconstructions along with
the correct length. The straight line interpolant drastically
changes the limb lengths, while the geodesic matches the
ground truth well. Similar observations have been made
for other limbs.

6 DISCUSSION AND FUTURE WORK

When the mapping between a latent space and the obser-
vation space is not isometric (the common case for nonlin-
ear mappings), a Euclidean distance measure in the latent
space does not match that of the original observation space.
In fact, the distance measures in the latent and observation
spaces can be arbitrarily different. This makes it difficult to

 

 

DataPoints
Geodesic
Euclidean Distance

Figure 7: GP-LVM latent space for the motion capture
data. White dots denote latent points xn and the back-
ground colour is proportional to the magnification factor
(23). The blue curve denotes the geodesic interpolant,
while the dashed red curve is the straight-line interpolant.
This figure is best viewed in colour.

perform any meaningful statistical operation directly in the
latent space as the used metric is difficult to interpret.

We solve this issue by carrying the metric from the ob-
servation space into the latent space in the form of a ran-
dom Riemannian metric. This gives a distribution over a
smoothly changing local metric at each point in the latent
space. We then provide an expression for the expected lo-
cal metric and show how shortest paths (geodesics) can be
computed numerically under the resulting metric. These
geodesics provide natural generalisations of straight-lines
and are, thus, suitable for interpolation under the new met-
ric.

For the GP-LVM model the expected metric depends on
the uncertainty of the model, such that distances become
longer in regions of high uncertainty. This effectively
forces geodesic curves to avoid uncertain regions in the
latent space, which is the desired behaviour for most ap-
plications. It is worth noting that a similar analysis for the
GTM does not provide a metric with this capacity as the
uncertainty is constant in this model.

The idea of considering the expected metric is practical as
it turns the latent space into a Riemannian manifold. This
opens up to many applications as statistical operations are
reasonably well-understood in these spaces. E.g. tracking
can be performed in the latent space through a Riemannian
Kalman filter [Hauberg et al., 2013], classification can be
done using the geodesic distance, etc.

It is, however, potentially misleading to only consider the
expectation of the metric rather than the entire distributions
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Figure 8: Length, in centimetres, of the subjects forearm
during latent space interpolation. The blue curve is accord-
ing to the geodesic interpolant, and the red dashed curve is
according to the straight-line interpolant. For reference, the
black dots show the true length.

of metrics. Although, if the latent dimension is much lower
than the data dimension, it can be shown that the distribu-
tion of the metric concentrates around its mean. But in gen-
eral random Riemannian manifolds are mathematically less
well-understood, e.g. it is known that geodesics are almost
surely not length minimising curves under a random metric
[LaGatta and Wehr, 2014]. We are suggesting that mani-
folds derived from data are necessarily uncertain, and there
is much to gain from further consideration of these spaces,
which then naturally lead to distributions over geodesics,
distances, angles, curvature and so forth.

In this paper we have only considered how geometry can
be used to understand an already estimated LVM, but it is
also worth considering if this geometry can be used when
estimating the LVM. E.g. it is worth investigating if a prior
on the curvature of the latent manifold is an effective way
to influence learning.
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Figure 9: Example poses from the motion capture data.
These poses are temporarly between the end-points of the
interpolating curves, i.e. they are comparable to the inter-
polated reconstructions.

Figure 10: Interpolated poses according to the straight-line
interpolant. In particular, note the bending of the knees,
which does not occur in the training data.

Figure 11: Interpolated poses according to the geodesic.
These are visually similar to the poses in Fig. 9.
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Abstract

We study the problem of an advertising agent
who needs to intelligently distribute her bud-
get across a sequence of online keyword bid-
ding auctions. We assume the closing price
of each auction is governed by the same un-
known distribution, and study the problem
of making provably optimal bidding deci-
sions. Learning the distribution is done un-
der censored observations, i.e. the closing
price of an auction is revealed only if the bid
we place is above it. We consider three al-
gorithms, namely ε−First, Greedy Product-
Limit (GPL) and LuekerLearn, respectively,
and we show that these algorithms provably
achieve Hannan-consistency. In particular,
we show that the regret bound of ε−First is
at most O(T

2
3 ) with high probability. For

the other two algorithms, we first prove that,
by using a censored data distribution esti-
mator proposed by Zeng [19], the empirical
distribution of the closing market price con-
verges in probability to its true distribution
with a O( 1√

t
) rate, where t is the number of

updates. Based on this result, we prove that
both GPL and LuekerLearn achieve O(

√
T )

regret bound with high probability. This in
fact provides an affirmative answer to the re-
search question raised in [1]. We also evalu-
ate the abovementioned algorithms using real
bidding data, and show that although GPL
achieves the best performance on average (up
to 90% of the optimal solution), its long run-
ning time may limit its suitability in practice.
By contrast, LuekerLearn and ε−First pro-
posed in this paper achieve up to 85% of the
optimal, but with an exponential reduction
in computational complexity (a saving up to
95%, compared to GPL).

1 INTRODUCTION

Sponsored search is the most significant example of
monetisation of Internet activities. This multi-billion
dollar industry poses many challenging research prob-
lems for both advertisers and search engines. One of
the most well-studied, but nonetheless still open, prob-
lems is the optimisation of marketing campaigns for
an advertiser, or an autonomous agent acting on her
behalf1, with a fixed budget. This fundamental prob-
lem has been studied in a number of stylised models,
yet many of the questions arising in real sponsored
search auctions remain unanswered. In this paper, we
focus on one such question—bidding when prices are
not known but must be learnt to choose the right bid-
ding strategy.

In this work, we follow a stochastic market price model
that was used in [1, 7]. In particular, we take the
point of view of an advertising agent with a specified
budget for a given time horizon, who wants to find a
bidding strategy that maximises the number of clicks.
We consider a model with a single keyword and a sin-
gle slot. Each time a user searches for the keyword,
an auction is run to decide which of the interested
agents is assigned the ad slot on the search results
page. The winner is the agent with the highest bid
who pays the market price which is determined by the
second highest bid: i.e., the slot is sold in the style of a
second-price auction. In practice, other factors affect-
ing allocation of the slot include randomisation used
by the search engine and advertiser/keyword-specific
“quality scores” that adjust advertisers’ bids. Given
these factors and the lack of information about bids
and strategies of the other advertisers, an advertising
agent cannot easily take into account her own effect
on the market price, and so instead views the price as
a random variable.

The key challenge of this stochastic model is that the
distribution of the market price is not known in ad-

1We will interchangeably use the terms agent and ad-
vertiser within this paper.
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vance. Thus, to select the right bidding strategy, the
agent needs to learn that distribution. This learning
problem is further complicated by “censored observa-
tions” [1, 7]: the agent observes the market price only
when she wins the auction; otherwise she just learns
that the market price is above her bid. Although exist-
ing methods, designed for budget-limited online opti-
misation, can provably achieve asymptotically optimal
performance for the case with no censorship [2, 18],
they fail within the settings studied here. In particu-
lar, due to the censored observations, these methods
cannot reproduce efficient estimation of the distribu-
tion of the market price, as they use conventional em-
pirical estimation techniques [9, 16].

To combat this, Amin et al. (2012) proposed Greedy
Product-Limit (GPL) and LuekerLearn, two meth-
ods that use the Kaplan–Meier estimator [9], designed
for estimating the distribution of censored data, and
achieve good performance in experiments with real
bidding data. However, no theoretical performance
analysis has been provided. Against this background,
this paper addresses this gap by providing theoretical
justification for these algorithms and a novel one that
we develop for this setting. Our results prove asymp-
totic optimality of the algorithms, guaranteeing good
performance as the number of auctions increases. We
first look at ε−First, an algorithm inspired by a class
of methods designed for multi-armed bandits [5, 18],
tailored to our settings. In particular, this algorithm
uses the first ε fraction of the auctions to estimate the
market price distribution. Based on this estimate, it
then solves a Markov decision process (MDP) in order
to determine the optimal bidding policy. We prove
that this algorithm achieves Hannan–consistency (i.e.,
sub–linear regret bound). Put differently, we show
that the regret (i.e., the difference between the perfor-
mance of a particular algorithm and that of an optimal
solution) of the algorithm is at most O(T

2
3 ) with high

probability, where T is the number of auctions. Note
that the Hannan–consistency property (i.e., the sub-

linear O(T
2
3 ) regret bound) guarantees that the aver-

age regret (i.e., the total regret divided by the num-
ber of auctions) converges to 0 as the number of auc-
tions is increased, and thus, the bidding behaviour of
a Hannan–consistent algorithm becomes more similar
to that of the optimal solution (due to the decreasing
performance gap defined by the average regret).

In addition to ε−First, we also provide an affirma-
tive answer to the conjectures posed in [1]. That is,
we show that, by replacing the Kaplan–Meier estima-
tor with a novel censored data distribution estimator
proposed by Zeng [19], GPL and LuekerLearn, the al-
gorithms studied by Amin et al., do indeed achieve
sub–linear regret bounds, and thus, are also Hannan–
consistent. In particular, we show that, by using
Zeng’s estimator, the empirical distribution of the clos-

ing market price converges in probability to its true
distribution with a O( 1√

t
) rate, where t is the number

of updates. Relying on this result, we prove that GPL
achieves O(

√
T ) regret bound with high probability.

On the other hand, LuekerLearn achievesO(
√
T+lnT )

regret bound, also with high probability. Given this,
our work extends the state of the art as follows:

• We provide a theoretical regret analysis for
ε−First, GPL and LuekerLearn, and we show that
they achieve Hannan–consistency.

• We compare the performance of each algorithm
through extensive empirical evaluations, using
real bidding data from Microsoft adCenter. In
particular, we demonstrate that, although GPL
typically outperforms the other algorithms, it
requires significantly higher computational com-
plexity, which could limit its suitability in prac-
tice. On the other hand, both ε−First and
LuekerLearn can achieve performance close to
that of GPL (typically within 10%), but with a
much lower computational cost (with up to 50
times speed-up in computation time).

The remainder of the paper is organised as follows. In
the next section we review related work. The model we
study is presented in Section 3. We review existing and
new algorithms for learning and bidding in Section 4.
Our main contribution — theoretical guarantees — are
derived in Section 5. Numerical evaluation using real-
world data sets is presented in Section 6, and Section 7
concludes.

2 RELATED WORK

Bid optimisation in sponsored search auctions is a
topic of considerable research in the autonomous
agents community [4, 8, 10, 12, 14]. One of the first
papers on the topic offers heuristic algorithms for pre-
diction and bidding that were shown to work in prac-
tice [10]. Moreover, Feldman et al. [6] prove that
simple randomised strategies for optimising a budget
across multiple keywords achieve good performance.
In that work, cost per click and number of clicks for
each bid are known to the bidder. Berg et al. [3] com-
pare bidding algorithms such as equating return-on-
investment (ROI) and knapsack-based solutions based
on the predictions they require (e.g., number of clicks
and cost per click) and evaluate them in a simulated
bidding environment of the Trading Agent Competi-
tion in Ad Auctions [8]. Unlike all the above papers,
our focus is on bidding with online learning—in or-
der to make bidding decisions, we need to learn the
distribution of the market price.

The two papers closest to our work that combine learn-
ing and bidding in ad auctions are [1] and [20]. In par-
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ticular, our work can be seen as a continuation of the
research started by Amin et al. [1] who compared var-
ious algorithms for prediction and bidding. We adopt
the same model, but focus on theoretical guarantees
of the algorithms considered in [1] as well as that of
our proposed ε−First algorithm. Zhou and Narodit-
skiy [20] address the keyword bidding problem when
multiple slots are available, but do not provide theo-
retical guarantees for their proposed algorithm.

Furthermore, two very recent related works are [18]
and [2]. Both works propose general frameworks for
studying multi-armed bandit problems with supply (or
budget) constraints. Although bidding in repeated
auctions is a problem that can be modeled in these
frameworks, they do not address the one-sided cen-
sored observations issue, which is the main challenge
addressed here. It is worth noting that we can still ap-
ply these models to our settings by combining them
with the censored data solutions described in Sec-
tion 4. However, since they are designed for more
generic problems, they do not exploit the domain–
specific features of our problem, and thus, they provide
weaker performance guarantees. Nevertheless, they
may form a strong basis for our future work.

Finally, it is worth to note that our problem can also
be formalised as a Markov decision process (MDP) (see
Section 3 for more details), and thus, it shows similar-
ities to the domain of reinforcement learning [15, 17].
However, as existing RL methods do not take into ac-
count censored data, it is not trivial how to incorpo-
rate them into our settings. Given this, we ignore the
large literature of RL, as we argue that they are out
of scope of our paper. Nevertheless, a possible future
work would be to find an efficient way to combine RL
techniques with censored data estimation.

3 MODEL DESCRIPTION

Our model consists of a sequence of T single slot
second–price auctions, where the bidder (or agent) has
to repeatedly place her bid in order to win a single key-
word at each time step t ∈ {1, . . . , T}. We refer to T
auctions as a bidding period and use B to denote the
budget for the period. That is, the total cost spent
on the auctions cannot exceed this budget. At each
time step t, we assume that the market price xt of the
keyword is an independent and identically distributed
(i.i.d.) random variable drawn from an unknown, but
fixed, distribution with probability distribution func-
tion p. We assume that p has a finite support [0, C]
for some sufficiently large C > 0. This assumption is
reasonable, as the market price is typically less than a
couple of dollars. In our model, if a particular bid of
the agent at time step t is higher than xt, the agent
wins the auction, and the budget is decreased by xt.
Otherwise, the agent does not win, and the budget

remains the same. More formally, let bt and Bt de-
note the agent’s bid, and the residual budget (i.e., the
remaining budget) at time step t, respectively. Note
that B1 = B. Given this, we have

Bt+1 = Bt − xt
if bt ≥ xt, and

Bt+1 = Bt

otherwise. Note that the agent cannot place a bid
that is higher than the current residual budget. That
is, bt ≤ Bt for each time step t. We assume that
both bt and xt are discrete values chosen/drawn from
Z+. This assumption is reasonable, as the bids and
market prices can be regarded as multiplications of
the smallest unit of currency allowed for bidding.

Now, our goal is to find a bidding policy that max-
imises the number of wins over the time interval
{1, . . . , T}. It is worth to note that if B ≥ CT , we
can achieve the optimal solution by repeatedly bid-
ding with C. In particular, since bidding C always
guarantees winning, if our budget is larger than CT ,
we can always win at each time step. Given this, we
now only focus on the nontrivial case, and thus, we
from hereafter assume that

B < CT (1)

Given this condition, our problem can be formalised as
follows. Let A denote a bidding policy that places bid
bA (Bt, t) at each time step t , where Bt is the residual
budget at that time step. In addition, let GA(B, T )
denote the expected total number of wins of policy A
with respect to total budget B and time limit T :

GA(B, T ) = E

[
T∑

t=1

I{bA(Bt, t) ≥ xt}
]
, (2)

where I{·} is the indicator function. Note that
bA(Bt, t) ≤ Bt and

Bt+1 =

{
Bt − xt, if bA(Bt, t) ≥ xt
Bt, otherwise.

We aim to find an optimal policy

A∗ = arg max
A

GA(B, T )

that maximises the expected total number of wins. For
the sake of simplicity, we denote the expected perfor-
mance of A∗ with G∗(B, T ). It is known that if we
have exact information about the distribution func-
tion p, we can calculate A∗ using a Markov decision
process (MDP) formulation [1, 15] . In particular, let
F (b) = P (X > b) denote the survival function of the
market price2 (i.e., the probability that the market

2The problem of estimating the distribution of censored
data first appeared in the survival analysis literature [9, 13].
Hence the name of the survival function.
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price is higher than bid b). Suppose that the optimal
policy A∗ chooses bid b∗(B′, t) if the budget is B′ at
time step t. It can be shown that A∗ has to satisfy the
following set of Bellman equations [15]:

b∗(B′, t) = arg max
b(B′,t)

{
b(B′,t)∑

σ=1

p(σ)
[
1 +G∗(B′ − σ, T − t)

]

+ F (b(B′, t))G∗(B′, T − t)
}

G∗(B′, T − t+ 1) =

b∗(B′,t)∑

σ=1

p(σ)
[
1 +G∗(B′ − σ, T − t)

]

+ F (b∗(B′, t))G∗(B′, T − t)

for each t ∈ {1, . . . , T} and 0 ≤ B′ ≤ B. That is,
b∗(B′, t) denotes the optimal bid (i.e., the one that
maximises the expected number of future wins) at time
step t and budget B′, while the second equation im-
plies that the optimal number of wins at time step t
and budget B′ can be achieved by taking the optimal
bid and continuing with the optimal policy A∗ (for
more details, see e.g. [1, 15]). Note that G∗(B′, 0) = 0
for any 0 ≤ B′ ≤ B. Given this, we can recursively
solve the Bellman equations given above, and thus, de-
termine the optimal bid for each time step t in order to
calculate the optimal solution G∗(B, T ). Hereafter we
may refer to A∗ as the optimal stochastic solution, as
opposed to the deterministic approach, that addition-
ally has full information about the sequence of market
prices xt, which A∗ typically does not have (see Sec-
tion 4.3 for more details).

Since p is unknown for us, A∗ cannot be determined
in an exact manner. This implies that A∗ represents
a theoretical optimum value, which is unachievable in
general. Nevertheless, for any algorithm A, we can
define the regret for A as the difference between the
total number of wins of A and that of the theoretical
optimum A∗. More precisely, letting RA denote the
regret, we have

RA(B, T ) = G∗(B, T )−GA(B, T )

Thus, our objective is to derive algorithms for learning
p and bidding that minimise this regret.

4 ALGORITHMS

Given the problem definition, we now turn to the de-
scription of the algorithms that we study within this
paper. In particular, we investigate three algorithms:
(i) ε−First, (ii) GPL and (iii) LuekerLearn. These
algorithms are described in the next sections.

4.1 The ε−First Algorithm

Algorithm 1 The ε−First Algorithm

1: Inputs: T > 0, B > 0, 0 < ε < 1;
2: Exploration phase:
3: for t = 1→ εT do
4: randomly choose bid bt from uniform distribu-

tion over
[
1, BεT

]
;

5: observe ot = min {xt, bt};
6: end for
7: Exploitation phase:
8: use Suzukawa’s estimator to calculate p̂;
9: solve the Bellman equations given in Equation 4;

10: for t = εT → T do
11: place the bid b+(Bt, t) accordingly to the solu-

tion of the Bellman equations;
12: end for

As mentioned earlier, the key challenge of finding an
optimal solution for the budget–limited auction prob-
lem is that we do not know the distribution function
p of the market price in advance. Given this, we need
to learn (or estimate) this distribution from the ob-
served sequence of market prices x1, x2, . . . , xT . This
naturally lends itself to the idea of ε−First, which first
estimates the distribution of the market price and then
optimises the bidding policy. In particular, it uses an
ε fraction of the total number of auctions T within a
period to estimate the market price distribution func-
tion p. Following this, in the rest of (1− ε)T auctions,
we solve the budget–limited auction problem with the
estimated market price distribution function p̂ learnt
from the learning phase. Hereafter we refer to the
former phase as exploration, while to the latter as ex-
ploitation, respectively. In what follows, we describe
these phases in more detail (the pseudo code is de-
picted in Algorithm 1).

We start with the description of the exploration phase.
Within this phase, our goal is to accurately estimate
the market price distribution. To do so, we can use
the first ε proportion of the total auctions T . Now, re-
call that we can only observe xt when it is not higher
than the chosen bid bt. That is, the sequence of xt
is (right) censored by the sequence of bt. In par-
ticular, at each time step, we can only observe the
value of ot = min {xt, bt}. This, indeed, makes the
estimation of p a challenging problem. Note that [1]
used the product–limit, or Kaplan–Meier (KM), esti-
mator to address this challenge [9]. However, it is well
known that the KM estimator has a negative bias [13].
To overcome this issue, we consider a modification of
the KM estimator, an estimation technique proposed
by [16], for estimating functionals of the distribution
p. This method is proven to be unbiased, and thus,
we can use McDiarmid’s inequality to guarantee the
O
(
t−1
)

convergence rate of the p̂t estimate. This con-
vergence rate provides the basis for the performance
analysis of ε−First (see Section 5 for more details).

Suzukawa’s method can be adopted to the estimation
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of the market price distribution as follows. It relies
on the assumption that we know the distribution from
which the bids bt are drawn. Let S denote the survival
function of this bid distribution, and ot = min {xt, bt}
denote the observed value at t. Let ϕb(x) be a function
defined as

ϕb(x) = 1 if x ≤ b
ϕb(x) = 0 otherwise.

In addition, let δt = I{xt ≤ bt} denote the indicator
function whether the market price does not exceed the
bid at time step t. Given this, Suzukawa’s estimation
for the market price’s cumulative probability function
P is formalised as:

P̂t(b) =
1

t

t∑

i=1

δiϕb(oi)

S−(oi)
(3)

where S−(oi) = limx>0,x→0 S(oi − x) and P̂t(b) is the
estimate of P (b) after t observations. Using techniques
similar to those from [16], we can easily derive that

P̂t(b) is indeed an unbiased estimator of P (b).

Based on this, ε−First places the bids within the ex-
ploration phase as follows. For each t ≤ εT , ε−First
uniformly chooses a bid bt from

[
1, BεT

]
(Algorithm 1,

lines 4− 5). This guarantees that the total cost spent
within the exploration phase will not exceed the total
budget B. When the exploration ends, let p̂ and F̂
denote Suzukawa’s KM estimation of the market price
distribution function p, and the survival function, re-
spectively (line 8). Next, we will describe how ε−First
uses these estimates to tackle the budget–limited auc-
tion problem.

We now turn to the description of the exploitation
phase. Let BεT denote the residual budget after the
exploration phase ends. In order to determine the bids
at each time step, ε−First solves the following Bellman
equations:

b+(B′, t) = arg max
b(B′,t)

{
b(B′,t)∑

σ=1

p̂(σ)
[
1 +G+(B′ − σ, T − t)

]

+ F̂ (b(B′, t))G+(B′, T − t)
}

G+(B′, T − t+ 1) =

b+(B′,t)∑

σ=1

p̂(σ)
[
1 +G+(B′ − σ, T − t)

]

+ F̂ (b+(B′, t))G+(B′, T − t) (4)

for each εT ≤ t ≤ T and 0 ≤ B′ ≤ BεT , where
b+(B′, t) is the chosen bid of ε−First at time step t
and budget B′. Recall that G+(B′, 0) = 0 for any
0 ≤ B′ ≤ B. These together allow us to (recursively)

Algorithm 2 The GPL Algorithm

1: Inputs: T > 0, B > 0, p̂1 is uniform;
2: for t = 1→ T do
3: solve the Bellman equations given in Equation 5

for p̂t;
4: place a bid b+(Bt, t) according to the solution of

the Bellman equations;
5: use Zeng’s estimator to update p̂t+1;
6: end for

evaluate each value of b+(B′, t), and thus, the bidding
policy within the exploitation phase of ε−First (Algo-
rithm 1, lines 9− 12).

The intuition behind ε−First is that by properly set-
ting the value of ε, we can quickly estimate the dis-
tribution of the market price with sufficient accuracy.
Thus, the solution of the Bellman equations within
the exploitation phase is close to the optimal solution,
resulting in a good overall bidding performance (see
Section 5 for more details).

4.2 The GPL Algorithm

The GPL algorithm, introduced by [1], can be de-
scribed as follows. For each time step t, it uses an
MDP model to determine the current optimal policy,
given the current estimate p̂t of the market price dis-
tribution function p. That is, it solves a set of Bellman
equations, similar to the exploitation phase of ε−First,
but with a different p̂t at each time step. According to
this optimal policy, it then chooses the next bid, and
observes the censored value ot. Based on this obser-
vation, GPL uses a novel censored data distribution
estimator, proposed by [19], to update the estimation
of the market price distribution function, p̂t+1, for the
next time step. Note that here we replace the KM es-
timator, which is used in [1], with Zeng’s method (for
a brief description of Zeng’s method and further expla-
nations, see Section 5). The above mentioned steps are
repeated until t = T (see Algorithm 2 for the pseudo
code). More formally, suppose that the residual bud-

get at time step t is Bt. In addition, let F̂t denote the
estimate of the survival function at t. GPL solves the
following equations:

b+(B′, τ) = arg max
b(B′,τ)

{
b(B′,τ)∑

σ=1

p̂t(σ)
[
1 +G+(B′ − σ,

T − τ)
]

+ F̂t(b(B
′, t))G+(B′, T − τ)

}

G+(B′, T − τ) =

b+(B′,τ)∑

σ=1

p̂t(σ)
[
1 +G+(B′ − σ,

T − τ − 1)
]

+ F̂t(b
+(B′, τ))G+(B′, T − τ − 1)
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where t ≤ τ ≤ T −1 and 0 ≤ B′ ≤ Bt. In addition, we
have G+(B′, 0) = 0 for all 0 ≤ B′ ≤ Bt. For the sake
of simplicity, we set p̂1 to be a uniform distribution
in (0, B]. Given the solutions, GPL then places bid
b+(Bt, t) at each time step t (Algorithm 2, lines 2−6).

4.3 The LuekerLearn Algorithm

Similar to GPL, this algorithm was also described in
[1], and is based on the algorithm proposed by Lueker
for the online stochastic knapsack problem [11]. In
particular, within the online stochastic knapsack prob-
lem, an item with profit rt and weight xt arrives into
the system at each time step t such that the pair
{rt, xt} is drawn from a fixed and known joint distribu-
tion. At each time step, we have to decide whether to
put the arrived item into a knapsack with the total ca-
pacity B such that the total weight of the chosen items
cannot exceed this capacity. Our goal is to maximise
the total profit of the chosen items. It is easy to see
that within our settings, if the market price distribu-
tion p is known in advance, the budget–limited auction
problem can be reduced to the online stochastic knap-
sack problem by setting rt = 1 for each t. Given this,
Lueker’s algorithm, originally designed for the online
stochastic knapsack problem, can be adopted to the
budget–limited auction with full knowledge of p as fol-
lows (for more details, see [11]). At each time step
1 ≤ t ≤ T , Lueker’s algorithm chooses a bid b+(Bt, t)
that satisfies

b+(Bt, t) = max {b} s.t.

b∑

σ=0

p(σ)σ ≤ Bt
T − t+ 1

(5)

where Bt is the current residual budget. The efficiency
of this algorithm is guaranteed by the following:

Proposition 1 (Theorem 2 from [11]) Suppose
that we have full information about the market price
distribution p. Consider the optimal deterministic so-
lution, that has the full information about the sequence
of market prices {xt} as well (i.e., it knows the value
of each xt in advance). Given this, the difference
between the performance of Lueker’s algorithm and
that of the optimal deterministic solution is at most
O (lnT ).

The proof can be found in [11]. However, since nei-
ther the sequence of {xt} nor p is known in advance,
we combine Lueker’s algorithm with Zeng’s estimator
(instead of the KM estimator) in order to learn the
market price distribution and determine an efficient
bid at the same time. This leads to the LuekerLearn
algorithm (see Algorithm 3), that places a bid b+(Bt, t)
as follows:

Algorithm 3 The LuekerLearn Algorithm

1: Inputs: T > 0, B > 0, p̂1 is uniform;
2: for t = 1→ T do
3: place a bid b+(Bt, t) according to Equation 6;
4: use Zeng’s estimator to update p̂t+1;
5: end for

b+(Bt, t) = max {b} s.t.

b∑

σ

p̂t(σ)σ ≤ Bt
T − t+ 1

(6)

where p̂t is the estimate of p at time step 1 ≤ t ≤ T ,
and b+(BT , T ) = BT . Based on the censored ob-
servation ot, it then updates the estimation of p (i.e.,
p̂t+1), using the Zeng’s estimator (Algorithm 3, lines
2 − 5). The intuition of the algorithm is that as the
estimate p̂t gets more accurate over time, the algo-
rithm converges to the original algorithm provided by
Lueker. Since Proposition 1 guarantees the efficiency
of the latter, LuekerLearn can also achieve low regret
bounds, as we will prove later in this work.

5 PERFORMANCE ANALYSIS

Within this section, we analyse the performance of the
aforementioned algorithms. In particular, we derive
performance regret bounds for each of the algorithms.
We also show that these regret bounds imply the fact
that the algorithms converge to the theoretical optimal
solution with high probability. We start with ε−First:

Theorem 2 Let T ≥ 8(− ln β
2 ) for some 0 < β < 1.

For any 0 < ε < 1 and B > εCT , and T > C where
C is the support of the market price, the regret of the
modified version of ε−First where Suzukawa’s method
is used for the estimation of the market price distribu-

tion, is at most CεT +

√
8(− ln β

2 )T

ε with probability of

at least (1−β). In addition, by setting ε =
(
−2 ln β

2

C2T

) 1
3

,

the regret bound can be refined to 3
(
−2 ln β

2

) 1
3

C
1
3T

2
3 .

Note that the condition B > εCT guarantees that
within the exploration phase, the bids are uniformly
sampled from the entire interval [1, C], since the algo-
rithm samples from the [1, BεT ]. This condition guar-
antees that Suzukawa’s estimator can fully cover the
interval [1, C]. In addition, theO(C

1
3T

2
3 ) regret bound

is weak if the C < T condition does not hold. In par-
ticular, by fixing T and increasing C, we will get a
regret bound that is worse than O(T ). Nevertheless,
this regret bound achieves Hannan consistency (i.e.,
sub–linear in T ) if C < T .

It is also worth to note that since we only consider
the case B ∼ O(T ), O(T

2
3 ) regret bound is equiva-
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lent to O(B
2
3 ), as T

2
3 > B

2
3

C
2
3

. Given the results for

ε−First, we now turn to the analysis of GPL and
LuekerLearn. If we consider the sequence of the bids
as random variables, then the consistency and the zero
bias property of KM estimators such as Suzukawa’s re-
quire independency between the bids and the market
price3. However, since in both GPL and LuekerLearn
we choose the current bid based on the empirical dis-
tribution which is built by using the previous obser-
vations, it is easy to see that the current bid is not
independent from the sequence of the previous market
prices. Thus, the consistency (and the convergence
rate) of the empirical distribution might not be guar-
anteed if the standard KM or Suzukawa’s estimator
is used within GPL and LuekerLearn (for more de-
tails, see, e.g., [13, 16]). This implies that neither GPL
or LuekerLearn can achieve Hannan–consistency if we
use their versions proposed in [1] without any modi-
fications. To overcome this issue, we replace the KM
estimator within GPL and LuekerLearn with a novel
censored data estimator proposed by Zeng [19]. Due to
its complexity and the space limitations, the detailed
description of Zeng’s estimator is omitted (for more
details, see [19]). However, we sketch it as follows.

Zeng’s method assumes that there is an underlying set
of (known) variables L that describes the dependency
between the two sequences of chosen bids and mar-
ket prices. Furthermore, suppose that L is sufficient
enough such that for each t, xt (i.e., the market price)
is independent from bt (i.e., the chosen bid value), con-
ditional to the value of L at time step t, denoted with
Lt. In addition, this method requires that either xt or
bt follows Cox’s proportional model; that is, at least
one of the following conditions must hold:

p(xt|Lt = l) ∼ λx exp {β′l} (7)

p(bt|Lt = l) ∼ λb exp {γ′l} (8)

for some unknown λx, λb random variables, and some
(unknown) parameters β and γ, respectively. Let P̂t
denote Zeng’s estimate of the market price P after t
time steps. Zeng proved that

√
t(P̂t−P ) is a Donsker–

class empirical process. Based on this result, we state
the following:

Theorem 3 The abovementioned assumptions hold
for both GPL and LuekerLearn. Given this, by us-
ing Zeng’s estimation method, the estimate P̂t of the
market price distribution converges in probability to the
true distribution P with rate O( 1√

t
) in both GPL and

LuekerLearn.

This theorem implies the following statements:

3In fact, it is sufficient to guarantee that the covariance
between the bids and the market price is 0.

Theorem 4 There exists a constant K > 0 that only
depends on the market price distribution p, such that
the regret of GPL, combined with Zeng’s estimator, is
at most O(2K

√
T ) with high probability.

Similarly, we have the following theorem for
LuekerLearn:

Theorem 5 There exists a constant K > 0 that only
depends on the market price distribution p, such that
the regret of LuekerLearn, combined with Zeng’s esti-
mator, is at most O(2K(

√
T + lnT )) with high proba-

bility.

Similarly to the case of ε−First, here we can also trans-
form the regret bounds of GPL and LuekerLearn to
O(2K

√
B) and O(2K(

√
B + lnB)), respectively.

Note that Theorems 4 and 5 imply that GPL converges
faster to the optimal solution than LuekerLearn, as T
tends to infinity. This is due to the additional lnT
term within the regret bound of LuekerLearn. The rea-
son behind this is that LuekerLearn in fact converges
with rate O(lnT ) towards GPL. Hence an additional,
O(lnT ), gap is needed here. Also note that by using
Zeng’s method in ε−First , we would get worse results,
compared to Theorem 2, as with the approach from
Suzukawa, we could derive exact constant coefficient
values for the regret bound, while Zeng’s method only
provides asymptotic regret bounds. In addition, since
in both Theorems 4 and 5, the value of K is typically
hard to be identified, the results of these theorems
are in fact focussing on the asymptotic behaviour of
the algorithms (i.e., both algorithms are Hannan con-
sistant), and do not address whether the bounds are
tight.

6 NUMERICAL EVALUATION

While we have so far developed theoretical upper
bounds for the performance regret of the algorithms,
we now turn to practical aspects and examine their
performance in a realistic setting,as it might be the
case that regret bound for ε−First is not tight, and
thus, it might perform better than O(T

2
3 ) in many

cases, as we will demonstrate later within this sec-
tion. Given this, in this section, we aim to investi-
gate whether the algorithms achieve high performance
when applied to practical sponsored search auction
problems. To do so, we first describe our parame-
ter settings in Section 6.1. We then continue with
the numerical results of the algorithms’ performance
in Section 6.2.

6.1 Parameter Settings

To investigate the performance of the algorithms, we
use the same dataset as [1], taken from a real-world
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Figure 1: Numerical results on a subset of keywords with single distribution peaks, and with budgets ranging from
10% to 100% of the maximal budget Bk(T ): A) A typical single-peaked distribution of the market price. B) The
performance of the algorithms, measured in competitive ratio against the optimal solution. C) Computational
cost of the algorithms.

sponsored search auction database. Given this, we fol-
low the parameter settings described there. In partic-
ular, for each experiment, we use U = 10 periods, each
of which comprises T = 100 auctions and the budget
is refilled at the beginning of each period. For a fair
comparison to the results of Amin et al., the maxi-
mal budget Bk(T ) for keyword k is also selected in the
same way they do. In particular, we set Bk(T ) such
that G∗(Bk(T ), T ) = fT for f = 0.1 (i.e., 10%) and
T = 100. This setting aims to satisfy that, on average,
we can win 10% of the auctions. Within each exper-

iment, we vary the budget from Bk(T )
10 up to Bk(T )

with a step of Bk(T )
10 . Each experiment was repeated

100 times (for more details of the parameter settings,
see [1]). Within our experiments, we run ε−First with
ε = 0.05 and ε = 0.1, respectively, as these values are
typically more efficient than other value settings4.

6.2 Numerical Results

Given the description of the parameter settings above,
we now investigate the numerical results in more de-
tail. In particular, we observed that the real distri-
bution of the market price can typically be distin-
guished into two groups. In the first group, the mar-
ket price usually concentrates at low values, creating
a single-peaked distribution (see Figure 1A). Within
the second group, the market price is typically more
scattered, causing multiple peaks within the distribu-
tion (see Figure 2A). The performance efficiency of
the algorithms also vary between these distribution
groups. Therefore, we distinguish these two cases, and
separately examine the performance of the algorithms

4Note that all the numerical tests appearing in
this paper are performed on a personal computer,
Intelr Xeonr CPU W3520 @2.67GHz with 12GB RAM
and under Windows 7 operating system. The code was
written and tested on Matlab R2012a.

within these cases. In particular, Figure 1 depicts the
numerical results for the single-peaked case, and Fig-
ure 2 depicts the results for the multi-peaked case,
respectively (here, the second group typically contains
two peaks, as is also shown in Figure 2).

We first evaluate the single-peaked case (Figure 1). As
mentioned earlier, Figure 1A shows the distribution of
the market price. In addition, Figure 1B plots the per-
formance of the algorithm, compared against that of
the optimal stochastic solution described in Section 3.
Here, the optimal stochastic solution also uses an MDP
model to determine the optimal bidding policy, but
assuming full knowledge of the distribution of market
prices. Figure 1C depicts the running time of each al-
gorithm. As can be seen from the figures, GPL and
LuekerLearn provide similar performance, and both
outperform the two versions of ε−First, 0.05–First and
0.1–First, by up to 10%. The reason for this is that
since the market price is typically concentrated at low
values, all the algorithms can quickly learn this. This
allows GPL and LuekerLearn to use small bids to refine
the estimation of the market price distribution at small
values, and thus, to bid more efficiently. In contrast,
as ε−First stops learning after the exploration phase,
its estimation at the small values is not as accurate as
the others’. Given this, ε−First bids suboptimally in
more time steps, compared to the other two. Never-
theless, note that ε−First can still achieve by up to
88% of the optimal solution.

On the other hand, the running time of GPL is sig-
nificantly larger, compared to that of the others (Fig-
ure 1C). In particular, GPL typically needs more than
500 seconds to evaluate the case of maximal bud-
get Bk(T ), while ε−First algorithms only need less
than 10 seconds. The reason for this is that GPL re-
computes the MDP for the optimal decision at each
step, after updating its price distribution. This is
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computationally expensive, especially for large bud-
gets. By contrast, the ε−First algorithms only com-
pute the MDP once, at the end of the exploration
phase. Thus, despite its best competitive ratio per-
formance, the running time of GPL would limit its
suitability for real-time deployment. LuekerLearn also
needs approximately 15 seconds to solve this prob-
lem instance. Given this, for single-peaked distribu-
tions, LuekerLearn yields the best trade-off between
efficiency and computational cost, as it achieves simi-
lar performance to that of the GPL (33 times faster),
and is almost as fast as the ε−First algorithms.

Within the case of distributions with multiple peaks
(in this case, we consider the two-peaked version),
we can see that GPL still provides the best per-
formance (see Figure 2B). However, in this setting,
ε−First outperforms LuekerLearn by approximately
5%. The reason behind this is that due to multi-
ple peaks, LuekerLearn starts to deviate between the
peaks, as it makes more observations (see [1] for more
details). This implies that LuekerLearn makes more
suboptimal bids, as placing bids at the first peak is
typically more desirable, as opposed to the bids close
to the second peak. On the other hand, due to its
restricted learning phase, ε−First typically learns the
values around the first peak, and thus, can act more
efficiently, compared to LuekerLearn. Nevertheless,
both ε−First and LuekerLearn still achieve good per-
formance, as both typically provide at least 80% of the
optimal solution’s.

In terms of computational cost, GPL still requires
the highest running time (more than 600 seconds for
the case of maximal budget Bk(T )). By contrast,
both ε−First and LuekerLearn require at most 10 sec-
onds. Note that ε−First is typically two times faster
than LuekerLearn. Therefore, in the two-peaked case,
ε−First is clearly the best choice for the budget-limited

auction problem, as it provides good performance
(above 85% of the optimal solution), and achieves by
far the lowest computational cost.

7 CONCLUSIONS

We studied the online bid optimisation problem in
budget-limited sponsored search auctions, where the
market price is drawn from a fixed, but unknown dis-
tribution, and is censored by the value of our current
bid. Although existing algorithms have been shown
to achieve good performance in practice, no theoret-
ical performance analysis has been provided for this
problem. Given this, we proposed ε−First, and we
show that it provably achieves O(T

2
3 ) regret bound

with high probability, where T is the number of total
auctions. We also provided an affirmative answer to
the research question raised in [1], which conjectures
that GPL, a state-of-the-art algorithm for the budget-
limited sponsored search auction problem, can achieve
asymptotically optimal performance. In particular, we
proved that GPL achieves O(

√
T ) regret bound with

high probability. We also showed in the paper that the
regret bound of LuekerLearn, another state-of-the-art
algorithm, is O(

√
T + lnT ), also with high probabil-

ity. In addition, we compared the performance of the
algorithms on real-world data, and observed that, al-
though GPL provides the highest performance, it is
by far the most computationally expensive algorithm,
and its running time would make it infeasible for real
time deployment. On the other hand, LuekerLearn
would be the best choice in the case of single-peaked
distributions, as it provides the best trade-off between
efficiency and computational cost. For the two-peaked
distribution case, we showed that ε−First outperforms
LuekerLearn with a reduced running time.

817



References

[1] Amin, K., Kearns, M., Key, P., and Schwaighofer,
A. (2012). Budget optimization for sponsored
search: Censored learning in MDPs. In Proceedings
of the Twenty-Eighth Conference on Uncertainty in
Artificial Intelligence, UAI’12, pages 54–63.

[2] Badanidiyuru, A., Kleinberg, R., and Slivkins, A.
(2013). Bandits with knapsacks. In IEEE 54th An-
nual Symposium on Foundations of Computer Sci-
ence, pages 207–216.

[3] Berg, J., Greenwald, A., Naroditskiy, V., and
Sodomka, E. (2010). A first approach to au-
tonomous bidding in ad auctions. In Workshop
on Trading Agent Design and Analysis at the 11th
ACM Conference on Electronics Commerce.

[4] Engel, Y. and Chickering, D. M. (2008). Incor-
porating user utility into sponsored-search auctions.
Proceedings of the Seventh International Conference
on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 1565–1569.

[5] Even-Dar, E., Mannor, S., and Mansour, Y.
(2002). PAC bounds for multi-armed bandit and
Markov decision processes. In COLT .

[6] Feldman, J., Muthukrishnan, S., Pal, M., and
Stein, C. (2007). Budget optimization in search-
based advertising auctions. In Proceedings of the
8th ACM conference on Electronic commerce, EC
’07, pages 40–49. ACM.

[7] Gummadi, R., Key, P., and Proutiere, A. (2012).
Optimal bidding strategies and equilibria in dy-
namic auctions with budget constraints. Available
at SSRN: http://ssrn.com/abstract=2066175 .

[8] Jordan, P. R., Wellman, M. P., and Balakrishnan,
G. (2010). Strategy and mechanism lessons from the
first ad auctions trading agent competition. In Pro-
ceedings of the 11th ACM conference on Electronic
commerce, EC ’10, pages 287–296, New York, NY,
USA. ACM.

[9] Kaplan, E. L. and Meier, P. (1958). Non-
parametric estimation from incomplete observa-
tions. Journal of the American Statistical Society ,
53, 457–481.

[10] Kitts, B. and Leblanc, B. (2004). Optimal bidding
on keyword auctions. Electronic Markets, 14(3),
186–201.

[11] Lueker, G. S. (1995). Average-case analysis of
off-line and on-line knapsack problems. In Pro-
ceedings of the sixth annual ACM-SIAM symposium
on Discrete algorithms, SODA ’95, pages 179–188,
Philadelphia, PA, USA. Society for Industrial and
Applied Mathematics.

[12] Pardoe, D. and Stone, P. (2011). A particle fil-
ter for bid estimation in ad auctions with periodic

ranking observations. Proceedings of the Tenth In-
ternational Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 687–694.

[13] Phadia, E. and Van Ryzin, J. (1980). A note on
convergence rates for the product limit estimator.
The Annals of Statistics, 8(3), 673–678.

[14] Stavrogiannis, L. C., Gerding, E. H., and
Polukarov, M. (2013). Competing intermediary
auctions. Proceedings of the Twelfth International
Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 667–674.

[15] Sutton, R. S. and Barto, A. G. (1998). Reinforce-
ment Learning: An Introduction. MIT Press.

[16] Suzukawa, A. (2004). Unbiased estimation of
functionals under random censorship. Journal of
the Japan Statistical Society , 32(2), 153–172.
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Abstract

In high-dimensional classification or regression
problems, the expected gradient outerproduct
(EGOP) of the unknown regression function f ,
namely EX

(
∇f(X) · ∇f(X)>

)
, is known to

recover those directions v ∈ Rd most relevant
to predicting the output Y .

However, just as in gradient estimation, opti-
mal estimators of the EGOP can be expensive in
practice. We show that a simple rough estima-
tor, much cheaper in practice, suffices to obtain
significant improvements on real-world nonpara-
metric classification and regression tasks. Fur-
thermore, we prove that, despite its simplicity,
this rough estimator remains statistically consis-
tent under mild conditions.

1 INTRODUCTION

In high-dimensional nonparametric classification or regres-
sion problems, the output Y might not depend equally on
all input variables in X = (Xi)di=1. To be more precise,
let Y ≈ f(X) for some unknown smooth f , it is often the
case that f varies most along a few relevant coordinates,
and varies little along most coordinates. This observation
has given rise to many practical variable selection methods.

The usual assumption in variable selection is that f(X) =

g(PX), where P ∈ {0, 1}k×d projects X down to k <
d relevant coordinates. This assumption is generalized in
multi-index regression (see e.g. [7, 9, 2, 12]) by letting P ∈
Rk×d project X down to a k-dimensional subspace of Rd.
In other words, while f might vary significantly along all
coordinates of X , it actually only depends on an unknown
k-dimensional subspace.

Recovering this relevant subspace (sometimes called effec-
tive dimension reduction [7]) gives rise to the expected gra-

∗Both authors contributed equally to this work

dient outerproduct (EGOP):

EXG(X) , EX
(
∇f(X) · ∇f(X)>

)
.

The EGOP recovers the average variation of f in all direc-
tions: the directional derivative at x along v ∈ Rd is given
by f ′v(x) = ∇f(x)>v, in other words EX |f ′v(X)|2 =
EX

(
v>G(X)v

)
= v> (EXG(X)) v.

It follows that, if f does not vary along v, v must be
in the null-space of the EGOP matrix EXG(X), since
EX |f ′v(X)|2 = 0. In fact, it is not hard to show that,
under mild conditions (f continuously differentiable on a
compact space X ), the column space of EXG(X) is ex-
actly the relevant subspace defined by P ([11]).

Interestingly, the EGOP is useful beyond the above multi-
index motivation: even if there is no clearly relevant
dimension-reduction P , as is likely in practice, one can ex-
pect that f does not vary equally in all directions. Instead
of dimension-reduction, we might rather weight any direc-
tion v ∈ Rd according to its relevance as captured by the
average variation of f along v (encoded in the EGOP). The
weighting approach will be the main use of EGOP consid-
ered in this work.

The EGOP can be estimated in various sophisticated ways,
which can however be prohibitively expensive. For in-
stance an optimal way of estimating ∇f(x), and hence
the EGOP, is to estimate the slope of a linear approx-
imation to f locally at each x = Xi in an n-sample
{(Xi, Yi)}ni=1. Local linear fits can however be pro-
hibitively expensive since it involves multiplying and in-
verting large-dimensional matrices at all Xi. This can ren-
der the approach impractical although it is otherwise well
motivated.

The main message of this work is that the EGOP need not
be estimated optimally, but just well enough to use towards
improving classification or regression, our practical end-
goal.

The cheaper estimator considered here is as follows. Let fn
denote an initial estimate of f (we use a kernel estimate);
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for the i-th coordinate of∇f(x), we use the rough estimate

∆t,ifn(x) = (fn(x+ tei)− fn(x− tei))/2t, t > 0.

Let Gn(x) be the outer-product of the resulting gradient
estimate ∇̂fn(x), the EGOP is estimated as E nGn(X), the
empirical average of Gn. The exact procedure is given in
Section 3.1.

We first show that this estimator is sound: despite being
a rough approximation, it remains a statistically consis-
tent estimate of the EGOP under very general distributional
conditions. The main consistency result and key difficul-
ties (having to do with interdependencies in the estimate)
are discussed in Section 4.

More importantly, we show through extensive experiments
that preprocessing data with this cheaper EGOP estimate
can significantly improve the performance of nonparamet-
ric classification and regression procedures in real-world
applications. This described in Section 5.

In the next Section 2, we start with an overview of relevant
work, followed by Section 3 describing the estimator and
our theoretical setup.

2 SUMMARY OF RELEVANT WORK

The recent work of [6] considers estimating the coordinates
f ′i of ∇f in a similar fashion as in the present work. How-
ever [6] is only concerned with a variable selection setting
where each coordinate i of X is to be weighted by an es-
timate of EX |f ′i(X)|, which is their quantity of interest.
This work addresses the more general approach of estimat-
ing the EGOP, its consistency and applicability.

Multiple methods have been developed for multi-index re-
gression analysis, some using the so-called inverse regres-
sion approach (e.g. [7]), and many of them incorporating
the estimation of derivate functionals of the unknown f .
These approaches can already be found in early work such
as [9], and typically estimate∇f as the slope of local linear
approximations of f .

Recent works of [11, 8] draws a clearer link between the
various approaches to multi-index regression, and in partic-
ular relate the EGOP to the covariance-type matrices esti-
mated in inverse regression. Furthermore, [8] proposes an
alternative to estimating local linear slopes: their method
estimates∇f via a regularized least-squares objective over
an RKHS. This is however still expensive since the least-
square solution involves inverting an n× n feature matrix.
In contrast our less sophisticated approach will take time
in the order of n times the time to estimate fn (fn in prac-
tice could be a fast kernel regressor employing fast range-
search methods).

The main use of the EGOP in the context of multi-index
regression (as in the above cited work) is to recover the

relevant subspace given by P in the model f(x) = g(Px).
The data can then be projected to the estimated subspace
before projection.

While we do not argue for a particular way to use the EGOP
to preprocess data, our experiments focus on the following
use: let V DV > be a spectral decomposition of the esti-
mated EGOP, transform the input x as D1/2V >x. Thus we
do not rely on the multi-index model holding, but rather on
a more general model where P might be a full-dimensional
rotation (i.e. all directions are relevant), but g varies more
in some coordinate than in others. The diagonal element
Di,i recovers EX(g′i(X))2 where g′i denotes coordinate i
of∇g, while V > recovers P .

3 SETUP AND DEFINITIONS

We consider a regression or classification setting where the
input X belongs to a space X ⊂ Rd, of bounded diameter
1. The output Y is real. We are interested in the unknown
regression function f(x) , E[Y |X = x] (in the case of
classification with Y ∈ {0, 1}, this is just the probability of
1 given x).

For a vector x ∈ Rd, let ‖x‖ denote the Euclidean norm,
while for a matrix A, let ‖A‖2 denote the spectral norm,
i.e. the largest singular value σmax(A).

We use A ◦B to denote the entry-wise product of matrices
A and B.

3.1 ESTIMATING THE EGOP

We let µ denote the marginal of PX,Y on X and we let µn
denote its empirical counterpart on a random sample X =
{Xi}ni=1. Given a labeled sample (X,Y) = {(Xi, Yi)}n1
from PnX,Y , we estimate the EGOP as follows.

We consider a simple kernel estimator defined below, us-
ing a Kernel K satisfying the following admissibility con-
ditions:

Definition 1 (Admissible Kernel). K : R+ 7→ R+ is non-
increasing, K > 0 on [0, 1), and K(1) = 0.

Using such an admissible kernel K, and a bandwidth
h > 0, we consider the regression estimate fn,h(x) =∑
i ωi(x)Yi where

ωi(x) =
K(‖x−Xi‖ /h)∑
j K(‖x−Xj‖ /h)

if B(x, h) ∩X 6= ∅,

ωi(x) =
1

n
otherwise.

For any dimension i ∈ [d], and t > 0, we first define

∆t,ifn,h(x) , fn,h(x+ tei)− fn,h(x− tei)
2t

.
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This is a rough estimate of the line-derivative along coordi-
nate i. However, for a robust estimate we also need to en-
sure that enough sample points contribute to the estimate.
To this end, given a confidence parameter 0 < δ < 1 (this
definiton for δ is assumed in the rest of this work), define
An,i(X) as the event that

min
s∈{t,−t}

µn(B(X + sei, h/2)) ≥ 2d ln 2n+ ln(4/δ)

n
.

The gradient estimate is then given by the vector

∇̂fn,h(x) =
(
∆t,ifn,h(x) · 1An,i(x)

)
i∈[d]

.

Note that, in practice we can just replace An,i(X) with the
event that the balls B(X + sei, h), s ∈ {−t, t}, contain
samples.

Finally, defineGn(x) as the outer-product of ∇̂fn,h(x), we
estimate EXG(X) as

E nGn(X) , 1

n

n∑

i=1

∇̂fn,h(Xi) · ∇̂fn,h(Xi)
>.

3.2 DISTRIBUTIONAL QUANTITIES AND
ASSUMPTIONS

For the analysis, our assumptions are quite general. In
fact we could simply assume, as is common, that µ has
lower-bounded density on a compact support X , and that f
is continuously differentiable; all the assumptions below
will then hold. We list these more general detailed as-
sumptions to better understand the minimal distributional
requirements for consistency of our EGOP estimator.

A1 (Noise). Let η(X) , Y − f(X). We assume the
following general noise model: ∀δ > 0 there exists c >
0 such that supx∈X PY |X=x (|η(x)| > c) ≤ δ. We denote
by CY (δ) the infimum over all such c. For instance, sup-
pose η(X) has exponentially decreasing tail, then ∀δ > 0,
CY (δ) ≤ O(ln 1/δ).

Last the variance of (Y |X = x) is upper-bounded by a
constant σ2

Y uniformly over x ∈ X . The next assumption
is standard for nonparametric regression/classification.

A2 (Bounded Gradient). Define the τ -envelope of X as
X + B(0, τ) , {z ∈ B(x, τ), x ∈ X}. We assume there
exists τ such that f is continuously differentiable on the
τ -envelope X + B(0, τ). Furthermore, for all x ∈ X +
B(0, τ), we have ‖∇f(x)‖ ≤ R for some R > 0, and ∇f
is uniformly continuous on X + B(0, τ) (this is automati-
cally the case if the support X is compact).

The next assumption generalizes common smoothness as-
sumptions: it is typically required for gradient estimation
that the gradient itself be Hölder continuous (or that f be

second-order smooth). These usual assumptions imply the
more general assumptions below.

A3 (Modulus of continuity of ∇f ). Let εt,i =

supx∈X ,s∈[−t,t] |f ′i(x)−f ′i(x+sei)|. We assume εt,i
t→0−−−→

0 which is for instance the case when∇f is uniformly con-
tinuous on an envelope X +B(0, τ).

The next two assumptions capture some needed regularity
conditions on the marginal µ. To enable local approxima-
tions of ∇f(x) over X , the marginal µ should not concen-
trate on the boundary of X . This is captured in the follow-
ing assumption.

A4 (Boundary of X ). Define the (t, i)-boundary of X as
∂t,i(X ) = {x : {x+ tei, x− tei} 6⊆ X}. Define the vector
µ∂t = (µ(δt,i(X )))i∈[d]. We assume that µ∂t

t→0−−−→ 0. This
is for instance the case if µ has a continuous density on X .

Finally we assume that µ has mass everywhere, so that for
samples X in dense regions, X ± tei is also likely to be in
a dense region.

A5 (Full-dimensionality of µ). For all x ∈ X and h > 0,
we have µ(B(x, h)) ≥ Cµh

d. This is for instance the case
if µ has a lower-bounded density on X .

4 CONSISTENCY OF THE ESTIMATOR
EnGn(X) OF EXG(X)

We establish consistency by bounding ‖EnGn(X) −
EXG(X)‖2 for finite sample size n. The main tech-
nical difficulties in establishing the main result below
have to do with the fact that each gradient approximation
∆t,hfn,h(X) at a sample pointX depends on all other sam-
ples in X. These inter-dependencies are circumvented by
proceeding in steps which consider related quantities that
are less sample-dependent.

Theorem 1 (Main). Assume A1, A2 and A5. Let t < τ
and suppose h ≥ (log2(n/δ)/n)1/d. There exist C =
C(µ,K(·)) and N = N(µ) such that the following
holds with probability at least 1 − 2δ. Define A(n) =√
Cd · log(n/δ) · C2

Y (δ/2n) · σ2
Y / log2(n/δ). Suppose

n ≥ N , we have:

‖EnGn(X)]− EXG(X)‖2 ≤
6R2

√
n

(
√

ln d+

√
ln

1

δ

)
+

(
3R+ ‖εt‖+

√
d

(
hR+ CY (δ/n)

t

))
·
[
‖εt‖+

√
d

t

√
A(n)

nhd
+ 2h2R2 +R



√
d ln d

δ

2n
+ ‖µ∂t‖
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Proof. Start with the decomposition

‖EnGn(X)− EXG(X)‖2 ≤‖EnG(X)− EXG(X)‖2
+‖EnGn(X)− EnG(X)‖2.

(1)

The two terms of the r.h.s. are bounded separately in
Lemma 2 and 12.

Remark. Under the additional assumptions A3 and A4, the
theorem implies consistency for t n→∞−−−−→ 0, h n→∞−−−−→ 0,
h/t2

n→∞−−−−→ 0, and (n/ log n)hdt4
n→∞−−−−→ ∞, this is

satisfied for many settings, for example t ∝ h1/4, h ∝
(1/n)1/(2(d+1)).

The bound on the first term of (1) is a direct result of the
below concentration bound for random matrices:

Lemma 1. [10, 3]. Consider a random matrix A ∈
Rd×d with bounded spectral norm ‖A‖2 ≤ M . Let
A1, A2, ..., An be i.i.d. copies of A. With probability at
least 1− δ, we have

∥∥∥∥∥
1

n

n∑

i=1

Ai − EA

∥∥∥∥∥
2

≤ 6M√
n

(
√

ln d+

√
ln

1

δ

)
.

We apply the above concentration to the i.i.d. matri-
ces G(X), X ∈ X, using the fact that ‖G(X)‖2 =
‖∇f(X)‖2 ≤ R2.

Lemma 2. Assume A2. With probability at least 1− δ over
the i.i.d sample X , {Xi}ni=1, we have

‖EnG(X)− EXG(X)‖2 ≤
6R2

√
n

(
√

ln d+

√
ln

1

δ

)
.

The next Lemma provides an initial bound on the second
term of (1).

Lemma 3. Fix the sample (X,Y). We have:

‖EnGn(X)− EnG(X)‖2 ≤En‖∇f(X)− ∇̂fn,h(X)‖
·max
x∈X
‖∇f(x) + ∇̂fn,h(x)‖.

(2)

Proof. We have by a triangle inequality ‖EnGn(X) −
EnG(X)‖2 is bounded by:

En
∥∥∥
(
∇̂fn,h(X) · ∇̂fn,h(X)> −∇f(X) · ∇f(X)>

)∥∥∥
2
.

To bound the r.h.s above, we use the fact that, for vectors
a, b, we have

aa> − bb> =
1

2
(a− b)(b+ a)> +

1

2
(b+ a)(a− b)>,

implying that

∥∥aa> − bb>
∥∥

2
≤1

2

∥∥(a− b)(b+ a)>
∥∥

2

+
1

2

∥∥(b+ a)(a− b)>
∥∥

2

=
∥∥(b+ a)(a− b)>

∥∥
2

since the spectral norm is invariant under matrix transposi-
tion.

We therefore have that ‖EnGn(X)−EnG(X)‖2 is at most

En‖(∇f(X)− ∇̂fn,h(X)) · (∇f(X) + ∇̂fn,h(X))>‖2
= En‖∇f(X)− ∇̂fn,h(X)‖ · ‖∇f(X) + ∇̂fn,h(X)‖
≤ En‖∇f(X)− ∇̂fn,h(X)‖ ·max

x∈X
‖∇f(x) + ∇̂fn,h(x)‖.

Thus the matrix estimation problem is reduced to that of
an average gradient estimation. The two terms of (2) are
bounded in the following two subsections. These sections
thus contain the bulk of the analysis. All omitted proofs are
found in the supplementary.

4.1 BOUND ON En‖∇f(X)− ∇̂fn,h(X)‖

The analysis of this section relies on a series of approxi-
mations. In particular we relate the vector ∇̂fn,h(x) to the
vector

∇̂f(x) ,
(
∆t,if(x) · 1An,i(x)

)
i∈[d]

.

In other words we start with the decomposition:

En‖∇f(X)− ∇̂fn,h(X)‖ ≤En‖∇f(X)− ∇̂f(X)‖
+En‖∇̂f(X)− ∇̂fn,h(X)‖.

(3)

We bound each term separately in the following subsec-
tions.

4.1.1 Bounding En‖∇f(X)− ∇̂f(X)‖

We need to introduce vectors In(x) ,
(
1An,i(x)

)
i∈[d]

, and

In(x) ,
(
1Ān,d(x)

)
i∈[d]

. We then have:

En‖∇f(X)− ∇̂f(X)‖ ≤ En‖∇f(X) ◦ In(X)‖
+En‖∇f(X) ◦ In(X)− ∇̂f(X)‖. (4)

The following lemma bounds the first term of (4).

Lemma 4. Assume A2 and A5. Suppose h ≥
(log2(n/δ)/n)1/d. With probability at least 1− δ over the
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sample of X:

En
∥∥∥∇f(X) ◦ In(X)

∥∥∥ ≤ R ·



√
d ln d

δ

2n
+ ‖µ∂t‖


 .

The second term of (4) is bounded in the next lemma.

Lemma 5. Fix the sample X. We have
maxX∈X ‖∇f(X) ◦ In(X)− ∇̂f(X)‖ ≤ ‖εt‖.

The last two lemmas can then be combined using equation
(4) into the final bound of this subsection.

Lemma 6. Assume A2 and A5. Suppose h ≥
(log2(n/δ)/n)1/d. With probability at least 1− δ over the
sample X:

En‖∇f(X)− ∇̂f(X)‖ ≤R ·



√
d ln d

δ

2n
+ ‖µ∂t‖




+ ‖εt‖ .

4.1.2 Bounding En‖∇̂f(X)− ∇̂fn,h(X)‖

We need to consider bias and variance functionals of esti-
mates fn,h(x). To this end we introduce the expected esti-
mate f̃n,h(x) = EY|Xfn,h(x) =

∑n
i=1 wi(x)f(Xi).

The following lemma bounds the bias of estimates fn,h.
The proof relies on standard ideas.

Lemma 7 (Bias of fn,h). Assume A2. Let t < τ . We have
for all X ∈ X, all i ∈ [d], and s ∈ {−t, t}:

|f̃n,h(X + sei)− f(X + sei)| · 1An,i(x) ≤ hR.

The following lemma bounds the variance of estimates fn,h
averaged over the sample X. To obtain a high probability
bound, we relie on results of Lemma 7 in [6]. However
in [6], the variance of the estimator if evaluated at a point,
therefore requiring local density assumptions. The present
lemma has no such local density requirements given that
we are interested in an average quantity over a collection
of points.

Lemma 8 (Average Variance). Assume A1. There exist
C = C(µ,K(·)), such that the following holds with proba-
bility at least 1− 2δ over the choice of the sample (X,Y).
Define A(n) =

√
Cd · ln(n/δ) · C2

Y (δ/2n) · σ2
Y , for all

i ∈ [d], and all s ∈ {−t, t}:

En|f̃n,h(X + sei)− fn,h(X + sei)|2 · 1An,i(X) ≤
A(n)

nhd

The main bound of this subsection is given in the next
lemma which combines the above bias and variance results.

Lemma 9. Assume A1 and A2. There exist C =
C(µ,K(·)), such that the following holds with probabil-
ity at least 1 − 2δ over the choice of (X,Y). Define
A(n) =

√
Cd · ln(n/δ) · C2

Y (δ/2n) · σ2
Y :

En‖∇̂f(X)− ∇̂fn,h(X)‖ ≤
√
d

t

√
A(n)

nhd
+ 2R2h2.

Proof. In what follows, we first apply Jensen’s inequality,
and the fact that (a+ b)2 ≤ 2a2 + 2b2. We have:

En‖∇̂f(X)− ∇̂fn,h(X)‖

= En


∑

i∈[d]

|∆t,ifn,h(X)−∆t,if(X)|2 · 1An,i(X)




1/2

≤


∑

i∈[d]

En|∆t,ifn,h(X)−∆t,if(X)|2 · 1An,i(X)




1/2

≤
√
d

2t

(
max

i∈[d],s∈{−t,t}
4En|fn,h(X̃)− f(X̃)|2 · 1An,i(X)

)1/2

(5)

where X̃ = X + sei. Next, use the fact that for any s ∈
{−t, t}, we have the following decomposition into variance
and bias terms

|fn,h(X + sei)− f(X + sei)|2

≤ 2|fn,h(X + sei)− f̃n,h(X + sei)|2

+ 2|f̃n,h(X + sei)− f(X + sei)|2.

Combine this into (5) to get a bound in terms of the aver-
age bias and variance of estimates fn,h(X + sei). Apply
Lemma 7 and 8 and conclude.

4.1.3 Main Result of this Section

The following theorem provides the final bound of this sec-
tion on En‖∇f(X)−∇̂fn,h(X)‖. It follows directly from
the decomposition of equation 3 and Lemmas 6 and 9.

Lemma 10. Assume A1, A2 and A5. Let t < τ and suppose
h ≥ (log2(n/δ)/n)1/d. With probability at least 1 − 2δ
over the choice of the sample (X,Y), we have

En‖∇f(X)− ∇̂fn,h(X)‖ ≤
√
d

t

√
A(n)

nhd
+ 2R2h2

+R



√
d ln d

δ

2n
+ ‖µ∂t‖


+ ‖εt‖ .
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4.2 BOUNDING maxX∈X ‖∇f(X) + ∇̂fn,h(X)‖

Lemma 11. Assume A1 and A2. With probability at least
1− δ, we have

‖∇f(X) + ∇̂fn,h(X)‖ ≤3R+ ‖εt‖

+
√
d

(
hR+ CY (δ/n)

t

)
.

Proof. Fix X ∈ X.We have

‖∇f(X) + ∇̂fn,h(X)‖ ≤2‖∇f(X)‖
+ ‖∇f(x)− ∇̂fn,h(X)‖
≤2R+ ‖∇f(X)− ∇̂f(x)‖

+ ‖∇̂f(X)− ∇̂fn,h(X)‖.
(6)

We can bound the second term of (6) above as follows.

‖∇f(X)− ∇̂f(X)‖ ≤‖∇f(X) ◦ In(X)− ∇̂f(X)‖
+ ‖∇f(X) ◦ In(X)‖
≤‖εt‖+R,

where we just applied Lemma 5.

For the third term of (6), ‖∇̂f(x)− ∇̂fn,h(x)‖ equals

√∑

i∈[d]

(|∆t,ifn,h(x)−∆t,if(x)| · 1An,i(x))2.

As in the proof of Lemma 9, we decompose the above sum-
mand into bias and variance terms, that is:

|∆t,ifn,h(x)−∆t,if(x)|

≤ 1

t
max

s∈{−t,t}
|f̃n,h(x+ sei)− f(x+ sei)|

+
1

t
max

s∈{−t,t}
|f̃n,h(x+ sei)− fn,h(x+ sei)|.

By Lemma 7, |f̃n,h(x + sei)− f(x + sei)| ≤ Rh for any
s ∈ {−t, t}.
Next, by definition of CY (δ/n), with probaility at least 1−
δ, for each j ∈ [n], Yj has value within CY (δ) of f(Xj). It
follows that |f̃n,h(X + sei)− fn,h(X + sei)| ≤ CY (δ/n)
for s ∈ {−t, t}.
Thus, with probability at least 1− δ, we have

‖∇̂f(X)− ∇̂fn,h(X)‖ ≤
√
d

(
hR+ CY (δ/n)

t

)
.

Combine these bounds in (6) and conclude.

4.3 FINAL BOUND ON ‖EnGn(X)− EnG(X)‖2.

We can now combine the results of the last two subsections,
namely Lemma 10 and 11, into the next lemma, using the
bound of Lemma 3.
Lemma 12. Assume A1, A2 and A5. Let t < τ and sup-
pose h ≥ (log2(n/δ)/n)1/d. With probability at least
1− 2δ over the choice of the sample (X,Y), we have that
‖EnGn(X)− EnG(X)‖2 is at most
(
3R+ ‖εt‖+

√
d

(
hR+ CY (δ/n)

t

))
·



√
d

t

√
A(n)

nhd
+ 2h2R2 +R



√
d ln d

δ

2n
+ ‖µ∂t‖


+ ‖εt‖


 .

5 EXPERIMENTAL EVALUATION

In this section we describe experiments aimed at evaluat-
ing the utility of EGOP as a metric estimation technique
for regression or classification. We consider a family of
non-parametric methods that rely on the notion of distance
under a given Mahalanobis metric M , computed as (x −
x′)TM(x − x′). In this setup, we consider three choices
of M : (i) identity, i.e., Euclidean distance in the original
space; (ii) the estimated gradient weights (GW) matrix as
in [6], i.e., Euclidean distance weighted by the estimated
∆t,ifn, and (iii) the estimated EGOP matrix EnGn(X).
The latter corresponds to Euclidean distance in the origi-
nal space under linear transform given by [EnGn(X)]

1/2.
Note that a major distinction between the metrics based on
GW and EGOP is that the former only scales the Euclidean
distance, whereas the latter introduces a rotation.

Each choice of M can define the set of neighbors of an in-
put point x in two ways: (a) k nearest neighbors (kNN)
of x for a fixed k, or (b) neighbors with distance ≤ h for
a fixed h; we will refer to this as hNN. When the task is
regression, the output values of the neighbors are simply
averaged; for classification, the class label for x is decided
by majority vote among neighbors. Note that hNN corre-
sponds to kernel regression with the boxcar kernel.

Thus, we will consider six methods, based on combinations
of the choice of metric M and the definition of neighbhors:
kNN, kNN-GW, kNN-EGOP, hNN, hNN-GW, and hNN-
EGOP.

5.1 SYNTHETIC DATA

We first discuss experiments on synthetic data, the goal of
which is to examine the effect of varying the dependence of
f on input dimensions on the quality of metric recovered
with EGOP and alternative approaches. In these experi-
ments, the output is generated i.i.d. as: y =

∑
i sin(cixi),

where the sum is over the dimensions of x ∈ Rd, and the
profile of c determines the degree to which the value of
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xi affects the output. We used d = 50-dimensional input
sampled over a bounded domain, and set c[1] = 50 and
c[i] = 0.6 ∗ c[i − 1] for i = 2 : 50. We consider two
cases: (R) the input features are transformed by a random
rotation in Rd, after y has been generated; and (I) the input
features are preserved. Under these conditions we evaluate
the out of sample regression accuracy with original metric,
GW and EGOP-based metrics, for different value of n; in
each experiment, the values of h and t are tuned by cross-
validation on the training set.

The first observation from results in Figures 1 is that adapt-
ing the metric by either GW or EGOP helps performance
across the board. As can be expected, performance of
EGOP, however, is not significantly affected by rotation.
On the other hand, GW is able to recover a good metric in
the no-rotation case, but much less so under rotation. Some
insight into the nature of estimated metrics is obtained from
the profile of the estimated feature relevance. For GW this
consists of values on the diagonal of M, and for EGOP of
the (square roots) of the eigenvalues of M. Plots in Figure 1
show these profiles (sorted in descending order). It is clear
that EGOP is largely invariant to rotation of the features,
and is consistently better at recovering the true relative rel-
evance of features corresponding to the c described above.

5.2 REGRESSION EXPERIMENTS

In this section we present results on several real world
datasets. The list of data sets with vital statistics (dimen-
sionality and number of training/test points) is found in Ta-
ble 1. For each data set, we report the results averaged over
ten random training/test splits.

As a measure of performance we compute for each exper-
iment the normalized mean squared error (nMSE): mean
squared error over test set, divided by target variance over
that set. This can be interpreted as fraction of variance in
the target unexplained by the regressor.

In each experiment the input was normalized by the mean
and standard deviation of the training set. For each method,
the values of h or k as wel as t (the bandwidth used to
estimate finite differences for GW and EGOP) were set by
two fold cross-validation on the training set.

5.3 CLASSIFICATION EXPERIMENTS

The setup for classification data sets is very similar for re-
gression, except that the task is binary classification, and
the labels of the neighbors selected by each prediction
method are aggregated by simple majority vote, rather than
averaging as in regression. The performance measure of
interest here is classification error. As in regression exper-
iments, we normalized the data, tuned all relevant param-
eters by cross validation on training data, and repeated the
entire experimental procedure ten times with random train-

ing/test splits.

In addition to the baselines listed above, in classification
experiments we considered another competitor: the pop-
ular feature relevance determination method called Reli-
efF [4, 5]. A highly engineered method that includes
heuristics honed over considerable time by practitioners, it
has the same general form of assigning weights to features
as do GW and EGOP.

5.4 RESULTS

The detailed results are reported in Tables 1 and 2. These
correspond to a single value of training set size. Plots in
Figures 2 and 3 show a few representative cases for regres-
sion and classification, respectively, of performance of dif-
ferent methods as a function of training set size; it is evident
from these that while the performance of all methods tends
to improve if additional training data are available, the gaps
methods persist across the range of training set sizes.

From the results in Tables 1 and 2, we can see that the -
EGOP variants dominate the -GW ones, and that both pro-
duce gains relative to using the original metric. This is true
both for kNN and for kernel regression (hNN) methods,
suggesting general utility of EGOP-based metric, not tied
to a particular non-parametric mechanism.

We also see that the metrics based on estimated EGOP are
competitive with ReliefF, despite the latter benefiting from
extensive engineering efforts over the years.

5.5 EXPERIMENTS WITH LOCAL LINEAR
REGRESSION

As mentioned earlier in the paper, our estimator for EGOP
is an alternative to an estimator based on computing the
slope of locally linear regression (LLR) [1] over the train-
ing data. We have compared these two estimation methods
on a number of data sets, and the results are plotted in Fig-
ure 4. In these experiments, the bandwidth of LLR was
tuned by a 2-fold cross-validation on the training data.

We observe that despite its simplicity, the accuracy of pre-
dictors using EGOP-based metric estimated by our ap-
proach is competitive with or even better than the accuracy
with EGOP estimated using LLR. As the sample size in-
creases, accuracy of LLR improves. However, the compu-
tational expense of LLR-based estimator also grows with
the size of data, and in our experiments it became dramati-
cally slower than our estimator of EGOP for the larger data
sizes. This confirms the intuition that our estimator is an
appealing alternative to LLR-based estimator, offering a
good tradeoff of speed and accuracy.

825



0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

dimensions (sorted)

 

 

GW
eig(EGOP)

2000 4000 6000 8000
0.75

0.8

0.85

0.9

0.95

# Training Points

er
ro

r

 

 

hNN
hNN-GW
hNN-EGOP

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

dimensions (sorted)

 

 

GW
eig(EGOP)

2000 4000 6000 8000
0.75

0.8

0.85

0.9

0.95

# Training Points

er
ro

r

 

 

hNN
hNN-GW
hNN-EGOP

No rotation With rotation

Figure 1: Synthetic data, d=50, with and without rotation applied after generating y from x. In each case we show error of
hNN with different metrics (left) and the profile of derivatives recovered by GW and EGOP. The deterioration of the error
performance of the Gradient Weights approach after the feature space is subject to a random rotation is noteworthy. See
text for details.

Table 1: Regression results, with ten random runs per data set.
Dataset d train/test hNN hNN-GW hNN-EGOP
Ailerons 5 3000/2000 0.3637 ± 0.0099 0.3381 ± 0.0087 0.3264 ± 0.0095
Concrete 8 730/300 0.3625 ± 0.0564 0.2525 ± 0.0417 0.2518 ± 0.0418
Housing 13 306/200 0.3033 ± 0.0681 0.2628 ± 0.0652 0.2776 ± 0.0550
Wine 11 2500/2000 0.7107 ± 0.0157 0.7056 ± 0.0184 0.6867 ± 0.0145
Barrett1 21 3000/2000 0.0914 ± 0.0106 0.0740 ± 0.0209 0.0927 ± 0.0322
Barrett5 21 3000/2000 0.0906 ± 0.0044 0.0823 ± 0.0171 0.0996 ± 0.0403
Sarcos1 21 3000/2000 0.1433 ± 0.0087 0.0913 ± 0.0054 0.1064 ± 0.0101
Sarcos5 21 3000/2000 0.1101 ± 0.0033 0.0972 ± 0.0044 0.0970 ± 0.0064
ParkinsonM 19 3000/2000 0.4234 ± 0.0386 0.3606 ± 0.0524 0.3546 ± 0.0406
ParkinsonT 19 3000/2000 0.4965 ± 0.0606 0.3980 ± 0.0738 0.4168 ± 0.0941
TeleComm 48 3000/2000 0.1079 ± 0.0099 0.0858 ± 0.0089 0.0380 ± 0.0059

Dataset kNN kNN-GW kNN-EGOP
Ailerons 0.3364 ± 0.0087 0.3161 ± 0.0058 0.3154 ± 0.0100
Concrete 0.2884 ± 0.0311 0.2040 ± 0.0234 0.2204 ± 0.0292
Housing 0.2897 ± 0.0632 0.2389 ± 0.0604 0.2546 ± 0.0550
Wine 0.6633 ± 0.0119 0.6615 ± 0.0134 0.6574 ± 0.0171
Barrett1 0.1051 ± 0.0150 0.0843 ± 0.0229 0.1136 ± 0.0510
Barrett5 0.1095 ± 0.0096 0.0984 ± 0.0244 0.1120 ± 0.0315
Sarcos1 0.1222 ± 0.0074 0.0769 ± 0.0037 0.0890 ± 0.0072
Sarcos5 0.0870 ± 0.0051 0.0779 ± 0.0026 0.0752 ± 0.0051
ParkinsonM 0.3638 ± 0.0443 0.3181 ± 0.0477 0.3211 ± 0.0479
ParkinsonT 0.4055 ± 0.0413 0.3587 ± 0.0657 0.3528 ± 0.0742
TeleComm 0.0864 ± 0.0094 0.0688 ± 0.0074 0.0289 ± 0.0031

Table 2: Classification results with 3000 training/2000 testing.
Dataset d hNN hNN-GW hNN-EGOP hNN-ReliefF
Cover Type 10 0.2301 ± 0.0104 0.2176 ± 0.0105 0.2197 ± 0.0077 0.1806 ± 0.0165
Gamma 10 0.1784 ± 0.0093 0.1721 ± 0.0082 0.1658 ± 0.0076 0.1696 ± 0.0072
Page Blocks 10 0.0410 ± 0.0042 0.0387 ± 0.0085 0.0383 ± 0.0047 0.0395 ± 0.0053
Shuttle 9 0.0821 ± 0.0095 0.0297 ± 0.0327 0.0123 ± 0.0041 0.1435 ± 0.0458
Musk 166 0.0458 ± 0.0057 0.0477 ± 0.0069 0.0360 ± 0.0037 0.0434 ± 0.0061
IJCNN 22 0.0523 ± 0.0043 0.0452 ± 0.0045 0.0401 ± 0.0039 0.0510 ± 0.0067
RNA 8 0.1128 ± 0.0038 0.0710 ± 0.0048 0.0664 ± 0.0064 0.1343 ± 0.0406

Dataset kNN kNN-GW kNN-EGOP kNN-ReliefF
Cover Type 0.2279 ± 0.0091 0.2135 ± 0.0064 0.2161 ± 0.0061 0.1839 ± 0.0087
Gamma 0.1775 ± 0.0070 0.1680 ± 0.0075 0.1644 ± 0.0099 0.1623 ± 0.0063
Page Blocks 0.0349 ± 0.0042 0.0361 ± 0.0048 0.0329 ± 0.0033 0.0347 ± 0.0038
Shuttle 0.0037 ± 0.0025 0.0024 ± 0.0016 0.0021 ± 0.0011 0.0028 ± 0.0021
Musk 0.2279 ± 0.0091 0.2135 ± 0.0064 0.2161 ± 0.0061 0.1839 ± 0.0087
IJCNN 0.0540 ± 0.0061 0.0459 ± 0.0058 0.0413 ± 0.0051 0.0535 ± 0.0080
RNA 0.1042 ± 0.0063 0.0673 ± 0.0062 0.0627 ± 0.0057 0.0828 ± 0.0056
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Figure 2: Regression error (nMSE) as a function of training set size for Ailerons, TeleComm, Wine data sets.
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Figure 3: Classification error as a function of training set size for Musk, Gamma, IJCNN data sets.
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Figure 4: Comparison of EGOP estimated by our proposed method vs. locally linear regression, for Ailerons, Barrett1
and the synthetic (with rotation) data sets (this synthetic dataset is similar to the one used in section 5.1 but with d = 12
and c = [5, 3, 1, .5, .2, .1, .08, .06, .05, .04, .03, .02]). We also report the following running times (averaged over the ten
random runs) for the same using our method and LLR respectively for the highest sample size used in the above real world
datasets: Ailerons (128.13s for delta and 347.48s for LLR), Barrett (377.03s for delta and 1650.55s for LLR). Showing
that our rough estimator is significantly faster than Local Linear Regression while giving competitive performance. These
timings were recorded on an Intel i7 processor with CPU @ 2.40 GHz and 12 GB of RAM.
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Abstract

This paper continues study, both theoretical and
empirical, of the method of Venn prediction, con-
centrating on binary prediction problems. Venn
predictors produce probability-type predictions
for the labels of test objects which are guaran-
teed to be well calibrated under the standard as-
sumption that the observations are generated in-
dependently from the same distribution. We give
a simple formalization and proof of this prop-
erty. We also introduce Venn–Abers predictors, a
new class of Venn predictors based on the idea of
isotonic regression, and report promising empir-
ical results both for Venn–Abers predictors and
for their more computationally efficient simpli-
fied version.

1 INTRODUCTION

Venn predictors were introduced in [16] and are discussed
in detail in [15], Chapter 6, but to make the paper self-
contained we define them in Section 2. This section also
states the important property of validity of Venn predic-
tors: they are automatically well calibrated. In some form
this property of validity has been known: see, e.g., [15],
Theorem 6.6. However, this known version is complicated,
whereas our version (Theorem 1 below) is much simpler
and the intuition behind it is more transparent. In the same
section we show (Theorem 2) that Venn prediction is essen-
tially the only way to achieve our new property of validity.

Section 3 defines a natural class of Venn predictors, which
we call Venn–Abers predictors (with the “Abers” part
formed by the initial letters of the authors’ surnames of
the paper [1] introducing the underlying technique). The
latter are defined on top of a wide class of classification
algorithms, which we call “scoring classifiers” in this
paper; each scoring classifier can be automatically trans-
formed into a Venn–Abers predictor, and we refer to this

transformation as the “Venn–Abers method”. Because
of its theoretical guarantees, this method can be used for
improving the calibration of probabilistic predictions.

The definition of Venn–Abers predictors was prompted by
[8], which demonstrated that the method of calibrating
probabilistic predictions introduced by Zadrozny and Elkan
in [17] (an adaptation of the isotonic regression proce-
dure of [1]) does not always achieve its goal and some-
times leads to poorly calibrated predictions. Another paper
reporting the possibility for the Zadrozny–Elkan method
to produce grossly miscalibrated predictions is [7]. The
Venn–Abers method is a simple modification of Zadrozny
and Elkan’s method; being a special case of Venn predic-
tion, it overcomes the problem of potentially poor calibra-
tion.

Theorem 1 in Section 2 says that Venn predictors are per-
fectly calibrated. The price to pay, however, is that Venn
predictors are multiprobabilistic predictors, in the sense of
issuing a set of probabilistic predictions instead of a sin-
gle probabilistic prediction; intuitively, the diameter of this
set reflects the uncertainty of our prediction. In Section 5
we explore the efficiency of Venn–Abers predictors empir-
ically using the fundamental log loss function and another
popular loss function, square loss. To apply these loss func-
tions, we need, however, probabilistic predictions rather
than multiprobabilistic predictions, and in Section 4 we de-
fine natural minimax ways of replacing the latter with the
former.

In Section 5 we explore the empirical predictive per-
formance of the most natural version of the original
Zadrozny–Elkan method, the Venn–Abers method, and
the latter’s simplified version, which is not only simpler
but also more efficient computationally. We use nine
benchmark data sets from the UCI repository [5] and six
standard scoring classifiers, and for each combination of a
data set and classifier evaluate the predictive performance
of each method. Our results show that the Venn–Abers
and simplified Venn–Abers methods usually improve the
performance of the underlying classifiers, and in our exper-
iments they work better than the original Zadrozny–Elkan
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method.

Interestingly, the predictive performance of the simplified
Venn–Abers method is slightly better than that of the Venn–
Abers method on the chosen data sets and scoring clas-
sifiers; for example, in the case of the log loss function,
the best performance is achieved by the simplified Venn–
Abers methods for seven data sets out of the nine. If these
results are confirmed in wider empirical studies, the simpli-
fied Venn–Abers method is preferred since it achieves both
computational and predictive efficiency.

Our empirical study in Section 5 does not mean that we
recommend that the multiprobabilistic predictions output
by Venn–Abers (and more generally Venn) predictors be re-
placed by probabilistic predictions (e.g., using the formulas
of Section 4). On the contrary, we believe that the size of
a multiprobabilistic prediction carries valuable information
about the uncertainty of the prediction. The only purpose
of replacing multiprobabilistic by probabilistic predictions
is to facilitate comparison of various prediction algorithms
using well-established loss functions.

2 VENN PREDICTORS

We consider observations z = (x, y) consisting of two
components: an object x ∈ X and its label y ∈ Y. In
this paper we are only interested in the binary case and for
concreteness set Y := {0, 1}. We assume that X is a mea-
surable space, so that observations are elements of the mea-
surable space that is the Cartesian product Z := X×Y =
X× {0, 1}.
A Venn taxonomyA is a measurable function that assigns to
each n ∈ {2, 3, . . .} and each sequence (z1, . . . , zn) ∈ Zn

an equivalence relation ∼ on {1, . . . , n} which is equivari-
ant in the sense that, for each n and each permutation π of
{1, . . . , n},

(i ∼ j | z1, . . . , zn) =⇒ (π(i) ∼ π(j) | zπ(1), . . . , zπ(n)),

where the notation (i ∼ j | z1, . . . , zn) means that i
is equivalent to j under the relation assigned by A to
(z1, . . . , zn). The measurability of A means that for all
n, i, and j the set {(z1, . . . , zn) | (i ∼ j | z1, . . . , zn)} is
measurable. Define

A(j | z1, . . . , zn)

:= {i ∈ {1, . . . , n} | (i ∼ j | z1, . . . , zn)}

to be the equivalence class of j. Let (z1, . . . , zl) be a train-
ing sequence of observations zi = (xi, yi), i = 1, . . . , l,
and x be a test object. The Venn predictor associated with
a given Venn taxonomy A outputs the pair (p0, p1) as its
prediction for x’s label, where

py :=
|{i ∈ A(l + 1 | z1, . . . , zl, (x, y)) | yi = 1}|

|A(l + 1 | z1, . . . , zl, (x, y))|

for both y ∈ {0, 1} (notice that the denominator is always
positive). Intuitively, p0 and p1 are the predicted proba-
bilities that the label of x is 1; of course, the prediction is
useful only when p0 ≈ p1. The probability interval out-
put by a Venn predictor is defined to be the convex hull
conv(p0, p1) of the set {p0, p1}; we will sometimes refer
to the pair (p0, p1) or the set {p0, p1} as the multiproba-
bilistic prediction.

Validity of Venn predictors

Let us say that a random variable P taking values in [0, 1] is
perfectly calibrated for a random variable Y taking values
in {0, 1} if

E(Y | P ) = P a.s. (1)

Intuitively, P is the prediction made by a probabilistic pre-
dictor for Y , and perfect calibration means that the prob-
abilistic predictor gets the probabilities right, at least on
average, for each value of the prediction. A probabilistic
predictor for Y whose prediction P satisfies (1) with an
approximate equality is said to be well calibrated [4], or
unbiased in the small [11, 4]; this terminology will be used
only in informal discussions, of course.

A selector is a random variable taking values 0 or 1.

Theorem 1. Let (X1, Y1), . . . , (Xl, Yl), (X,Y ) be IID
(independent identically distributed) random observations.
Fix a Venn predictor V and an l ∈ {1, 2, . . .}. Let (P0, P1)
be the output of V given (X1, Y1, . . . , Xl, Yl) as the train-
ing set and X as the test object. There exists a selector S
such that PS is perfectly calibrated for Y .

Intuitively, at least one of the two probabilities output by
the Venn predictor is perfectly calibrated. Therefore, if the
two probabilities tend to be close to each other, we expect
them (or, say, their average) to be well calibrated.

In the proof of Theorem 1 and later in the paper we will use
the notation *a1, . . . , an+ for bags (in other words, mul-
tisets); the cardinality of the set {a1, . . . , an} might well
be smaller than n (because of the removal of all dupli-
cates in the bag). Intuitively, *a1, . . . , an+ is the sequence
(a1, . . . , an) with its ordering forgotten. We will some-
times refer to the bag *z1, . . . , zl+, where (z1, . . . , zl) is the
training sequence, as the training set (although technically
it is a multiset rather than a set).

Proof of Theorem 1. Take S := Y as the selector. Let us
check that (1) is true even if we further condition on the
observed bag *(X1, Y1), . . . , (Xl, Yl), (X,Y )+ (so that the
remaining randomness consists in generating a random per-
mutation of this bag). We only need to check the equality
E(Y | P = p) = p, where P is the average of 1s in the
equivalence class containing (X,Y ), for the ps which are
the percentages of 1s in various equivalence classes (further
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conditioning on the observed bag is not reflected in our no-
tation). For each such p, E(Y | P = p) is the average of 1s
in the equivalence classes for which the average of 1s is p;
therefore, we indeed have E(Y | P = p) = p.

The following simple corollary of Theorem 1 gives a
weaker property of validity, which is sometimes called
“unbiasedness in the large” [11, 4].

Corollary 1. For any Venn predictor V and any l =
1, 2, . . .,

P(Y = 1) ∈
[
E (V (X;X1, Y1, . . . , Xl, Yl)) ,

E
(
V (X;X1, Y1, . . . , Xl, Yl)

)]
, (2)

where (X1, Y1), . . . , (Xl, Yl), (X,Y ) are IID observations
and [V (. . .), V (. . .)] is the probability interval produced
by V for the test object X based on the training sequence
(X1, Y1, . . . , Xl, Yl).

Proof. It suffices to notice that, for a selector S such that
P = PS ((P0, P1) being the output of V ) satisfies the con-
dition of perfect calibration (1),

P(Y = 1) = E(Y ) = E(E(Y | PS))

= E(PS) ∈
[
EV ,EV

]
,

where the arguments of V and V are omitted.

Unbiasedness in the large (2) is easy to achieve even for
probabilistic predictors if we do not care about other mea-
sures of quality of our predictions: for example, the prob-
abilistic predictor ignoring the xs and outputting k/l as its
prediction, where k is the number of 1s in the training se-
quence of size l, is unbiased in the large. Unbiasedness in
the small (1) is also easy to achieve if we allow multiproba-
bilistic predictors: consider the multiprobabilistic predictor
ignoring the xs and outputting {k/(l+1), (k+1)/(l+1)} as
its prediction. The problem is how to achieve predictive ef-
ficiency (making our prediction as relevant to the test object
as possible without overfitting) while maintaining validity.

Our following result, Theorem 2, will say that under mild
regularity conditions unbiasedness in the small (1) holds
only for Venn predictors (perhaps weakened by adding ir-
relevant probabilistic predictions) and, therefore, implies
all other properties of validity, such as the more compli-
cated one given in [15, Chapter 6].

To state Theorem 2 we need a few further definitions. Let
us fix the length l of the training sequence for now. A mul-
tiprobabilistic predictor is a function that maps each se-
quence (z1, . . . , zl) ∈ Zl to a subset of [0, 1] (not required
to be measurable in any sense). Venn predictors are an im-
portant example for this paper. Let us say that a multiprob-
abilistic predictor is invariant if it is independent of the or-
dering of the training set (z1, . . . , zl). An invariant selector

for an invariant multiprobabilistic predictor F is a measur-
able function f : Zl+1 → [0, 1] such that f(z1, . . . , zl+1)
does not change when z1, . . . , zl are permuted and such
that f(z1, . . . , zl+1) ∈ F (z1, . . . , zl) for all (z1, . . . , zl+1).
(It is natural to consider only invariant predictors and se-
lectors under the IID assumption because of the principle
of sufficiency [3, Chap. 2].) We say that an invariant multi-
probabilistic predictor F is invariantly perfectly calibrated
if it has an invariant selector f such that

E
(
Y | f(Z1, . . . , Zl, (X,Y ))

)

= f(Z1, . . . , Zl, (X,Y )) a.s. (3)

whenever Z1, . . . , Zl, (X,Y ) are IID observations.

Theorem 2. If an invariant multiprobabilistic predic-
tor F is invariantly perfectly calibrated, then it contains
a Venn predictor V in the sense that both elements of
V (Z1, . . . , Zl) belong to F (Z1, . . . , Zl) almost surely
provided Z1, . . . , Zl are IID.

Proof. Let f be an invariant selector of F satisfying the
condition (3) of being invariantly perfectly calibrated. By
definition,

E
(
Y − f(Z1, . . . , Zl, (X,Y )) |

f(Z1, . . . , Zl, (X,Y ))
)

= 0 a.s.,

which implies

E
(
(Y − f(Z1, . . . , Zl, (X,Y )))

1{f(Z1,...,Zl,(X,Y ))∈[a,b]}
)

= 0 a.s. (4)

for all intervals [a, b] with rational end-points. The ex-
pected value in (4) can be obtained in two steps: first we
average

(y′l+1 − f(z′1, . . . , z
′
l+1))1{f(z′1,...,z′l+1)∈[a,b]}

over the orderings (z′1, . . . , z
′
l+1) of each bag *z1, . . . , zl+1+,

where zi = (xi, yi) and z′i = (x′i, y
′
i), and then we aver-

age over the bags *z1, . . . , zl+1+ generated according
to zi := Zi, i = 1, . . . , l, and zl+1 := (X,Y ). The
first operation is discrete: the average over the orderings of
*z1, . . . , zl+1+ is the arithmetic mean of (yi−pi)1{pi∈[a,b]}
over i = 1, . . . , l + 1, where pi := f(. . . , zi) and the dots
stand for z1, . . . , zi−1 and zi+1, . . . , zl+1 arranged in any
order (since f is invariant, the order does not matter). By
the completeness of the statistic that maps a data sequence
of size l+1 to the corresponding bag [10, Section 4.3], this
average is zero for all [a, b] and almost all bags. Without
loss of generality we assume that this holds for all bags.

Define a Venn taxonomy A as follows: given a sequence
(z1, . . . , zl+1), set i ∼ j if pi = pj where p is defined
as above. It is easy to check that the corresponding Venn
predictor satisfies the requirement in Theorem 2.
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Remark. The invariance assumption in Theorem 2 is es-
sential. Indeed, suppose l > 1 and consider the multiprob-
abilistic predictor whose prediction for the label of the test
observation does not depend on the objects and is

{
{k/l, (k + 1)/l} if y1 = 0

{(k − 1)/l, k/l} if y1 = 1,

where k is the number of 1s among the labels of the l train-
ing observations. This non-invariant predictor is perfectly
calibrated (see below) but does not contain a Venn predic-
tor (if it did, such a Venn predictor, being invariant, would
always output the one-element multiprobabilistic predic-
tion {k/l}, which is impossible). Let us check that this
non-invariant predictor is indeed perfectly calibrated, even
given the union of the training set and the test observation
(i.e., given the bag of size l + 1 obtained from the training
sequence by joining the test observation and then forget-
ting the ordering). Take the selector such that the selected
probabilistic predictor is





k/l for sequences of the form 0 . . . 0

(k + 1)/l for sequences of the form 0 . . . 1

(k − 1)/l for sequences of the form 1 . . . 0

k/l for sequences of the form 1 . . . 1.

For a binary sequence of labels of length l + 1 with m 1s
the probabilistic prediction P for its last element will be,
therefore,





m/l for sequences of the form 0 . . . 0

m/l for sequences of the form 0 . . . 1

(m− 1)/l for sequences of the form 1 . . . 0

(m− 1)/l for sequences of the form 1 . . . 1.

The conditional probability that Y = 1 (Y being the label
of the last element) given P = p (and given m) is

(
l−1
m−1

)
(
l
m

) =
m

l

when p = m/l and is
(
l−1
m−2

)
(

l
m−1

) =
m− 1

l

when p = (m − 1)/l; in both cases we have perfect cali-
bration.

3 VENN–ABERS PREDICTORS

We say that a function f is increasing if its domain is an
ordered set and t1 ≤ t2 ⇒ f(t1) ≤ f(t2).

Many machine-learning algorithms for classification are
in fact scoring classifiers: when trained on a training se-
quence of observations and fed with a test object x, they

output a prediction score s(x); we will call s : X→ R the
scoring function for that training sequence. The actual clas-
sification algorithm is obtained by fixing a threshold c and
predicting the label of x to be 1 if and only if s(x) ≥ c (or if
and only if s(x) > c). Alternatively, one could apply an in-
creasing function g to s(x) in an attempt to “calibrate” the
scores, so that g(s(x)) can be used as the predicted proba-
bility that the label of x is 1.

Fix a scoring classifier and let (z1, . . . , zl) be a training
sequence of observations zi = (xi, yi), i = 1, . . . , l.
The most direct application [17] of the method of iso-
tonic regression [1] to the problem of score calibration
is as follows. Train the scoring classifier on the training
sequence and compute the score s(xi) for each training
observation (xi, yi), where s is the scoring function for
(z1, . . . , zl). Let g be the increasing function on the set
{s(x1), . . . , s(xl)} that maximizes the likelihood

l∏

i=1

pi, where pi :=

{
g(s(xi)) if yi = 1

1− g(s(xi)) if yi = 0.
(5)

Such a function g is indeed unique [1, Corollary 2.1] and
can be easily found using the “pair-adjacent violators algo-
rithm” (PAVA, described in detail in the summary of [1]
and in [2, Section 1.2]; see also the proof of Lemma 1
below). We will say that g is the isotonic calibrator for
((s(x1), y1), . . . , (s(xl), yl)). To predict the label of a test
object x, the direct method finds the closest s(xi) to s(x)
and outputs g(s(xi)) as its prediction (in the case of ties our
implementation of this method used in Section 5 chooses
the smaller s(xi); however, ties almost never happen in our
experiments). We will refer to this as the direct isotonic-
regression (DIR) method.

The direct method is prone to overfitting as the same ob-
servations z1, . . . , zl are used both for training the scor-
ing classifier and for calibration without taking any pre-
cautions. The Venn–Abers predictor corresponding to the
given scoring classifier is the multiprobabilistic predictor
that is defined as follows. Try the two different labels, 0
and 1, for the test object x. Let s0 be the scoring func-
tion for (z1, . . . , zl, (x, 0)), s1 be the scoring function for
(z1, . . . , zl, (x, 1)), g0 be the isotonic calibrator for

(
(s0(x1), y1), . . . , (s0(xl), yl), (s0(x), 0)

)
, (6)

and g1 be the isotonic calibrator for
(
(s1(x1), y1), . . . , (s1(xl), yl), (s1(x), 1)

)
. (7)

The multiprobabilistic prediction output by the Venn–
Abers predictor is (p0, p1), where p0 := g0(s0(x)) and
p1 := g1(s1(x)). (And we can expect p0 and p1 to be close
to each other unless DIR overfits grossly.) The Venn–Abers
predictor is described as Algorithm 1.

The intuition behind Algorithm 1 is that it tries to evaluate
the robustness of the DIR prediction. To see how sensi-
tive the scoring function is to the training set we extend
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Algorithm 1 Venn–Abers predictor
Input: training sequence (z1, . . . , zl)
Input: test object x
Output: multiprobabilistic prediction (p0, p1)

for y ∈ {0, 1} do
set sy to the scoring function for (z1, . . . , zl, (x, y))
set gy to the isotonic calibrator for

(sy(x1), y1), . . . , (sy(xl), yl), (sy(x), y)
set py := gy(sy(x))

end for

the latter by adding the test object labelled in two different
ways. And to see how sensitive the probabilistic prediction
is, we again consider the training set extended in two dif-
ferent ways (if it is sensitive, the prediction will be fragile
even if the scoring function is robust). For large data sets
and inflexible scoring functions, we will have p0 ≈ p1, and
both numbers will be close to the DIR prediction. However,
even if the data set is very large but the scoring function is
very flexible, p0 can be far from p1 (the extreme case is
where the scoring function is so flexible that it ignores all
observations apart from a few that are most similar to the
test object, and in this case it does not matter how big the
data set is). We rarely know in advance how flexible our
scoring function is relative to the size of the data set, and
the difference between p0 and p1 gives us some indication
of this.

The following proposition says that Venn–Abers predictors
are Venn predictors and, therefore, inherit all properties of
validity of the latter, such as Theorem 1.

Proposition 1. Venn–Abers predictors are Venn predictors.

Proof. Fix a Venn–Abers predictor. The corresponding
Venn taxonomy is defined as follows: given a sequence

(z1, . . . , zn) = ((x1, y1), . . . , (xn, yn)) ∈ (X× {0, 1})n

and i, j ∈ {1, . . . , n}, we set i ∼ j if and only if
g(s(xi)) = g(s(xj)), where s is the scoring function
for (z1, . . . , zn) and g is the isotonic calibrator for

(
(s(x1), y1), . . . , (s(xn), yn)

)
.

Lemma 1 below shows that the Venn predictor correspond-
ing to this taxonomy gives predictions identical to those
given by the original Venn–Abers predictor. This proves
the proposition.

Lemma 1. Let g be the isotonic calibrator for
(
(t1, y1), . . . , (tn, yn)

)
,

where ti ∈ R and yi ∈ {0, 1}, i = 1, . . . , n. Any p ∈
{g(t1), . . . , g(tn)} is equal to the arithmetic mean of the
labels yi of the ti, i = 1, . . . , n, satisfying g(ti) = p.

Proof. The statement of the lemma immediately follows
from the definition of the PAVA [1, summary], which
we will reproduce here. Arrange the numbers ti in
the strictly increasing order t(1) < · · · < t(k), where
k ≤ n is the number of distinct elements among ti. We
would like to find the increasing function g on the set
{t(1), . . . , t(k)} = {t1, . . . , tn} maximizing the likelihood
(defined by (5) with ti in place of s(xi) and n in place
of l). The procedure is recursive. At each step the set
{t(1), . . . , t(k)} is partitioned into a number of disjoint
cells consisting of adjacent elements of the set; to each
cell is assigned a ratio a/N (formally, a pair of integers,
with a ≥ 0 and N > 0); the function g defined at this step
(perhaps to be redefined at the following steps) is constant
on each cell. For j = 1, . . . , k, let a(j) be the number
of i such that yi = 1 and ti = t(j), and let N(j) be the
number of i such that ti = t(j). Start from the partition
of {t(1), . . . , t(k)} into one-element cells, assign the ratio
a(j)/N(j) to {t(j)}, and set

g(t(j)) :=
a(j)

N(j)
(8)

(in the notation used in this proof, a/N is a pair of integers
whereas a

N is a rational number, the result of the division).
If the function g is increasing, we are done. If not, there is
a pair C1, C2 of adjacent cells (“violators”) such that C1 is
to the left of C2 and g(C1) > g(C2) (where g(C) stands
for the common value of g(t(j)) for t(j) ∈ C); in this case
redefine the partition by merging C1 and C2 into one cell
C, assigning the ratio (a1 + a2)/(N1 + N2) to C, where
a1/N1 and a2/N2 are the ratios assigned to C1 and C2,
respectively, and setting

g(t(j)) :=
N1

N1 +N2
g(C1) +

N2

N1 +N2
g(C2)

=
a1 + a2
N1 +N2

(9)

for all t(j) ∈ C. Repeat the process until g becomes in-
creasing (the number of cells decreases by 1 at each itera-
tion, so the process will terminate in at most k steps). The
final function g is the one that maximizes the likelihood.
The statement of the lemma follows from this recursive def-
inition: it is true by definition for the initial function (8) and
remains true when g is redefined by (9).

4 PROBABILISTIC PREDICTORS
DERIVED FROM VENN PREDICTORS

In the next section we will compare Venn–Abers predic-
tors with known probabilistic predictors using standard loss
functions. Since Venn–Abers predictors output pairs of
probabilities rather than point probabilities, we will need to
fit them (somewhat artificially) in the standard framework
extracting one probability p from p0 and p1.
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In this paper we will use two loss functions, log loss and
square loss. The log loss suffered when predicting p ∈
[0, 1] whereas the true label is y is

λln(p, y) :=

{
− ln(1− p) if y = 0

− ln p if y = 1.

This is the most fundamental loss function, since the cumu-
lative loss

∑n
i=1 λln(pi, yi) over a test sequence of size n is

equal to the minus log of the probability that the predictor
assigns to the sequence (this assumes either the batch mode
of prediction with independent test observations or the on-
line mode of prediction); therefore, a smaller cumulative
log loss corresponds to a larger probability. The square
loss suffered when predicting p ∈ [0, 1] for the true label y
is

λsq(p, y) := (y − p)2.
The main advantage of this loss function is that it is proper
(see, e.g., [4]): the function Ey∼Bp λsq(q, y) of q ∈ [0, 1],
where Bp is the Bernoulli distribution with parameter p,
attains its minimum at q = p. (Of course, the log loss
function is also proper.)

First suppose that our loss function is λln and we are given
a multiprobabilistic prediction (p0, p1); let us find the cor-
responding minimax probabilistic prediction p. If the true
outcome is y = 0, our regret for using p instead of the ap-
propriate p0 is− ln(1−p)+ln(1−p0). If y = 1, our regret
for using p instead of the appropriate p1 is − ln p + ln p1.
The first regret as a function of p ∈ [0, 1] strictly increases
from a nonpositive value to ∞ as p changes from 0 to 1.
The second regret as a function of p strictly decreases from
∞ to a nonpositive value as p changes from 0 to 1. There-
fore, the minimax regret is the solution to

− ln(1− p) + ln(1− p0) = − ln p+ ln p1,

which is
p =

p1
1− p0 + p1

. (10)

The intuition behind this minimax value of p is that we can
interpret the multiprobabilistic prediction (p0, p1) as the
unnormalized probability distribution P on {0, 1} such that
P ({0}) = 1−p0 andP ({1}) = p1; we then normalizeP to
get a genuine probability distribution P ′ := P/P ({0, 1}),
and the p in (10) is equal to P ′({1}). Of course, it is always
true that p ∈ conv(p0, p1).

In the case of the square loss function, the regret is
{
p2 − p20 if y = 0

(1− p)2 − (1− p1)2 if y = 1

and the two regrets are equal when

p := p1 + p20/2− p21/2. (11)

To see how natural this expression is notice that (11) is
equivalent to

p = p̄+ (p1 − p0)

(
1

2
− p̄
)
,

where p̄ := (p0 + p1)/2. Therefore, p is a regularized
version of p̄: we move p̄ towards the neutral value 1/2 in
the typical (for the Venn–Abers method) case where p0 <
p1. In any case, we always have p ∈ conv(p0, p1).

The following lemma shows that log loss is never infinite
for probabilistic predictors derived from Venn predictors.

Lemma 2. Neither of the methods discussed in this section
(see (10) and (11)) ever produces p ∈ {0, 1} when applied
to Venn–Abers predictors.

Proof. Lemma 1 implies that p0 < 1 and that p1 > 0. It
remains to notice that both (10) and (11) produce p in the
interior of conv(p0, p1) if p0 6= p1 and produce p = p0 =
p1 if p0 = p1 (and this is true for any sensible averaging
method).

5 EXPERIMENTAL RESULTS

In this section we compare various calibration methods dis-
cussed so far by applying them to six standard scoring clas-
sifiers (we will usually omit “scoring” in this section) avail-
able within Weka [6], a machine learning tool developed at
the University of Waikato, NZ. The standard classifiers are
J48 decision trees (abbreviated to J48, or even to J), J48
decision trees with bagging (J48 Bagging, or JB), logistic
regression (LR), naı̈ve Bayes (NB), neural networks (NN),
and support vector machines calibrated using a sigmoid
function as defined by Platt [13] (SVM Platt, or simply
SVM). Each of these standard classifiers produces scores in
the interval [0, 1], which can then be used as probabilistic
predictions; however, in most previous studies these have
been found to be inaccurate (see [17] and [9]). We use
the scores generated by classifiers as inputs, and by apply-
ing the DIR (defined in Section 3), Venn–Abers (VA), and
simplified Venn–Abers (SVA, see below) methods we in-
vestigate how well we can calibrate the scores and improve
them in their role as probabilistic predictions.

In the set of experiments described in this section we do
not perform a direct comparison to the method developed
by Langford and Zadrozny [9] primarily because, as far as
we are aware, the algorithms described in their work are
not publicly available.

For the purpose of comparison we use a total of nine
datasets with binary labels (encoded as 0 or 1) obtained
from the UCI machine learning repository [5]: Australian
Credit (which we abbreviate to Australian), Breast Can-
cer (Breast), Diabetes, Echocardiogram (Echo), Hepatitis,
Ionosphere, Labor Relations (Labor), Liver Disorders

834



Table 1: Log loss (MLE) results obtained using standard Weka classifiers (W) and the three calibration methods (VA, SVA,
DIR) applied to the standard classifiers’ outputs for the following Weka classifiers: J48, J48 Bagging, logistic regression
(upper part) and naı̈ve Bayes, neural networks, and SVM Platt (lower part). The best results for each pair (classifier, dataset)
are in bold.

J48 (J) J48 Bagging (JB) logistic regression (LR)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian ∞ 0.380 0.469 ∞ 0.328 0.369 0.344 ∞ 0.342 0.340 0.340 ∞
Breast ∞ 0.607 0.642 ∞ 0.581 0.592 0.636 ∞ 0.584 0.567 0.586 ∞
Diabetes ∞ 0.552 0.635 ∞ 0.504 0.515 0.561 ∞ 0.492 0.490 0.491 ∞
Echo ∞ 0.606 0.670 ∞ 0.556 0.517 0.563 ∞ ∞ 0.589 0.606 ∞
Hepatitis ∞ 0.491 0.528 ∞ 0.420 0.456 0.434 ∞ ∞ 0.393 0.504 ∞
Ionosphere ∞ 0.383 0.410 ∞ ∞ 0.387 0.251 ∞ ∞ 0.387 0.524 ∞
Labor ∞ 0.503 0.537 ∞ 0.427 0.427 0.385 ∞ 1.927 0.687 0.297 ∞
Liver ∞ 0.662 0.866 ∞ 0.609 0.635 0.707 ∞ 0.619 0.622 0.611 ∞
Vote ∞ 0.134 0.145 ∞ 0.135 0.159 0.131 ∞ 1.059 0.188 0.148 ∞

naı̈ve Bayes (NB) neural networks (NN) SVM Platt (SVM)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian 0.839 0.355 0.367 ∞ 0.557 0.427 0.450 ∞ 0.391 0.356 0.351 ∞
Breast 0.663 0.563 0.551 ∞ 0.774 0.615 0.738 ∞ 0.583 0.568 0.582 ∞
Diabetes 0.753 0.495 0.508 ∞ 0.536 0.500 0.519 ∞ 0.491 0.497 0.490 ∞
Echo 0.658 0.505 0.522 ∞ 0.770 0.578 0.605 ∞ 0.558 0.495 0.538 ∞
Hepatitis 0.936 0.365 0.372 ∞ 0.753 0.471 0.484 ∞ 0.435 0.349 0.404 ∞
Ionosphere 0.704 0.262 0.227 ∞ 0.625 0.427 0.379 ∞ 0.359 0.250 0.333 ∞
Labor 1.854 0.410 0.296 ∞ 0.325 0.560 0.298 ∞ 3.643 0.364 0.287 ∞
Liver 0.727 0.649 0.661 ∞ 0.642 0.603 0.615 ∞ 0.645 0.663 0.639 ∞
Vote 0.594 0.218 0.211 ∞ 0.235 0.229 0.158 ∞ 0.125 0.211 0.121 ∞

(Liver), and Congressional Voting (Vote). The datasets
vary in size as well as the number and type of attributes in
order to give a reasonable range of conditions encountered
in practice.

In our comparison we use the two standard loss functions
discussed in the previous section. Namely, on a given test
sequence of length n we will calculate the mean log error
(MLE)

1

n

n∑

i=1

λln(pi, yi) (12)

and the root mean square error (RMSE)
√√√√ 1

n

n∑

i=1

λsq(pi, yi), (13)

where pi is the probabilistic prediction for the label yi of
the ith observation in the test sequence. MLE (12) can be
infinite, namely when predicting pi ∈ {0, 1} while being
incorrect. It therefore penalises the overly confident prob-
abilistic predictions much more significantly than RMSE.
We compare the performance of the standard classifiers
with their versions calibrated using the three methods (VA,
SVA, and DIR) under both loss functions for each dataset.
In each experiment we randomly permute the dataset and
use the first 2/3 observations for training and the remain-
ing 1/3 for testing.

One of the potential drawbacks of the Venn–Abers method
is its computational inefficiency: for each test object the

scores have to be recalculated for the training sequence ex-
tended by including the test object first labelled as 0 and
then labelled as 1. This implies that the total calculation
time is at least 2n times that of the underlying classifier,
where n is the number of test observations. Therefore, we
define a simplified version of Venn–Abers predictors, for
which the scores are calculated only once without recal-
culating them for each test object with postulated labels 0
and 1.

In detail, the simplified Venn–Abers predictor for a given
scoring classifier is defined as follows. Let (z1, . . . , zl) be
a training sequence and x be a test object. Define s to be
the scoring function for (z1, . . . , zl), g0 to be the isotonic
calibrator for

(
(s(x1), y1), . . . , (s(xl), yl), (s(x), 0)

)
,

and g1 to be the isotonic calibrator for
(
(s(x1), y1), . . . , (s(xl), yl), (s(x), 1)

)

(cf. (6) and (7)). The multiprobabilistic prediction output
for the label of x by the simplified Venn–Abers (SVA)
predictor is (p0, p1), where p0 := g0(s(x)) and p1 :=
g1(s(x)). This method, summarized as Algorithm 2, is in-
termediate between DIR and the Venn–Abers method.

Notice that Lemma 2 continues to hold for SVA predictors;
therefore, they never suffer infinite loss even under the log
loss function. On the other hand, the following proposition
shows that SVA predictors can violate the property (2) of
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Table 2: The analogue of Table 1 for square loss (RMSE).

J48 (J) J48 Bagging (JB) logistic regresion (LR)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian 0.366 0.346 0.359 0.366 0.313 0.338 0.318 0.323 0.317 0.319 0.319 0.321
Breast 0.472 0.453 0.463 0.473 0.443 0.451 0.460 0.474 0.442 0.437 0.444 0.450
Diabetes 0.449 0.431 0.443 0.449 0.407 0.415 0.420 0.427 0.399 0.401 0.401 0.402
Echo 0.478 0.456 0.460 0.482 0.427 0.417 0.423 0.444 0.457 0.443 0.446 0.475
Hepatitis 0.407 0.393 0.401 0.419 0.362 0.390 0.368 0.391 0.400 0.357 0.384 0.411
Ionosphere 0.318 0.355 0.312 0.318 0.267 0.356 0.261 0.267 0.357 0.363 0.349 0.361
Labor 0.407 0.403 0.402 0.413 0.361 0.371 0.339 0.341 0.294 0.498 0.287 0.303
Liver 0.528 0.482 0.518 0.528 0.457 0.478 0.478 0.493 0.460 0.463 0.458 0.461
Vote 0.187 0.186 0.186 0.187 0.187 0.206 0.186 0.188 0.198 0.233 0.195 0.203

naı̈ve Bayes (NB) neural networks (NN) SVM Platt (SVM)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian 0.392 0.328 0.333 0.335 0.360 0.363 0.361 0.371 0.343 0.324 0.325 0.327
Breast 0.449 0.436 0.427 0.433 0.485 0.465 0.491 0.508 0.443 0.431 0.442 0.447
Diabetes 0.420 0.406 0.410 0.413 0.413 0.408 0.413 0.417 0.399 0.393 0.400 0.402
Echo 0.428 0.408 0.412 0.426 0.457 0.436 0.443 0.468 0.416 0.427 0.418 0.431
Hepatitis 0.357 0.339 0.335 0.342 0.396 0.402 0.379 0.427 0.350 0.350 0.353 0.364
Ionosphere 0.281 0.273 0.250 0.251 0.321 0.378 0.316 0.333 0.312 0.309 0.312 0.316
Labor 0.256 0.363 0.284 0.281 0.279 0.442 0.293 0.307 0.274 0.358 0.280 0.283
Liver 0.480 0.476 0.478 0.487 0.459 0.456 0.456 0.463 0.473 0.477 0.472 0.477
Vote 0.292 0.257 0.251 0.250 0.216 0.271 0.206 0.227 0.183 0.191 0.185 0.188

Algorithm 2 Simplified Venn–Abers predictor
Input: training sequence (z1, . . . , zl)
Input: test object x
Output: multiprobabilistic prediction (p0, p1)

for y ∈ {0, 1} do
set s to the scoring function for (z1, . . . , zl)
set gy to the isotonic calibrator for

(s(x1), y1), . . . , (s(xl), yl), (s(x), y)
set py := gy(s(x))

end for

unbiasedness in the large; in particular, they are not Venn
predictors (cf. Corollary 1).

Proposition 2. There exists a simplified Venn–Abers pre-
dictor violating (2) for some l.

Proof. Let the object space be the real line, X := R, and
the probability distribution generating independent obser-
vations (X,Y ) be such that: the marginal distribution of
X is continuous; the probability that X > 0 (and, there-
fore, the probability that X < 0) is 1/2; the probability
that Y = 1 given X < 0 is 1/3; the probability that Y = 1
given X > 0 is 2/3. Therefore, P(Y = 1) = 1/2. Let l
be a large number (we are using a somewhat informal lan-
guage, but formalization will be obvious). Given a training
set (z1, . . . , zl), where zi = (xi, yi) for all i, the scoring
function s is:

s(x) :=





0 if x ∈ {x1, . . . , xl} and x < 0

1 if x ∈ {x1, . . . , xl} and x > 0

2 if x /∈ {x1, . . . , xl}.

It is easy to see that, with high probability,

V ≈ 2/3, V = 1.

Therefore, (2) is violated.

Proposition 2 shows that SVA predictors are not always
valid; however, the construction in its proof is artificial, and
our hope is that they will be “nearly valid” in practice, since
they are a modification of provably valid predictors.

For each dataset/classifier combination, we repeat the same
experiment a total of 100 times for standard classifiers (de-
noted W in the tables), SVA, and DIR and 16 times for VA
(because of the computational inefficiency of the latter) and
average the results. The same 100 random splits into train-
ing and test sets are used for W, SVA, and DIR, but for VA
the 16 splits are different.

Tables 1–2 compare the overall losses computed according
to (12) (MLE, used in Table 1) and (13) (RMSE, used in
Table 2) for probabilities generated by the standard clas-
sifiers as implemented in Weka (W) and the correspond-
ing Venn–Abers (VA), simplified Venn–Abers (SVA), and
direct isotonic-regression (DIR) predictors. The values
in bold indicate the lowest of the four losses for each
dataset/classifier combination. The column titles mention
both fuller and shorter names for the six standard classi-
fiers; the short name “SVM” is especially appropriate when
using VA, SVA, and DIR, in which case the application of
the sigmoid function in Platt’s method is redundant. The
three entries of∞ in the column W for logistic regression
of Table 1 come out as infinities in our experiments only
because of the limited machine accuracy: logistic regres-
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sion sometimes outputs probabilistic predictions that are so
close to 0 or 1 that they are rounded to 0 or 1, respectively,
by hardware.

In the case of MLE, the VA and SVA methods improve the
predictive performance of the majority of the standard clas-
sifiers on most datasets. A major exception is J48 Bagging.
The application of bagging to J48 decision trees improves
the calibration significantly as bagging involves averaging
over different training sets in order to reduce the underly-
ing classifier’s instability. The application of VA and SVA
to J48 Bagging is not found to improve the log or square
loss significantly. What makes VA and SVA useful is that
for many data sets other classifiers, less well calibrated than
J48 Bagging, provide more useful scores.

In the case of RMSE, the application of VA and SVA also
often improves probabilistic predictions.

Whereas in the case of square loss the DIR method often
produces values comparable to VA and SVA, under log loss
this method fares less well (which is not obvious from [17],
which only uses square loss). In all our experiments DIR
suffers infinite log loss for at least one test observation,
which makes the overall MLE infinite. There are modi-
fications of the DIR method preventing probabilistic pre-
dictions in {0, 1} (such as those mentioned in [12], Sec-
tion 3.3), but they are somewhat arbitrary.

Table 3 ranks, for each loss function and dataset, the four
calibration methods: W (none), VA (Venn–Abers), SVA
(simplified Venn–Abers), and DIR (direct isotonic regres-
sion). Only the first three methods are given (the best, the
second best, and the second worst), where the quality of a
method is measured by the performance of the best under-
lying classifier (indicated in parentheses using the abbre-
viations given in the column titles of Tables 1–2) for the
given method, data set, and loss function. Notice that we
are ranking the four calibration methods rather than the 24
combinations of Weka classifiers with calibration methods
(e.g., were we ranking the 24 combinations, the entry for
log loss and Australian would remain the same but the next
entry, for log loss and Breast, would become “SVA (NB),
VA (NB), VA (LR)”).

For MLE, the best algorithm is VA or SVA for 8 data sets
out of 9; for RMSE this is true for 6 data sets out of 9. In all
other cases the best algorithm is W rather than DIR. (And
as discussed earlier, in the case of log loss the performance
of DIR is especially poor.) Therefore, it appears that the
most interesting comparisons are between W and VA and
between W and SVA.

What is interesting is that VA and SVA perform best on
equal numbers of datasets, 4 each in the case of MLE and
3 each in the case of RMSE, despite the theoretical guar-
antees of validity for the former method (such as Theo-
rem 1). The similar performance of the two methods needs

to be confirmed in more extensive empirical studies, but if
it is, SVA will be a preferable method because of its greater
computational efficiency.

Comparing W and SVA, we can see that SVA performs bet-
ter than W on 7 data sets out of 9 for MLE, and on 5 data
sets out of 9 for RMSE. And comparing W and VA, we can
see that VA performs better than W on 6 data sets out of 9
for MLE, and on 5 data sets out of 9 for RMSE. This sug-
gests that SVA might be an improvement of VA not only
in computational but also in predictive efficiency (but the
evidence for this is very slim).

6 CONCLUSION

This paper has introduced a new class of Venn predic-
tors thereby extending the domain of applicability of the
method. Our experimental results suggest that the Venn–
Abers method can potentially lead to better calibrated prob-
abilistic predictions for a variety of datasets and standard
classifiers. The method seems particularly suitable in cases
where alternative probabilistic predictors produce overcon-
fident but erroneous predictions under an unbounded loss
function such as log loss. In addition, the results suggest
that an alternative simplified Venn–Abers method can yield
similar results while retaining computational efficiency.

Unlike the previous methods for improving the calibration
of probabilistic predictors, Venn–Abers predictors enjoy
theoretical guarantees of validity (shared with other Venn
predictors).
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Abstract

Finding the MAP assignment in graphical mod-
els is a challenging task that generally requires
approximations. One popular approximation ap-
proach is to use linear programming relaxations
that enforce local consistency. While these are
commonly used for discrete variable models,
they are much less understood for models with
continuous variables.
Here we define local consistency relaxations of
MAP for continuous pairwise Markov Random
Fields (MRFs), and analyze their properties. We
begin by providing a characterization of models
for which this relaxation is tight. These turn out
to be models that can be reparameterized as a
sum of local convex functions. We also provide
a simple formulation of this relaxation for Gaus-
sian MRFs.
Next, we show how the above insights can be
used to obtain optimality certificates for loopy
belief propagation (LBP) in such models. Specif-
ically, we show that the messages of LBP can
be used to calculate upper and lower bounds on
the MAP value, and that these bounds coincide
at convergence, yielding a natural stopping crite-
rion which was not previously available.
Finally, our results illustrate a close connection
between local consistency relaxations of MAP
and LBP. They demonstrate that in the continu-
ous case, whenever LBP is provably optimal so
is the local consistency relaxation.

1 INTRODUCTION

Graphical models [13] have become a key tool for describ-
ing multivariate distributions. For many models of interest,
the basic inference task of finding the most likely assign-
ment (also known as the MAP assignment) is computation-
ally hard [26], and one must resort to approximations.

When the model variables are discrete, a popular approx-
imation scheme is linear programming relaxations (LPR).
These approximate the MAP problem via minimization of
a linear function over locally consistent pseudo-marginals.
LPRs have several advantages: they provide optimality cer-
tificates, they can be optimized via message passing al-
gorithms, they work well in practice, and they are prov-
ably exact in some cases (e.g., binary attractive models and
trees) [8, 27, 28, 36, 11].

For models with continuous variables, it is less clear how
to apply the local consistency perspective of LPRs. For ex-
ample, the psuedo-marginals now become functions rather
than a discrete set of variables. Moreover, the standard
consistency constraints translate into a continuum of con-
straints. The goal of the current paper is to study such re-
laxations and understand when they are tight.

Another commonly used approximate inference algorithm
is loopy belief propagation (LBP)[37]. It works by passing
messages along the graph, in a manner motivated by vari-
able elimination on tree structured models. Although LBP
and LPR are generally distinct algorithms, there are cases
where both are exact. For example, both yield the exact
MAP for tree models, maximum weight matching [3, 24]
and a few other problems (see Section 8). However, there is
still no general result linking LPR and LBP. Since LBP in
the continuous case is fairly well understood [16, 17], we
will want to link our results to known results on LBP.

We begin by defining local consistency MAP relaxations
for continuous models. Technically, these will be con-
structed in an analogous way to the LP relaxations for dis-
crete variables. However, they will typically not corre-
spond to standard linear programs and thus we refer to them
as local consistency relaxations (LCRs).

We obtain several surprising results on LCRs. For simplic-
ity of presentation we focus on pairwise MRFs, but exten-
sions to larger cliques are possible (see Section 7). Our first
key result is to show that the LCR of a model is tight if the
model is “convex decomposable” (CD). A model is CD if
it can be expressed as a sum of pairwise convex functions
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(see [17] for a similar definition).

For continuous MRFs there are several cases where LBP
is known to converge to the exact MAP. It is thus of inter-
est to relate these to our LCR results in order to further
our understanding of the relation between these two ap-
proximation schemes. The relation turns out to be simple
and interesting. For Gaussian MRFs LBP is provably opti-
mal when the model is walk-summable [16, 18], a property
which turns out to be equivalent to convex decomposability
of the model. In other words LCR and LBP are both exact
on these models. For general MRFs, LBP is provably opti-
mal for models that are scaled diagonally dominant [17].
These turn out to be a strict subset of CD models, sug-
gesting that either LCR is a stronger approximation or that
stronger properties of LBP can be shown.

The above results on LCR and the relation to LBP lead to
an important practical implication. It turns out we can use
these insights to obtain runtime optimality certificates for
loopy belief propagation (LBP) in a wide range of models.
Specifically, we show that the messages of LBP can be used
to calculate upper and lower bounds on the MAP value, and
that these bounds coincide at convergence, yielding a nat-
ural stopping criterion for LBP, which was not previously
available.

2 MAP IN CONTINUOUS MRFS

We begin by recalling MAP inference in graphical mod-
els and how LP relaxations are used to obtain approximate
solutions of the problem.

Consider n variables X1, . . . ,Xn, and a set of singleton
and pairwise functions fi(xi), fij(xi, xj) where the pairs
ij are a set of edges of a graph G = (V,E). Use these to
define a function over x = x1, . . . , xn:

F (x) =∑
i

fi(xi) +∑
ij

fij(xi, xj). (1)

For now we do not assume anything about the state spaces
of the variables. We refer to F (x) as an MRF over
X1, . . . ,Xn and consider the MAP problem of minimizing
F (x).1

It will be convenient in what follows to express F (x) as a
linear function of certain functions of x (our notation fol-
lows that of [33]). Assume there exists a vector of functions
φi(xi) of xi, and a vector θi such that:

fi(xi) = ⟨θi,φi(xi)⟩.

For example if φi(xi) = [xi, x
2
i ] then fi(xi) is the

quadratic function fi(xi) = θi,1xi + θi,2x
2
i . Similarly

1We refer to this as the MAP problem since it corresponds to
finding the maximum a posteriori assignment to x in the model
p(x)∝ exp (−F (x)).

assume there exist functions φi,j(xi, xj) and vectors θij
such that:

fij(xi, xj) = ⟨θij ,φij(xi, xj)⟩. (2)

Denote the concatenation of all θi,θij by θ and the con-
catenation of all φi,φij functions by φ. Furthermore, de-
note the dimension of θ and φ by m. We can thus write:

F (x) = ⟨θ,φ(x)⟩, (3)

The MAP problem has an equivalent formulation in terms
of mean parameters, as shown in [33] and as reviewed next.
We define the set of realizable mean parameters:

M = {µ ∈ Rm ∶ ∃p̂ ∈ ∆ s.t Ep̂ [φ(x)] = µ} ,

where ∆ is the set of densities over x. It can be then shown
that the MAP problem corresponds to optimization of a lin-
ear function over the setM.
Theorem 2.1. [33] For the MRF as defined above and the
correspondingM it holds that 2:

min
x
F (x) = min

µ∈M
⟨θ,µ⟩. (4)

The problem in Eq. (4) has a linear objective over m vari-
ables. m is usually not much larger than n, yet the defini-
tion ofM involves variables corresponding to densities and
thus is generally hard to characterize explicitly. However,
there are continuous variable cases whereM does have a
compact form. For example, in Gaussian MRFs M can
be expressed via positive semi definiteness constraints (see
[33, sec. 3.4.1]).

Finally, we recall the definition of a reparameterization of
an MRF.
Definition 1. We call any set of functions
f̄i(xi), f̄ij(xi, xj) a reparameterization of F (x) if it
holds that for every x:

F (x) =∑
i

f̄i(xi) +∑
ij

f̄ij(xi, xj). (5)

3 LOCAL CONSISTENCY
RELAXATIONS

Optimizing over the setM is generally hard. When X are
discrete variablesMwill involve an exponential number of
inequalities. When X are continuous, even in cases where
M is tractable to optimize over, this optimization may be
costly (e.g., a semidefinite program). This has prompted
considerable research on relaxations ofM and the result-
ing optimization problem. Most of the work in this context
has focused on discrete variables as reviewed next. Our
goal is then to extend this framework to the continuous
case.

2We note that the right hand side of Eq. (4) should have M̄ in-
stead ofM. The closure is omitted for simplicity of presentation.
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3.1 LCR FOR DISCRETE VARIABLES

Consider the case where Xi are discrete variables, each
with D values, and the functions φ are defined as follows.
φi(xi) is D dimensional with φi,k(xi) = I (xi = k), and
φij(xi, xj) is D × D dimensional with φij,kl(xi, xj) =

I (xi = k, xj = l). The expected values Ep̂ [φi(xi)] and
Ep̂ [φij(xi, xj)] are simply the singleton marginals p̂(xi)
and p̂(xi, xj) respectively. Thus,M corresponds to the set
of all singleton and pairwise marginals that are achieved by
some distribution p̂(x). This is also known as the marginal
polytope [33].

As mentioned earlier, the marginal polytope generally re-
quires an exponential number of inequalities to describe.
One natural alternative is to consider a local consistency
relaxation (LCR) where instead of requiring the marginals
to come from a “global” distribution p̂(x) we just require
the singleton and pairwise marginals to be consistent. In
other words, we define the set ML as the set of locally
consistent pairwise marginals:

ML = {µ ≥ 0 ∶
∑xi µi(xi) = 1

∑xj µij(xi, xj) = µi(xi) ∀ij, xi.
}

The local relaxation of the MAP problem is then to min-
imize µ ⋅ θ over µ ∈ ML instead of µ ∈ M. We next
consider the extension of this relaxation to the continuous
variable case.

3.2 LCR FOR CONTINUOUS VARIABLES

For continuous variables, a natural extension of the above
is to replace the sum in the local consistency constraints
with an integral:

ML =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

µ ∶

∃ densities p̂i, p̂ij s.t.
∫ p̂ij(xi, xj)dxj = p̂i(xi) ∀ij, xi
Ep̂i [φi(xi)] = µi ∀i

Ep̂ij [φij(xi, xj)] = µij ∀ij.

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(6)

In other words we consider all pairwise consistent densi-
ties, and ML are all the expected values obtained from
such densities. As in the discrete case the local relaxation
of MAP is then the problem:

min
µ∈ML

⟨θ,µ⟩. (7)

Note that becauseM ⊆ML, the above minimum is a lower
bound on the true MAP value (as in the case of discrete
models [29]).

The key question we ask here is: for which cases is the re-
laxation in Eq. (7) tight? Before presenting our main result
(Thm. 4.1), we will define an even looser relaxation in the
next section which will be important for our analysis.

3.3 WEAK LCR AND ITS DUAL

In the constraints of Eq. (6) we require the single-
ton and pairwise marginals to be completely consistent.
Namely, that p̂ij(xi), the marginal density calculated from
p̂ij(xi, xj) will equal p̂i(xi) for all xi values. A weaker
consistency constraint is to enforce that p̂ij(xj) and p̂i(xi)
agree only on certain expected values. We next define the
set corresponding to this constraint.

Given a vector of functions ψi(xi) for each i ∈ V ,3 we
define the set:

M
ψ
L =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

µ ∶

∃ densities p̂i, p̂ij s.t.
Ep̂ij [ψi(xi)] = Ep̂i [ψi(xi)] ∀ij
Ep̂i [φi(xi)] = µi ∀i

Ep̂ij [φij(xi, xj)] = µij ∀ij.

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

Thus Mψ
L enforces consistency only in the sense that

p̂ij(xj) and p̂i(xi) agree on the expected values of ψi.
Thus, for any choice of ψ we haveML ⊆M

ψ
L.

The corresponding relaxation is then defined as:

min
µ∈Mψ

L

⟨θ,µ⟩. (8)

Basic relations between the relaxations we consider are
thus summarized by the inequalities:

min
µ∈Mψ

L

⟨θ,µ⟩ ≤ min
µ∈ML

⟨θ,µ⟩ ≤ min
µ∈M

⟨θ,µ⟩ = min
x
F (x).

The dual of Eq. (8) will play an important role in subse-
quent sections:

Lemma 3.1. Given a pairwise MRF with functions
fi(xi), fij(xi, xj), the following is a dual problem of
Eq. (8):

max
δ
∑
i

min
xi

{fi(xi) + ∑
j∈N(i)

⟨δji,ψi(xi)⟩}+ (9)

∑
ij

min
xi,xj

{fij(xi, xj) − ⟨δji,ψi(xi)⟩ − ⟨δij ,ψj(xj)⟩}.

We note that the bound achieved by this dual, and hence
by weak LCR, is dependent on the reparameterization
fi(xi), fij(xi, xj) being used. The full LCR Eq. (7)
may also yield different optimization problems for differ-
ent reparameterizations, yet it turns out that the bound it
achieves is invariant to the reparameterization. The proof
of the following lemma can be found in the supplementary
material.

Lemma 3.2. LCR has the same value under any reparam-
eterization {fi(xi), fij(xi, xj)} of F (x).

3For example, ψi(xi) could be [xi, x
3
i ].
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4 TIGHTNESS OF LCR ON CONVEX
DECOMPOSABLE MODELS

We are now ready to provide our main result on the tight-
ness of LCRs. We first recall the definition of Convex De-
composable (CD) models, as introduced by [17]4 in the
context of LBP analysis. Next, we show that in these mod-
els the local consistency relaxation in Eq. (7) is exact.
Definition 2. A pairwise MRF is convex decomposable
if there exists a reparameterization f̄i(xi), f̄ij(xi, xj) of
F (x) such that all the functions in the reparameterization
are convex.

Our result regarding tightness of LCR on CD MRFs is
stated in the following theorem:
Theorem 4.1. For any CD pairwise MRF it holds that

min
µ∈ML

⟨θ,φ(x)⟩ = min
x
F (x).

The proof is provided in the appendix. It relies on the fol-
lowing insights:

• From Lem. 3.2, the dual of weak LCR Eq. (9) taken
with respect to any reparameterization of F (x) is a
lower bound on LCR’s value.

• Specifically, we can consider Eq. (9) with ψi = [xi]
when the reparameterization fi(xi), fij(xi, xj) con-
tains convex functions.

• Assuming x∗ is a MAP assignment, the dual assign-
ment δ∗ obtained by setting multipliers according to
a subgradient of the pairwise functions fij(xi, xj)
taken at x∗, achieves a dual objective of F (x∗) in
Eq. (9).

• LCR’s value cannot be lower than weak LCR’s value,
which in turn cannot be lower than F (x∗) because we
constructed a dual assignment that achieves this objec-
tive. LCR is a lower bound on MAP, so that equality
must hold.

4.1 RELATION TO LOOPY BP

In [17] it is shown that loopy BP is exact (i.e., guaran-
teed to converge to the true MAP assignment) on a class
of models that satisfy scaled diagonal dominance. These
are a strict subset of CD models. In particular, they require
that a model is CD as well as its Hessian being scaled diag-
onally dominant. That is, there must exist a strictly positive
vector w ∈ Rn and a 0 < λ < 1 such that for any x it holds:

∑
j∈N(i)

wj ∣
∂2

∂xi∂xj
F (x)∣ ≤ λwi

∂2

∂x2i
F (x).

4We note that the definition in [17] poses the additional de-
mands of differentiability and that fi(xi) are strictly convex, so
the class we define here is a larger one.

Thus, we conclude that given currently known exactness
results on LBP, the LCR approximation is stronger in the
sense that it is exact whenever LBP is known to be exact.
It remains an open question whether it can be shown that
LBP is exact on CD models.

5 GAUSSIAN MRFS AND THEIR
RELAXATION

Gaussian MRFs (GMRFs) have been studied widely, and
are also of practical interest [5, 6, 16, 18, 34]. Here we give
a simple characterization ofML for GMRFs, and then dis-
cuss when the corresponding relaxations are tight. We give
a stronger result than Theorem 4.1 by showing that LCR
is tight if and only if the Gaussian model is CD. Specifi-
cally, we show that for non CD models the LCR optimiza-
tion problem has a value of −∞, and is thus a meaningless
relaxation.

Recall that a GMRF F (x) is a quadratic form:

F (x) =
1

2
x⊺Γx − h⊺x,

where Γ ⪰ 0. The function vectors φi(xi),φij(xi, xj) for
this type of MRF are given by

φi(xi) = {xi, x
2
i },φij(xi, xj) = {xixj}. (10)

As stated in [33], the set of realizable mean parametersM
in this case is the set of all first and second moments that
can be realized by a density p̂. Namely:

M = {(Σ,η) ∶ Σ − ηη⊺ ⪰ 0} . (11)

Here the elements Σij correspond to the expected values of
xixj , the diagonal elements Σii are the expected values of
x2i and η are the expected values of xi.

5.1 A CHARACTERIZATION OFML FOR
GMRFS

Given this simple form ofM, it is interesting to see what
ML translates into for this case. To characterizeML we
define:

Definition 3. Given an n×nmatrixA, and an edge (i, j) ∈
E, define the following sub matrix of A

A[ij] = [
Aii Aij
Aji Ajj

] .

Similarly, for an n dimensional vector v, define

v[ij] = [
vi
vj

] .

Claim 5.1. For GMRFs it holds that

ML = {(Σ,η) ∶ Σ[ij] − η[ij]η
⊺

[ij] ⪰ 0 ∀ij ∈ E}. (12)
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The proof can be found in the appendix. The characteriza-
tion is very intuitive: it says that Σ should be such that its
pairwise submatrices are valid covariance matrices of two
variables with mean given by η.

5.1.1 LCR is Unbounded for non-CD GMRFs

We now turn to give a full characterization of the GMRFs
on which LCR is tight. From Thm. 4.1 we know that when-
ever a GMRF is convex decomposable then LCR is tight,
yet we do not know if tightness holds for any other GM-
RFs. It turns out that it does not, and in fact the objective
of LCR is unbounded for non CD models. The proof relies
on the following two claims. First we claim that for GM-
RFs, under a certain choice ofψi(xi),Mψ

L as given for the
weak LCR in Eq. (8) is equal toML:

Claim 5.2. LetML be the set defined in Eq. (6) with the
functions in Eq. (10). For ψi(xi) = [xi, x

2
i ] it holds that:

ML =M
ψ
L . (13)

From Claim 5.2 we gather that weak LCR achieves the
same bound as LCR, and that Eq. (9) is also a dual of LCR.
The second claim then states that Eq. (9) is unbounded
when the GMRF is not CD.

Claim 5.3. For any non-CD GMRF, the value of Eq. (9)
taken with ψi(xi) = [xi, x

2
i ] is −∞ for any choice of δ.

The proof of both claims is provided in the appendix. It
is easy to check that Slater’s conditions hold for LCR as
defined by Eq. (12) (see e.g. [4, p. 523] for the conditions).
Thus when the optimum of LCR is bounded (i.e. larger
than −∞), strong duality holds and Eq. (9) obtains the same
optimal value. Claim 5.3 states that this does not happen
for non-CD GMRFs. We have thus shown the following
corollary:

Corollary 5.4. LCR is unbounded on any non-CD GMRF.

5.2 RELATION TO LOOPY BP

Several works have analyzed the properties of LBP when
applied to GMRFs [16, 34, 18]. These show that when a
model is CD then LBP is exact.5 Note that the definition
of convex decomposability used in [18] is somewhat more
restrictive than what we consider here. It requires the pair-
wise functions fij(xi, xj) in the convex decomposition to
be strictly convex.

Given our results above, we conclude that LCR is exact
precisely on the models where LBP is known to be exact.
That is with the subtle exception of cases where the pair-
wise functions in the convex decomposition are not strictly
convex, and then LBP is not known to be exact.

5As stated in Section 1, there are other characterizations of
these models, e.g. walk summability, which turn out to be equiv-
alent to convex decomposability.

6 A STOPPING CRITERION FOR LBP

In this section we highlight a practical application resulting
from the close LCR and LBP connection. Since LBP does
not optimize a clearly defined objective, it is hard to mon-
itor its convergence. Below we show how in many cases,
simple upper and lower bounds can be calculated for LBP.

Consider an MRF where fij , fi are convex and LBP is
known to be exact. We will provide upper and lower
bounds on the MAP objective in this case and show that
they are tight at convergence. These bounds can thus be
used as a reliable, easy to apply stopping criterion for LBP
in these cases.6

Given our assumption on the MRF, it follows that it is CD.
Thus, the LCR is tight, and the maximum of the dual objec-
tive Eq. (9) will equal the MAP value. This leads us to the
following bounding scheme. At each iteration of BP, cal-
culate an estimate of the MAP and denote it by xt. Clearly
F (xt) is an upper bound on the MAP value.

The procedure for obtaining the lower bound is more in-
volved, although technically simple. It is described (along
with the upper bound) in Algorithm 1. First, it is easy to
see that d in Algorithm 1 is a lower bound since it is a value
of the dual in Eq. (9). Second, this bound is tight when xt

is the MAP assignment, as the following result states:

Lemma 6.1. Assume xt ∈ arg minx F (x), then the bound
returned by the procedure satisfies p = d.

Algorithm 1 Bounding Scheme for Sum of Convex Func-
tions
Input: MAP estimate xt at time t, accuracy parameter ε,

convex reparameterization {fi(xi), fij(xi, xj)}.
For each ij ∈ E, find g ∈ ∂fij(xti, x

t
j) and set

δ̂ji = gi, δ̂ij = gj .

Set for each i ∈ V and ij ∈ E

f̄i(xi) = fi(xi) + ∑
j∈N(i)

δ̂jixi

f̄ij(xi, xj) = fij(xi, xj) − δ̂jixi − δ̂ijxj

Calculate primal and dual objectives 7

p =∑
i

fi(x
t
i) +∑

ij

fij(x
t
i, x

t
j)

d =∑
i

min
xi

f̄i(xi) +∑
ij

min
xi,xj

f̄ij(xi, xj)

If p − d < ε then determine convergence.

6It is possible to apply these bounds to any iterative algorithm
that provides a sequence of approximate MAP assignments. We
focus on LBP since the bounds are tight in the case we address.
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The proof of this lemma follows exactly the same argument
given in the third step for the proof of Thm. 4.1. When the
singleton functions fi are strongly convex and the objective
is smooth, then it is also possible to give a guarantee on the
size of the bound for xt that is not a MAP assignment (see
Lem. B.1 in the supplementary material).

Thus, we have obtained a scheme that provides tight lower
and upper bounds on the iterates of BP in a subclass of the
cases when it converges. Figure 1 illustrates these bounds
for a Gaussian MRF.
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Figure 1: Illustration of the bounds for a 10×10 grid Gaus-
sian MRF. We generate random convex quadratic functions
for each node and edge in the model, and use the described
bounding scheme to determine LBP’s convergence.

7 HIGHER ORDER MODELS

Thus far we only considered pairwise models. In this sec-
tion we briefly mention the generalization of our results to
higher order models. We propose two possible LCR ap-
proaches in this context and provide the related tightness
results.

A non pairwise MRF may be written as follows:

F (x) = ∑
α∈C

fα(xα),

where C ⊆ 2V . One option to defineML for this case is:

ML =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

µ ∶

∃ densities p̂i, p̂α s.t.
∫ p̂α(xα)dxα∖i = p̂i(xi) ∀α, i ∈ α,xi
Ep̂α [φα(xα)] = µα ∀α ∈ C.

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(14)

In other words,ML constrains marginals over the α sets to
agree on singleton marginals. Another reasonable choice
is to define a set MC that enforces stronger consistency

7Notice that in order to calculate d it is not required to per-
form optimization over f̄ij(xi, xj). The manner in which we set
δ̂ guarantees that the minimum is attained at (xti, x

t
j). The calcu-

lation of d will only demand optimizing f̄i(xi) for each i.

constraints thanML:

∫ p̂α(xα)dxα∖β = ∫ p̂β(xβ)dxβ∖α ∀α,β ∈ C. (15)

Instead of consistency over single variables,MC enforces
consistency on the overlap of pairs α,β ∈ C.

Similar derivations to those of the pairwise case lead to
tightness characterization for the constraints above. For our
tightness results to carry, F (x) should be given as a sum of
convex functions. The first result states that if the functions
fα(xα) are all convex, then theML relaxation is tight.

Claim 7.1. If F (x) is given as a sum of convex functions
then minµ∈ML

⟨θ,µ⟩ = minx F (x).

In this case we can also use the bounds described in Sec-
tion 6. An interesting example of such a model is the one
underlying the AMP algorithm of Donoho et al. [19].

The relaxation defined by Eq. (15) may be more compli-
cated to solve due to the additional constraints. At the cost
of this complication, the obtained relaxation is invariant to
reparameterizations and an analogue of Thm. 4.1 holds.8

Definition 4. An MRF is CD w.r.t C ⊆ 2V if there exists
a reparameterization {f̄α(xα)} for F (x) such that all the
functions in the reparameterization are convex.

Claim 7.2. For any MRF that is CD w.r.t C it holds that
minµ∈MC

⟨θ,µ⟩ = minx F (x).

See supplementary material for proofs of the above results.

8 RELATED WORK

The current paper studies local consistency relaxations as
applied to continuous MRFs, and their relation to loopy
belief propagation. Below we briefly survey related results
on this relation, focusing on discrete variable models where
local consistency relaxations are typically considered.

For discrete tree structured MRFs, it can be shown that LBP
and LCR are equivalent in the sense that they are both tight,
and in fact there is a mapping between dual LCR variables
and BP optima (see [33, p. 200]) .

In [35] Weiss et al. consider the relation between LCR
and convex belief propagation (and not standard LBP).
They show that if a convex variant of max-product LBP
converges, and the sharpened version of its beliefs (where
sharpening means to distribute all probability mass evenly
between maximizing arguments of the beliefs) are locally
consistent, then they are a solution to the LCR.

For maximum weight bipartite matching it is known that
LBP is exact [3] and so is the standard LP relaxation of the
problem [31] (see also [1, sec. 6] on the relation between

8This result holds under a non-restrictive assumption that α ∩
β ∈ C for all α,β ∈ C and also {i} ∈ C for all i ∈ V .
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this relaxation and local consistency relaxations). For non
bipartite matching a more subtle result is available [24]
showing that if the LCR does not have fractional optima
then LBP is exact. Otherwise LBP will not be exact. Re-
lated results are available for maximum weight indepen-
dent set [25] and packing and covering problems [7].

For the problem of decoding LDPC codes, both LCR ap-
proaches [9] and LBP [21] have been successful. Although
some relations between these have been shown [32, 2], a
clear link establishing cases where they are both exact has
not been provided.

Tarlow et al. [30] show that for the min-cut problem, where
LCR is known to be tight (e.g., see [31]), a modified version
of LBP is exact as well.

Another connection between the LPR and message passing
algorithms relies on the notion of graph covers [23, 12].
It is shown that for discrete models, LPR solves the MAP
problem on a model that has the lowest objective amongst a
family of graphical models who are in some sense isomor-
phic to the model it tries to approximate. Message passing
algorithms are unable to distinguish between these isomor-
phic models, and thus an intuitive link between LPR and
message passing is made.

On GMRFs, both LBP [16, 34, 18] and graph covers [22]
were studied. One of the conclusions reached by studying
graph covers [22] is that for non-CD GMRFs, dual coordi-
nate ascent algorithms [10, 14, 15] are bound to fail at pro-
ducing the MAP estimate. Our result for GMRFs provides
an arguably simpler explanation of this failure: These al-
gorithms perform dual coordinate ascent on the LCR, and
whenever the LCR is inapplicable (as in the case of non-
CD GMRFs) they yield a useless bound. See Section 5.2
for further discussion of GMRFs and LBP.

Relaxations for continuous MRFs have been less studied.
The most relevant work is [20], who arrived at the dual of
Eq. (7) (notice we did not use this dual, rather we used
Eq. (9) which is a dual of Eq. (8)) but did not analyze when
these are exact. Another recent work [38] suggested a dif-
ferent relaxation for continuous variables, but one that is
more involved than standard LPRs and also has no clear
connection to BP.

Another work on MAP estimation in continuous MRFs
suggested an algorithm called Linear Coordinate Descent
[40]. This algorithm was later generalized by the authors
[39]. For both versions, the authors do not give an objec-
tive over which the updates yield an improvement at each
step. In fact, our analysis provides a very simple interpre-
tation of the algorithm in [40]. It essentially performs dual
coordinate ascent on the dual of weak LCR (see Eq. (9)).
This also leads to a much simpler convergence proof than
that given in [40], since coordinate ascent in this case has a
unique maximum and therefore converges globally [4].

9 DISCUSSION

We considered the MAP problem for MRFs on continu-
ous variables, and derived a local relaxation for these. For
convex decomposable MRFs we showed that these relax-
ations are in fact exact. For Gaussian MRFs we provided
a stronger result showing that convex decomposability is
necessary and sufficient for exactness of local relaxations.

Comparing our results to those on exactness of loopy be-
lief propagation we find that local relaxations are exact in
a strictly larger class of models. This further strengthens
the known relation between LBP and LCR, adding to nu-
merous other models where exactness of local relaxations
coincides with exactness of LBP. It also leaves interesting
open questions. For example, does BP in fact converge
on general CD models or is the scaled diagonal dominance
condition of [17] necessary.

We note that it is possible to use the LCR and its dual
to derive coordinate ascent algorithms for the dual LCR.
We have indeed derived MPLP-like algorithms [27] for this
case. However, our experiments (not shown here) indicate
that they are typically slower than LBP. Thus, LBP remains
an attractive option for optimizing such models, and the
tight bounds we develop in Section 6 are very useful when
using it in practice. An interesting open problem is to de-
vise such bounds for LBP in other models, and to provide
general transformations between LCR and LBP solutions.

A Proofs

A.1 Proof of Lem. 3.1

Proof. Let us writeMψ
L with auxiliary variables η:

M
ψ
L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ,η ∶

∃p̂i, p̂ij s.t.
Ep̂i [φi(xi)] = µi ∀i

Ep̂ij [φij(xi, xj)] = µij ∀ij
Ep̂i [ψi(xi)] = ηi ∀i
Ep̂ij [ψi(xi)] = ηji ∀i, j ∈ N(i)
ηji = ηi ∀i, j ∈ N(i).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Define for each i ∈ V, ij ∈ E the sets of realizable mean
parameters:

Mi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

µi,ηi ∶
∃p̂i s.t.
Ep̂i [φi(xi)] = µi
Ep̂i [ψi(xi)] = ηi

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

Mij =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

µij ,ηij ,ηji ∶

∃p̂ij s.t.
Ep̂ij [φij(xi, xj)] = µij
Ep̂ij [ψi(xi)] = ηji
Ep̂ij [ψj(xj)] = ηij .

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭
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ThenMψ
L can now be written compactly as:

M
ψ
L =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

µ,η ∶
(µi,ηi) ∈Mi ∀i
(µij ,ηij ,ηji) ∈Mij ∀ij
ηji = ηi ∀i, j ∈ N(i).

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

Using the expressions for fi(xi), fij(xi, xj) from Eq. (2),
our problem is:

min
(µ,η)∈Mψ

L

∑
i

⟨θi,µi⟩ +∑
ij

⟨θij ,µij⟩

We now assign a Lagrange multiplier to each consistency
constraint

δji ↔ ηji = ηi

δij ↔ ηij = ηj ,

and write the resulting Lagrangian:

L(δ,η,µ) =∑
i

⎧⎪⎪
⎨
⎪⎪⎩

⟨θi,µi⟩ + ∑
j∈N(i)

⟨δji,ηi⟩

⎫⎪⎪
⎬
⎪⎪⎭

+∑
ij

⎧⎪⎪
⎨
⎪⎪⎩

⟨θij ,µij⟩ − ⟨δij ,ηij⟩ − ⟨δji,ηji⟩

⎫⎪⎪
⎬
⎪⎪⎭

.

To obtain a dual, we first minimize L(δ,µ,η) w.r.t
µ,η under the remaining constraints: (µi,ηi) ∈

Mi, (µij ,ηij ,ηji) ∈Mij . Since the relevant variables for
each constraint all lie in a single summand, we can push
the minimization inside the sums:

L(δ) =∑
i

min
µi,ηi∈Mi

⎧⎪⎪
⎨
⎪⎪⎩

⟨θi,µi⟩ + ∑
j∈N(i)

⟨δji,ηi⟩

⎫⎪⎪
⎬
⎪⎪⎭

+

∑
ij

min
µij ,ηij ,ηji∈Mij

⎧⎪⎪
⎨
⎪⎪⎩

⟨θij ,µij⟩ − ⟨δij ,ηij⟩ − ⟨δji,ηji⟩

⎫⎪⎪
⎬
⎪⎪⎭

.

Each summand includes optimization over the set of real-
izable mean parameters, thus according to Thm. 2.1 our
Lagrangian is given by:

L(δ) =∑
i

min
xi

⎧⎪⎪
⎨
⎪⎪⎩

⟨θi,φi(xi)⟩ + ∑
j∈N(i)

⟨δji,ψi(xi)⟩

⎫⎪⎪
⎬
⎪⎪⎭

+

∑
ij

min
xi,xj

⎧⎪⎪
⎨
⎪⎪⎩

⟨θij ,φij(xi, xj)⟩

− ⟨δij ,φij(xj)⟩ − ⟨δji,φji(xi)⟩

⎫⎪⎪
⎬
⎪⎪⎭

.

The desired dual is obtained by maximizing over δ.

A.2 Proof of Thm. 4.1

Proof. Assume {fi(xi), fij(xi, xj)} is a reparameteriza-
tion of F (x) for which all the functions are convex. Ac-
cording to Lem. 3.2 the minimum of LCR does not depend

on the reparameterization, thus it is enough to prove weak
LCR’s tightness with respect to this decomposition in order
to establish LCR’s tightness.

Consider weak LCR taken with ψi(xi) = [xi]. In this case
the dual problem Eq. (9) is:

max
δ
∑
i

min
xi

{fi(xi) + ∑
j∈N(i)

δjixi}+

∑
ij

min
xi,xj

{fij(xi, xj) − δjixi − δijxj}.

Let x∗ ∈ arg minx F (x), and for each ij ∈ E take some g ∈
∂fij(x

∗

i , x
∗

j ). Set the multipliers δji, δij as the components
of g:

δ∗ji = gi, δ
∗

ij = gj ,

and define the reparameterizaition obtained under δ∗:

f̄i(xi) = fi(xi) + ∑
j∈N(i)

δ∗jixi

f̄ij(xi, xj) = fij(xi, xj) − δ
∗

jixi − δ
∗

ijxj .

Each of the functions f̄i, f̄ij is a sum convex functions,
hence is convex. From how we set g, each f̄ij is minimized
at (x∗i , x

∗

j ). We also have:

∑
i

f̄i(x
∗

i ) = F (x∗) −∑
ij

f̄ij(x
∗

i , x
∗

j ).

It holds that 0 ∈ ∂f̄ij(x
∗

i , x
∗

j ) and that 0 ∈ ∂F (x∗) (be-
cause x∗ is a minimizer). From additivity of the subgradi-
ent, we now get 0 ∈ ∂∑i f̄i(x

∗

i ), and since each function
in the sum depends on a different variable it also holds that
0 ∈ ∂f̄i(x

∗

i ) for each i. We conclude that x∗ minimizes
each function in the reparameterization f̄i, f̄ij , and the dual
objective our assignment δ∗ achieves is:

∑
i

f̄i(x
∗

i ) +∑
ij

f̄ij(x
∗

i , x
∗

j ) = F (x∗).

Any objective reached by a feasible dual assignment yields
a lower bound on LCR’s optimal objective, thus LCR’s op-
timum is bounded below the MAP objective and we may
conclude that the relaxation is tight.

A.3 Proof of Claims on LCR for GMRFs

A.3.1 Proof of Claims 5.1 and 5.2

Recall that for a GMRF we have:

φi = {xi, x
2
i },φij = {xixj}.

For any feasible element inML, let p̂i, p̂ij be the densities
that generated these feasible mean parameters. For any ij ∈
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E, i ∈ V denote:

Σij = Ep̂ij [xixj] , (16)

Σii = Ep̂ij [x
2
i ] = Ep̂i [x

2
i ] ,

ηi = Ep̂ij [xi] = Ep̂i [xi] .

The equalities of expectations with respect to p̂i and p̂ij
hold due to local consistency constraints. Since for any
ij ∈ E, the parameters (Σ[ij],η[ij]) are first and second
moments of the density p̂ij then it must hold that:

Σ[ij] − η[ij]η
⊺

[ij] ⪰ 0. (17)

On the other hand, assume we are given (Σ,η) such that
Eq. (17) holds for all ij ∈ E. Take p̃ij as the bivariate
Gaussian density with moments (Σ[ij],η[ij]) for all ij ∈

E, and p̃i as the univariate Gaussian density with moments
(Σii, ηi) for all i ∈ V . These densities satisfy the local
consistency constraints:

∫ p̃ij(xi, xj)dxj = p̃i(xi),

which means (Σ,η) ∈ML and that Claim 5.1 holds.

To see Claim 5.2 holds, we use the same type of argument
and proveMψ

L ⊆ML. Given any feasible element inMψ
L ,

consider the densities p̂i, p̂ij who generated it. The weak
local consistency constraints imposed by Mψ

L assure that
the equalities in Eq. (16) hold. Thus Eq. (17) also holds
and this element must also be feasible inML.

A.3.2 Proof of Claim 5.3

Proof. Let δ be any assignment to the dual Eq. (9), we will
prove it achieves an objective of −∞. It will then follow
that this is the maximal value achieved by the dual, and in
turn the minimal value achieved by LCR. Let us define the
functions:

f̄i(xi) = fi(xi) + ∑
j∈N(i)

⟨δji,ψi(xi)⟩

f̄ij(xi, xj) = fij(xi, xj) − ⟨δji,ψi(xi)⟩ − ⟨δij ,ψj(xj)⟩.

The dual objective may then be written as:

∑
i

min
xi

f̄i(xi) +∑
ij

min
xi,xj

f̄ij(xi, xj).

Under the choice of ψi(xi) made in Claim 5.2,
each function in {f̄i(xi), f̄ij(xi, xj)} is quadratic.
{f̄i(xi), f̄ij(xi, xj)} is also a reparameterization of F (x),
so for non-CD GMRFs, at least one of these functions must
be non-convex. The minimum of a non-convex quadratic
function is unbounded, so one of the minimizations in the
sum of the dual objective must be unbounded, and the ob-
jective achieved by δ is −∞.
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Abstract

In this paper we present a novel non-parametric
approach to Bayesian filtering, where the predic-
tion and observation models are learned in an
online fashion. Our approach is able to han-
dle multimodal distributions over both models by
employing a mixture model representation with
Gaussian Processes (GP) based components. To
cope with the increasing complexity of the esti-
mation process, we explore two computationally
efficient GP variants, sparse online GP and local
GP, which help to manage computation require-
ments for each mixture component. Our exper-
iments demonstrate that our approach can track
human motion much more accurately than exist-
ing approaches that learn the prediction and ob-
servation models offline and do not update these
models with the incoming data stream.

1 INTRODUCTION

Many real world problems involve high dimensional data.
In this paper we are interested in modeling and tracking
human motion. In this setting, dimensionality reduction
techniques are widely employed to avoid the curse of di-
mensionality.

Linear approaches such as principle component analysis
(PCA) are very popular as they are simple to use. However,
they often fail to capture complex dependencies due to their
assumption of linearity. Non-linear dimensionality reduc-
tion techniques that attempt to preserve the local structure
of the manifold (e.g., Isomap [21, 8], LLE [19, 14]) can
capture more complex dependencies, but often suffer when
the manifold assumptions are violated, e.g., in the presence
of noise.

Probabilistic latent variable models have the advantage of
being able to take the uncertainties into account when
learning the latent representations. Perhaps the most suc-

cessful model in the context of modelling human motion is
the Gaussian process latent variable model (GPLVM) [12],
where the non-linear mapping between the latent space and
the high dimensional space is modeled with a Gaussian
process. This provides powerful prior models, which have
been employed for character animation [28, 26, 15] and hu-
man body tracking [24, 16, 25].

In the context of tracking, one is interested in estimating
the state of a dynamic system. The most commonly used
technique for state estimation is Bayesian filtering, which
recursively estimates the posterior probability of the state
of the system. The two key components in the filter are
the prediction model, which describes the temporal evolu-
tion of the process, as well as the observation model which
links the state and the observations. A parametric form is
typically employed for both models.

Ko and Fox [10] introduced the GP-BayesFilter, which
defines the prediction and observation models in a non-
parametric way via Gaussian processes. This approach is
well suited when accurate parametric models are difficult
to obtain. Its main limitation, however, resides in the fact
that it requires ground truth states (as GPs are supervised),
which are typically not available. GPLVMs were employed
in [11] to learn the latent space in an unsupervised manner,
bypassing the need for labeled data. This, however, can not
exploit the incoming stream of data available in the online
setting as the latent space is learned offline. Furthermore,
only unimodal prediction and observation models can be
captured due to the fact that the models learned by GP are
nonlinear but Gaussian.

In this paper we extend the previous non-parametric filters
to learn the latent space in an online fashion as well as to
handle multimodal distributions for both the prediction and
observation models. Towards this goal, we employ a mix-
ture model representation in the particle filtering frame-
work. For the mixture components, we investigate two
computationally efficient GP variants which can update the
prediction and observation models in an online fashion, and
cope with the growth in complexity as the number of data
points increases over time. More specifically, the sparse
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online GP [3] selects the active set in a online fashion to
efficiently maintain sparse approximations to the models.
Alternatively, the local GP [26] reduces the computation
by imposing local sparsity.

We demonstrate the effectiveness of our approach on a
wide variety of motions, and show that both approaches
perform better than existing algorithms. In the remainder
of the paper we first present a review on Bayesian filter-
ing and the GPLVM. We then introduce our algorithm and
show our experimental evaluation followed by the conclu-
sions.

2 BACKGROUND

In this section we review Bayesian filtering and Gaussian
process latent variable models.

2.1 BAYESIAN FILTERING

Bayesian filtering is a sequential inference technique typi-
cally employed to perform state estimation in dynamic sys-
tems. Specifically, the goal is to recursively compute the
posterior distribution of the current hidden state xt given
the history of observations y1:t = (y1, . . . ,yt) up to the
current time step

p(xt|y1:t) ∝ p(yt|xt)
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

where p(xt|xt−1) is the prediction model that represents
the system dynamics, and p(yt|xt) is the observation
model that represents the likelihood of an observation yt
given the state xt.

One of the most fundamental Bayesian filters is the Kalman
filter, which is a maximum-a-posteriori estimator for linear
and Gaussian models. Unfortunately, it is often not applica-
ble in practice since most real dynamical systems are non-
linear and/or non-Gaussian. Two popular extensions for
non-linear systems are the extended Kalman filter (EKF)
and the unscented Kalman filter (UKF) [9]. However, sim-
ilar to the Kalman filter, the performance of EKF and UKF
is poor when the models are multimodal [5].

In contrast, particle filters that are not restricted to lin-
ear and Gaussian models have been developed by using
sequential Monte Carlo sampling to represent the under-
lying posterior p(xt|y1:t) [5]. More specifically, at each
time step, Np particles of xt are drawn from the prediction
model p(xt|xt−1), and then all the particles are weighted
according to the observation model p(yt|xt). The posterior
p(xt|y1:t) is approximated using these Np weighted parti-
cles. Finally, the Np particles are resampled for the next
step. Unfortunately, the parametric description of the dy-
namic models limits the estimation accuracy of Bayesian
filters.

Recently, a number of GP-based Bayesian filters were pro-
posed by learning the prediction and observation models
using GP regression [10, 4]. This is a promising alternative
as GPs are non-parametric and can capture complex map-
pings. However, training these methods requires access to
ground truth data before filtering. Unfortunately, the in-
puts of the training set are the hidden states which are not
always known in real-world applications. Two extensions
were introduced to learn the hidden states of the training
set via a non-linear latent variable model [11] or a sparse
pseudo-input GP regression [22]. However, these methods
require offline learning procedures, which are not able to
exploit the incoming data streams. In contrast, we propose
two non-parametric particle filters that are able to exploit
the incoming data to learn better models in an online fash-
ion.

2.2 GAUSSIAN PROCESS DYNAMICAL MODEL

The Gaussian Process Latent Variable Model (GPLVM) is
a probabilistic dimensionality reduction technique, which
places a GP prior on the observation model [12]. Wang
et al. [28] proposed the Gaussian Process Dynamical
Model (GPDM), which enriches the GPLVM to capture
temporal structure by incorporating a GP prior over the dy-
namics in the latent space. Formally, the model is:

xt = fx(xt−1) + ηx

yt = fy(xt) + ηy

where y ∈ RDy represents the observation and x ∈
RDx the latent state, with Dy � Dx. The noise pro-
cesses are assumed to be Gaussian ηx ∼ N (0, σ2

xI) and
ηy ∼ N (0, σ2

yI). The nonlinear functions f ix and f iy
have GP priors, i.e., f ix ∼ GP(0, kx(x,x′)) and f iy ∼
GP(0, ky(x,x′)) where kx(·, ·) and ky(·, ·) are the kernel
functions. For simplicity, we denote the hyperparameters
of the kernel functions by θ.

Let x1:T0 = (x1, · · · ,xT0) be the latent space coordi-
nates from time t = 1 to time t = T0. GPDM is
typically learned by minimizing the negative log poste-
rior − log(p(x1:T0

, θ|y1:T0
)) with respect to x1:T0

, and θ
[28]. After x1:T0

and θ are obtained, a standard GP pre-
diction is used to construct the model p(xt|xt−1, θ,XT0)
and p(yt|xt, θ,YT0) with data XT0 = {(xk−1,xk)}T0

k=2

and YT0 = {(xk,yk)}T0

k=1. Tracking (t > T0) is then per-
formed assuming the model is fixed and can be done using,
e.g., a particle filter as described above. The major draw-
back of this approach is that it is not able to adapt to new
observations during tracking. As shown in our experimen-
tal evaluation, this results in poor performance when the
training set is small.
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3 ONLINE GP PARTICLE FILTER

In order to solve the above-mentioned difficulties in learn-
ing and filtering with dynamic systems, we propose an
Online GP Particle Filter framework to learn and refine
the model during tracking, i.e., the prediction p(xt|xt−1)
and observation p(yt|xt) models are updated online in
the particle filtering framework. To account for multi-
modality and the significant amount of uncertainty that can
be present, we propose to represent the prediction and ob-
servation models by a mixture model. For each mixture
component, we will investigate two different GP variants.

Let the prediction and observation models at t− 1 be

p(xt|xt−1,Θt−1,M ) = 1
RM

∑RM
i=1 p(xt|xt−1,Θi

t−1,M )(1)

p(yt|xt,Θt−1,O) = 1
RO

∑RO
i=1 p(yt|xt,Θi

t−1,O) (2)

where Θi
t−1,M and Θi

t−1,O represents the parameters of the
i-th component, Θt−1,M = {Θi

t−1,M}RMi=1 and Θt−1,O =

{Θi
t−1,O}ROi=1 are the parameters of all components. At

the t-th time step, we run a standard particle filter to ob-
tain a number of weighted particles. The latent space rep-
resentations at time t can be obtained by resampling the
weighted particles. Then, we assign each particle to the
most likely mixture component of p(xt|xt−1,Θt−1,M ) and
p(yt|xt,Θt−1,O) to capture the multi-modality of the pre-
diction and observation models. Finally, we compute the
mean latent states of the assigned particles and use this
mean state to update the corresponding components param-
eters, Θi

t,M for the prediction (or motion) model and Θi
t,O

for the observation model. The whole framework is sum-
marized in Algorithm 1.

What remains is to specify how the parameters of individ-
ual components are represented and updated (lines 18 and
23 in Algorithm 1). As noted above, we aim to use a GP
model for each mixture component. However, a standard
implementation would require O(t3) operations and O(t2)
memory. As t grows linearly over time, the particle fil-
ter will quickly become too computationally and memory
intensive. Thus a primary challenge is how to efficiently
update the GP mixture components in the prediction and
observation models.

In order to efficiently update Θi
t,M and Θi

t,O in an online
manner, we consider two fast GP-based strategies: Sparse
Online GP (SOGP) and Local GPs (LGP) in which the re-
duction in memory and/or computation is achieved by an
online sparsification and a local experts mechanism respec-
tively. A detailed review of fast GP approaches can be
found in [1, 18].

The specific contents of Θi
t,M or Θi

t,O will vary depending
on the method used. In the case of SOGP it will contain
some computed quantities and the active set while for LGP
it will simply be the set of all training points. While we will

Algorithm 1 Online GP-Particle Filter
1: Initialize model parameters Θ based on y1:T0

2: Initialize particle set x(1:NP )
T0

based on y1:T0

3: for t = T0 + 1 to T do
4: for i = 1 to Np do
5: x

(i)
t ∼ p(xt|x(i)

t−1,Θt−1,M )

6: ŵ
(i)
t = p(yt|x(i)

t ,Θt−1,O)
7: end for
8: Normalize weights w(i)

t = ŵ
(i)
t /(

∑Np
i=1 ŵ

(i)
t )

9: Resample particle set with probabilities w(1:Np)
t

10: for i = 1 to Np do
11: ηiM = arg maxj p(x

(i)
t |x(i)

t−1,Θ
j
t−1,M )

12: ηiO = arg maxj p(yt|x(i)
t ,Θj

t−1,O)
13: end for
14: for j = 1 to RM do
15: njt−1 =

∑Np
i=1 δ(η

i
M = j)

16: x̄jt−1 = 1

njt−1

∑Np
i=1 δ(η

i
M = j)x

(i)
t−1

17: x̄jt = 1

njt−1

∑Np
i=1 δ(η

i
M = j)x

(i)
t

18: Update Θj
t,M with (x̄jt−1, x̄

j
t )

19: end for
20: for j = 1 to RO do
21: njt−1 =

∑Np
i=1 δ(η

i
O = j)

22: x̄jt = 1

njt−1

∑Np
i=1 δ(η

i
O = j)x

(i)
t

23: Update Θj
t,O with (x̄jt ,yt)

24: end for
25: end for

focus on these two strategies, we note that in principle any
similar update strategy could be used instead, such as infor-
mative vector machines [13] or local regression approaches
[7, 6, 20]. In what follows, to avoid confusion with the no-
tations of the latent state and observation, we will use a
and b to indicate the input and output when we describe
SOGP and LGP regression in which we consider modeling
a generic function b = f(a) + ξ, with ξ ∼ N (0, σ2I).

3.1 SPARSE ONLINE GAUSSIAN PROCESS

The Sparse Online Gaussian Process (SOGP) of [3, 27] is
a well-known algorithm for online learning of GP models.
To cope with the fact that data arrives in an online manner,
SOGP trains a GP model sequentially by updating the pos-
terior mean and covariance of the latent function values of
the training set. This online procedure is coupled with a
sparsification strategy which iteratively selects a fixed-size
subset of points to form the active set, preventing the oth-
erwise unbounded growth of the computation and memory
load.

The key of SOGP is to maintain the joint posterior over the
latent function values of the fixed-size active set Dt−1, i.e.,
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N (µt−1,Σt−1), by recursively updating µt−1 and Σt−1.
When a new observation (at,bt)

1 is available, we perform
the following update to take the new data point into account
[27]

qt = Qt−1kt−1(at) (3)
ρ2t = k(at,at)− kt−1(at)

TQt−1kt−1(at) (4)
σ̂2
t = σ2 + ρ2t + qTt Σt−1qt (5)

δt =

[
Σt−1qt

ρ2t + qTt Σt−1qt

]
(6)

µt =

[
µt−1

qTt µt−1

]
+ σ̂−2t (bt − qTt µt−1)δt (7)

Σt =

[
Σt−1 Σt−1qt

qTt Σt−1 ρ2t + qTt Σt−1qt

]
− σ̂−2t δtδ

T
t (8)

where kt−1(at) is the kernel vector which is constructed
from at and the active set Dt−1, and Qt−1 is the inverse
kernel matrix of the active set Dt−1.

One of the key steps in this algorithm is how to decide when
to add the new point to the active set. We employed the
strategy suggested by [3, 27], and ignore the new point with
ρ2t < ε for some small value of ε (we use ε = 10−6). In
this case, the µt, Σt are updated as µt ← [µt]−i, Σt ←
[Σt]−i,−i where i = t is the index of the new point, [·]−i
removes the i-th entry of a vector, and [·]−i,−i removes the
i-th row and column of a matrix. Additionally, the inverse
kernel matrix is simply Qt = Qt−1 because the new point
is not included in the active set. When ρ2t ≥ ε, we add the
new point to the active set Dt = Dt−1 ∪ {(at,bt)}. The
µt, Σt are then the same as Eq.(̃7) and (8), and the inverse
kernel matrix is updated to be [27]

Qt =

[
Qt−1 0
0 0

]
+ ρ−2t

[
qtq

T
t −qt

−qTt 1

]
(9)

When the size of the active set is larger than the fixed size
NA because a new point was added, we must remove a
point. This is done by selecting the one which minimally
affects the predictions according to the squared predicted
error. Following [3, 27], we remove the j-th data point
with

j = arg min
j

(
[Qtµt]j
[Qt]j,j

)2

(10)

where [·]j selects the j-th entry of a vector and [·]j,j select
the jth diagonal entry of a matrix. Once a point has been
selected for removal, µt, Σt and Qt are updated as

µt ← [µt]−j (11)
Σt ← [Σt]−j,−j (12)

Qt ← [Qt]−j,−j −
[Qt]−j,j [Qt]T−j,j

[Qt]j,j
(13)

1For simplicity of presentation, we assume that b is a scalar.
The extension to vector valued b is straightforward.

Algorithm 2 SOGP Update
input Previous posterior quantities µt−1, Σt−1, Qt−1
input Previous active set Dt−1
input New input-output observation (at,bt) pair

1: Compute ρt, µt and Σt as in Equations (4), (7) and (8).
2: if ρ2t < ε then
3: Perform update µt ← [µt]−i, Σt ← [Σt]−i,−i where

i is the index of the newly added row to µt.
4: Set Qt = Qt−1, Dt = Dt−1.
5: else
6: Compute Qt as in Equation (9).
7: Add to active set Dt = Dt−1 ∪ {(at,bt)}.
8: end if
9: if |Dt| > NA then

10: Select point j to remove using Equation (10).
11: Perform update µt ← [µt]−j , Σt ← [Σt]−j,−j and

Qt ← [Qt]−j,−j − [Qt]−j,j [Qt]
T
−j,j

[Qt]j,j
.

12: Remove j from active set Dt ← Dt \ {(aj ,bj)}.
13: end if
output µt, Σt, Qt and Dt

where [·]−j,j selects the j-th column of the matrix with the
j-th row removed and the point is removed from the active
set Dt ← Dt \ {(aj ,bj)}.
The joint posterior at time t can be used to construct the
predictive distribution for a new input a∗

pSOGP (b|a∗,Dt,Θ) = N (b|b̃, σ̃2) (14)

where b̃ = kt(a
∗)TQtµt and σ̃2 = σ2 + k(a∗,a∗) +

kt(a
∗)T (QtΣtQt −Qt)kt(a∗). We summarize the SOGP

updates in Algorithm 2.

3.2 LOCAL GAUSSIAN PROCESSES

An alternative to the SOGP approach is to use Local Gaus-
sian Processes (LGP), which was developed specifically to
deal with large, multi-modal regression problems [17, 23].
In LGP, given a test input a∗ and a set of input-output pairs
D = {(ai,bi)}Ni=1}, the Ma-nearest neighbors Da∗ =
{(a`,b`)}Ma

`=1 are selected based on the distance in the in-
put space d` = ‖a` − a∗‖. Then, for each of the Ma

neighbors, Mb-nearest neighbors Db` = {(aj ,bj)}Mb
j=1

are selected based on the distance in the output space to
b`. These neighbors are then combined to form a local GP
expert which makes a Gaussian prediction with mean and
covariance

µ` = BDb`
K−1Db`

,Db`
kDb`

(a∗)

σ2
` = k(a∗,a∗)− kDb`

(a∗)TK−1Db`
,Db`

kDb`
(a∗) + σ2

where BDb`
is the matrix whose columns are the Mb near-

est neighbors of b`, kDb`
(a∗) is the vector of kernel func-

tion values for the input a∗ and the points in Db` , and
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KDb`
,Db`

is the kernel matrix for the points inDb` . The fi-
nal predictive distribution is then formed by combining all
local experts in a mixture model

pLGP (b|a∗,D,Θ) =

Ma∑

`=1

w`N (b|µ`, σ2
` I) (15)

with weights w` ∝ 1/d`.

4 EXPERIMENTAL EVALUATION

To illustrate our approach we choose 4 very different mo-
tions, i.e., walking, golf swing, swimming as well as exer-
cises (composed of side twist and squat). The data consists
of motion capture from the CMU dataset [2], where each
observation is a 62 dimensional vector containing the 3D
rotations of all joints. We normalize the data to be mean
zero and subsample the observations to reduce the correla-
tion between consecutive frames. We use a frequency of 12
frames/s for walking and swimming, 24 frames/s for golf
swing and 30 frames/s for the exercise motion. We com-
pute all results averaged over 3 trials and report the average
root mean squared error as our measure of performance.

In all the experiments, the latent space dimensionality
is set to be 3 as is common for human motion mod-
els [28]. We use PCA to initialize the latent space and
K-means to obtain the data points used for the mixture
components. We choose the compound kernel function
k(x,x′) = σ2

f exp(−0.5 ‖ x − x′ ‖2 /γ2) + l2xTx′

for both prediction and observation mappings. Unless
otherwise stated, we use 50 particles, a training set of
size of 20/30/50/450 and 2/2/5/5 mixture components for
walking/golf/swimming/exercise motions respectively. For
LGP, the number of local GP experts is 2/2/2/5, and the size
of each local expert is 5/8/5/20. For SOGP, the size of the
active set is 20/5/50/20. The parameter values were chosen
to balance computational cost with the prediction accuracy
and in our experiments we demonstrate the robustness of
our approach to these parameters.

4.1 COMPARISON TO STATE-OF-THE-ART

We compare our approaches to two baselines: The first
one is the approach of Ko and Fox [11] where a GPDM is
learned offline with gradient descent [28] before perform-
ing particle filtering for state estimation. The second base-
line is similar, but learns the GPDM offline using stochastic
gradient descent [29]. We tested the baselines in two differ-
ent settings. First, only the initial training set is available
to learn the prediction and observation models. Second, all
the data (including future streamed examples) are used to
learn the prediction and observation models. Note that the
latter represents the oracle for Ko and Fox [11].

Number of Particles: We evaluate how the accuracy
changes as a function of the number of particles, Np. As

expected, the prediction error is reduced in all the meth-
ods when the number of particles increases. As shown in
the first row of Fig. 1, our approaches are superior to the
baselines. Importantly, we outperformed the oracle base-
line as we are able to represent multi-modal distributions
effectively. This is particularly important in the exercise
sequence as the dynamics are clearly multimodal due to the
different motions that are performed in the sequence. Fur-
thermore, our LGP variant outperforms SOGP. We believe
this is due to the fact that SOGP has a fixed capacity while
LGP is able to leverage more training data when making
predictions.

Influence of noise: In this experiment we evaluate the ro-
bustness of all approaches to additive noise in the observa-
tions. The second row of Fig. 1 shows that our LGP particle
filter significantly outperforms the baselines, particularly in
the exercise sequence. Our SOGP outperforms all baselines
that have access to the same training set, and is only beaten
by the oracle for walking.

Size of Training Set: We next evaluate how the accuracy
depends on the size of the inital training set, T0. The first
row of Fig. 2 clearly indicates that our methods perform
well even when the training set is very small. In contrast,
the two baselines require bigger training sets to achieve
comparable performance. This is expected as the baselines
do not update the latent space to take the incoming obser-
vations into account.

4.2 QUALITATIVE EXPERIMENTS

Fig. 3 shows the latent space of both SOGP and LGP filters
when employing 50 particles for each time step (depicted
in blue). From the 3D latent space and predicted skeletons,
we find that the manifolds of both LGP and SOGP particle
filters have a good representation of the high-dimensional
human motion data.

4.3 PROPERTIES OF OUR METHODS

We next discuss various aspects of our method and evaluate
the influence of the parameters of SOGP and LGP filters.
For LGP, due to the fact that the data sizes of walking, golf
and swimming motions are small, we reduced the number
(size) of local experts to be able to increase the size (num-
ber) of the local experts.

Computational Complexity: Overall the computational
complexity of our method (Alg 1) is mainly determined by
the complexity of constructing a prediction distribution for
each components (lines 5-6 and 11-12) and model updates
(line 18 and line 23). Specifically, for an individual com-
ponent which is either SOGP or LGP, computing the pre-
diction distribution is O(N2

A) or O(MaM
3
b + TMaMb)

respectively where NA is the size of active set, Ma is the
number of local experts, Mb are the number of neigh-
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Figure 1: Root mean squared error as a function of (1st row) the number of particles in the particle filter, (2nd row) the
standard deviation of noise added to the observations. The columns (from left to right) represent walking, golf, swimming
and exercise motions. Note that our approach outperforms the baselines in all settings. Handling multimodal distributions
is particularly important in the exercise example as it is composed of a variety of different motions.
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Figure 2: Root Mean Squared Error as a function of (1st row) the number of initial training points, (2nd row) the number
of the missing dimensions. The columns (from left to right) are respectively for walking, golf, swimming and exercise
motions.

bors in the output space and TMaMb comes from the
KNN search. The model updates for the mixture compo-

nents (lines 18 and 23) have a computational complexity of
O(N2

A) and O(1) for SOGP and LGP respectively.

854



−100
0

100

−50
0

50

−20

0

20

40

(a) 3D Walk

−100 −50 0 50 100 −30
−20

−10
0

10

−40

−20

0

20

40

(b) 3D Golf

−200

0

200 −100
0

100

−100

−50

0

50

100

(c) 3D Swim

−100

0

100
−100

0
100

−50

0

50

100

150

(d) 3D Exercise

−100
0

100

−50
0

50

−20

0

20

40

(e) 3D Walk

−100 −50 0 50 100 −30
−20

−10
0

10

−40

−20

0

20

40

(f) 3D Golf

−200

0

200 −100
0

100

−100

−50

0

50

100

(g) 3D Swim

−100

0

100
−100

0
100

−50

0

50

100

150

(h) 3D Exercise

 

 

 

 

 

      

(i) Walk (t=23, 26, 29)
 

 

 

 

 

 

 

      

(j) Golf (t=33, 41, 54)

 

 

 

 

 

 

                                                          

(k) Swim (t=71,79)
 

 

 

 

 

 

 

 

(l) Exercise (t=508,555,721)

Figure 3: 3D latent spaces learned while tracking: The first row depicts the results of our SOGP variant, while the second
row shows our LGP variant. In the walk/golf/swimming plots the red curve represents the predicted mean of the latent
state sequence and the blue crosses are the particles at each step. In the plots for exercise (last column), the red, blue and
green curves are the predicted mean of the latent state for three motions in the exercise sequence, and the black crosses are
the particles at each step. The third row depicts the predicted skeletons, where ground truth is shown in green, our SOGP
variant in blue and our LGP variant in red.
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Figure 4: Root Mean Squared Error as a function of the number of mixture components. The columns (from left to right)
are respectively for walking, golf, swimming and exercise motions.

Number of Mixture Components: Fig. 4 shows perfor-
mance as a function of the number of mixture compo-
nents, RM and RO, for both SOGP and LGP. For LGP+PF
in walk/golf/swim/exercise, the number of local GPs are
1/1/2/5 and the size of each local GP are 3/3/5/20. In all
cases, we set RM = RO. Note that performance typi-

cally increases with the number of mixture components, for
SOGP, but less so for LGP. Furthermore, our approaches
outperform the baselines in which the model is not updated
during filtering indicating that the online model updating is
very important in practice. Also note that while LGP gen-
erally outperforms SOGP, the difference quickly declines
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other motions.

     

 

 

 

 

 

                           

Figure 6: Predicted skeleton for missing parts (Walk: two legs; Golf, Swim and Exercise: left arm). The ground truth is
shown in green, our SOGP particle filter in blue and LGP particle filter in red. We show the predicted performance at t=24,
27, 32 for walk, t=34, 38, 50 for golf, t=71,79 for swim, t=470, 592, 711 for exercise.

as the number of mixture components increases. This sug-
gests that, when the fixed memory requirements of SOGP
is desirable, a larger number of mixture components will
achieve performance comparable to LGP.

Active Set size in SOGP: To explore the effect of the size
of the active set, NA, on performance we set the number
of mixture components, RM and RO, to be 2/1/5/5 for
walk/golf/swim/exercise, and use the same settings as be-
fore for the other parameters. Results are shown in Fig.
5(a). As expected performance improves when the size of
the active set increases.

Number and Size of Local Experts in LGP: Figs. 5(b)
and 5(c) show the performance of our approach as a func-
tion of the number of local GP experts, Ma, as well as
their size, Mb. For this experiment we set the number of
mixture components, RM and RO, to be 1/2/1/5 and used
the same settings as before for the other parameters except
when evaluating the size of each local GP expert where we
set the number of local GP experts to 5/2/5/5. As shown in
the figure, even with the small number (size) of local GP
experts, we still achieve good performance.

4.4 HANDLING MISSING DATA

In this setting, we evaluate the capabilities of our ap-
proaches to handle missing data. We assume that the initial
set has no missing values, but a fixed set of joint angles are

missing for all incoming frames. Our approach is able to
cope with missing data with only two small modifications.
First, particles are weighted only based on the observed di-
mensions. Furthermore, when updating the prediction and
observation models, we employ mean imputation for the
missing observation dimensions. Fig. 6 shows reconstruc-
tions of the missing dimensions for all our motions, which
consists of the two legs for walking, the left arm for golf
swing, swimming and exercise motions. We can see that
our approach is able to reconstruct the missing parts well.

Finally, to evaluate the tracking performance as a function
of the number of missing dimensions, we randomly gener-
ate the indices for the missing dimensions and use the same
missing dimensions for all incoming frames. The second
row of Fig. 2 shows that, compared to the baselines, our
methods perform well even when the number of missing
dimensions is 20 (1/3 of the skeleton) for all the motions.
In addition, our LGP particle filter outperforms our SOGP
variant.

5 CONCLUSION

In this paper we have presented a novel non-parametric
approach to Bayesian filtering, where the observation and
prediction models are constructed using a mixture model
with GP components learned in an online fashion. We
have demonstrated that our approach can capture the mul-
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timodality accurately and efficiently by online updates. We
have explored two fast GP variants for updating which keep
memory and computation bounded for individual mixture
components. We have demonstrated the effectiveness of
our approach when tracking different human motions and
explored the impact of various parameters on performance.
The Local GP particle filter proved superior to our SOGP
variant, however these differences can be mitigated by us-
ing more mixture components when using SOGP. In the fu-
ture, we plan to investigate the usefulness of our approach
in other settings such as shape deformation estimation and
financial time series.
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Abstract

When belief propagation (BP) converges, it does
so to a stationary point of the Bethe free en-
ergyF , and is often strikingly accurate. How-
ever, it may converge only to a local optimum
or may not converge at all. An algorithm was
recently introduced by Weller and Jebara for at-
tractive binary pairwise MRFs which is guaran-
teed to return anǫ-approximation to the global
minimum ofF in polynomial time provided the
maximum degree∆ = O(log n), wheren is the
number of variables. Here we extend their ap-
proach and derive a new method based on an-
alyzing first derivatives ofF , which leads to
much better performance and, for attractive mod-
els, yields a fully polynomial-time approxima-
tion scheme (FPTAS) without any degree restric-
tion. Further, our methods apply to general (non-
attractive) models, though with no polynomial
time guarantee in this case, demonstrating that
approximatinglog of the Bethe partition func-
tion, log ZB = −minF , for a general model to
additiveǫ-accuracy may be reduced to a discrete
MAP inference problem. This allows the merits
of the global Bethe optimum to be tested.

1 INTRODUCTION

Undirected graphical models, also termed Markov random
fields (MRFs), are central tools in machine learning. A set
of variables and a score function is specified such that the
probability of a configuration of variables is proportionalto
the value of the score function, which factorizes into sub-
functions over subsets of variables in a way that defines a
topology on the variables.

Three central problems are: (1) To evaluate the partition
function Z, which is the sum of the score function over
all possible settings, and hence is the normalization con-

stant for the probability distribution; (2) Marginal infer-
ence, which is computing the probability distribution of a
given subset of variables; and (3) Maximum a posteriori
(MAP) inference, which is the task of identifying a setting
of all the variables which has maximum probability.

All these are NP-hard, and (1) and (2) are closely related
(marginals are a ratio of two partition functions). Vari-
ational methods show that the partition function may be
obtained by minimizing the free energy over the marginal
polytope, and that if instead the Bethe free energy (Bethe,
1935) is minimized over the local polytope, this should
yield a good approximation1. Although this is not a for-
mal result, and there are cases where it performs poorly
- typically when there are many short cycles with strong
edge interactions (Wainwright and Jordan, 2008,§ 4.1),
still, the approach has proved very popular and often strik-
ingly accurate. Belief propagation is often used to perform
this minimization (Pearl, 1988; Yedidia et al., 2001). Per-
formance is often excellent (McEliece et al., 1998; Mur-
phy et al., 1999), but when applied to models with cycles,
termed loopy belief propagation (LBP), convergence is not
guaranteed in general, even to a local minimum. Some con-
jectured that when LBP behaves poorly, it is likely that the
Bethe approximation, as given by the global minimum, also
performs poorly, but it has not previously been possible to
test this.

Approaches such as gradient descent (Welling and Teh,
2001), double-loop methods (Yuille, 2002) or Frank-Wolfe
(Belanger et al., 2013) will converge but only to a local
minimum, and with no runtime guarantee. Recently, two
methods with polynomial runtime were given for the im-
portant subclass of binary pairwise models: one returns
an approximately stationary point (Shin, 2012), though its
value may be far even from a local minimum; the other re-
turns anǫ-approximate global optimum value (Weller and
Jebara, 2013a) but only for the restricted case of attrac-
tive models (where pairwise relationships tend to pull con-
nected variables to the same value)1. Both these methods
restrict the topology to have maximum degreeO(log n),

1All terms are defined in§2.
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wheren is the number of variables.

1.1 CONTRIBUTION AND SUMMARY

We obtain results for binary pairwise MRFs by expanding
on ideas from Weller and Jebara (2013a). The approach is
to construct asufficient meshof discretized points in such a
way that the optimum mesh pointq∗ is guaranteed to have
F(q∗) within ǫ of the true optimum. Our first derivative
method typically results in a mesh that is much coarser (by
many orders of magnitude, see§6.1), yet still sufficient, and
admits adaptive methods to focus points in regions where
F may vary rapidly. This leads to a FPTAS for attractive
models with no restriction on topology. In addition, we re-
fine and extend the second derivative approach of Weller
and Jebara (2013a) to derive a method that performs well
for very smallǫ. With our new methods, both approaches
apply to general binary pairwise models (not necessarily at-
tractive) to reduce the problem of finding anǫ-approximate
global optimum to solving a derived discrete optimization
problem, which may be framed as multi-label MAP infer-
ence, where a rich family of methods already exists.

There are several motivations for this work:

• To our knowledge, we present the first way to solve
for the global Bethe optimum (withinǫ accuracy) of a
general binary pairwise MRF. Runtime is practical for
small real-world problems.

• This now allows the accuracy of the global Bethe op-
timum to be tested.

• For attractive models, we obtain a fully polynomial
time approximation scheme for any topology, thus an-
swering an open theoretical question.

In §2, we establish notation and present preliminary results,
then apply these in§3 to derive our new approach for mesh
construction based on analyzing first derivatives ofF . In
§4 we revisit the second derivative approach of Weller and
Jebara (2013a). We show how this method can be refined
and extended to yield better performance and also to admit
non-attractive models, though for most cases of interest,
unlessǫ is very small, the method of§3 is much superior.

In §5, we discuss the resulting discrete optimization prob-
lem. In certain settings this is tractable, and in general we
mention several features that can make it easier to find a
satisfactory solution, or at least to bound its value. Experi-
ments are described in§6 demonstrating practical applica-
tion of the algorithm. Conclusions are presented in§7.

For a sketch of the overall approach, see Algorithm, 1.

1.2 RELATED WORK

Jerrum and Sinclair (1993) derived a fully polynomial-time
randomized approximation scheme (FPRAS) for the true

Algorithm 1 Mesh method to returnǫ-approximate global
optimumlog ZB for a general binary pairwise model
Input: ǫ, model parameters (convert using§2.1 if required)
Output: estimate of global optimumlog ZB guaranteed
to be in range[log ZB − ǫ, log ZB], together with cor-
responding pseudo-marginal asarg for the discrete opti-
mum

1: Preprocess by computing bounds on the locations of
minima, see§2.4.

2: Construct a sufficient mesh using one of the methods in
this paper, see§3 & 4. All approaches are fast, so sev-
eral may be used and the most efficient mesh selected.

3: Attempt to solve the resulting multi-label MAP infer-
ence problem, see§5.

4: If unsuccessful, but a strongly persistent partial solu-
tion was obtained, then improved location bounds may
be generated (see§5.2.1), repeat from 2.

At anytime, one may stop and compute bounds onlog ZB,
see§5.2.

partition function, but only when singleton potentials are
uniform (i.e. a uniform external field), and the runtime
is high atO(ǫ−2m3n11 log n). Heinemann and Glober-
son (2011) have shown that models exist such that the true
marginal probability cannot possibly be the location of a
minimum of the Bethe free energy. Approaches have been
developed to solve related convex problems but results are
typically less good (Meshi et al., 2009). Our work demon-
strates an interesting connection between MAP inference
techniques (NP-hard) and estimating the partition function
Z (#P-hard). A different connection was shown by using
MAP inference on randomly perturbed models to approxi-
mate and boundZ (Hazan and Jaakkola, 2012).

2 NOTATION & PRELIMINARIES

Our notation is similar to Weller and Jebara (2013a) and
Welling and Teh (2001). We focus on a binary pairwise
model with n variablesX1, . . . , Xn ∈ B = {0, 1} and
graph topology(V , E) with m = |E|; that isV contains
nodes{1, . . . , n} wherei corresponds toXi, andE ⊆ V ×
V contains an edge for each pairwise score relationship.
Let N (i) be the neighbors ofi. Let x = (x1, . . . , xn) be
one particular configuration, and introduce the notion of
energyE(x) through2

p(x) =
e−E(x)

Z
, E = −

∑

i∈V
θixi −

∑

(i,j)∈E
Wijxixj , (1)

2The probability or score function can always be reparameter-
ized in this way, with finiteθi andWij terms providedp(x) >
0 ∀x, which is a requirement for our approach. There are rea-
sonable distributions where this does not hold, i.e. distributions
where∃x : p(x) = 0, but this can often be handled by assigning
such configurations a sufficiently small positive probability ǫ.
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where the partition functionZ =
∑

x e−E(x) is the normal-
izing constant, and{θi, Wij} are parameters of the model.

Given any joint probability distributionp(X1, . . . , Xn)
over all variables, the (Gibbs) free energy is defined as
FG(p) = Ep(E) − S(p), whereS(p) is the (Shannon)
entropy of the distribution. Using variational methods, a
remarkable result is easily shown (Wainwright and Jordan,
2008): minimizingFG over the set of all globally valid dis-
tributions (termed themarginal polytope) yields a value of
− logZ at the true marginal distribution, given in (1).

This minimization is, however, computationally in-
tractable, hence the approach of minimizing the Bethe free
energyF makes two approximations: (i) the marginal
polytope is relaxed to thelocal polytope, where we re-
quire onlylocal consistency, that is we deal with apseudo-
marginalvectorq, which in our context may be considered
{qi = q(Xi = 1) ∀i ∈ V , µij = q(xi, xj) ∀(i, j) ∈ E}
subject toqi =

∑
j∈N (i) µij , qj =

∑
i∈N (j) µij ∀i, j ∈ V ;

and (ii) the entropyS is approximated by the Bethe entropy
SB =

∑
(i,j)∈E Sij +

∑
i∈V(1 − di)Si, whereSij is the

entropy ofµij , Si is the entropy of the singleton distribu-
tion anddi = |N (i)| is the degree ofi. The local polytope
constraints imply that, givenqi andqj ,

µij =

(
1 + ξij − qi − qj qj − ξij

qi − ξij ξij

)
(2)

for someξij ∈ [0, min(qi, qj)], whereµij(a, b) = q(Xi =
a, Xj = b). Hence, the global optimum of the Bethe free
energy,

F(q) = Eq(E)− SB(q) (3)

=
∑

(i,j)∈E
−
(
Wijξij + Sij(qi, qj)

)

+
∑

i∈V

(
− θiqi + (di − 1)Si(qi)

)
,

is achieved by minimizingF over the local polytope, with
ZB defined s.t. the result obtained equals− log ZB. See
(Wainwright and Jordan, 2008) for details. Letαij =
eWij − 1. αij = 0 ⇔ Wij = 0 may be assumed not to
occur else the edge(i, j) may be deleted.αij has the same
sign asWij , if positive then the edge(i, j) is attractive; if
negative then the edge isrepulsive. The MRF is attractive
if all edges are attractive. As shown by Welling and Teh
(2001), one can solve forξij explicitly in terms ofqi and
qj by minimizingF , leading to a quadratic with real roots,

αijξ
2
ij − [1 + αij(qi + qj)]ξij + (1 + αij)qiqj = 0. (4)

For αij > 0, ξij(qi, qj) is the lower root, forαij < 0 it is
the higher. Thus we may consider the minimization ofF
over q = (q1, . . . , qn) ∈ [0, 1]n. Collecting the pairwise
terms ofF from (3) for one edge, define

fij(qi, qj) = −Wijξij(qi, qj)− Sij(qi, qj). (5)

We are interested indiscretized pseudo-marginalswhere
for eachqi, we restrict its possible values to a discrete mesh
Mi of points in[0, 1]. The points may be spaced unevenly
and we may haveMi 6=Mj. Let Ni = |Mi|, and define
N =

∑
i∈V Ni andΠ =

∏
i∈V Ni, the sum and product

respectively of the number of mesh points in each dimen-
sion. WriteM for the entire mesh. Let̂q be the location
of a global optimum ofF . We say that a mesh construc-
tionM(ǫ) is sufficientif, given ǫ > 0, it can be guaranteed
that∃ a mesh pointq∗ ∈∏i∈VMi s.t.F(q∗)−F(q̂) ≤ ǫ.
The resulting discrete optimization problem may be framed
as MAP inference in a multi-label MRF, where variablei
takes values inMi, with the same topology (see§5).

2.1 INPUT MODEL SPECIFICATION

To be consistent with Welling and Teh (2001) and Weller
and Jebara (2013a), for all theoretical analysis in this paper,
we assume the reparameterization in (1). However, when
an input model is specified, in order to avoid bias, we use
singleton termsθi as in (1), but instead use pairwise energy
terms given by−Wij

2 xixj−Wij

2 (1−xi)(1−xj). With this
form, varyingWij simply alters the degree of association
betweeni andj. We assume maximum possible valuesW
and T are known with|θi| ≤ T ∀i ∈ V , and |Wij | ≤
W ∀(i, j) ∈ E . The required transformation to convert
from input model to the format of (1), simply takesθi ←
θi −

∑
j∈N (i) Wij/2, leavingWij unaffected.

2.2 SUBMODULARITY

If all pairwise cost functionsfij overMi × Mj from
(5) are submodular3, then the global discretized optimum
may be found efficiently using graph cuts (Schlesinger and
Flach, 2006). We require the following earlier result.

Theorem 1 (Submodularity for any discretization of an at-
tractive model, see Weller and Jebara (2013a) Theorem 8,
Korc̆ et al. (2012)). In a binary pairwise MRF, if an edge
(i, j) is attractive, i.e.Wij > 0, then the discretized multi-
label MRF for any meshM is submodular for that edge.
Hence if the MRF is fully attractive, then the discretized
multi-label MRF is fully submodular for any discretization.

2.3 FLIPPING VARIABLES

A useful technique for our analysis is to consider a model
where some variables are flipped, i.e. given a model on
{Xi}, consider a new model on{X ′

i} whereX ′
i = 1−Xi

for somei ∈ V . New model parameters{θ′
i, W

′
ij} may be

identified as in (Weller and Jebara, 2013a,§3) to preserve

3Here a pairwise multi-label function on a set of ordered labels
Xij = {1, . . . , Ki} × {1, . . . , Kj} is submodulariff ∀x, y ∈
Xij , f(x∧y)+f(x∨y) ≤ f(x)+f(y), where forx = (x1, x2)
andy = (y1, y2), (x ∧ y) = (min(x1, y1), min(x2, y2)) and
(x∨y) = (max(x1, y1), max(x2, y2)). For binary variables this
is equivalent to the edge potential being attractive.
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energies of all states up to a constant. If all variables are
flipped, new parameters are given by

W ′
ij = Wij , θ′

i = −θi −
∑

j∈N (i)

Wij . (6)

If the original model was attractive, so too is the new. If
only a subsetR ⊆ V is flipped, letX ′

i = 1 −Xi if i ∈ R,
elseX ′

i = Xi for i ∈ S, whereS = V\R. LetEt = {edges
with exactlyt ends inR} for t = 0, 1, 2. Then we obtain

W ′
ij =

{
Wij (i, j) ∈ E0 ∪ E2,
−Wij (i, j) ∈ E1,

θ′
i =

{
θi +

∑
(i,j)∈E1

Wij i ∈ S,

−θi −
∑

(i,j)∈E2
Wij i ∈ R.

(7)

Lemma 2. Flipping variables changes affected pseudo-
marginal matrix entries’ locations but not values.F is un-
changed up to a constant, hence the locations of stationary
points are unaffected. Proof in Weller and Jebara (2013a)

2.4 PRELIMINARY BOUNDS

We use the following earlier results.

Lemma 3 (Weller and Jebara (2013a) Lemma 2). αij ≥
0⇒ ξij ≥ qiqj , αij ≤ 0⇒ ξij ≤ qiqj .

Lemma 4 (Upper bound forξij for an attractive edge,
Weller and Jebara (2013a) Lemma 6). If αij > 0, then

ξij − qiqj ≤ αijm(1−M)
1+αij

, wherem = min(qi, qj) and

M = max(qi, qj).

Theorem 5 (Weller and Jebara (2013a) Theorem 4). For
general edge types (associative or repulsive), letWi =∑

j∈N (i):Wij>0 Wij , Vi = −∑j∈N (i):Wij <0 Wij . At any
stationary point of the Bethe free energy,σ(θi−Vi) ≤ qi ≤
σ(θi + Wi), whereσ(x) = 1/(1 + exp(−x)) (sigmoid).

For the efficiency of our overall approach, it is very desir-
able to tighten these bounds on locations of minima ofF
since this both reduces the search space and allows a lower
density of discretizing points in the mesh. For our theo-
retical results, we do not assume this can be done but in
practice, it can be attempted efficiently by running either
of the following two algorithms: Bethe bound propagation
(BBP) from (Weller and Jebara, 2013a,§6), or using the ap-
proach from Mooij and Kappen (2007) which we term MK.
Either method can achieve striking results quickly, though
MK is our preferred method4 - this considers cavity fields
around each variable and determines the range of possible
beliefs after iterating LBP, starting from any initial values;
since any minimum ofF corresponds to a fixed point of
LBP (Yedidia et al., 2001), this bounds all minima.

4Both BBP and MK are anytime methods that converge
quickly, and can be implemented such that each iteration runs in
O(m) time. MK takes a little longer but can yield tighter bounds.

Let the lower bounds obtained forqi and1−qi respectively
beAi andBi so thatAi ≤ qi ≤ 1 − Bi, and let theBethe
box be the orthotope given by

∏
i∈V [Ai, 1 − Bi]. Define

ηi = min(Ai, Bi), i.e. the closest thatqi can come to the
extreme values of0 or 1.

2.5 DERIVATIVES OF F

Welling and Teh (2001) derived first partial derivatives of
the Bethe free energy as

∂F
∂qi

= −θi + log Qi, (8)

whereQi =
(1− qi)

di−1

qdi−1
i

∏
j∈N (i)(qi − ξij)∏

j∈N (i)(1 + ξij − qi − qj)
.

Weller and Jebara (2013a) derived all second partial deriva-
tives.

Theorem 6 (All terms of the Hessian, see Weller and Je-
bara (2013a)§4.3 and Lemma 9). LetH be the Hessian of
F for a binary pairwise model, i.e.Hij = ∂2F

∂qi∂qj
, anddi

be the degree of variableXi, then

Hii = − di − 1

qi(1− qi)
+
∑

j∈N (i)

qj(1− qj)

Tij
≥ 1

qi(1− qi)
,

Hij =

{
qiqj−ξij

Tij
(i, j) ∈ E

0 (i, j) /∈ E , i 6= j,

whereTij = qiqj(1− qi)(1 − qj)− (ξij − qiqj)
2 (9)

≥ 0 with equality iffqi or qj ∈ {0, 1}.

3 NEW APPROACH: GRADMESH

We develop a new approach to constructing a sufficient
meshM by analyzing bounds on the first derivatives of
F . To help distinguish between methods, we call the new
first derivative approachgradMesh, and the earlier, sec-
ond derivative approachcurvMesh. The new gradMesh ap-
proach yields several attractive features:

• For attractive models, we obtain a FPTAS with worst
case runtimeO(ǫ−3n3m3W 3) and no restriction on
topology, unlike earlier work (Weller and Jebara,
2013a) which requiredmax degree∆ = O(log n).

• Our sufficient mesh is typically dramatically coarser
than the earlier method of Weller and Jebara (2013a)
unlessǫ is very small, leading to a much smaller
subsequent MAP problem. Here, the sum of the
number of discretizing points in each dimension,
N = O

(
nmW

ǫ

)
. For comparison, the earlier method,

even after our improvements in§4, forms a mesh with
N = O

(
ǫ−1/2n7/4∆3/4 exp

[
1
2 (W (1 + ∆/2) + T )

])
.

See§6.1 for examples.
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• The approach immediately handles a general model with
both attractive and repulsive edges. Hence approxi-
mating log ZB may be reduced to a discrete multi-
label MAP inference problem. This is valuable due
to the availability of many MAP techniques, see§5.

First consider a model which is fully attractive around vari-
ableXi, i.e. Wij > 0 ∀j ∈ N (i). From (8) and Lemma 3,
we obtain

∂F
∂qi

= −θi + log Qi ≤ −θi + log
qi

1− qi
. (10)

Flip all variables (see§2.3). Write ′ for the parameters of
the new flipped model, which is also fully attractive, then
using (6) and (10),

∂F ′

∂q′
i

≤ −θ′
i + log

q′
i

1− q′
i

⇔ −θi −Wi + log
qi

1− qi
≤ ∂F

∂qi
.

Combining this with (10) yields the sandwich result

−θi −Wi + log
qi

1− qi
≤ ∂F

∂qi
≤ −θi + log

qi

1− qi
.

Now generalize to consider the case thati has some neigh-
borsR to which it is adjacent by repulsive edges. In this
case, flip those nodesR (see§2.3) to yield a model, which
we denote by′′, which is fully attractive aroundi, hence we
may apply the above result. By (7) we haveθ′′

i = θi − Vi,
and usingW ′′

i = Wi + Vi, we obtain that for a general
model,

−θi −Wi + log
qi

1− qi
≤ ∂F

∂qi
≤ −θi + Vi + log

qi

1− qi
.

(11)

This bounds each first derivative∂F
∂qi

within a range of
width Vi + Wi =

∑
j∈N (i) |Wij |, which is sufficient for

the main theoretical result, see (15). We take the opportu-
nity, however, to describe a method which sometimes sig-
nificantly narrows this range, thereby improving the result
in practice.

Using oneO(m) iteration of the belief propagation algo-
rithm (BBP) derived in (Weller and Jebara, 2013a, Supple-
ment), allows us to refine the bounds for variableXi of (11)
based on the[Aj , 1−Bj ] location bounds on its neighbors
j ∈ N (i), to show

fL
i (qi) ≤

∂F
∂qi
≤ fU

i (qi), where

fL
i (qi) = −θi −Wi + log

qi

1− qi
+ log Ui

fU
i (qi) = −θi + Vi + log

qi

1− qi
− log Li. (12)
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Figure 1: Upper and Lower Bounds for∂F
∂qi

. Solid blue curves
show worst case bounds (11) as functions ofqi, and are different
by a constantVi + Wi =

∑
j∈N (i) |Wij |. Dashed red curves

show the upperfU
i (qi) and lowerfL

i (qi) bounds (12) after being
lowered bylog Li and raised bylog Ui respectively, which incor-
porate the information from the bounds of neighboring variables.
All bounding curves are strictly monotonic. The Bethe box region
for qi must lie within the shaded region demarcated by vertical red
dashed lines, but we may have better bounds available, e.g. from
MK, as shown byAi and1 − Bi.

Li, Ui are each> 1 with log Li + log Ui ≤ Vi + Wi. They
are computed asLi =

∏
j∈N (i) Lij , Ui =

∏
j∈N (i) Uij ,

with Lij =

{
1 +

αijAj

1+αij(1−Bi)(1−Aj)
if Wij > 0

1 +
αijBj

1+αij(1−Bi)(1−Bj)
if Wij < 0

,

Uij =

{
1 +

αijBj

1+αij(1−Ai)(1−Bj)
if Wij > 0

1 +
αijAj

1+αij(1−Ai)(1−Aj)
if Wij < 0

.

See Figure 1 for an example. We make the following ob-
servations:

• The upper bound is equal to the lower bound plus the
constantDi = Vi + Wi − log Li − log Ui ≥ 0.

• The bound curves are monotonically increasing withqi,
ranging from−∞ to +∞ asqi ranges from0 to 1.

• A necessary condition to be within the Bethe box is
that the upper bound is≥ 0 and the lower bound is
≤ 0. Hence, anywhere within the Bethe box, we must
have bounded derivative,| ∂F

∂qi
| ≤ Di. BBP gener-

ates{[Ai, 1−Bi]} bounds by iteratively updating with
Li, Ui terms. In general, however, we may have better
bounds from any other method, such as MK, which
lead to higherLi andUi parameters and lowerDi.

F is continuous on[0, 1]n and differentiable everywhere in
(0, 1)n with partial derivatives satisfying (12).fL

i (qi) and
fU

i (qi) are continuous and integrable. Indeed, using the
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notation
[
φ(x)

]x=b

x=a
= φ(b)− φ(a),

∫ b

a

log
qi

1− qi
dqi =

[
qi log qi + (1− qi) log(1− qi)

]qi=b

qi=a

(13)
for 0 ≤ a ≤ b ≤ 1, which relates to the binary entropy
functionH(p) = −p log p− (1 − p) log(1 − p), recall the
definition ofF . We remark that although∂F

∂qi
tends to−∞

or +∞ asqi tends to0 or 1, the integral converges (taking
0 log 0 = 0).

Hence ifq̂ = (q̂1, . . . , q̂n) is the location of a global mini-
mum, then for anyq = (q1, . . . , qn) in the Bethe box,

F(q)−F(q̂) ≤
∑

i:q̂i≤qi

∫ qi

q̂i

fU
i (qi)dqi+

∑

i:qi<q̂i

∫ q̂i

qi

−fL
i (qi)dqi.

(14)

To construct a sufficient mesh, a simple initial bound relies
on | ∂F

∂qi
| ≤ Di. If mesh pointsMi are chosen s.t. in di-

mensioni there must be a pointq∗ within γi of a global
minimum (which can be achieved using a mesh width in
each dimension of2γi), then by settingγi = ǫ

nDi
, we ob-

tainF(q∗)−F(q̂) ≤∑i Di
ǫ

nDi
= ǫ. It is easily seen that

Ni ≤ 1 + ⌈ 1
2γi
⌉, hence the total number of mesh points,

N =
∑

i∈V Ni, satisfies

N ≤ 2n +
n

2ǫ

∑

i

Di ≤ 2n +
n

ǫ

∑

(i,j)∈E
|Wij |

= O


n

ǫ

∑

(i,j)∈E
|Wij |


 = O

(
nmW

ǫ

)
, (15)

since Di ≤ Vi + Wi =
∑

j∈N (i) |Wij |. Here W =

max(i,j)∈E |Wij | andm = |E| is the number of edges.

If the initial model is fully attractive, then by Theo-
rem 1 we obtain a submodular multi-label MAP problem
which is solvable using graph cuts with worst case runtime
O(N3) = O(ǫ−3n3m3W 3) (Schlesinger and Flach, 2006;
Greig et al., 1989; Goldberg and Tarjan, 1988).

Note from the first expression in (15) that if we have in-
formation on individual edge weights then we have a better
bound using

∑
(i,j)∈E |Wij | rather than justmW .

For comparison, the earlier second derivative approach of
Weller and Jebara (2013a) has runtimeO(ǫ− 3

2 n6Σ
3
4 Ω

3
2 ),

where, even using the improved method in§4 here,Ω =
O(∆eW (1+∆/2)+T ). Unlessǫ is very small, the new first
derivative approach is typically dramatically more efficient
and more useful in practice. Further, it naturally handles
both attractive and repulsive edge weights in the same way.

3.1 REFINEMENTS, ADAPTIVE METHODS

Since the resulting multi-label MAP inference problem
(which is not submodular in general) is NP-hard (Shimony,

1994), it is helpful to minimize its size. As noted above,
setting γi = ǫ

nDi
, which we term thesimple method,

yields a sufficient mesh, where| ∂F
∂qi
| ≤ Di = Vi + Wi −

log Li − log Ui. However, since the bounding curves are
monotonic withfU

i ≥ 0 and fL
i ≤ 0, a better bound

for the magnitude of the derivative is available by setting
Di = max{fU

i (1 −Bi),−fL
i (Ai)}.

3.1.1 The minsum Method

We defineNi = the number of mesh points in dimension
i, with sumN =

∑
i∈V Ni and productΠ =

∏
i∈V Ni.

For a fully attractive model, the resulting MAP problem
may be solved in timeO(N3) by graph cuts (Theorem 1,
(Schlesinger and Flach, 2006; Greig et al., 1989; Goldberg
and Tarjan, 1988)), so it is sensible to minimizeN . In other
cases, however, it is less clear what to minimize. For ex-
ample, a brute force search over all points would take time
Θ(Π).

Define the spread of possible values in dimensioni asSi =
1−Bi − Ai and noteNi = 1 + ⌈ Si

2γi
⌉ is required to cover

the whole range. To minimizeN while ensuring the mesh
is sufficient, consider the LagrangianL =

∑
i∈V

Si

2γi
−

λ(ǫ−∑i∈V γiDi), whereDi is set as in the simple method
(§3.1). Optimizing gives

γi =
ǫ∑

j∈V
√

SjDj

√
Si

Di
, andN≤ 2n+

1

2ǫ

(∑

i∈V

√
SiDi

)2

(16)
which we term theminsum method. Note Di ≤ diW

wheredi is the degree ofXi, hence
(∑

i∈V

√
SiDi

)2 ≤
W
(∑

i∈V

√
di

)2
. By Cauchy-Schwartz and the handshake

lemma,
(∑

i∈V

√
di

)2 ≤ n
∑

i∈V di = 2mn, with equal-
ity iff the di are constant, i.e. the graph is regular.

If insteadΠ is minimized, rather thanN , a similar argu-
ment shows that the simple method (§3.1) is optimal.

3.1.2 Adaptive Methods

The previous methods rely on one boundDi for | ∂F
∂qi
| over

the whole range[Ai, 1 − Bi]. However, we may increase
efficiency by using local bounds to vary the mesh width
across the range. A bound on the maximum magnitude of
the derivative over any sub-range may be found by check-
ing just−fL

i at the lower end andfU
i at the upper end.

This may be improved by using the exact integral as in (14).
First, constant proportionski > 0 should be chosen with∑

i ki = 1. Next, the first or smallest mesh pointγi
1 ∈ Mi

should be set s.t.
∫ γi

1

Ai
fU

i (qi)dqi = kiǫ. This will ensure
thatγi

1 covers all points to its left in the sense thatF [qi =
γi
1] − F [qi ∈ [Ai, γ

i
1]] ≤ kiǫ where all other variables

qj , j 6= i, are held constant at any values within the Bethe
box.γi

1 also covers all points to its right up to what we term
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its reach, i.e. the pointri
1 s.t.

∫ ri
1

γi
1
−fL

i (qi)dqi = kiǫ. Next,

γi
2 is chosen as before, usingri

1 as the left extreme rather
thanAi, and so on, until the final mesh point is computed
with reach≥ 1 − Bi. This yields an optimal mesh for the
choice of{ki}.
If ki = 1

n , we achieve an optimizedadaptive simple

method. Ifki =
√

SiDi∑
j∈V
√

SjDj

, we achieve anadaptive

minsummethod. For many problems, this adaptive min-
sum method will be the most efficient.

Integrals are easily computed using (13). To our knowl-
edge, computing optimal points{γi

s} is not possible ana-
lytically, but each may be found with high accuracy in just
a few iterations using a search method, hence total time to
compute the mesh isO(N), which is negligible compared
to solving the subsequent MAP problem.

4 REVISITING THE SECOND
DERIVATIVE APPROACH:
CURVMESH

We shall review and then refine the second derivative ap-
proach used in (Weller and Jebara, 2013a,§5), which we
call curvMesh. Its mesh size (measured byN , the total
number of points summed over the dimensions) grows as
O(ǫ−1/2) rather than asO(ǫ−1) in the new first derivative
gradMesh approach. In practice, however, unlessǫ is very
small, gradMesh is much more efficient (see Figure 2).

As in this paper, the possible location of a global min-
imum q̂ was first bounded in the Bethe box given by∏

i∈V [Ai, 1 − Bi]. Next an upper boundΛ was derived
on the maximum possible eigenvalue of the HessianH
of F anywhere within the Bethe box, where it was re-
quired that all edges be attractive. Then a mesh of constant
width in every dimension was introduced s.t. the nearest
mesh pointq∗ to q̂ was at mostγ away in each dimen-
sion. Hence theℓ2 distanceδ satisfiesδ2 ≤ nγ2 and by
Taylor’s theorem,F (q∗) ≤ F (q̂) + 1

2Λδ2. Λ was com-
puted by bounding the maximum magnitude of any ele-
ment of H . Considering Theorem 6, this involves sepa-
rate analysis of diagonalHii terms, which are positive and
were bounded above by the termb; and edgeHij terms,
which are negative for attractive edges, whose magnitude
was bounded above bya. ThenΩ was set asmax(a, b),
andΣ as the proportion of non-zero entries inH . Finally,
Λ ≤

√
tr(HT H) ≤

√
Σn2Ω2 = nΩ

√
Σ.

4.1 IMPROVED BOUND FOR AN ATTRACTIVE
MODEL

We improve the upper bound forΛ by improving thea
bound for attractive edges to deriveã, a better upper bound
on−Hij . Essentially, a more careful analysis allows a po-

tentially small term in the numerator and denominator to be
canceled before bounding. Writinḡη = mini∈V ηi(1−ηi),
i.e. the closest that any dimension can come to 0 or 1, the
result is that

−Hij ≤
(

αij

1 + αij

)/
η̄

(
1−

(
αij

1 + αij

)2
)

(17)

= O(eW (1+∆/2)+T ).

Thus, ã = O(eW (1+∆/2)+T ) which compares favorably
to the earlier bound in Weller and Jebara (2013a) , where
a = O(eW (1+∆)+2T ). Recall b = O(∆eW (1+∆/2)+T )
and Ω = max(a, b), so using the new̃a bound, now
Ω = O(∆eW (1+∆/2)+T ). Details and derivations are in
the supplement.

4.2 EXTENDING TO A GENERAL MODEL

Using flipping arguments from§2.3, we are able to extend
the method of Weller and Jebara (2013a) to apply to general
(non-attractive) models. Interestingly, the bounds derived
for Ω = max(a, b) take exactly the same form as for the
purely attractive case, except that now−W ≤ Wij ≤ W ,
whereas previously it was required that0 ≤ Wij ≤ W .
Details and derivations are in the supplement.

5 RESULTING MULTI-LABEL MAP

After computing a sufficient mesh, it remains to solve the
multi-label MAP inference problem on a MRF with the
same topology as the initial model, where eachqi takes val-
ues inMi. In general, this is NP-hard (Shimony, 1994).

5.1 TRACTABLE CASES

If it happens that all cost functions are submodular (as is al-
ways the case if the initial model is fully attractive by The-
orem 1), then as already noted, it may be solved efficiently
using graph cut methods, which rely on solving a max
flow/min cut problem on a related graph, with worst case
runtimeO(N3) (Schlesinger and Flach, 2006; Greig et al.,
1989; Goldberg and Tarjan, 1988). Using the algorithm of
Boykov and Kolmogorov (2004), performance is typically
much faster, sometimes approachingO(N). This submod-
ular setting is the only known class of problem which is
solvable for any topology.

Alternatively, the topological restriction of bounded tree-
width allows tractable inference (Pearl, 1988). Further, un-
der mild assumptions, this was shown to be the only re-
striction which will allow efficient inference for any cost
functions (Chandrasekaran et al., 2008). We note that if
the problem has bounded tree-width, then so too does the
original binary pairwise model, hence exact inference (to
yield the true marginals or the true partition functionZ) on
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the original model is tractable using the junction tree algo-
rithm, making our approximation result less interesting for
this class. In contrast, although MAP inference is tractable
for any attractive binary pairwise model, marginal infer-
ence and computingZ are not (Jerrum and Sinclair, 1993).

A recent approach reducing MAP inference to identifying
a maximum weight stable set in a derived weighted graph
(Jebara, 2014; Weller and Jebara, 2013b) shows promise,
allowing efficient inference if the derived graph is perfect.
Further, testing if this graph is perfect can be performed in
polynomial time (Jebara, 2014; Chudnovsky et al., 2005).

5.2 INTRACTABLE MAP CASES

Many different methods are available, see Kappes et al.
(2013) for a recent survey. Some, such as dual approaches,
may provide a helpful bound even if the optimum is not
found. Indeed, a LP relaxation will run in polynomial time
and return an upper bound onlog ZB that may be useful.
A lower bound may be found from any discrete point, and
this may be improved using local search methods.

Note that the Bethe box bounds on eachqi ∈ [Ai, 1 − Bi]
are worst case, irrespective of other variables. However,
given a particular value for one or moreqj , j ∈ N (i), ei-
ther BBP (Weller and Jebara, 2013a,§6) or MK (Mooij and
Kappen, 2007) can produce better bounds onqi, which may
be helpful for pruning the solution space.

5.2.1 Persistent partial optimization approaches

The multi-label implementation of quadratic pseudo-
Boolean optimization (Kohli et al., 2008, MQPBO), and
the method of Kovtun (2003), are examples of this class.
Both consider LP-relaxations and run in polynomial time.
In our context, the output consists of ranges (which in the
best case could be one point) of settings for some sub-
set of the variables. If any such ranges are returned, the
strong persistence property ensures thatany MAP solu-
tion satisfies the ranges. Hence, these may be used to up-
date{Ai, Bi} bounds (padding the discretized range to the
full continuous range covered by the end points if needed),
compute a new, smaller, sufficient mesh and repeat until no
improvement is obtained.

6 EXPERIMENTS

6.1 COMPARISON TO EARLIER WORK

We compared the new mesh construction methods from
this paper with the earlier approach by Weller and Je-
bara (2013a), see Figure 2. We considered two values of
ǫ: 1 (medium resolution) and 0.1 (fine resolution). For
each value, we generated random MRFs onn variables,
all pairwise connected, whereθi ∼ U [−2, 2] andWij ∼
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Figure 2: Variation in N = sum of number of mesh points in
each dimension,log scale, as: (top)n = number of variables
is changed, keepingW = 5 fixed; (bottom)W = maximum
coupling strength is changed, keepingn = 10 fixed. On the left,
ǫ = 1 (medium resolution); on the right,ǫ = 0.1 (fine resolution).
In each case the topology is a complete graph, edge weights are
chosenWij ∼ U [−W, W ] and θi ∼ U [−2, 2]. Average over
10 random models for each value.curvMeshOrigis the original
method of Weller and Jebara (2013a);curvMeshNewis our re-
finement, see§4; gradMeshis our new first derivative minsum
method, see§3. For more details, see text of§6.1.

U [−W, W ], using the input convention of§2.1.5 We show
results first for fixedW = 5 asn is varied from 3 to 20,
then for fixedn = 10 asW is varied from 1 to 10, gen-
erating 10 random models for each value. Of the various
first derivative gradMesh methods, only minsum is shown
since the others would not be sufficiently distinguishable
on these plots.6

Note thatN is shown on alog axis, thus we observe that
the new methods dramatically outperform that of Weller
and Jebara (2013a) by many orders of magnitude for most
cases of interest, even for smallǫ. Further, recall that
N =

∑
i Ni is the sum of the number of mesh points in

each dimension. The runtime of the overall algorithm is
certainlyΩ(N), even for attractive models7, and for gen-
eral models is typically a significantly higher power, thus
further demonstrating the benefit of the new methods.

5The original method of Weller and Jebara (2013a) could only
handle attractive models but we augment it as in§4.2. Plots for
attractive models, whereWij ∼ U [0, W ] are very similar to those
shown.

6In practice, the adaptive methods typically produce a mesh
with about half the number of points in each dimension.

7In our experiments on attractive models, the Boykov-
Kolmogorov algorithm typically runs in timeO(N1.5) to
O(N2.5).
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6.2 POWER NETWORK

As a first step toward applying our algorithm to explore
the usefulness of the global optimum of the Bethe approx-
imation, here we consider one setting where LBP fails to
converge, yet still we achieve reasonable results.

We aim to predict transformer failures in a power network
(Rudin et al., 2012). Since the real data is sensitive, our
experiments use synthetic data. LetXi ∈ {0, 1} indicate
if transformeri has failed or not. Each transformer has a
probability of failure on its own which is represented by
a singleton potentialθi. However, when connected in a
network, a transformer can propagate its failure to nearby
nodes (as in viral contagion) since the edges in the network
form associative dependencies. We assume that homoge-
neous attractive pairwise potentials couple all transformers
that are connected by an edge, i.e.Wij = W ∀(i, j) ∈ E .
The network topology creates a Markov random field spec-
ifying the distributionp(X1, . . . , Xn). Our goal is to com-
pute the marginal probability of failure of each transformer
within the network (not simply in isolation as in Rudin et al.
(2012)). Since recoveringp(Xi) is hard, we estimate Bethe
pseudo-marginalsqi = q(Xi = 1) through our algorithm,
which emerge as thearg min when optimizing the Bethe
free energy.

A single simulated sub-network of 55 connected transform-
ers was generated using a random preferential attachment
model, resulting in average degree 2 (see Figure 3 in the
Appendix). Typical settings ofθi = −2 and W = 4
were specified (using the input model specification of§2.1).
We attempted to run BP using the libDAI package (Mooij,
2010) but were unable to achieve convergence, even with
multiple initial values, using various sequential or par-
allel settings and with damping. However, running our
gradMesh adaptive minsum algorithm withǫ = 1 achieved
reasonable results as shown in Table 1, where true values
were obtained with the junction tree algorithm.

ǫ = 1 PTAS forlog ZB Error from true value
Meanℓ1 error of single marginals 0.003
Log-partition function 0.26

Table 1: Results on simulated power network

It has been suggested that the Bethe approximation is poor
when BP fails to converge (Mooij and Kappen, 2005). Our
new method will allow this to be explored rigorously in
future work. The initial result above is a promising first
step and justifies further investigation.

7 DISCUSSION & FUTURE WORK

To our knowledge, we have derived the firstǫ-
approximation algorithm forlog ZB for a general binary
pairwise model. Our approaches are useful in practice, and

much more efficient than the earlier method of Weller and
Jebara (2013a). From experiments run, we note that theǫ
bounds for the adaptive minsum first derivativegradMesh
approach appear to be close to tight since we have found
models where the optimum returned when run withǫ = 1
is more than0.5 different to that forǫ = 0.1. When applied
to attractive models, we guarantee a FPTAS with no degree
restriction.

As described in§6.2, Bethe pseudo-marginals may be re-
covered from our approach by taking theq∗ that is returned
as thearg min of F over the discrete mesh. However, al-
thoughF(q∗) is guaranteed withinǫ of the optimum, there
is no guarantee thatq∗ will necessarily be close to a true
Bethe optimum pseudo-marginal. For example, the surface
could be very flat over a wide region, or the true optimum
might be ǫ

2 better at a location far fromq∗. We sketch out
how our approach may be used to bound the location of a
global optimum pseudo-marginal, though note that there is
no runtime guarantee. First pick an initialǫ1 and run the
main algorithm to findq∗

1 . Now use any method to solve
for the second best discretized mesh pointq∗

2 . If it happens
thatF(q∗

2) ≥ F(q∗
1) + ǫ1 then, by the nature of the mesh

construction, there must be a global minimum within the
orthotope given by the neighboring mesh points ofq∗

1 in
each dimension8 and we terminate. On the other hand, if
F(q∗

2) < F(q∗
1) then we reduceǫ, for example toǫ1

2 and
repeat until we’re successful.

Future work includes further reducing the size of the mesh,
considering how it should be selected to simplify the subse-
quent discrete optimization problem, and exploring appli-
cations. Importantly, we now have the opportunity to ex-
amine rigorously the performance of the global Bethe op-
timum. In addition, this will provide a benchmark against
which to compare other (non-global) Bethe approaches that
typically run more quickly, such as LBP or CCCP (Yuille,
2002). Another interesting avenue is to use our algorithm
as a subroutine in a dual decomposition approach to opti-
mize over a tighter relaxation of the marginal polytope.
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D. Batra, S. Kim, B. Kausler, J. Lellmann, N. Komodakis,
and C. Rother. A comparative study of modern inference tech-
niques for discrete energy minimization problems. InCVPR,
2013.

P. Kohli, A. Shekhovtsov, C. Rother, V. Kolmogorov, and P. Torr.
On partial optimality in multi-label MRFs. In W. Cohen,
A. McCallum, and S. Roweis, editors,ICML, volume 307 of
ACM International Conference Proceeding Series, pages 480–
487. ACM, 2008. ISBN 978-1-60558-205-4.

F. Korc̆, V. Kolmogorov, and C. Lampert. Approximating
marginals using discrete energy minimization. Technical re-
port, IST Austria, 2012.

I. Kovtun. Partial optimal labeling search for a NP-hard subclass
of (max, +) problems. In B. Michaelis and G. Krell, editors,
DAGM-Symposium, volume 2781 ofLecture Notes in Com-
puter Science, pages 402–409. Springer, 2003. ISBN 3-540-
40861-4.

R. McEliece, D. MacKay, and J. Cheng. Turbo decoding as an in-
stance of Pearl’s ”Belief Propagation” algorithm.IEEE Journal
on Selected Areas in Communications, 16(2):140–152, 1998.

O. Meshi, A. Jaimovich, A. Globerson, and N. Friedman. Con-
vexifying the Bethe free energy. InUAI, pages 402–410, 2009.

J. Mooij. libDAI: A free and open source C++ library for discrete
approximate inference in graphical models.Journal of Ma-
chine Learning Research, 11:2169–2173, August 2010. URL
http://www.jmlr.org/papers/volume11/mooij10a/mooij10a.pdf.

J. Mooij and H. Kappen. Sufficient conditions for convergence
of loopy belief propagation. InProceedings of the 21st Annual
Conference on Uncertainty in Artificial Intelligence (UAI-05),
pages 396–403. AUAI Press, 2005.

J. Mooij and H. Kappen. Sufficient conditions for convergence of
the sum-product algorithm.IEEE Transactions on Information
Theory, 53(12):4422–4437, December 2007.

K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation
for approximate inference: An empirical study. InUncertainty
in Artificial Intelligence (UAI), 1999.

J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, 1988.

C. Rudin, D. Waltz, R. Anderson, A. Boulanger, A. Salleb-
Aouissi, M. Chow, H. Dutta, P. Gross, B. Huang, and
S. Ierome. Machine learning for the New York City
power grid. IEEE Trans. Pattern Anal. Mach. Intell., 34
(2):328–345, February 2012. ISSN 0162-8828. doi:
10.1109/TPAMI.2011.108.

D. Schlesinger and B. Flach. Transforming an arbitrary minsum
problem into a binary one. Technical report, Dresden Univer-
sity of Technology, 2006.

S. Shimony. Finding MAPs for belief networks is NP-hard.Ari-
tifical Intelligence, 68(2):399–410, 1994.

J. Shin. Complexity of Bethe approximation. InArtificial Intelli-
gence and Statistics, 2012.

M. Wainwright and M. Jordan. Graphical models, exponential
families and variational inference.Foundations and Trends in
Machine Learning, 1(1-2):1–305, 2008.

A. Weller and T. Jebara. Bethe bounds and approximating the
global optimum. InArtificial Intelligence and Statistics, 2013a.

A. Weller and T. Jebara. On MAP inference by MWSS on perfect
graphs. InUncertainty in Artificial Intelligence (UAI), 2013b.

M. Welling and Y. Teh. Belief optimization for binary networks:
A stable alternative to loopy belief propagation. InUncertainty
in Artificial Intelligence (UAI), 2001.

J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief prop-
agation and its generalizations. InInternational Joint Con-
ference on Artificial Intelligence, Distinguished LectureTrack,
2001.

A. Yuille. CCCP algorithms to minimize the Bethe and Kikuchi
free energies: Convergent alternatives to belief propagation.
Neural Computation, 14:1691–1722, 2002.

867



Understanding the Bethe Approximation: When and How can it go Wrong?

Adrian Weller
Columbia University
New York NY 10027

adrian@cs.columbia.edu

Kui Tang
Columbia University
New York NY 10027

kt2384@cs.columbia.edu

David Sontag
New York University
New York NY 10012

dsontag@cs.nyu.edu

Tony Jebara
Columbia University
New York NY 10027

jebara@cs.columbia.edu

Abstract

Belief propagation is a remarkably effective tool
for inference, even when applied to networks
with cycles. It may be viewed as a way to seek
the minimum of the Bethe free energy, though
with no convergence guarantee in general. A
variational perspective shows that, compared to
exact inference, this minimization employs two
forms of approximation: (i) the true entropy is
approximated by the Bethe entropy, and (ii) the
minimization is performed over a relaxation of
the marginal polytope termed the local polytope.
Here we explore when and how the Bethe ap-
proximation can fail for binary pairwise models
by examining each aspect of the approximation,
deriving results both analytically and with new
experimental methods.

1 INTRODUCTION

Graphical models are a central tool in machine learning.
However, the task of inferring the marginal distribution of a
subset of variables, termed marginal inference, is NP-hard
(Cooper, 1990), even to approximate (Dagum and Luby,
1993), and the closely related problem of computing the
normalizing partition function is #P-hard (Valiant, 1979).
Hence, much work has focused on finding efficient approx-
imate methods. The sum-product message-passing algo-
rithm termed belief propagation is guaranteed to return ex-
act solutions if the underlying topology is a tree. Further,
when applied to models with cycles, known as loopy belief
propagation (LBP), the method is popular and often strik-
ingly accurate (McEliece et al., 1998; Murphy et al., 1999).

A variational perspective shows that the true partition func-
tion and marginal distributions may be obtained by mini-
mizing the true free energy over the marginal polytope. The
standard Bethe approximation instead minimizes the Bethe
free energy, which incorporates the Bethe pairwise approx-
imation to the true entropy, over a relaxed pseudo-marginal

set termed the local polytope. A fascinating link to LBP
was shown (Yedidia et al., 2001), in that fixed points of
LBP correspond to stationary points of the Bethe free en-
ergy F . Further, stable fixed points of LBP correspond to
minima of F (Heskes, 2003). Werner (2010) demonstrated
a further equivalence to stationary points of an alternate
function on the space of homogeneous reparameterizations.

In general, LBP may converge only to a local optimum or
not converge at all. Various sufficient conditions have been
derived for the uniqueness of stationary points (Mooij and
Kappen, 2007; Watanabe, 2011), though convergence is of-
ten still not guaranteed (Heskes, 2004). Convergent meth-
ods based on analyzing derivatives of the Bethe free energy
(Welling and Teh, 2001) and double-loop techniques (Hes-
kes et al., 2003) have been developed. Recently, algorithms
have been devised that are guaranteed to return an approx-
imately stationary point (Shin, 2012) or a point with value
ε-close to the optimum (Weller and Jebara, 2013a).

However, there is still much to learn about when and why
the Bethe approximation performs well or badly. We shall
explore both aspects of the approximation in this paper. In-
terestingly, sometimes they have opposing effects such that
together, the result is better than with just one (see §4 for
an example). We shall examine minima of the Bethe free
energy over three different polytopes: marginal, local and
cycle (see §2 for definitions). For experiments, we explore
two methods, dual decomposition and Frank-Wolfe, which
may be of independent interest. To provide another bench-
mark and isolate the entropy component, we also exam-
ine the tree-reweighted (TRW) approximation (Wainwright
et al., 2005). Sometimes we shall focus on models where
all edges are attractive, that is neighboring variables are
pulled toward the same value; in this case it is known that
the Bethe approximation is a lower bound for the true par-
tition function (Ruozzi, 2012).

Questions we shall address include:

• In attractive models, why does the Bethe approxima-
tion perform well for the partition function but, when
local potentials are low and coupling high, poorly for
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marginals?

• In models with both attractive and repulsive edges,
for low couplings, the Bethe approximation performs
much better than TRW, yet as coupling increases, this
advantage disappears. Can this be repaired by tight-
ening the relaxation of the marginal polytope?

• Does tightening the relaxation of the marginal poly-
tope always improve the Bethe approximation? In par-
ticular, is this true for attractive models?

This paper is organized as follows. Notation and prelimi-
nary results are presented in §2. In §3-4 we derive instruc-
tive analytic results, first focusing on the simplest topology
that is not a tree, i.e. a single cycle. Already we observe
interesting effects from both the entropy and polytope ap-
proximations. For example, even for attractive models, the
Bethe optimum may lie outside the marginal polytope and
tightening the relaxation leads to a worse approximation to
the partition function. In §5 we examine more densely con-
nected topologies, demonstrating a dramatic phase transi-
tion in attractive models as a consequence of the entropy
approximation that leads to poor singleton marginals. Ex-
periments are described in §6, where we examine test cases.
Conclusions are discussed in §7. Related work is discussed
throughout the text. An Appendix with technical details
and proofs is attached in the Supplement.

2 NOTATION AND PRELIMINARIES

Throughout this paper, we restrict attention to binary pair-
wise Markov random fields (MRFs). We consider a model
with n variables X1, . . . , Xn ∈ B = {0, 1} and graph
topology (V, E); that is V contains nodes {1, . . . , n} where
i corresponds to Xi, and E ⊆ V × V contains an edge for
each pairwise relationship. Let x = (x1, . . . , xn) be a con-
figuration of all the variables, and N(i) be the neighbors of
i. Primarily we focus on models with no ‘hard’ constraints,
i.e. p(x) > 0 ∀x, though many of our results extend to
this case. We may reparameterize the potential functions
(Wainwright and Jordan, 2008) and define the energy E

such that p(x) = e−E(x)

Z with

E = −
∑

i∈V
θixi −

∑

(i,j)∈E

Wij

2
[xixj + (1− xi)(1− xj)] .

(1)
This form allows edge coupling weights Wij to be varied
independently of the singleton potentials θi. If Wij > 0
then an edge is attractive, if Wij < 0 then it is repulsive.
If all edges are attractive, then the model is attractive. We
write µij for pairwise marginals and, collecting together
the θi and Wij potential terms into a vector θ, with a slight
abuse of notation, sometimes write (1) as E = −θ · µ.

2.1 FREE ENERGY, VARIATIONAL APPROACH

Given any joint probability distribution q(x) over all vari-
ables, the (Gibbs) free energy is defined as FG(q) =
Eq(E)− S(q), where S(q) is the (Shannon) entropy of the
distribution.

It is easily shown (Wainwright and Jordan, 2008) that
− logZ(θ) = minq FG, with the optimum when q = p(θ),
the true distribution. This optimization is to be performed
over all valid probability distributions, that is over the
marginal polytope. However, this problem is intractable
due to the difficulty of both computing the exact entropy S,
and characterizing the polytope (Deza and Laurent, 2009).

2.2 BETHE APPROXIMATION

The standard approach of minimizing the Bethe free energy
F makes two approximations:

1. The entropy S is approximated by the Bethe entropy

SB(µ) =
∑

(i,j)∈E
Sij(µij) +

∑

i∈V
(1− di)Si(µi), (2)

where Sij is the entropy of µij , Si is the entropy of
the singleton distribution of Xi and di = |N(i)| is the
degree of i; and

2. The marginal polytope is relaxed to the local polytope,
where we require only local (pairwise) consistency,
that is we deal with a pseudo-marginal vector q, that
may not be globally consistent, which consists of
{qi = q(Xi = 1) ∀i ∈ V, µij = q(xi, xj) ∀(i, j) ∈
E} subject to the constraints qi =

∑
j∈N(i) µij , qj =∑

i∈N(j) µij ∀i, j ∈ V .

In general, the Bethe entropy SB is not concave and hence,
the Bethe free energy F = E − SB is not convex.

The global optimum of the Bethe free energyF = Eq(E)−
SB(q) is achieved by minimizing F over the local poly-
tope, with the Bethe partition functionZB defined such that
the global minimum obtained equals − logZB .

The local polytope constraints imply that, given qi and qj ,

µij =

(
1 + ξij − qi − qj qj − ξij

qi − ξij ξij

)
(3)

for some ξij ∈ [0,min(qi, qj)], where µij(a, b) = q(Xi =
a,Xj = b).

As in (Welling and Teh, 2001), one can solve for the Bethe
optimal ξij explicitly in terms of qi and qj by minimizing
F , leading to

ξ∗ij(qi, qj) =
1

2αij

(
Qij −

√
Q2
ij − 4αij(1 + αij)qiqj

)
,

(4)
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where αij = eWij − 1, Qij = 1 + αij(qi + qj).

Thus, we may consider the Bethe approximation as min-
imizing F over q = (q1, . . . , qn) ∈ [0, 1]n. Further, the
derivatives are given by

∂F
∂qi

= −φi+log


 (1− qi)

di−1

qdi−1i

∏

j∈N(i)

(qi − ξ∗ij)
(1 + ξ∗ij − qi − qj)


 ,

(5)
where φi = θi − 1

2

∑
j∈N(i)Wij .

2.3 TREE-REWEIGHTED APPROXIMATION

Our primary focus in this paper is on the Bethe approxima-
tion but we shall find it helpful to compare results to an-
other form of approximate inference. The tree-reweighted
(TRW) approach may be regarded as a family of variational
methods, where first one selects a point from the spanning
tree polytope, that is the convex hull of all spanning trees
of the model, represented as a weighting for each edge.
Given this selection, the corresponding TRW entropy is the
weighted combination of entropies on each of the possible
trees. This is then combined with the energy and optimized
over the local polytope, similarly to the Bethe approxima-
tion. Hence it provides an interesting contrast to the Bethe
method, allowing us to focus on the difference in the en-
tropy approximation. An important feature of TRW is that
its entropy is concave and always upper bounds the true
entropy (neither property is true in general for the Bethe
entropy). Hence minimizing the TRW free energy is a con-
vex problem and yields an upper bound on the true partition
function. Sometimes we shall consider the optimal upper
bound, i.e. the lowest upper bound achievable over all pos-
sible selections from the spanning tree polytope.

2.4 CYCLE POLYTOPE

We shall consider an additional relaxation of the marginal
polytope termed the cycle polytope. This inherits all con-
straints of the local polytope, hence is at least as tight, and
in addition enforces consistency around any cycle. A poly-
hedral approach characterizes this by requiring the follow-
ing cycle inequalities to be satisfied (Barahona, 1993; Deza
and Laurent, 2009; Sontag, 2010) for all cyclesC and every
subset of edges F ⊆ C with |F | odd:

∑

(i,j)∈F
(µij(0, 0) + µij(1, 1))

+
∑

(i,j)∈C\F
(µij(1, 0) + µij(0, 1)) ≥ 1. (6)

Each cycle inequality describes a facet of the marginal
polytope (Barahona and Mahjoub, 1986). It is typically
easier to optimize over the cycle polytope than the marginal
polytope, and earlier work has shown that results are often
similar (Sontag and Jaakkola, 2007).

2.5 SYMMETRIC AND HOMOGENEOUS MRFS

For analytic tractability, we shall often focus on particular
forms of MRFs. We say a MRF is homogeneous if all sin-
gleton potentials are equal, all edge potentials are equal,
and its graph has just one vertex and edge orbit.1

A MRF is symmetric if it has no singleton potentials, hence
flipping all variables 0 ↔ 1 leaves the energy unchanged,
and the true marginals for each variable are ( 12 ,

1
2 ). For

symmetric, planar binary pairwise MRFs, it is known that
the cycle polytope is equal to the marginal polytope (Bara-
hona and Mahjoub, 1986). Using (4) and (5), it is easy to
show the following result.

Lemma 1. The Bethe free energy of any symmetric MRF
has a stationary point at qi = 1

2 ∀i.

We remark that this is not always a minimum (see §5).

2.6 DERIVATIVES AND MARGINALS

It is known that the derivatives of logZ with respect to the
potentials are the marginals, and that this also holds for
any convex free energy, where pseudo-marginals replace
marginals if a polytope other than the marginal is used
(Wainwright, 2006). Using Danskin’s theorem (Bertsekas,
1995), this can be generalized as follows.

Lemma 2. Let F̂ = E − Ŝ(µ) be any free energy approx-
imation, X be a compact space, and Â = −minµ∈X F̂ be
the corresponding approximation to logZ.
If the argmin is unique at pseudo-marginals τ ,
then ∂Â

∂θi
= τi(1),

∂Â
∂Wij

= τij(0, 0) + τij(1, 1).
If the argmin is not unique then let Q(θ) be the set of
argmins; the directional derivative of Â in direction
θ ← θ + y is given by OyÂ = maxτ∈Q(θ) τ · y.

In the next Section we begin to apply these results to an-
alyze the locations and values of the minima of the Bethe
free energy.

3 HOMOGENEOUS CYCLES

Since the Bethe approximation is exact for models with no
cycles, it is instructive first to consider the case of one cy-
cle on n variables, which we write as Cn. Earlier analysis
considered the perspective of belief updates (Weiss, 2000;
Aji, 2000). Here we examine the Bethe free energy, which
in this context is convex (Pakzad and Anantharam, 2002)
with a unique optimum.2 We consider symmetric models,
initially analyzing the homogeneous case.

1This means there is a graph isomorphism mapping any edge
to any other, and the same for any vertex.

2This follows by considering (2) and observing that Sij − Si
(conditional entropy) is concave over the local consistency con-
straints, hence by appropriate counting, the total Bethe entropy is
concave provided an MRF has at most one cycle.
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With Lemma 1, we see that singleton marginals are 1
2

across all approximation methods. For pairwise marginals,
the following result holds due to convexity.

Lemma 3. For any symmetric MRF and a free energy that
is convex, the optimum occurs at uniform pseudo-marginals
across all pairs of variables, either where the derivative is
zero or at an extreme point of the range.

The uniformity of the optimal edge pseudo-marginals,
together with Lemma 1, shows that all are µij =(

x 1
2 − x

1
2 − x x

)
∀(i, j) ∈ E , where just x remains to

be identified. The optimum x with zero derivative is al-
ways contained within the local polytope but we shall see
that this is not always the case when we consider the cy-
cle relaxation. Using (4), it is straightforward to derive the
following result for the Bethe pairwise marginals.

Lemma 4. For a symmetric homogeneous cycle, the Bethe
optimum over the local polytope is at x = xB(W ) =
1
2σ(W/2), where we use standard sigmoid σ(y) := 1

1+e−y .
Observe that xB(−W ) = 1/2− xB(W ).

Further, we can derive the error of the Bethe pairwise
marginals by using the loop series result given in Lemma
5 of §4, taking log, differentiating and using Lemma 2, to
give the difference between true x and Bethe xB as

x− xB =
1

4

sech2 W4 tanhn−1 W4
1 + tanhn W

4

. (7)

Remarks: Observe that at W = 0, x − xB = 0; as
W → ±∞, x − xB → 0. For W 6= 0, x − xB is al-
ways > 0 unless n is even and W < 0, in which case it is
negative. Differentiating (7) and solving for where x and
xB are most apart gives empirically W ≈ 2 log n + 0.9
with corresponding max value of x−xB ≈ 1

5n for large n.

See Figure 1 for plots, where, for TRW, values were com-
puted using optimal edge weights, as derived in the Ap-
pendix. Observe that at W = 0, all methods are exact.
As W increases, the Bethe approximations to both logZ
and the marginal x rise more slowly than the true values,
though once W is high enough that x is large and can-
not rise much further, then the Bethe xB begins to catch
up until they are both close to 1

2 for large W . We remark
that since the Bethe approximation is always a lower bound
on the partition function for an attractive model (Ruozzi,
2012), and both the partition functions and marginals are
equal at W = 0, we know from Lemma 2 that xB must
rise more slowly than x, as seen.

For W > 0, tightening the polytope makes no difference.
The picture is different for negativeW if n is odd, in which
case we have a frustrated cycle, that is a cycle with an
odd number of repulsive edges, which often causes diffi-
culties with inference methods (Weller and Jebara, 2013b).
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(b) Errors of pairwise marginal x

Figure 1: Homogeneous cycle Cn, n odd, edge weights W . By
Lemma 2, the slope of the error of logZ wrt W is twice the error
of x. ForW > 0, local and cycle polytopes have the same values.

In this case, (6) is binding for W < −2 log(n − 1) and
prevents the Bethe+cycle marginal xBC from falling below
1
2n . As W → −∞, the true x also does not fall below 1

2n .3

Thus, as W → −∞, the score (negative energy) and hence
logZ → −∞ for the true distribution. This also holds for
Bethe or TRW on the cycle polytope, but on the local poly-
tope, their energy and logZ → 0. Observe that forW < 0,
Bethe generally outperforms TRW over both polytopes.

Tables 1 and 2 summarize results as W → ±∞, again
using optimal edge weights for TRW.

Model W → −∞ W →∞
logZ ′ x log Z′

Z x
Bethe 0 0 − log 2 1/2
Bethe+cycle 0 0 − log 2 1/2
TRW log 2 0 0 1/2
TRW+cycle log 2 0 0 1/2
True distribution log 2 0 0 1/2

Table 1: Analytic results for homogenous cycle Cn, n even. As
W →∞, logZ′ and logZ →∞ so the difference is shown.

3To see this, note there are 2n configurations whose probabil-
ities dominate as W → −∞: 01 . . . 0, its inverse flipping 0↔ 1,
and all n rotations; of these, just one has 00 and one has 11 for a
specific edge.
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Model W → −∞ W →∞
logZ ′ x log Z′

Z x
Bethe 0 0 − log 2 1/2
Bethe+cycle −∞ 1/(2n) − log 2 1/2
TRW log 2 0 0 1/2
TRW+cycle −∞ 1/(2n) 0 1/2
True distribution −∞ 1/(2n) 0 1/2

Table 2: Analytic results for homogeneous cycle Cn, n odd. As
W →∞, logZ′ and logZ →∞ so the difference is shown.

4 NONHOMOGENEOUS CYCLES

The loop series method (Chertkov and Chernyak, 2006;
Sudderth et al., 2007) provides a powerful tool to analyze
the ratio of the true partition function to its Bethe approx-
imation. In symmetric models with at most one cycle, by
Lemma 3, we know that the unique Bethe optimum is at
uniform marginals qi = 1

2 . Using this and (4), and substi-
tuting into the loop series result yields the following.

Lemma 5. For a symmetric MRF which includes ex-
actly one cycle Cn, with edge weights W1, . . . ,Wn, then
Z/ZB = 1 +

∏n
i=1 tanh

Wi

4 .

Remarks: In this setting, the ratio Z/ZB is always ≤ 2 and
≈ 1 if even one cycle edge is weak, as might be expected
since then the model is almost a tree. The ratio has no
dependence on edges not in the cycle and those pairwise
marginals will be exact. Further, since the Bethe entropy is
concave, by Lemma 1, all singleton marginals are exact at
1
2 . Errors of pairwise pseudo-marginals on the cycle can be
derived by using the expression for Z/ZB from Lemma 5,
taking log then differentiating and using Lemma 2.

Several principles are illustrated by considering 3 variables,
A, B and C, connected in a triangle. Suppose AB and AC
have strongly attractive edges with weight W = 10. We
examine the effect of varying the weight of the third edge
BC, see Figure 2.

It was recently proved (Ruozzi, 2012) that ZB ≤ Z for at-
tractive models. A natural conjecture is that the Bethe opti-
mum pseudo-marginal in the local polytope must lie inside
the marginal polytope. However, our example, when BC
is weakly attractive, proves this conjecture to be false. As a
consequence, tightening the local polytope to the marginal
polytope for the Bethe free energy in this case worsens the
approximation of the log-partition function (though it im-
proves the marginals), see Figure 2 near 0BC edge weight.
For this model, the two aspects of the Bethe approximation
to logZ act in opposing directions - the result is more accu-
rate with both than with either one alone. For intuition, note
that via the pathB−A−C, in the globally consistent prob-
ability distribution, B and C are overwhelmingly likely to
take the same value. Given that singleton marginals are 1

2 ,
the Bethe approximation, however, decomposes into a sep-
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Figure 2: Log partition function and approximations for ABC
triangle, see §4. Edge weights for AB and AC are 10 (strongly
attractive) while BC is varied as shown. Near 0: Bethe is a bet-
ter approximation to logZ but Bethe+cycle has better derivative,
hence better marginals by Lemma 2; since Bethe+cycle is below
Bethe in this region, its optimum does not lie in the local polytope.

arate optimization for each edge, which for the weak edge
BC, yields that B and C are almost independent, leading
to a conflict with the true marginal. This causes the Bethe
optimum over the local polytope to lie outside the marginal
polytope. The same conclusion may be drawn rigorously
by considering the cycle inequality (6), taking the edge set
F = {BC} and observing that the terms are approximately
1
4 + 1

4 + 2(0 + 0) ≈ 1
2 < 1. Recall that here the cycle

and marginal polytopes are the same (see §2.5). The same
phenomenon can also be shown to occur for the TRW ap-
proximation with uniform edge appearance probabilities.

Notice in Figure 2 that as the BC edge strength rises above
0, the Bethe marginals (given by the derivative) improve
while the logZ approximation deteriorates. We remark that
the exactness of the Bethe approximation on a tree can be
very fragile in the sense that adding a very weak edge be-
tween variables to complete a cycle may expose that pair-
wise marginal as being (perhaps highly) inaccurate.

5 GENERAL HOMOGENEOUS GRAPHS

We discuss how the Bethe entropy approximation leads to
a ‘phase shift’ in behavior for graphs with more than one
cycle when W is above a positive threshold.

The true entropy is always maximized at qi = 1
2 for

all variables. This also holds for the TRW approxima-
tion. However, in densely connected attractive models, the
Bethe approximation pulls singleton marginals towards 0
or 1. This behavior has been discussed previously (Heskes,
2004; Mooij and Kappen, 2005) and described in terms of
algorithmic stability (Wainwright and Jordan, 2008, §7.4),
or heuristically as a result of LBP over-counting informa-
tion when going around cycles (Ihler, 2007), but here we
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explain it as a consequence of the Bethe entropy approxi-
mation.

We focus on symmetric homogeneous models which are d-
regular, i.e. each node has the same degree d. One example
is the complete graph on n variables, Kn. For this model,
d = n− 1. The following result is proved in the Appendix,
using properties of the Hessian from (Weller and Jebara,
2013a).

Lemma 6. Consider a symmetric homogeneous MRF on n
vertices with d−regular topology and edge weightsW . q =
( 12 , . . . ,

1
2 ) is a stationary point of the Bethe free energy

but for W above a critical value, this is not a minimum.
Specifically, let H be the Hessian of the Bethe free energy
at q, xB be the value from Lemma 4 and 1 be the vector of
length n with 1 in each dimension; then 1TH1 = n[d −
4xB(d− 1)]/xB < 0 if xB > 1

4
d
d−1 ⇔W > 2 log d

d−2 .

To help understand this result, consider (2) for the Bethe
entropy SB , and recall that

∑
i di = 2m (m is the number

of edges, handshake lemma), hence SB = mSij − (2m −
n)Si. For largeW , all the probability mass for each edge is
pulled onto the main diagonal, thus Sij ≈ Si. For m > n,
which interestingly is exactly the case of more than one cy-
cle, in order to achieve the optimum SB , each entropy term

→ 0 by tending to pairwise marginal
(
1 0
0 0

)
or symmetri-

cally
(
0 0
0 1

)
. See the second row of Figure 3 for an illus-

tration of how the Bethe entropy surface changes dramati-
cally as W rises, even sometimes going negative, and the
top row to see how the Bethe free energy surfaces changes
rapidly as W moves through the critical threshold.

Reinforcing this pull of singleton marginals away from 1
2

is the shape of the energy surface, when optimized for free
energy subject to given singleton marginals. In the Bethe
approximation, this is achieved by computing ξij terms ac-
cording to (4), as illustrated in the bottom row of Figure 3,
but for any reasonable entropy term (including TRW), al-
ways ξij < min(qi, qj), hence the energy is lower towards
the extreme values 0 or 1.

Remarks: (i) This effect is specifically due to the Bethe
entropy approximation, and is not affected by tightening
the polytope relaxation, as we shall see in §6. (ii) To
help appreciate the consequences of Lemma 6, observe that
log d

d−2 is positive, monotonically decreasing to 0 as d in-
creases. Thus, for larger, more densely connected topolo-
gies, the threshold for this effect is at lower positive edge
weights. Above the threshold, qi = 1

2 is no longer a min-
imum but becomes a saddle point.4 (iii) This explains the
observation made after (Heinemann and Globerson, 2011,

4The Hessian at qi = 1
2

is neither positive nor negative def-
inite. Moving away from the valley where all qi are equal, the
Bethe free energy rises quickly.
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Figure 3: Bethe free energy E − SB with stationary points
highlighted (top), then entropy SB (middle) and energy E (bot-
tom) vs qi = q ∀i for symmetric homogeneous complete graph
K5. All quantities are evaluated at the optimum over pair-
wise marginals, i.e. {ξij} are computed as in (4). These figures
are described in Lemma 6 and the text thereafter. W ≈ 1.38 is
the critical threshold, above which Bethe singleton marginals are
rapidly pulled toward 0 or 1. W = 4.5 is sufficiently high that the
Bethe entropy becomes negative at q = 1

2
(middle row).

Lemma 3), where it is pointed out that for an attractive
model as n → ∞, if n/m → 0, a marginal distribution
(other than the extreme of all 0 or all 1) is unlearnable by
the Bethe approximation (because the effect we have de-
scribed pushes all singleton marginals to 0 or 1). (iv) AsW
rises, although the Bethe singleton marginals can be poor,
the Bethe partition function does not perform badly: For
a symmetric model, as W → ∞, there are 2 dominating
MAP states (all 0 or all 1) with equal probability. The true
marginals are at qi = 1

2 which picks up the benefit of log 2
entropy, whereas the Bethe approximation converges to one
or other of the MAP states with 0 entropy, hence has log 2
error.

To see why a similar effect does not occur as W → −∞,
note that for W < 0 around a frustrated cycle, the mini-
mum energy solution on the local polytope is at qi = 1

2 .
Indeed, this can pull singleton Bethe marginals toward 1

2
in this case. See §5.1 in the Appendix for further analysis.

6 EXPERIMENTS

We are interested in the empirical performance of the op-
timum Bethe marginals and partition function, as the re-
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Figure 4: Histogram of differences observed in optimum re-
turned Bethe free energy, FW-mesh primal, over the 20 models
in the validation set (mesh using ε = 0.1, less than ε is insignifi-
cant). Negative numbers indicate FW outperformed mesh.

laxation of the marginal polytope is tightened. Many
methods have been developed to attempt the optimiza-
tion over the local polytope, primarily addressing its non-
convexity, though none is guaranteed to return the global
optimum. Recently, an algorithm was derived to return
an ε-approximation to the optimum logZB based on con-
structing a discretized mesh of pseudo-marginals (Weller
and Jebara, 2013a, 2014). One method for optimizing over
tighter relaxations is to use this algorithm as an inner solver
in an iterative dual decomposition approach with subgradi-
ent updates (Sontag, 2010; Sontag et al., 2011), where it
can be shown that, when minimizing the Bethe free energy,
the dual returned less ε lower bounds − logZB over the
tighter polytope. This would be our preferred approach, but
for the models on which we would like to run experiments,
the runtime is prohibitive.

Hence we explored two other methods: (i) We replaced the
inner solver with a faster, convergent double-loop method,
the HAK-BETHE option in libDAI (Heskes et al., 2003;
Mooij, 2010), though this is guaranteed only to return a
local optimum at each iteration, hence we have no guar-
antee on the quality of the final result; (ii) We applied
the Frank-Wolfe algorithm (FW) (Frank and Wolfe, 1956;
Jaggi, 2013; Belanger et al., 2013). At each iteration, a
tangent hyperplane is computed at the current point, then
a move is made to the best computed point along the line
to the vertex (of the appropriate polytope) with the opti-
mum score on the hyperplane. This proceeds monotoni-
cally, even on a non-convex surface such as the Bethe free
energy, hence will converge (since it is bounded), though
runtime is guaranteed only for a convex surface as in TRW.

FW can be applied directly to optimize over marginal, cy-
cle or local polytopes, and performed much better than
HAK: runtime was orders of magnitude faster, and the en-
ergy found was in line with HAK.5 To further justify using
FW, which may only reach a local optimum, on our main
test cases, we compared its performance on a small valida-
tion set against the benchmark of dual decomposition using
the guaranteed ε-approximate mesh method (Weller and Je-
bara, 2014) as an inner solver.

5The average difference between energies found was < 0.1.

6.1 IMPLEMENTATION AND VALIDATION

To validate FW for the Bethe approximations on each poly-
tope, we compared log partition functions and pairwise
marginals across 20 MRFs, each on a complete graph with
5 variables. Each edge potential was drawn Wij ∼ [−8, 8]
and each singleton potential θi ∼ [−2, 2]. To handle the
tighter polytope relaxations using the mesh method, we
used a dual decomposition approach as follows. For the
cycle polytope, one Lagrangian variable was introduced
for each cycle constraint (6) with projected subgradient de-
scent updates. For the marginal polytope, rather than im-
posing each facet constraint, which would quickly become
unmanageable6, instead a lift-and-project method was em-
ployed (Sontag, 2010). These algorithms may be of inde-
pendent interest and are provided in the Supplement.

For all mesh runs, we used ε = 0.1. Note that strong du-
ality is not guaranteed for Bethe since the objective is non-
convex, hence we are guaranteed only an upper bound on
logZB ; yet we were able to monitor the duality gap by
using rounded primals and observed that the realized gaps
were typically within ε, see Figure 6.

For FW, we always initialized at the uniform distribution,

i.e. µij =
(

1
4

1
4

1
4

1
4

)
∀(i, j) ∈ E , note this is always within

the marginal polytope. At each iteration, to determine how
far to go along the line to the optimum vertex, we used Mat-
lab’s fminbnd function. This induces a minimum move of
10−6 along the line to the optimum vertex, which was help-
ful in escaping from local minima. When we tried allowing
zero step size, performance became worse. Our stopping
criterion was to run for 10, 000 iterations (which did not
take long) or until the objective value changed by < 10−6,
at which point we output the best value found so far, and
the corresponding pseudo-marginals.

Results on the validation set are shown in Figure 4, indi-
cating that FW performed well compared to mesh + dual
decomposition (the best standard we have for the Bethe op-
timum). Note, however, that good performance on logZB
estimation does not necessarily imply that the Bethe op-
timal marginals were being returned for either method.
There may be several local optima where the Bethe free
energy has value close to the global optimum, and meth-
ods may return different locations. This is a feature of the
non-convex surface which should be borne in mind when
considering later results, hence we should not be surprised
that in the validation set, although 17/20 of the runs had
`1 error in singleton marginals under 0.05, there were 3
runs with larger differences, in one case as high as 0.7 (not
shown).7

6The number of facets of the marginal polytope grows ex-
tremely rapidly (Deza and Laurent, 2009).

7Recall the example from §5, where a symmetric homoge-
neous MRF with complete graph Kn topology and high edge
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Given this performance, we used FW for all Bethe opti-
mizations on the test cases. FW was also used for all TRW
runs, where edge appearance probabilities were obtained
using the matrix-tree theorem with weights proportional to
each edge’s coupling strength |Wij |, as was used in (Sontag
and Jaakkola, 2007).

6.2 TEST SETS

Models with 10 variables connected in a complete graph
were drawn with random potentials. This allows compari-
son to earlier work such as (Sontag and Jaakkola, 2007) and
(Meshi et al., 2009, Appendix). In addition to examining
error in log partition functions and singleton marginals as
was done in earlier work, given our theoretical observations
in §3-5, we also explored the error in pairwise marginals.
To do this, we report the `1 error in the estimated probabil-
ity that a pair of variables is equal, averaged over all edges,
i.e. we report average `1 error of µij(0, 0) + µij(1, 1). We
used FW to minimize the Bethe and TRW free energies
over each of the local, cycle and marginal polytopes. For
each maximum coupling value used, 100 models were gen-
erated and results averaged for plotting. Given the theoreti-
cal observations of §3-5, we are interested in behavior both
for attractive and general (non-attractive) models.

For general models, potentials were drawn for single vari-
ables θi ∼ U [−2, 2] and edges Wij ∼ U [−y, y] where
y was varied to observe the impact of coupling strength.8

Results are shown in Figure 5. Tightening the relaxation
of the polytope from local to cycle or marginal, dramat-
ically improves both Bethe and TRW approximations on
all measures, with little difference between the cycle or
marginal polytopes. This confirms observations in (Sontag
and Jaakkola, 2007).

The relative performance of Bethe compared to TRW de-
pends on the criteria used. Looking at the error of sin-
gleton marginals, Bethe is better than TRW for low cou-
pling strengths, but for high coupling strengths the meth-
ods perform equally well on the local polytope, whereas on
the cycle or marginal polytopes, TRW outperforms Bethe
(though Bethe is still competitive). Thus, tightening the
relaxation of the local polytope at high coupling does not
lead to Bethe being superior on all measures. However, in
terms of partition function and pairwise marginals, which
are important in many applications, Bethe does consistently
outperform TRW in all settings, and over all polytopes.

For attractive models, in order to explore our observations
in §5, much lower singleton potentials were used. We drew

weights was shown to have 2 locations at the global minimum,
with average `1 distance between them approaching 1.

8These settings were chosen to facilitate comparison with the
results of (Sontag and Jaakkola, 2007), though in that paper, vari-
ables take values in {−1, 1} so the equivalent singleton potential
ranges coincide. To compare couplings, our y values should be
divided by 4.

θi ∼ U [−0.1, 0.1] and Wij ∼ U [0, y] where y is varied.
This is consistent with parameters used by Meshi et al.
(2009). Results are shown in Figure 7. When coupling
is high, the Bethe entropy approximation pushes single-
ton marginals away from 1

2 . This effect quickly becomes
strong above a threshold. Hence, when singleton potentials
are very low, i.e. true marginals are close to 1

2 , the Bethe
approximation will perform poorly irrespective of poly-
tope, as observed in our attractive experiments. We note,
however, that this effect rarely causes singleton marginals
to cross over to the other side of 1

2 . Further, as discussed in
§5, the partition function approximation is not observed to
deviate by more than log 2 on average.

7 CONCLUSIONS

We have used analytic and empirical methods to explore
the two aspects of the Bethe approximation: the poly-
tope relaxation and the entropy approximation. We found
Frank-Wolfe to be an effective method for optimization,
and note that for the cycle polytope, the runtime of each
iteration scales polynomially with the number of variables
(see §6.1.3 in the Appendix for further details).

For general models with both attractive and repulsive
edges, tightening the relaxation of the polytope from lo-
cal to cycle or marginal, dramatically improves both Bethe
and TRW approximations on all measures, with little dif-
ference between the cycle or marginal polytopes. For sin-
gleton marginals, except when coupling is low, there does
not appear to be a significant advantage to solving the non-
convex Bethe free energy formulation compared to convex
variational approaches such as TRW. However, for log-
partition function estimation, Bethe does provide signif-
icant benefits. Empirically, in both attractive and mixed
models, Bethe pairwise marginals appear consistently bet-
ter than TRW.

In our experiments with attractive models, the polytope ap-
proximation appears to makes little difference. However,
we have shown theoretically that in some cases it can cause
a significant effect. In particular, our discussion of non-
homogeneous attractive cycles in §4 shows that even in
the attractive setting, tightening the polytope can affect the
Bethe approximation - improving marginals but worsening
the partition function. It is possible that to observe this
phenomenon empirically, one needs a different distribution
over models.
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Figure 5: Results for general models showing error vs true val-
ues. θi ∼ U[−2,2]. The legend is consistent across plots.
These may be compared to plots in (Sontag and Jaakkola, 2007).
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Abstract

The identification of eigenvalues and eigenfunc-
tions from simulation or experimental data is
a fundamental and important problem for anal-
ysis of metastable systems, because the domi-
nant spectral components usually contain a lot
of essential information of the metastable dy-
namics on slow timescales. It has been shown
that the dynamics of a strongly metastable sys-
tem can be equivalently described as a hidden
Markov model (HMM) under some technical as-
sumptions and the spectral estimation can be
performed through HMM learning. However,
the spectral estimation with unknown number
of dominant spectra is still a challenge in the
framework of traditional HMMs, and the infi-
nite HMMs developed based on stick-breaking
processes cannot satisfactorily solved this prob-
lem either. In this paper, we analyze the diffi-
culties of spectral estimation for infinite HMMs,
and present a new nonparametric model called
stick-breaking half-weighted model (SB-HWM)
to address this problem. The SB-HWM defines
a sparse prior of eigenvalues and can be applied
to Bayesian inference of dominant eigenpairs of
metastable systems in a nonparametric manner.
We demonstrate by simulations the advantages of
applying SB-HWM to spectral estimation.

1 INTRODUCTION

In a variety of scientific areas, we are confronted with the
task of analyzing and modeling a complex system which
can be described as a Markov process {xt} with time evo-
lution equation

ρt+τ (x) = P (τ) ρt (x)

,
ˆ

Ω

p (xt+τ = x|xt = x′) ρt (x′) dx (1)

where xt denotes the system state at time t, Ω is the state
space, ρt represents the probability density function of xt,
and P represents the Markov propagator. For many real-
world physical and chemical systems, e.g., conformational
transitions in macromolecules (Noé and Fischer, 2008), au-
tocatalytic chemical reactions (Biancalani et al., 2012) and
climate changes (Berglund and Gentz, 2002), it is com-
mon and natural to further assume that {xt} is a time-
reversible and metastable process. The reversibility means
that p(xt = x′, xt+τ = x) = p(xt = x, xt+τ = x′)
and generally arises from the time symmetries of classi-
cal mechanics, thermodynamics and quantum mechanics,
and the metastability of a dynamical system means that the
state space of the system can be decomposed into a set of
macrostates called metastable states so that the local equi-
librium within a metastable state can be reached quickly
and the transitions between different metastable states can
only be observed on slow timescales. A large number of
recent studies in statistical physics indicate that the dom-
inant spectral components (or called dominant eigenpairs,
i.e., the largest eigenvalues and the associated eigenfunc-
tions) of the Markov propagator is a key to understand and
characterize such a process, because they can provide a lot
of essential and useful information for the computation of
ensemble averages and correlation functions (Noé et al.,
2011), detection of spatial structures of metastable states
(Deuflhard and Weber, 2005), choice of reaction coordi-
nates (Rohrdanz et al., 2011; Perez-Hernandez et al., 2013),
and construction of low-dimensional approximate models
(Kube and Weber, 2007; Noé and Nüske, 2013).

However, directly solving the eigenvalue problem of the
Markov propagator is generally impossible except for some
extremely simple cases (e.g., Ornstein-Uhlenbeck process),
and the dominant spectral components can only be esti-
mated from simulation or experimental data through sta-
tistical inference and numerical computation. The most
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popular and successful method for the spectral estimation
is the Markov state model (MSM) method (Prinz et al.,
2011; Djurdjevac et al., 2010), which discretizes the state
space into a set of discrete bins and calculates the dom-
inant spectral components in a finite element manner by
assuming transitions between the bins are Markovian. Ob-
viously, the main difficulty of this method is the choice of
the discretization. On the one hand the Markov assump-
tion will be severely violated if the discretization is too
coarse, and on the other hand too many bins may cause
the problem of “curse of dimensionality” in the estimation
of transition probabilities. A more general method is the
variational method (Noé and Nüske, 2013; Nüske et al.,
2013), which allows one to perform the spectral estima-
tion by using “soft bins” defined by a set of smooth basis
functions instead of the “crisp bins” used in MSMs. Nu-
merical experiments show that the variational method can
achieve more accurate estimation than the MSM method
with the same number of bins. However, there is no sys-
tematic algorithm for the choice of basis functions, and the
basis function set can only be determined by trial and er-
ror in practice. Moreover, in some literature, the diffusion
maps is used to identify dominant spectral components in
a nonparametric manner by treating each sample point as a
discrete bin (Rohrdanz et al., 2011; Ferguson et al., 2011),
but this method is applicable only if the Markov propagator
is defined by a Brownian dynamics.

In (Noé et al., 2013; Prinz et al., 2014), a novel frame-
work call projected Markov model (PMM) is proposed
for spectral analysis of metastable processes without the
Markov assumption on discrete bins. Within this frame-
work, it is shown that if a metastable Markov process con-
tains only m nonzero eigenvalues then the corresponding
coarse-grained dynamics on the space of discrete bins is
equivalent to an m-state hidden Markov model (HMM),
and the equivalence is independent of the choice of the dis-
cretization. Then HMM learning methods can be utilized
to identify dominant eigenvalues and projected eigenfunc-
tions efficiently and effectively even in the case that the
investigated system is only experimentally observable and
some important dimensions of the system state cannot be
directly observed. (See more details in Subsection 2.1.)
The main disadvantage of the PMM approach is that the
estimation performance strongly depends on the choice of
m, and a small change of the value ofmmay lead to a great
error on the estimation of spectral components because of
the orthogonality of eigenfunctions (Noé et al., 2013).

The aim of this paper is to propose an infinite HMM
based method to solve the spectral estimation problem of
metastable processes with unknown dominant spectra. In-
finite HMMs (Teh et al., 2006; Teh and Jordan, 2010; Pais-
ley and Carin, 2009; Fox et al., 2011) are a generalization
of classical HMMs, which contains infinite hidden states
and provide a powerful tool for nonparametric dynami-

cal modeling of sequential data. In contrast with classi-
cal HMMs, infinite HMMs encourage sparse utilization of
infinite state sets through defining suitable prior models,
and can be used to infer both model parameters and state
numbers from observation data in a pure Bayesian man-
ner. However, our investigation (see Section 3) shows that
a sparse prior on hidden states cannot guarantee that the
eigenvalue set also has a sparse structure, and the spec-
tral estimation is an “ill-posed” problem for the existing
infinite HMMs. In this paper, we construct a new infi-
nite HMM named stick-breaking half-weighted model (SB-
HWM), which has a sparse prior distribution on eigenval-
ues and tends to approximate the underlying dynamics of
an unknown system with a small number of dominant spec-
tral components. Moreover, we develop a sampling infer-
ence algorithm for applying SB-HWMs to Bayesian non-
parametric inference of spectral components.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the relevant mathematical background
on PMMs and infinite HMMs, then Section 3 outlines the
Bayesian nonparametric framework for solving the spectral
estimation problem and explains the reason why the exist-
ing infinite HMMs cannot be directly applied. In Section
4 we introduce the SB-HWM and its sampling inference
algorithm. Section 5 demonstrates through simulations the
effectiveness of the proposed model and algorithm.

2 BACKGROUND

2.1 COARSE-GRAINED DYNAMICS AND
PROJECTED MARKOV MODELS

Let {xt} be a Markov process with propagator P and state
space Ω as in (1) and {yt} is the corresponding observation
process obtained from the spatial coarse-graining

Pr (yt = k|xt = x) = χk (x) , k ∈ O (2)

where O = {1, . . . ,K} denotes the discrete observation
space and χk (x) denotes the observation probability func-
tion for the observed value k. Often, the coarse-graining
is employed by the Galerkin discretization and {χk (x)} is
a set of indicator functions with each k representing a fi-
nite element space {x|x ∈ Ω, χk (x) = 1}. But in some
practical cases, e.g. where {yt} obtained from noisy mea-
surements, each χk (x) is a continuous probability density
function and characterizes a soft finite element space.

It is obvious that (1) and (2) is in fact an HMM, but it is in-
feasible to reconstruct P from {yt} by direct statistical in-
ference because of the continuity of Ω and the complexity
of the dynamics of {xt} in general cases. In order to over-
come this difficulty, the PMM (Noé et al., 2013) provides a
low-dimensional approximation of the coarse-grained dy-
namics based on the following metastability assumption:

Assumption 1. {xt} is ergodic and reversible w.r.t. the
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unique stationary distribution µ (x), and there is a τ ′ such
that P (τ ′) has only m eigenvalues which are not close to
0.

Note that this assumption holds for most practical
metastable systems and m is usually a small number de-
pends on the number of metastable states in Ω.1 Under this
assumption, we can conclude that P (τ) is a compact and
self-adjoint operator w.r.t. the inner product inner product
〈·, ·〉µ−1 defined by

〈u1, u2〉µ−1 =

ˆ
u1 (x)u2 (x)

µ (x)
dx (3)

and the dynamics of {xt} can be decomposed as

ρt+τ =
m∑

i=1

λi (τ) 〈ρt, φi〉µ−1 φi + Pfast (τ) ρt (4)

with
λi (τ) = exp (−κiτ) (5)

Here λi (τ) denotes the i-th largest magnitude eigenvalue
ofP (τ) with eigenfunction φi and decay rate κi ≥ 0 (κ1 =
0 < κ2 and φ1 = µ due to the ergodicity). The operator
Pfast (τ) consists of spectral components of P (τ) which
decay to zero quickly and ‖Pfast (τ)‖ ≈ 0 for τ ≥ τ ′.
Omitting the second term on the r.h.s. of (4), the correlation
matrix C (nτ) = [cij (nτ)] = [Pr(yt = i, yt+nτ = j)] of
{yt} can be decomposed as

C (nτ) = QΛ (τ)
n

Qᵀ (6)

where Λ (τ) = diag (λ1 (τ) , . . . , λm (τ)) contains the
dominant eigenvalues of P (τ), and the i-th column of
Q ∈ RK×m is the i-th projected eigenfunction

qi = (

ˆ
χ1 (x)φi (x) dx, . . . ,

ˆ
χK (x)φi (x) dx)ᵀ

(7)
Therefore, we can characterize the coarse-grained dynam-
ics of {yt} by low-dimensional PMM variables {Q,Λ (τ)}
on a large timescale τ ≥ τ ′.
It is important to point out that we can also get a sim-
ilar approximation of C (nτ) by using a m-state HMM.
Assume that {yt} are observations of an HMM with hid-
den states {st}, state set {1, . . . ,m}, transition matrix
A = [aij ] = [Pr (st+τ = j|st = i)] and observation ma-
trix B = [bij ] = [Pr (yt = j|st = i)], then C (nτ) can be

1Generally speaking, a stochastic system with m metastable
states only has m eigenvalues which are significantly larger than
zero on a large timescale. It is worth pointing out that this assump-
tion of sparse spectrum is a very important basis in the research of
metastability (see, e.g., (Deuflhard and Weber, 2005; Djurdjevac
et al., 2010; Noé and Nüske, 2013; Prinz et al., 2014))), and a large
number of studies have shown the validity of this assumption for
common physical processes which exhibits metastability.

expressed as

C (nτ) = Bᵀdiag (π) AnB

= (BᵀL) Λ̃n (BᵀL)
ᵀ (8)

under the condition2 that A is a reversible transition
matrix w.r.t. the stationary distribution π, where Λ̃ is
a diagonal matrix containing eigenvalues of A, L con-
sists of left eigenvectors of A with LᵀA = Λ̃Lᵀ and
Lᵀdiag (π)

−1
L = I, and I denotes the identity matrix.

Based on the similarity between (6) and (8), the PMM the-
ory provides the following conclusion: Under the metasta-
bility assumption (Assumption 1) with ‖Pfast (τ)‖ = 0 and
some technical assumptions, the dynamics of {yt} is equiv-
alent to a m-state HMM with a reversible transition ma-
trix. Thus, if a suitable m is given, we can utilize HMM
learning algorithms to efficiently estimate the dominant
eigenvalues and projected eigenfunctions of P (τ) from
{yt} with Q = BᵀL and Λ (τ) = Λ̃. However, the
choice of m is still an unsatisfactorily solved problem for
the PMM method, and the numerical experiments in (Noé
et al., 2013) show that the estimation results of the PMM
method is very sensitive to the value of m.

2.2 STICK-BREAKING PROCESSES AND
INFINITE HIDDEN MARKOV MODELS

Roughly speaking, a stick-breaking process (SBP) (Ish-
waran and James, 2001) is a prior for discrete distribu-
tions, and the realization of an SBP with parameters α′, α
and base distribution G0 can be expressed by the following
probability density function:

G =
∞∑

i=1

wiδθi (9)

where δθ denotes the Dirac point measure concentrated
on θ, θi is the i-th component of the discrete distribu-
tion with θi

iid∼ G0, and wi denotes the corresponding
weight which are drawn by wi = Vi

∏i−1
j=1 (1− Vj) and

Vi
iid∼ Beta (α′, α). Obviously, the SBP model is a gen-

eralization of the finite-dimensional Dirichlet distribution
(Gelman et al., 2003), and allows one to easily construct
discrete distributions with infinite components. For conve-
nience of computation and notation, in this paper we only
consider a special class3 of SBPs with α′ = 1, and denote
by DP (α,G0) and GEM (α) the prior distributions of G
and {wi} defined in (9).

The SBP model provides a powerful and flexible tool for
nonparametric estimation of multi-modal mixture mod-
els, and can be applied to building HMMs with infinite

2This condition means diag (π)A is a symmetric matrix,
which is a sufficient condition for reversibility of {yt}.

3An SBP with α′ = 1 is equivalent to a Dirichlet process
(Ferguson, 1973).
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states for sequential statistical modeling. The most com-
monly used infinite HMM is the HDP-HMM (Teh et al.,
2006), which constructs prior distributions of the infinite-
dimensional transition matrix A = [aij ] and observation
matrix B = [bij ] by organizing multiple SBPs in a hierar-
chical structure as

G0 =
∑∞
k=1 βkδbk ∼ DP (γ,H)

Gi =
∑∞
j=1 aijδbi

iid∼ DP (α,G0)
(10)

where bi denotes the i-th row of B and represents the ob-
servation probability distribution of the i-th state, H rep-
resents the prior distribution of each bi and is usually a
Dirichlet distribution, and α, γ are hyperparameters. In
(Fox et al., 2011), a modified HDP-HMM called “sticky
HDP-HMM” is proposed to encourage large self-transition
probabilities and and avoids “unphysically” fast switching
between different states, which can be expressed as

G0 =
∑∞
k=1 βkδbk ∼ DP (γ,H)

Gi =
∑∞
j=1 aijδbi

ind∼ DP
(
α+ κ,G

(i)
0

) (11)

with

G
(i)
0 =

αG0 + κδbi
α+ κ

(12)

where κ > 0 is the sticky factor and limκ→∞ aii = 1. Fur-
thermore, it is worthwhile to point out that for most of the
SBP based infinite HMMs, including HDP-HMM, sticky
HDP-HMM and stick-breaking HMM proposed in (Paisley
and Carin, 2009), the infinite-dimensional prior distribu-
tions can be approximated by high- but finite-dimensional
ones for convenience of implementing sampling inference.

3 BAYESIAN NONPARAMETRIC
FRAMEWORK FOR SPECTRAL
ESTIMATION

The main purpose of this paper is to develop a
Bayesian nonparametric framework for spectral estimation
of metastable Markov processes with unknown number m
of dominant eigenpairs. In the rest of paper, unless other-
wise stated, the lagtime τ is set to be fixed, and {xt} and
{yt} are separately defined as {xnτ}Nn=0 and {ynτ}Nn=0.

Suppose that {xt} is a metastable process with the avail-
able observation process {yt} as described in Subsection
2.1 and {xt} satisfies Assumption 1. Based on the discus-
sion in Section 2, the Bayesian estimation of the i-th largest
eigenvalue λi and the corresponding projected eigenfunc-
tion qi of the Markov propagator P (τ) of {xt} can be
achieved by the following steps with m not given a pri-
ori: First, the dynamics of {yt} is described by an infinite
HMM consisting of a infinite-dimensional transition matrix
A and observation matrix B with prior p (A,B). Second,
a large number of samples {(A(k),B(k))} of (A,B) are

drawn from the posterior distribution

p (A,B|{yt})
∝ p (A,B)

∑

{st}
p ({st}|A) p ({yt}|{st},B) (13)

where st denotes the discrete hidden state of the infinite
HMM at time t. Finally, the i-th eigenvalue λ(k)

i and left
eigenvector l

(k)ᵀ
i of A(k) are calculated for each k such that

the posterior distribution of (λi,qi) can be approximated
by the ensemble {(λ(k)

i ,q
(k)
i )} with q

(k)
i = B(k)ᵀl

(k)
i .

It is natural for us to utilize one of infinite HMMs such as
the HDP-HMM and sticky HDP-HMM mentioned in Sub-
section 2.2 to design the prior distribution of (A,B) within
the above framework. However, the following simple ex-
ample shows that the existing SBP based infinite HMMs
are not applicable to the spectral estimation problem.

Example 2. Let {st} = {snτ}1000
n=0 be a realization of a

reversible 3-state Markov chain with transition matrix

A0 =




0.8462 0.0769 0.0769
0.1250 0.7500 0.1250
0.1818 0.1818 0.6364


 (14)

It is clear that {st} is a Markov chain with large self-
transition probabilities and has only three nonzero eigen-
values. We use the prior models of infinite-dimensional
transition matrices defined in the HDP-HMM and sticky
HDP-HMM to approximate the first 5 eigenvalues of {st}
based on the posterior distribution

p (A|{st}) ∝ p (A) p ({st}|A)

∝ p (A)

1000∏

n=1

as(n−1)τ ,snτ (15)

Fig. 1a illustrates the estimation results obtained by the
Markov chain Monte Carlo (MCMC) sampling. It can be
observed that both the HDP-HMM and the sticky HDP-
HMM give poor estimates of eigenvalues and fail to detect
the spectral gap between λ3 and λ4.

In a strict sense, the estimation problem in Example 2 is
not an “HMM problem” since the hidden state sequence
{st} is exactly known, rather, it is an effective toy example
for illustrating the difficulty of nonparametric spectral esti-
mation for the existing infinite HMMs. Roughly speaking,
each infinite HMM provides a “sparse” prior distribution
of the stationary distribution π = [πi] of the transition ma-
trix A, which means for most samples of π we can find a
small set S of hidden states such that

∑
i/∈S πi ≈ 0. Thus,

there are only a small number of distinct hidden states that
can be detected by the Bayesian inference in general al-
though the prior model contains infinite states. However,
the sparsity of π cannot guarantee the sparsity of the eigen-
value set, because the transition dynamics between hidden
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Figure 1: Estimation results of the first 5 eigenvalues of
{st} based on different prior models of A, where error bars
represent one standard deviation confidence intervals, and
dashed lines represent the estimation results obtained by as-
suming that A is a transition matrix with size 3× 3 and the
prior of each row of A is Dir (1/3, 1/3, 1/3). Truncated-
model-based samplers (see Subsection 4.3 and (Fox et al.,
2008)) are applied to sampling A of infinite HMMs, which
approximate A by a finite-dimensional matrix with size
20 × 20, and the posterior means and standard deviations
are calculated from 5000 MCMC samples with 5000 burn-
in samples.

states with small stationary probabilities may also contain
large eigenvalues. This is also the reason why the infinite
HMMs overestimate the eigenvalues in Example 2. (In fact,
for any stationary distribution π and i > 0 we can con-
struct a sequence of matrices {A(k)} which are reversible
w.r.t. π and satisfy limk→∞ λ

(k)
i → 1. See the supple-

mentary material for details.) Note that in contrast with
the HDP-HMM, the sticky HDP-HMM encourages longer
residence time for each state and tends to generate more
“pseudo-dominant eigenvalues”, so it performs worse than
the HDP-HMM in this example. Furthermore, it is difficult
for both HDP-HMM and sticky HDP-HMM to incorporate
the reversibility constraint.

In order to overcome disadvantages of existing infinite
HMMs in the application of spectral estimation, we present
in next section a novel infinite HMM, which approximates
the “half-weighted matrix” instead of the transition matrix
in a nonparametric way and can provide a sparse prior for
eigenvalues.

4 STICK-BREAKING HALF-WEIGHTED
MODELS

4.1 HALF-WEIGHTED MATRICES

Before developing our infinite HMM for spectral estima-
tion, we first introduce the definition and some important
properties of half-weighted matrices for the purpose of self-
containedness. For a Markov chain with transition matrix
A = [aij ] and stationary distribution π = [πi], the half-

weighted matrix H = [hij ] is defined by4

H = diag (π)
1
2 Adiag (π)

− 1
2 (16)

(Note dimensions of A, π and H may be infinite here.)

The following two theorems summarize important proper-
ties of the half-weighted matrix and provide a criterion for
checking if a matrix is a valid half-weighted matrix. (The
proofs are in the supplementary material.)

Theorem 3. If A is a reversible and positive transition
matrix and all eigenvalues {λi} of A are square summable,
then (1) H is a positive and symmetric matrix. (2) ‖H‖F <
∞. (3) H and A have the same eigenvalues, and the
i-th eigenvector ψi of H and the i-th left eigenvector li
of A satisfy ψi = diag (π)

− 1
2 li. (4)

∑∞
i=m+1 λ

2
i ≤∑

i>m∨j>m h
2
ij for all m > 1.

Theorem 4. If H is a positive and symmetric matrix with
‖H‖F <∞, and the spectral radius of H is 1, then H is a
half-weighted matrix of a Markov chain.

According to (16), the likelihood of a half-weighted matrix
H of a given state sequence {st} = {snτ}Nn=0 is

p ({st}|H) = p (s0)

√
πsNτ
πs0

N∏

n=1

hs(n−1)τ ,snτ (17)

From the above, it can be seen that the half-weighted ma-
trix H can be used to describe the dynamics of state tran-
sitions instead of A, and H is more numerically stable for
eigenvalue decomposition than A due to the symmetry of
H. Moreover, it is interesting to observe that (17) is in fact
a Boltzmann chain model (Saul and Jordan, 1995) with the
transition energy from state i to state j being − lnhij .

4.2 MODEL DEFINITION

From the fourth property of half-weighted matrices stated
in Theorem 3, it can be seen that if a Markov chain has
a half-weighted matrix with all elements except the ones
in a small number of rows and columns are close to zero,
then there are only a few eigenvalues of the Markov chain
that can be significantly larger than zero. This suggests a
natural way of constructing a prior distribution over infinite
HMMs which encourages the sparsity of eigenvalue sets
and satisfies the reversibility.

Based on the above discussion, we now propose the fol-
lowing infinite HMM called stick-breaking half-weighted
model (SB-HWM) for spectral estimation:

H =
1

r
H̄

B = (bᵀ
1 ,b

ᵀ
2 , . . .)

ᵀ (18)

4The definition of half-weighted matrix is in fact a discrete
version of the “half-weighted correlation density” proposed in
(Noé and Nüske, 2013) for analysis of Markov processes.
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with

w = [wi] ∼ GEM (αw)

γij
iid∼ Gamma (αγ , βγ) , for i ≥ j

γji = γij , for i < j

wdi
iid∼ Gamma (αd, βd)

H̄ = [h̄ij ] = [γij
(
wiwj + wiw

d
i · 1i=j

)
] (19)

and

bi
iid∼ Dir (αb, . . . , αb) (20)

where r denotes the spectral radius of the “unnormalized
half-weighted matrix” H̄, (αw, αγ , βγ , αd, βd, αb) are hy-
perparameters, and it is easy to verify by Theorem 4 that the
realization of H is a valid half-weighted matrix with prob-
ability 1. Note that H̄ can be expressed in a more compact
form as

H̄ = Γ ◦
(
wwᵀ + diag

(
w ◦wd

))
(21)

where Γ = [γij ], wd = [wdi ] and ◦ denotes the element-
wise product. It can be seen that w employs a “tem-
plate vector” to encourage rows and columns of the half-
weighted matrix to have the similar sparse structures5. Fur-
thermore, it is known that for a metastable Markov pro-
cess, the hidden states of the equivalent HMM mentioned in
Subsection 2.1 often have long residence times since they
arise from metastable states of the original process (Noé
et al., 2013). So we use wd to enhance probabilities of self-
transitions of hidden states, which plays the similar role as
the sticky factor κ in (11). The following theorem gives a
theoretical description of the sparsity of π and eigenvalue
set {λi} in the SB-HWM (see the supplementary material
for the proof):

Theorem 5. For an SB-HWM (H,B) generated by the
prior defined by (18)-(20), the i-th largest magnitude eigen-
value λi and the stationary probability πi of the i-th

hidden satisfy E [|λi|] = O

((
αw

1+αw

) i
3

)
and E [πi] =

O

((
αw

1+αw

) i
3

)
as i→∞.

As a comparison, we also apply the SB-HWM to the data in
Example 2 and the estimation results are shown in Fig. 1b.
(See Subsection 4.3 for the sampling algorithm.) It can
be seen that the SB-HWM achieves the similar estimation
performance as the HMM with state number given, and the
correct number of dominant spectral components can be
easily obtained from samples of the SB-HWM.

5For example, if wi is about zero, the elements in the i-th row
and column of H will also be close to zero with high probabilities.

4.3 SAMPLING INFERENCE

For convenience of computation, we first construct a trun-
cated model to approximate the SB-HWM by replacing the
prior distribution of w in (19) with the following truncated
SBP prior (Ishwaran and James, 2002):

wi = Vi

i−1∏

j=1

(1− Vj) (22)

with {
Vi

iid∼ Beta (1, α) , i < L
Vi = 1, i = L

(23)

The truncated model is obviously a finite HMM with L
states since wi = 0 for i > L, and according to The-
orem 5, the influence of the truncation on the dynamics
of SB-HWM is slight if L is sufficiently large6. Then
the Markov chain Monte Carlo approach can be utilized
to draw samples of (H,B) from the posterior distribu-
tion p (H,B|{yt}) based on the truncated prior. Con-
sidering that the presented prior distribution of H is not
a conjugate distribution for the state sequence, here we
combine the Metropolis-within-Gibbs algorithm with the
block sampling algorithm of classical HMMs to generate
samples (see the supplementary material for details) based
on the assumption that {st} is a stationary process, i.e.,
p (s0) = πs0 .

5 APPLICATIONS

In this section, we demonstrate the performance of the SB-
HWM based Bayesian spectral estimation method on three
examples of stochastic systems including an HMM, a dif-
fusion process governed by a Brownian dynamics and the
molecular dynamics of alanine dipeptide. The detailed set-
tings of simulations and estimation algorithms are provided
in the supplementary material.

5.1 HMM DATA

Here we apply the SB-HWM to the simulation data gener-
ated by a 3-state HMM with lagtime τ = 1 and 8, and com-
pare its performance with HDP-HMM and sticky HDP-
HMM. Estimation results are summarized in Fig. 2. Ob-
viously, both HDP-HMM and sticky HDP-HMM severely
overestimate the eigenvalues and result in large errors in es-
timation of projected eigenfunctions, because their samples
contain a lot of “pseudo-dominant spectral components” as
mentioned in Section 3. (All the three models achieve small

6According to our experience, the empirical performance of
truncated SB-HWMs is not sensitive to the choice of L if it is
larger than twice or three times of the number of the dominant
eigenvalues. We simply set L to be 20 in experiments of this
paper, and the theoretical analysis of the truncation error will be
published elsewhere.
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Figure 2: Infinite HMMs applied to data from an HMM.
(a,b) Estimates of the first 6 eigenvalues with τ = 1 and
8, where error bars represent one standard deviation confi-
dence intervals. (c,d) Estimation errors of the first 3 pro-
jected eigenfunctions with τ = 1 and 8, where the error
between the estimate q̂i and the true value qi is defined by
‖q̂i − qi‖.

estimation errors on q1 as it can easily be estimated as the
stationary distribution of {yt}.) Of the above three models,
only the SB-HWM provides accurate estimates of eigenval-
ues and dominant eigenfunctions, which allows us to cor-
rectly detect the spectral gap and total number of dominant
spectral components. Furthermore, we apply a specific SB-
HWM with wdi ≡ 0 for all i to the HMM data in order to
verify the usefulness of the sticky term in (19), and the esti-
mates obtained by the non-sticky SB-HWM are also shown
in Fig. 2 (see green lines and bars). It can be observed that
the estimates of projected eigenfunctions obtained by the
non-sticky SB-HWM are much worse than that obtained by
the proposed SB-HWM and the non-sticky SB-HWM fails
to identify the third dominant spectral component when ap-
plied to the HMM data with τ = 8. The main reason for
the poor performance of the non-sticky SB-HWM is that
it tends to underestimate residence times of hidden states
which are key parameters affecting the spectral properties
especially for HMMs of metastable systems. (Note that
aii = O(w2

i ) as i → ∞ in the non-sticky SB-HWM,
whereas aii = O(wi) in the SB-HWM.)

5.2 BROWNIAN DYNAMICS DATA

In this subsection, we consider a two-dimensional system
of Brownian dynamics on the domain Ω = [−2, 2] ×
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Figure 3: Illustration of the potential function and obser-
vation model of a Brownian dynamics system, where each
grid represents a bin of the observation model.
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Figure 4: Infinite HMMs and an MSM applied to data from
a Brownian dynamics simulation. (a) Estimates of the first
6 eigenvalues, where error bars represent one standard de-
viation confidence intervals. (b) Estimation errors of the
first 3 projected eigenfunctions.

[−1.5, 2.5] with a three-well potential and a Galerkin dis-
cretization observation model which are depicted in Fig. 3.
The three potential wells implies that the system contains
the same number of metastable states and dominant spec-
tral components. Fig. 4 plots spectral estimation results ob-
tained by the SB-HWM, HDP-HMM and MSM, where the
MSM estimates spectral components by simply assuming
that each bin in Fig. 3 is a discrete state in a Markov chain.
It is obvious that the discrete bins cannot accurately cap-
ture boundaries between the metastable states in this exam-
ple, and the poor coarse-graining causes large estimation
errors of eigenvalues. (The detailed theoretical analysis on
the relationship between the spectral estimation error and
the choice of the discretization is reported in (Sarich et al.,
2010).) From Fig. 4, we can also see that the HDP-HMM
performs even much worse than the simple MSM, which
again demonstrates the difficulty of spectral estimation for
the existing infinite HMMs. The SB-HWM significantly
outperforms the other two models on the spectral estima-
tion in this example.
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Figure 5: Illustration of the structure of alanine dipeptide

5.3 MOLECULAR DYNAMICS DATA

Alanine dipeptide (sequence acetyl-alanine-methylamide)
is a small molecule which consists of two alanine amino
acid units. The structural and dynamical properties of
this molecule have been thoroughly studied, and it is well
known that the configuration space of the alanine dipep-
tide can be conveniently described by two backbone dihe-
dral angles (see Fig. 5) and contains three metastable states
(see Fig. 6). We utilize the SB-HWM, HDP-HMM, 5-state
MSM and 23-state MSM to perform the spectral estima-
tion based on a molecular dynamics simulation with length
0.05 millisecond, where the discretization of all models
are designed by using the kmeans algorithm and the first
three models share the same discretization shown in Fig. 6.
Moreover, for convenience of comparison, we construct a
very finely discretized MSM with 129 states to estimate
spectral components from a molecular dynamics simula-
tion with length 1 millisecond, and use the correspond-
ing estimates as “true values” in this example. It can be
observed from Fig. 7 that the HDP-HMM cannot provide
any valuable information on spectral components in this
example except the first component, and the SB-HWM
with observation space {1, . . . , 5} obviously outperforms
the MSMs with 5 states and 23 states.

Fig. 8 shows the estimated eigenfunctions calculated ac-
cording to the estimated projected eigenfunctions provided
by the SB-HWM and 129-state MSM respectively. (The
calculation details are give in the supplementary material.)
By comparing them, it is interesting to note that the SB-
HWM is able to well reconstruct dominant eigenfunctions
in a low-dimensional function space, which also demon-
strates the effectiveness of the proposed spectral estimation
method.

6 CONCLUSION

We introduce in this paper a novel infinite HMM, “stick-
breaking half-weighted model” (SB-HWM) for identifica-
tion of dominant spectral components of metastable sys-
tems. The main idea is to construct a SBP based infinite-
dimensional half-weighted matrix to describe transition dy-
namics of hidden states. In contrast with the other infinite
HMMs, the SB-HWM provides a sparse prior on eigen-
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Figure 6: Free energy landscape in the state space of ala-
nine dipeptide, where each grid represents a bin of the ob-
servation model.
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Figure 7: Infinite HMMs and MSMs applied to molecu-
lar dynamics data. (a) Estimates of the first 6 eigenval-
ues, where error bars represent one standard deviation con-
fidence intervals. (Note the 5-state MSM has at most 5
nonzero eigenvalues.) (b) Estimation errors of the first 3
projected eigenfunctions.
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Figure 8: Estimates of the first three eigenfunctions
l1, l2, l3. (a,c,e) Estimates obtained by the SB-HWM.
(b,d,f) Estimates obtained by the 129-state MSM.

values so that both the values and the numbers of dominant
spectral components can be estimated by the Bayesian non-
parametric inference. Furthermore, a truncated approxima-
tion based sampling inference algorithm for SB-HWMs is
developed. Interesting directions of future research include
developing a more efficient sampling algorithm and extend-
ing the algorithm to non-reversible systems.
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Abstract

We present a new algorithmic approach to the
group fused lasso, a convex model that approx-
imates a multi-dimensional signal via an ap-
proximately piecewise-constant signal. This
model has found many applications in mul-
tiple change point detection, signal compres-
sion, and total variation denoising, though
existing algorithms typically using first-order
or alternating minimization schemes. In this
paper we instead develop a specialized pro-
jected Newton method, combined with a pri-
mal active set approach, which we show to
be substantially faster that existing methods.
Furthermore, we present two applications that
use this algorithm as a fast subroutine for a
more complex outer loop: segmenting linear
regression models for time series data, and
color image denoising. We show that on these
problems the proposed method performs very
well, solving the problems faster than state-
of-the-art methods and to higher accuracy.

1 Introduction

Given a multivariate signal y1, y2, . . . , yT , with yt ∈
Rn, the (weighted) group fused lasso (GFL) estimator
(Bleakley and Vert, 2011; Aláız et al., 2013) attempts
to find a roughly “piecewise-constant” approximation
to this signal. It determines this approximation by
solving the optimization problem

minimize
x1,x2,...,xT

1

2

T∑

t=1

wi‖xt−yt‖22+
T−1∑

t=1

λt‖xt−xt+1‖2 (1)

where x1, x2, . . . , xT are the optimization variables,
w ∈ RT+ are weights for each time point, λ ∈ RT−1

+

are regularization parameters, and ‖ · ‖2 denotes the
Euclidean norm. Intuitively, the `2 norm on the differ-
ence between consecutive points encourages sparsity in

this difference: each difference xt − xt+1 will typically
be either full or identically zero at the solution, i.e., the
signal x will be approximately piecewise-constant. This
approach generalizes the 1D total variation norm (Tib-
shirani et al., 2005; Barbero and Sra, 2011), which con-
siders only univariate signals. Owing to the piecewise-
constant nature of the approximate signals formed by
the group fused lasso, the approach has found appli-
cations in signal compression, multiple change-point
detection, and total variation denoising. Though sev-
eral algorithms have been proposed to solve (1), to
the best of our knowledge these have involved, at their
foundation, first-order methods such as projected gra-
dient, block coordinate descent, or splitting methods.
Although such algorithms can sometimes obtain rea-
sonable performance, they often fail to quickly find ac-
curate solutions, especially when one wants to solve (1)
to high precision as a “subroutine” (or prox-operator)
in a larger algorithm (Barbero and Sra, 2011).

In this paper, we develop a fast algorithm for solving
the optimization problem (1), based upon a projected
Newton approach. Our method can solve group fused
lasso problems to high numerical precision, often several
orders of magnitude faster than existing state-of-the-art
approaches. At its heart, our method involves dualiz-
ing the optimization problem (1) twice, in a particular
manner, to eliminate the non-differentiable `2 norm
and replace it by simple nonnegativity constraints; we
solve the reformulated problem to high accuracy via a
projected Newton approach. In order to fully exploit
the sparsity of large-scale instances, we combine the
above ideas with a primal active-set method that itera-
tively solves reduced-size problems to find the final set
of non-zero differences for the original GFL problem.

Although our fast fused group lasso method is valuable
in its own right, its real power comes when used as
a proximal subroutine in a more complex algorithm,
an operation that often needs to be solved thousands
of times. With this motivation in mind, we apply our
approach to two applications: segmenting linear regres-
sion models, and color total variation image denoising.
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We demonstrate the power of our approach in experi-
ments with real and synthetic data, both for the basic
group fused lasso and these applications, and show
substantial improvement over the state of the art.

2 A fast Newton method for the GFL

We begin by adopting slightly more compact notation,
and rewrite (1) (the primal problem) as

minimize
X

1
2‖(X − Y )W 1/2‖2F + ‖XDΛ‖1,2 (P)

where X,Y ∈ Rn×T denote the matrices

X =
[
x1 · · · xT

]
, Y =

[
y1 · · · yT

]
; (2)

W := diag(w) and Λ := diag(λ); ‖ · ‖F denotes the
Frobenius norm; ‖ · ‖1,2 denotes the mixed `1,2-norm

‖A‖1,2 :=
∑

i
‖ai‖2, (3)

where ai is the ith column of A; and D ∈ RT,T−1

denotes the first order differencing operator

D =




1 0 0 · · ·
−1 1 0 · · ·
0 −1 1 · · ·
...

...
...

. . .


 (4)

so that XD takes the difference of the columns of X.

2.1 Dual problems

To solve (P), it is useful to look at its dual and (for our
algorithm) a modified dual of this dual. To derive these
problems, we transform (P) slightly by introducing the
constraint V = XD, and corresponding dual variables
U ∈ Rn×T−1. The Lagrangian is then given by

LP (X,U, V ) := 1
2‖(X − Y )W 1/2‖2F + ‖V Λ‖1,2

+ trUT (V −XD).
(5)

Minimizing (5) analytically over X and V gives

X? = Y − UDTW−1, V ? = 0 iff ‖ut‖2 ≤ λt (6)

where ut is the t-th column of U ; this leads to the dual

maximize
U

− 1
2‖UDTW−1/2‖2F + trUDTY T

subject to ‖ut‖2 ≤ λt, t = 1, . . . , T − 1.
(D)

Indeed, several past algorithmic approaches have solved
(D) directly using projected gradient methods, see
e.g., (Aláız et al., 2013).

The basis of our algorithm is to form the dual of (D),
but in a manner that leads to a different problem than

the original primal. In particular, noting that the
constraint ‖ut‖2 ≤ λt is equivalent to the constraint
that ‖ut‖22 ≤ λ2

t , we can remove the non-differentiable
`2 norm, and form the Lagrangian

LD(U, z) = − 1
2‖UDTW−1/2‖2F + trUDTY T

+
∑T−1

t=1
zt(‖ut‖22 − λ2

t ).
(7)

Minimizing over U analytically yields

U? = Y D(DTW−1D + Z)−1, (8)

where Z := diag(z), and leads to the dual problem (the
dual of the dual of (P))

min
z≥0

1
2Y D(DTW−1D + Z)−1DTY T + 1

2 (λ2)T z,

(DD)
where λ2 denotes squaring λ elementwise. This pro-
cedure, taking the dual of the dual of the original
optimization problem, has transformed the original,
non-smooth problem into a smooth optimization prob-
lem subject to a non-negativity constraint, a setting
for which there are several efficient algorithms. Al-
though (DD) is not easily solved via a standard form
semidefinite program—it involves a matrix fractional
term, for which the standard semidefinite programming
form is computationally unattractive—it can be solved
efficiently by a number of methods for smooth, bound-
constrained optimization. However, as we will see
below, the Hessian for this problem is typically poorly
conditioned, so the choice of algorithm for minimizing
(DD) has a large impact in practice. Furthermore, be-
cause the z dual variables are non-zero only for the
change points of the original X variables, we expect
that for many regimes we will have very few non-zero z
values. These points motivate the use of projected New-
ton methods (Bertsekas, 1982), which perform Newton
updates on the variables not bound (z 6= 0).

2.2 A projected Newton method for (DD)

Denote the objective of (DD) as f(z); the gradient and
Hessian of f are given by

∇zf(z) = − 1
2 (U2)T 1 + 1

2λ
2,

∇2
zf(z) = UTU ◦ (DTW−1D + Z)−1,

(9)

where as above U = Y D(DTW−1D + Z)−1, U2 de-
notes elementwise squaring of U , and ◦ denotes the
elementwise (Hadamard) product. The projected New-
ton method proceeds as follows: at each iteration, we
construct the set of bound variables

I := {i : zi = 0 and (∇zf(z))i > 0}. (10)

We then perform a Newton update only on those vari-
ables that are not bound (Ī, referred to as the free
set), and project back onto the feasible set

zĪ ←
[
zĪ − α(∇2

zf(z))−1
Ī,Ī(∇zf(z))Ī

]
+
, (11)
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Algorithm 1 Projected Newton for GFL

input signal Y ∈ Rn×T ; weights w ∈ RT+; regular-

ization parameters λ ∈ RT−1
+ ; tolerance ε

output: optimized signal X ∈ Rn×T
initialization: z ← 0
repeat

1. Form dual variables and gradient

U ← Y D(DW−1D + Z)−1

∇zf(z)← − 1
2 (U2)T 1 + 1

2λ
2

2. Compute active constraints

I ← {i : zi = 0 and (∇zf(z))i > 0}

3. Compute reduced Hessian and Newton direction

H ← UTĪ UĪ ◦ (DTW−1D + Z)−1
Ī,Ī

∆zĪ ← −H−1(∇zf(z))Ī

4. Update variables

zĪ ← [zĪ + α∆zĪ ]+

where α is chosen by line search
until ‖(∇zf(z))Ī‖2 ≤ ε

where α is a step size (chosen by backtracking, inter-
polation, or other line search), and [·]+ denotes projec-
tion onto the non-negative orthant. The full method is
shown in Algorithm 1. Although the projected Newton
method is conceptually simple, it involves inverting
several (possibly T × T matrices), which is impractical
if these were to be computed as general matrix opera-
tions. Fortunately, there is a great amount of structure
that can be exploited in this problem.

Efficiently solving Y D(DTW−1D+Z)−1. One key
operation for the weighted GFL problem is to solve
linear systems of the form DTW−1D + Z, where W
and Z are diagonal. Fortunately, the first matrix is
highly structured: it is a symmetric tridiagonal matrix

DTW−1D =




1
w1

+ 1
w2

− 1
w2

0 · · ·
− 1
w2

1
w2

+ 1
w3

− 1
w3

· · ·
0 − 1

w3

1
w3

+ 1
w4

· · ·
...

...
...

. . .


 ,

(12)
and adding Z to it only affects the diagonal. LAPACK
has customized routines for solving problems of this
form: dpttrf (which computes the LDLT factoriza-
tion of the matrix) and dptts2 (which computes the
solution to LDLTX = B via backsubstitution). For

our work, we modified this latter code slightly to solve
systems with the unknown on the left hand size, as is
required for our setting; this lends a slight speedup by
exploiting the memory locality of column-based matri-
ces. The methods factor T − 1× T − 1 matrix in O(T )
time, and solve n left hand sides in time O(Tn).

Computing entries of (DTW−1D+Z)−1. The pro-
jected Newton method also requires more than just
solving equations of the form above: to compute the
Hessian, we must actually also compute entries of the
inverse (DTW−1D + Z)−1 — we need to compute the
entries with rows and columns in Ī. Naively, this would
require solving k = |Ī| left hand sides, corresponding
to the unit bases for the entries in Ī; even using the
fast solver above, this takes time O(Tk). To speed
up this operation, we instead use a fast method for
computing the actual entries of the inverse of this tridi-
agonal, using an approach based upon (Usmani, 1994);
this ultimately lets us compute the k2 entries in O(k2)
time, which can be much faster for small free sets.

Specifically, let a ∈ RT−1 and b ∈ RT−2 denote
the diagonal and the negative off-diagonal entries of
DTW−1D+Z respectively (that is, ai = 1

wi
+ 1
wi+1

+zi

and bi = 1
wi+1

), we can compute individual entries of

(DTW−1D+Z)−1 as follows (the following adapts the
algorithm in (Usmani, 1994), but has enough simpli-
fications for our case that we state it explicitly here).
Define θ, φ ∈ RT via the recursions

θi+1 = aiθi − b2i−1θi−1, i = 2, . . . , T − 1

θ1 = 1, θ2 = a1,

φi = aiφi+1 − b2iφi+2, i = T − 2, . . . , 1

φT = 1, φT−1 = aT−1.

(13)

Then, the (i, j) entry of (DTW−1D + Z)−1 for j ≤ i
is given by

(DTW−1D + Z)−1
ij =

1

θT

(∏j−1

k=i
bi

)
θiφj+1. (14)

Finally, we can compute all the needed running prod-
ucts

∏j−1
k=i bi by computing a single cumulative sum

of the logs of the bi terms ci =
∑i
j=1 log bi and then

using the equality
∏j−1
k=i bi = exp(cj − ci).

2.3 A primal active set approach

Using the two optimizations mentioned above, the pro-
jected Newton method can very quickly find a solution
accurate to numerical precision for medium sized prob-
lems (T and n on the order of thousands). However,
for problems with substantially larger T , which are
precisely those we are most interested in for many GFL
applications, the approach above begins to break down.
There are two reasons for this: 1) The size of the free
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set k = |I|, though often small at the final solution, can
be significantly larger at intermediate iterations; since
the Newton method ultimately does involve an O(k3)
time to invert the Hessian restricted to the free set, this
can quickly render the algorithm impractical. 2) Even
with small free sets, the basic O(Tn) cost required for
a single pass over the data at each Newton iteration
starts to dominate, especially since a significant num-
ber of iterations to find the correct free set may be
required (only after finding the correct free set does
one obtain quadratic convergence rates).

To overcome these problems, we consider a further layer
to the algorithm, which wraps our fast projected New-
ton solver inside a primal active-set method. The basic
intuition is that, at the optimal solution to the original
GFL problem, there will typically be very few change
points in the solution X? (these correspond exactly
to those z variables that are non-zero). If we knew
these changes points ahead of time, we could solve a
substantially reduced (weighted) GFL problem that
was equivalent to the original problem. Specifically, let
J ⊆ {1, . . . , T − 1} denote the optimal set of change
point locations for the primal problem. By the rela-
tionship of dual problems, this will be identical to the
set of free variables Ī at the optimal solution, but since
we treat these differently in the algorithmic design we
use different notation. Then the original problem

minimize
X

‖(X − Y )W 1/2‖2F + ‖XDΛ‖1,2, (15)

where X ∈ Rn×T , is equivalent to the reduced problem

minimize
X′

‖(X ′−Y ′)W ′1/2‖2F +‖X ′D′ΛJ ,J ‖1,2 (16)

with optimization variable X ′ ∈ Rn×k+1 for k = |J |,
where D′ ∈ Rk+1×k denotes the same first order dif-
ferences matrix but now over only k + 1-sized vectors,
and where Y ′ and W ′ = diag(w′) are defined by

w′i =
∑

j∈J ′
i

wj , y′i =
1

w′i

∑

j∈J ′
i

wjyj , (17)

where we define J ′i = {Ji−1 + 1, . . . ,Ji} for i =
1, . . . , k + 1 (i.e., J ′i denotes the list of indices within
the ith segment, there being k+1 segments for k change
points). Furthermore, all these terms can be computed
in time O(nk) via cumulative sums similar to the cu-
mulative sum used for b above (which take O(Tn) to
compute once, but which thereafter only require O(kn)
to form the reduced problem).

To see this equivalence, note first that since X only
changes at the points |J |, it immediately holds that
‖XDΛ‖1,2 = ‖X ′D′ΛJ ,J ‖1,2. To show that the other

term in the objective is also equivalent, we have that

‖(X − Y )W 1/2‖2F

=
k+1∑

i=1

‖(x′i1T − YJ ′
i
)W

1/2
J ′
i ,J ′

i
‖2F

=

k+1∑

i=1

(
(wTJ ′1)x′

T
i x
′
i − 2x′

T
YJ ′

i
wJ ′

i
+ ‖YJ ′

i
W

1/2
J ′
i ,J ′

i
‖2F
)

=
k+1∑

i=1

w′i‖x′i − y′i‖22 + c.

This equivalence motivates a primal active set method
where we iteratively guess the active set J (with some
fixed limit on its allowable size), use the projected New-
ton algorithm to solve the reduced problem, and then
use the updated solution to re-estimate the active set.
This is essentially equivalent to a common “block pivot-
ing” strategy for non-negative least squares (Portugal
et al., 1994) or `1 methods (Lee et al., 2007), and has
been shown to be very efficient in practice (Kim and
Park, 2010). The full algorithm, which we refer to as
Active Set Projected Newton (ASPN, pronounced “as-
pen”), is shown in Algorithm 2. In total, the algorithm
is extremely competitive compared to past approaches
to GFL, as we show in Section 4, often outperforming
the existing state of the art by orders of magnitude.

3 Applications

Although the ASPN algorithm for the group fused
lasso is a useful algorithm in its own right, part of
the appeal of a fast solver for this type of problem
is the possibility of using it as a “subroutine” within
solvers for more complex problems. In this section we
derive such algorithms for two instances: segmentation
of time-varying linear regression models and multi-
channel total variance image denoising. Both models
have been considered in the literature previously, and
the method presented here offers a way of solving these
optimization problems to a relatively high degree of
accuracy using simple methods.

3.1 Linear model segmentation

In this setting, we observe a sequence of input/output
pairs (at ∈ Rn, yt ∈ R) over time and the goal is
to find model parameters xt such that yt ≈ aTt xt (it
is more common to denote the input itself as xt and
model parameters θt, but the notation here is more in
keeping with the rest of this paper). Naturally, if xt
is allowed to vary arbitrarily, we can always find (an
infinite number of) xt’s that fit the output perfectly,
but if we constrain the sum of norms ‖xt−xt−1‖2, then
we will instead look for piecewise constant segments in
the parameter space; this model was apparently first
proposed in Ohlsson et al. (2010).
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Algorithm 2 Active Set Projected Newton (ASPN)

input signal Y ∈ Rn×T ; weights w ∈ RT+; regular-

ization parameters λ ∈ RT−1
+ ; maximum active set

size kmax; tolerance ε
output: optimized signal X ∈ Rn×T
initialization: z ← 0
repeat

1. Form dual variables and gradient

U ← Y D(DW−1D + Z)−1

∇zf(z)← −1

2
(U2)T 1 +

1

2
λ2

2. Compute active set, containing all non-zero zi’s
and additional element with negative gradients,
up to size kmax

J 0 ← {i : zi > 0}
J 1 ← {i : zi = 0,∇zf(z) < 0}
J ← J 0 ∪ J 1

1:kmax−|J 0|

3. Form reduced problem (Y ′, w′) for J using (17)
and solve using projected Newton

zJ ← Projected-Newton(Y ′, w′, λJ )

until ‖(∇zf(z))J ‖2 ≤ ε

This model may be cast as the optimization problem

minimize
X

‖A vecX − y‖22 + ‖XDΛ‖1,2, (18)

where X ∈ Rn×T is the same optimization variable
as previously, y ∈ RT denotes the vector of outputs,
vec denotes the vectorization of a matrix (stacking its
columns into a single column vector), and A ∈ RT×Tn
is the block diagonal matrix

A =




aT1 0 0 · · ·
0 aT2 0 · · ·
0 0 aT3 · · ·
...

...
...

. . .


 . (19)

While this problem looks very similar to the ordinary
GFL setting, the introduction of the additional ma-
trix A renders it substantially more complex. While
it is possible to adapt the Newton methods above to
solve the problem directly, much of the special problem
structure is lost, and it requires, for examples, forming
Tn× Tn block tridiagonal matrices, which is substan-
tially more computationally intensive, especially for
large n (the methods scale like O(n3)). While opti-
mization may still be possible with such approaches,
we instead adopt a different approach that builds on the

alternating direction method of multipliers (ADMM),
an algorithm that has attracted great attention re-
cently (e.g. Boyd et al. (2011)). Briefly, ADMM solves
problems of the form

minimize
x,z

f(x) + g(z), subject toAx+Bz = c, (20)

via a sequence of alternating minimizations over x and
z and dual variable updates.

The “standard” ADMM algorithm. The sim-
plest way to apply ADMM to (18), considered for the
pure group fused lasso e.g., in Wahlberg et al. (2012),
is to introduce variables Z = XD, and formulate the
problem as

minimize
X,Z

‖A vecX − Y ‖22 + ‖ZΛ‖1,2

subject to XD = Z.
(21)

After some derivations, this leads to the updates

Xk+1 ← argmin
X

‖A vecX − y‖22 + ρ
2‖XD − Zk + Uk‖2F

Zk+1 ← argmin
Z
‖ZΛ‖1,2 + ρ

2‖Xk+1D − Z + Uk‖2F

Uk+1 ← Uk +Xk+1D − Zk+1,

(22)

where ρ acts effectively like a stepsize for the problem.
This set of updates is particularly appealing because
minimization over X and Z can both be computed in
closed form: the minimization over X is unconstrained
quadratic optimization, and has the solution
(
ATA+ ρFTF

)−1 (
AT y + ρFT vec(Zk − Uk)

)
(23)

where F = (DT ⊗ I). Furthermore, these updates
can be computed very efficiently, since

(
ATA+ ρFTF

)

is block tridiagonal, and since this matrix does not
change at each iteration, we can precompute its (sparse)
Cholesky decomposition once, and use it for all itera-
tions; using these optimizations, the X update takes
time O(Tn2). Similarly, the Z update is a proximal
operator that can be solved by soft thresholding the
columns of Xk+1D + Uk (an O(Tn) operation). Al-
though these elements make the algorithm appealing,
they hide a subtle issue: the matrix (ATA+ ρFTFX)
is poorly conditioned (owing to the poor conditioning
of DTD), even for large ρ. Because of this, ADMM
needs a large number of iterations for converging to
a reasonable solution; even if each iteration is quite
efficient, the overall algorithm can still be impractical.

ADMM using the GFL proximal operator. Al-
ternatively, we can derive a different ADMM algorithm
by considering instead the formulation

minimize
X,Z

‖A vecX − Y ‖22 + ‖ZDΛ‖1,2

subject to X = Z,
(24)
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which leads to the iterative updates

Xk+1 ← argmin
X

‖A vecX − y‖22 + ρ
2‖X − Zk + Uk‖2F

Zk+1 ← argmin
Z
‖ZDΛ‖1,2 + ρ

2‖Xk+1 − Z + Uk‖2F

Uk+1 ← Uk +Xk+1 − Zk+1.

(25)

The X update can still be computed in closed form

vecXk+1 =
(
ATA+ ρI

)−1 (
AT y + ρ vec(Zk − Uk)

)
,

which is even simpler to compute than in the previous
case, sinceATA+ρI is block diagonal with blocks aia

T
i +

ρI, which can be solved for in O(n) time; thus the entire
X update takes times O(Tn). The downside is that
the Z update, of course, can no longer be solved with
soft-thresholding. But the Z update here is precisely
in the form of the group fused lasso; thus, we can use
ASPN directly to perform the Z update. The main
advantage here is that the matrix ATA+ ρI is much
better conditioned, which translates into many fewer
iterations of ADMM. Indeed, as we show below, this
approach can be many orders of magnitude faster than
straight ADMM, which is already a very competitive
algorithm for solving these problems.

3.2 Color total variation denoising

Next, we consider color total variation denoising exam-
ple. Given an m×n RGB image represented as a third
order tensor, Y ∈ R3×m×n, total variation image de-
noising (Rudin et al., 1992; Blomgren and Chan, 1998)
attempts to find an approximation X ∈ R3×m×n such
that differences between pixels in X favor being zero.
It does this by solving the optimization problem

minimize
X

1
2‖X − Y ‖2F + λ

m∑

i=1

n−1∑

j=1

‖X:,i,j −X:,i,j+1‖2

+ λ
m−1∑

i=1

n∑

j=1

‖X:,i,j −X:,i+1,j‖2,

(26)

corresponding to an `2 norm penalty on the difference
between all adjacent pixels, where each pixel X:,i,j is
represented as a 3 dimensional vector. We can write
this as a sum of m+ n group fused lasso problems

minimize
X

m∑

i=1

(
‖X:,i,: − Y:,i,:‖2F + λ‖X:,i,:D‖1,2

)

+

n∑

j=1

(
‖X:,:,j − Y:,:,j‖2F + λ‖X:,:,jD‖1,2

)
,

where X:,i,: ∈ R3×n denotes the slice of a single row
of the image and X:,:,j ∈ R3×n denotes the slice of a
single column.

Unfortunately, this optimization problem cannot be
solved directly via the group fused lasso, as the differ-
ence penalties on the rows and columns for the same
matrix X render the problem quite different from the
basic GFL. We can, however, adopt an approach sim-
ilar to the one above, and create separate variables
corresponding to the row and column slices, plus a
constraint that they be equal; formally, we solve

minimize
X,Z

m∑

i=1

(
‖X:,i,: − Y:,i,:‖2F + λ‖X:,i,:D‖1,2

)

+
n∑

j=1

(
‖Z:,:,j − Y:,:,j‖2F + λ‖Z:,:,jD‖1,2

)

subject to X = Z.

(27)

The major advantage of this approach is that it decom-
poses the problem into m+ n independent GFL tasks,
plus a meta-algorithm that adjusts each sub-problem
to make the rows and columns agree. Several such
algorithms are possible, including ADMM; we present
here a slightly simpler scheme known as the “proxi-
mal Dykstra” method (Combettes and Pesquet, 2011),
which has been previously applied to the case of (single
channel, i.e., black and white) total variation denois-
ing (Barbero and Sra, 2011). Starting with X0 = Y ,
P 0 = 0, Q0 = 0, the algorithm iterates as follows:

Zk+1
:,:,j ← GFL(Xk

:,:,j + P k:,:,j , λ), j = 1, . . . , n

P k+1 ← P k +Xk − Zk+1

Xk+1
:,i,: ← GFL(Zk+1

:,i,: +Qk:,i,:, λ), i = 1, . . . ,m

Qk+1 ← Qk + Zk+1 −Xk+1.

(28)

Typically, very few iterations (on the order of 10) of
this outer loop are need to converge to high accuracy.
Furthermore, because each of the m or n GFL problems
solved in the first and third steps are independent, they
can be trivially parallelized.

4 Experimental results

We present experimental results for our approaches,
both on the basic group fused lasso problem, where we
compare to several other potential approaches, and on
the two applications of linear model segmentation and
color total variation denoising. C++ and MATLAB
code implementing our methods is available at http:

//www.cs.cmu.edu/~mwytock/gfl/.

4.1 Group fused lasso

Here we evaluate the ASPN algorithm versus several
alternatives to solving the group fused lasso problem,
evaluated on both synthetic and real data. Figure 1
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Figure 1: Above: synthetic change point data, with
T = 10000, n = 100, and 10 true change points. Below:
recovered signal.

shows a synthetic time series with T = 10, 000, n = 100,
and 10 discrete change points in the data; the data was
generated by uniformly sampling the change points,
sampling the mean of each segment from N (0, I), and
then additional Gaussian noise. Figure 1 shows the re-
covered signal using the group fused lasso with wt = 1,
λt = 20. In Figure 2, we show timing results for this
problem as well as a smaller problem with T = 1000
and n = 10; we compare ASPN to GFLseg (Bleak-
ley and Vert, 2011) (which uses coordinate descent
on the primal problem), an accelerated projected gra-
dient on the dual (i.e., the FISTA algorithm) (Beck
and Teboulle, 2009), Douglas-Rachford splitting (Com-
bettes and Pesquet, 2007) (a generalization of ADMM
that performs slightly better here), a projected gradient
on the dual (Aláız et al., 2013), and LBFGS-B (Byrd
et al., 1995) applied to the dual of the dual. In all
cases, ASPN performs as well as (often much better
than) the alternatives.

Next, we evaluate how the ASPN algorithm scales as a
function of the number of time points T and the number
of change points at the solution, k. In Figure 3, the
first set of experiments shows that when the number
of change points at the solution is fixed (k = 10), the
amount of time required for a highly accurate solution
remains small even for large T , agreeing with analysis
that shows the number of operations required is O(T ).
In particular, a solution accurate to 10−6 is found in
4.8 seconds on a problem with T = 106 time points.
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Figure 2: Above: timing results on synthetic problem
with T = 1000, n = 10. Below: timing results on
synthetic problem with T = 10000, n = 100.
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Figure 4: Above: Lung data from (Bleakley and Vert,
2011). Below: recovered signal using group fused lasso.

However, in the next set of experiments, we see that
compute time grows rapidly as a function of k due to
the O(k3) operations required to compute the Newton
step, suggesting that the proposed method is most
appropriate for problems with sparse solutions.
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Figure 3: Left: timing results vs. number of change points at solution for synthetic problem with T = 10000 and
n = 10. Right: timing results for varying T , n = 10, and sparse solution with 10 change points.
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Figure 5: Above: Timing results on bladder problem,
T = 2143, n = 57. Below: Timing results on lung
problem, T = 31708, n = 18.

Finally, we evaluate the algorithm on two real time
series previously used with the group fused lasso (Bleak-
ley and Vert, 2011), from DNA profiles of bladder and
lung cancer sequences. Figure 4 shows one of these
two series, along with the approximation produced by
the group fused lasso. Figure 5 shows timing results
for the above methods again on this problem: here we
observe the same overall behavior, that ASPN typically
dominates the other approaches.

4.2 Linear regression segmentation

Here we apply the two different ADMM methods dis-
cussed in Section 3.1 to the task of segmenting auto-
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Figure 6: Above: Observed autoregressive signal zt.
Below: true autoregressive model parameters.

regressive time series models. In particular, we observe
some time series z1, . . . , zT , and we fit a linear model to
this data zt ≈ aTt xt where at = (zt−1, zt−2, . . . , zt−n).
Figure 6 shows an example time series generated by
this process, as well as the true underlying model that
generated the data (with additional noise). This is
the rough setting used in (Ohlsson et al., 2010), which
was the first example we are aware of that uses such
regularization techniques within an linear regression
framework. Figure 7 shows the model parameters re-
covered using the method from Section 3.1, which here
match the ground truth closely.

Of more importance, though, is the comparison be-
tween the two different ADMM approaches. Figure 8
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shows convergence versus running time and here the
“simple” ADMM approach, which encodes the differ-
ence operator in the constraints (and thus has simpler
updates), converges significantly slower than our al-
ternative. Importantly, the X axis in this figure is
measured in time, and we emphasize that even though
the “simple” ADMM updates are individually slightly
faster (they do not involve GFL subproblems), their
overall performance is much poorer. Further, as il-
lustrated in Figure 7, the “simple” ADMM approach
never actually obtains a piecewise constant X except
at the optimum, which is never reached in practice.

Figure 9: Left: original image. Middle: image cor-
rupted with Gaussian noise. Right: imaged recovered
with total variation using proximal Dykstra and ASPN.
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Figure 10: Comparison of proximal Dykstra method
to ADMM for TV denoising of color image.

4.3 Color total variation denoising

Finally, as described in Section 3.2, we apply the prox-
imal Dykstra algorithm, using ASPN as a fast sub-
routine, to color image denoising. Figure 9 shows a
256x256 image generated by combining various solid-
colored shapes, corrupted with per-RGB-component
noise of N (0, 0.1), and then recovered with total vari-
ation denoising. There has been enormous work on
total variation denoising, and while a full comparison
is beyond the scope of this paper, ADMM or meth-
ods such as those used by the FTVd routines in Yang
et al. (2009), for instance, are considered to be some
of the fastest for this problem. In Figure 10, we show
the performance of our approach and ADMM versus
iteration number, and as expected observe better con-
vergence; for single-core systems, ADMM is ultimately
a better solution for this problem, since each iteration
of ADMM takes about 0.767 seconds in our implemen-
tation whereas 512 calls to ASPN take 20.4 seconds.
However, the advantage to the ASPN approach is that
all these calls can be trivially parallelized for a 256X
speedup (the calls are independent and all code is CPU-
bound), whereas parallelizing a generic sparse matrix
solve, as needed for ADMM-based approaches, is much
more challenging and thus per-iteration performance
highlights the potential benefits of the ASPN approach.
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Abstract

Many objects can be represented as sets of multi-
dimensional points. A common approach to
learning from these point sets is to assume that
each set is an i.i.d. sample from an unknown un-
derlying distribution, and then estimate the sim-
ilarities between these distributions. In realistic
situations, however, the point sets are often sub-
ject to sampling biases due to variable or incon-
sistent observation actions. These biases can fun-
damentally change the observed distributions of
points and distort the results of learning. In this
paper we propose the use of conditional diver-
gences to correct these distortions and learn from
biased point sets effectively. Our empirical study
shows that the proposed method can successfully
correct the biases and achieve satisfactory learn-
ing performance.

1 INTRODUCTION

Traditional learning algorithms deal with fixed, finite di-
mensional vectors/points, but many real objects are actu-
ally sets of points that are multi-dimensional, real-valued
vectors. For instance, in computer vision an image is of-
ten treated as a set of patches with each patch described
by a fixed length feature vector (Li and Perona, 2005). In
monitoring problems, each sensor produces one set of mea-
surements for a particular region within a time period. In a
social network, a community is a set of people. It is impor-
tant to devise algorithms that can effectively process and
learn from these data.

A convenient and often adopted way to deal with point sets
is to construct a feature vector for each set so that standard
learning techniques can be applied. However, this conver-
sion process often relies on human effort and domain ex-
pertise and is prone to information loss. Recently, several
algorithms were proposed to directly learn from point sets

based on the assumption that each set is a sample from
an underlying distribution. (Póczos et al., 2011, 2012)
proposed novel kernels between point sets based on effi-
cient and consistent divergence estimators. (Gretton et al.,
2007; Muandet et al., 2012) designed a class of set kernels
based on the kernel embedding of distributions. (Boiman
et al., 2008; McCann and Lowe, 2012) developed simple
classifiers for point sets based on divergences between the
sets and the classes. Some parametric methods have also
been proposed (Jaakkola and Haussler, 1998; Jebara et al.,
2004). These methods achieved impressive empirical suc-
cesses, thus showing the advantage of learning directly
from point sets.

One factor that can significantly affect the effectiveness of
learning is sampling bias. Sampling bias comes from the
way we collect points from the underlying distributions,
and makes the observed sample not representative of the
true distribution. It undermines the fundamental validity of
learning because the points are no longer iid samples from a
distribution conditioned only on the object’s type. Though
it has been extensively studied in statistics, this key prob-
lem has been largely ignored by the previous research on
learning from sets. The goal of this paper is to alleviate
the impact of sampling bias when measuring similarities
between point sets.

We consider point sets with the following structure. Let
each point be described by two groups of random variables:
the independent variables (i.v.) and dependent variables
(d.v.). A point is collected by first specifying the value
of the i.v., and then observing a sample from the distribu-
tion of the d.v. conditioned on the given i.v. Figure 1 shows
a synthetic example where the i.v. is sampled uniformly,
and the d.v. is from the Gaussian distribution whose mean
is proportional to the value of i.v., forming the black line-
shaped point set. Many real world situations, including sur-
veys and mobile sensing, produce point sets of this type. In
patch-based image analysis, we first specify the location
of the patches as the i.v. and then extract their features as
the d.v. In traffic monitoring, a helicopter is sent to specific
locations at specific times (i.v.) and measures the traffic
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Figure 1: The observation biases.

We assume that the sampling bias affects the way we ob-
serve i.v. , yet the observation of d.v. given i.v. remains in-
tact. This assumption is compatible with the covariate shift
model (Shimodaira, 2000; Huang et al., 2007). As shown
in Figure 1, an unbiased observer will sample i.v. uniformly
and get the black set. Biased observers might focus more
on the smaller or larger values of the i.v. and create the bi-
ased red and blue sets, where the curves show the observed
marginal densities of the i.v. The joint and marginal dis-
tributions of the biased sets now look very different from
each other and the unbiased set. Nevertheless, no matter
what the distribution of i.v. is, the distribution of d.v. given
i.v. is always the same Gaussian that does not change with
the observer. In traffic monitoring, the helicopter may be
tasked with other, non-traffic, jobs that create different pa-
trol schedules each day, thus creating an uneven profile of
the city’s traffic. But the measured traffic volumes at the
patrolled locations are still accurate.

To correct sampling biases of this kind, we propose to use
conditional divergences. Existing divergence-based meth-
ods use the joint distribution of the i.v. and the d.v. to mea-
sure the differences between point sets. On the other hand,
conditional divergences focus on the conditional distribu-
tions of d.v. given i.v. and are insensitive to the distribution
of i.v., which is distorted by the sampling bias in our set-
ting. As long as the conditional distributions are intact, the
conditional divergences will be reliable. Moreover, it can
be shown that the divergence between joint distributions is
a special case of the conditional divergence. A fast and
consistent estimator is developed for the conditional diver-
gences. We also discuss specific examples of correcting
sampling biases, including some extreme cases.

We evaluate the effectiveness of conditional divergences on
both synthetic and real world data sets. On synthetic data
sets, we show that the proposed estimator is accurate and
the conditional divergences are capable of correcting sam-
pling biases. We also demonstrate their performance on
real-world climate and image classification problems.

The rest of this paper is organized as follows. The back-

ground and some related work is introduced in Section 2.
Section 3 defines the conditional divergence and describes
its properties and estimation. Section 4 describes how to
use conditional divergence to correct various sampling bi-
ases. In Section 5 we make a discussion about the condi-
tional divergences. In Section 6, we evaluate the effective-
ness of the proposed methods on both synthetic and real
data sets. We conclude the paper in Section 7.

2 BACKGROUND AND RELATED
WORK

We consider a data set that consists of M point sets
{Gm}m=1,...,M , and each point set Gm is a set of d-
dimensional vectors, Gm = {zmn}n=1,...,Nm , zmn ∈ Rd.
Each point zmn = [xmn; ymn] is a concatenation of two
shorter vectors xmn ∈ Rdx and ymn ∈ Rdy represent-
ing the independent variables i.v. and the dependent vari-
ables d.v. respectively. We assume that each Gm has an
underlying distribution fm(z) = fm(x, y), and the points
{zmn} are i.i.d. samples from fm(z). fm can be written as
fm(z) = fm(y|x)fm(x). In the context of image classifi-
cation, eachGm is an image, and xmn is the location of the
nth patch and ymn is the feature of that patch.

We can learn from these sets by estimating the divergence
between the fm’s as the dissimilarity between the Gm’s.
Having the dissimilarities, various problems can be solved
by using similarity based learning algorithms, including k-
nearest neighbors (KNN), spectral clustering (Ng et al.,
2001), and support vector machines (SVM). In this direc-
tion, several divergence-based methods have been proposed
(Boiman et al., 2008; Póczos et al., 2012; Muandet et al.,
2012), and both empirical and theoretical successes were
achieved.

In the presence of sampling bias that affects the distribution
of i.v., fm(x) is transformed into f ′m(x). Consequently
the observed Gms represent the biased joint distribution
f ′m(z) = fm(y|x)f ′m(x). Therefore naı̈vely learning from
the point sets using joint distributions will lead us to the
distorted f ′m’s instead of the true fm’s. To correct the sam-
pling bias, we need to either 1) modify the point sets to
restore f(z), or 2) use similarity measures that are insensi-
tive to f(x).

Existing correction methods often reweigh the points in the
training set so that its effective distribution matches the dis-
tribution in the test set (Shimodaira, 2000; Huang et al.,
2007; Cortes et al., 2008). Our proposed conditional di-
vergences are insensitive to the biased distributions of the
independent variables and thus robust against sampling bi-
ases.

Traditionally in statistics and machine learning, sampling
bias is considered between the training set and the test
set. In contrast, we consider problems consisting of a large
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number of point sets, and our goal is to learn from the sets
themselves. This extension raises many important chal-
lenges, including how to find a common basis to compare
all pairs of distributions, how to deal with unobserved seg-
ments of distributions, and how to design efficient algo-
rithms.

To our knowledge, this is first time sampling bias is ad-
dressed in the context of learning from sets of points. Al-
gorithms such as (Póczos et al., 2011, 2012; Gretton et al.,
2007; Muandet et al., 2012; Boiman et al., 2008; McCann
and Lowe, 2012; Jebara et al., 2004) all directly compare
the joint distributions of the observed points, making them
susceptible to sample bias. (Póczos, 2012) proposed the
use of conditional divergence, yet sampling bias was still
not considered.

3 CONDITIONAL DIVERGENCES

We propose to measure the dissimilarity between two dis-
tributions p(z) = p(x, y) and q(z) = q(x, y) using the
conditional divergence (CD) based on the Kullback-Leibler
(KL) divergence:

CDc(x) (p(z)||q(z)) = Ec(x) [KL (p(y|x)||q(y|x))] (1)

where c(x) is a user-specified distribution over which the
expectation is taken. CD is the average KL divergence be-
tween the conditional distributions p(y|x) and q(y|x) over
possible values of x, and c(x) can be considered as the im-
portance of the divergences at different x’s. CD’s defini-
tion is free of the i.v. distributions p(x) and q(x), which
are vulnerable to sampling biases. By definition, CD has a
lot in common with the KL divergence: it is non-negative,
and equals zero if and only if p(y|x) = q(y|x) for every x
within the support of c(x). CD is also not a metric and not
even symmetric.

In the form of (1), CD is hard to compute because the diver-
gences KL (p(y|x)||q(y|x)) are not available for arbitrary
continuous distributions. Also note that c(x) is a distribu-
tion specified by the user. To make CD more accessible,
we can rewrite it as

CDc(x) (p(z)||q(z)) (2)

= Ep(z)
[
c(x)

p(x)

(
ln
p(z)

q(z)
− ln

p(x)

q(x)

)]
.

Now, CD is defined in terms of the density ratios of the
input distributions and the expectation over p(z).

An interesting case of (2) occurs when we choose c(x) =
p(x), which gives the result

CDp(x) (p(z)||q(z)) (3)
= KL(p(z)||q(z))− KL(p(x)||q(x)).

We can see this special CD is equal to the joint divergence
(divergence between joint distributions) minus the diver-
gence between the marginal distributions of x. Intuitively,
CD is removing the effect of p(x) and q(x) from the joint
divergence, so that the net results are free from the sam-
pling bias. Moreover, when p(x) and q(x) are the same,
KL(p(x)||q(x)) vanishes and this CD equals the joint di-
vergence. In other words, when there is no sampling bias,
CDp(x) (p(z)||q(z)) = KL(p(z)||q(z)).

3.1 ESTIMATION

In this section we give an estimator for CD (2). Suppose we
have two setsGp andGq with underlying distributions p(z)
and q(z) respectively. We can approximate the expectation
(2) with the empirical mean and estimated densities:

ĈDc(x) (p(z)||q(z)) (4)

=
1

Np

Np∑

n=1

c(xp,n)

p̂(xp,n)

(
ln
p̂(zp,n)

q̂(zp,n)
− ln

p̂(xp,n)

q̂(xp,n)

)
,

where Np is the size of Gp, p̂, q̂ are the estimates of p, q.

c(t) is an arbitrary input from the user and we can see
that its role is to reweight the log-density-ratios at differ-
ent points in Gp. To generalize this notion, we define the
generalized conditional divergence (GCD) and its estima-
tor as the weighted average of the log-density-ratios:

GCDw (p(z)||q(z)) (5)

=

Np∑

n=1

w(xp,n)

(
ln
p(zp,n)

q(zp,n)
− ln

p(xp,n)

q(xp,n)

)

ĜCDw (p(z)||q(z)) (6)

=

Np∑

n=1

w(xp,n)

(
ln
p̂(zp,n)

q̂(zp,n)
− ln

p̂(xp,n)

q̂(xp,n)

)

Np∑

n=1

w(xp,n) = 1, w(xp,n) ≥ 0,

where w(x) is the weight function and the constraint∑
n w(xn) = 1 is induced by the fact that

lim
Np→∞

Np∑

n=1

w(xp,n) = lim
Np→∞

1

Np

Np∑

n=1

c(xp,n)

p(xp,n)

= Ep(x)
[
c(x)

p(x)

]
=

∫
c(x)

p(x)
p(x)dx = 1.

To obtain the density estimates p̂, q̂, we use the k-nearest-
neighbor (KNN) based estimator (Loftsgaarden and Que-
senberry, 1965). Let the f(z) be the d-dimensional density
function to be estimated and Z = {zn}n=1,...,N ∈ Rd be
samples from f(z). Then the density estimate at the point
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z′ is
f̂(z′) =

k

Nc1(d)φdZ,k(z
′)
, (7)

where c1(d) is the volume of the unit ball in the d-
dimensional space, and φZ,k(z′) denotes the distance from
z′ to its kth nearest neighbor in Z (if z′ is already in Z then
it is excluded). This estimator is chosen over other options
such as the kernel density estimation because it is simple,
fast, and leads to a provably convergent estimator as shown
below.

By plugging in (7) into (6), we can get the following esti-
mator for GCD:

ĜCDw (p(z)||q(z)) (8)

=

Np∑

n=1

w(xp,n)

(
d ln

φGq,k(zp,n)

φGp,k(zp,n)
− dx ln

φGq,k(xp,n)

φGp,k(xp,n)

)
,

where dx is the dimensionality of the x. We can see that
the resulting estimator has a simple form and can be cal-
culated based only on the KNN statistics φ, which are effi-
cient to compute using space-dividing trees or even approx-
imate KNN algorithms such as (Muja and Lowe, 2009).
Also note that even though the estimator (8) is obtained us-
ing the density estimator (7), its final form only involves
simple combinations of the log-KNN-statistics lnφ. Thus,
this GCD estimator effectively avoids explicit density es-
timation which is notoriously difficult, especially in high
dimensions.

More importantly, the GCD estimator (8) has stronger
convergence properties than the density estimator from
which it is derived. Standard convergence results have that
the density estimator (7) is statistically consistent only if
k/n → 0, k → ∞ simultaneously. However, for esti-
mator (8) convergence can be achieved even for a fixed
finite k. This means that we can always use a small k to
keep the nearest neighbor search fast and still get good es-
timates. Specifically, following the work of (Wang et al.,
2009; Póczos and Schneider, 2011), the following theorem
can be proved:

Theorem 1. Suppose the density function pairs
(p(z), q(z)) and (p(x), q(x)) are both 2-regular (as
defined in (Wang et al., 2009)). Also suppose that the
weight function satisfies limNp→∞ w(xp,n) = 0,∀n. Then
the estimator (8) is L2 consistent for any fixed k. That is

lim
Np,Nq→∞

E
[
ĜCDw(p(z)||q(z))− GCDw(p(z)||q(z))

]2

= 0

The proof of Theorem 1 is similar to what was used
in (Wang et al., 2009). The condition lim

Np→∞
w(xp,n) = 0

ensures that the weight function does not concentrate on
only a few points. We omit the detailed proof here. Note

that the convergence of GCD does not carry to CD (4) be-
cause the weight function w(xp,n) =

c(xp,n)
p̂(xp,n)

is no longer
deterministic. However, empirically we found that (4) ex-
hibits the behavior of a consistent estimator and produces
satisfactory results.

4 CHOOSING c(x)

To use CD, we have to choose the appropriate c(x) orw(x).
When learning from point sets, it is preferable to use the
same c(x) to compute the CDs between all pairs of sets, so
that they have a common basis to compare. However, this is
not always necessary or possible. Even though the choice
of c(x) and w(x) can be arbitrary, we consider 3 options
below.

First, we can let c(x) ∝ 1 so that w(xp,n) ∝ p−1(xp,n)
to treat every value of x equally. The disadvantage is that
p−1(xp,n) has to be estimated, which is error prone. We
can also use c(x) = p(x) and w(xp,n) ∝ 1, leading to (3).
In this case, different pairs of sets can have different c(x)’s.
When the sampling bias is small, these differences might
be acceptable considering the possible errors in w(x) oth-
erwise. Thirdly, c(x) ∝ p(x)q(x) and w(xp,n) ∝ q(xp,n)
puts the focus on regions where both p(x) and q(x) are
high. It means that we should put larger weights in dense
regions and avoid scarce regions to get reliable estimates.

One caveat is that the weight function and the log-density-
ratios in CD should not use the same density estimate, oth-
erwise the estimation errors will correlate and cause sys-
tematic overestimations. Using different estimators can
help decouple the errors and avoid accumulation. In prac-
tice, we use the estimator (7) with a different k.

Some extreme cases of sampling biases are when whole
segments of the distribution are missing from the sample
and therefore unobserved. Two sets can even have dis-
joint supports of x. With the CD, we can choose c(x) ∝
p(x)q(x) or c(x) ∝ I(p(x)q(x) > 0), where I(·) is the
indicator function, and only compare two sets in their over-
lapping regions. The resulting quantity may not be accu-
rate with respect to the true unbiased divergence, but it is
still a valid measurement of the differences between con-
ditional distributions. When f(y|x) only weakly depends
on x, this estimate can be an adequate approximation to
the original divergence. If f(y|x) varies drastically for dif-
ferent x’s without any regularity then only comparing the
overlapping regions might be the best we can do.

When two sets have disjoint supports in x, no useful infor-
mation can be extracted and the corresponding divergence
has to be regarded as missing without further assumptions.
Nevertheless, in our settings where a large number of point
sets are available, it is likely that each set will share its sup-
port in x with at least some others to provide a few reliable
divergence estimates. We might be able to infer the diver-
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gence between disjoint sets using the idea of triangulation.
We shall leave this possibility for future investigation.

5 DISCUSSION

In CD, c(x) conveys prior knowledge about the importance
of different x’s. It should be carefully chosen based on the
data, and poor results can happen when the assumptions
made in c(x) are not valid. For example, c(x) ∝ 1 as-
sumes that all the x’s are equally important. This could be
a bad assumption when the supports of two sets do not over-
lap, because at some x’s one of the densities will be zero,
making the conditional densities f(y|x) not well-defined.
Similar problems might occur in regions where one of the
densities is very low. Numerically the estimator can still
work but usually produces poor results. In this scenario,
c(x) ∝ p(x)q(x) suits the data better.

The CD estimator (8) relies on the KNN statistics φ which
is the distance between nearest neighbors. Usually we
use Euclidean distance to measure the difference between
points and find nearest neighbors. However, the estimator
does not prevent the use of other distances. In fact, (Lofts-
gaarden and Quesenberry, 1965) shows that alternative dis-
tances can be used and the consistency results will gener-
ally still hold. A common choice of adaptive distance mea-
sure is the Mahalanobis distance (Bishop, 2007), which is
equivalent to applying a linear transformation to the ran-
dom variables. It is even possible to learn the distance met-
ric for φ in a supervised way to maximize the learning per-
formance. We leave this possibility as future work.

The estimated conditional divergences can be used in many
learning algorithms to accomplish various tasks. In this
paper, we use kernel machines to classify point sets as in
(Póczos et al., 2011, 2012). Having the divergence es-
timates, we convert them into Gaussian kernels and then
use SVM for classification. When constructing kernels,
all the divergences are symmetrized by taking the aver-
age µ(p, q) = d(p||q)+d(q||p)

2 . The symmetrized diver-
gences µ are then exponentiated to get the Gaussian kernel
k(p, q) = exp (−γµ(p, q)) and the kernel matrix K, where
γ is the width parameter. Unfortunately, K usually does not
represent a valid Mercer kernel because the divergence is
not a metric and random estimation errors exist. As a rem-
edy, we discard the negative eigenvalues from the kernel
matrix K to convert it to its closest positive semi-definite
(PSD) matrix K̃. This K̃ then is a valid kernel matrix and
can be used in an SVM for learning.

6 EXPERIMENTS

We examine the empirical properties of the conditional di-
vergences and their estimators. The tested divergences are
listed below.

• Full D: Divergence between full unbiased sets as the
groundtruth.

• D: Divergence between biased sets.

• D-DV: Divergence between biased sets while ignoring
the i.v..

• CD-P,CD-U,CD-PQ: conditional divergences with
c(x) ∝ p(x), c(x) ∝ 1, c(x) ∝ p(x)q(x) respectively
between biased sets.

Full D, D, D-DV are estimated using the KL divergence
estimator proposed by (Wang et al., 2009). Unless stated
otherwise, we use k = 3 for GCD estimation using (8),
and use k values between 30 and 50 to compute the weight
function.

We consider two types of sampling biases. The first type
creates different f(x)’s for different sets, yet they still share
the same support of x as the original unbiased data. Based
on the first type, the second type of sampling bias is more
extreme and can hide certain segments of the true distribu-
tions, and thus causes different sets to have different sup-
ports of x. We call the resulting test sets from these two
sampling biases uneven sets and partial sets respectively.

In order to evaluate the quality of the bias correction by
the CDs, we use controlled sampling biases in our experi-
ments. The original point set data are collected from real
problems without any sampling bias. Then we resample
each set to create artificial sampling biases. By doing this,
we can compare the results using the biased sets to the di-
vergences using the unbiased data which is the groundtruth.

An SVM is used to classify the point sets using the method
described in Section 5. When using the SVM, we tune the
width parameter γ and the slack penalty C by 3-fold cross-
validation on the training set.

6.1 SYNTHETIC DATA

6.1.1 Estimation Accuracy

We generate synthetic data to test the accuracy of the pro-
posed conditional divergence estimators. The data set con-
sists of 2-dimensional (one as i.v. and one as d.v.) Gaus-
sian noise along two horizontal lines as the two classes, as
shown in Figure 2 and 3. The Gaussians have fixed spher-
ical covariance, and the mean of the blue class is slightly
higher than the red class, resulting in an analytical KL di-
vergence of 0.5. Then the i.v. (x axis) is resampled to
create sampling bias and the red and blue curves show the
resulting marginal densities fred(x), fblue(x). The task is
to recover the true divergence value 0.5 from this biased
sample. We vary the sample size to see the empirical con-
vergence, and the results of 10 random runs are reported.
The shortcut for this problem is to ignore the i.v., but we do
not let the estimators take it and force them to recover from
the sampling bias.
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Figure 2 shows the results on the uneven sets. As expected,
the joint divergences are corrupted by the sampling bias
and are far from the truth. The three CDs all converge to
the true value. Figure 3 shows the results on the partial sets.
The joint divergence diverges in this case. CD-P and CD-
U are closer but not converging to the correct value, and
the reason is that the non-overlapping supports violate the
assumptions made by them. CD-PQ successfully achieved
the true value. This shows the advantage of only measuring
CD within the overlapping region in this example. Overall,
the CDs are effective against sampling bias and the estima-
tors converge to the true values.
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Figure 2: Divergences on the uneven synthetic data.
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Figure 3: Divergences on the partial synthetic data.

6.1.2 Handling Point Sets

Here we test the estimators using a large number of point
sets. The full data of two classes are shown in Figure 5a. To
create partial sets, we use a sliding window, whose width
is half of the data’s span, to scan the full data and at each
position put the points within the window together as a set.
The uneven sets are then created by combining the partial
sets with a small number of random samples from the orig-
inal data. 100 sets are created for each class and each set
contains 200− 300 points.

This data set is more challenging: the marginal distribution
of d.v. cannot differentiate the two classes; the conditional
distributions f(y|x) are dependent on x; near the center of
the data the conditional distributions of the two classes are
very close. The different divergence matrices on the uneven
sets are shown in Figure 4, in which we sorted the sets ac-
cording to their classes and window positions to show the
structures. We see that the joint divergence is severely af-
fected by the sampling bias, while the CDs are quite in-
sensitive. The result of CD-U is especially impressive: the
similarity structure of the original data is perfectly recov-
ered. Figure 5 shows the results on the partial sets. The
joint divergence is now dominated by the sampling bias.
CDs again are able to recover from this severe disruption
and achieve reasonable results. The result of CD-PQ is the
cleanest on this data set.

(a) Original data.

D CD−P CD−U CD−PQ CD−P−C CD−U−C CD−PQ−C CD−PQ−SSC

(b) Divergences

Figure 5: Divergences on the partial sets. The goal is to
recover the “Full D” result shown in Figure 4.

6.2 SEASON CLASSIFICATION

In this section we use the divergences in SVM to classify
real world point sets generated by sensor networks. We
gathered the data from the QCLCD climate database at
NCDC 1. We use a subset of QCLCD that contains daily
climatological data from May 2007 to May 2013 measured
by 1, 164 weather stations in the continental U.S. Each of
these weather station produces various measurements such

1http://www.ncdc.noaa.gov

903



Full D D−DV D CD−P CD−U CD−PQ

Figure 4: Divergences on the uneven sets. The goal is to recover the “Full D” given only the biased sets.

as the temperature, humidity, precipitation, etc, at its lo-
cation. We aggregate these data into point sets, so that
each set contains the measurements from all stations in one
week.

We consider the problem of predicting the season of a set
based on the average temperature measurement. Specifi-
cally, we want to know if a set corresponds to Spring or Fall
based on the average temperatures over the U.S. Note that
classifying Summer and Winter would be too easy, while
differentiating Spring and Fall can be challenging since
they have similar average temperatures. Nevertheless, it
is still possible based on the geographical distribution of
the temperatures. Figure 6 shows the temperature maps in
a first week of March and a first week of November.

Again, we create uneven and partial sets based on the orig-
inal data by randomly positioning a full-width window
whose height is 20% of the data’s vertical span, as shown in
Figure 6. This injection of sampling bias is simulating the
scenario where we only have a sensoring satellite orbiting
parallel to the equator. In this problem, the location is the
i.v. and the temperature is the d.v.. This procedure gives us
160 3-dimensional (latitude, longitude, temperature) point
sets with sizes around 2, 000.

(a) Mar (b) Mar - Uneven

(c) Nov (d) Nov - Uneven

Figure 6: Example temperature maps of the U.S. from the
QCLCD. (a) and (c) are the original data. (b) and (d) are
the artificially created uneven data.

In each run, 20% of the random point sets are used for train-
ing and the rest are used for testing. Classification results
of 10 runs are reported in Figure 7. On the uneven sets, we
see that both CD-U and CD-PQ are able to recover from the
sampling bias and achieve results that are only 3% worse

than the full divergence. On the partial sets, however, the
performance CD-U dropped significantly. This indicates
that it can be risky to apply CD in regions where two sets
do not overlap. It is interesting to see that D-DV, which
ignores the locations, barely does better than random since
Spring and Fall indeed have similar temperatures. Yet by
considering the geographical distribution of temperatures
we can achieve 70% accuracy.
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(a) QCLCD, uneven.
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(b) QCLCD, partial.

Figure 7: Season classification results on the QCLCD
weather data.

6.3 IMAGE CLASSIFICATION

We can also use CDs to classify scene images. We con-
struct one point set for each image, where each point de-
scribes one patch including its location (i.v.) and the fea-
ture (d.v.). The OT (A.Oliva and Torralba, 2001) scene im-
ages are used, which contain 2, 688 grayscale images of
size 256× 256 from 8 categories. The patches are sampled
densely on a grid and multiscale SIFT features are extracted
using VLFeat (Vedaldi and Fulkerson, 2008). The points
are reduced to 20-dimensions using PCA, preserving 70%
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of variance.

Again, we create both uneven and partial point sets by ran-
domly positioning a full-width window whose height is
60% of the image. By doing this, the injected sampling
bias forces a set to focus on a specific horizontal part of the
scene. For instance in a beach scene, the biased observer
focuses either on the sky or the sand, and only see a small
part of the rest of the scene. After the above processing, the
full data set contains 2, 688 sets of 20-dimensional points,
and the sets’ sizes are around 1, 600. In the biased data,
each partial set has about 950 points and each uneven set
has about 1, 100. In each run, we randomly select 50 im-
ages per class for training and another 50 for testing.

Results of 10 random runs are shown in Figure 8. In these
results, CDs again successfully restore the accuracies to a
high level even in the face of harsh sampling biases. We see
that CD-U impressively beats the other methods by a large
margin on the uneven sets, and is only 1% worse than the
full divergence. CD-PQ is the best on partial sets. These
results show the CDs’ corrective power when the correct
assumptions are made about the sampling biases.

We also observe that CD-U and CD-P did not perform well
on the partial sets, which is expected since their assump-
tions were invalid on the data. In general, the impact of
sampling bias on this data set is small (less than 10% de-
crease in accuracies) because the patch features (d.v.) only
weakly depend on the patch locations (i.v.). In fact, many
patch-based image analyses such as (Li and Perona, 2005)
do not include the locations. This might explain why both
D-DV and D-P did reasonably well in this task and the cor-
rected results by CD-PQ are only slightly better.

7 CONCLUSION

In this paper we described various aspects of dealing with
sampling bias when learning from point sets. We proposed
the conditional divergence (CD) to measure the difference
between point sets and alleviate the impact of sampling
bias. An efficient and convergent estimator of CD was pro-
vided. We then discussed how to deal with various types of
sampling biases using CD. In the experiments we show that
these methods are effective against sampling bias on both
synthetic and real data.

Several directions can be explored in the future. We can
extend the definition of conditional divergence from KL di-
vergence to the more general Rényi divergences. The gen-
eralized conditional divergences provide the possibility of
learning the weights of the density ratios in a supervised
ways in order to maximize the discriminative power of the
resulting divergences. The distance between points used in
estimating the CDs could also be learned. Finally for ex-
treme cases that cause missing divergences, we may infer
them by exploiting the relationships among the sets using
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Figure 8: Image classification results on OT.

matrix completion techniques.
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Barnabás Póczos. Nonparametric estimation of conditional
information and divergences. In AI and Statistics (AIS-
TATS), 2012.
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Abstract

Ancestral graphs (AGs) are graphical causal
models that can represent uncertainty about the
presence of latent confounders, and can be in-
ferred from data. Here, we present an algo-
rithmic framework for efficiently testing, con-
structing, and enumerating m-separators in AGs.
Moreover, we present a new constructive crite-
rion for covariate adjustment in directed acyclic
graphs (DAGs) and maximal ancestral graphs
(MAGs) that characterizes adjustment sets as m-
separators in a subgraph. Jointly, these results
allow to find all adjustment sets that can iden-
tify a desired causal effect with multivariate ex-
posures and outcomes in the presence of latent
confounding. Our results generalize and improve
upon several existing solutions for special cases
of these problems.

1 INTRODUCTION

Graphical causal models endow researchers with a lan-
guage to codify assumptions about a data generating pro-
cess (Pearl, 2009; Elwert, 2013). Using graphical criteria,
one can asses whether the assumptions encoded in such a
model allow estimation of a causal effect from observa-
tional data, which is a key issue in Epidemiology (Roth-
man et al., 2008), the Social Sciences (Elwert, 2013) and
other fields where controlled experimentation is typically
impossible. Specifically, the famous back-door criterion by
Pearl (2009) can identify cases where causal effect identi-
fication is possible by standard covariate adjustment, and
other methods like the front-door criterion or do-calculus
can even permit identification even if the back-door crite-
rion fails (Pearl, 2009). In current practice, however, co-
variate adjustment is highly preferred to such alternatives
because its statistical properties are well understood, giv-
ing access to useful methodology like robust estimators and
confidence intervals. In contrast, knowledge about the sta-

tistical properties of e.g. front-door estimation is still con-
siderably lacking (VanderWeele, 2009; Glynn and Kashin,
2013)1. Unfortunately, the back-door criterion is not com-
plete, i.e., it does not find all possible options for covari-
ate adjustment that are allowed by a given graphical causal
model.

In this paper, we aim to efficiently find a definitive an-
swer for the following question: Given a causal graph G,
which covariates Z do we need to adjust for to estimate the
causal effect of the exposures X on the outcomes Y? To our
knowledge, no efficient algorithm has been shown to an-
swer this question, not even when G is a directed acyclic
graph (DAG), though constructive solutions do exist for
special cases like singleton X = {X} (Pearl, 2009), and a
subclass of DAGs (Textor and Liśkiewicz, 2011). Here, we
provide algorithms for adjustment sets in DAGs as well as
in maximal ancestral graphs (MAGs), which extend DAGs
allowing to account for unspecified latent variables. Our
algorithms are guaranteed to find all valid adjustment sets
for a given DAG or MAG with polynomial delay, and we
also provide variants to list only those sets that minimize a
user-supplied cost function or to quickly construct a sim-
ple adjustment set if one exists. Modelling multiple, pos-
sibly interrelated exposures X is important e.g. in case-
control studies that screen several putative causes of a dis-
ease (Greenland, 1994). Likewise, the presence of unspeci-
fied latent variables often cannot be excluded in real-world
settings, and the causal structure between the observed
variables may not be completely known. We hope that
the ability to quickly deduce from a given DAG or MAG
whether and how covariate adjustment can render a causal
effect identifiable will benefit researchers in such areas.

We have two main contributions. First, in Section 3, we
present algorithms for verifying, constructing, and listing
m-separating sets in AGs. This subsumes a number of
earlier solutions for special cases of these problems, e.g.

1Quoting VanderWeele (2009), “Time will perhaps tell
whether results like Pearl’s front-door path adjustment theorem
and its generalizations are actually useful for epidemiologic re-
search or whether the results are simply of theoretical interest.”
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the Bayes-Ball algorithm for verification of d-separating
sets (Shachter, 1998), the use of network flow calculations
to find minimal d-separating sets in DAGs (Tian et al.,
1998; Acid and de Campos, 2003), and an algorithm to
list minimal adjustment sets for a certain subclass of DAGs
(Textor and Liśkiewicz, 2011). Our verification and con-
struction algorithms for single separators are asymptoti-
cally runtime-optimal. Although we apply our algorithms
only to adjustment set construction, they are likely useful in
other settings as separating sets are involved in most graph-
ical criteria for causal effect identification. Moreover, the
separators themselves constitute statistically testable impli-
cations of the causal assumptions encoded in the graph.

Second, we give a graphical criterion that characterizes
adjustment sets in terms of separating sets, and is sound
and complete for DAGs and MAGs without selection vari-
ables. This generalizes the sound and complete criterion
for DAGs by Shpitser et al. (2010), and the sound but in-
complete adjustment criterion for MAGs without selection
variables by Maathuis and Colombo (2013). Our criterion
exhaustively addresses adjustment set construction in the
presence of latent covariates and with incomplete knowl-
edge of causal structure if at least a MAG can be specified.
We give the criterion separately for DAGs (Section 4) and
MAGs (Section 5) because the same graph usually admits
more adjustment options if viewed as a DAG than if viewed
as a MAG.

2 PRELIMINARIES

We denote sets by bold upper case letters (S), and some-
times abbreviate singleton sets as {S} = S. Graphs are writ-
ten calligraphically (G), and variables in upper-case (X).

Mixed graphs and paths. We consider mixed graphs
G = (V,E) with nodes (vertices, variables) V and directed
(A→ B), undirected (A−B), and bidirected (A↔ B) edges
E. Nodes linked by an edge are adjacent. A walk of length
n is a node sequence V1, . . . ,Vn+1 such that there exists an
edge sequence E1,E2, . . . ,En for which every edge Ei con-
nects Vi,Vi+1. Then V1 is called the start node and Vn+1
the end node of the walk. A path is a walk in which no node
occurs more than once. Given a node set X and a node set
Y, a walk from X ∈ X to Y ∈ Y is called proper if only its
start node is in X. Given a graph G = (V,E) and a node
set V′, the induced subgraph GV′ = (V′,E′) contains the
edges E′ from G that are adjacent only to nodes in V′.

Ancestry. A walk of the form V1 → . . . → Vn is di-
rected, or causal. If there is a directed walk from U to V,
then U is called an ancestor of V and V a descendant of U.
A graph is acyclic if no directed walk from a node to itself
is longer than 0. All directed walks in an acyclic graph are
paths. A walk is anterior if it were directed after replacing
all edges U − V by U → V. If there is an anterior path

from U to V, then U is called an anterior of V. All ances-
tors of V are anteriors of V. Every node is its own ancestor,
descendant, and anterior. For a node set X, the set of all of
its ancestors is written as An(X). The descendant and ante-
rior sets De(X),Ant(X) are analogously defined. Also, we
denote by Pa(X), (Ch(X)), the set of parents (children) of
X.

m-Separation. A node V on a walk w is called a collider
if two arrowheads of w meet at V, e.g. if w contains U ↔
V ← Q. There can be no collider if w is shorter than
2. Two nodes U,V are called collider connected if there
is a path between them on which all nodes except U and
V are colliders. Adjacent vertices are collider connected.
Two nodes U,V are called m-connected by a set Z if there
is a path π between them on which every node that is a
collider is in An(Z) and every node that is not a collider
is not in Z. Then π is called an m-connecting path. The
same definition can be stated simpler using walks: U,V are
called m-connected by Z if there is a walk between them
on which all colliders and only colliders are in Z. If U,V
are m-connected by the empty set, we simply say they are
m-connected. If U,V are not m-connected by Z, we say
that Z m-separates them or blocks all paths between them.
Two node sets X,Y are m-separated by Z if all their nodes
are pairwise m-separated by Z. In DAGs, m-separation is
equivalent to the well-known d-separation criterion (Pearl,
2009).

Ancestral graphs and DAGs. A mixed graphG = (V,E)
is called an ancestral graph (AG) if the following two con-
ditions hold: (1) For each edge A ← B or A ↔ B, A is
not an ancestor of B. (2) For each edge A − B, there are no
edges A ← C, A ↔ C, B ← C or B ↔ C. There can be
at most one edge between two nodes in an AG (Richard-
son and Spirtes, 2002). Syntactically, all DAGs are AGs
and all AGs containing only directed edges are DAGs. An
AG G = (V,E) is a maximal ancestral graph (MAG) if
every non-adjacent pair of nodes U,V can be m-separated
by some Z ⊆ V \ {U,V}. Every AG G can be turned into
a MAGM by adding bidirected edges between node pairs
that cannot be m-separated (Richardson and Spirtes, 2002).

3 ALGORITHMS FOR m-SEPARATION

In this section, we compile an algorithmic framework for
solving a host of problems related to verification, con-
struction, and enumeration of m-separating sets in AGs.
The problems are defined in Fig. 1, which also shows
the asymptotic runtime of their solutions. Throughout, n
stands for the number of nodes and m for the number of
edges in a graph. All of these problems except LISTSEP
can be solved by rather straightforward modifications of ex-
isting algorithms (Acid and Campos, 1996; Shachter, 1998;
Tian et al., 1998; Textor and Liśkiewicz, 2011). We there-
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fore refrain in this paper from presenting them in detail,
Pseudocodes of these algorithms are shown for reference
and implementation in the online version of this paper2.
The online version also contains proof details that had to
be omitted from this paper for space reasons.

An important tool for solving similar problems for d-
separation is moralization, by which d-separation can be re-
duced to a vertex cut in an undirected graph. This reduction
allows to solve problems like FINDMINSEP using standard
network flow algorithms (Acid and Campos, 1996). Moral-
ization can be generalized to AGs in the following manner.

Definition 3.1 (Moralization of AGs (Richardson and
Spirtes, 2002)). Given an AGG, the augmented graph (G)a

is an undirected graph with the same node set as G such
that X − Y is an edge in (G)a if and only if X and Y are
collider connected in G.

Theorem 3.2 (Reduction of m-Separation to vertex cuts
(Richardson and Spirtes, 2002)). Given an AG G and three
node sets X,Y and Z, Z m-separates X and Y if and only if
Z is an X-Y node cut in (GAnt(X∪Y∪Z)a.

A direct implementation of Definition 3.1 would lead to a
suboptimal algorithm. Therefore, we first give an asymp-
totically optimal (linear time in output size) moralization
algorithm for AGs. We then solve TESTMINSEP, FIND-
MINSEP, FINDMINCOSTSEP and LISTMINSEP by gener-
alizing existing correctness proofs of the moralization ap-
proach for d-separation (Tian et al., 1998).

Not all our solutions are based on moralization, however.
Moralization takes time O(n2), and TESTSEP and FIND-
SEP can be solved faster, i.e. in asymptotically optimal
time O(n +m).

Lemma 3.3 (Efficient AG moralization). Given an AG G,
the augmented graph (G)a can be computed in time O(n2).

Proof. The algorithm proceeds in four steps. (1) Start by
setting (G)a to G replacing all edges by undirected ones.
(2) Identify all connected components in G with respect
to bidirected edges (two nodes are in the same such com-
ponent if they are connected by a path consisting only of
bidirected edges). Nodes without adjacent bidirected edges
form singleton components. (3) For each pair U,V of nodes
from the same component, add the edge U −V to (G)a if it
did not exist already. (4) For each component, identify all
its parents (nodes U with an edge U→ V where U is in the
component) and link them all by undirected edges in (G)a.
Now two nodes are adjacent in (G)a if and only if they are
collider connected in G. All four steps can be performed in
time O(n2). �

Lemma 3.4. Let X,Y, I,R be sets of nodes with I ⊆ R,
R ∩ (X ∪ Y) = ∅. If there exists an m-separator Z0, with
I ⊆ Z0 ⊆ R then Z = Ant(X∪Y∪I)∩R is an m-separator.

2URL: theory.bio.uu.nl/textor/uai14.pdf

Corollary 3.5 (Ancestry of minimal separators). Given an
AG G, and three sets X,Y, I, every minimal set Z over all
m-separators containing I is a subset of Ant(X ∪ Y ∪ I).

Proof. Assume there is a minimal separator Z with Z *
Ant(X ∪ Y ∪ I). According to Lemma 3.4 we have that
Z′ = Ant(X ∪ Y ∪ I) ∩ Z is a separator with I ⊆ Z′. But
Z′ ⊆ Ant(X ∪ Y ∪ I) and Z′ ⊆ Z, so Z , Z′ and Z is not a
minimal separator. �

Corollary 3.5 applies to minimum-cost separators as well
because every minimum-cost separator must be minimal.
Now we can solve FINDMINCOSTSEP and FINDMIN-
SIZESEP by using weighted min-cut, which takes time
O(n3) using practical algorithms, and LISTMINSEP by us-
ing Takata’s algorithm to enumerate minimal vertex cuts
with delay O(n3) (Takata, 2010).

However, for FINDMINSEP and TESTMINSEP, we can do
better than using standard vertex cuts.

Proposition 3.6. The task FINDMINSEP can be solved in
time O(n2).

Proof. Two algorithms are given in the online appendix,
one with runtime O(n2) and one with runtime O(nm). �

Corollary 3.7. The task TESTMINSEP can be solved in
time O(n2).

Proof. First verify whether Z is an m-separator using mor-
alization. If not, return “no”. Otherwise, set S = Z and
solve FINDMINSEP. Return “yes” if the output is Z and
“no”, otherwise. �

Moralization can in the worst case quadratically increase
the size of a graph. Therefore, in some cases, it may be
preferable to avoid moralization if the task at hand is rather
simple, as are the two tasks considered below.

Proposition 3.8. The task FINDSEP can be solved in time
O(n +m).

Proof. This follows directly from Lemma 3.4, and the fact
that the set Ant(X ∪ Y ∪ I) ∩ R can be found in linear
time from the MAG without moralization. Note that un-
like in DAGs, two non-adjacent nodes cannot always be
m-separated in ancestral graphs. �

By modifying the Bayes-Ball algorithm (Shachter, 1998)
appropriately, we get the following.

Proposition 3.9. The task TESTSEP can be solved in time
O(n +m).

Lastly, we consider the problem of listing all m-separators.
Here is an algorithm to solve that problem with polynomial
delay.
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Verification: For given X,Y and Z decide if . . .
TESTSEP Z m-separates X,Y O(n +m)
TESTMINSEP Z m-separates X,Y but no Z′ ( Z does O(n2)

Construction: For given X,Y and auxiliary I,R, output . . .
FINDSEP an m-separator Z with I ⊆ Z ⊆ R O(n +m)
FINDMINSEP a minimal m-separator Z with I ⊆ Z ⊆ R O(n2)
FINDMINCOSTSEP a minimum-cost m-separator Z with I ⊆ Z ⊆ R O(n3)

Enumeration: For given X,Y, I,R enumerate all . . .
LISTSEP m-separators Z with I ⊆ Z ⊆ R O(n(n +m)) delay
LISTMINSEP minimal m-separators Z with I ⊆ Z ⊆ R O(n3) delay

Table 1: Definitions of algorithmic tasks related to m-separation. Throughout, X,Y,R are pairwise disjoint node sets, Z is
disjoint with X,Y which are nonempty, and I,R,Z can be empty. By a minimal m-separator Z, with I ⊆ Z ⊆ R, we mean a
set such that no proper subset Z′ of Z, with I ⊆ Z′, m-separates the pair X and Y. Analogously, we define a minimal and a
minimum-cost m-separator. The construction algorithms will output ⊥ if no set fulfilling the listed condition exists. Delay
complexity for e.g. LISTMINSEP refers to the time needed to output one solution when there can be exponentially many
solutions (see Takata (2010)).

function LISTSEP(G,X,Y, I,R)
if FINDSEP(G,X,Y, I,R) , ⊥ then

if I = R then Output I
else

V ← an arbitrary node of R \ I
LISTSEP(G,X,Y, I ∪ {V},R)
LISTSEP(G,X,Y, I,R \ {V})

Figure 1: ListSep

Proposition 3.10. The task LISTSEP can be solved with
polynomial delay O(n(n +m)).

Proof. Algorithm LISTSEP performs backtracking to enu-
merate all Z with I ⊆ Z ⊆ R aborting branches that will not
find a valid separator. Since every leaf will output a sepa-
rator, the tree height is at most n and the existence check
needs O(n + m), the delay time is O(n(n + m)). The al-
gorithm generates every separator exactly once: if initially
I ( R, with V ∈ R \ I, then the first recursive call returns
all separators Z with V ∈ Z and the second call returns all
Z′ with V < Z′. Thus the generated separators are pairwise
disjoint. This is a modification of the enumeration algo-
rithm for minimal vertex separators (Takata, 2010). �

4 ADJUSTMENT IN DAGS

In this section, we leverage the algorithmic framework of
the last section together with a new constructive, sound
and complete criterion for covariate adjustment in DAGs
to solve all problems listed in Table 1 for adjustment sets
instead of m-separators in the same asymptotic time. First,
however, we need to introduce some more notation pertain-
ing to the causal interpretation DAGs.

Do-operator and adjustment sets. A DAG G encodes
the factorization of joint distribution π for the set of vari-

ables V = {X1, . . . ,Xn} as p(v) =
∏n

j=1 p(x j|pa j), where
pa j denotes a particular realization of the parent variables
of X j in G. When interpreted causally, an edge Xi → X j
is taken to represent a direct causal effect of Xi on X j. For
disjoint X,Y ⊆ V, the (total) causal effect of X on Y is
p(y|do(x)) where do(x) represents an intervention that sets
X = x. In a DAG, this intervention corresponds to remov-
ing all edges into X, disconnecting X from its parents. We
denote the resulting graph as GX. Given DAG G and a joint
probability density π for V the post-intervention distribu-
tion can be expressed in a truncated factorization formula:

p(v|do(x)) =



∏

X j∈V\X
p(x j|pa j) for V consistent with x

0 otherwise.

Definition 4.1 (Adjustment (Pearl, 2009)). Given a DAG
G = (V,E) and pairwise disjoint X,Y,Z ⊆ V, Z is called
covariate adjustment for estimating the causal effect of X
on Y, or simply adjustment, if for every distribution p con-
sistent with G we have p(y | do(x)) =

∑
z p(y | x, z)p(z).

Definition 4.2 (Adjustment criterion (Shpitser et al., 2010;
Shpitser, 2012)3). LetG = (V,E) be a DAG, and X,Y,Z ⊆
V be pairwise disjoint subsets of variables. The set Z sat-
isfies the adjustment criterion relative to (X,Y) in G if

(a) no element in Z is a descendant inG of any W ∈ V\X
which lies on a proper causal path from X to Y and

(b) all proper non-causal paths in G from X to Y are
blocked by Z.

Analogously toGX, byGX we denote a DAG obtained from
G by removing all edges leaving X.

3In Shpitser et al. (2010), the criterion is stated using GX in-
stead of G. However, one can easily prove that both criteria are
equivalent.
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4.1 CONSTRUCTIVE BACK-DOOR CRITERION

Definition 4.3 (Proper back-door graph). Let G = (V,E)
be a DAG, and X,Y ⊆ V be pairwise disjoint subsets of
variables. The proper back-door graph, denoted as Gpbd

XY , is
obtained from G by removing the first edge of every proper
causal path form X to Y.

Note the difference between the back-door graph GX and

the proper back-door graph Gpbd
XY : in GX all edges leaving

X are removed while in Gpbd
XY only those that lie on a proper

causal path. However, to construct Gpbd
XY still only elemen-

tary operations are sufficient. Indeed, we remove all edges
X→ D in E such that X ∈ X and D is in the subset, which
we call PCP(X,Y), obtained as follows:

PCP(X,Y) = (DeX(X) \ X) ∩ AnX(Y) (1)

where DeX(W) denotes descendants of W in GX. AnX(W)
is defined analogously forGX. Hence, the proper back-door
graph can be constructed from G in linear time O(m + n).

Now we propose the following adjustment criterion. For
short, we will denote the set De(PCP(X,Y)) as Dpcp(X,Y).

Definition 4.4 (Constructive back-door criterion (CBC)).
Let G = (V,E) be a DAG, and let X,Y,Z ⊆ V be pair-
wise disjoint subsets of variables. The set Z satisfies the
constructive back-door criterion relative to (X,Y) in G if

(a) Z ⊆ V \ Dpcp(X,Y) and

(b) Z d-separates X and Y in the proper back-door graph
Gpbd

XY .

Theorem 4.5. The constructive back-door criterion is
equivalent to the adjustment criterion.

Proof. First observe that the conditions (a) of both criteria
are identical. Assume conditions (a) and (b) of the adjust-
ment criterion hold. We show that (b) of the constructive
back-door criterion follows. Let π be any proper path from
X to Y in Gpbd

XY . Because Gpbd
XY does not contain causal paths

from X to Y, π is not causal and has to be blocked by Z in
G by the assumption. Since removing edges cannot open
paths, π is blocked by Z in Gpbd

XY as well.

Now we show that (a) and (b) of the constructive back-door
criterion together imply (b) of the adjustment criterion. If
that were not the case, then there could exist a proper non-
causal path π from X to Y that is blocked in Gpbd

XY but open

in G. There can be two reasons why π is blocked in Gpbd
XY :

(1) The path starts with an edge X→ D that does not exist
in Gpbd

XY . Then we have D ∈ PCP(X,Y). For π to be non-
causal, it would have to contain a collider C ∈ An(Z) ∩
De(D) ⊆ An(Z)∩Dpcp(X,Y). But because of (a), An(Z)∩
Dpcp(X,Y) is empty. (2) A collider C on π is an ancestor

G GX Gpbd
XY

X1

Z1

Z2

X2

Y1

Y2

X1

Z1

Z2

X2

Y1

Y2

X1

Z1

Z2

X2

Y1

Y2

Figure 2: A DAG where for X = {X1,X2} and Y = {Y1,Y2},
Z = {Z1,Z2} is a valid and minimal adjustment, but no
set fulfills the back-door criterion (Pearl, 2009), and the
parents of X are not a valid adjustment set either.

of Z in G, but not in Gpbd
XY . Then there must be a directed

path from C to Z via an edge X → D with D ∈ An(Z) ∩
PCP(X,Y), contradicting (a). �

4.2 ADJUSTING FOR MULTIPLE EXPOSURES

For a singleton set X = {X} of exposures we know that if
a set of variables Y is disjoint from {X} ∪ Pa(X) then one
obtains easily an adjustment set with respect to X and Y
as Z = Pa(X) (Pearl, 2009, Theorem 3.2.2). The situation
changes drastically if the effect of multiple exposures is es-
timated. Theorem 3.2.5 in Pearl (2009) claims that the ex-
pression for P(y | do(x)) is obtained by adjusting for Pa(X)
if Y is disjoint from X ∪ Pa(X), but, as the DAG in Fig. 2
shows, this is not true: the set Z = Pa(X1,X2) = {Z2}
is not an adjustment set according to {X1,X2} and Y. In
this case one can identify the causal effect by adjusting for
Z = {Z1,Z2} only. Indeed, for more than one exposure, no
adjustment set may exist at all even without latent covari-
ates and even though Y∩ (X∪Pa(X)) = ∅, e.g. in the DAG

X1 X2 Z Y.

Using our criterion, we can construct a simple adjustment
set explicitly if one exists. For a DAGG = (V,E) we define
the set

Adj(X,Y) = An(X,Y) \ (X ∪ Y ∪ Dpcp(X,Y)).

Theorem 4.6. Let G = (V,E) be a DAG and let X,Y ⊆ V
be distinct node sets. Then the following statements are
equivalent:

1. There exists an adjustment in G w.r.t. X and Y.

2. Adj(X,Y) is an adjustment w.r.t. X and Y.

3. Adj(X,Y) d-separates X and Y in the proper back-
door graph Gpbd

XY .

Proof. The implication (3) ⇒ (2) follows directly from
the criterion Def. 4.4 and the definition of Adj(X,Y). Since
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the implication (2) ⇒ (1) is obvious, it remains to prove
(1)⇒ (3).

Assume there exists an adjustment set Z0 w.r.t. X and Y.
From Theorem 4.5 we know that Z0 ∩Dpcp(X,Y) = ∅ and
that Z0 d-separates X and Y in Gpbd

XY . Our task is to show

that Adj(X,Y) d-separates X and Y in Gpbd
XY . This follows

from Lemma 3.4 used for the proper back-door graph Gpbd
XY

if we take I = ∅, R = V \ (X ∪ Y ∪ Dpcp(X,Y)). �

From Equation 1 and the definition Dpcp(X,Y) =
De(PCP(X,Y)) we then obtain immediately:

Corollary 4.7. Given two distinct sets X,Y ⊆ V, Adj(X,Y)
can be found in O(n +m) time.

4.3 TESTING, COMPUTING, AND
ENUMERATING ADJUSTMENT SETS

Using our criterion, every algorithm for m-separating sets
Z between X and Y can be used for adjustment sets with
respect to X and Y, by requiring that Z not contain any
node in Dpcp(X,Y). This allows solving all problems
listed in Table 1 for adjustment sets in DAGs instead of m-
separators. Below, we name those problems analogously as
for m-separation, e.g. the problem to decide whether Z is
an adjustment set w.r.t. X,Y is named TESTADJ in analogy
to TESTSEP.

TESTADJ can be solved by testing if Z ∩ Dpcp(X,Y) = ∅
and Z is a d-separator in the proper back-door graph Gpbd

XY .

Since Gpbd
XY can be constructed from G in linear time, the

total time complexity of this algorithm is O(n +m).

TESTMINADJ can be solved with an algorithm that itera-
tively removes nodes from Z and tests if the resulting set
remains an adjustment set w.r.t. X and Y. This can be done
in time O(n(n + m)). Alternatively, one can construct the
proper back-door graph Gpbd

XY from G and test if Z is a min-
imal d-separator, with Z ⊆ V \ Dpcp(X,Y) between X and
Y. This can be computed in time O(n2). The correctness of
these algorithms follows from the proposition below, which
is a generalization of the result in Tian et al. (1998).

Proposition 4.8. If no single node Z can be removed from
an adjustment set Z such that the resulting set Z′ = Z \ Z
is no longer an adjustment set, then Z is minimal.

The remaining problems like FINDADJ, FINDMINADJ etc.
can be solved using corresponding algorithms for finding,
resp. listing m-separations applied for proper back-door
graphs. Since the proper back-door graph can be con-
structed in linear time the time complexities to solve the
problems above are as listed in Table 1.

5 ADJUSTMENT IN MAGS

We now generalize the results from the previous section
to MAGs. Two examples may illustrate why this gener-
alization is not trivial. First, take G = X → Y. If G is
interpreted as a DAG, then the empty set is valid for adjust-
ment. If G is however taken as a MAG, then there exists
no adjustment set as G represents among others the DAG
U X Y where U is an unobserved confounder. Sec-

ond, take G = A → X → Y. In that case, the empty set
is an adjustment set regardless of whether G is interpreted
as a DAG or a MAG. The reasons will become clear as we
move on. First, let us recall the semantics of a MAG. The
following definition can easily be given for AGs in general,
but we do not need this generality for our purpose.

Definition 5.1 (DAG representation by MAGs (Richardson
and Spirtes, 2002)). Let G = (V,E) be a DAG, and let
S,L ⊆ V. The MAG M = G[L

S is a graph with nodes
V \ (S∪L) and defined as follows. (1) Two nodes U and V
are adjacent in G[L

S if they cannot be m-separated by any
Z with S ⊆ Z ⊆ V \ L in G. (2) The edge between U and
V is

U − V if U ∈ An(S ∪ V) and V ∈ An(S ∪U);

U→ V if U ∈ An(S ∪ V) and V < An(S ∪U);

U↔ V if U < An(S ∪ V) and V < An(S ∪U).

We call L latent variables and S selection variables. We
say there is selection bias if S , ∅.
Hence, every MAG represents an infinite set of underlying
DAGs that all share the same ancestral relationships. For a
given MAGM, we can construct a represented DAG G by
replacing every edge X − Y by a path X → S ← Y, and
every edge X↔ Y by X← L→ Y, where S and L are new
nodes; thenM = G[L

S where S and L are all new nodes. G
is called the canonical DAG ofM (Richardson and Spirtes,
2002), which we write as C(M).

Lemma 5.2 (Preservation of separating sets (Richardson
and Spirtes, 2002)). Z m-separates X,Y in G[L

S if and only
if Z ∪ S m-separates X,Y in G.

We now extend the concept of adjustment to MAGs in the
usual way (Maathuis and Colombo, 2013).

Definition 5.3 (Adjustment in MAGs). Given a MAGM =
(V,E) and two variable sets X,Y ⊆ V, Z ⊆ V is an adjust-
ment set for X,Y in M if for every probability distribu-
tion p(v′) consistent with a DAG G = (V′,E′) for which
G[L

S=M for some S,L ⊆ V′ \V, we have

p(y | do(x)) =
∑

z

p(y | x, z, s)p(z | s) . (2)
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Selection bias (i.e., S , ∅) substantially complicates ad-
justment, and in fact nonparametric causal inference in gen-
eral (Zhang, 2008)4. Due to these limitations, we restrict
ourselves to the case S = ∅ in the rest of this section.
Note however that recovery from selection bias is some-
times possible with additional population data, and graphi-
cal conditions exist to identify such cases (Barenboim et al.,
2014).

5.1 ADJUSTMENT AMENABILITY

In this section we first identify a class of MAGs in which
adjustment is impossible because of causal ambiguities –
e.g., the simple MAG X → Y falls into this class, but the
larger MAG A→ X→ Y does not.

Definition 5.4 (Visible edge (Zhang, 2008)). Given a MAG
M = (V,E), an edge X → Y ∈ E is called visible if in all
DAGs G = (V′,E′) with G[L

S=M for some S,L ⊆ V′, all
d-connected walks between X and Y in G that contain only
nodes of S ∪ L ∪ X ∪ Y are directed paths.

Intuitively, an invisible directed edge X → Y means that
there may still hidden confounding factors between X and
Y, which is guaranteed not to be the case if the edge is
visible.

Lemma 5.5 (Graphical conditions for edge visibility
(Zhang, 2008)). In a MAGM = (V,E), an edge X → Y
is visible if and only if there is a node A not adjacent
to Y where (1) A → X ∈ E or A ↔ X ∈ E, or (2)
there is a collider path A ↔ V1 ↔ . . . ↔ Vn ↔ X or
A→ V1 ↔ . . .↔ Vn ↔ X where all Vi are parents of Y.

Definition 5.6. We call a MAG M = (V,E) adjustment
amenable w.r.t. X,Y ⊆ V if all proper causal paths from X
to Y start with a visible directed edge.

Lemma 5.7. If a MAG M = (V,E) is not adjustment
amenable w.r.t. X,Y ⊆ V then there exists no adjustment
set W for X,Y inM.

Proof. If the first edge X → D on some causal path to
Y in M is not visible, then there exists a consistent DAG
G where there is a non-causal path between X and Y via
V that could only be blocked inM by conditioning on D
or some of its descendants. But such conditioning would
violate the adjustment criterion in G. �

5.2 ADJUSTMENT CRITERION FOR MAGS

We now show that DAG adjustment criterion generalizes to
adjustment amenable MAGs. The adjustment criterion and

4A counterexample is the graph A ← X → Y, where we can
safely assume that A is the ancestor of a selection variable. A
sufficient and necessary condition for adjustment under selection
bias is Y y S | X (Barenboim et al., 2014), which is so restrictive
that most statisticians would probably not even speak of “selec-
tion bias” anymore in such a case.

DAG G MAGM = G[W1
∅

X

W1 W2

Y

Z

X

W2

Y

Z

Figure 3: Illustration of the case in the proof of Theorem
5.8 where Z descends from W1 which in a DAG G is on a
proper causal path from X to Y, but is not a descendant of
a node on a proper causal path from X to Y in the MAGM
after marginalizing W1. In such cases, conditioning on Z
will m-connect X and Y inM via a proper non-causal path.

the constructive back-door criterion are defined like their
DAG counterparts (Definitions 4.2 and 4.3), replacing d-
with m-separation for the latter.

Theorem 5.8. Given an adjustment amenable MAGM =
(V,E) and three disjoint node sets X,Y,Z ⊆ V, the follow-
ing statements are equivalent:

(i) Z is an adjustment relative to X,Y inM.

(ii) Z fulfills the adjustment criterion (AC) w.r.t. (X,Y) in
M.

(iii) Z fulfills the constructive backdoor criterion (CBC)
w.r.t. (X,Y) inM.

Proof. The equivalence of (ii) and (iii) is established by
observing that the proof of Theorem 4.5 generalizes to m-
separation. Below we establish equivalence of (i) and (ii).

¬(ii) ⇒ ¬(i): If Z violates the adjustment criterion inM,
it does so in the canonical DAG C(M), and thus is not an
adjustment inM.

¬(i) ⇒ ¬(ii): Let G be a DAG with G[L
∅= M in which Z

violates the AC. We show that (a) if Z∩Dpcp(X,Y) , ∅ in
G then Z ∩ Dpcp(X,Y) , ∅ inM as well, or there exists
a proper non-causal path inM that cannot be m-separated;
and (b) if Z ∩ Dpcp(X,Y) = ∅ in G and Z d-connects a
proper non-causal walk in G, then it m-connects a proper
non-causal walk inM.

(a) Suppose that in G, Z contains a node Z in Dpcp(X,Y),
and let W = PCP(X,Y)∩An(Z). IfM still contains at least
one node W1 ∈ W, then W1 lies on a proper causal path
in M and Z is a descendant of W1 in M. Otherwise, M
must contain a node W2 ∈ PCPG(X,Y) \ An(Z) (possibly
W2 ∈ Y) such that W2 ↔ A, X → W2, and X → A are
edges inM, where A ∈ An(Z) (possibly A = Z; see Fig. 3).
ThenM contains an m-connected proper non-causal path
X→ A↔W →W2 → . . .→ Y.

(b) Suppose that in G, Z∩Dpcp(X,Y) = ∅, and there exists
an open proper non-causal path from X to Y. Then there
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DAG G MAGM = G[{L1,L2}
∅

L1 Z

Y

L2

X

A

Z

YX

A

Figure 4: Case (b) in the proof of Theorem 5.8: A proper
non-causal path wG = X ← L1 → Z ← Ls → Y in a
DAG is d-connected by Z, but the corresponding proper
non-casual path wM = X← Z→ Y is not m-connected in
the MAG, and its m-connected subpath w′M = X → Y is
proper causal. However, this also renders the edge X → Y
invisible, because otherwise A could be m-separated from
Y by U = {X,Z} inM but not in G.

must then also be a proper non-causal walk wG from some
X ∈ X to some Y ∈ Y (Lemma 7.1), which is d-connected
by Z in G. Let wM denote the subsequence of wG formed
by nodes in M, which includes all colliders on wG. The
sequence wM is a path in M, but is not necessarily m-
connected by Z; all colliders on wM are in Z because every
non-Z must be a parent of at least one of its neighbours, but
there can subsequences U,Z1, . . . ,Zk,V on wM where all
Zi ∈ Z but some of the Zi are not colliders on wM. How-
ever, then we can form from wM an m-connected walk by
bypassing some sequences of Z-nodes (Lemma 7.2). Let
w′M be the resulting walk.

If w′M is a proper non-causal walk, then there must also
exist a proper non-causal path inM (Lemma 7.1), violating
the AC. It therefore remains to show that w′M is not a proper
causal path. This must be the case if wG does not contain
colliders, because then the first edge of wM = w′M cannot
be a visible directed edge out of X. Otherwise, the only
way for w′M to be proper causal is if all Z-nodes in wM
have been bypassed in w′M by edges pointing away from
X. In that case, one can show by several case distinctions
that the first edge X → D of w′M, where D < Z, cannot be
visible (see Figure 4 for an example of such a case). �

5.3 ADJUSTMENT SET CONSTRUCTION

In the previous section, we have already shown that the
CBC is equivalent to the AC for MAGs as well; hence, ad-
justment sets for a given MAGM can be found by forming
the proper back-door graphMpbd

XY and then applying the al-
gorithms from the previous section. In principle, care must
be taken when removing edges from MAGs as the result
might not be a MAG; however, this is not the case when
removing only directed edges.

Lemma 5.9 (Closure of maximality under removal of di-
rected edges). Given a MAGM, every graphM′ formed
by removing only directed edges fromM is also a MAG.

Proof. Suppose the converse, i.e. M is no longer a MAG
after removal of some edge X→ D. Then X and D cannot
be m-separated even after the edge is removed because X
and D are collider connected via a path whose nodes are all
ancestors of X or D (Richardson and Spirtes, 2002). The
last edge on this path must be C↔ D or C← D, hence C <
An(D), and thus we must have C ∈ An(X). But then we get
C ∈ An(D) inM via the edge X→ V, a contradiction. �

Corollary 5.10. For every MAGM, the proper back-door
graphMpbd

XY is also a MAG.

For MAGs that are not adjustment amenable, the CBC
might falsely indicate that an adjustment set exists even
though that set may not be valid for some represented
graph. Fortunately, adjustment amenability is easily tested
using the graphical criteria of Lemma 5.5. For each child
D of X in Dpcp(X,Y), we can test the visibility of all edges
X → D simultaneously using depth first search. This
means that we can check all potentially problematic edges
in time O(n +m). If all tests pass, we are licensed to apply
the CBC, as shown above. Hence, we can solve all algo-
rithmic tasks in Table 1 for MAGs in the same way as for
DAGs after an O(k(n +m)) check of adjustment amenabil-
ity, where k ≤ |Ch(X)|.

6 DISCUSSION

We have compiled efficient algorithms for solving several
tasks related to m-separators in ancestral graphs, and ap-
plied those together with a new, constructive adjustment
criterion to provide a complete and informative answer to
the question when, and how, a desired causal effect can be
estimated by covariate adjustment. Our results fully gener-
alize to MAGs in the absence of selection bias. One may ar-
gue that the MAG result is more useful for exploratory ap-
plications (inferring a graph from data) than confirmatory
ones (drawing a graph based on theory), as researchers will
prefer drawing DAGs instead of MAGs due to the easier
causal interpretation of the former. Nevertheless, in such
settings the results can provide a means to construct more
“robust” adjustment sets: If there are several options for co-
variate adjustment in a DAG, then one can by interpreting
the same graph as a MAG possibly generate an adjustment
set that is provably valid for a much larger class of DAGs.
This might partially address the typical criticism that com-
plete knowledge of the causal structure is unrealistic.

Our adjustment criterion generalizes the work of Shpitser
et al. (2010) to MAGs and therefore now completely char-
acterizes when causal effects are estimable by covariate ad-
justment in the presence of unmeasured confounders with
multivariate exposures and outcomes. This also general-
izes recent work by Maathuis and Colombo (2013) who
provide a criterion which, for DAGs and MAGs without
selection bias, is stronger than the back-door criterion but

914



weaker than ours. They moreover show their criterion to
hold also for CPDAGs and PAGs, which represent equiva-
lence classes of DAGs and MAGs as they are constructed
by causal discovery algorithms. It is possible that the con-
structive back-door criterion could be generalized further
to those cases, which we leave for future work.

7 APPENDIX

In this appendix, we prove Lemma 3.4 and two auxiliary
Lemmas that are used in the proof of Theorem 5.8.

Proof of Lemma 3.4. Let us consider a proper walk w =
X,V1, . . . ,Vn,Y with X ∈ X,Y ∈ Y. If w does not con-
tain a collider, all nodes Vi are in Ant(X ∪ Y) and the walk
is blocked by Z, unless {V1, . . . ,Vn} ∩ R = ∅ in which
case the walk is not blocked by Z0 either. If the walk
contains colliders C, it is blocked, unless C ⊆ Z ⊆ R.
Then all nodes Vi are in Ant(X ∪ Y ∪ I) and the walk is
blocked, unless {V1, . . . ,Vn} ∩ R = C. Since C ⊆ Z is a
set of anteriors, there exists a shortest (possible containing
0 edges) path π j = V j → . . . → W j for each V j ∈ C with
W j ∈ X∪Y∪ I (it cannot contain an undirected edge, since
there is an arrow pointing to V j). Let π′j = V j → . . .→W′

j
be the shortest subpath of π j that is not blocked by Z0.
Let w′ be the walk w after replacing each V j by the walk
V j → . . . → W′

j ← . . . ← V j. If any of the W j is in
X ∪ Y we truncate the walk, such that we get the shortest
walk between nodes of X and Y. Since π′j is not blocked,
w′ contains no colliders except w′j and all other nodes of w′

are not in R, w′ is not blocked and Z0 is not a separator. �

Lemma 7.1. Given a DAG G and sets X,Y,Z ⊆ V satisfy-
ing Z∩Dpcp(X,Y) = ∅, Z m-connects a proper non-causal
path between X and Y if and only if it m-connects a proper
non-causal walk between X and Y.

Proof. ⇐: Let w be the m-connected proper non-causal
walk. It can be transformed to an m-connected path π by
removing loops of nodes that are visited multiple times.
Since no nodes have been added, π remains proper, and
the first edges of π and w are the same. So if w does not
start with a → edge, π is non-causal. If w starts with an
edge X→ D, there exists a collider with a descendant in Z
which is in De(D). So π has to be non-causal, or it would
contradict Z ∩ Dpcp(X,Y) = ∅.
⇒: Let π be an m-connected proper non-causal path. It can
be changed to an m-connected walk w by inserting Ci →
. . . → Zi ← . . . ← Ci for every collider Ci on π and a
corresponding Zi ∈ Z. Since no edges are removed from
π, w is non-causal, but not necessarily proper, since the
inserted walks might contain nodes of X. However, in that
case, w can be truncated to a proper walk w′ starting at

the last node of X on w. Then w′ is non-causal, since it
contains the subpath X← . . .← Ci. �

Lemma 7.2. Let G = (V,E) be a DAG and let wG be a
walk from X ∈ V to Y ∈ V that is d-connected by Z ⊆ V.
Let M = G[L

∅ , where L ⊆ V \ (Z ∪ X ∪ Y). Let wM =
V1, . . . ,Vn+1 be the subsequence of wG consisting only of
the nodes inM. Then Z m-connects X and Y inM via a
path along a subsequence w′G formed from wG by removing
some nodes of Z (possibly w′G = wG).

Proof. (Sketch) The subsequences removed from wM cor-
respond to maximally long inducing walks in wG with re-
spect to L. An inducing walk is a collider connected path on
which all nodes are ancestors of one of the endpoints, and
all non-colliders are in L. The endpoints of inducing walks
with respect to L must be adjacent to each other inM (sim-
ilar to Richardson and Spirtes, 2002, for inducing paths); It
is easy to see that all Z-nodes which are not colliders on
wM can be removed in this way, e.g. X ← Z1 ↔ Z2 → Y
can be truncated to X,Y because there must have been an
inducing walk in G via Z1,Z2. Additionally, it can be nec-
essary to remove nodes that are colliders on wM, e.g. if
wM = X ← Z1 → Z2 ← Y and Z2 ∈ An(X), then wG
must have been an inducing walk, and w′M contains only X
and Y even though Z2 is a collider. To obtain the Lemma, it
remains to be shown that no new colliders are created when
bypassing nodes in this way. This is done by case distinc-
tions; e.g., in the example wM = X ← Z1 → Z2 ← Y
and Z2 ∈ An(X), we also have Y ∈ An(X) and hence w′M
cannot be X→ Y or x↔ y. �
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Abstract

This paper studies the problem of revising belief-
s using uncertain evidence in a framework where
beliefs are represented by a belief function. We
introduce two new Jeffrey’s rules for the revi-
sion based on two forms of belief kinematics,
an evidence-theoretic counterpart of probability
kinematics. Furthermore, we provide two dis-
tance measures for belief functions and show that
the two belief kinematics are optimal in the sense
that they minimize their corresponding distance
measures.

1 INTRODUCTION

Reasoning about uncertainty is a fundamental issue for
Artificial Intelligence [HALPERN, 2005]. Numerous ap-
proaches have been proposed, including Dempster-Shafer
theory of belief functions [SHAFER, 1976] (also called
the theory of evidence or simply DS theory). Ever since
the pioneering works by Dempster and Shafer, the theo-
ry of belief functions has become a powerful formalism
in Artificial Intelligence for knowledge representation and
decision-making.

In this paper, we study the revision of beliefs using uncer-
tain evidence and we represent beliefs as belief function-
s. Our main contribution is to introduce two new Jeffrey’s
rules for the revision based on two different forms of belief
kinematics, an evidence-theoretic counterpart of probabil-
ity kinematics [JEFFREY, 1983]. The first rule, called in-
ner revision, generalizes the geometric conditionalization
rule, and the other, outer revision, generalizes the Demp-
ster rule of conditioning. These two Jeffrey’s rules specify
uncertain evidence in terms of the effect it has on beliefs
once accepted, and the specification is actually a function
of both evidence strength and beliefs held prior to obtain-
ing evidence. Once new evidence is accepted, a prior belief
function bel on a frame Ω of discernment is revised to a

new posterior belief function bel′ on the same frame. This
method requires us to specify uncertain evidence by pro-
viding a belief function bele on a coarser frame with less
distinctions of the attention. This coarser frame is actually
based on a partition of the frame Ω and hence is represent-
ed as a subalgebra B of the powerset 2Ω of Ω whose atoms
forming a partition of Ω.

The principle of belief kinematics on B says that, although
the prior belief function bel and the posterior one bel′ may
disagree on propositions in B, they agree on their relevance
to all propositions in 2Ω. Providing a reasonable repre-
sentation of the notion of relevance in belief kinematics
is the main challenge in this paper. For each of the two
new Jeffrey’s rules, we formalize a form of belief kine-
matics and characterize relevance in this belief kinemat-
ics by a conditional belief function on Ω with respect to
the coarsening frame 〈Ω,B〉. Our definition of condition-
al belief functions differs from Dempster’s rule of condi-
tioning [SHAFER, 1976] in that our definition depends on
the coarsening frame 〈Ω,B〉while Dempster’s rule doesn’t.
Our conditional belief functions are natural generalization-
s of classical conditional probability functions and provide
a measure of the relevance of any proposition in B to all
propositions in 2Ω.

In this paper, we incorporate the above principle of belief
kinematics into the two new Jeffrey’s rules in the theory of
belief functions by satisfying the following constraints:

• (Constraint 1) These two rules should be a natural gen-
eralization of Jeffrey’s rule in probability theory, i.e.,
they should be the same as Jeffrey’s rule in probability
theory when the prior belief function bel is a probabil-
ity function.

• (Constraint 2) On the coarsening frame 〈Ω,B〉, the
posterior belief function bel′ according to the rules
should agree with the belief function bele that spec-
ifies the evidence.

• (Constraint 3) The revision rules should obey some
natural evidence-theoretic generalization of probabil-
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ity kinematics like the above belief kinematics.

Any Jeffrey’s rule in DS theory should at least meet Con-
straint 1. Constraint 2 is Smets’ distinguishing constraint
C1 [SMETS, 1993A]. Constraint 3 is the most important
one and is the key point of this paper. We believe that this
constraint for Jeffrey’s rule in the theory of evidence is as
important as the principle of probability kinematics is for
Jeffrey’s rule in probability theory. Unlike similar rules for
belief functions found in the literature (See Section 5), our
new Jeffery’s rules naturally transfer important properties
of probabilistic belief revisions to the theory of evidence.

In order to show that the above revisions based on belief
kinematics are optimal, we provide for each revision rule a
distance measure for bounding belief changes due to the re-
visions and show that the belief function obtained accord-
ing to the corresponding form of belief kinematics is the
closest to the prior one among all belief functions satisfy-
ing Constraint 2.

2 JEFFREY’S RULE IN PROBABILITY
THEORY

Let Pr be a probability function on a probability space
〈Ω,A〉 where A is the Boolean algebra of subsets of Ω
with the usual set operations. Suppose that new evidence
suggests the desirability of revising Pr and that the total
evidence determines a family E of mutually exclusive and
exhaustive subsets of Ω and a probability function Pre on
the Boolean algebra B of finite unions of elements of E .
Without loss of generality, we assume that Pre(E) > 0
for all E ∈ E . The new posterior probability function Pr′

on 〈Ω,A〉 proposed by Jeffrey’s rule is as follows: for any
A ⊆ Ω,

Pr′(A) =
∑

E∈E
Pr(A|E)Pre(E) (1)

A probability function Pr∗ on the probability space
〈Ω, 2Ω〉 is said to be obtained from Pr by the principle
of probability kinematics on E if, for any E ∈ E ,

Pr∗(A|E) = Pr(A|E) for every event A ⊆ Ω.

In other words, the principle of probability kinematics as-
sumes that the conditional probability in every event A
given any E ∈ E remains unchanged. This concept was
proposed by Jeffrey [JEFFREY, 1983] to capture the notion
that, even though Pr∗ and Pr disagree on the probabilities
of events in the coarser Boolean algebra B, they agree on
their relevance to every event A in A.

Actually the above posterior probability function Pr′ pro-
posed by Jeffrey’s rule in Eq. (1) is the unique probabili-
ty revision Pr∗ which satisfies the following two require-
ments [CHAN AND DARWICHE, 2003]:

• (C1): probability kinematics on E : for any E ∈ B,
Pr∗(A|E) = Pr(A|E) for all A ⊆ Ω;

• (C2): Pr∗(E) = Pre(E) for all E ∈ B.

A distance measure D can be defined for probability func-
tions as follows [CHAN AND DARWICHE, 2002]: for any
two probability functions Pr1 and Pr2,

D(Pr1, P r2) = lnmaxω∈Ω
Pr2(ω)

Pr1(ω)
− lnminω∈Ω

Pr2(ω)

Pr1(ω)

Among all the probability functions that satisfy the above
requirement (C2), the posterior probability function Pr′

proposed by Jeffrey’s rule is the closest to Pr according
to this distance measure [CHAN AND DARWICHE, 2003].

3 JEFFREY’S RULE IN
DEMPSTER-SHAFER THEORY

3.1 BELIEF FUNCTIONS

Let Ω be a frame of discernment and A = 2Ω be the
Boolean algebra of events. A belief function is a function
bel : A → [0, 1] satisfying the following conditions:

1. bel(∅) = 0;

2. bel(Ω) = 1; and

3. bel(
⋃n
i=1Ai) =

∑
∅6=I⊆{1,··· ,n}(−1)|I|+1bel(∩i∈IAi)

where Ai ∈ A for all i ∈ {1, · · · , n}.

A mass assignment (or mass function) is a mapping m :
A → [0, 1] satisfying

m(∅) = 0,
∑
A∈Am(A) = 1.

Shafer [SHAFER, 1976] has shown that a mapping f :
A → [0, 1] is a belief function if and only if its Möbius
transform is a mass assignment. In other words, if m :
A → [0, 1] is a mass assignment, then it determines a be-
lief function bel : A → [0, 1] as follows:

bel(A) =
∑
B⊆Am(B) for all A ∈ A.

Moreover, given a belief function bel, we can obtain its
corresponding mass function m as follows:

m(A) =
∑

B⊆A
(−1)|A\B|bel(B), for all A ∈ A.

Intuitively, for a subset event A, m(A) measures the belief
that an agent commits exactly to A, not the total belief that
an agent commits to A.
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3.2 JEFFREY’S RULE IN THE THEORY OF
EVIDENCE

In order to introduce the principle of belief kinematics, we
need to set up a setting in terms of refinements and coarsen-
ings of frames of discernments. The idea that one frame Ω
of discernment is obtained from another frame Θ of dis-
cernment by splitting some or all of the elements of Θ
may be represented mathematically by specifying, for each
θ ∈ Θ, the subset ω({θ}) of Ω consisting of those possi-
bilities into which θ has been split. For this representation
to be sensible, we need only require that the sets ω({θ})
should constitute a disjoint partition of Ω. Given such a
disjoint partition ω({θ}), we may set

ω(A) =
⋃
θ∈A ω({θ})

for each A ⊆ Θ; ω(A) will consist of all the possibilities
in Ω that are obtained by splitting the elements of A, and
the mapping ω : 2Θ → 2Ω that is thus defined will provide
a thorough description of the splitting. Such a mapping ω
is called a refining. Whenever ω : 2Θ → 2Ω is a refining,
we call Ω a refinement of Θ and Θ a coarsening of Ω.

In this paper, we are particularly interested in the case when
Θ is the set of equivalence classes with respect to some
partition Π of Ω. So the mapping ω({Π(w)}) = Π(w)
for each w ∈ Ω is a refining and Θ is a coarsening of
Ω where Π(w) is the equivalence class of w. We de-
note this special coarsening Θ of Ω as Ω/Π. On the oth-
er hand, Ω/Π may be regarded as a subalgebra B of the
powerset of Ω with the set of atoms of B forming the par-
tition Π of Ω. Our following definition of Jeffrey’s rules
in Dempster-Shafer theory is in terms of this type of p-
resentation of the coarsening Ω/Π as 〈Ω,B〉. For exam-
ple, Π = {{w1, w2}, {w3, w4}, {w5, w6}} is a partition
of Ω = {w1, w2, w3, w4, w5, w6}. Then the associated
subalgebra B consists of the sets

⋃
B⊆ΠB with the atoms

{w1, w2}, {w3, w4} and {w5, w6} in B.

For each A ⊆ Ω, we define

B(A) :=
⋂{B ∈ B : A ⊆ B}

In other words, B(A) is the least element of B that contains
A as a subset and hence is called the upper approximation
ofA in B [SMETS, 1993A]. For the above example, ifA =
{w1, w3, w5}, then B(A) = Ω.

Let 〈Ω,B〉 be a coarsening of Ω where B is a subalgebra of
the powerset 2Ω of Ω with its atoms forming a partition of
Ω. Suppose that bel : 2Ω → [0, 1] is a belief function on
Ω with m as its corresponding mass assignment. Then the
derived mass assignmentmin

B on the coarsening 〈Ω,B〉 can
be obtained through the following formula: for any B ∈ B,

min
B (B) =

∑
B(A)=B,A⊆Ωm(A)

It is easy to see that, in the coarsening frame 〈Ω,B〉,
min
B (B) measures the belief that commits exactly to B, not

to any subset of B in B. Let belinB denote the correspond-
ing belief function. It is easy to check that, for any B ∈ B,
belinB (B) = bel(B). Intuitively, belinB is the derived belief
function on the coarsening frame of discernment with less
distinctions. The beliefs in the same propositions in these
two different frames with different distinctions should be
the same as each other [SMETS, 1993B]. Correspondingly,
since the resolution degree of the attention of the coarsen-
ing frame decreases, the mass assignment m has to change
into min

B .

For any A and B such that A ⊆ B ∈ B and A ⊆ Ω, let
m/B(A) denote

∑
E⊆Bm(A ∪ E) and

mout
B (B) =

∑
B(E)=B,E⊆Ωm/B(E).

It is easy to see that, if B is an atom of the subalgebra B,
then min

B (B) = bel(B) and mout
B (B) = pl(B). Now we

define two different conditional belief functions belinB (·|B)
and beloutB (·|B) on a given B ∈ B according to the above
two different definitions of mass functions min

B and mout
B

on B, respectively: for any A ⊆ Ω,

(1) (Inner conditioning)

belinB (A|B) :=





∑
A′⊆A,B(A′)=Bm(A′)

minB (B)
, if min

B (B) 6= 0,
|{A′⊆A:B(A′)=B}|
|{A′⊆Ω:B(A′)=B}| , if m

in
B (B) = 0

(2) (Outer conditioning)

beloutB (A|B) :=





∑
A′⊆A,B(A′)=Bm/B(A′)

moutB (B)
,

if mout
B (B) 6= 0,

|{A′⊆A:B(A′∩B)=B}|
|{A′⊆Ω:B(A′∩B)=B}| ,

if mout
B (B) = 0

Note that both belinB (·|B) and beloutB (·|B) are belief func-
tions on 2Ω for any B ∈ B.

The superscripts in and out in the above notations are des-
ignated for the following two proposed revision rules: in-
ner revision and outer revision. In particular, when B is
an atom in the algebra B, the above defined belinB (·|B)
and beloutB (·|B), are essentially the geometric condition-
alization and the Dempster conditionalization of A on
B, respectively. However, the essential difference of
our above definitions of conditional belief functions from
the well-known Dempster’s rule of conditioning bel(·|B)
[SHAFER, 1976] is that they depend on the coarsening
frame and hence on the degree of resolution of the atten-
tion while Dempster’s rule of conditioning does not and is
derived from Dempster’s rule of combination. Moreover,
Dempster’s rule of combination relies on a basic assump-
tion that the combined evidences (or beliefs) play the same
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role and hence the combination operation is symmetric. In
contrast, in our study of revision of beliefs using uncertain
evidence, we treat uncertain evidence in terms of effect it
has on beliefs once accepted, which is a function of both
evidence strength and beliefs held before the evidence is
obtained. Hence the prior beliefs and uncertain evidence
are intrinsically asymmetric. In this sense, our definition is
a natural generalization of the classical Bayesian definition
of conditional probabilities.

Lemma 3.1 Let bel be a belief function on Ω with m its
corresponding mass assignment and 〈Ω,B〉 a coarsening
as above.

1. For any A ⊆ Ω,

bel(A) =
∑
B∈B bel

in
B (A|B)min

B (B);

2. If me is a mass assignment on 〈Ω,B〉, then the func-
tion bel′ : 2Ω → [0, 1] defined as follows, for any
A ⊆ Ω,

bel′(A) =
∑
B∈B bel

in
B (A|B)me(B)

is a belief function. In particular, for each B ∈ B,

bel′(B) =
∑
B′∈B,B′⊆Bme(B

′).

In other words, if bele is the corresponding belief func-
tion of me on 〈Ω,B〉, then bel′(B) = bele(B) for
all B ∈ B; namely, me is exactly the derived mass
assignment (m′)inB of bel′ on the coarsening frame
〈Ω,B〉.

Proof. The first part is obvious. And the second part fol-
lows from the following fact: for any B,B′ ∈ B,

belinB (B′|B) :=

{
1, if B ⊆ B′
0 otherwise.

QED

Lemma 3.2 Let bel be a belief function on Ω with m its
corresponding mass assignment and 〈Ω,B〉 a coarsening
as above. If me is a mass assignment on 〈Ω,B〉, then the
function bel′ : 2Ω → [0, 1] defined as follows, for any A ⊆
Ω,

bel′(A) =
∑
B∈B bel

out
B (A|B)me(B)

is a belief function. In particular, for each B ∈ B,

bel′(B) =
∑
B′∈B,B′⊆Bme(B

′).

In other words, if bele is the corresponding belief function
of me on 〈Ω,B〉, then bel′(B) = bele(B) for all B ∈ B;
namely, me is exactly the derived mass assignment (m′)inB
of bel′ on the coarsening frame 〈Ω,B〉.

Proof. The first part is clear and the second follows from
the following fact: for any B,B′ ∈ B,

beloutB (B′|B) :=

{
1, if B ⊆ B′
0 otherwise.

QED

Consider the problem of revising the belief function bel
given uncertain evidence relating to a coarsening of Ω,
which is represented as 〈Ω,B〉. One method of specifying
the uncertain evidence is through the effect that it would
have on beliefs once accepted. Specifically, according to
the method, we have to specify uncertain evidence by pro-
viding the following constraint:

m′(B) = qB , for each B ∈ B (2)

where m′ denotes the corresponding mass assignment of
the new belief function bel′ that results from accepting the
given evidence. Also the specification can be represented
as another belief function bele on 〈Ω,B〉 with me its cor-
responding mass assignment such that me(B) = qB for all
B ∈ B. To revise the belief function bel, we must therefore
choose a unique posterior belief function that satisfies the
above constraint. In order to achieve the uniqueness, we
define next two forms of belief kinematics, the evidence-
theoretic counterpart of the well-known probability kine-
matics [JEFFREY, 1983].

Definition 3.3 Suppose that bel and bel′ are two belief
functions on Ω, andm andm′ are their corresponding mass
assignments. Let 〈Ω,B〉 be a coarsening of Ω. The belief
function bel′ is said to be obtained from bel by inner belief
kinematics on 〈Ω,B〉 if, for any B ∈ B,

(bel′)inB (A|B) = belinB (A|B) for all A ⊆ Ω; (3)

and it is said to be obtained from bel by outer belief kine-
matics on 〈Ω,B〉 if, for any B ∈ B,

(bel′)inB (A|B) = beloutB (A|B) for all A ⊆ Ω. (4)

�

Intuitively, the above principle of belief kinematics on
〈Ω,B〉 says that, even though bel and bel′ may disagree
on propositions on 〈Ω,B〉, they agree on their relevance to
every event A ⊆ Ω.

Now we define two revisions proposed by Jeffrey’s rule as
follows: for any A ⊆ Ω,

1. bel′(A) =
∑
B∈B bel

in
B (A|B)qB ; and

2. bel′(A) =
∑
B∈B bel

out
B (A|B)qB
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According to Lemmas 3.1 and 3.2, both revisions satisfy
the above constraint (2), and are indeed belief functions.
These two revisions are called inner and outer revisions
and the resulting belief functions are denoted as belin

′
and

belout
′

by adding the corresponding superscripts in and out,
respectively. It is easy to see that the well-known Jeffrey’s
rule for probability functions is a special case of our more
general rules here for belief functions. So, our Jeffrey’s
rules satisfy Constraint 1.

Theorem 3.4 The new belief function belin
′

given above is
the one and only belief function that satisfies the constraint
in Eq. (2) and that is obtained from bel by inner belief
kinematics on the coarsening frame 〈Ω,B〉.

Proof. According to Lemma 3.1, it suffices to show that
the new posterior belief function belin

′
obtained through

Jeffrey’s rule satisfies the condition for inner belief kine-
matics: for any A ⊆ Ω, B ∈ B,

belinB (A|B) = (belin
′
)inB (A|B)

First note that, for any A ⊆ Ω,

min′(A) =
∑
B∈B

qB
minB (B)

linB (A)

where min′ is the corresponding mass function of belin
′

and

linB (A) :=

{
m(A), if B(A) = B

0 otherwise.

This follows directly from the following reasoning:

∑

A′⊆A
min′(A′) =

∑

A′⊆A
(
∑

B∈B

qB
min
B (B)

linB (A′))

=
∑

B∈B
(
∑

A′⊆A

qB
min
B (B)

linB (A′))

=
∑

B∈B
(

∑
A′⊆A l

in
B (A′)

min
B (B)

qB)

=
∑

B∈B
(

∑
A′⊆A,B(A′)=Bm(A′)

min
B (B)

qB)

=
∑

B∈B
belinB (A|B)qB

= belin
′
(A)

According to Lemma 3.1, (min′)inB (B) =∑
B(A)=B,A⊆Ωm

in′(A) = qB where (min′)inB is the

derived mass assignment of min′ on 〈Ω,B〉. Next we use

this expression of min′ to proceed as follows:

(belin
′
)inB (A|B) =

1

qB

∑

A′⊆A,B(A′)=B

min′(A′)

=
1

qB

∑

A′⊆A,B(A′)=B

∑

B′∈B

qB′ l
in
B′(A

′)

min
B (B′)

=
1

qB

∑

A′⊆A,B(A′)=B

qB
min
B (B)

m(A′)

=

∑
A′⊆A,B(A′)=Bm(A′)

min
B (B)

= belinB (A|B)

QED

Theorem 3.5 The new belief function belout
′

given above
is the one and only belief function that satisfies the con-
straint in Eq. (2) and that is obtained from bel by outer
belief kinematics on the coarsening frame 〈Ω,B〉.

Proof. According to Part (1) of Lemma 3.1 and Lemma
3.2, it suffices to show that the new posterior belief func-
tion obtained through Jeffrey’s rule satisfies the condition
in outer belief kinematics, i.e., for any B ∈ B,

(belout
′
)inB (A|B) = beloutB (A|B) for all A ⊆ Ω.

But this follows from a similar argument to that in the proof
of Theorem 3.4.

QED

The above propositions tell us that the two Jeffrey’s rules
are obtained from belief kinematics and hence satisfies
Constraint 3.

Example 3.6 The following example is adapted from
the original one by Jeffrey [JEFFREY, 1983] (also
[CHAN AND DARWICHE, 2003]). Assume that we are
given a piece of cloth, where its color can be one of: green,
blue, or violet. We want to know whether, on the next day,
the cloth will be sold, or not sold. We denote the possible
states as follows:

w1,g = (sold, green), w0,g = (not sold, green)

w1,b = (sold, blue), w0,b = (not sold, blue)
w1,v = (sold, violet), w0,v = (not sold, violet)

Our original belief bel is given by the following mass as-
signment m on Ω := {wn,c : n ∈ {0, 1}, c ∈ {b, g, v}}:

m({w1,g}) = m({w1,b}) = m({w1,v}) = 0.1

m({w0,g}) = m({w0,b}) = m({w0,v}) = 0.15

m({w1,g, w0,b}) = m({w1,b, w0,v}) = 0.1

m({w1,g, w1,v}) = 0.05
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The possible states wc of colors denote {w1,c, w0,c} for
all c ∈ {g, v, b}. Let B be a subalgebra of the pow-
erset of Ω that consists of the propositions of the form⋃
B⊆{wb,wg,wv}B. It is easy to see that 〈Ω,B〉 is a coars-

ening of 〈Ω, 2Ω〉.
The derived mass assignment min

B on the coarsening frame
〈Ω,B〉 can be computed as follows:

min
B ({wg}) = min

B ({wb}) = min
B ({wv}) = 0.25

min
B ({wg, wb}) = min

B ({wb, wv}) = 0.1

min
B ({wg, wv}) = 0.05, min

B ({wb, wg, wv}) = 0

Now we consider the conditional beliefs of a given propo-
sition A := {w1,g, w0,b, w1,v} as an illustration. We obtain
bel(A) = 0.5. According to our previous definition of in-
ner conditioning, we have

belinB (A|{wg}) =
2

5
, belinB (A|{wb}) =

3

5

belinB (A|{wv}) =
2

5
, belinB (A|{wg, wb}) = 1

belinB (A|{wg, wv}) = 1, belinB (A|{wb, wv}) = 0

belinB (A|{wb, wv, wg}) =
1

27

Assume that we now inspect the cloth by candlelight, and
conclude that our belief on the color of the cloth should be:

bele({wg}) = bele({wb}) = bele({wv}) = 0.2

bele({wg, wb}) = bele({wb, wv}) = 0.5

bele({wg, wv}) = 0.6

The corresponding mass assignment me is as follows:

me({wg}) = me({wb}) = me({wv}) = 0.2

me({wg, wb}) = me({wb, wv}) = 0.1

me({wg, wv}) = 0.2

So, according to our definition of Jeffrey’s rule, we have
the new inner revision of belief in the event A:

belin
′
(A) =

∑
B∈B bel

in
B (A|B)me(B) = 0.58

Now we compute the outer revision of the belief in A. The
mass assignment mout

B on the coarsening frame 〈Ω,B〉 can
be computed as follows:

mout
B ({wg}) = 0.4 = mout

B ({wv}),mout
B ({wb}) = 0.45

mout
B ({wg, wb}) = 0.1 = mout

B ({wb, wv})
mout
B ({wg, wv}) = 0.05, mout

B ({wb, wg, wv}) = 0

According to our previous definition of outer conditioning,

we have

beloutB (A|{wg}) =
1

4
,beloutB (A|{wb}) =

2

9

beloutB (A|{wv}) =
1

8
,beloutB (A|{wg, wb}) = 1

beloutB (A|{wg, wv}) = 1,beloutB (A|{wb, wv}) = 0

beloutB (A|{wb, wv, wg}) =
1

27

Hence we have

belout
′
(A) =

∑
B∈B bel

out
B (A|B)me(B) = 151

360

4 MEASURES FOR BOUNDING BELIEF
CHANGES

One important question relating to belief revision is that of
measuring the extent to which a revision disturbs existing
beliefs. In the following, we simulate the work by Chan
and Darwiche [CHAN AND DARWICHE, 2002] by propos-
ing for each Jeffrey’s revision rule a distance measure for
belief functions which can be used to bound the amount
of belief changes induced by this revision using uncertain
evidence and show that, according to this measure, the pos-
terior belief function obtained by the corresponding belief
kinematics is the closest to the original one among all belief
functions that satisfy the constraint in Eq. (2).

Definition 4.1 Let bel and bel′ be two belief functions over
the same frame Ω of discernment. We define a measure
between bel and bel′ as follows:

Din(bel, bel′) = lnmaxA⊆Ω
m′(A)
m(A) − lnminA⊆Ω

m′(A)
m(A)

where 0
0 is defined to be 1. It is easy to check that Din

is a distance (or metric), satisfying the three properties
of distance and, whenever there is a subset A for which
m(A) = 0 and m′(A) > 0 or vice versa, the distance
Din(bel, bel′) for the corresponding belief functions is e-
qual to infinity. �

Lemma 4.2 Let 〈Ω,B〉 be a coarsening of 〈Ω, 2Ω〉. As-
sume that belin

′
is obtained from bel by applying Jeffrey’s

rule according to inner belief kinematics (Eq. (3)), given
the uncertain evidence specified by the set of posterior be-
liefs (min′)inB (B) = qB , for B ∈ B where (min′)inB is the
derived mass assignment of min′ , the corresponding mass
assignment of belin

′
, on 〈Ω,B〉.

1. For any A ⊆ Ω, if B(A) = B, then

min
′
(A)

m(A) =
(min

′
)inB (B)

minB (B)
.

2. The distance Din(bel, bel′) between bel and belin
′

is
given by
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Din(bel, belin
′
) =

lnmaxB∈B
qB

minB (B)
− lnminB∈B

qB
minB (B)

Proof. The first part follows from the following observa-
tion: for any A ⊆ Ω and B ∈ B,

∑
B(A′)=B,A′⊆Am

in′(A′)
∑

B(A′)=B,A′⊆Am(A′)
=

(belin
′
)inB (A|B)(min′)inB (B)

belinB (A|B)min
B (B)

=
(min′)inB (B)

min
B (B)

The second equality comes from the condition for inner be-
lief kinematics. QED

The following theorem says that the principle of inner be-
lief kinematics can be viewed as a principle for minimizing
belief change with respect to the metric Din.

Theorem 4.3 For the belief functions bel and belin
′

in
Lemma 4.2, belin

′
is the closest to bel according to the

above distance measure Din among all possible belief
functions that agree with belin

′
on the propositions in the

subalgebra B.

Proof. Suppose that m is the corresponding mass as-
signment of bel. Let bel′′ be any belief function with
m′′ as its corresponding mass assignment that satis-
fies the constraint: (m′′)inB (B) = (min′)inB (B) for al-

l B ∈ B. Let Bmax = argmaxB∈B(
(min

′
)inB (B)

minB (B)
) and

Bmin = argminB∈B(
(min

′
)inB (B)

minB (B)
). Define rmax =

maxA⊆Ω
m′′(A)
m(A) . Then we have the following inequality:

rmaxm
in
B (Bmax) = rmax

∑

B(A)=Bmax,A⊆Ω

m(A)

≥
∑

B(A)=Bmax,A⊆Ω

m′′(A)

m(A)
m(A)

=
∑

B(A)=Bmax,A⊆Ω

m′′(A)

= (m
′′
)inB (Bmax)

= (min′)inB (Bmax)

So we have shown that rmax ≥ (min
′
)inB (Bmax)

minB (Bmax)
. Similar-

ly, we can define rmin = minA⊆Ω
m′′(A)
m(A) and show that

rmin ≤ (min
′
)inB (Bmin)

minB (Bmin)
. Therefore, the distance measure

between bel and bel′′ is:

Din(bel, bel′′) = ln rmax − ln rmin

≥ ln
(min′)inB (Bmax)

min
B (Bmax)

− ln
(min′)inB (Bmin)

min
B (Bmin)

= lnmaxB∈B
(min′)inB B

min
B (B)

− lnminB∈B
(min′)inB B

min
B (B)

= Din(bel, bel′)

The last equality follows from Lemma 4.2.

QED

Now we define a distance Dout for the outer revision. The
essential difference of Dout from the above Din for the in-
ner revision is that Dout depends on the associated coars-
ening frame.

Definition 4.4 Let bel and bel′ be two belief functions over
the same frame Ω of discernment. We define a measure
between bel and bel′ with respect to a coarsening 〈Ω,B〉 as
follows:

Dout(bel, bel′) =

lnmaxA⊆Ω
m′(A)

m/B(A)(A) − lnminA⊆Ω
m′(A)

m/B(A)(A)

where 0
0 is defined to be 1. It is easy to check that Dout

is a distance (or metric), satisfying the three properties of
distance. �

Lemma 4.5 Let 〈Ω,B〉 be a coarsening of 〈Ω, 2Ω〉. As-
sume that belout

′
is obtained from bel by applying Jeffrey’s

rule according to the outer belief kinematics, given the un-
certain evidence specified by the set of posterior beliefs
(mout′)inB (B) = qB , for B ∈ B where (mout′)inB is the
derived mass assignment ofmout′ , the corresponding mass
assignment of belout

′
, on 〈Ω,B〉.

1. For any A ⊆ Ω, if B(A) = B, then

mout
′
(A)

m/B(A)(A) =
(mout

′
)inB (B)

moutB (B)
.

2. The distance Dout(bel, bel′) between bel and bel′ is
given by

Dout(bel, bel′) =
lnmaxB∈B

qB
moutB (B)

− lnminB∈B
qB

moutB (B)

Proof. The first part follows from the following observa-
tion: for any A ⊆ Ω and B ∈ B,

∑
B(A′)=B,A′⊆Am

out′(A′)
∑

B(A′)=B,A′⊆Am/B(A′)(A′)

=
(belout

′
)inB (A|B)(mout′)inB (B)

beloutB (A|B)mout
B (B)

=
(mout′)inB (B)

mout
B (B)
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The second equality comes from the condition for outer be-
lief kinematics. QED

The following theorem says that the principle of outer be-
lief kinematics can be viewed as a principle for minimizing
belief change with respect to Dout.

Theorem 4.6 For the belief functions bel and belout
′

in
Lemma 4.5, belout

′
is the closest to bel according to the

above distance measure Dout among all possible belief
functions that agree with belout

′
on the propositions in the

subalgebra B.

Proof. Suppose that m is the corresponding mass as-
signments of bel. Let bel′′ be any belief function with
m′′ as its corresponding mass assignment that satisfies
the constraint: (m′′)inB (B) = (mout′)inB (B) for al-

l B ∈ B. Let Bmax = argmaxB∈B(
(mout

′
)inB (B)

moutB (B)
) and

Bmin = argminB∈B(
(mout

′
)inB (B)

moutB (B)
). Define rmax =

maxA⊆Ω
m′′(A)

m/B(A)(A) . Then we have the following inequali-
ty:

rmaxm
out
B (Bmax) = rmax

∑

B(A)=Bmax,A⊆Ω

m/B(A)(A)

≥
∑

B(A)=Bmax,A⊆Ω

m′′(A)

m/B(A)(A)
m/B(A)(A)

=
∑

B(A)=Bmax,A⊆Ω

m′′(A)

= (m′′)inB (Bmax)

= (mout′)inB (Bmax)

So we have shown that rmax ≥ (mout
′
)inB (Bmax)

moutB (Bmax)
. Similarly,

we can define rmin = minA⊆Ω
m′′(A)

m/B(A)(A) and show that

rmin ≤ (mout
′
)inB (Bmin)

moutB (Bmin)
. Therefore, the distance measure

between bel and bel′′ is:

Dout(bel, bel′′)

= lnmaxA⊆Ω
m′′(A)

m/B(A)(A)
− lnminA⊆Ω

m′′(A)

m/B(A)(A)

= ln rmax − ln rmin

≥ ln
(mout′)inB (Bmax)

mout
B (Bmax)

− ln
(mout′)inB (Bmin)

mout
B (Bmin)

= lnmaxB∈B
(mout′)inB B
mout
B (B)

− lnminB∈B
(mout′)inB B
mout
B (B)

= Dout(bel, bel′)

The last equality follows from Lemma 4.5.

QED

Example 4.7 Now, by using Lemmas 4.2 and 4.5, we com-
pute the distances between bel and bel′ in Example 3.6:

Din(bel, bel′) = ln 1− ln
1

4
= 2 ln 2

Dout(bel, bel′) = ln 4− ln
4

9
= 3 ln 3

5 RELATED WORKS AND
CONCLUSION

Although belief revision in probability theory is fully stud-
ied and researchers have generally agreed on the standard
form of Jeffrey’s rule, the corresponding revision rule in
evidence theory has seldom been adequately addressed and
there is not yet any standard form of this rule that has been
universally recognized. Although all the forms of Jeffrey’s
rule in the theory of evidence in the literature are gener-
alizations of this rule in probability theory, none of them
satisfies all of the three natural constraints proposed in this
paper. Usually they satisfy some constraints but do not sat-
isfy the others. In particular, none of these forms in the
literature has considered the revision of beliefs using uncer-
tain evidence from the perspective in this paper viewing J-
effrey’s rule as a form of the evidence-theoretic counterpart
of probability kinematics, which should be the essence of J-
effrey’s rule in Dempster-Shafer theory [WAGNER, 1992].
Moreover, none of those Jeffrey’s rules inDS-theory in the
literature has provided any distance measures for bounding
belief changes due to revision and our work is the first to
achieve that. Our distance measures for belief functions
are adapted from the one for revision of probabilistic be-
liefs using uncertain evidence as virtual certain evidence
according to Pearl’s method [PEARL, 1988] and hence d-
ifferent from those distances for belief functions in the lit-
erature [JOUSSELME AND MAUPIN, 2012].

Jeffrey’s rules for belief functions in the literature are pro-
posed from different perspectives. Shafer [SHAFER, 1981]
has studied Jeffery’s rule. He proposed that its generaliza-
tion can be found in Dempster’s rule of combination. His
proposal doesn’t fit with Constraint 2 and we agree with S-
mets [SMETS, 1993A] that Constraint 2 is more important
in the spirit of Jeffrey’s updating than Shafer’s proposal. In
addition, Wagner [WAGNER, 1992] studied Jeffrey’s rule
in evidence theory from the perspective of viewing belief
functions as lower envelopes. So his perspective is quite
different from our proposal in term of mass functions.

Dubois and Prade [DUBOIS AND PRADE, 1991,
DUBOIS AND PRADE, 1993] investigated updat-
ing and revision rules in a variety of uncertainty
models including belief functions. They proposed
the following form of Jeffrey’s rule in DS theory:
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bel′(A) =
∑
B∈B

bel(A∪B̄)−bel(B̄)
pl(B) me(B). This form

is one of several Jeffrey’s rules studied by Ichihashi
and Tanaka ([ICHIHASHI AND TANAKA, 1989]). Ma
and others ([MA ET AL., 2010] and in more detail
[MA ET AL., 2011]) proposed three different revision
rules, namely the inner, outer and modified outer revisions.
In particular, their modified outer revision generalizes
Jeffrey’s rule of updating in probability theory, Demp-
ster’s rule of conditioning and a form of AGM revision.
Their rules work in a more general setting when the
incoming input is a general mass function. They consider
the information content associated with an epistemic
state represented by some belief function rather than
the full specification as in our paper. A belief function
bel1 is less informed than another one bel2 if bel2 is
a specialization of bel1. They formalize the success
postulate as requiring that the posterior belief function
bel′ be a specialization of the prior one bel. According
to their viewpoint, if bel1 and bel2 are both defined on
the same algebra A and bel1 is a specialization of bel2,
then they are considered to be consistent with each other.
However, according to our idea, they are inconsistent
if they are not the same. We take the readaptation as
revision [SMETS, 1993A]. Halpern [HALPERN, 2005]
provided another form of belief-function revision rule:
bel′(A) =

∑n
i=1 bele(Bi)bel(A|Bi) where (Bi)

n
i=1 is

a family of mutually exclusive and exhaustive subsets
of Ω. His generalization is in terms of belief functions
instead of mass functions. So it is quite different from
ours. Moreover, bel′ in his revision rule is not necessarily
a belief function unless bele is a probability function. But,
according to our proposal, uncertain evidence should be
specified by a belief function bele. None of the above
mentioned forms of Jeffrey’s rules in DS-theory satisfies
Constraint 2.

Our proposed Jeffrey’s rules actually improve the two rules
called source-conditioning and data-conditioning by Smet-
s [SMETS, 1993A] especially the source-conditioning rule
there. The motivation for the rule is not well justified and
Smets’ constraints for this rule are not well-defined. In S-
mets’ Constraint C2F, bel should satisfy the requiremen-
t that, for any X,Y ⊆ Ω, if B(X) = B(Y ), bel(X)

bel(Y ) =
bel′(X)
bel′(Y ) . But generally bel′ does not satisfy this requiremen-
t. Consider the above Example 3.6 and the proposition A.
Let A′ = {w0,g, w1,b, w0,v}. Obviously, B(A) = B(A′) =

Ω. However, bel(A)
bel(A′) = 1 6= 29

18 = bel′(A)
bel′(A′) . The two forms

of belief kinematics in this paper correct and improve the
two constraints C2F and C3F in [SMETS, 1993A] (Parts
(1) of Lemmas 4.2 4.5), respectively. Benferhat and oth-
ers [BENFERHAT ET AL., 2011] studied Jeffrey’s rule in a
possibilistic framework using the possibilistic counterparts
of probability kinematics, which is similar to our approach
in this paper. But, our theory for belief functions here cov-
ers their approach in the quantitative possibilistic setting.

The following are some other constraints for defin-
ing Jeffrey’s rules in Dempster-Shafer theory
[MA ET AL., 2011]:

• (Constraint 4) When the incoming information is cer-
tain, the proposed Jeffrey’s rule should be the same as
Dempster’s rule of conditioning.

• (Constraint 5) The proposed rule should satisfy some
natural form of minimal change principle.

• (Constraint 6) The revision rule should preserve the
new evidence.

We summarize our contributions in this paper by listing in
a table the above major proposed Jeffrey’s rules and their
satisfied constraints:

Table 1: Summary
XXXXXXXXXXRule

Constraint
1 2 3 4 5 6

Shafer’s rule
√ √ √

Modified outer revision
rule by Ma et al.

√ √ √ √

Halpern’s rule
√ √

Smets’ rule of
source-conditioning

√ √ √

Smets’ rule of
data-conditioning

√ √ √ √

Our rule of
inner revision

√ √ √ √ √

Our rule of
outer revision

√ √ √ √ √ √
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