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Abstract

Kullback Leibler (KL) control problems al-
low for efficient computation of optimal con-
trol by solving a principal eigenvector prob-
lem. However, direct applicability of such
framework to continuous state-action sys-
tems is limited. In this paper, we propose
to embed a KL control problem in a proba-
bilistic graphical model where observed vari-
ables correspond to the continuous (possi-
bly high-dimensional) state of the system
and latent variables correspond to a dis-
crete (low-dimensional) representation of the
state amenable for KL control computation.
We present two examples of this approach.
The first one uses standard hidden Markov
models (HMMs) and computes exact opti-
mal control, but is only applicable to low-
dimensional systems. The second one uses
factorial HMMs, it is scalable to higher di-
mensional problems, but control computa-
tion is approximate. We illustrate both ex-
amples in several robot motor control tasks.

1 INTRODUCTION

Recent research in stochastic optimal control theory
has identified a class of problems known as Kullback-
Leibler (KL) control problems (Kappen et al., 2012) or
linearly solvable Markov decision problems (LSMDPs)
(Todorov, 2006). For these (discrete) problems, the
set of actions and the cost function are restricted in
a way that makes the Bellman equation linear and
thus more efficiently solvable, for instance, by solving
the principal eigenvector of a certain linear operator
(Todorov, 2009a).

However, direct applicability of this framework to con-
tinuous state-action systems, such as robot motor con-
trol, is limited. The main problem is the curse of

dimensionality, which appears because discretization
quickly leads to a combinatorial explosion. This prob-
lem has been addressed using function approxima-
tion methods in (Todorov, 2009b). Instead of directly
solving a discrete-state LSMDP, these methods ap-
proximate the so-called desirability function, which
is defined in the continuous-state space. Kinjo et al.
(2013) combined this function approximation scheme
with system identification on a real robot navigation
task. However, approaches based on the continuous-
state formulation of KL control problems have sev-
eral limitations: they require to solve a quadratic pro-
gramming problem, a more computationally demand-
ing problem than computing the principal eigenvector.
Also, there is no guarantee of convergence to a positive
solution. Alternative formulations that address these
limitations have been recently proposed (Zhong and
Todorov, 2011a,b). Zhong and Todorov (2011a) used a
soft aggregation method to solve KL-control problems
in an aggregated space. Both approaches, however,
require the model of system dynamics, which is often
not available in real-world applications (Kinjo et al.,
2013).

In this paper, we propose to embed a KL-control prob-
lem in a probabilistic graphical model with mixed con-
tinuous and discrete variables. The continuous vari-
ables correspond to the (possibly high-dimensional)
state of the system and the discrete variables corre-
spond to a latent (low-dimensional) representation of
the state which is amenable for KL control compu-
tation. The model parameters are first learned using
data from the real system running with exploring con-
trols. The control input to the real system is then
computed as a filtering step combined with the solu-
tion of the KL-control problem in the latent space.

We present two examples of this approach: the first
one uses a standard hidden Markov model (HMM)
in which inference can be computed exactly, but is
only applicable to low-dimensional continuous sys-
tems. The second one uses factorial HMMs (FHMMs)



and is applicable to higher dimensional problems, al-
though optimal control can only be approximated. We
illustrate both examples in several robot motor control
tasks. In particular, we experimentally demonstrate
that the second example with FHMMs is scalable to
high-dimensional problems (e.g., 25 dimensional prob-
lem) that may not be solvable by other approaches.

2 KULLBACK LEIBLER CONTROL
PROBLEMS

We briefly summarize the class of KL control problems
introduced by Todorov (2006) in the infinite-horizon
average-cost formulation (see also Todorov, 2009a).

Let X = {1, . . . , N} be a finite set of states and U(x)
be a set of admissible control actions at state x ∈ X .
Consider the transition probability p(x′|x) that de-
scribes the system dynamics in the absence of con-
trol. Such uncontrolled dynamics assigns zero proba-
bility for physically forbidden state transitions. De-
note the transition probability given action u ∈ U(x)
as p(x′|x, u) and the immediate cost for being in state
x and taking action u as `(x, u) ≥ 0.

For infinite-horizon problems, the objective is to find a
control law u = π(x) that minimizes the average cost

lim
n→∞

1

n
E

[
n−1∑
t=0

`(xt, π(xt))

]
=
∑
x

Π(x)`(x, π(x)) (1)

where n is the number of time-steps and Π(x) =
limt→∞ p(xt = x|x0, π) is the stationary distribution
of states under control law π, which we assume ex-
ists and is independent of x0, i.e., p(xt = x|x0, π) is
assumed ergodic.

The following Bellman equation defined for the (dif-
ferential) cost-to-go function v(x) minimizes Eq. (1)

c+ v(x) = min
u∈U(x)

{
`(x, u) + Ex′∼p(·|x,u)[v(x

′)]
}
, (2)

where c is the average cost that does not depend on
the starting state.

Minimizing Eq. (2) is in general hard, but in some
cases it can be done efficiently. KL control problems
are a class of problems for which Eq. (2) becomes linear
under the following assumptions:

(i) the controls directly specify state transition prob-
abilities, i.e. p(x′|x, u) = u(x′|x). The action vec-
tor u(·|x) is a probability distribution over next states
given the current state x.

(ii) the immediate cost function has the following form

`(x, u) = αq(x) + KL (u(·|x) ‖ p(·|x)) ,

where q(x) ≥ 0 is an arbitrary state-dependent cost
and KL is the Kullback Leibler divergence between the
controlled and the uncontrolled dynamics, reflecting
how much the control changes the normal behavior of
the system. Parameter α allows to balance the two
cost terms.

Define the exponentiated cost-to-go (desirability)
function z(x) = exp(−v(x)) and the linear operator

G [z](x) =
∑
x′

p(x′|x)z(x′) = Ex′∼p(·|x,u)[z(x
′)].

The resulting minimization takes the form

min
u∈U(x)

{
αq(x)+ KL

(
u(·|x)

∥∥∥∥p(·|x)z(·)G [z](x)

)
− logG [z](x)

}
.

At the global minimum, the Bellman equation becomes

exp(−c)z(x) = exp(−αq(x))G [z](x)

or in matrix form

λz = GPz (3)

where G is a N × N diagonal matrix with elements
exp(−αq(x)) and λ = exp(−c). From Eq. (3), it
follows that z is any eigenvector of the matrix GP
with eigenvalue λ. The optimal average cost becomes
c = − lnλ. Thus, the minimal solution is given by the
principal eigenvector of GP: the eigenvector z∗ with
largest eigenvalue, which can be efficiently computed
using the power iteration method (Todorov, 2006).
The optimal control is given by

u∗(x′|x) = p(x′|x)z∗(x′)

G [z∗](x)
. (4)

3 LATENT KULLBACK LEIBLER
CONTROL

The previously described framework is not directly ap-
plicable for continuous systems. For such cases, we
propose to learn a discrete hidden representation and
dynamics amenable for efficient computation from the
observed continuous variables. Our approach can be
summarized in the following three steps:

1. Learn a probabilistic graphical model from data
samples obtained for the real system

2. Solve the KL control problem in the latent space
of the probabilistic graphical model

3. Compute control in the observed space



This general method is directly applicable to arbitrary
continuous state-action systems, while in this paper
we focus on the following deterministic control-affine
systems that typically describe discrete-time robot dy-
namics:

yt+1 = yt +∆t
(
f(yt) +B(yt)τ t

)
, (5)

where yt ∈ RD is the state variable of the system, τ t ∈
Rd is the control input, f(yt) ∈ RD is the uncontrolled
dynamics, B(yt) ∈ RD×d is the control matrix and ∆t
is the discrete-time step-size.

Two particular realizations of this general approach
are described in the next section. The first one uses
standard HMMs, which are the most natural way to
model sequences of observations. However, it is only
applicable to systems in which the relevant region of
the state-space is small, such as low-dimensional sys-
tems, or largely constrained high-dimensional systems.
The second one uses factorial HMMs, which assume
factorized uncontrolled dynamics and can scale up to
higher dimensional problems.

4 EXACT CONTROL
COMPUTATION USING HIDDEN
MARKOV MODELS

In this section, we describe an example of latent KL
control based on standard hidden Markov models.

4.1 LEARNING HMMS FOR KL
CONTROL

Consider the hidden Markov model with hidden states
xt ∈ {1, . . . , N}, stochastic state transition matrix P
with entries Pij = p(xt+1 = j|xt = i) and Gaussian
observation model p(yt|xt = k) = N (µk,Σk).

We generate sample trajectories D = {yt, . . . ,yT }
from the real system driven solely by exploration noise
(uncontrolled dynamics) and use them to learn the
parameters θHMM = {P, µ1:N ,Σ1:N}. After learning,
the matrix P encodes a coarse description of the ob-
served dynamics in a latent space and the Gaussian
means and variances capture the relevant regions in
this space. More precisely, considering the system
of Eq. (5), we set exploration noise as τ t = εt for
t = 1 . . . T , where εt ∈ Rd ∼ N (0,Σε). The choice of
such a zero-mean Gaussian distribution is motivated
by the relationship between the KL action cost and
the input-norm cost: in the continuous setting the
KL cost reduces to a quadratic energy cost (Todorov,
2009a; Kappen et al., 2012), which coincides with a
commonly used input-norm cost for energy-efficient or
smooth motor control behavior (Mitrovic et al., 2010).

The covariance matrix Σε is a free parameter. For
low exploration noise, one would expect the learned
model to be a poor approximation since only a small
fraction of the state space is visited. Conversely, large
noise values would result in too flexible models with
unrealistic state transitions. The correct noise value is
therefore a trade-off between these two scenarios.

Given D, the parameters θHMM can be learned, for in-
stance, using the standard Expectation-Maximization
(EM) algorithm (Baum-Welch algorithm).

4.2 CONTROL COMPUTATION IN
LATENT SPACE

To define a KL control problem in the latent space, we
first need a state-dependent cost function expressed
in terms of the latent variable x. Let q̃(yt) and
q(xt) be the cost functions in observation and latent
spaces, respectively. We define q(xt) given q̃(yt) us-
ing exp(−q(xt)) =

∫
yt

exp(−αq̃(yt))p(yt|xt)dyt. Fur-

thermore, if q̃(yt) is given in quadratic form q̃(yt) =
(yt − µq)

TΣ−1
q (yt − µq) = ||yt − µq||2Σ−1

q
and the ob-

servation model is Gaussian p(yt|xt) = N (µx,Σx), we
can obtain q(xt) analytically:

q(xt) = − ln

{∫
yt

exp (−αq̃(yt)) p(yt|xt)dyt

}
= − ln

{
|S|1/2

|Σx|1/2
exp

[
−1

2
||µq − µx||2M−1

]}
where, S = (αΣ−1

q +Σ−1
x )−1 and M = α−1Σq +Σx.

The (latent) KL control problem can now be for-
mulated using state cost q(xt) and uncontrolled dy-
namics P as in Eq. (3). The optimal state transi-
tion u∗(xt+1|xt) under controlled dynamics is given
by Eq. (4).

4.3 CONTROL COMPUTATION IN
OBSERVED SPACE

We are now ready to describe how to use latent KL
control in the real system. Given an observation se-
quence y1:t until time t, we can compute predictive
distributions of the next observation yt+1 under both
the uncontrolled dynamics p(xt+1|xt) and the opti-
mally controlled dynamics u∗(xt+1|xt) in the latent
space as:

p(yt+1|y1:t) =
∑
xt:t+1

p(yt+1|xt+1)p(xt+1|xt)u(xt|y1:t)

u(yt+1|y1:t) =
∑
xt:t+1

p(yt+1|xt+1)u
∗(xt+1|xt)u(xt|y1:t)

where u(xt|y1:t) denotes the filtered state at time t fol-
lowing the controlled process that evolves according to



u∗(x′|x). Since we keep the previous filtered estimate
u(xt−1|y1:t−1), this computation is simply as

u(xt|y1:t) =
p(yt|xt)

∑
xt−1

u∗(xt|xt−1)u(xt−1|y1:t−1)

u(yt|y1:t−1)
.

We finally compute the control input command to the
system such that the “difference” between the uncon-
trolled and optimal behaviors is reduced

τ t = K(ȳu
t+1|1:t − ȳp

t+1|1:t), (6)

where ȳu
t+1|1:t and ȳp

t+1|1:t are the expectations of y

over u(yt+1|y1:t) and p(yt+1|y1:t) respectively and K
is a gain matrix to be tuned. The gain K can be
optimally computed if the model of system dynamics
is available (Todorov, 2009b), however, in this paper
we focus on the model-free scenario and leave it as a
free parameter.

5 APPROXIMATE CONTROL
USING FACTORIAL HIDDEN
MARKOV MODELS

For high-dimensional problems that require to cover
large regions of the state space, the previous approach
becomes infeasible, since the cardinality required for
the latent variable grows exponentially. In this sec-
tion, we consider an alternative model with a multi-
dimensional latent variable and constrained state tran-
sitions. We consider each dimension independent from
the rest in the absence of control. These assumptions
are naturally expressed using factorial HMMs. The
advantage is that we can capture complex latent dy-
namics more efficiently. The price to pay is that ex-
act optimal control computation in the latent space is
no longer feasible and different approximation schemes
have to be used. We describe this approach in the fol-
lowing sections.

5.1 FACTORIAL HIDDEN MARKOV
MODELS

FHMM is a special type of HMM to model sequences of
observations originated from multiple latent dynami-
cal processes that interact to generate a single out-
put (Ghahramani and Jordan, 1997; Murphy, 2012).
The state is represented by a collection of variables

xt = {x(1)
t , . . . , x

(m)
t , . . . , x

(M)
t } each of them having

K possible values. The latent state xt is thus a M -
dimensional variable with KM possible values.

We will use a 1-of-K encoding, such that each state

component x
(m)
t will be denoted using a K × 1 vector,

where each of the K discrete values corresponds to a
1 in one position and 0 elsewhere.

The assumption is that the transition model factorizes
among the individual components

p(xt|xt−1) =
M∏

m=1

p(m)(x
(m)
t |x(m)

t−1), (7)

where p(m)(x
(m)
t |x(m)

t−1) is the state transition matrix

P(m) for the m-th chain. We assume the Gaussian
observation model, which is defined as

p(yt|xt) = N

(
M∑

m=1

W(m)x
(m)
t ,Σ

)
(8)

where W(m) is a D ×K weight matrix that contains
in its columns the contributions to the means for each
of the possible configurations of x

(m)
t . The marginal

over yt is thus a Gaussian mixture model, with KM

Gaussian mixture components, each having a constant
covariance matrix Σ.

The parameters θFHMM = {P1:M ,W1:M ,Σ} can be
learned using EM, as before. In this case, however,
the E-step becomes intractable, since the forward-
backward step has time complexity O(TMKM+1). An
alternative approximation that works well in practice
is the structured mean field approximation, which has
time complexity O(TMK2I), where I is the number
of mean field iterations (see Ghahramani and Jordan,
1997; Murphy, 2012, for details).

5.2 CONTROL COMPUTATION IN
LATENT SPACE

In a similar way as in Section 4.2, we need first to
define a cost function in the latent space q(xt) to be
able to formulate a KL control problem. A natural way
to define q(xt) given the observation model of Eq. (8)
and the cost function in observation space q̃(yt) is

q(xt) = αq̃

(
M∑

m=1

W(m)x
(m)
t

)
. (9)

Computing the exact optimal control using Eq. (3) in
FHMMs requires to transform the model into a single
chain model with KM states, which is intractable. We
assume approximate controlled dynamics uap(xt|xt−1)
and associated stationary distribution Πap(xt) that
factorize in its components:

uap(xt|xt−1) =
M∏

m=1

u(m)
ap (x

(m)
t |x(m)

t−1)

Πap(xt) =
M∏

m=1

Π(m)
ap (x

(m)
t ).
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Figure 1: Motor control problems with simulated robots: (a) Pendulum swing up with limited torque.
The state variable is y = [θ, ω]T where ω = θ̇, |θ| ≤ π, |ω| ≤ 4π. The control input is the torque at the joint τ .
Uncontrolled dynamics and control matrix are given as f(y) = [0 1; g sin(θ)/l µ/ω], B(y) = 1/ml2, respectively.
Parameters values are m = l = 1, g = 9.8, µ = 0.25 and τmax = 5.0 that satisfies τmax < mgl; (b) Robot arm
control with obstacle. The state variable is y = [q1, q2]

T ∈ S where S is the state space that satisfies the joint
angle limits and no collisions with the obstacle. The control input is τ = ẏ . The uncontrolled dynamics and
control matrix are f(y) = [0, 0]T and B(y) = ID; (c) Multi-DOF redundant arm reaching task. The state
variable is yt = [q1(t), . . . , qJ(t)]

T , qi(t) ∈ S is the i-th joint angle and S is the state space that satisfies the joint
angle limit −0.5π ≤ qi(t) ≤ 0.5π. The control input, uncontrolled dynamics and control matrix are as in (b),
but for J dimensions. In all examples we use first-order Euler method for numerical integration.

These assumptions imply that the KL cost term can
also be decomposed such that Eq. (1) becomes∑

xt

M∏
m=1

Π(m)
ap (x

(m)
t )×

(
q(xt) +

M∑
m=1

KL
(
u(m)
ap (·|x(m)

t )
∥∥∥p(m)(·|x(m)

t )
))

.

(10)

We can minimize Eq. (10) iteratively using sequen-
tial updates: for each chain m, update the parameters

u
(m)
ap and Π

(m)
ap assuming the parameters for the other

chains fixed so that it minimizes the marginal state-
dependent cost

Q(m)(x
(m)
t ) =

∑
x
(i)
t ,i 6=m

∏
i6=m

Π(i)
ap (x

(i)
t )q(xt) (11)

and the corresponding KL cost. Each update corre-
sponds to a sub-problem of the type of Eq. (3) and
can be solved as a principal eigenvector problem. The
average cost monotonically decreases at each iteration
and its convergence is guaranteed. We call this scheme
Variational KL minimization (VKL).

Note however, VKL requires summing over all the
values of the M − 1 chains to obtain the marginal
state-dependent cost, and thus it has time complex-
ity O(KM−1), which is still intractable. We further

approximate this computation by taking the expected
state of the other chains according to their individual
stationary distributions

Q(m)(x
(m)
t ) ≈ αq̃

W(m)x
(m)
t +

∑
i 6=m

W(i)Π(i)
ap

 ,

(12)

where Π
(i)
ap is a K-dimensional vector with the station-

ary distribution of chain i. Evaluation of Eq. (12) only
requires O(KM) steps, and it is therefore tractable.
We refer this approximation as Approximate Varia-
tional KL minimization (AVKL).

We refer to the control computed using either VKL
and AVKL as u∗

ap in the rest of this section.

5.3 CONTROL COMPUTATION IN
OBSERVED SPACE

Having approximated our optimal control law in the
latent space, we need to define a control law for the real
(observed) system given sequence of observations y1:t.
We follow the same approach as in Section 4.3. First,
we obtain estimates for the expected values of the next
observed state under both controlled and uncontrolled
dynamics as ȳu

t+1|1:t and ȳp
t+1|1:t, respectively. Second,

we apply the controller of Eq. (6).



The first step requires to solve a filtering problem to
obtain u(xt|y1:t), which is intractable for this model.
We use an approximate approach based on structured
mean field, as in the model learning step (Section
5.1, E-step). However, instead of keeping the last fil-
tered estimate u(xt−1|y1:t−1) as before, we keep the fil-
tered estimate at time-step t−H, i.e. u(xt−H |y1:t−H)
and perform offline structured mean field using the
last H observations yt−H:t. This approach improves
considerably the accuracy of the filtered estimates

u(xt|y1:t) =
∏

m u(m)(x
(m)
t |y1:t) and at the same time,

it is more efficient than structured mean field on the
entire sequence of past observations.

Once we have filtered estimates of the latent state,
the expectation of yt+1 over predictive distribution
u(yt+1|y1:t) can be approximated using samples

ȳu
t+1|1:t =

∫
yt+1u(yt+1|y1:t)dyt+1

≈ 1

L

L∑
µ=1

M∑
m=1

W(m)x̂(m)
µ

where x̂
(m)
µ are samples drawn from the posterior dis-

tribution of the latent component according to the ap-
proximated controlled dynamics

x̂(m)
µ ∼ u(m)(x

(m)
t+1|y1:t)

=
∑
x
(m)
t

u∗,(m)
ap (x

(m)
t+1|x

(m)
t )u(m)(x

(m)
t |y1:t).(13)

Similarly, we can estimate ȳp
t+1|1:t using samples from

p(m)(x
(m)
t+1|y1:t) =

∑
x
(m)
t

p(m)(x
(m)
t+1|x

(m)
t )u(m)(x

(m)
t |y1:t).

We show in the next section that for relatively small
values of the window length H and the number of sam-
ples L, the resulting controls are satisfactory.

6 SIMULATION RESULTS

In this section, we apply our method to three bench-
mark (simulated) robot motor control problems: (a)
pendulum swing-up with limited torque (Doya, 2000),
(b) robot arm control with obstacles (Sugiyama et al.,
2007), and (c) multi-degrees of freedom (DOF) redun-
dant arm reaching task (Theodorou et al., 2010). Fig-
ure 1 illustrates these problems. The first two exam-
ples correspond to the approach using HMMs of Sec-
tion 4 whereas the third shows an application using
FHMMs as described in Section 5.

For learning the HMM parameters, we use identical
and independent exploration noise in all controlled di-
mensions parameterized by σ2

ε , i.e. (Σε)ij = δijσ
2
ε .
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Figure 2: Pendulum swing-up task results: (a) Obser-
vation model after learning the HMM with N = 225
hidden states and σε = 1.5. Each hidden state cor-
responds to a two-dimensional Gaussian distribution
with mean indicated by a cross and contour with equal
probability density shown as an ellipse. (b) Typical
controlled behaviour in the phase plane. The cross and
the circle show initial and target states respectively.

Both tasks consider a two-dimensional observed con-
tinuous state and a one-dimensional latent variable.
The complexity of the method strongly depends on the
number of hidden values N . For this experiments, we
simply choose N large enough (N = 255 in both sce-
narios) to obtain a model that accurately describes the
system dynamics. We learn the full parameter vector
θHMM using EM with K-means initialization for the
Gaussian means.

6.1 PENDULUM SWING-UP TASK

This is a non-trivial problem when the maximum
torque τmax is smaller than the maximal load torque
mgl. The optimal control requires to take an energy-
efficient strategy: swing the pendulum several times to
build up momentum and also decelerate the pendulum
early enough to prevent it from falling over.
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Figure 3: Results on the robot arm with an obstacle. (a) Learned HMM with N = 225, Σε = diag{1.5, 1.5} and
T = 3 · 104 samples. (b) Controlled robot arm behavior at different time steps. The robot successfully reaches
the target posture avoiding the obstacle.

Fig. 2(a) shows the 2-dimensional observation model
after learning with exploration noise σ2

ε = 1.5. We can
see that the HMM is able to capture a discrete, coarse
representation of the continuous state.

For control computation, we define a quadratic cost
q̃(yt) = yTΣ−1

q y, where Σq = diag{0.005, 0.02}, and
set the scale parameter α = α0∆t/σ2

ε to prevent
the scaling effect of the exploration noise variance
σ2
ε in the KL cost (α0 = 0.2). The gain matrix is

K = diag{50, 10}. The eigenvector computation only
takes 3 · 10−2 seconds 1. The computation of control
input (see Section 4.3) takes 3 ·10−3 seconds per time-
step. The resulting controller successfully maintains
the pendulum in a region of |θ| ≤ 0.5 continuously in
all tested random initializations and it is optimal in
terms of energy-efficiency. A typical controlled behav-
ior of the pendulum is shown in Fig. 2(b).

For comparison, we also implemented standard value
iteration (VI) (Sutton and Barto, 1998), which re-
quires knowledge of the true pendulum dynamics and
uses a fully discretized state-action space. For consis-
tency, we choose as a cost function r(y,u) = αq̃(yt)+
1
2 ||u||

2 and the same error tolerance 10−8 for both
value iteration method and power method. VI requires
a very fine discretization (N ≥ 1225 states) and at
least 20 seconds of CPU-time, which are roughly an
order of magnitude larger than the values obtained
using the proposed method.

6.2 ROBOT ARM CONTROL WITH
OBSTACLE

In this second task, we aim to control a two-joint robot
arm from an initial posture to the target posture while
avoiding an obstacle. The presence of the obstacle

1Core-i7 2.8GHz-CPU, 8GB memory and MATLAB.

makes this task difficult to solve using standard tra-
jectory interpolation methods, see Fig. 1(b) for details.

Fig. 3(a) shows the 2D observation model learned us-
ing the same setup as before. As the empty region in
the middle of the plot indicates, the model success-
fully captures the physically impossible state transi-
tions that would bring the robot arm through the ob-
stacle.

For this problem, we set the cost function as q̃(yt) =
(y− g)TΣ−1

q (y− g), where Σq = diag{0.01, 0.01} and

g = [−π/2, π/2]T . In this case, we use α0 = 0.05
and K = diag{3.0, 0.5} to set the scale parameter and
the gain matrix, respectively. Computation time of
the optimal control is approximately 0.03 seconds us-
ing the same specifications as in the previous exam-
ple. Fig. 3(b) illustrates the typical controlled robot
behavior. The robot arm first decreases the angle q2
and then modifies q1 reaching the target posture while
successfully avoiding the obstacle.

6.3 REACHING TASK

The third task consists of a multi-DOF planar robot
arm with J joints and joint-limit constraints as shown
in Fig. 1(c). The J joints are of equal length l = 1
and connected to a fixed base. Each joint dynamics of
this robot model is decoupled, and therefore suitable
for our method using FHMMs.

The goal is to control the joint angles to reach a target
position ttarget with the end-effector of the robot arm.
For J � 2 the control policy has to make a choice
among many possible trajectories in the joint space.
Moreover, considering joint-limit constraints limits di-
rect application of standard methods for inverse kine-
matic, e.g. Jacobian inverse techniques (Yoshikawa,
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Figure 4: Multi-DOF robot reaching task: Comparison between KL(exact), VKL and AVKL. VKL and
AVKL can efficiently compute near optimal controller comparable to exact KL minimization. AVKL scales to
high-dimensional problems. KL(exact) and VKL are only feasible for J < 4 and J < 6, respectively.

1990). The cost function for this task is

q̃(y) =‖ ttarget −T(y) ‖, (14)

where T(·) is the forward kinematics model that maps
a joint angle vector to the corresponding end-effector
position in the task space

T(y) =

 ∑J
n=1 cos

(∑n
j=1 yj

)
∑J

n=1 sin
(∑n

j=1 yj

)  .

Although the dynamics decouples for each joint, the
cost function couples all the joint angles making the
problem difficult.

We analyze the scaling properties with the number J
of degrees of freedom, comparing the different strate-
gies described in Section 5.2: KL (exact) minimiza-
tion, VKL and AVKL. The exact solution uses KM

states and performs exact inference. For approximate
methods, we use as many latent dimensions (chains) as
joints M = J , with K = 20 and H = 2J time-steps for
approximate filtering. Note that M could be smaller
than J , as long as the learned hidden representation
captures well the underlying structure and dynamics.
We set M = J to simplify the evaluation.

Convergence of variational eigen-computations VKL
and AVKL is reached after approximately 10 itera-
tions in this task (each iteration requires an update of
all the parameters of the J joints). Learning the pa-
rameters of the FHMM is sensitive to local minima. In
practice, we choose W(m) so that each factored state
represents each joint dynamics and only learn the un-
controlled dynamics (transition probabilities). Also,

ttarget is set to one of the w
(m)
i to prevent space quan-

tization errors in this comparison.

Fig. 4 illustrates the comparison. Whereas KL (ex-
act) and VKL are only feasible for J < 5 and J < 7
respectively, AVKL is applicable to a larger number
of joints. Fig. 4(a) shows CPU-time for control com-
putation in the latent space (Section 5.2), which scales
exponentially for both KL (exact) and VKL and ap-
proximately linear for AVKL.

Fig. 4(b) shows the error Eq. (14) averaged over 200
trials with randomly initialized joints. Although ex-
act control computation can be performed for M < 5,
exact inference is only possible for M < 4. We can ob-
serve that the resulting controls are satisfactory and
errors do not differ significantly between VKL and
AVKL. Notice that the AVKL error remains approx-
imately constant as a function of M .

Fig. 4(c) shows CPU-time for the control computation
in the observed space (Section 5.3). While CPU-time
for exact computation quickly increases, our approxi-
mate approach results in a roughly linear increase.

Examples of controlled robot behaviors for a different
number of degrees of freedom are shown in Fig. 5. In
all cases, the robot successfully reaches the goal while
satisfying the joint-limit constraints starting from sev-
eral initial postures.

From these results we can conclude that it is feasible
to learn FHMMs for high-dimensional systems with
uncoupled uncontrolled dynamics and that latent KL
control is an effective method to near-optimally control
such systems.
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Figure 5: Multi-DOF robot reaching task: Examples of robot trajectories. The arm successfully reaches
the target position while satisfying the joint-limit constraints from several initializations. Green lines show
end-effector trajectories for different initializations. Blue and red lines indicate intermediate and end links.

7 DISCUSSION

We have proposed a novel solution that combines
the KL control framework with probabilistic graphi-
cal models in the infinite horizon, average cost setting.
Our approach learns a coarse, discrete representation
amenable for efficient computation to near-optimally
control continuous-state systems. We have presented
two examples, using hidden Markov models (HMMs)
and factorial HMMs (FHMMs), and we have shown
evidence that our proposed method is feasible in three
robotic tasks. In particular, we have demonstrated
that the second example with FHMMs is scalable to
higher dimensional problems.

The presented latent KL control approach (with
HMMs) resembles the one of Zhong and Todorov
(2011a) which considers an “aggregated” space sim-
ilar to the latent space of the HMM. However, note
that whereas for Zhong and Todorov (2011a) the real
model is required in the observed space, in our case
we learn an approximate model in which observations
are coupled through the latent variables. Their main
computational bottleneck is the “double” numerical
integration over the observed space for computing the
“aggregated” state transition probability. In our case,
we replace such a problem by a probabilistic graphical
model learning problem.

The control performance strongly depends on the qual-
ity of the learned model, which requires choosing a
proper exploration noise and a proper initialization of
the graphical model parameters. Current work is fo-
cused in alternative learning methods that efficiently
sample interesting regions of the state space and ex-
ploit the ergodic nature of the problems. Extension to
more complex scenarios is also being considered.
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