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Abstract

The implication problem for saturated condi-
tional independence statements is studied in the
presence of fixed and undetermined sets of in-
complete random variables. Here, random vari-
ables are termed incomplete since they admit
missing data. Two different notions of implica-
tion arise. In the classic notion of V -implication,
a statement is implied jointly by a set of state-
ments and a fixed set V of random variables.
In the alternative notion of pure implication, a
statement is implied by a given set of state-
ments alone, leaving the set of random vari-
ables undetermined. A first axiomatization for
V -implication is established that distinguishes
purely implied from V -implied statements. Ax-
iomatic, algorithmic and logical characteriza-
tions of pure implication are established. Pure
implication appeals to applications in which the
existence of random variables is uncertain, for
example, when independence statements are in-
tegrated from different sources, when random
variables are unknown or shall remain hidden.

1 INTRODUCTION

The concept of conditional independence (CI) is important
for capturing structural aspects of probability distributions,
for dealing with knowledge and uncertainty in artificial in-
telligence, and for learning and reasoning in intelligent sys-
tems [Darwiche (2009); Dawid (1979); Pearl (1988)]. Ap-
plication areas include natural language processing, speech
processing, computer vision, robotics, computational biol-
ogy, and error-control coding [Darwiche (2009); Halpern
(2005); Niepert et al. (2013)]. Central to these applica-
tions is the implication problem, which is to decide for an
arbitrary set V of random variables, and an arbitrary set
Σ ∪ {φ} of CI statements over V , whether every prob-
ability model that satisfies every element in Σ also sat-

isfies φ. Indeed, non-implied CI statements represent
new opportunities to construct complex probability mod-
els with polynomially many parameters and to efficiently
organize distributed probability computations [Geiger and
Pearl (1993)]. An algorithm for deciding the implication
problem can also test the consistency of independence and
dependence statements collected from different sources;
which is particularly important as these statements often in-
troduce non-linear constraints resulting in unfeasible CSP
instances [Geiger and Pearl (1993); Niepert et al. (2013)].
While the decidability of the implication problem for CI
statements relative to discrete probability measures remains
open, it is not axiomatizable by a finite set of Horn rules
[Studený (1992)] and already coNP-complete for stable CI
statements [Niepert, Van Gucht, and Gyssens (2010)]. An
important subclass are therefore saturated CI (SCI) state-
ments, in which all given random variables occur. In fact,
graph separation and SCI statements enjoy the same ax-
ioms [Geiger and Pearl (1993)], and the implication prob-
lem of SCI statements is decidable in almost linear time
[Galil (1982)]. These results contribute to the success
story of Bayesian networks in AI and machine learning
[Darwiche (2009); Geiger and Pearl (1993)], and have re-
cently been carried over to the presence of missing data
[Link (2013a)]. Here, independence is not judged on con-
ditions that carry missing data. The findings complement
a long line of AI research on the recognized need to reveal
missing data and to explain where they come from, e.g.
[Chickering and Heckerman (1997); Dempster, Laird, and
Rubin (1977); Friedman (1997); Lauritzen (1995); Marlin
et al. (2011); Saar-Tsechansky and Provost (2007); Singh
(1997); Zhu et al. (2007)]. It is important to realize that
implication problems of SCI statements in the presence of
missing data differ from implication problems in the ab-
sence of data. For an illustration, consider a simplified
burglary example. A r(obbery) sets off an a(larm) causing
s(heldon) or b(atman) to call security. The independence
between sb and r, given a, can be stated as the SCI state-
ment I(sb, r|a) over V = {b, a, r, s}. In the absence of
missing data, I(s, b|ar) and I(sb, r|a) together do V -imply
I(s, br|a). With missing data present, however, I(s, b|ar)



and I(sb, r|a) together do not V -imply I(s, br|a):

r a b s P
− true true true 0.5
− true false false 0.5

Here, I(s, b|ar) is satisfied as the assignments on the con-
dition ar involve missing data, represented by −.

Most of the literature on the implication problem for SCI
statements have focused on the notion of implication in
which the underlying set V of random variables is assumed
to be fixed. However, the assumption that V is fixed may
not be practical: for example, the fact that not all random
variables are known yet should not prevent us from declar-
ing some independence statements; or even if we know all
random variables, we may not want to disclose all of them;
or when independence statements are integrated from dif-
ferent sources. Instead, we may want to state that given a,
sb is independent from the set of remaining random vari-
ables, no matter what they are. This statement could be
written as I(sb|a). The intriguing point here is the differ-
ence between declaring I(sb|a) and declaring I(r|a) when
V is left undetermined. In fact, the probability model

r a b s e P
true true − − true 0.5
false true − − false 0.5

satisfies I(sb|a), but does not satisfy I(r|a). We conclude
that I(sb|a) implies I(r|a) for the fixed set V , but I(sb|a)
does not imply I(r|a) when the set of random variables is
left undetermined.

The example illustrates the need to distinguish between dif-
ferent notions of semantic implication. The first notion is
that of V -implication. For example, Link (2013a) estab-
lished an axiomatization UV for the V -implication prob-
lem of SCI statements in the presence of missing data. The
alternative, stronger notion of pure implication leaves the
set of random variables undetermined: the pure implica-
tion problem is to decide for every given set Σ ∪ {φ} of
SCI statements, whether for every probability model π that
involves at least all the random variables in Σ ∪ {φ} and
that satisfies Σ, π also satisfies φ. Pure implication allows
us to use independence statements without knowing all the
random variables. This lowers barriers for their use and
makes them applicable in demanding frameworks where
some variables shall remain unknown for some users and
where we still want to know how complex probability dis-
tributions can be organized efficiently. That is, pure im-
plication enables us to reason under uncertainty about the
random variables, while V -implication does not. For illus-
tration, suppose we want to keep the random variable r hid-
den. Then it is impossible to reason about SCI statements
under the notion of V -implication. With pure implication
we can still state I(sb|a) and I(b|a), and our results show
that we can even conclude I(s|a) from that.

Contribution. In Section 2 we show that the only exist-
ing finite axiomatization UV for the V -implication of SCI
statements cannot distinguish between purely implied and
V -implied SCI statements. That is, there are purely implied
SCI statements for which every inference by UV applies the
V -symmetry rule; giving incorrectly the impression that
the pure implication of an SCI statement depends on V . In
Section 3 we establish a finite axiomatization CV such that
every purely implied SCI statement can be inferred without
any application of the V -symmetry rule; every V -implied
SCI statement can be inferred with only a single applica-
tion of the V -symmetry rule, and this application is done
in the last step of the inference. In Section 4 we establish
a finite axiomatization C for the pure implication of SCI
statements. As C results from CV by removal of the sym-
metry rule, the results show that the symmetry rule is only
necessary to infer those SCI statements that are V -implied
but not implied. In Section 5, pure implication is character-
ized by V -implication where V involves random variables
that do not occur in any of the given SCI statements. In
Sections 6, 7 and 8 this result is exploited to characterize
the pure implication problem i) logically by a propositional
fragment under interpretations by Levesque’s situations, ii)
by multivalued database dependencies involving missing
data, and iii) by an algorithm that decides pure implication
in almost linear time. Related work is discussed in Section
9. We conclude in Section 10.

2 IMPLICATION UNDER FIXED SETS
OF RANDOM VARIABLES

We summarize the semantics of CI statements in the pres-
ence of missing data from Link (2013a). A definition is
given that embodies the ability of an axiomatization to
separate V -implied from purely implied SCI statements.
It is shown that the existing axiomatization UV for V -
implication from Link (2013a) does not have this ability.

We denote by V a countably infinite set of distinct sym-
bols {v1, v2, . . .} of random variables. A domain mapping
is a mapping that associates a set, dom(vi), with each ran-
dom variable vi of a finite set V ⊆ V. This set is called
the domain of vi and each of its elements is a data value
of vi. We assume that each domain dom(vi) contains the
element −, which we call the marker. Although we use
the element − like any other data value, we prefer to think
of − as a marker, denoting that no information is currently
available about the data value of vi. The interpretation of
this marker as no information means that a data value does
either not exist (known as a structural zero in statistics, and
the null marker inapplicable in databases), or a data value
exists but is currently unknown (known as a sampling zero
in statistics, and the null marker applicable in databases).
The disadvantage of using this interpretation is a loss in
knowledge when representing data values known to not



exist, or known to exist but currently unknown. This in-
terpretation overcomes the computational difficulties when
more expressive interpretations of missing data are used.
As another key advantage one can represent missing data
values, even if it is unknown whether they do not exist, or
exist but are currently unknown. Strictly speaking, we shall
call such random variables incomplete as their data val-
ues may be missing. For simplicity, we continue to speak
off random variables for the remainder of this paper, al-
though we really do mean incomplete random variables.
For X = {v1, . . . , vk} ⊆ V we say that a is an assignment
of X , if a ∈ dom(v1)× · · · × dom(vk). For an assignment
a of X we write a(y) for the projection of a onto Y ⊆ X .
We say that a = (a1, . . . ,ak) is X-complete, if ai ̸= − for
all i = 1, . . . , k.

A probability model over a finite set V = {v1, . . . , vn} of
random variables is a pair (dom, P ) where dom is a domain
mapping that maps each vi to a finite domain dom(vi), and
P : dom(v1) × · · · × dom(vn) → [0, 1] is a probability
distribution having the Cartesian product of these domains
as its sample space.

The expression I(Y, Z|X) where X,Y and Z are disjoint
subsets of V is called a conditional independence (CI)
statement over V . The set X is called the condition of
I(Y,Z|X). If XY Z = V , we call I(Y, Z|X) a saturated
CI (SCI) statement. Let (dom, P ) be a probability model
over V . Following Link (2013a), a CI statement I(Y,Z|X)
is said to hold for (dom, P ) if for every complete assign-
ment x of X , and for every assignment y, z of Y and Z,
respectively,

P (x,y, z) · P (x) = P (x,y) · P (x, z). (1)

Equivalently, (dom, P ) is said to satisfy I(Y,Z|X).

The satisfaction of I(Y, Z|X) requires Equation 1 to hold
for complete assignments x of X only. The reason is that
the independence between an assignment y and an assign-
ment z is conditional on the assignment x. Indeed, in case
there is no information about the assignment x, then there
should not be any requirement on the independence be-
tween y and z.

SCI statements interact with one another, and these interac-
tions have been formalized by the following notion of se-
mantic implication. Let Σ∪{φ} be a set of SCI statements
over V . We say that Σ V -implies φ, denoted by Σ |=V φ,
if every probability model over V that satisfies every SCI
statement σ ∈ Σ also satisfies φ. The V -implication prob-
lem is the following problem.

PROBLEM: V -implication problem
INPUT: Set V of random variables

Set Σ ∪ {φ} of SCI statements over V
OUTPUT: Yes, if Σ |=V φ; No, otherwise

For Σ we let Σ∗
V = {φ | Σ |=V φ} be the semantic closure

Table 1: Axiomatization U under Incomplete RVs

I(V −X, ∅|X)

I(Y, Z|X)

I(Z, Y |X)
(triviality, T ′) (symmetry, S)

I(Y Z,UW |X) I(Y U,ZW |X)

I(Y ZU,W |X)

I(Y,ZW |X)

I(Y,Z|XW )
(algebra, A′) (weak union, W ′)

of Σ, i.e., the set of all SCI statements V -implied by Σ. In
order to determine the V -implied SCI statements we use
a syntactic approach by applying inference rules. These
inference rules have the form

premises
conclusion

and inference rules without any premises are called axioms.
An inference rule is called V -sound, if the premises of the
rule V -imply the conclusion of the rule. We let Σ ⊢R φ
denote the inference of φ from Σ by the set R of inference
rules. That is, there is some sequence γ = [σ1, . . . , σn] of
SCI statements such that σn = φ and every σi is an element
of Σ or results from an application of an inference rule in
R to some elements in {σ1, . . . , σi−1}. For Σ, let Σ+

R =
{φ | Σ ⊢R φ} be its syntactic closure under inferences
by R. A set R of inference rules is said to be V -sound
(V -complete) for the V -implication of SCI statements, if
for every V and for every set Σ of SCI statements over V ,
we have Σ+

R ⊆ Σ∗
V (Σ∗

V ⊆ Σ+
R). The (finite) set R is said

to be a (finite) axiomatization for the V -implication of SCI
statements if R is both V -sound and V -complete.

Table 1 contains the set U = {T ′,S,A′,W ′} of inference
rules that form a finite axiomatization for the V -implication
of SCI statements under incomplete random variables, as
established in Link (2013a).

Motivated by the introductory remarks we now write
I(Y |X) instead of writing I(V − XY, Y |X) for an SCI
statement over V . It is first shown that the system UV =
{T ,S,A,W} from Table 2 forms a finite axiomatization
for the V -implication of such SCI statements under incom-
plete random variables.

Proposition 1 UV is a finite axiomatization for the V -
implication of SCI statements under incomplete random
variables.

Proof Let V ⊆ V be a finite set of random variables.
Let Σ = {I(Y1|X1), . . . , I(Yn|Xn)} and φ = I(Y |X)
be a (set of) SCI statement(s) over V . We can show by
an induction over the inference length that Σ ⊢UV

φ if



Table 2: Axiomatization UV under Incomplete RVs

I(∅|X)

I(Y |X)

I(V −XY |X)
(triviality, T ) (V-symmetry, SV )

I(Y |X) I(Z|X)

I(Y Z|X)

I(Y |X)

I(Y − Z|XZ)
(union, U) (weak union, W)

and only if Σ′ = {I(Y1, V − X1Y1|X1), . . . , I(Yn, V −
XnYn|Xn)} ⊢U I(V − XY, Y |X). Hence, the V -
soundness (V -completeness) of UV follows from the the
V -soundness (V -completeness) of U.

Example 2 Consider Σ = {I(sb|a), I(b|a)} and φ =
I(s|a) as a (set of) SCI statement(s) over V = {b, a, r, s}.
Then Σ |=V φ as we can show, for example, by the follow-
ing inference:

I(sb|a)
SV : I(r|a) I(b|a)
U : I(rb|a)
SV : I(s|a)

.

However, since the inference applies the V -symmetry rule
it is not clear whether φ is implied by Σ alone, that is,
whether it is true that for all V ′ that include at least a, s, b it
holds that Σ |=V ′ φ. In fact, if we were to find an inference
of φ from Σ by UV that never applies the V -symmetry rule
SV , then we would know that φ is not only V -implied by Σ
but even implied by Σ alone.

The last example motivates the following definition. It ad-
dresses the property of an inference system to first infer all
those SCI statements implied by a set of SCI statements
alone, without any application of the symmetry rule, and,
subsequently, apply the V -symmetry rule once to some of
these SCI statements to infer all V -implied SCI statements
that do depend on the underlying set V of random variables.

Definition 3 Let SV denote a set of inference rules that is
V -sound for the V -implication of SCI statements, and in
which the V -symmetry rule SV is the only inference rule
that is dependent on V . We say that SV is conscious of
pure implication, if for every V , and every set Σ ∪ {φ}
of SCI statements over V such that φ is V -implied by Σ
there is some inference of φ from Σ by SV such that the
V -symmetry rule SV is applied at most once, and, if it is
applied, then it is applied in the last step of the inference
only.

Example 2 and Definition 3 motivate the question if UV is
conscious of pure implication.

Theorem 4 UV is not conscious of pure implication.

Proof Let V = {b, a, r, s} and Σ = {I(b|a), I(bs|a)}.
One can show that I(s|a) /∈ Σ+

{T ,W,U}. Moreover, for all
Y such that r ∈ Y , I(Y |a) /∈ Σ+

{T ,W,U}, see Lemma
10 from Section 4. However, I(s|a) ∈ Σ+

UV
as shown

in Example 2. Consequently, in any inference of I(s|a)
from Σ by UV the V -symmetry rule SV must be applied
at least once, but is not just applied in the last step as
r ∈ V − {b, a, s}.

In view of Theorem 4 it is natural to ask whether there is
any axiomatization that is conscious of pure implication.

3 GAINING CONSCIOUSNESS

Theorem 4 has shown that axiomatizations are, in general,
not conscious of pure implication. We will now establish
a finite conscious axiomatization for the V -implication of
SCI statements under incomplete random variables. For
this purpose, we consider the difference rule D as a new
V -sound inference rule:

I(Y |X) I(Z|X)

I(Y − Z|X)
.

The V -soundness of the difference rule D follows easily
from the algebra rule A′.

Theorem 5 Let Σ be a set of SCI statements over V .
For every inference γ from Σ by the system UV =
{T ,SV ,U ,W} there is an inference ξ from Σ by the sys-
tem CV = {T ,SV ,U ,W,D} such that
1. γ and ξ infer the same SCI statement,
2. SV is applied at most once in ξ,
3. if SV is applied in ξ, then as the last rule.

Proof The proof is done by induction on the length l of γ.
For l = 1, the statement ξ := γ has the desired properties.
Suppose for the remainder of the proof that l > 1, and let
γ = [σ1, . . . , σl] be an inference of σl from Σ by UV . We
distinguish between four different cases according to how
σl is obtained from [σ1, . . . , σl−1].

Case 1. σ1 is obtained from the triviality axiom T , or is
an element of Σ. In this case, ξ := [σl] has the desired
properties.

Case 2. We obtain σl by an application of the weak union
rule W to a premise σi with i < l. Let ξi be obtained by ap-
plying the induction hypothesis to γi = [σ1, . . . , σi]. Con-
sider the inference ξ := [ξi, σl]. If in ξi the V -symmetry
rule SV is not applied, then ξ has the desired properties.
If in ξi the SV is applied as the last rule, then the last two
steps in ξ are of the following form:

I(Y |X)

SV : I(V −XY |X)

W : I(V −XY Z|XZ)
.



However, these steps can be replaced as follows:

I(Y |X)

W : I(Y − Z|XZ)
SV : I(V −XY Z|XZ)

.

The resulting inference has the desired properties.

Case 3. We obtain σl by an application of the union rule
U to premises σi and σj with i, j < l. Let ξi and ξj
be obtained by applying the induction hypothesis to γi =
[σ1, . . . , σi] and γj = [σ1, . . . , σj ], respectively. Consider
the inference ξ := [ξi, ξj , σl]. We distinguish between four
cases according to the occurrence of the V -symmetry rule
SV in ξi and ξj .

Case 3.1. If SV does not occur in ξi nor in ξj , then ξ has
the desired properties.

Case 3.2. If SV occurs in ξi as the last rule but does not
occur in ξj , then the last step of ξi and the last step of ξ are
of the following form:

I(Y |X)

SV : I(V −XY |X) I(Z|X)

U : I((V −XY )Z|X)

.

However, these steps can be replaced as follows:

I(Y |X) I(Z|X)

D : I(Y − Z|X)

SV : I(V − ((Y − Z)X)︸ ︷︷ ︸
=(V−XY )Z

|X)
.

The resulting inference has the desired properties.

Case 3.3. If SV occurs in ξj as the last rule but does not
occur in ξi, then the last step of ξj and the last step of ξ are
of the following form:

I(Z|X)

I(Y |X) SV : I(V −XZ|X)

U : I((V −XZ)Y |X)

.

However, these steps can be replaced as follows:

I(Z|X) I(Y |X)

D : I(Z − Y |X)

SV : I(V − ((Z − Y )X)︸ ︷︷ ︸
=(V−XZ)Y

|X)
.

The resulting inference has the desired properties.

Case 3.4. If SV occurs in ξi as the last rule and occurs in
ξj as the last rule, then the last steps of ξi and ξj and the
last step of ξ are of the following form:

I(Y |X) I(Z|X)

SV : I(V −XY |X) SV : I(V −XZ|X)

U : I((V −XY )(V −XZ)|X)

.

However, these steps can be replaced as follows:

I(Y |X) I(Z|X)

I(Y |X) D : I(Y − Z|X)

D : I(Y − (Y − Z)︸ ︷︷ ︸
=Y ∩Z

|X)

SV : I(V − ((Y ∩ Z)X)︸ ︷︷ ︸
=(V−XY )(V−XZ)

|X)

.

The resulting inference has the desired properties.

Case 4. We obtain σl by an application of the V -symmetry
rule SV to a premise σi with i < l. Let ξi be obtained
by applying the induction hypothesis to γi = [σ1, . . . , σi].
Consider the inference ξ := [ξi, σl]. If in ξi the V -
symmetry rule SV is not applied, then ξ has the desired
properties. If in ξi the V -symmetry rule SV is applied as
the last rule, then the last two steps in ξ are of the following
form.

I(Y |X)

SV : I(V −XY |X)

SV : I(V − (V −XY )X︸ ︷︷ ︸
=Y

|X)

The inference obtained from deleting these steps has the
desired properties.

Example 6 Recall Example 2 where V = {b, a, r, s}, Σ =
{I(sb|a), I(b|a)} and φ = I(s|a). While the inference of φ
from Σ using UV in Example 2 showed that Σ |=V φ holds,
it did leave open the question whether Σ purely implies φ.
Indeed, no inference of φ from Σ by UV can provide this
insight by Theorem 4. However, using CV we can obtain
the following inference of φ from Σ:

I(sb|a) I(b|a)
D : I(s|a) .

Indeed, the V -symmetry rule SV is unnecessary to infer φ
from Σ.

Examples 2 and 6 indicate that the implication of I(s|a)
by Σ = {I(sb|a), I(b|a)} does not depend on the fixed
set V of random variables. In what follows we will for-
malize the stronger notion of pure implication as moti-
vated in the introduction. Theorem 5 shows that the set
C := CV − {SV } of inference rules is nearly V -complete
for the V -implication of SCI statements under incomplete
random variables.

Theorem 7 Let Σ ∪ {I(Y |X)} be a set of SCI state-
ments over the set V of incomplete random variables.
Then I(Y |X) ∈ Σ+

CV
if and only if I(Y |X) ∈ Σ+

C or
I(V −XY |X) ∈ Σ+

C .

Theorem 7 indicates that C can infer every implied SCI
statement that is independent from the set V of incomplete



random variables. Another interpretation of Theorem 7 is
the following. In using C to infer V -implied statements,
the fixation of V can be deferred until the last step of an
inference.

4 PURE IMPLICATION

In this section we formalize the notion of pure implication
as motivated in the introduction. It is shown that the set
C of inference rules forms a finite axiomatization for pure
implication. On the one hand, this allows us to distinguish
between V -implied and purely implied statements. On the
other hand, the notion of pure implication can be applied
whenever this notion of implication is more convenient to
use, for examples, when there is uncertainty about addi-
tional random variables that may be required in the future,
when some variables are unknown, or when some variables
are meant to remain hidden.

A probability model is a triple (V, dom, P ) where V =
{v1, . . . , vn} ⊆ V is a finite set of incomplete random vari-
ables, dom is a domain mapping that maps each vi to a finite
domain dom(vi), and P : dom(v1)×· · ·×dom(vn) → [0, 1]
is a probability distribution having the Cartesian product of
these domains as its sample space. The expression I(Y |X)
where X and Y are finite, disjoint subsets of V is called
a saturated conditional independence (SCI) statement. We
say that the SCI statement I(Y |X) holds for (V, dom, P ) if
XY ⊆ V and for every complete assignment x ofX , every
assignment y of Y , and every assignment z of V − XY ,
respectively,

P (x,y, z) · P (x) = P (x,y) · P (x, z).

Equivalently, (V, dom, P ) is said to satisfy I(Y |X). For
an SCI statement σ = I(Y |X) let Vσ := XY , and for a
finite set Σ of SCI statements let VΣ :=

∪
σ∈Σ Vσ denote

the random variables that occur in it.

Definition 8 Let Σ ∪ {φ} be a finite set of SCI statements.
We say that Σ purely implies φ, denoted by Σ |= φ, if and
only if every probability model (V, dom, P ) with VΣ∪{φ} ⊆
V that satisfies every SCI statement σ ∈ Σ also satisfies φ.

In the definition of pure implication the set of incomplete
random variables is left undetermined. The only require-
ment is that the SCI statements must apply to the proba-
bility model. The pure implication problem for SCI state-
ments can be stated as follows.

PROBLEM: Pure Implication Problem
INPUT: Set Σ ∪ {φ} of SCI statements
OUTPUT: Yes, if Σ |= φ; No, otherwise

Pure implication is stronger than V -implication.

Table 3: Axiomatization C for Pure Implication

I(∅|X)

I(Y |X)

I(Y − Z|XZ)
(triviality, T ) (weak union, W)

I(Y |X) I(Z|X)

I(Y Z|X)

I(Y |X) I(Z|X)

I(Y − Z|X)
(union, U) (difference, D)

Proposition 9 Let Σ∪{φ} be a finite set of SCI statements,
such that VΣ∪{φ} ⊆ V . If Σ |= φ, then Σ |=V φ, but the
other direction may fail.

Proof The first statement follows directly from the defini-
tions of pure and V -implication. For the other direction,
let V = {b, a, r, s}, Σ = {I(r|a)} and let φ be I(sb|a).
Clearly, Σ V -implies φ. However, Σ does not purely imply
φ as the example from the introduction shows.

Soundness and completeness for pure implication are de-
fined as their corresponding notions in the context of some
fixed set V by dropping the reference to V . While trivial-
ity axiom T , weak union rule W , and union rule U are all
sound, the V -symmetry rule SV is V -sound but not sound.

We shall now prove that C forms a finite axiomatization for
the pure implication of SCI statements. For this purpose,
we prove two lemmata in preparation. The correctness of
the first lemma can easily be observed by inspecting the
inference rules in C. For each of the rules, every random
variable that occurs on the left-hand side of the bar in the
conclusion of the rule, already appears on the left-hand side
of the bar in at least one premise of the rule.

Lemma 10 Let Σ = {I(Y1|X1), . . . , I(Yn|Xn)} be a fi-
nite set of SCI statements. If I(Y |X) ∈ Σ+

C , then Y ⊆
Y1 ∪ . . . ∪ Yn.

For the next lemma one may notice that the random vari-
ables that do not occur in VΣ can always be introduced in
the last step of an inference, by applying the weak union
rule W .

Lemma 11 Let Σ be a finite set of SCI statements. If
I(Y |X) ∈ Σ+

C , then there is an inference γ = [σ1, . . . , σl]
of I(Y |X) from Σ by C such that every attribute occurring
in σ1, . . . , σl−1 is an element of VΣ.

Proof Define W := VΣ and let ξ̄ :=
[I(V1|U1), . . . , I(Vl−1|Ul−1)] be an inference of I(Y |X)
from Σ by C. Consider the sequence

ξ := [I(V1 ∩W |U1 ∩W ), . . . , I(Vl−1 ∩W |Ul−1 ∩W )] .



We claim that ξ is an inference of I(Y ∩W |X ∩W ) from
Σ by C. For if I(Vi|Ui) is an element of Σ or was ob-
tained by an application of the triviality axiom T , then
I(Y ∩ W |X ∩ W ) = I(Y |X). One can verify that if
I(Vi|Ui) is the result of applying one of the rules U ,W,D,
then I(Vi∩W |Ui∩W ) is the result of the same rule applied
to the corresponding premises in ξ.

Now by Lemma 10 we know that Y ⊆W , hence Y ∩W =
Y . However, this means that we can infer I(Y |X) from
I(Y ∩W |X∩W ) by a single application of the weak union
rule W:

I(Y ∩W |X ∩W )

I((Y ∩W )−X︸ ︷︷ ︸
=Y

| (X ∩W ) ∪X︸ ︷︷ ︸
=X

)
.

Hence, the inference [ξ, I(Y |X)] has the desired proper-
ties.

We are now prepared to prove the following result.

Theorem 12 The set C = {T ,W,U ,D} forms a finite ax-
iomatization for the pure implication of SCI statements un-
der incomplete random variables.

Proof Let Σ = {I(Y1|X1), . . . , I(Yn|Xn)} be a finite set
of SCI statements and I(Y |X) an SCI statement. We have
to show that

I(Y |X) ∈ Σ∗ if and only if I(Y |X) ∈ Σ+
C .

Let T := X ∪ Y ∪ VΣ. In order to prove the soundness of
C we assume that I(Y |X) ∈ Σ+

C holds. Let (V, dom, P ) be
a probability model that satisfies every element of Σ, and
where T ⊆ V holds. We must show that (V, dom, P ) also
satisfies I(Y |X). According to Lemma 11 there is an infer-
ence γ of I(Y |X) from Σ by C such that U ∪W ⊆ T ⊆ V
holds for each SCI statement I(W |U) that occurs in γ.
Since each rule in C is sound we can conclude (by induc-
tion) that each SCI statement occurring in γ is satisfied by
(V, dom, P ). In particular, (V, dom, P ) satisfies I(Y |X).

In order to prove the completeness of C we assume that
I(Y |X) /∈ Σ+

C . Let V ⊆ V be a finite set of ran-
dom variables such that T is a proper subset of V , i.e.,
T ⊂ V . Consequently, V − XY is not a subset of T .
Hence, by Lemma 10, I(V − XY |X) /∈ Σ+

C . Now from
I(Y |X) /∈ Σ+

C and from I(V − XY |X) /∈ Σ+
C we con-

clude that I(Y |X) /∈ Σ+
CV

by Theorem 7. Since CV is
V -complete for the V -implication of SCI statements it fol-
lows that Σ does not V -imply I(Y |X). Hence, Σ does not
purely imply I(Y |X) by Proposition 9.

Example 13 Recall Example 6 where V = {b, a, r, s},
and Σ consists of the two SCI statements I(bs|a) and
I(b|a). The inference of I(s|a) from Σ by CV in Exam-
ple 6 is actually an inference by C. Hence, I(s|a) is purely
implied by Σ, as one would expect intuitively.

5 PURE AND V -IMPLICATION

Instances Σ |= φ of the pure implication problem can be
characterized by the instance Σ |=V φ of the V -implication
problem for any set V of incomplete random variables that
properly contains VΣ∪{φ}.

Theorem 14 Let Σ∪{φ} be a set of SCI statements. Then
the following are equivalent:
1. Σ |= φ
2. for some V such that VΣ∪{φ} ⊂ V , Σ |=V φ
3. for all V such that VΣ∪{φ} ⊂ V , Σ |=V φ

Proof It is clear that 3. entails 2. Let φ = I(Y |X), and let
V be any finite set of random variables such that VΣ∪{φ} ⊂
V . If 2. holds, then Theorem 7 and Theorem 12 show
that 1. holds or Σ ⊢C I(V − XY |X) holds. However,
Lemma 10 shows that the latter condition cannot hold as
V −XY contains some random variable that does not occur
in VΣ. Hence, 2. entails 1. If 1. holds, then Theorem 7 and
Theorem 12 show that 3. holds as well.

Example 15 Σ = {I(bs|a), I(b|a)} purely implies I(s|a)
as, for instance, Σ |=V I(s|a) for V = {b, a, r, s}.
Σ′ = {I(bs|a)} does not purely imply I(r|a) as for V =
{b, e, a, r, s}, Σ′ does not V -imply I(r|a) as witnessed in
the introduction.

In the following we apply Theorem 14 to establish charac-
terizations of pure implication in terms of logical formulae
under Levesque’s situations, database dependencies, and
algorithmic solutions. For a set Σ ∪ {φ} of SCI statements
we write Vc = VΣ∪{φ} ∪ {v0} for some v0 /∈ VΣ∪{φ},
σc = I(Vc −XY, Y |X) for σ = I(Y |X) ∈ Σ ∪ {φ} and
Σc = {σc | σ ∈ Σ}. In particular, Σ |= φ if and only if
Σc |=Vc φc.

6 LEVESQUE’S SITUATIONS

We recall the framework for situations from Levesque
(1989), and exploit them to establish a logical characteri-
zation of the pure implication problem.

For a finite set L of propositional variables, let L∗ de-
note the propositional language over L, generated from the
unary connective ¬ (negation), and the binary connectives
∧ (conjunction) and ∨ (disjunction). Elements of L∗ are
also called formulae of L, and usually denoted by φ′, ψ′ or
their subscripted versions. Sets of formulae are denoted by
Σ′. We omit parentheses if this does not cause ambiguity.

Let Lℓ denote the set of all literals over L, i.e., Lℓ =
L ∪ {¬v′ | v′ ∈ L}. A situation of L is a total function
ω : Lℓ → {F,T} that does not map both a propositional
variable v′ ∈ L and its negation ¬v′ to F. That is, we must
not have ω(v′) = F = ω(¬v′) for any v′ ∈ L.



A situation ω : Lℓ → {F,T} of L can be lifted to a total
function Ω : L∗ → {F,T}. Assuming φ′ is in Negation
Normal Form, this lifting is defined by:
- Ω(φ′) = ω(φ′), if φ′ ∈ Lℓ,
- Ω(φ′ ∨ ψ′) = T iff Ω(φ′) = T or Ω(ψ′) = T,
- Ω(φ′ ∧ ψ′) = T iff Ω(φ′) = T and Ω(ψ′) = T.
A situation ω is a model of a set Σ′ of L-formulae if and
only if Ω(σ′) = T holds for every σ′ ∈ Σ′. We say that
Σ′ implies an L-formula φ′, denoted by Σ′ |=L φ′, if and
only if every situation that is a model of Σ′ is also a model
of φ′.

Equivalences. Let ϕ : Vc → Lc denote a bijection between
a set Vc of random variables and the set Lc = {v′ | v ∈ V }
of propositional variables. We extend ϕ to a mapping Φ
from the set of SCI statements over Vc to the set L∗

c . For
an SCI statement I(Y, Z | X) over Vc, let Φ(I(Y, Z | X))
denote ∨

v∈X

¬v′ ∨

(∧
v∈Y

v′

)
∨

(∧
v∈Z

v′

)
.

Disjunctions over zero disjuncts are F and conjunctions
over zero conjuncts are T. We will denote Φ(φc) = φ′

c

and Φ(Σc) = {Φ(σc) | σ ∈ Σc} = Σ′
c.

In our example, for φc = I(bse, r | a) we have φ′
c =

¬a′ ∨ (b′ ∧ s′ ∧ e′) ∨ r′, and for Σc = {I(re, bs | a)} we
have Σ′

c = {¬a′ ∨ (b′ ∧ s′) ∨ (r′ ∧ e′)}.

It was shown in Link (2013a) that for any set Σc ∪ {φc}
of SCI statements over Vc there is a probability model
π = (dom, P ) over Vc that satisfies Σc and violates φc if
and only if there is a situation ωπ over Lc that is a model of
Σ′

c but not a model of φ′
c. For arbitrary probability models

π it is not obvious how to define the situation ωπ . However,
if Σc does not Vc-imply φc, then there is a special proba-
bility model π = (dom, {a1,a2}) over Vc that i) has two
assignments a1, a2 of probability one half each, ii) satisfies
all SCI statements in Σc and iii) violates φc. Given such π,
let ωπ denote the following special situation of Lc, taken
from Link (2013a):

ωπ(v
′) =

{
T , if a1(v) = a2(v)
F , otherwise , and

ωπ(¬v′) =

 T , if a1(v) = µ = a2(v) or
a1(v) ̸= a2(v)

F , otherwise
.

From the results in Link (2013a) and Theorem 14 we obtain
the following logical characterization of pure implication.

Theorem 16 Let Σ∪ {φ} be a finite set of SCI statements
and Lc = {v′ | v ∈ VΣ∪{φ} ∪ {v0}}. Then Σ |= φ if and
only if Σ′

c |=Lc φ
′
c.

Proof Theorem 14 shows that Σ |= φ if and only if

Σc |=Vc φc for Vc = VΣ∪{φ} ∪ {v0}. By (Link, 2013a,
Thm.6), Σc |=Vc φc if and only if Σ′

c |=Lc φ
′
c.

Recall that Σ = {I(sb | a)} does not purely imply φ =
I(s, br | a) as the special probability model π defined by

r a b s e P
true true − − true 0.5
false true − − false 0.5

satisfies Σc, but violates φc. Any special situation where
ωπ(b

′) = T = ωπ(s
′), ωπ(¬a′) = ωπ(r

′) = ωπ(e
′) = F

is a model of Σ′
c = {¬a′ ∨ (b′ ∧ s′) ∨ (r′ ∧ e′)}, but not a

model of φ′
c = ¬a′ ∨ (b′ ∧ s′ ∧ e′) ∨ r′.

7 DATABASE DEPENDENCIES

Database dependencies enforce the semantics of applica-
tion domains in database systems [Link (2001)]. Let A =
{v̂1, v̂2, . . .} be an infinite set of distinct symbols, called
attributes. A relation schema is a finite non-empty sub-
set R of A. Each attribute v̂ ∈ R has an infinite domain
dom(v̂). In order to encompass missing data values the
domain of each attribute contains the null marker −. The
intention of − is to mean “no information” [Lien (1982)].
A tuple over R is a function t : R →

∪
v̂∈R dom(v̂) with

t(v̂) ∈ dom(v̂) for all v̂ ∈ R. For X ⊆ R let t(X)
denote the restriction of t to X . A relation r over R is
a finite set of tuples over R. For a tuple t over R and
a set X ⊆ R, t is said to be X-total, if for all v̂ ∈ X ,
t(v̂) ̸= −. A relation over R is a total relation, if it is R-
total. A multivalued dependency (MVD) over R is a state-
ment X � Y where X and Y are disjoint subsets of R
[Lien (1982)]. The MVD X � Y over R is satisfied by
a relation r over R if and only if for all t1, t2 ∈ r the fol-
lowing holds: if t1 and t2 are X-total and t1(X) = t2(X),
then there is some t ∈ r such that t(XY ) = t1(XY ) and
t(X(R − XY )) = t2(X(R − XY )). Thus, the relation
r satisfies X � Y when every X-total value determines
the set of values on Y independently of the set of values on
R − Y . For a set Σ̂ ∪ {φ̂} of MVDs over R, Σ̂ R-implies
φ̂, denoted by Σ̂ |=R φ̂, if and only if every relation over
R that satisfies all elements in Σ̂ also satisfies φ̂.

For a set Σc ∪ {φc} of SCI statements over Vc one may
associate the set Σ̂c ∪ {φ̂c} of MVDs over Rc := {v̂ |
v ∈ Vc}, where σ̂c = X � Y for σc = I(Y,Z|X) and
Σ̂c = {σ̂c | σ ∈ Σc}.

Theorem 17 Let Σ ∪ {φ} be a finite set of SCI statement.
Then Σ |= φ if and only if Σ̂c |=Rc φ̂c.

Proof Theorem 14 shows that Σ |= φ if and only if
Σc |=Vc φc for Vc = VΣ∪{φ} ∪ {v0}. By (Link, 2013a,
Thm.8), Σc |=Vc φc if and only if Σ̂c |=Rc φ̂c.
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(Link, 2013a, Thm. 7) shows that Σc |=Vc φc for φc =
I(Z, Y |X) holds if and only if Σc[X] |=Vc φc holds clas-
sically, that is, when no domain contains the marker. Here,
Σc[X] := {I(V,W |U) | I(V,W |U) ∈ Σc∧U ⊆ X}. The
independence basis IDepBΣc[X](X) consists of the mini-
mal Y ⊆ Vc − X such that Σc[X] |=Vc

I(Z, Y |X). By
(Link, 2013a, Thm. 8), Σ |= φ if and only if ˆΣc[X] |=Rc

φ̂c, that is, every total relation over Rc that satisfies ˆΣc[X]
also satisfies φ̂c. Galil (1982) gave an efficient algorithmic
solution to the latter problem.

Theorem 18 Using the algorithm in Galil (1982), the pure
implication problem Σ |= I(Y |X) can be decided in time
O(|Σc|+min{kΣc[X], log p̄Σc[X]}×|Σc[X]|). Herein, |Σc|
denotes the total number of random variables in Σc, kΣc[X]

denotes the cardinality of Σc[X], and p̄Σc[X] denotes the
number of sets in IDepBΣc[X](X) that have non-empty in-
tersection with Y .

9 RELATED WORK

Dawid (1979) first investigated fundamental properties of
conditional independence, leading to a claim that “rather
than just being another useful tool in the statistician’s
kitbag, conditional independence offers a new language
for the expression of statistical concepts and a frame-
work for their study”. Geiger and Pearl (1993) have sys-
tematically investigated the implication problem for frag-
ments of CI statements over different probability mod-
els. In particular, they have established an axiomatiza-
tion of SCI statements by a finite set of Horn rules. Stu-
dený (1992) showed that no axiomatization by a finite set
of Horn rules exists for general CI statements. Niepert,
Van Gucht, and Gyssens (2010) established an axiomati-
zation for stable CI statements, which subsume SCI state-
ments, and showed that their associated implication prob-
lem is coNP-complete. Independently, database theory has
investigated the concept of embedded multivalued depen-
dencies (MVDs) whose implication problem is undecidable
[Herrmann (1995)] and not axiomatizable by a finite set of
Horn rules [Stott Parker Jr. and Parsaye-Ghomi (1980)].
Studený (1992) also showed that the implication problem
of embedded MVDs and that of CI statements do not co-
incide. In contrast, the implication problems of MVDs,
SCI statements and some fragement of Boolean proposi-
tional logic all coincide [Geiger and Pearl (1993); Sagiv
et al. (1981); Wong, Butz, and Wu (2000)]. These find-
ings have been established for the notion of implication
over fixed sets of variables and the idealized case where all
data values are known. Biskup, Hartmann, and Link (2012)
differentiated between V -implication and pure implication
for SCI statements with complete random variables only,
applying ideas from database theory in Biskup (1980) and

Link (2012). In the case of missing data, equivalences be-
tween implication problems for MVDs with null markers,
SCI statements with incomplete random variables, and a
fragment of propositional logic under Levesque’s situations
were established recently in Link (2013a) and Hartmann
and Link (2012). However, the notion of pure implication
for conditional independence statements has not been stud-
ied yet in the context of missing data.

10 CONCLUSION

Recently, probabilistic conditional independence state-
ments were studied in the presence of incomplete random
variables, which admit missing data values. The associated
implication problem for saturated CI statements was char-
acterized axiomatically by a finite set UV of Horn rules,
logically by a propositional fragment under interpretations
by Levesque’s situations, and algorithmically by an equiva-
lence to database dependencies. In this paper it was shown
that there is a difference between SCI statements V -implied
jointly by a given set of SCI statements and a fixed set V of
incomplete random variables, and those purely implied by
a given set of SCI statements alone. It was shown that UV

cannot separate V -implied from purely implied SCI state-
ments. An axiomatization CV was then established that can
infer any purely implied SCI statement without applica-
tions of the V -symmetry rule SV , and infer any V -implied
SCI statement with a single application of SV in the very
last step of the inference only. The system C that results
from CV by removing SV was proven to from a finite ax-
iomatization for the stronger notion of pure implication.
The pure implication problem Σ |= φ was characterized
by the V -implication problem Σ |=V φ for sets V that
properly contain the random variables that occur Σ ∪ {φ}.
This result enabled us to characterize pure implication log-
ically and algorithmically as well. Our results clarify the
role of the V -symmetry rule SV as a pure means to infer
V -implied SCI statements. The notion of pure implica-
tion is appealing when the existence of random variables
is uncertain, for example, when independence statements
are integrated from different sources, when random vari-
ables are unknown or when they shall remain hidden. It is
future work to extend the findings of this paper to the gen-
eral case where an arbitrary finite set S of complete random
variables can be specified, thereby, covering the current set-
ting by the case where S = ∅ and the classical setting by
the case where every random variable is complete. This
would extend the work in Link (2013b) where the notion
of pure implication was not considered.
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