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Abstract

Consider the classical problem of predicting the
next bit in a sequence of bits. A standard
performance measure is regret (loss in payoff)
with respect to a set of experts. For exam-
ple if we measure performance with respect to
two constant experts one that always predicts
0’s and another that always predicts 1’s it is
well known that one can get regret O(

√
T ) with

respect to the best expert by using, say, the
weighted majority algorithm [LW89]. But this
algorithm does not provide performance guaran-
tee in any interval. There are other algorithms
(see [BM07, FSSW97, Vov99]) that ensure regret
O(
√
x log T ) in any interval of length x. In this

paper we show a randomized algorithm that in an
amortized sense gets a regret of O(

√
x) for any

interval when the sequence is partitioned into in-
tervals arbitrarily. We empirically estimated the
constant in the O() for T upto 2000 and found it
to be small – around 2.1. We also experimentally
evaluate the efficacy of this algorithm in predict-
ing high frequency stock data.

∗This work was done while this author was at Microsoft Re-
search.

1 INTRODUCTION

Consider the following classical game of predicting a bi-
nary ±1 sequence. An algorithm A sees a binary sequence
{bt}t≥1, one bit at a time, and attempts to predict the next
bit bt from the past history b1, . . . bt−1. The payoff AT of
the algorithm in T steps is the number of correct guesses
minus the number of the wrong guesses. In other words,
let b̃t ∈ [−1, 1] be the prediction for the tth bit based on
the previous bits then:

AT :=
∑

1≤t≤T

btb̃t.

The payoff per time step btb̃t is essentially equivalent to the
well known absolute loss function |bt− b̃t| (see for example
[CBL06], chapter 8).1

One can view this game as an idealized “stock prediction”
problem as follows. In each unit time, the stock price goes
up or down by precisely $1, and the algorithm bets on this
event. If the bet is right, the player wins one dollar, and
otherwise loses one dollar. Not surprisingly, in general, it
is impossible to guarantee a positive payoff for all possible
scenarios (sequences). However, one could hope to give
some guarantees on the payoff of the algorithm based on
certain properties of the sequence.

For example one can compare the payoff to the better
of two choices (experts), which correspond to two con-
stant algorithms: first one, where b̃t = +1 and the sec-
ond one where b̃t = −1 for all t. Note that the best
of these experts gets payoff |

∑
1≤t≤T bt|, which corre-

sponds to the “optimal in hindsight” expert among the two
choices. The regret of an algorithm is defined as how much
worse the algorithm performs as opposed to the best of
the two experts (in hindsight, after seeing the sequence).
This has been studied in a number of papers, including

1since when |bt| = 1, |bt − b̃t| = |bt||bt − b̃t| = |1− btb̃t| =
1 − btb̃t. Thus the absolute loss function is the negative of our
payoff in one step plus a shift of 1. Also bt values from {−1, 1} or
{0, 1} are equivalent by a simple scaling and shifting transform.



[Cov65, LW89, Cov91, ACBFS02, AB09]. A classical re-
sult says that one can obtain a regret of Θ(

√
T ) for a se-

quence of length T , via, say, the weighted majority algo-
rithm [LW89]. Formally, for a sequence X = b1, . . . , bT ,
let h(X) =

∑
1≤t≤T bt denote the “height” of the se-

quence when plotted cumulatively as a chart. Then we have
the following theorem:

Theorem 1.1 [Cov65, CBFH+97] There is an algorithm
that achieves payoff ≥ |h(X)| − α

√
T . It is also known

that the optimal value of α→
√

2/π as T →∞.

However, an algorithm that only focuses on the overall re-
gret does not exploit short term trends in the sequence and
only relies on a ‘global’ long term bias in the full string.
Consider for example a sequence that may not have a high
overall bias but has many intervals in which there may be
a high level of bias. Our result is that for any partitioning
of the sequence into intervals, one can essentially get a re-
gret proportional to

√
x for each interval of length x in an

amortized sense (Theorem 1.3). Although our results are
stated for bits they work even when bt is a real number in
[−1, 1]. We note that even though similar bounds have been
obtained before ([BM07, FSSW97, Vov99] and, more re-
cently, [HS09, KP11]), the penalty on an interval of length
x isO(

√
x log T ) in these previous results. Note that in ad-

versarial settings one is interested in a prediction algorithm
that can get a positive payoff even if the sequence departs
slightly from random; or we may ask what is the smallest
amount non-randomness that can be “noticed” by the pre-
diction algorithm. So while our result may seem like just
shaving a log T factor, the reason

√
x is much better than√

x logT is that in certain adversarial settings (like finan-
cial markets), the uptrend or downtrend in total per interval
may not be too far from that of a random sequence. Note
that a random±1 sequence of length x has a height of mag-
nitude Θ(

√
x) in expectation. So we are saying that even

if the height of a sequence of length x is some constant
multiple of

√
x, we get a positive payoff.

The bit prediction problem we consider is closely related to
the two experts problem (or multi-armed bandits problem
with full information). In each round each expert has a
payoff in the range [0, 1] that is unknown to the algorithm.
For two experts, let b1t, b2t denote the payoffs of the two
experts at time t. The algorithm pulls each arm (expert)
with probability b̃1t, b̃2t ∈ [0, 1] respectively where b̃1t +
b̃2t = 1. The (expected) payoff of the algorithm in this
setting is A′T :=

∑T
t=1 b1tb̃1t + b2tb̃2t.

We will be concerned with the following payoff function in
this paper:

Definition 1.2 (Interval payoff function: Pα)

LetX1, . . . , Xk denote a partition of the sequenceX into a
disjoint union of k intervals, that is,X is the concatenation
of these k subsequences. We will use h(Xi) to denote the

sum of the bits in the interval Xi and |Xi| to denote the
length of Xi.

The interval payoff function, Pα(X) is defined as the max-
imum value of the expression

k∑
i=1

(
|h(Xi)| − α

√
|Xi|

)
over all 1 ≤ k ≤ |X| and all partitions X1, . . . , Xk of X .

We say that a payoff function f : {−1, 1}T → R is feasible
if there is a bit prediction algorithm which on sequence X
achieves payoff at least f(X).

Theorem 1.3 (Main Theorem) There is an absolute con-
stant 0 < α < 10 independent of T such that the interval
payoff function Pα is feasible.

For the two experts problem our result translates to the fol-
lowing guarantee:

A′T ≥
k∑
i=1

(
max
j∈1,2

(∑
t∈Xi

bjt

)
− α

2

√
|Xi|

)
.

Here
∑
t∈Xi

bjt is the payoff of the jth expert in the inter-
val Xi.

This result can be viewed as incurring a penalty of α
√
|Xi|

for each interval Xi. We theoretically show that the opti-
mal value of α is at most 10 (Section 2). We empirically
estimated the optimal α for T up to 2000 and found it to be
small – around 2.1 (Section 4.1).

We stress here that the algorithm doesn’t need to know the
partition or the length of the partition in advance. We also
note that our guarantee does not hold for each interval indi-
vidually but when we look at the net payoff in an amortized
sense, we may account for a regret of at most α

√
|X| for

an interval of length X . In fact, the guarantee is impossible
to achieve in a non-amortized sense. We show that if we
measure regret based on the performance of an algorithm
in a given interval then one will have to trade-off regrets at
different time scales. The following observation is proven
in the full version [PP13].

Observation 1.4 There is no prediction algorithm that can
guarantee a regret of O(

√
|Y |) on all intervals Y for all

input sequences.

Regarding the computation of Pα, we show:

Theorem 1.5 The value of Pα(S) for a particular se-
quence S of length T can be computed using dynamic pro-
gramming in time O(T 3).

For a given T , let α0(T ) denote the minimum α such that
Pα is feasible for all sequences of length T . It is possible to



determine α0 using the following well known observation
by Cover.

Observation 1.6 (Cover [Cov65]) A payoff function f :
{−1, 1}T → R is feasible if and only if ES [f(S)] ≤ 0
where S is a uniformly random sequence in {−1, 1}T .

This is achieved by a prediction algorithm that predicts
b̃t = EU [f(s.1.U)]−EU [f(s.(−1).U)]

2 where s is the sequence
of bits seen so far, U is a suffix sequence chosen uni-
formly at random and s.b.U denotes the concatenated se-
quence starting with s followed by bit b followed by the
sequence U . Note that b̃t ∈ [−1, 1] as long as for all s,
|EU [f(s.1.U)]− EU [f(s.(−1).U)]| ≤ 2

Algorithm and Running time: Theorem 1.5 and Obser-
vation 1.6 suggest a simple algorithm for achieving payoff
function Pα. Take the sequence s seen so far, append a
+1 and then a random sequence to make it into a complete
sequence of length T . Compute Pα(S) for the resulting se-
quence S. Do this again replacing the +1 by a −1. Predict
b̃t to be the half of the difference in the two cases.

We note that a deterministic algorithm achieving the guar-
antee of Theorem 1.3 may take exponential time since it
would need to find Pα(S) for every random completion of
the bits seen so far. Alternatively, there is a simple random-
ized algorithm which achieves the same payoff in expecta-
tion by taking a different random completion for every pre-
fix. A naive implementation of this randomized algorithm
will take T 3 time for each bit being predicted. We show a
simple variant that reduces this to O(log T ) time with pre-
computation.

Theorem 1.7 There is a randomized algorithm that
achieves the payoff guarantee Pα of Theorem 1.3 in expec-
tation and spendsO(T 2) time per step. There is also a ran-
domized algorithm that achieves payoff Pα′ with α′ = cα

and spends only O(log T ) time per step. Here c :=
√
2√

2−1 .

These algorithm use pre-computed information that takes
time O(T 2) and O(T log T ) time to compute for the first
and the second algorithm respectively.

Generalization to real numbers: In the full ver-
sion [PP13], we show that a variant of the guarantee holds
in a semi-adversarial model where a string of real numbers
may be chosen instead of bits. The model combines worst
case and average case settings where the signs of the real
numbers may be chosen adversarially (that is, in the worst
case) but the magnitudes of the real numbers come from a
pre-specified distribution independently and randomly.

Experimental results: We implement our algorithm, the
weighted majority algorithm, an algorithm based on Au-
toregressive Integrated Moving Average (ARIMA) and an
algorithm of [KP11], and compare their performance when
predicting financial time series data. Specifically, we con-

sider the high frequency price data of 5 stocks, and we ap-
ply these algorithms to predict the per minute price changes
in an online fashion taking the values in each day as a sep-
arate sequence. That is we predict the next minute returns
of mid-prices for each stock based on its previous 1 minute
returns in the day. We perform this experiment over 189
trading days for each stock and find that on an average our
algorithm performs better than other prediction algorithms
based on regret minimization but is outperformed by the
ARIMA algorithm. On the other hand, as we discussed
above, our algorithm has certain provable guarantees for
every sequence which the ARIMA algorithm lacks. The
experimental setup and results are described in more detail
in Section 4.

1.1 Related work

There is large body on work on regret style analysis for pre-
diction. Numerous works including [Cov65, CBFH+97]
have examined the optimal amount of regret achievable
with respect to two or more experts. A good reference
for the results in this area is [CBL06]. It is well known
that in the case of static experts, the optimal regret achiev-
able is exactly equal to the Rademacher complexity of the
predictions of the experts (chapter 8 in [CBL06]). Re-
cent works such as [ALW06, AWY08, MS08] have ex-
tended this analysis to other settings. Measures other than
the standard regret measure have been studied in [RST10].
The question of what can be achieved if one would like
to have a significantly better guarantee with respect to a
fixed expert or a distribution of experts was asked before in
[EDKMW08, KP11]. Tradeoffs between regret and min-
imum payoff were also examined in [Vov98], where the
author studied the set of values of a, b for which an algo-
rithm can have payoff aOPT +b logN , whereOPT is the
payoff of the best arm and a, b are constants.

Regret minimization algorithms with performance guar-
antees within each interval have been studied in [BM07,
FSSW97, Vov99] and more recently in [HS09, KP11]. As
we mentioned, some of these algorithms achieve a regret
of O(

√
x log T ) for every interval of size x in a sequence

of length T . A related work which also seeks to exploit
short term trends in the sequence is [HW98], where the re-
gret bound proportional to

√
Tk in the best case where k is

the number of intervals (see [CBL06], Corollary 5.1). The
main difference between the work of [HW98] and our re-
sults is that their algorithm requires fixing the number of
intervals, k, in advance whereas our algorithm works si-
multaneously for all k. Also note that their regret guar-
antee is always higher than the payoff function Pα for a
sequence of length T achieving equality only in the special
case when all intervals are of equal length T/k.

Numerous papers (for example [Blu97, HSSW98,
AHKS06]) have implemented algorithms inspired from



regret style analysis and applied it on financial and other
types of data.

1.2 Overview of the proof

In this section we give a high level idea of our proof, the
formal proof appears in Section 2.

To prove the main theorem we want to compute the min-
imum α such that ES [Pα(S)] ≤ 0 (See Observation 1.6).
We first introduce a variant of the payoff function Pα(S)
as follows. Instead of computing the maximum value of∑
i |h(Xi)| − α

√
|Xi| over all possible partitions, will

only allow partitions where the intervals are of the form
(2ij, 2i(j+ 1)]; that is, intervals that are obtained by divid-
ing the string into segments of length that are some power
of 2. We will refer to such intervals as ‘aligned’ intervals
(Definition 2.3). Further we will only look at T values that
is some power of 2. Note that any interval can be broken
into at most log T aligned intervals. Let PAα (S) denote the
maximum value of

∑
i |h(Xi)| − α

√
|Xi| with partitions

into aligned intervals. We first show that

Lemma 1.8 If E[PAα (S)] ≤ 0 then E[Pcα(S)] ≤ 0 where
c :=

√
2√

2−1 .

Next we show

Theorem 1.9 There is an absolute constant α ≤ 2.8 such
that E[PAα (S)] ≤ 0.

We prove Theorem 1.9 recursively for T that are increasing
powers of 2. We inductively show that the distribution of
PAα (S) is stochastically upper bounded by a shifted expo-
nential distribution (Definition 2.4) with certain parameters
(Equation 2.1), where S is a uniformly random sequence of
length T . Since we are dealing with splits into aligned in-
tervals, we can assume that either the best split for S is the
whole interval, or the mid-point of S is one of the splitting
points. For the first case, we may upper bound the payoff
function using Hoeffding’s bound (Theorem 2.2), while for
the second case we may inductively assume that the dis-
tribution of payoffs for the subsequences is stochastically
bounded by a shifted exponential distribution. We then sep-
arately bound each of these distributions by the shifted ex-
ponential distribution.

2 FEASIBILITY OF PAYOFF FUNCTION
Pα

2.1 Preliminaries

Definition 2.1 (Binomial distribution Bn) Let
x1, x2, . . . , xn ∈ {−1, 1} be uniformly and indepen-
dently distributed. Then the sum

Y :=

n∑
i=1

xi

is said to be binomially distributed. We denote the distribu-
tion as Bn.

Theorem 2.2 (Hoeffding’s bound) [Hoe63]

Pr[|Bn| ≥ y ·
√
n] ≤ 2 · exp

(
−y

2

2

)
Definition 2.3 (Aligned interval)

We assume here that T is a power of 2. An aligned interval
is one which is obtained by breaking [1, T ] into 2i equal
parts for i ∈ [0, log T ] and picking one of the parts. So
for instance the first part is always [1, T/2i]; each aligned
interval can be written as [jT/2i + 1, (j+ 1)T/2i] for non
negative integers i and j.

We denote the interval payoff function corresponding to
Definition 1.2 which allows only aligned splits as PAα .

Definition 2.4 (Shifted Exponential distribution) The
probability density function fµ,σ,n of shifted exponential
distribution with mean σ

√
n and shift µ

√
n is defined as

follows:

fµ,σ,n(y) :=
1

σ
√
n

exp

(
−y − µ

√
n

σ
√
n

)
∀y ≥ µ

√
n

fµ,σ,n(y) := 0 ∀y ≤ µ
√
n

We denote a random variable distributed according to
fµ,σ,n as Fµ,σ,n. That is, Pr[Fµ,σ,n ≥ y] =∫∞
y
fn(s) ds = exp

(
−y−µ

√
n

σ
√
n

)
when y ≥ µ

√
n and 1

otherwise.

2.2 Proof of feasibility

The following lemma is a restatement of lemma 1.8 and is
proven using a standard doubling trick

Lemma 2.5 If PAα is feasible then Pcα is also feasible,
where c :=

√
2√

2−1 .

Proof:

Let X1, X2, . . . , Xk denote a partition of a given sequence
S. We split each intervalXi into a disjoint union of aligned
intervals Yi1, . . . , Til. We will then show that the identity

l∑
j=1

√
|Yij | ≤ c ·

√
|Xi|

always holds where |I| denotes the length of the inter-
val I . This suffices to prove the theorem since h(Xi) ≤∑l
j=1 h(Yij).



For notational simplicity, let I = Xi and x = |I|. If
I is an aligned interval we are done, otherwise we write
it as the minimal union of aligned intervals (take out the
largest aligned interval in I and repeat). There are three
possibilities:-

1. I = I1∪I2 is a union of two intervals of size x/2 each
(eg. the interval [T/4 + 1, 3T/4])

2. I = I1 ∪ I2 ∪ . . . ∪ Il, where each Ij is of a different
size. Note that all interval sizes on the right are powers
of 2 and strictly less than x

3. I = J ∪ J ′ where each J can be written as a union of
intervals as in 1 or 2 above

In the first case,

√
|I1|+

√
|I2| ≤ 2 ·

√
x/2 =

√
2 ·
√
x

In the second case,

l∑
j=1

√
|Ij | ≤

√
x ·

∞∑
j=1

√
1/2j =

1√
2− 1

·
√
x

In the third case,

√
|J |+

√
|J ′| ≤ 1√

2− 1
·
√
|J | +

1√
2− 1

·
√
|J ′| ≤

√
2√

2− 1
·
√
x

We are now ready to prove Theorem 1.9.

Proof: [Proof of Theorem 1.9] We need to show that for all
T ≥ 1, Ex∈{−1,1}T [PAα (x)] ≤ 0. After that, the theorem
follows from Observation 1.6 (it is easy to check that the
condition required for required for b̃t ∈ [−1, 1] given in
Observation is satisfied by PAα ).

We will prove the theorem by induction. We will show that
when n is a power of 2,

∀y ∈ R Pr
x∈{−1,1}n

[PAα (x) ≥ y] ≤ Pr[Fµ,σ,n ≥ y]

(2.1)

for some µ := µ(α) and σ := σ(α). Here Fµ,σ,n is as in
Definition 2.4.

Note that this would imply Ex∈{−1,1}n [PAα (x)] ≤
E[Fµ,σ,n] = (µ + σ)

√
n. We will show that for a suit-

able choice of α, the term µ + σ ≤ 0, and this suffices to
prove the theorem.

It remains to prove Equation 2.1. For the base case, n = 1,
we see that the equation is satisfied for µ ≥ 1 − α, σ > 0.
We will now show that it is satisfied for 2n whenever it is
satisfied for n (for appropriate µ and σ).

Now, for a sequence x := (x1, x2) ∈ {−1, 1}n×{−1, 1}n,
PAα (x) = max(PAα (x1) + PAα (x2), |h(x)| − α ·

√
2n). So

for every x such that PAα (x) ≥ y we must have either
PAα (x1) +PAα (x2) ≥ y or that h(x)−α ·

√
2n ≥ y. Thus,

Pr
x∈{−1,1}2n

[PAα (x) ≥ y] (2.2)

≤ Pr
x1,x2∈{−1,1}n

[PAα (x1) + PAα (x2) ≥ y] (2.3)

+ Pr
x∈{−1,1}2n

[h(x)− α ·
√

2n ≥ y] (2.4)

≤Pr[Fµ,σ,n + F ′µ,σ,n ≥ y] (2.5)

+ Pr
x∈{−1,1}2n

[h(x)− α ·
√

2n ≥ y] (2.6)

Here F and F ′ are independent random variables dis-
tributed as in Definition 2.4. We will show that the first and
second term are each bounded by 1

2 Pr[F2n ≥ y] which is
sufficient to prove Equation 2.1. Note that we only need to
consider y ≥ µ

√
2n since for smaller values of y we have

Pr
x∈{−1,1}2n

[PAα (x) ≥ y] ≤ Pr[F2n ≥ y] = 1

Henceforth, we will use shorthands fn := fµ,σ,n and
Fn := Fµ,σ,n.

The first term can be written as:-

Pr[Fn + F ′n ≥ y] =

∫ ∞
y

∫ ∞
−∞

fn(s) · fn(w − s) dsdw

=

∫ ∞
y

∫ w−µ
√
n

µ
√
n

fn(s) · fn(w − s) dsdw

where the second equation follows from the fact that
fn(s) = 0 for s < µ

√
n and fn(w − s) = 0 for



s > w − µ
√
n. Thus, we need to show for all y ≥ µ

√
2n:-

∫ ∞
y

∫ w−µ
√
n

µ
√
n

fn(s) · fn(w − s) dsdw ≤ 1

2
Pr[F2n ≥ y]

⇐=
1

σ2n

∫ ∞
y

∫ w−µ
√
n

µ
√
n

exp

(
−w + 2µ

√
n

σ
√
n

)
dsdw

≤ 1

2
exp

(
−y − µ

√
2n

σ
√

2n

)

⇐=
1

σ2n

∫ ∞
y

∫ w−µ
√
n

µ
√
n

exp

(
−w − 2µ

√
n

σ
√
n

)
dsdw

≤ 1

2
exp

(
−y − µ

√
2n

σ
√

2n

)

⇐=
1

σ2n

∫ ∞
y

(w − 2µ
√
n) exp

(
−w − 2µ

√
n

σ
√
n

)
dw

≤ 1

2
exp

(
−y − µ

√
2n

σ
√

2n

)

In the third line we implicitly assume that y ≥ 2µ
√
n, since

otherwise the left hand side is less than 0 and the equation
is satisfied.

Note that the integral is of the form
∫
u · e−cu which inte-

grates to −
(
u+1/c
c

)
· e−cu. Thus, integrating and substi-

tuting z := y − 2µ
√
n we need to show for all z ≥ 0,

1

σ
√
n
· (z + σ

√
n) · exp

(
− z

σ
√
n

)
≤ 1

2
exp

(
−z + (

√
2− 1)µ

√
2n

σ
√

2n

)

⇐=
2z

σ
√
n

+ 2

≤ exp

(
z

σ
√
n
− z + (

√
2− 1)µ

√
2n

σ
√

2n

)

⇐=
2z

σ
√
n

+ 2

≤ exp

(
(
√

2− 1)z

σ
√

2n

)
· exp

(
(
√

2− 1)
−µ
σ

)

Substituting w := z
σ
√
n

, we need for all w ≥ 0,

2w + 2

≤ exp

(
(
√

2− 1)w√
2

)
· exp

(
(
√

2− 1)
−µ
σ

)
⇐=

2w + 2

exp
(

(
√
2−1)w√

2

) ≤ exp

(
(
√

2− 1)
−µ
σ

)

The left hand side is maximized at w = 1/
√

2 and the
value of left hand side at that point is around 2.78. Thus, if
(−µ/σ) ≥ 2.47 then the equation is always satisfied.

We now turn to bounding the second term 2.6. We need to
show for all y ≥ µ

√
2n,

Pr
x∈{−1,1}2n

[|x| − α ·
√

2n ≥ y] ≤ 1

2
Pr[F2n ≥ y]

⇐= Pr[|B2n| ≥ y + α ·
√

2n] ≤ 1

2
Pr[F2n ≥ y]

⇐= Pr[|B2n| ≥ (z + α) ·
√

2n] ≤ 1

2
Pr[F2n ≥ z ·

√
2n]

⇐=2 · exp

(
− (z + α)2

2

)
≤ 1

2
Pr[F2n ≥ z ·

√
2n]

where the last line follows from Theorem 2.2, and in the
second last line we substitute z := y/

√
2n.

Thus, we need to show for all z ≥ µ,

4 · exp

(
− (z + α)2

2

)
≤ exp

(
−z
√

2n− µ
√

2n

σ
√

2n

)

Substituting w := z − µ, we need to show for all w ≥ 0,

exp

(
− (w + µ+ α)2

2
+
w

σ

)
≤ 0.25

⇐=− (w + µ+ α)2

2
+
w

σ
≤ −1.4

The left hand side is maximized at w + µ + α = 1/σ and
for that value of w the inequality is given by

−1

2σ2
+

1/σ − µ− α
σ

≤ −1.4⇐= µ+ α ≥ 1.4σ +
0.5

σ

Also, recall that to bound the first term we needed −µ
α ≥

2.47. Let’s set µ := −2.47σ. Then we need



α ≥ (1.4 + 2.47)σ +
0.5

σ
= 3.87σ +

0.5

σ

The right hand side is minimized at σ = 1√
2·3.87 ≈ 0.36,

and substituting we get that α = 2.8 is feasible. Recall that
we also needed µ + α ≥ 1 from the base case which is
already satisfied for this choice of parameters.

3 ALGORITHM AND RUNNING TIME

We will now prove theorem 1.5.

Proof: [Proof of Theorem 1.5] We give a simple O(T 2)
space and O(T 3) time algorithm.

For every subinterval (i, j) of the sequence, i, j ∈ [T ] the
DP table stores Pα(Sij) where Sij is the subsequence of S
containing bits from position i to position j, inclusive. For
i = j, this value is always 1−α. For j > i, to compute the
value of Pα(Sij), we need to take the maximum over two
quantities. The first quantity is |h(Sij)| − α ·

√
j − i+ 1

which corresponds to splitting the subsequence into a sin-
gle interval. This can be readily computed in constant
time if we pre-compute the height of every subsequence,
which can be done in O(T 2) space and time. The second
quantity is the maximum over all k ∈ {i, i + 1, . . . , j} of
Pα(Sik) + Pα(Skj). This corresponds to splitting the sub-
sequence at k and then recursively computing the best pay-
off in each of the two intervals created. This quantity can
be computed in time j− i+ 1 since for each k we just need
to read off the appropriate values (Pα(Sik) and Pα(Skj))
from the DP table.

Next we prove Theorem 1.7

Proof: [Proof of Theorem 1.7]

Let X ∈ {−1, 1}T be the input sequence we are required
to predict. Using Observation 1.6, it is easy to see that the
following algorithm achieves payoff Pα(X) in expectation.
For every t ∈ {0, 1, . . . , T − 1}:

1. Let s ∈ {−1, 1}t be the sequence of bits seen so far.

2. Let Ut be a sequence drawn uniformly at random from
{−1, 1}T−t−1 (independently for each t). Let s1 :=
s · 1 · U and s−1 := s · (−1) · U .

3. Make the prediction b̃ := (Pα(s1) − Pα(s−1)/2 for
the next bit.

The key idea is that we will draw a random sequence of
length T and use its suffix of length {−1, 1}T−t−1 asUt. In
advance we pre-compute enough information to make the

prediction as fast as possible. For each t ∈ {0, 1, . . . , T −
1} we pre-compute the following information for each Ut:-

1. h(U1
t ) for every prefix U1

t of Ut

2. Pα(U2
t ) for every suffix U2

t of Ut

The pre-computation takes O(T 2) time as Pα is computed
only for each suffix.

Let’s describe how to use this pre-computed information to
compute Pα(s1) at time t (the computation of Pα(s−1) is
similar). Let 1 ≤ i ≤ t and t+ 2 ≤ j ≤ T . Then it is easy
to check that

Pα = maxi,j(Pα(s1i) + Pα(UjT )
+
∣∣h(s(i+1)t)

∣∣+
∣∣h(U(t+1)(j−1))

∣∣− α · √j − i− 1)

Here for a sequence S, Sij is the subsequence of S contain-
ing bits from position i to position j, inclusive. Note that
we think of Ut as being indexed from t+ 1 to T where the
(t+1)th bit is 1 (since we are dealing with s1). The second
and fourth term are part of our pre-computation. The first
and third terms can be computed on the fly and stored in the
table as we increase t from 1 to T . Thus, for each i and j
we can compute this expression in constant time and hence
we can produce a prediction in O(T 2) time per step.

The second part of the theorem is proved in a similar
manner by using only aligned intervals for splitting the
sequence (Definition 2.3) and observing that the number
of aligned intervals spanning a given position is at most
O(log T ). The algorithm achieves payoff at least Pα′ be-
cause of Lemma 1.8.

4 EXPERIMENTAL RESULTS

In this section we describe our experimental setup and find-
ings.

The first part of the experiment is to experimentally esti-
mate the value of α0. In general we may think of α0 as a
function of T . In Section 2 we saw that α0(T ) is bounded
from above by an absolute constant for all T . In Section
4.1 below we estimate the values of α0 for a range of T .

The second part of the experiment is to implement our al-
gorithm and compare its performance against 3 other pre-
diction algorithms. This is described in Section 4.2 below.

4.1 Computation of α0

We denote by α0(T ) the minimum value of α such that the
payoff function Pα is feasible for sequences of length T .
For a particular T , this value can be computed using The-
orem 1.5. While Theorem 1.5 requires us to compute the



payoff function over all sequences of length T (to compute
the expectation), we can experimentally approximate this
by taking sufficiently many random sequences of length T
and looking at the expectation of the sample. We are in-
terested in T = 389 which is the number of minutes in a
trading day for which we have returns data (there are 390
minutes in a typical trading day and the returns for the first
minute is undefined).

Note that the standard error of the sample mean is obtained
as the sample standard deviation divided by

√
n where n =

400 is the number of trials. The chart on the left shows the
mean payoff and standard error for various values of α for
T = 389.

From the figure we see that α = 1.96 is a good estimate
for α0(T ) for T = 389. The figure on the right shows
estimated values of α0 for various T .

4.2 Comparison of predictive performance

The algorithms we consider are:-

1. The baseline buy and hold strategy that achieves pay-
off equal to the height (height)

2. The algorithm described in this paper (interval)

3. Weighted Majority algorithm (WM)

4. The algorithm of [KP11] (Algorithm 4, section 5)
(boundedloss)

5. An algorithm based on Auto Regressive Integrated
Moving Average (arima)

Note that algorithms 2-4 are based on ideas from regret
minimization with provable guarantees while the fifth is
a commonly used model for predicting time series data.
To implement the fourth algorithm we use the function
AUTO.ARIMA() in R which is part of the library FORE-
CAST.

The prediction task we consider is to predict the next
minute returns for a stock over a single trading day using
only the previous 1 minute returns of the given stock for the
given day. More precisely, we define the price of a stock at
a given time taking the average of the best bid price and best
ask price at that time as reported by the New York Stock
Exchange (NYSE). We perform this prediction experiment
over 189 days for the following 5 US stocks/ETFs from
various sectors: MSFT, GE, GLD, QQQ and WMT. This
gives us performance data for each algorithm for a total of
389×189×5 = 367, 605 data points. The results obtained
are shown in the figure below.

We note that while our algorithm performs better in prac-
tice than other regret minimization based prediction algo-
rithms with provable guarantees, it is outperformed by the
ARIMA model.
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