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Abstract

This paper studies the problem of revising belief-
s using uncertain evidence in a framework where
beliefs are represented by a belief function. We
introduce two new Jeffrey’s rules for the revi-
sion based on two forms of belief kinematics,
an evidence-theoretic counterpart of probability
kinematics. Furthermore, we provide two dis-
tance measures for belief functions and show that
the two belief kinematics are optimal in the sense
that they minimize their corresponding distance
measures.

1 INTRODUCTION

Reasoning about uncertainty is a fundamental issue for
Artificial Intelligence [HALPERN, 2005]. Numerous ap-
proaches have been proposed, including Dempster-Shafer
theory of belief functions [SHAFER, 1976] (also called
the theory of evidence or simply DS theory). Ever since
the pioneering works by Dempster and Shafer, the theo-
ry of belief functions has become a powerful formalism
in Artificial Intelligence for knowledge representation and
decision-making.

In this paper, we study the revision of beliefs using uncer-
tain evidence and we represent beliefs as belief function-
s. Our main contribution is to introduce two new Jeffrey’s
rules for the revision based on two different forms of belief
kinematics, an evidence-theoretic counterpart of probabil-
ity kinematics [JEFFREY, 1983]. The first rule, called in-
ner revision, generalizes the geometric conditionalization
rule, and the other, outer revision, generalizes the Demp-
ster rule of conditioning. These two Jeffrey’s rules specify
uncertain evidence in terms of the effect it has on beliefs
once accepted, and the specification is actually a function
of both evidence strength and beliefs held prior to obtain-
ing evidence. Once new evidence is accepted, a prior belief
function bel on a frame Ω of discernment is revised to a

new posterior belief function bel′ on the same frame. This
method requires us to specify uncertain evidence by pro-
viding a belief function bele on a coarser frame with less
distinctions of the attention. This coarser frame is actually
based on a partition of the frame Ω and hence is represent-
ed as a subalgebra B of the powerset 2Ω of Ω whose atoms
forming a partition of Ω.

The principle of belief kinematics on B says that, although
the prior belief function bel and the posterior one bel′ may
disagree on propositions in B, they agree on their relevance
to all propositions in 2Ω. Providing a reasonable repre-
sentation of the notion of relevance in belief kinematics
is the main challenge in this paper. For each of the two
new Jeffrey’s rules, we formalize a form of belief kine-
matics and characterize relevance in this belief kinemat-
ics by a conditional belief function on Ω with respect to
the coarsening frame 〈Ω,B〉. Our definition of condition-
al belief functions differs from Dempster’s rule of condi-
tioning [SHAFER, 1976] in that our definition depends on
the coarsening frame 〈Ω,B〉while Dempster’s rule doesn’t.
Our conditional belief functions are natural generalization-
s of classical conditional probability functions and provide
a measure of the relevance of any proposition in B to all
propositions in 2Ω.

In this paper, we incorporate the above principle of belief
kinematics into the two new Jeffrey’s rules in the theory of
belief functions by satisfying the following constraints:

• (Constraint 1) These two rules should be a natural gen-
eralization of Jeffrey’s rule in probability theory, i.e.,
they should be the same as Jeffrey’s rule in probability
theory when the prior belief function bel is a probabil-
ity function.

• (Constraint 2) On the coarsening frame 〈Ω,B〉, the
posterior belief function bel′ according to the rules
should agree with the belief function bele that spec-
ifies the evidence.

• (Constraint 3) The revision rules should obey some
natural evidence-theoretic generalization of probabil-



ity kinematics like the above belief kinematics.

Any Jeffrey’s rule in DS theory should at least meet Con-
straint 1. Constraint 2 is Smets’ distinguishing constraint
C1 [SMETS, 1993A]. Constraint 3 is the most important
one and is the key point of this paper. We believe that this
constraint for Jeffrey’s rule in the theory of evidence is as
important as the principle of probability kinematics is for
Jeffrey’s rule in probability theory. Unlike similar rules for
belief functions found in the literature (See Section 5), our
new Jeffery’s rules naturally transfer important properties
of probabilistic belief revisions to the theory of evidence.

In order to show that the above revisions based on belief
kinematics are optimal, we provide for each revision rule a
distance measure for bounding belief changes due to the re-
visions and show that the belief function obtained accord-
ing to the corresponding form of belief kinematics is the
closest to the prior one among all belief functions satisfy-
ing Constraint 2.

2 JEFFREY’S RULE IN PROBABILITY
THEORY

Let Pr be a probability function on a probability space
〈Ω,A〉 where A is the Boolean algebra of subsets of Ω
with the usual set operations. Suppose that new evidence
suggests the desirability of revising Pr and that the total
evidence determines a family E of mutually exclusive and
exhaustive subsets of Ω and a probability function Pre on
the Boolean algebra B of finite unions of elements of E .
Without loss of generality, we assume that Pre(E) > 0
for all E ∈ E . The new posterior probability function Pr′

on 〈Ω,A〉 proposed by Jeffrey’s rule is as follows: for any
A ⊆ Ω,

Pr′(A) =
∑
E∈E

Pr(A|E)Pre(E) (1)

A probability function Pr∗ on the probability space
〈Ω, 2Ω〉 is said to be obtained from Pr by the principle
of probability kinematics on E if, for any E ∈ E ,

Pr∗(A|E) = Pr(A|E) for every event A ⊆ Ω.

In other words, the principle of probability kinematics as-
sumes that the conditional probability in every event A
given any E ∈ E remains unchanged. This concept was
proposed by Jeffrey [JEFFREY, 1983] to capture the notion
that, even though Pr∗ and Pr disagree on the probabilities
of events in the coarser Boolean algebra B, they agree on
their relevance to every event A in A.

Actually the above posterior probability function Pr′ pro-
posed by Jeffrey’s rule in Eq. (1) is the unique probabili-
ty revision Pr∗ which satisfies the following two require-
ments [CHAN AND DARWICHE, 2003]:

• (C1): probability kinematics on E : for any E ∈ B,
Pr∗(A|E) = Pr(A|E) for all A ⊆ Ω;

• (C2): Pr∗(E) = Pre(E) for all E ∈ B.

A distance measure D can be defined for probability func-
tions as follows [CHAN AND DARWICHE, 2002]: for any
two probability functions Pr1 and Pr2,

D(Pr1, P r2) = lnmaxω∈Ω
Pr2(ω)

Pr1(ω)
− lnminω∈Ω

Pr2(ω)

Pr1(ω)

Among all the probability functions that satisfy the above
requirement (C2), the posterior probability function Pr′

proposed by Jeffrey’s rule is the closest to Pr according
to this distance measure [CHAN AND DARWICHE, 2003].

3 JEFFREY’S RULE IN
DEMPSTER-SHAFER THEORY

3.1 BELIEF FUNCTIONS

Let Ω be a frame of discernment and A = 2Ω be the
Boolean algebra of events. A belief function is a function
bel : A → [0, 1] satisfying the following conditions:

1. bel(∅) = 0;

2. bel(Ω) = 1; and

3. bel(
⋃n
i=1Ai) =

∑
∅6=I⊆{1,··· ,n}(−1)|I|+1bel(∩i∈IAi)

where Ai ∈ A for all i ∈ {1, · · · , n}.

A mass assignment (or mass function) is a mapping m :
A → [0, 1] satisfying

m(∅) = 0,
∑
A∈Am(A) = 1.

Shafer [SHAFER, 1976] has shown that a mapping f :
A → [0, 1] is a belief function if and only if its Möbius
transform is a mass assignment. In other words, if m :
A → [0, 1] is a mass assignment, then it determines a be-
lief function bel : A → [0, 1] as follows:

bel(A) =
∑
B⊆Am(B) for all A ∈ A.

Moreover, given a belief function bel, we can obtain its
corresponding mass function m as follows:

m(A) =
∑
B⊆A

(−1)|A\B|bel(B), for all A ∈ A.

Intuitively, for a subset event A, m(A) measures the belief
that an agent commits exactly to A, not the total belief that
an agent commits to A.



3.2 JEFFREY’S RULE IN THE THEORY OF
EVIDENCE

In order to introduce the principle of belief kinematics, we
need to set up a setting in terms of refinements and coarsen-
ings of frames of discernments. The idea that one frame Ω
of discernment is obtained from another frame Θ of dis-
cernment by splitting some or all of the elements of Θ
may be represented mathematically by specifying, for each
θ ∈ Θ, the subset ω({θ}) of Ω consisting of those possi-
bilities into which θ has been split. For this representation
to be sensible, we need only require that the sets ω({θ})
should constitute a disjoint partition of Ω. Given such a
disjoint partition ω({θ}), we may set

ω(A) =
⋃
θ∈A ω({θ})

for each A ⊆ Θ; ω(A) will consist of all the possibilities
in Ω that are obtained by splitting the elements of A, and
the mapping ω : 2Θ → 2Ω that is thus defined will provide
a thorough description of the splitting. Such a mapping ω
is called a refining. Whenever ω : 2Θ → 2Ω is a refining,
we call Ω a refinement of Θ and Θ a coarsening of Ω.

In this paper, we are particularly interested in the case when
Θ is the set of equivalence classes with respect to some
partition Π of Ω. So the mapping ω({Π(w)}) = Π(w)
for each w ∈ Ω is a refining and Θ is a coarsening of
Ω where Π(w) is the equivalence class of w. We de-
note this special coarsening Θ of Ω as Ω/Π. On the oth-
er hand, Ω/Π may be regarded as a subalgebra B of the
powerset of Ω with the set of atoms of B forming the par-
tition Π of Ω. Our following definition of Jeffrey’s rules
in Dempster-Shafer theory is in terms of this type of p-
resentation of the coarsening Ω/Π as 〈Ω,B〉. For exam-
ple, Π = {{w1, w2}, {w3, w4}, {w5, w6}} is a partition
of Ω = {w1, w2, w3, w4, w5, w6}. Then the associated
subalgebra B consists of the sets

⋃
B⊆ΠB with the atoms

{w1, w2}, {w3, w4} and {w5, w6} in B.

For each A ⊆ Ω, we define

B(A) :=
⋂
{B ∈ B : A ⊆ B}

In other words, B(A) is the least element of B that contains
A as a subset and hence is called the upper approximation
ofA in B [SMETS, 1993A]. For the above example, ifA =
{w1, w3, w5}, then B(A) = Ω.

Let 〈Ω,B〉 be a coarsening of Ω where B is a subalgebra of
the powerset 2Ω of Ω with its atoms forming a partition of
Ω. Suppose that bel : 2Ω → [0, 1] is a belief function on
Ω with m as its corresponding mass assignment. Then the
derived mass assignmentmin

B on the coarsening 〈Ω,B〉 can
be obtained through the following formula: for any B ∈ B,

min
B (B) =

∑
B(A)=B,A⊆Ωm(A)

It is easy to see that, in the coarsening frame 〈Ω,B〉,
min
B (B) measures the belief that commits exactly to B, not

to any subset of B in B. Let belinB denote the correspond-
ing belief function. It is easy to check that, for any B ∈ B,
belinB (B) = bel(B). Intuitively, belinB is the derived belief
function on the coarsening frame of discernment with less
distinctions. The beliefs in the same propositions in these
two different frames with different distinctions should be
the same as each other [SMETS, 1993B]. Correspondingly,
since the resolution degree of the attention of the coarsen-
ing frame decreases, the mass assignment m has to change
into min

B .

For any A and B such that A ⊆ B ∈ B and A ⊆ Ω, let
m/B(A) denote

∑
E⊆Bm(A ∪ E) and

mout
B (B) =

∑
B(E)=B,E⊆Ωm/B(E).

It is easy to see that, if B is an atom of the subalgebra B,
then min

B (B) = bel(B) and mout
B (B) = pl(B). Now we

define two different conditional belief functions belinB (·|B)
and beloutB (·|B) on a given B ∈ B according to the above
two different definitions of mass functions min

B and mout
B

on B, respectively: for any A ⊆ Ω,

(1) (Inner conditioning)

belinB (A|B) :=


∑

A′⊆A,B(A′)=B m(A′)

min
B (B)

, if min
B (B) 6= 0,

|{A′⊆A:B(A′)=B}|
|{A′⊆Ω:B(A′)=B}| , if m

in
B (B) = 0

(2) (Outer conditioning)

beloutB (A|B) :=


∑

A′⊆A,B(A′)=B m/B(A′)

mout
B (B)

,

if mout
B (B) 6= 0,

|{A′⊆A:B(A′∩B)=B}|
|{A′⊆Ω:B(A′∩B)=B}| ,

if mout
B (B) = 0

Note that both belinB (·|B) and beloutB (·|B) are belief func-
tions on 2Ω for any B ∈ B.

The superscripts in and out in the above notations are des-
ignated for the following two proposed revision rules: in-
ner revision and outer revision. In particular, when B is
an atom in the algebra B, the above defined belinB (·|B)
and beloutB (·|B), are essentially the geometric condition-
alization and the Dempster conditionalization of A on
B, respectively. However, the essential difference of
our above definitions of conditional belief functions from
the well-known Dempster’s rule of conditioning bel(·|B)
[SHAFER, 1976] is that they depend on the coarsening
frame and hence on the degree of resolution of the atten-
tion while Dempster’s rule of conditioning does not and is
derived from Dempster’s rule of combination. Moreover,
Dempster’s rule of combination relies on a basic assump-
tion that the combined evidences (or beliefs) play the same



role and hence the combination operation is symmetric. In
contrast, in our study of revision of beliefs using uncertain
evidence, we treat uncertain evidence in terms of effect it
has on beliefs once accepted, which is a function of both
evidence strength and beliefs held before the evidence is
obtained. Hence the prior beliefs and uncertain evidence
are intrinsically asymmetric. In this sense, our definition is
a natural generalization of the classical Bayesian definition
of conditional probabilities.

Lemma 3.1 Let bel be a belief function on Ω with m its
corresponding mass assignment and 〈Ω,B〉 a coarsening
as above.

1. For any A ⊆ Ω,

bel(A) =
∑
B∈B bel

in
B (A|B)min

B (B);

2. If me is a mass assignment on 〈Ω,B〉, then the func-
tion bel′ : 2Ω → [0, 1] defined as follows, for any
A ⊆ Ω,

bel′(A) =
∑
B∈B bel

in
B (A|B)me(B)

is a belief function. In particular, for each B ∈ B,

bel′(B) =
∑
B′∈B,B′⊆Bme(B

′).

In other words, if bele is the corresponding belief func-
tion of me on 〈Ω,B〉, then bel′(B) = bele(B) for
all B ∈ B; namely, me is exactly the derived mass
assignment (m′)inB of bel′ on the coarsening frame
〈Ω,B〉.

Proof. The first part is obvious. And the second part fol-
lows from the following fact: for any B,B′ ∈ B,

belinB (B′|B) :=

{
1, if B ⊆ B′
0 otherwise.

QED

Lemma 3.2 Let bel be a belief function on Ω with m its
corresponding mass assignment and 〈Ω,B〉 a coarsening
as above. If me is a mass assignment on 〈Ω,B〉, then the
function bel′ : 2Ω → [0, 1] defined as follows, for any A ⊆
Ω,

bel′(A) =
∑
B∈B bel

out
B (A|B)me(B)

is a belief function. In particular, for each B ∈ B,

bel′(B) =
∑
B′∈B,B′⊆Bme(B

′).

In other words, if bele is the corresponding belief function
of me on 〈Ω,B〉, then bel′(B) = bele(B) for all B ∈ B;
namely, me is exactly the derived mass assignment (m′)inB
of bel′ on the coarsening frame 〈Ω,B〉.

Proof. The first part is clear and the second follows from
the following fact: for any B,B′ ∈ B,

beloutB (B′|B) :=

{
1, if B ⊆ B′
0 otherwise.

QED

Consider the problem of revising the belief function bel
given uncertain evidence relating to a coarsening of Ω,
which is represented as 〈Ω,B〉. One method of specifying
the uncertain evidence is through the effect that it would
have on beliefs once accepted. Specifically, according to
the method, we have to specify uncertain evidence by pro-
viding the following constraint:

m′(B) = qB , for each B ∈ B (2)

where m′ denotes the corresponding mass assignment of
the new belief function bel′ that results from accepting the
given evidence. Also the specification can be represented
as another belief function bele on 〈Ω,B〉 with me its cor-
responding mass assignment such that me(B) = qB for all
B ∈ B. To revise the belief function bel, we must therefore
choose a unique posterior belief function that satisfies the
above constraint. In order to achieve the uniqueness, we
define next two forms of belief kinematics, the evidence-
theoretic counterpart of the well-known probability kine-
matics [JEFFREY, 1983].

Definition 3.3 Suppose that bel and bel′ are two belief
functions on Ω, andm andm′ are their corresponding mass
assignments. Let 〈Ω,B〉 be a coarsening of Ω. The belief
function bel′ is said to be obtained from bel by inner belief
kinematics on 〈Ω,B〉 if, for any B ∈ B,

(bel′)inB (A|B) = belinB (A|B) for all A ⊆ Ω; (3)

and it is said to be obtained from bel by outer belief kine-
matics on 〈Ω,B〉 if, for any B ∈ B,

(bel′)inB (A|B) = beloutB (A|B) for all A ⊆ Ω. (4)

�

Intuitively, the above principle of belief kinematics on
〈Ω,B〉 says that, even though bel and bel′ may disagree
on propositions on 〈Ω,B〉, they agree on their relevance to
every event A ⊆ Ω.

Now we define two revisions proposed by Jeffrey’s rule as
follows: for any A ⊆ Ω,

1. bel′(A) =
∑
B∈B bel

in
B (A|B)qB ; and

2. bel′(A) =
∑
B∈B bel

out
B (A|B)qB



According to Lemmas 3.1 and 3.2, both revisions satisfy
the above constraint (2), and are indeed belief functions.
These two revisions are called inner and outer revisions
and the resulting belief functions are denoted as belin

′
and

belout
′

by adding the corresponding superscripts in and out,
respectively. It is easy to see that the well-known Jeffrey’s
rule for probability functions is a special case of our more
general rules here for belief functions. So, our Jeffrey’s
rules satisfy Constraint 1.

Theorem 3.4 The new belief function belin
′

given above is
the one and only belief function that satisfies the constraint
in Eq. (2) and that is obtained from bel by inner belief
kinematics on the coarsening frame 〈Ω,B〉.

Proof. According to Lemma 3.1, it suffices to show that
the new posterior belief function belin

′
obtained through

Jeffrey’s rule satisfies the condition for inner belief kine-
matics: for any A ⊆ Ω, B ∈ B,

belinB (A|B) = (belin
′
)inB (A|B)

First note that, for any A ⊆ Ω,

min′(A) =
∑
B∈B

qB
min
B (B)

linB (A)

where min′ is the corresponding mass function of belin
′

and

linB (A) :=

{
m(A), if B(A) = B

0 otherwise.

This follows directly from the following reasoning:

∑
A′⊆A

min′(A′) =
∑
A′⊆A

(
∑
B∈B

qB
min
B (B)

linB (A′))

=
∑
B∈B

(
∑
A′⊆A

qB
min
B (B)

linB (A′))

=
∑
B∈B

(

∑
A′⊆A l

in
B (A′)

min
B (B)

qB)

=
∑
B∈B

(

∑
A′⊆A,B(A′)=Bm(A′)

min
B (B)

qB)

=
∑
B∈B

belinB (A|B)qB

= belin
′
(A)

According to Lemma 3.1, (min′)inB (B) =∑
B(A)=B,A⊆Ωm

in′(A) = qB where (min′)inB is the

derived mass assignment of min′ on 〈Ω,B〉. Next we use

this expression of min′ to proceed as follows:

(belin
′
)inB (A|B) =

1

qB

∑
A′⊆A,B(A′)=B

min′(A′)

=
1

qB

∑
A′⊆A,B(A′)=B

∑
B′∈B

qB′ l
in
B′(A

′)

min
B (B′)

=
1

qB

∑
A′⊆A,B(A′)=B

qB
min
B (B)

m(A′)

=

∑
A′⊆A,B(A′)=Bm(A′)

min
B (B)

= belinB (A|B)

QED

Theorem 3.5 The new belief function belout
′

given above
is the one and only belief function that satisfies the con-
straint in Eq. (2) and that is obtained from bel by outer
belief kinematics on the coarsening frame 〈Ω,B〉.

Proof. According to Part (1) of Lemma 3.1 and Lemma
3.2, it suffices to show that the new posterior belief func-
tion obtained through Jeffrey’s rule satisfies the condition
in outer belief kinematics, i.e., for any B ∈ B,

(belout
′
)inB (A|B) = beloutB (A|B) for all A ⊆ Ω.

But this follows from a similar argument to that in the proof
of Theorem 3.4.

QED

The above propositions tell us that the two Jeffrey’s rules
are obtained from belief kinematics and hence satisfies
Constraint 3.

Example 3.6 The following example is adapted from
the original one by Jeffrey [JEFFREY, 1983] (also
[CHAN AND DARWICHE, 2003]). Assume that we are
given a piece of cloth, where its color can be one of: green,
blue, or violet. We want to know whether, on the next day,
the cloth will be sold, or not sold. We denote the possible
states as follows:

w1,g = (sold, green), w0,g = (not sold, green)

w1,b = (sold, blue), w0,b = (not sold, blue)
w1,v = (sold, violet), w0,v = (not sold, violet)

Our original belief bel is given by the following mass as-
signment m on Ω := {wn,c : n ∈ {0, 1}, c ∈ {b, g, v}}:

m({w1,g}) = m({w1,b}) = m({w1,v}) = 0.1

m({w0,g}) = m({w0,b}) = m({w0,v}) = 0.15

m({w1,g, w0,b}) = m({w1,b, w0,v}) = 0.1

m({w1,g, w1,v}) = 0.05



The possible states wc of colors denote {w1,c, w0,c} for
all c ∈ {g, v, b}. Let B be a subalgebra of the pow-
erset of Ω that consists of the propositions of the form⋃
B⊆{wb,wg,wv}B. It is easy to see that 〈Ω,B〉 is a coars-

ening of 〈Ω, 2Ω〉.

The derived mass assignment min
B on the coarsening frame

〈Ω,B〉 can be computed as follows:

min
B ({wg}) = min

B ({wb}) = min
B ({wv}) = 0.25

min
B ({wg, wb}) = min

B ({wb, wv}) = 0.1

min
B ({wg, wv}) = 0.05, min

B ({wb, wg, wv}) = 0

Now we consider the conditional beliefs of a given propo-
sition A := {w1,g, w0,b, w1,v} as an illustration. We obtain
bel(A) = 0.5. According to our previous definition of in-
ner conditioning, we have

belinB (A|{wg}) =
2

5
, belinB (A|{wb}) =

3

5

belinB (A|{wv}) =
2

5
, belinB (A|{wg, wb}) = 1

belinB (A|{wg, wv}) = 1, belinB (A|{wb, wv}) = 0

belinB (A|{wb, wv, wg}) =
1

27

Assume that we now inspect the cloth by candlelight, and
conclude that our belief on the color of the cloth should be:

bele({wg}) = bele({wb}) = bele({wv}) = 0.2

bele({wg, wb}) = bele({wb, wv}) = 0.5

bele({wg, wv}) = 0.6

The corresponding mass assignment me is as follows:

me({wg}) = me({wb}) = me({wv}) = 0.2

me({wg, wb}) = me({wb, wv}) = 0.1

me({wg, wv}) = 0.2

So, according to our definition of Jeffrey’s rule, we have
the new inner revision of belief in the event A:

belin
′
(A) =

∑
B∈B bel

in
B (A|B)me(B) = 0.58

Now we compute the outer revision of the belief in A. The
mass assignment mout

B on the coarsening frame 〈Ω,B〉 can
be computed as follows:

mout
B ({wg}) = 0.4 = mout

B ({wv}),mout
B ({wb}) = 0.45

mout
B ({wg, wb}) = 0.1 = mout

B ({wb, wv})
mout
B ({wg, wv}) = 0.05, mout

B ({wb, wg, wv}) = 0

According to our previous definition of outer conditioning,

we have

beloutB (A|{wg}) =
1

4
,beloutB (A|{wb}) =

2

9

beloutB (A|{wv}) =
1

8
,beloutB (A|{wg, wb}) = 1

beloutB (A|{wg, wv}) = 1,beloutB (A|{wb, wv}) = 0

beloutB (A|{wb, wv, wg}) =
1

27

Hence we have

belout
′
(A) =

∑
B∈B bel

out
B (A|B)me(B) = 151

360

4 MEASURES FOR BOUNDING BELIEF
CHANGES

One important question relating to belief revision is that of
measuring the extent to which a revision disturbs existing
beliefs. In the following, we simulate the work by Chan
and Darwiche [CHAN AND DARWICHE, 2002] by propos-
ing for each Jeffrey’s revision rule a distance measure for
belief functions which can be used to bound the amount
of belief changes induced by this revision using uncertain
evidence and show that, according to this measure, the pos-
terior belief function obtained by the corresponding belief
kinematics is the closest to the original one among all belief
functions that satisfy the constraint in Eq. (2).

Definition 4.1 Let bel and bel′ be two belief functions over
the same frame Ω of discernment. We define a measure
between bel and bel′ as follows:

Din(bel, bel′) = lnmaxA⊆Ω
m′(A)
m(A) − lnminA⊆Ω

m′(A)
m(A)

where 0
0 is defined to be 1. It is easy to check that Din

is a distance (or metric), satisfying the three properties
of distance and, whenever there is a subset A for which
m(A) = 0 and m′(A) > 0 or vice versa, the distance
Din(bel, bel′) for the corresponding belief functions is e-
qual to infinity. �

Lemma 4.2 Let 〈Ω,B〉 be a coarsening of 〈Ω, 2Ω〉. As-
sume that belin

′
is obtained from bel by applying Jeffrey’s

rule according to inner belief kinematics (Eq. (3)), given
the uncertain evidence specified by the set of posterior be-
liefs (min′)inB (B) = qB , for B ∈ B where (min′)inB is the
derived mass assignment of min′ , the corresponding mass
assignment of belin

′
, on 〈Ω,B〉.

1. For any A ⊆ Ω, if B(A) = B, then

min′ (A)
m(A) =

(min′ )inB (B)

min
B (B)

.

2. The distance Din(bel, bel′) between bel and belin
′

is
given by



Din(bel, belin
′
) =

lnmaxB∈B
qB

min
B (B)

− lnminB∈B
qB

min
B (B)

Proof. The first part follows from the following observa-
tion: for any A ⊆ Ω and B ∈ B,

∑
B(A′)=B,A′⊆Am

in′(A′)∑
B(A′)=B,A′⊆Am(A′)

=
(belin

′
)inB (A|B)(min′)inB (B)

belinB (A|B)min
B (B)

=
(min′)inB (B)

min
B (B)

The second equality comes from the condition for inner be-
lief kinematics. QED

The following theorem says that the principle of inner be-
lief kinematics can be viewed as a principle for minimizing
belief change with respect to the metric Din.

Theorem 4.3 For the belief functions bel and belin
′

in
Lemma 4.2, belin

′
is the closest to bel according to the

above distance measure Din among all possible belief
functions that agree with belin

′
on the propositions in the

subalgebra B.

Proof. Suppose that m is the corresponding mass as-
signment of bel. Let bel′′ be any belief function with
m′′ as its corresponding mass assignment that satis-
fies the constraint: (m′′)inB (B) = (min′)inB (B) for al-

l B ∈ B. Let Bmax = argmaxB∈B(
(min′ )inB (B)

min
B (B)

) and

Bmin = argminB∈B(
(min′ )inB (B)

min
B (B)

). Define rmax =

maxA⊆Ω
m′′(A)
m(A) . Then we have the following inequality:

rmaxm
in
B (Bmax) = rmax

∑
B(A)=Bmax,A⊆Ω

m(A)

≥
∑

B(A)=Bmax,A⊆Ω

m′′(A)

m(A)
m(A)

=
∑

B(A)=Bmax,A⊆Ω

m′′(A)

= (m
′′
)inB (Bmax)

= (min′)inB (Bmax)

So we have shown that rmax ≥ (min′ )inB (Bmax)

min
B (Bmax)

. Similar-

ly, we can define rmin = minA⊆Ω
m′′(A)
m(A) and show that

rmin ≤ (min′ )inB (Bmin)

min
B (Bmin)

. Therefore, the distance measure

between bel and bel′′ is:

Din(bel, bel′′) = ln rmax − ln rmin

≥ ln
(min′)inB (Bmax)

min
B (Bmax)

− ln
(min′)inB (Bmin)

min
B (Bmin)

= lnmaxB∈B
(min′)inB B

min
B (B)

− lnminB∈B
(min′)inB B

min
B (B)

= Din(bel, bel′)

The last equality follows from Lemma 4.2.

QED

Now we define a distance Dout for the outer revision. The
essential difference of Dout from the above Din for the in-
ner revision is that Dout depends on the associated coars-
ening frame.

Definition 4.4 Let bel and bel′ be two belief functions over
the same frame Ω of discernment. We define a measure
between bel and bel′ with respect to a coarsening 〈Ω,B〉 as
follows:

Dout(bel, bel′) =

lnmaxA⊆Ω
m′(A)

m/B(A)(A) − lnminA⊆Ω
m′(A)

m/B(A)(A)

where 0
0 is defined to be 1. It is easy to check that Dout

is a distance (or metric), satisfying the three properties of
distance. �

Lemma 4.5 Let 〈Ω,B〉 be a coarsening of 〈Ω, 2Ω〉. As-
sume that belout

′
is obtained from bel by applying Jeffrey’s

rule according to the outer belief kinematics, given the un-
certain evidence specified by the set of posterior beliefs
(mout′)inB (B) = qB , for B ∈ B where (mout′)inB is the
derived mass assignment ofmout′ , the corresponding mass
assignment of belout

′
, on 〈Ω,B〉.

1. For any A ⊆ Ω, if B(A) = B, then

mout′ (A)
m/B(A)(A) =

(mout′ )inB (B)
mout
B (B)

.

2. The distance Dout(bel, bel′) between bel and bel′ is
given by

Dout(bel, bel′) =
lnmaxB∈B

qB
mout
B (B)

− lnminB∈B
qB

mout
B (B)

Proof. The first part follows from the following observa-
tion: for any A ⊆ Ω and B ∈ B,∑

B(A′)=B,A′⊆Am
out′(A′)∑

B(A′)=B,A′⊆Am/B(A′)(A′)

=
(belout

′
)inB (A|B)(mout′)inB (B)

beloutB (A|B)mout
B (B)

=
(mout′)inB (B)

mout
B (B)



The second equality comes from the condition for outer be-
lief kinematics. QED

The following theorem says that the principle of outer be-
lief kinematics can be viewed as a principle for minimizing
belief change with respect to Dout.

Theorem 4.6 For the belief functions bel and belout
′

in
Lemma 4.5, belout

′
is the closest to bel according to the

above distance measure Dout among all possible belief
functions that agree with belout

′
on the propositions in the

subalgebra B.

Proof. Suppose that m is the corresponding mass as-
signments of bel. Let bel′′ be any belief function with
m′′ as its corresponding mass assignment that satisfies
the constraint: (m′′)inB (B) = (mout′)inB (B) for al-

l B ∈ B. Let Bmax = argmaxB∈B(
(mout′ )inB (B)
mout
B (B)

) and

Bmin = argminB∈B(
(mout′ )inB (B)
mout
B (B)

). Define rmax =

maxA⊆Ω
m′′(A)

m/B(A)(A) . Then we have the following inequali-
ty:

rmaxm
out
B (Bmax) = rmax

∑
B(A)=Bmax,A⊆Ω

m/B(A)(A)

≥
∑

B(A)=Bmax,A⊆Ω

m′′(A)

m/B(A)(A)
m/B(A)(A)

=
∑

B(A)=Bmax,A⊆Ω

m′′(A)

= (m′′)inB (Bmax)

= (mout′)inB (Bmax)

So we have shown that rmax ≥ (mout′ )inB (Bmax)
mout
B (Bmax)

. Similarly,

we can define rmin = minA⊆Ω
m′′(A)

m/B(A)(A) and show that

rmin ≤ (mout′ )inB (Bmin)
mout
B (Bmin)

. Therefore, the distance measure
between bel and bel′′ is:

Dout(bel, bel′′)

= lnmaxA⊆Ω
m′′(A)

m/B(A)(A)
− lnminA⊆Ω

m′′(A)

m/B(A)(A)

= ln rmax − ln rmin

≥ ln
(mout′)inB (Bmax)

mout
B (Bmax)

− ln
(mout′)inB (Bmin)

mout
B (Bmin)

= lnmaxB∈B
(mout′)inB B

mout
B (B)

− lnminB∈B
(mout′)inB B

mout
B (B)

= Dout(bel, bel′)

The last equality follows from Lemma 4.5.

QED

Example 4.7 Now, by using Lemmas 4.2 and 4.5, we com-
pute the distances between bel and bel′ in Example 3.6:

Din(bel, bel′) = ln 1− ln
1

4
= 2 ln 2

Dout(bel, bel′) = ln 4− ln
4

9
= 3 ln 3

5 RELATED WORKS AND
CONCLUSION

Although belief revision in probability theory is fully stud-
ied and researchers have generally agreed on the standard
form of Jeffrey’s rule, the corresponding revision rule in
evidence theory has seldom been adequately addressed and
there is not yet any standard form of this rule that has been
universally recognized. Although all the forms of Jeffrey’s
rule in the theory of evidence in the literature are gener-
alizations of this rule in probability theory, none of them
satisfies all of the three natural constraints proposed in this
paper. Usually they satisfy some constraints but do not sat-
isfy the others. In particular, none of these forms in the
literature has considered the revision of beliefs using uncer-
tain evidence from the perspective in this paper viewing J-
effrey’s rule as a form of the evidence-theoretic counterpart
of probability kinematics, which should be the essence of J-
effrey’s rule in Dempster-Shafer theory [WAGNER, 1992].
Moreover, none of those Jeffrey’s rules inDS-theory in the
literature has provided any distance measures for bounding
belief changes due to revision and our work is the first to
achieve that. Our distance measures for belief functions
are adapted from the one for revision of probabilistic be-
liefs using uncertain evidence as virtual certain evidence
according to Pearl’s method [PEARL, 1988] and hence d-
ifferent from those distances for belief functions in the lit-
erature [JOUSSELME AND MAUPIN, 2012].

Jeffrey’s rules for belief functions in the literature are pro-
posed from different perspectives. Shafer [SHAFER, 1981]
has studied Jeffery’s rule. He proposed that its generaliza-
tion can be found in Dempster’s rule of combination. His
proposal doesn’t fit with Constraint 2 and we agree with S-
mets [SMETS, 1993A] that Constraint 2 is more important
in the spirit of Jeffrey’s updating than Shafer’s proposal. In
addition, Wagner [WAGNER, 1992] studied Jeffrey’s rule
in evidence theory from the perspective of viewing belief
functions as lower envelopes. So his perspective is quite
different from our proposal in term of mass functions.

Dubois and Prade [DUBOIS AND PRADE, 1991,
DUBOIS AND PRADE, 1993] investigated updat-
ing and revision rules in a variety of uncertainty
models including belief functions. They proposed
the following form of Jeffrey’s rule in DS theory:



bel′(A) =
∑
B∈B

bel(A∪B̄)−bel(B̄)
pl(B) me(B). This form

is one of several Jeffrey’s rules studied by Ichihashi
and Tanaka ([ICHIHASHI AND TANAKA, 1989]). Ma
and others ([MA ET AL., 2010] and in more detail
[MA ET AL., 2011]) proposed three different revision
rules, namely the inner, outer and modified outer revisions.
In particular, their modified outer revision generalizes
Jeffrey’s rule of updating in probability theory, Demp-
ster’s rule of conditioning and a form of AGM revision.
Their rules work in a more general setting when the
incoming input is a general mass function. They consider
the information content associated with an epistemic
state represented by some belief function rather than
the full specification as in our paper. A belief function
bel1 is less informed than another one bel2 if bel2 is
a specialization of bel1. They formalize the success
postulate as requiring that the posterior belief function
bel′ be a specialization of the prior one bel. According
to their viewpoint, if bel1 and bel2 are both defined on
the same algebra A and bel1 is a specialization of bel2,
then they are considered to be consistent with each other.
However, according to our idea, they are inconsistent
if they are not the same. We take the readaptation as
revision [SMETS, 1993A]. Halpern [HALPERN, 2005]
provided another form of belief-function revision rule:
bel′(A) =

∑n
i=1 bele(Bi)bel(A|Bi) where (Bi)

n
i=1 is

a family of mutually exclusive and exhaustive subsets
of Ω. His generalization is in terms of belief functions
instead of mass functions. So it is quite different from
ours. Moreover, bel′ in his revision rule is not necessarily
a belief function unless bele is a probability function. But,
according to our proposal, uncertain evidence should be
specified by a belief function bele. None of the above
mentioned forms of Jeffrey’s rules in DS-theory satisfies
Constraint 2.

Our proposed Jeffrey’s rules actually improve the two rules
called source-conditioning and data-conditioning by Smet-
s [SMETS, 1993A] especially the source-conditioning rule
there. The motivation for the rule is not well justified and
Smets’ constraints for this rule are not well-defined. In S-
mets’ Constraint C2F, bel should satisfy the requiremen-
t that, for any X,Y ⊆ Ω, if B(X) = B(Y ), bel(X)

bel(Y ) =
bel′(X)
bel′(Y ) . But generally bel′ does not satisfy this requiremen-
t. Consider the above Example 3.6 and the proposition A.
Let A′ = {w0,g, w1,b, w0,v}. Obviously, B(A) = B(A′) =

Ω. However, bel(A)
bel(A′) = 1 6= 29

18 = bel′(A)
bel′(A′) . The two forms

of belief kinematics in this paper correct and improve the
two constraints C2F and C3F in [SMETS, 1993A] (Parts
(1) of Lemmas 4.2 4.5), respectively. Benferhat and oth-
ers [BENFERHAT ET AL., 2011] studied Jeffrey’s rule in a
possibilistic framework using the possibilistic counterparts
of probability kinematics, which is similar to our approach
in this paper. But, our theory for belief functions here cov-
ers their approach in the quantitative possibilistic setting.

The following are some other constraints for defin-
ing Jeffrey’s rules in Dempster-Shafer theory
[MA ET AL., 2011]:

• (Constraint 4) When the incoming information is cer-
tain, the proposed Jeffrey’s rule should be the same as
Dempster’s rule of conditioning.

• (Constraint 5) The proposed rule should satisfy some
natural form of minimal change principle.

• (Constraint 6) The revision rule should preserve the
new evidence.

We summarize our contributions in this paper by listing in
a table the above major proposed Jeffrey’s rules and their
satisfied constraints:

Table 1: Summary
XXXXXXXXXXRule

Constraint
1 2 3 4 5 6

Shafer’s rule
√ √ √

Modified outer revision
rule by Ma et al.

√ √ √ √

Halpern’s rule
√ √

Smets’ rule of
source-conditioning

√ √ √

Smets’ rule of
data-conditioning

√ √ √ √

Our rule of
inner revision

√ √ √ √ √

Our rule of
outer revision

√ √ √ √ √ √
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