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Abstract

We propose a generative Bayesian model that
predicts instance labels from weak (bag-level)
supervision. We solve this problem by simulta-
neously modeling class distributions by Gaussian
mixture models and inferring the class labels of
positive bag instances that satisfy the multiple in-
stance constraints. We employ Dirichlet process
priors on mixture weights to automate model se-
lection, and efficiently infer model parameters
and positive bag instances by a constrained varia-
tional Bayes procedure. Our method improves on
the state-of-the-art of instance classification from
weak supervision on 20 benchmark text catego-
rization data sets and one histopathology cancer
diagnosis data set.

1 INTRODUCTION

Automated data acquisition has reached unprecedented
scales. However, annotation of ground-truth labels is still
manual in many applications, lagging behind the massive
increase in observed data. This fact makes learning from
partially labeled data emerge as a key problem in machine
learning. Multiple instance learning (MIL) tackles this
problem by learning from labels available only for instance
groups, called bags [7]. A negatively labeled bag indicates
that all instances have negative labels. In a positively la-
beled bag, there is at least one positively labeled instance;
however, which of the instances are positive is not speci-
fied. We refer to these bag labeling rules as multiple in-
stance constraints. A positive bag instance with a positive
label is called a witness, and one with a negative label a
non-witness.

The classical MIL setup involves both bag-level training
and bag-level prediction. The mainstream MIL algorithms
are developed and evaluated under this classical setup. The
harder problem of instance-level prediction from bag-level

training has been addressed in a comparatively smaller vol-
ume of studies [16, 17, 32]. A group of existing models,
such as Key Instance SVM (KI-SVM) [16] and CkNN-
ROI [32] aim to identify a single positive instance from
each positive bag, the so called key instance, that deter-
mines the bag label, and discard the other instances. In a
recent work, Liu et al. [17] generalize this approach by a
voting framework (VF) that learns an arbitrary number of
key instances from each positive bag. While KI-SVM ex-
tends the MI-SVM formulation [2] with binary variables
indicating key instances, CkNN-ROI and VF are built on
the Citation k-NN method [26].

1.1 Contribution

Our central assumption is that all instances belonging to the
same Gaussian / cluster share the same class label. By per-
forming simultaneous assignment of instances to one class
or the other and clustering instances within each class, our
method effectively captures non-witnesses within the pos-
itive bags from their clustering relationships to other in-
stances. Figure 1 illustrates this idea.

We discover the latent positive bag instance labels by non-
parametrically modeling the distributions of both classes,
while simultaneously assigning the positive bag instances
to the most appropriate class. To capture almost arbitrarily
complex data distributions, we model the class distributions
as mixture of a potentially very large (determined by data
and the Dirichlet process prior) number of Gaussians with
full covariance. The Dirichlet process prior on the mixture
weights addresses the model selection problem, which is in
our context the question of how many clusters to use.

We infer the class distribution parameters and positive bag
instance labels by an efficient constrained variational in-
ference procedure. For a fixed configuration of positive
bag instance labels, we update class distribution parame-
ters as in variational inference of standard Dirichlet process
mixtures of Gaussians. Then keeping class distribution pa-
rameters fixed, we assign each positive bag instance to the
class that maximizes the total variational lower bound of
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Figure 1: Dots, solid ellipses, and dashed ellipses indicate
instances, bags, and clusters in a two dimensional feature
space, respectively. Positive class is shown as red and neg-
ative class as black. DPMIL infers the label of a positive
bag instance based on the class of the cluster that explains
it best.

class distributions. This way, an increase in lower bound is
guaranteed for all coordinate ascent updates, providing fast
convergence.

We evaluate our method on 20 benchmark text categoriza-
tion data sets, and on a novel application: finding Barrett’s
cancer tumors in histopathology tissue images from bag
labels. Our method improves the state-of-the-art in both
of these applications in terms of instance-level prediction
performance. Furthermore, differently from many existing
MIL methods, the inferred data modes and cluster weights
of our method enable enhanced interpretability. The source
code of our method is publicly available 1.

2 PRIOR ART

There exist several strategies for learning from weak su-
pervision. One is semi-supervised learning, which sug-
gests using large volumes of unlabeled data along with the
limited labeled data to improve supervised learning perfor-
mance [6]. Active learning is an alternative strategy that
proposes learning from the smallest possible set of training
samples selected by the model itself [24]. Another strategy
is self-taught learning where abundant unlabeled data are
available from a different but related task than the actual
learning problem to be solved [20].

Multiple instance learning also aims to solve the weakly
supervised learning problem by allowing supervision only
for groups of instances. This learning setup has been first
introduced by Dietterich et al. [7]. The authors propose
detecting witnesses from the assumption that they lie in a

1http://hci.iwr.uni-heidelberg.de/Staff/
mkandemi/

single axis parallel rectangle (APR) in the feature space.

MIL methods are built upon different heuristics. A group
of methods iteratively choose one instance from each bag
as a representative, and infer model parameters from this
selected instance set. Based on the new model parame-
ters, a new representative set is selected in the next itera-
tion. Seminal examples of this approach are EMDD [30]
and MI-SVM [2]. While the former learns a Gaussian den-
sity kernel on the representative instances, the latter trains
a support vector machine (SVM) on them.

Another group of MIL methods calculate similarities be-
tween bag pairs by bag-level kernels, and train standard
kernel learners, such as SVM, based on these bag similari-
ties. MI Kernel [10] and mi-Graph [31] are seminal exam-
ples of this approach. The common property of these mod-
els is that they assume non-i.i.d. relationships between in-
stances belonging to the same bag. There have been recent
attempts to exploit within-bag correlations in more elabo-
rate ways, such as Ellipsoidal MIL [15] and MIMN [11].
The former method represents each bag as an ellipsoid and
learns a max-margin classifier that obeys the multiple in-
stance constraints. The latter models the within-bag rela-
tionships by a Markov Random Field whose unary poten-
tials are determined by the output of a linear instance-level
classifier and clique (bag) potentials are calculated from
the unary potentials subject to the multiple instance con-
straints. These methods are typically both effective and ef-
ficient. However, they are not applicable to instance level
prediction due to the central non-i.i.d bag instances as-
sumption.

MIL as semi-supervised learning. MIL can be for-
mulated as a semi-supervised learning problem by assign-
ing latent variables to positive bag instances and inferring
them subject to the multiple instance constraints [8]. mi-
SVM [2] applies this principle to the SVM formulation.
GPMIL [14] and Bayesian Multiple Instance RVM [21] ap-
ply it to the Gaussian process classifier and the relevance
vector machine, respectively, by adapting the likelihood
function to MIL.

Generative MIL models. The semi-supervised learning
approach has also been adopted by some generative meth-
ods that model the class distributions and infer the label of
each positive bag instance based on which of these two dis-
tributions explain that instance with higher likelihood [1,8].
Foulds et al. [8] model each class distribution by a Gaussian
density with isotropic or diagonal covariance, and learn the
latent positive bag instances without employing the multi-
ple instance constraints on the training data. Adel et al. [1],
on the other hand, provide a generic framework that en-
forces the multiple instance constraint in the hard assign-
ment of instances to classes. They model class distribu-
tions by a Gaussian density and Gaussian copula. We fol-
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low this line of research, and extend the existing work by
i) using a richer family of distributions (potentially infinite
mixtures of Gaussians with full covariance), while ii) keep-
ing the multiple instance constraints and also providing an
efficient variational inference procedure, and iii) making
instance rather than bag level predictions.

Applications. Recent applications of MIL include dia-
betic retinopathy screening [19], visual saliency estimation
[27] as well as content-based object detection and track-
ing [23]. MIL is also useful in drug activity prediction
where each molecule constitutes a bag, each configuration
of a molecule an instance, and binding of any of these con-
figurations to the desired target is treated as a positive la-
bel, as first introduced by Dietterich et al. [7]. More recent
applications of MIL to this problem include finding the in-
teraction of proteins with Calmodulin molecules [18], and
finding bioactive conformers [9]. Xu et al. [28, 29] apply
MIL to tissue core (bag) level diagnosis of prostate cancer
from histopathology images, where they combine multi-
instance boosting [25] and clustering. There does not exist
any prior work that focuses on locating tumors from tissue
core level supervision, which we do in this paper as a case
study.

Instance-level MIL prediction. There exist few studies
focusing on instance prediction within the MIL setting.
The first principled attempt towards this direction has been
made by Zhou et al. [32]. The authors introduce a variant
of Citation k-NN, called CkNN-ROI. This method chooses
one instance from each positive bag as the key instance that
determines the bag label based on how well it predicts the
training bag labels by nearest neighbor matching, and ig-
nores the other instances. Li et al. [16] detect key instances
by a large margin method called KI-SVM. This method ex-
tends MI-SVM by binary latent variables assigned to each
positive bag instance, which identify strictly one key in-
stance per positive bag, and filter other instances out. The
authors propose two variants of their method: i) Bag KI-
SVM that has one slack variable per negative bag, and ii)
Instance KI-SVM that has one slack variable per negative
bag instance. Liu et al. [17] later propose detecting mul-
tiple key instances per positive bag by another variant of
Citation kNN that learns a voting function from training
bags. These models are shown to be effective in region-of-
interest detection in natural scene images and text catego-
rization. In this paper, we target the same learning problem,
and empirically show that rich modeling of class distribu-
tions leads to better prediction performance.

3 THE MODEL

Let X be a data set consisting of B bags X =
[X1, · · · ,XB ] indexed by b, and y = [y1, · · · , yB ] be
the vector of the corresponding binary bag labels yb ∈

{−1,+1}. Each bag Xb = [xb1, · · · ,xbNb ] consists of Nb

instances. We assume that each instance is associated with
a binary latent variable rbn ∈ {−1,+1} representing the
label of the instance. We further assume that the positive
instances in the data set (rbn = +1) come from distribution
p(xbn|θ+1), and the negative instances (rbn = −1) come
from distribution p(xbn|θ−1), parameterized by θ+1 and
θ−1, respectively. Both of these two distributions are Gaus-
sian mixture models with full covariance and with Dirichlet
process priors on mixture weights. The generative process
of our model is

p(vl) =

K∏
k=1

Beta(vlk|1, α), ∀l

p(zlbn|vl) =Mult(zlbn|πl1, · · · , πlK), ∀l, b, n
p(Λlk) =W(Λlk|W0, ν0), ∀l, k

p(µlk|Λlk) = N (µlk|m0, (β0Λlk)
−1), ∀l, k,

p(xbn|µ,Λ,zlbn, rbn) =∏
l∈{−1,+1}

K∏
k=1

N (xbn|µlk,Λ
−1
lk )1(zlbn=k)·1(rbn=l), ∀b, n,

p(yb = +1|r) = 1−
Nb∏
n=1

(1− 1(rbn = +1)) , ∀b

where the hyperparameters of the model are
{ν0,W0,m0, β0, α}. The function 1(·) is the indi-
cator function which returns 1 if its argument is true,
and 0 otherwise. Mult(·| · · · ), Beta(·|·, ·), N (·|·, ·)
and W(·|·, ·) denote the multinomial mass function,
and Beta, Gaussian and Wishart distribution densi-
ties, respectively. K is the number of clusters, and k
is the related index; l ∈ {−1,+1} indexes the two
class densities; πlk = vlk

∏k−1
j=1 (1 − vlj) is the stick

breaking prior over cluster assignments zlbn. The vec-
tor Zl contains cluster-assignment weights zlbn. The
sets µ = {µ−11, · · · ,µ−1K ,µ+11, · · · ,µ+1K} and
Λ = {Λ−11, · · · ,Λ−1K ,Λ+11, · · · ,Λ+1K} contain the
mean and inverse covariance of all clusters in the model,
respectively. The vector r has class-assignment variables
for all instances in its entries, and r−rbn has the same
for all instances except rbn. The set rb has the class-
assignment variables of bag b. If yb = −1 is observed,
it is also observed that rbn = −1 for all instances of bag
b. If yb = +1 is observed, rbn for bag instances of b are
latent, hence are inferred from data. We refer to this model
as Dirichlet process multiple instance learning (DPMIL).
Figure 2 illustrates the model in plate notation.

3.1 Inference

Following the probabilistic paradigm, for inference of the
model above, we aim to maximize the marginal likelihood
p(X,y|z) with respect to the class assignments z subject
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Figure 2: The generative process of DPMIL in plate no-
tation. Shaded nodes denote observed, and unshaded notes
denote latent variables that are inferred by constrained vari-
ational Bayes. Note that rbn is a discrete binary latent vari-
able without a prior. Hence it is denoted by a rectangle.

to the multiple instance constraints

maximize
r

p(X,y|r) (1)

s.t. max(rb) = yb, ∀b.

Let r∗ be a solution to the optimization problem (1), we can
define the divergence from the optimal configuration r∗ as

D(r) = log p(X,y|r∗)− log p(X,y|r).

It is easy to see that D(r) ≥ 0 for any r and D(r) = 0 if
r = r∗.

For a given configuration r, calculating p(X,y|r) is in-
tractable. Hence, we approximate the posterior p a factor-
ized distribution q

p(Z,µ,Λ,v−1,v+1|X, r)

=

 ∏
l∈{−1,+1}

B∏
b=1

Nb∏
n=1

q(zlbn|r)


×

 ∏
l∈{−1,+1}

K∏
k=1

q(µlk,Λlk|r)q(vlk|r)

 .

Let θ = θ−1 ∪ θ+1 denote the set of all parameters and
latent variables of both class distributions. Following the
standard variational Bayes formulation we can decompose
p(X,y|r) as

log p(X,y|r) = L(θ|r) +KL(q||p)

where

L(θ|r) = Eq[log p(X,y,θ|r)]− Eq[log q(θ|r)]

is the variational lower bound andKL(·||·) is the Kullback-
Leibler divergence between the true posterior p and the ap-
proximate posterior q. Similarly to above, KL(q||p) ≥ 0

for all q andKL(q||p) = 0 if and only if q = p. Combining
these two facts, we have

log p(X,y|r∗) = L(θ|r) +KL(q||p) +D(r)︸ ︷︷ ︸
E(q,r)

where the divergence term E(q, r) approaches 0 as q and r
approach optimal values. Hence, we can perform inference
by

maximize
r,θ

L(θ|r)

s.t. max(rb) = yb, ∀b.

which has the same global optimum as the optimization
problem (1). This problem can be solved by coordinate as-
cent. Keeping r fixed, model parameters θ can be updated
as in standard variational Bayes. Letψj ⊂ θ be a subset of
model parameters corresponding to a factor of q, the best
possible update for this factor can be calculated by

∂L
∂q(ψj)

= Eq(θ−ψj )
[log p(X,y,θ|r)]− log q(ψj)− 1 = 0.

Hence, the update rule becomes

q(ψj) = exp
{
Eq(θ−ψj )

[log p(X,y,θ|r)]
}
. (2)

Consequently, keeping θ fixed, r can be updated by

r
(t+1)
bn = argmax

l∈{−1,+1}
L(θ|r(t)−bn, rbn = l). (3)

The cases that violate the multiple instance constraint
max

(
r
(t+1)
b

)
= yb can be resolved by flipping one of the

instances of bag b that had a positive label at iteration (t)
back to positive. The fact that Equations (2) and (3) both
increase L and that E(q, r) ≥ 0 bring out fast convergence
to a local maximum in practice, as experimented in Section
4.3. The overall inference procedure is given in Algorithm
1, and the detailed update equations are available in Ap-
pendix 1.

3.2 Prediction

For a new bag X∗b = [x∗b1, · · · ,x∗bNb ], instance-level pre-
diction can be done by

r̂bn ← argmax
l∈{−1,+1}

p(x∗bn|X,y, r, y∗bn = l),

where

p(x∗bn|X,y, r, y∗bn = l) =

∫
q(θl|X,y, r)p(x∗bn|θl)dθl,

which corresponds to the standard predictive density for DP
Gaussian mixtures as given in [4]. The extended formula
of the predictive density for fixed r is given in Appendix 1.



Algorithm 1 Constrained variational inference for DPMIL
Input: Data X = [X1, · · · ,XB ] ,

Bag labels y = {y1, · · · , yb}
repeat
\\ Initialize instance class labels
rbn = yb, ∀b, n
\\ Update the class distributions given the current r
for ψj ∈ θ do
q(ψj |r)← exp

{
(Eq(θ−ψj )

[log p(X,y,θ|r)]
}

end for
\\ Update r given the class distributions
for b ∈ {j|yj = +1} do

for n = 1 to NB do
r
(t+1)
bn ← argmax

l∈{−1,+1}
L(θ|r(t)−rbn , rbn = l)

end for
\\ Resolve constraint violation
if max(rb) = −1 then
r
(t+1)
bj ← +1, for any j ∈ {r(t)bj = +1}

end if
end for

until convergence

3.3 Relationship to existing models

DPMIL has the following connections to some of the exist-
ing methods:

• mi-SVM [2]: DPMIL and mi-SVM can be viewed as
generative-discriminative pairs [12]. The two mod-
els find similar labels for positive bag instances when
classes are separable. DPMIL additionally finds the
clusters of both positive and negative instances.

• EMDD [30]: EMDD learns a class-conditional dis-
tribution p(yb = +1|Xb) in a discriminative manner
by applying a single Gaussian kernel on the most rep-
resentative subset of training instances. DPMIL ex-
plains the generative process of all training instances
by multiple Gaussian densities.

• QDA: Our method extends Quadratic Discriminant
Analysis (QDA) in three aspects: i) DPMIL fits mul-
tiple Gaussians on each class distribution, while QDA
fits only one. ii) DPMIL employs priors over mean
and covariance, while QDA performs maximum like-
lihood estimation, following the frequentist paradigm.
iii) DPMIL explains bag labels keeping the multi-
ple instance constraints, while QDA performs single-
instance learning.

• MIMM [8]: This model is a special case of DPMIL.
In particular, when K = 1, uninformative priors are
used for mixture coefficients Z and multiple instance
constraints are ignored, DPMIL reduces to MIMM.

Quadratic Discriminant Analysis (QDA) is the single-
instance version of MIMM.

4 RESULTS

We evaluate the instance prediction performance of our
method on two applications: i) web page categorization,
and ii) Barrett’s cancer diagnosis. For both experiments,
we set cluster countK to 20 (per class), ν0 toD+1, where
D is the dimensionality of the data, W0 to the inverse em-
pirical covariance of the data, m0 to the empirical mean of
the data, β0 to 1, and the concentration parameter α to 2,
which is chosen as the smallest integer larger than the unin-
formative case (α = 1). This value is not manually tuned.
Other choices of α are observed not to affect the outcome
significantly. We set maximum iteration count to 100.

We compare DPMIL to three MIL and two key instance
detection algorithms: mi-SVM [2], MI-SVM [2], GPMIL
[14], Bag KI-SVM [16], and Instance KI-SVM [16]. Mod-
els such as mi-Graph [31], iAPR [7], EMDD [30], Citation
k-NN [26], MILBoost [25], and MIMM [8] are observed to
perform worse than the list above, hence are not reported in
detail. For all kernelizeable models, the radial basis func-
tion (RBF) kernel is used. Hyperparameters of the compet-
ing models are learned by cross-validation.

4.1 20 text categorization data sets

As a benchmarking study, we evaluate DPMIL on the pub-
lic 20 Newsgroups database that consists of 20 text cate-
gorization data sets. Each data set consists of 50 positive
and 50 negative bags. Positive bags have on average 3 % of
their instances from the target category, and the rest from
other categories. Each instance in a bag is the top 200 TF-
IDF representation of a post. We reduce the dimensionality
to 100 by Kernel Principal Component Analysis (KPCA)
with an RBF kernel with a length scale of

√
100, following

the heuristic of Chang et al [5]. We evaluate the general-
ization performance using 10-fold cross validation with the
standard data splits. We use Area Under Precision-Recall
Curve (AUC-PR) as the performance measure due to its in-
sensitivity to class imbalance. Table 1 lists the performance
scores of models in comparison for the 20 data sets. We
report average AUC-PR of two comparatively recent meth-
ods, VF and VFr, on the same database from [17] Table 5 2,
for which public source code is not available. Our method
gives the highest instance prediction performance in 18 of
the 20 data sets, and its average performance throughout
the database is 3 percentage points higher than the state-of-
the-art VF method.



Table 1: Area Under Precision-Recall Curve (AUC-PR) scores of methods on the 20 Newsgroups database for instance
prediction. DPMIL outperforms the other MIL models in 18 out of 20 data sets. B-KI-SVM and I-KI-SVM stand for Bag
KI-SVM and Instance KI-SVM, respectively.

Data set DPMIL VF VFr B-KISVM miSVM I-KISVM GPMIL MISVM
alt.atheism 0.67 - - 0.68 0.53 0.46 0.44 0.38
comp.graphics 0.79 - - 0.47 0.65 0.62 0.49 0.07

comp.os.ms-windows.misc 0.51 - - 0.38 0.42 0.14 0.36 0.03
comp.sys.ibm.pc.hardware 0.67 - - 0.31 0.57 0.38 0.35 0.10
comp.sys.mac.hardware 0.76 - - 0.39 0.56 0.64 0.54 0.27

comp.windows.x 0.73 - - 0.37 0.56 0.35 0.36 0.04
misc.forsale 0.45 - - 0.29 0.31 0.25 0.33 0.10
rec.autos 0.76 - - 0.45 0.51 0.42 0.38 0.34

rec.motorcycles 0.69 - - 0.52 0.09 0.61 0.46 0.27
rec.sport.baseball 0.74 - - 0.52 0.18 0.41 0.38 0.22
rec.sport.hockey 0.91 - - 0.66 0.27 0.64 0.43 0.75

sci.crypt 0.68 - - 0.47 0.57 0.26 0.31 0.32
sci.electronics 0.90 - - 0.42 0.83 0.65 0.71 0.34

sci.med 0.73 - - 0.55 0.37 0.44 0.32 0.44
sci.space 0.70 - - 0.51 0.46 0.33 0.32 0.20

soc.religion.christian 0.72 - - 0.53 0.05 0.45 0.45 0.40
talk.politics.guns 0.64 - - 0.43 0.57 0.32 0.38 0.01

talk.politics.mideast 0.80 - - 0.60 0.77 0.49 0.46 0.60
talk.politics.misc 0.60 - - 0.50 0.61 0.38 0.29 0.30
talk.religion.misc 0.51 - - 0.32 0.08 0.34 0.32 0.04

Average 0.70 0.67 0.59 0.47 0.45 0.43 0.40 0.26

Table 2: Barrett’s cancer diagnosis accuracy and F1 score
of models in comparison. DPMIL outperforms the second
best model by 6 percentage points in accuracy and 3 per-
centage points in F1 score. Instance level supervision per-
formance is provided in the bottom row for reference.

Method Accuracy (%) F1 Score
DPMIL 71.8 0.74
GPMIL 65.8 0.54
I-KISVM 65.4 0.45
B-KISVM 64.7 0.48
mi-SVM 62.7 0.71
MISVM 46.9 0.64
SVM 83.5 0.82

4.2 Barrett’s cancer diagnosis

Biopsy imaging is a widely used cancer diagnosis tech-
nique in clinical pathology [22]. A sample is taken from
the suspicious tissue, stained with hematoxylin & eosin,
which dyes nuclei, stroma, lumen, and cytoplasm to differ-
ent colours. Afterwards, the tissue is photographed under a
microscope, and a pathologist examines the resultant image
for diagnosis. In many cases, diagnosis of one patient re-
quires careful scanning of several tissue slides of extensive

2 Liu et al. [17] report 0.42 AUC-PR for KI-SVM and 0.41
AUC-PR for mi-SVM in Table 5.

sizes. Considerable time could be saved by an algorithm
that finds the tumors and leads the pathologist to tumorous
regions.

We evaluate DPMIL in the task of finding Barrett’s can-
cer tumors in human esophagus tissue images from image-
level supervision. Our data consists of 210 tissue core
images (143 cancer and 67 healthy) taken from 97 Bar-
rett’s cancer patients. We treat tumor regions drawn by
expert pathologists as ground truth. We split each tissue
core (with average size of 2179x1970 pixels) into a grid
of 200x200 pixel patches. We represent each patch by a
738-dimensional feature vector of SIFT descriptors, local
binary patterns with 20×20-pixel cells, intensity histogram
of 26 bins for each of the RGB channels, and the mean of
the features described in [13] for cells lying in that patch.
The data set includes 14303 instances, 53.4% of which are
cancerous. We treat each image as a bag and each patch
belonging to that image as an instance. A bag is labeled as
positive if it includes tumor, and negative otherwise. Simi-
larly to above, we reduce the data dimensionality to 30 by
KPCA with an RBF kernel having a length scale of

√
30.

We evaluate generalization performance by 4-fold cross-
validation over bags. We repeated this procedure 5 times.

The patch-level diagnosis performance comparison of
models is given in Table 2. Prediction performance of DP-
MIL lies in the middle of the chance level of 53.4% and
the upper bound of 83.5% which is reached by patch-level



Figure 3: Patch prediction results on sample tissue core images. Green: correctly detected cancer (true positive), Red:
Missed detection of cancer (false negative), Yellow: False cancer alarm (false positive). Rest: True negative.
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training of an SVM with RBF kernel. DPMIL clearly out-
performs existing models both in prediction accuracy and
F1 score (harmonic mean of precision and recall). Figure
3 shows prediction results of DPMIL on six sample tissue
cores (bags) with different proportions of tumor. DPMIL
produces few false positives for the healthy tissues (left-
most column), detects local tumors with reasonable accu-
racy (middle columns), and produces few false negatives
for tissue cores covered entirely by tumor (right-most col-
umn).

Figure 4 shows the mixture weights of the clusters for the
class distributions averaged over data splits. The healthy
class is dominated by a single cluster due to the relatively
uniform structure of a healthy esophagus tissue. On the
other hand, for the cancer class, the weights are more
evenly distributed among five clusters. This result is con-
sistent with the fact that the data set includes images from
various grades of cancer. Each grade of cancer causes a
different visual pattern in the tissue, resulting in a multi-
modal distribution of tumor patches. As shown in Figure
5, clusters capture meaningful visual structures. Patches
in the first row correspond to a stage of Barrett’s cancer
where cells form circular structures called glands which do
not exist in a healthy esophagus tissue. The second row il-
lustrates samples of cells with faded color, and in the third
row the tissue is covered by an overly high population of
poorly differentiated cells.

4.3 Learning rate and computational time

Weak supervision often emerges as a necessity for analyz-
ing big data. Hence, computational efficiency of an MIL
model is of key importance for feasibility for real-world
scenarios. To this end, we provide an empirical analysis
of the learning rate and the training time of DPMIL. As
shown in Figure 6, the variational lower bound logL(θ|r)
exhibits a sharp increase in the first few iterations, and sat-
urates within 50 iterations.

Figure 6: Evolution of the variational lower bound
logL(θ|r) throughout training iterations for the Barrett’s
cancer data set. DPMIL exhibits a steep learning curve and
converges in less than 50 iterations.
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Table 3 shows the average training times of the models
in comparison for one data split. Thanks to its Bayesian
nonparametric nature, DPMIL does not require a cross-
validation stage for model selection, unlike the other mod-



Figure 4: Cluster mixture coefficients for cancer (yb = +1) and healthy (yb = −1) in the Barrett’s cancer data set. The
healthy class distribution is dominated by a single mode unlike the cancer class distribution, supporting that a healthy tissue
has a more even look than the cancer class which includes images belonging to various levels of cancer.
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Figure 5: Sample patches from three different clusters (one in each row) of the cancer class. Each patch belongs to a
different image. First cluster shows glandular formations of cancer cells, second cluster contains single cancer cells with
faded color, and third cluster shows increased population of poorly differentiated cancer cells.

els. To avoid variability due to the desired level of detail
in hyperparameter tuning (grid resolution and number of
validation splits) which could lead to unfair comparison,
we excluded the cross-validation time for the competing
models. As a result of its steep learning rate, DPMIL pro-
vides reasonable training time, ranking as the most efficient
model in text categorization and third in Barrett’s cancer di-
agnosis.

5 DISCUSSION

Multiple instance learning methods have long been devel-
oped and evaluated for bag label prediction. In this paper,
we focus on the harder problem of instance level prediction
from bag level training. We approach the problem from a
semi-supervised learning perspective, and attempt to dis-
cover the unknown labels of positive bag instances by rich
modeling of class distributions in a generative manner. We
model these distributions by Gaussian mixture models with
full covariance to handle complex multimodal cases. To

Table 3: Training times (in seconds) of models in compar-
ison for one data split. Thanks to the efficient variational
inference procedure, DPMIL can be trained in reasonable
time.

Model name Text categorization Barrett’s cancer
DPMIL 2.9 44.7
KISVM-B 11.0 107.7
mi-SVM 12.2 126.6
KISVM-I 10.1 15.3
GPMIL 90.5 1491.7
MISVM 4.1 10.8

avoid the model selection problem (i.e. predetermination
of the number of data modes), we apply Dirichlet process
priors over mixture coefficients.

As experimented in a large set of benchmark data sets and
one cancer diagnosis application, our method clearly im-
proves the state-of-the-art in instance classification from



weak labels. We attribute this improvement to the effective-
ness of the let the data speak attitude in semi-supervised
learning: The model discovers the unknown positive bag
instance labels by assigning them to the class that explains
the data generation process better (i.e. the class that in-
creases the variational lower bound more). Of the other
methods in our comparison, mi-SVM, VF, and KISVM are
ignorant about the class distributions. The remaining meth-
ods are tailored for predicting bag, but not instance labels.

Generative modeling of data is commonly undesirable in
standard pattern classification tasks, as a result of Vapnik’s
razor principle 3. However, our results imply that genera-
tive data distribution modeling turns out to be an effective
strategy when weak supervision is an additional source of
uncertainty.

Modeling class distributions with mixture models brings
enchanced interpretability as a by-product. Analysis of in-
ferred clusters may provide additional information, or may
support further modeling decisions. Even though we re-
strict our analysis to binary classification for illustrative
purposes, extension of our method to multiclass cases is
simply a matter of increasing the number of Gaussian mix-
ture models from two to a desired number of classes.

Appendix 1: Variational update equations
and predictive density

Variational update equations of the approximate posterior q
correspond to those of the Gaussian mixture model as de-
scribed in [3] where the Dirichlet prior on mixture weights
are replaced by a Dirichlet process prior and instances are
assigned to the appropriate distribution by indicator func-
tions 1(·).

For q(vlk) = Beta(γ1lk, γ
2
lk),

γ1
lk = 1 +

B∑
b=1

Nb∑
n=1

q(zlbn = k)1(rbn = l),

γ2
lk = α+

B∑
b=1

Nb∑
n=1

q(zlbn > k)1(rbn = l).

For q(zlbn = k) =Mult(τ1lbn, · · · , τKlbn),

τklbn ←
(

Ψ(γ1
lk)−Ψ(γ1

lk + γ2
lk) +

k=1∑
j=1

(
Ψ(γ2

lk)−Ψ
(
γ1
lk + γ2

lk

))
+

D∑
i=1

Ψ

(
νlk + 1− i

2

)
+D log(2) + log |Wlk| −

D

2
log(2π)

− D

2
β−1
lk −

1

2
νlk(xbn −mlk)TWlk(xbn −mlk)

)
1(rbn = l).

3Vapnik’s razor principle: When solving a (learning) prob-
lem of interest, do not solve a more complex problem as an inter-
mediate step.

For q(µlk,Λlk) = N (µlk|mlk, (βlkΛ−1lk ))W(Λlk|Wlk, νlk),
where

βlk = β0 +Nlk,

mlk = β−1
lk (β0m0 +Nlkx̄lk),

W−1
lk = W−1

0 +NlkSlk +
β0Nlk

β0 +Nlk
(x̄lk −m0)(x̄lk −m0)T ,

νlk = ν0 +Nlk + 1.

Here,

Nlk =

B∑
b

Nb∑
n=1

1(rbn = l)q(zlbn = k),

x̄lk =
1

Nlk

B∑
b

Nb∑
n=1

1(rbn = l)q(zlbn = k)xbn,

Slk =
1

Nlk

B∑
b=1

Nb∑
n=1

1(rbn = l)q(zlbn = k)(xbn − x̄lk)(xbn − x̄lk)T .

For an inferred configuration r̂, the predictive density of
DPMIL is identical to that of a standard Gaussian mixture
model as given in [3]

p(x∗
bn|X,y, r̂, y∗bn = l) =

∫
q(θl|X,y, r̂)p(x∗

bn|θl)dθl,

=
1

π̂l

K∑
k=1

πlkSt

(
x∗
bn

∣∣∣∣∣mk,
(νk + 1−D)βk

1 + βk
Wk, νk + 1−D

)
,

where π̂lk =
∑K

k=1 πl and St(·|·, ·, ·) is the Student’s t den-
sity function.
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