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Abstract

Van Seijen and Sutton (2014) recently proposed
a new version of the linear TD(�) learning algo-
rithm that is exactly equivalent to an online for-
ward view and that empirically performed bet-
ter than its classical counterpart in both predic-
tion and control problems. However, their al-
gorithm is restricted to on-policy learning. In
the more general case of off-policy learning, in
which the policy whose outcome is predicted and
the policy used to generate data may be differ-
ent, their algorithm cannot be applied. One rea-
son for this is that the algorithm bootstraps and
thus is subject to instability problems when func-
tion approximation is used. A second reason
true online TD(�) cannot be used for off-policy
learning is that the off-policy case requires so-
phisticated importance sampling in its eligibility
traces. To address these limitations, we gener-
alize their equivalence result and use this gen-
eralization to construct the first online algorithm
to be exactly equivalent to an off-policy forward
view. We show this algorithm, named true on-

line GTD(�), empirically outperforms GTD(�)
(Maei, 2011) which was derived from the same
objective as our forward view but lacks the ex-
act online equivalence. In the general theorem
that allows us to derive this new algorithm, we
encounter a new general eligibility-trace update.

1 Temporal difference learning

Eligibility traces improve learning in temporal-difference
(TD) algorithms by efficiently propagating credit for later
observations back to update earlier predictions (Sutton,
1988), and can help speed up learning significantly. A good
way to interpret these traces, the extent of which is reg-
ulated by a trace parameter � 2 [0, 1], is to consider the
eventual updates to each prediction. For � = 1 the up-

date for the prediction at time t is similar to a Monte Carlo
update towards the full return following t. For � = 0 the
prediction is updated toward only the immediately (reward)
signal, and the rest of the return is estimated with the pre-
diction at the next state. Such an interpretation is called
a forward view, because it considers the effect of future
observations on the updates. In practice, learning is often
fastest for intermediate values of � (Sutton & Barto, 1998).

Traditionally, the equivalence to a forward view was known
to hold only when the predictions are updated offline. In
practice TD algorithms are more commonly used online,
during learning, but then this equivalence was only approx-
imate. Recently, van Seijen and Sutton (2014) developed
true online TD(�), the first algorithm to be exactly equiv-
alent to a forward view under online updating. For � = 1
the updates by true online TD(�) eventually become ex-
actly equivalent to a Monte Carlo update towards the full
return. As demonstrated by van Seijen and Sutton, such an
online equivalence is more than a theoretical curiosity, and
leads to lower prediction errors than when using the tradi-
tional TD(�) algorithm that only achieves an offline equiv-
alence. In this paper, we generalize this result and show
exact online equivalences are possible for a wide range of
forward views, leading to computationally efficient online
algorithms by exploiting a new generic trace update.

A limitation of the true online TD(�) algorithm by van
Seijen and Sutton (2014) is that it is only applicable to on-
policy learning, when the learned predictions correspond
to the policy that is used to generate the data. Off-policy
learning is important to be able to learn from demonstra-
tions, to learn about many things at the same time (Sutton
et al., 2011), and ultimately to learn about the unknown op-
timal policy. A natural next step is therefore to apply our
general equivalence result to an off-policy forward view.
We construct such a forward view and derive an equivalent
new off-policy gradient TD algorithm, that we call true on-

line GTD(�). This algorithm is constructed to be equivalent
for � = 0, by design, to the existing GTD(�) algorithm
(Maei, 2011). We demonstrate empirically that for higher
� the new algorithm is much better behaved due to its exact



equivalence to a desired forward view. In addition to the
practical potential of the new algorithm, this demonstrates
the usefulness of our general equivalence result and the re-
sulting new trace update.

2 Problem setting

We consider a learning agent in an unknown environment
where at each time step t the agent performs an action At

after which the environment transitions from the current
state St to the next state St+1. We do not assume the state
itself can be observed and the agent instead observes a fea-
ture vector �t 2 Rn, which is typically a function of the
state St such that �t

.
= �(St). The agent selects its actions

according to a behavior policy b, such that b(a|St) denotes
the probability of selecting action At = a in state St. Typ-
ically b(a|s) depends on s through �(s).

After performing At, the agent observes a scalar (reward)
signal Rt+1 and the process can either terminate or con-
tinue. We allow for soft terminations, defined by a po-
tentially time-varying state-dependent termination factor
�t 2 [0, 1] (cf. Sutton, Mahmood, Precup & van Hasselt,
2014). With weight 1 � �t+1 the process terminates at
time t + 1 and Rt+1 is considered the last reward in this
episode. With weight �t+1 we continue to the next state
and observe �t+1

.
= �(St+1). The agent then selects a

new action At+1 and this process repeats. A special case is
the episodic setting where �t = 1 for all non-terminating
times t and �T = 0 when the episode ends at time T . The
termination factors are commonly called discount factors,
because they discount the effect of later rewards.

The goal is to predict the sum of future rewards, discounted
by the probabilities of termination, under a target policy ⇡.
The optimal prediction is thus defined for each state s by

v⇡(s)
.
= E⇡

" 1X

t=1

Rt

tY

k=1

�k | S0 = s

#
,

where E⇡[ · ]
.
= E[ · | At ⇠ ⇡(·|St), 8t ] is the expectancy

conditional on the policy ⇡. We estimate the values v⇡(s)
with a parameterized function of the observed features. In
particular we consider linear functions of the features, such
that ✓

>
t �t ⇡ v⇡(St) is the estimated value of the state at

time t according to a weight vector ✓t. The goal is then to
improve the predictions by updating ✓t.

We desire online algorithms with a constant O(n) per-step
complexity, where n is the number of features in �. Such
computational considerations are important in settings with
a lot of data or when �t is a large vector. For instance, we
want our algorithms to be able to run on a robot with many
sensors and limited on-board processing power.

3 General online equivalence between
forward and backward views

We can think about what the ideal update would be for a
prediction after observing all relevant future rewards and
states. Such an update is called a forward view, because it
depends on observations from the future. A concrete ex-
ample is the on-policy Monte Carlo return, consisting of
the discounted sum of all future rewards.

In practice, full Monte Carlo updates can have high vari-
ance. It can be better to augment the return with the then-
current predictions at the visited states. When we con-
tinue after some time step t, with weight �t+1, we replace
a portion of 1 � �t+1 of the remaining return with our
current prediction of this return at St+1. Making use of
later predictions to update earlier predictions in this way
is called bootstrapping. The process then continues to the
next action and reward with total weight �t+1�t+1, where
again we terminate with 1 � �t+2 and then bootstrap with
1 � �t+2, and so on. When �t+1 = 0 we get the usual
one-step TD return Rt+1 + �t+1�

>
t+1✓t. If �t = 1 for

all t, we obtain a full (discounted) Monte Carlo return. In
the on-policy setting, when we do not have to worry about
deviations from the target policy, we can then update the
prediction made at time t towards the on-policy �-return
defined by

G�
t = Rt+1 + �t+1

⇥
(1� �t+1)�

>
t+1✓t + �t+1G

�
t+1

⇤
.

The discount factors �t are normally considered a property
of the problem, but the bootstrap parameters �t can be con-
sidered tunable parameters. The full return (obtained for
� = 1) is an unbiased estimate for the value of the be-
havior policy, but its variance can be high. The value es-
timates are typically not unbiased, but can be considerably
less variable. As such, one can interpret the � parameters as
trading off bias and variance. Typically, learning is fastest
for intermediate values of �.

If termination never occurs, G�
t is never fully defined. To

construct a well-defined forward view, we can truncate the
recursion at the current data horizon (van Seijen & Sutton,
2014; Sutton et al., 2014) to obtain interim �-returns. If we
have data up to time t, all returns are truncated as if �t = 0
and we bootstrap on the most recent value estimate �

>
t ✓t�1

of the current state. This gives us, for each 0  k < t

G�
k,t = Rk+1 + �k+1

⇥
(1� �k+1)�

>
k+1✓k + �k+1G

�
k+1,t

⇤

and G�
t,t = �

>
t ✓t�1. In this definition of G�

k,t, for each
time step j with k < j  t the value of state Sj is estimated
using �

>
j ✓j�1, because ✓j�1 is the most up-to-date weight

vector at the moment we reach this state.

Using these interim returns, we can construct an interim
forward view which, in contrast to conventional forward



views, can be computed before an episode has concluded
or even if the episode never fully terminates. For instance,
when we have data up to time t the following set of linear
updates for all times k < t is an interim forward view:

✓

t
k+1 = ✓

t
k + ↵k(G

�
k,t � �

>
k ✓

t
k)�k , k < t , (1)

where ✓

t
0

.
= ✓0 is the initial weight vector. The subscript

on ✓

t
k (first index on G�

k,t) corresponds to the state for the
kth update, the superscript (second index on G�

k,t) denotes
the current data horizon.

The forward view (1) is well-defined and computable at
every time t, but it is not very computationally efficient.
For each new observation, when t increments to t + 1, we
potentially have to recompute all the updates, as G�

k,t+1

might differ from G�
k,t for arbitrary many k. The resulting

computational complexity is O(nt) per time step, which
is problematic when t becomes large. Therefore, forward
views are not meant to be implemented as is. They serve as
a conceptual update, in which we formulate what we want
to achieve after observing the relevant data.

In the next theorem, we prove that for many forward views
an efficient and fully equivalent backward view exists that
exploits eligibility traces to construct online updates that
use only O(n) computation per time step, but that still re-
sult in exactly the same weight vectors. The theorem is
constructive, allowing us to find such backward views au-
tomatically for a given forward view.

Theorem 1 (Equivalence between forward and backward
views). Consider any forward view that updates towards

some interim targets Y t
k with

✓

t
k+1 = ✓

t
k + ⌘k(Y

t
k � �

>
k ✓

t
k)�k + xk , 0  k < t ,

where ✓

t
0 = ✓0 for some initial ✓0 and where xk 2 Rn

is any vector that does not depend on t. Assume that the

temporal differences Y t+1
k � Y t

k for different k are related

through

Y t+1
k � Y t

k = ck(Y
t+1
k+1 � Y t

k+1) , 8k < t , (2)

where ck is a scalar that does not depend on t. Then, the

final weights ✓

t
t at each t are equal to the weights ✓t as

defined by e0 = ⌘0�0 and the backward view

✓t+1 = ✓t + (Y t+1
t �Y t

t )et + ⌘t(Y
t
t ��

>
t ✓t)�t + xt ,

et = ct�1et�1 + ⌘t(1� ct�1�
>
t et�1)�t , t > 0 . (3)

Proof. We introduce the fading matrix Ft
.
= I � ⌘t�t�

>
t ,

such that ✓

t
k+1 = Fk✓

t
k + ⌘kY

t
k�k. We subtract ✓

t
t from

✓

t+1
t+1 to find the change when t increments. Expanding

✓

t+1
t+1 , we get

✓

t+1
t+1 � ✓

t
t

= Ft✓
t+1
t � ✓

t
t + ⌘tY

t+1
t �t + xt

= Ft(✓
t+1
t � ✓

t
t) + ⌘tY

t+1
t �t + (Ft � I)✓t

t + xt

= Ft(✓
t+1
t � ✓

t
t) + ⌘tY

t+1
t �t � ⌘t�t�

>
t ✓

t
t + xt

= Ft(✓
t+1
t � ✓

t
t) + ⌘t(Y

t+1
t � �

>
t ✓

t
t)�t + xt . (4)

We now repeatedly expand both ✓

t+1
t and ✓

t
t to get

✓

t+1
t � ✓

t
t

= Ft�1(✓
t+1
t�1 � ✓

t
t�1) + ⌘t�1(Y

t+1
t�1 � Y t

t�1)�t�1

= Ft�1Ft�2(✓
t+1
t�1 � ✓

t
t�1)

+ ⌘t�2(Y
t+1
t�2 � Y t

t�2)Ft�1�t�2

+ ⌘t�1(Y
t+1
t�1 � Y t

t�1)�t�1

= . . . (Expand until reaching ✓

t+1
0 � ✓

t
0 = 0.)

= Ft�1 · · ·F0(✓
t+1
0 � ✓

t
0)

+
t�1X

k=0

⌘kFt�1· · ·Fk+1(Y
t+1
k � Y t

k )�k

=
t�1X

k=0

⌘kFt�1· · ·Fk+1(Y
t+1
k � Y t

k )�k

=
t�1X

k=0

⌘kFt�1· · ·Fk+1ck(Y
t+1
k+1 � Y t

k+1)�k (Using (2))

= . . . (Apply (2) repeatedly.)

= ct�1

t�1X

k=0

⌘k

0

@
t�2Y

j=k

cj

1

A
Ft�1· · ·Fk+1�k

| {z }
.
= et�1

(Y t+1
t � Y t

t )

= ct�1et�1(Y
t+1
t � Y t

t ) . (5)

The vector et can be computed with the recursion

et =
tX
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0

@
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= ct�1Ftet�1 + ⌘t�t

= ct�1et�1 + ⌘t(1� ct�1�
>
t et�1)�t .



We plug (5) back into (4) and obtain

✓

t+1
t+1 � ✓

t
t

= ct�1Ftet�1(Y
t+1
t � Y t

t ) + ⌘t(Y
t+1
t � �

>
t ✓t)�t + xt

= (et � ⌘t�t)(Y
t+1
t � Y t

t ) + ⌘t(Y
t+1
t � �

>
t ✓t)�t + xt

= (Y t+1
t � Y t

t )et + ⌘t(Y
t
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>
t ✓t)�t + xt .

Because ✓0,t
.
= ✓0 for all t, the desired result follows

through induction.

The theorem shows that under condition (2) we can turn a
general forward view into an equivalent online algorithm
that only uses O(n) computation per time step. Compared
to previous work on forward/backward equivalences, this
grants us two important things. First, the obtained equiva-
lence is both online and exact; most previous equivalences
were only exact under offline updating, when the weights
are not updated during learning (Sutton & Barto, 1998;
Sutton et al., 2014). Second, the theorem is constructive,
and gives an equivalent backward view directly from a de-
sired forward view, rather than having to prove such an
equivalence in hindsight (as in, e.g., van Seijen & Sutton,
2014). This is perhaps the main benefit of the theorem:
rather than relying on insight and intuition to construct effi-
cient online algorithms, Theorem 1 can be used to derive an
exact backward view directly from a desired forward view.
We exploit this in Section 6 when we turn a desired off-
policy forward view into an efficient new online off-policy
algorithm.

We refer to traces of the general form (3) as dutch traces.
The trace update can be interpreted as first shrinking the
traces with c, for instance c = ��, and then updating the
traces for the current state, �

>
e, towards one with a step

size of ⌘. In contrast, traditional accumulating traces, de-
fined by et = ct�1et�1 + �t, add to the trace value of the
current state rather than updating it toward one. This can
cause the accumulating traces to grow large, potentially re-
sulting in high-variance updates.

To demonstrate one advantage of Theorem 1, we apply it
to the on-policy TD(�) forward view defined by (1).

Theorem 2 (Equivalence for true online TD(�)). Define

✓

t
0 = ✓0. Then, ✓

t
t as defined by (1) equals ✓t as defined

by the backward view

�t = Rt+1 + ��

>
t+1✓t � �

>
t ✓t�1 ,

et = ��et�1 + ↵t(1� ���

>
t et�1)�t ,

✓t+1 = ✓t + �tet + ↵t(�
>
t ✓t�1 � �

>
t ✓t)�t .

Proof. In Theorem 1, we substitute xt = 0, ct = �� and
Y t
k = G�

k,t, such that Y t+1
t � Y t

t = �t and Y t
t = �

>
t ✓t�1.

The desired result follows immediately.

The backward view in Theorem 2 is true online TD(�), as
proposed by van Seijen and Sutton (2014). Using The-
orem 1, we have proved equivalence to its forward view
with a few simple substitutions, whereas the original proof
is much longer and more complex.

4 Off-policy learning

In this section, we turn to off-policy learning with function
approximation. In constructing an off-policy forward view
two issues arise that are not present in the on-policy set-
ting. First, we need to estimate the value of a policy that
is different than the one used to obtain the observations.
Second, using a forward view such as (1) under off-policy
sampling can cause it to be unstable, potentially resulting
in divergence of the weights (Sutton et al., 2008). These
issues can be avoided by constructing our off-policy algo-
rithms to minimize a mean-squared projected Bellman er-
ror (MSPBE) with gradient descent (Sutton et al., 2009;
Maei & Sutton, 2010; Maei, 2011).

The MSPBE was previously used to derive GTD(�) (Maei,
2011), which is an online algorithm that can be used to
learn off-policy predictions. GTD(�) was not constructed
to be exactly equivalent to any forward view and it is a
natural question whether the algorithm can be improved
from having such an equivalence, just as was the case with
TD(�) and true online TD(�). In this section, we introduce
an off-policy MSPBE and show how GTD(�) can be de-
rived. In the next section, we use the same MSPBE to con-
struct a new off-policy forward view from which we will
derive an exactly equivalent online backward view.

To obtain estimates for one distribution when the samples
are generated under another distribution, we can weight the
observations by the relative probabilities of these observa-
tions occurring under the target policy, as compared to the
behavior distribution. This is called importance sampling

(Rubinstein, 1981; Precup, Sutton & Singh, 2000). Re-
call that b(a|s) and ⇡(a|s) denote the probabilities of se-
lecting action a in state s according to the behavior policy
and the target policy, respectively. After selecting an ac-
tion At in a state St according to b, we observe a reward
Rt+1. The expected value of this reward is Eb[Rt+1], but if
we multiply the reward with the importance-sampling ratio
⇢t

.
= ⇡(At|St)/b(At|St) the expected value is

Eb[⇢tRt+1|St] =
X

a

b(a|St)
⇡(a|St)

b(a|St)
E[Rt+1 | St, At = a]

=
X

a

⇡(a|St)E[Rt+1 | St, At = a]

= E⇡[Rt+1 | St] .

Therefore ⇢tRt+1 is an unbiased sample for the reward
under the target policy. This technique can be applied to
all the rewards and value estimates in a given �-return.



For instance, if we want to obtain an unbiased sample for
the reward under the target policy n steps after the cur-
rent state St, the total weight applied to this reward should
be ⇢t⇢t+1 · · · ⇢t+n�1. An off-policy �-return starting from
state St is given by

G�⇢
t (✓) = ⇢t

⇣
Rt+1 + �k+1(1� �k+1)�

>
k+1✓ (6)

+ �k+1�k+1G
�
k+1(✓)

⌘
.

In contrast to G�
t , this return is defined as a function of a

single weight vector ✓. This is useful later, when we wish
to determine the gradient of this return with respect to ✓.

When using function approximation it is generally not pos-
sible to estimate the value of each state with full accu-
racy or, equivalently, to reduce the conditional expected
TD error for each state to zero at the same time. More
formally, let v✓ be a parameterized value function defined
by v✓(s) = ✓

>
�(s) and let T�

⇡ be a parametrized Bellman
operator defined, for any v : {s} ! R, by

(T�
⇡ v)(s) =

E⇡

⇥
R1 + �1(1� �1)v(S1) + �1�1(T

�
⇡ v)(S1) | S0 = s

⇤
.

In general, we then cannot achieve v✓ = T�
⇡ v✓ , because

T�
⇡ v✓ is not guaranteed to be a function that we can rep-

resent with our chosen function approximation. It is, how-
ever, possible to find the fixed point defined by

v✓ = ⇧T�
⇡ v✓ . (7)

where ⇧v is a projection of v into the space of representable
functions {v✓ | ✓ 2 Rn}. Let d be the steady-state distri-
bution of states under the behavior policy. The projection
of any v is then defined by

⇧v = v✓v , where ✓v = argmin
✓

kv✓ � vk2d ,

where k · k2d is a norm defined by kfk2d
.
=
P

s d(s)f(s)
2.

Following Maei (2011), the projection is defined
in terms of the steady-state distribution result-
ing from the behavior policy, which means that
d(s) = limt!1 P(St = s | Aj ⇠ b(·|Sj), 8j). This
implies our objective weights the importance of the
accuracy of the prediction in each state according to the
relative frequency that this state occurs under the behavior
policy, which is a natural choice for online learning.

The fixed point in (7) can be found by minimizing the
MSPBE defined by (Maei, 2011)

J(✓) = kv✓ �⇧T�
⇡ v✓k2d (8)

= Eb[�
⇡
k (✓)�k]

>Eb

⇥
�k�

>
k

⇤�1 Eb[�
⇡
k (✓)�k] ,

where �⇡k (✓)
.
= (T�

⇡ v✓)(Sk) � v✓(Sk) and where the ex-
pectancies are with respect to the steady-state distribution

d, as induced by the behavior policy b. The ideal gradient
update for time step k is then

✓k+1 = ✓k � 1

2
↵r✓ J(✓)|✓k

, (9)

where

� 1

2
r✓ J(✓)|✓k
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⇥
r✓�

⇡
k (✓)�
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�k�

>
k

⇤�1 Eb[�
⇡
k (✓k)�k]

= Eb

h
(�k �r✓G

�⇢
k (✓))�>

k

i
Eb

⇥
�k�

>
k

⇤�1Eb[�
⇡
k (✓k)�k]

= Eb[�
⇡
k (✓k)�k]

� Eb

h
r✓G

�⇢
k (✓)�>

k

i
Eb

⇥
�k�

>
k

⇤�1 Eb[�
⇡
k (✓k)�k]

= Eb[�
⇡
k (✓k)�k]� Eb

h
r✓G

�⇢
k (✓)�k

i>
w⇤ , (10)

with G�⇢
k as defined in (6), and where

w⇤
.
= Eb

⇥
�k�

>
k

⇤�1 Eb[�
⇡
k (✓k)�k] .

Update (9) can be interpreted as an expected forward view.

The derivation of the GTD(�) algorithm proceeds by ex-
ploiting the expected equivalences (Maei, 2011)

Eb

⇥
r✓Gk(✓)�

>
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⇤

= Eb

⇥
⇢k�k+1(1� �k+1)�k+1�

>
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⇥
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= Eb
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k�1

⇤

+ Eb

⇥
⇢k�2�k�1�k�1⇢k�1�k�kr✓Gk(✓)�

>
k�2

⇤

= . . . (Repeat until we reach �0.)

= Eb


�k+1(1� �k+1)�k+1 ⇢k

kX

j=0

0

@
kY

i=j+1

⇢i�1�i�i

1

A
�

>
j

| {z }
.
= (er

k )>

�

= Eb

⇥
�k+1(1� �k+1)�k+1(e

r
k )>

⇤
, (11)

and, similarly, Eb[�⇡k (✓k)�k] = Eb[�k(✓k)er
k ], where

e

r
t = ⇢t(�t�te

r
t�1 + �t) , (12)

�t(✓) = Rt+1 + �t+1�
>
t+1✓ � �

>
t ✓ .

The auxiliary vector wt ⇡ w⇤ can be updated with least
mean squares (LMS) (Sutton et al., 2009; Maei, 2011), us-
ing the sample �t(✓t)er

t ⇡ Eb[�t(✓t)er
t ] = Eb[�⇡t (✓t)�t]



and the update

wt+1 = wt + �t�t(✓t)e
r
t � �t�

>
t wt�t .

The complete GTD(�) algorithm is then defined by1

�t = Rt+1 + �t+1�
>
t+1✓t � �

>
t ✓t ,

e

r
t = ⇢t(�t�te

r
t�1 + �t) ,

✓t+1 = ✓t + ↵t�te
r
t � ↵t�t+1(1� �t+1)w

>
t e

r
t �t+1 ,

wt+1 = wt + �t�te
r
t � �t�

>
t wt�t .

5 An off-policy forward view

In this section, we define an off-policy forward view which
we turn into a fully equivalent backward view in the next
section, using Theorem 1. GTD(�) is derived by first turn-
ing an expected forward view into an expected backward
view, and then sampling. We propose instead to sample
the expected forward view directly and then invert the sam-
pled forward view into an equivalent online backward view.
This way we obtain an exact equivalence between forward
and backward views instead of the expected equivalence of
GTD(�). This was previously not known to be possible, but
it has the advantage that we can use the precise (potentially
discounted and bootstrapped) sample returns consisting of
all future rewards and state values in each update. This can
result in more accurate predictions, as confirmed by our ex-
periments in Section 7.

The new forward view derives from the MSPBE, as defined
in (8), and more specifically from the gradient update de-
fined by (9) and (10). To find an implementable interim
forward view, we need sampled estimates of all three parts
in (10). We discuss each of these parts separately.

Our interim forward view is defined in terms of a data
horizon t, so the gradient of the MSPBE is taken to ✓

t
k

rather than ✓k. Furthermore, �⇡k is defined as the error
between a �-return and a current estimate, and therefore
we need to construct an interim �-return. To estimate
the first term of (10) we therefore need an estimate for
Eb[�⇡k (✓

t
k)�k] = Eb[G

�⇢
k,t � �

>
k ✓

t
k], for some suitably de-

fined G�⇢
k,t.

The variance of off-policy updates is often lower when we
weight the errors (that is, the difference between the return
and the current estimate) with the importance-sampling ra-
tios, rather than weighting the returns (Sutton et al., 2014).
Let �k = Rk+1 + �k+1�

>
k+1✓k � �

>
k ✓k�1 denote a one-

step TD error. The on-policy return used in the forward
view (1) can then be written as a sum of such errors:

G�
k,t = �

>
k ✓k�1 +

t�1X

j=k

 
jY

i=k+1

�i�i

!
�j .

1Dann, Neumann and Peters (2014) call this algorithm
TDC(�), but we use the original name by Maei (2011).

We apply the importance-sampling weights to the one-step
TD errors, rather than just to the reward and bootstrapped
value estimate.2 This does not affect the expected value,
because Eb

⇥
⇢k�

>
k ✓k�1 | Sk

⇤
= Eb

⇥
�

>
k ✓k�1 | Sk

⇤
, but it

can have a beneficial effect on the variance of the resulting
updates. A sampled off-policy error is then

G�⇢
k,t � ⇢k�

>
k ✓

t
k ⇡ Eb

⇥
�⇡k (✓

t
k)�k

⇤
, (13)

where

G�⇢
k,t

.
= ⇢k�

>
k ✓k�1 + ⇢k

t�1X

j=k

 
jY

i=k+1

�i�i⇢i

!
�j .

An equivalent recursive definition for G�⇢
k,t is

G�⇢
k,t = ⇢k

⇣
Rk+1 + �k+1(1� �k+1⇢k+1)�

>
k+1✓k

+ �k+1�k+1G
�⇢
k+1,t

⌘
, (14)

for k < t, and G�⇢
t,t

.
= ⇢t�

>
t ✓t�1. In the on-policy case,

when ⇢k = 1 for all k, G�⇢
k,t reduces exactly to G�

k,t, as used
in the forward view (1) for true online TD(�). Furthermore,
Eb[G

�⇢
k,t | Sk = s] = E⇡[G�

k,t | Sk = s] for any s.

For the second term in (10), which can be thought of as the
gradient correction term, we need an estimate wk ⇡ w⇤.
As in the derivation of GTD(�), we use a LMS update. As-
suming we have data up to t, the ideal forward-view update
for w

t
k is then

w

t
k+1 = w

t
k + �k(�

�⇢
k,t � �

>
k w

t
k)�k , (15)

for some appropriate sample ��⇢k,t ⇡ Eb[�⇡k (✓k)]. A natural
interim estimate is defined by

��⇢k,t = ⇢k(�k + ����⇢k+1,t) , (16)

where ��⇢t,t = 0 and

�k = Rk+1 + �✓

>
k �k+1 � ✓

>
k �k .

This is not the only possible way to estimate w⇤, but
this choice ensures the resulting algorithm is equivalent to
GTD(0) when � = 0, allowing us to investigate the effects
of the true online equivalence and the resulting new trace
updates in some isolation without having to worry about
other potential differences between the algorithms. In the
next section we construct an equivalent backward view for
(15) to compute the sequence {wt}, where wt = w

t
t , 8t.

2For the PTD(�) and PQ(�) algorithms, Sutton et al. (2014)
propose another weighting based on weighting flat return errors
containing multiple rewards. In contrast, our weighting is chosen
to be consistent with GTD(�). True online versions of PTD(�)
and PQ(�) exist, but we do not consider them further in this paper.



Finally, we use the expected equivalence proved in (11),
and then sample to obtain

�k+1(1� �k+1)�k+1(e
r
k )> ⇡ Eb

⇥
r✓Gk(✓)�

>
k

⇤
, (17)

with e

r
k as defined in (12).

We now have all the pieces to state the off-policy forward
view for ✓. We approximate the expected forward view
as defined by (9) and (10) by using the sampled estimates
(13), (17) and wk = w

k
k ⇡ w⇤, with w

k
k as defined by

(15). This gives us the interim forward view

✓

t
k+1 = ✓

t
k + ↵k(G

�⇢
k,t � ⇢k�

>
k ✓

t
k)�k (18)

� ↵k�k+1(1� �k+1)�k+1w
>
k e

r
k ,

with G�⇢
k,t as defined in (14).

6 Backward view: true online GTD(�)

In this section, we apply Theorem 1 to convert the off-
policy forward view as given by (18) into an efficient online
backward view. First, we consider w.

Theorem 3 (Auxiliary vectors). The vector w

t
t , as defined

by the forward view in (15), is equal to wt as defined by the

backward view

e

w
t = ⇢t�1�t�te

w
t�1 + �t(1� ⇢t�1�t�t�

>
t e

w
t�1)�t ,

wt+1 = wt + ⇢t�te
w
t � �t�

>
t wt�t ,

where e

w
0 = �0�0, w0 = w

t
0, 8t, and

�t
.
= Rt+1 + ��

>
t+1✓t � �

>
t ✓t .

Proof. We apply Theorem 1 by substituting ✓t = wt, ⌘t =
�t, xt = 0 and Y t

k = ��⇢k,t, as defined in (16). Then

��⇢k,t+1 � ��⇢k,t = ⇢k�k+1�k+1(�
�⇢
k+1,t+1 � ��⇢k+1,t) ,

which implies ck = ⇢k�k+1�k+1. Finally, Y t
t = ��⇢t,t = 0

and Y t+1
t � Y t

t = ��⇢t,t+1 = ⇢t�t. Inserting these substi-
tutions into the backward view in Theorem 1 immediately
yields the backward view in the current theorem.

Theorem 4 (True online GTD(�)). For any t, the weight

vector ✓

t
t as defined by forward view in (18) is equal to ✓t,

as defined by the backward view

et = ⇢t(�t�tet�1 + ↵t(1� ⇢t�t�t�
>
t et�1)�t) ,

e

r
t = ⇢t(�t�te

r
t�1 + �t) ,

✓t+1 = ✓t + �tet + (et � ↵t⇢t�t)(✓t � ✓t�1)
>

�t

� ↵t�t+1(1� �t+1)w
>
t e

r
t �t+1 ,

with wt and �t as defined in Theorem 3.

Proof. Again, we apply Theorem 1. Substitute ⌘t = ⇢t↵t,
xk = �↵k�k+1(1��k+1)�k+1w

>
k e

r
k , Y t

t = ✓

>
t�1�t and

Y t
k = Rk+1 + �k+1(1� �k+1⇢k+1)✓

>
k �k+1 + ��G�⇢

k+1,t .

This last substitution implies

Y t+1
k � Y t

k = �k+1�k+1⇢k+1(Y
t+1
k+1 � Y t

k+1) ,

so that ck = �k+1�k+1⇢k+1. Furthermore,

Y t+1
t � Y t

t = Rt+1 + �✓

>
t �t+1 � ✓

>
t�1�t

= �t + (✓t � ✓t�1)
>

�t .

Applying Theorem 1 with these substitutions, and replac-
ing w

t
t with the equivalent wt, yields the backward view

✓t+1 = ✓t + (�t + (✓t � ✓t�1)
>

�t)et

+ ↵t⇢t(✓
>
t�1�t � ✓

>
t �t)�t

� ↵t�t+1(1� �t+1)w
>
t e

r
t �t+1 ,

= ✓t + �tet + (et � ↵t⇢t�t)�
>
t (✓t � ✓t�1)

� ↵t�t+1(1� �t+1)w
>
t e

r
t �t+1 ,

where e0 = ↵0⇢0�0 and
et = ⇢t�t�tet�1 + ↵t⇢t(1� ⇢t�t�te

>
t�1�t)�t .

True online GTD(�) algorithm is then defined by

�t = Rt+1 + ��

>
t+1✓t � �

>
t ✓t ,

et = ⇢t(�t�tet�1 + ↵t(1� ⇢t�t�t�
>
t et�1)�t) ,

e

r
t = ⇢t(�t�te

r
t�1 + �t) ,

e

w
t = ⇢t�1�t�te

w
t�1 + �t(1� ⇢t�1�t�t�

>
t e

w
t�1)�t ,

✓t+1 = ✓t + �tet + (et � ↵t⇢t�t)(✓t � ✓t�1)
>

�t

� ↵t�t+1(1� �t+1)w
>
t e

r
t �t+1 ,

wt+1 = wt + ⇢t�te
w
t � �t�

>
t wt�t .

The traces et and e

w
t are dutch traces. The trace e

r
t is an

accumulating trace that follows from the gradient correc-
tion, as discussed in Section 4. It might be possible to adapt
the forward view to replace e

r
t with et. This is already

possible in practice and in preliminary experiments the re-
sulting algorithm performed similar to true online GTD(�).
A more detailed investigation of this possibility is left for
future work.

For � = 0 the algorithm reduces to

✓t+1 = ✓t + ↵t⇢t�t�t � ↵t⇢t�t+1w
>
t �t�t+1 ,

wt+1 = wt + �t⇢t�t�t � �t�
>
t wt�t ,

which is precisely GTD(0).3

3The on-policy variant of this algorithm, with ⇢t = 1 for all t,
is known as TDC (Sutton et al., 2009; Maei, 2011).



7 Experiments

We compare true online GTD(�) to GTD(�) empirically in
various settings. The main goal of the experiments is to test
the intuition that true online GTD(�) should be more robust
to high step sizes and high �, due to its true online equiv-
alence and better behaved traces. This was shown to be
the case for true online TD(�) (van Seijen & Sutton, 2014),
and the experiments serve to verify that this extends to the
off-policy setting with true online GTD(�). This is relevant
because it implies true online GTD(�) should then be easier
to tune in practice, and because these parameters can effect
the limiting performance of the algorithms as well.

Both algorithms optimize the MSPBE, as given in (8),
which is a function of �. When the state representation
is of poor quality, the solution that minimizes the MSPBE
can still have a high mean-sqared error (MSE): kv✓�v⇡k2d.
This means that with a low � we are not always guaranteed
to reach a low MSE, even asymptotically. The closer � is
to one, the closer the MSPBE becomes to the MSE, with
equality for � = 1. In practice this implies that sometimes
we need a high � to be able to obtain an sufficiently accu-
rate predictions, even if we run the algorithms a long time.

To illustrate these points, we investigate a fairly simple
problem. The problem setting is a random walk consist-
ing of 15 states that can be thought to lie on a horizontal
line. In each state we have two actions: move one state to
the left, or one state to the right. If we move left in the left-
most state, s1, we bounce back into that state. If we move
right in the right-most state, s15, the episode ends and we
get a reward of +1. On all other time steps, the reward is
zero. Each episode starts in s1, which is the left-most state.

This problem setting is similar to the one used by van
Seijen and Sutton (2014), with three differences. First, we
use 15 rather than 11 states, but this makes little difference
to the conclusions. Second, we turn it into an off-policy
learning problem, as we describe in a moment. Third, we
use different state representations. This last point is be-
cause we want to test the performance of the algorithm not
just with features that can accurately represent the value
function, as used by van Seijen and Sutton, but also with
features that cannot reduce the MSE all the way to zero.

In the original problem, there was a 0.9 probability of mov-
ing right in each state (van Seijen & Sutton, 2014). Here,
we interpret these probabilities as begin due to a behav-
ior policy that selects the ‘right’ action with probability
0.9. Then, we formulate a target policy that want to move
right more often, with probability 0.95. The stochastic tar-
get policy demonstrates that our algorithm is applicable to
arbitrary off-policy learning tasks, and that the results do
not depend on the target policy being deterministic. We
did also test the performance for a deterministic policy that
moves right always and the results are similar to those given
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Figure 1: The MSE on the random walk of GTD(�) (left
column) and true online GTD(�) (right column). The x-
axis shows ↵, and the different lines are for different �,
with � = 0 in blue and � = 1 in orange. The top row is for
15 tabular features, the middle row for 4 binary features,
and the bottom row for 2 monotonic features. The MSE is
minimized over �.

below. Because this is an episodic task, � = 1 .

As stated above, we define three different state represen-
tations. In the first task, we use tabular features, such
that �(si) is a vector of 15 elements, with the ith ele-
ment equal to one and all other elements equal to zero. In
the second task the state number is turned into a binary
representation, such that �(s1) = (0, 0, 0, 1)>, �(s2) =
(0, 0, 1, 0)>, �(s3) = (0, 0, 1, 1)>, and so on up to
�(s15) = (1, 1, 1, 1)>. The features are then normal-
ized to be unit vectors, such that for instance �(s3) =
(0, 0, 1p

2
, 1p

2
)> and �(s15) = ( 12 ,

1
2 ,

1
2 ,

1
2 )

>. In our final
representation, we use one monotonically increasing fea-
ture and one monotonically decreasing feature, such that
�(si) = ( 14�i+1

14 , i�1
14 )> for all i. These features were not

normalized.

For ↵ the range of parameters was from 2�8 to 1 with steps
in the exponent of 0.25 so that ↵ 2 {2�8, 2�7.75, . . . , 1}.
The secondary step size � was varied over the same range,
with the addition of � = 0. The trace parameter � was
varied from 0 to 1 � 2�10 ⇡ 0.999 with steps of �1 in
the exponent and with the addition of � = 1, such that
� 2 {0, 1� 2�1, . . . , 1� 2�9, 1� 2�10, 1}.

The MSE (averaged over 20 repetitions) after 10 episodes
for all three representations are shown in Figure 1. The left
graphs all correspond to GTD(�) and the plots on the right



0.5 0.8 0.95 0.99 0.998
�

0.04

0.05

0.06

0.07
M

S
E

GTD(�)

true online GTD(�)

binary features

Figure 2: The MSE on the random walk for different � of
GTD(�) and true online GTD(�) for optimized ↵ and � and
binary features.

are for true online GTD(�). Each graph show the MSE as
a function of ↵, with different lines for different values of
� of which the extremes are highlighted (� = 0 is blue;
� = 1 is orange). In all cases, the MSE was minimized
for �, but this secondary step size had little impact on the
performance at all in these problems. Note that the blue
lines in the pair of graphs in each row are exactly equal,
because by design the algorithms are equivalent for � = 0.

In the top plots, the tabular representation was used and
we see that especially with high � both algorithms reach
low prediction errors. This demonstrates that indeed learn-
ing can be faster with higher �. When using function ap-
proximation, in the middle and bottom graphs, the benefit
of having an online equivalence to a well-defined forward
view becomes apparent. For both representations, the per-
formance of GTD(�) with higher � begins to deteriorate
around ↵ = 0.2. In contrast, true online GTD(�) performs
well even for ↵ = � = 1. Note the log scale of the y-axis;
the difference in MSE is many orders of magnitude.

In practice it is not always possible to fully tune the algo-
rithmic parameters and therefore the robustness of true on-
line GTD(�) to different settings is important. However, it
is still interesting to see what the best performance could be
for a fully tuned algorithm. Therefore, in Figure 2 we show
the MSE as a function of � when minimized over both ↵
and �. For all �, true online GTD(�) outperforms GTD(�).

8 Discussion

The main theoretical contribution of this paper is a gen-
eral theorem for equivalences between forward and back-
ward views. The theorem allows us to find an efficient fully
equivalent online algorithm for a desired forward view. The
theorem is as general as required and as specific as possible
for all applications of it in this paper, and in its current form
it is limited to forward views for which an O(n) backward
view exists. The theorem can be generalized further, to
include recursive (off-policy) LSTD(�) (Boyan, 1999) and
other algorithms that can be formulated in terms of forward

views (cf. Geist & Scherrer, 2014; Dann, Neumann & Pe-
ters, 2014), but we did not investigate these extensions.

We used Theorem 1 to construct a new off-policy algorithm
named true online GTD(�), which is the first TD algorithm
to have an exact online equivalence to a off-policy forward
view. We constructed this forward view to maintain equiv-
alence to the existing GTD(�) algorithm for � = 0. The
forward view we proposed is not the only possible, and in
particular it will be interesting to investigate different meth-
ods of importance sampling. We could for instance use the
importance sampling as proposed by Sutton et al. (2014).
We did construct the resulting online algorithm, and in pre-
liminary tests its performance was similar to true online
GTD(�). Likewise, if desired, it is possible to obtain a full
online equivalence to off-policy Monte Carlo for � = 1 by
constructing a forward view that achieves this. For instance
we could use a similar forward view as used in the paper,
but then apply the importance-sampling ratios only to the
returns rather than to the errors. For now, it remains an
open question what the best off-policy forward view is.

True online GTD(�) is limited to state-value estimates. It
is straightforward to construct a corresponding algorithm
for action values, similar to the correspondence between
GTD(�) and GQ(�) (Maei & Sutton, 2010; Maei, 2011)
and between PTD(�) and PQ(�) (Sutton et al., 2014). We
leave such an extension for future work.
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