
Fast Gaussian Process Posteriors with Product Trees

David A. Moore
Computer Science Division

University of California, Berkeley
Berkeley, CA 94709

dmoore@cs.berkeley.edu

Stuart Russell
Computer Science Division

University of California, Berkeley
Berkeley, CA 94709

russell@cs.berkeley.edu

Abstract

Gaussian processes (GP) are a powerful tool for
nonparametric regression; unfortunately, calcu-
lating the posterior variance in a standard GP
model requires time O(n2) in the size of the
training set. Previous work by Shen et al. (2006)
used a k-d tree structure to approximate the pos-
terior mean in certain GP models. We extend
this approach to achieve efficient approximation
of the posterior covariance using a tree clustering
on pairs of training points, and demonstrate sig-
nificant improvements in performance with neg-
ligible loss of accuracy.

1 INTRODUCTION

Complex Bayesian models often tie together many smaller
components, each of which must provide its output in terms
of probabilities rather than discrete predictions. Gaussian
process (GP) regression (Rasmussen and Williams, 2006)
is a natural fit for such systems, but its applications have
been limited by computational concerns: training a GP
model on n points requires O(n3) time, while computing
the posterior distribution at a test point requires O(n) and
O(n2) operations for the mean and variance respectively.

This paper focuses on the focuses on the fast evaluation of
GP posterior probabilities in a running inference system,
for which a model has already been trained. Fast runtime
performance is a common requirement for real-world sys-
tems; for example, a speech recognition system might be
trained once in the cloud, then run many times on a smart-
phone under a tight computational budget. Our particular
work is motivated by an application to nuclear test monitor-
ing: after training on historical seismic events, we want to
identify and localize new events in realtime by processing
signals from a worldwide sensor network. In this applica-
tion, as with many others, probabilities from a GP are com-
puted in the inner loop of a message-passing or MCMC

inference algorithm; this computation must be efficient if
inference is to be feasible.

Previous work has explored the use of space-partitioning
tree structures for efficient computation of GP posterior
means in models where the covariance kernel has a short
lengthscale or compact support (Shen et al., 2006). We ex-
tend this in several ways. First, we describe the product
tree data structure, along with an algorithm that uses this
structure to efficiently compute posterior covariances. This
provides what is to our knowledge the first account of GP
regression in which the major test-time operations (poste-
rior mean and covariance) run in time sublinear in the train-
ing set size, given a suitably sparse kernel matrix. We give
a novel cutoff rule, applicable to both mean and covariance
calculations, that guarantees provably bounded error. We
also extend the class of models to which tree-based meth-
ods can be efficiently applied, by showing how to include
a low-rank global component modeled either by an explicit
parametric representation or by an approximate GP with
inducing points (Snelson and Ghahramani, 2006). Finally,
we evaluate this work empirically, with results demonstrat-
ing significant speedups on synthetic and real-world data,
and in the process identify a simple method that often pro-
vides competitive performance to the more complex prod-
uct tree.

2 BACKGROUND

2.1 GP REGRESSION MODEL

We assume as training input a set of labeled points
{(xi, yi)|i = 1, . . . , n}, where we suppose that

yi = f(xi) + εi (1)

for some unknown function f(·) and i.i.d. Gaussian ob-
servation noise εi ∼ N (0, σ2

n). Treating the estimation of
f(·) as a Bayesian inference problem, we consider a Gaus-
sian process prior distribution f(·) ∼ GP (0, k), parame-
terized by a positive-definite covariance or kernel function
k(x, x′). Given a set X∗ containing m test points, we de-



rive a Gaussian posterior distribution f(X∗) ∼ N (µ∗,Σ∗),
where

µ∗ = K∗TK−1y y (2)

Σ∗ = K∗∗ −K∗TK−1y K∗ (3)

andKy = k(X,X)+σ2
nI is the covariance matrix of train-

ing set observations, K∗ = k(X,X∗) denotes the n ×m
matrix containing the kernel evaluated at each pair of train-
ing and test points, and similarly K∗∗ = k(X∗, X∗) gives
the kernel evaluations at each pair of test points. Details of
the derivations, along with general background on GP re-
gression, can be found in Rasmussen and Williams (2006).

In this work, we make the additional assumption that the
input points xi and test points x∗p lie in some metric space
(M, d), and that the kernel is a monotonically decreasing
function of the distance metric. Many common kernels
fit into this framework, including squared-exponential, ra-
tional quadratic, piecewise-polynomial and Matérn kernel
families; anisotropic kernels can be represented through
choice of an appropriate metric.

2.2 RELATED WORK

Tree structures such as k-d trees (Friedman et al., 1977)
form a hierarchical, multiresolution partitioning of a
dataset, and are commonly used in machine learning for
efficient nearest-neighbor queries. They have also been
adapted to speed up nonparametric regression (Moore
et al., 1997; Shen et al., 2006); the general approach is
to view the regression computation of interest as a sum
over some quantity associated with each training point,
weighted by the kernel evaluation against a test point. If
there are sets of training points having similar weight –
for example, if the kernel is very wide, if the points are
very close to each other, or if the points are all far enough
from the query to have effectively zero weight – then the
weighted sum over the set of points can be approximated by
an unweighted sum (which does not depend on the query
and may be precomputed) times an estimate of the typi-
cal weight for the group, saving the effort of examining
each point individually. This is implemented as a recur-
sion over a tree structure augmented at each node with the
unweighted sum over all descendants, so that recursion can
be cut off with an approximation whenever the weight func-
tion is shown to be suitably uniform over the current region.

This tree recursion can be thought of as an approximate
matrix-vector multiplication (MVM) operation; a related
method, the Improved Fast Gauss Transform (Morariu
et al., 2008), implements fast MVM for the special case
of the SE kernel. It is possible to accelerate GP training
by combining MVM methods with a conjugate gradient
solver, but models thus trained do not allow for the compu-
tation of predictive variances. One argument against MVM
techniques (and, by extension, the approach of this paper)

Figure 1: Cover tree decomposition of USA precipitation
measurement stations (see Section 5.3).

is that their efficiency requires shorter lengthscales than are
common in machine learning applications (Murray, 2009);
however, we have found them quite effective on datasets
which do have genuinely sparse covariance structure (e.g.,
geospatial data), or in which the longer-scale variation can
be represented by a low-rank component.

Another related approach is the use of local approxima-
tions, in which different GPs are trained in different regions
of the input space. There is some evidence that these can
provide accurate predictions which are very fast to evaluate
(Chalupka et al., 2013); however, they face boundary dis-
continuities and inaccurate uncertainty estimates if the data
do not naturally form independent clusters.

2.3 k-d VERSUS COVER TREES

Although related work (Moore et al., 1997; Shen et al.,
2006) has generally used k-d trees as the multiresolution
structure, this paper instead uses cover trees (Beygelz-
imer et al., 2006) to allow for non-Euclidean metrics. A
cover tree on n points can be constructed in O(n log n)
time, and the construction and query times scale only
with the intrinsic dimensionality of the data, allowing for
efficient nearest-neighbor queries in higher-dimensional
spaces (Beygelzimer et al., 2006). Figure 1 shows a cover-
tree decomposition of one of our test datasets.

We do not depend specifically on the cover tree algorithm;
any similar tree construction algorithm could be used, pro-
vided (a) there is a one-to-one correspondence between the
leaves of the tree and the training points xi ∈ X , and
(b) each non-leaf node n is associated with some point
xn ∈ M, such that all descendants of n are contained
within a ball of radius rn centered at xn. For example, a ball
tree (Uhlmann, 1991), or a tree created through agglomer-
ative clustering on the training points, could also satisfy
these criteria.



initialize globals sum S ← 0, error ε← 0, leaf count κ← 0
function WEIGHTEDMETRICSUM(node n, query points (x∗

i , x∗
j ),

. tolerance εabs)
δn ← δ((x∗

i ,x
∗
j ), (n1, n2))

if n is a leaf then
S ← S + (K−1

y )n ·
(
k(d(x∗

i , n1)) · k(d(x∗
j , n2))

)
κ← κ+ 1

else
wmin ← kprod

lower (δn + rn)

wmax ← kprod
upper (max(δn − rn, 0))

εn ← 1
2 (wmax − wmin)S

Abs
n

if εn ≤ κn/(n− κ) · (εabs − ε) then
S ← S + 1

2 (wmax + wmin) · SUW
n

k ← κ+ κn
ε← ε+ εn

else
for each child c of n
sorted by descending δ((x∗

i ,x
∗
j ), (c1, c2)) do

WEIGHTEDMETRICSUM
(

c, (x∗
i ,x

∗
j ), εabs)

)
end for

end if
end if

end function

Figure 2: Recursive algorithm to computing GP covariance
entries using a product tree. Abusing notation, we use n
to represent both a tree node and the pair of points n =
(n1,n2) associated with that node.

3 EFFICIENT COVARIANCE USING
PRODUCT TREES

We now consider efficient calculation of the GP covari-
ance (3). The primary challenge is the multiplication
K∗TK−1y K∗. For simplicity of exposition, we will fo-
cus on computing the (i, j)th entry of the resulting matrix,
i.e., on the multiplication k∗i

TK−1y k∗j where k∗i denotes the
vector of kernel evaluations between the training set and the
ith test point, or equivalently the ith column of K∗. Note
that a naı̈ve implementation of this multiplication requires
O(n2) time.

We might be tempted to apply the vector multiplication
primitive of Shen et al. (2006) separately for each row of
K−1y to compute K−1y k∗j , and then once more to multi-
ply the resulting vector by k∗i . Unfortunately, this requires
n vector multiplications and thus scales (at least) linearly
in the size of the training set. Instead, we note that we
can rewrite k∗i

TK−1y k∗j as a weighted sum of the entries
of K−1y , where the weight of the (p, q)th entry is given by
k(x∗i ,xp)k(x∗j ,xq):

k∗i
TK−1y k∗j =

n∑
p=1

n∑
q=1

(K−1y )pqk(x∗i ,xp)k(x∗j ,xq). (4)

Our goal is to compute this weighted sum efficiently using
a tree structure, similar to Shen et al. (2006), except that
instead of clustering points with similar weights, we now
want to cluster pairs of points having similar weights.

To do this, we consider the product space M×M con-
sisting of all pairs of points fromM, and define a product

metric δ on this space. The details of the product metric
will depend on the choice of kernel function (section 3.2).
For the moment, we will assume an SE kernel, of the form
kSE(d) = exp(−d2), for which a natural choice is the 2-
product metric:

δ((xa,xb), (xc,xd)) =
√
d(xa,xc)2 + d(xb,xd)2,

which has the fortunate property

kSE(d(xa,xb))kSE(d(xc,xd)) = kSE(δ((xa,xb), (xc,xd))),

i.e., the property that evaluating the SE kernel in the prod-
uct space (the right hand side) gives us the correct weight
for our weighted sum (4) (the left hand side). Note that
this property is convenient but not necessary; Section 3.2
describes how to choose a product metric for several com-
mon kernels.

Now we can run any metric tree construction algorithm
(e.g., a cover tree) using the product metric to build a prod-
uct tree on all pairs of training points. At each leaf node
L, representing a pair of training points, we store the en-
try (K−1y )L corresponding to those two training points, and
at each higher-level node n we cache the unweighted sum
SUWn of these entries over all of its descendant leaf nodes,
as well as the sum of absolute values SAbsn (these cached
sums will be used to determine when to cut off recursive
calculations):

SUW
n =

∑
L∈leaves(n)

(K−1y )L (5)

SAbs
n =

∑
L∈leaves(n)

∣∣(K−1y )L
∣∣ . (6)

Given a product tree augmented in this way, the weighted-
sum calculation (4) is approximated by the WEIGHTED-
METRICSUM algorithm of Figure 2. It proceeds by a re-
cursive descent down the tree, where at each non-leaf node
n it computes upper and lower bounds on the weight of
any descendant, and applies a cutoff rule (Section 3.1) to
determine whether to continue the descent. Whenever the
descent is halted, we approximate the contribution from
leaves below n by 1

2 (wmax + wmin) · SUW
n , i.e., by the av-

erage weight times the unweighted sum. Otherwise, the
computation continues recursively over n’s children.

3.1 CUTOFF RULE

The decision of when to cut off the tree recursion is cru-
cial to correctness and performance. Many cutoff rules are
possible. For predictive mean calculation, Moore et al.
(1997) and Shen et al. (2006) maintain an accumulated
lower bound on the total overall weight, and cut off when-
ever the difference between the upper and lower weight
bounds at the current node is a small fraction of the lower
bound on the overall weight. By contrast, we introduce a



rule (8) which takes into account the weights as well as
the entries of K−1y being summed over (since we expect
this matrix to be approximately sparse, some entries will
contribute much more to the sum than others), and which
provides a provable guarantee on approximation error not
available in the earlier work. First, at each node n we com-
pute an error bound

εn =
1

2
(wmax − wmin)SAbs

n , (7)

which we justify by the following lemma:
Lemma 1. The error introduced in approximating the sub-
tree at n by 1

2 (wmax + wmin)SUW
n is bounded by εn.

Proof. Let S+
n and S−n denote the sum of positive and

negative leaf entries under n, respectively, so SUW
n =

(S+
n + S-

n) and SAbs
n = (S+

n − S-
n). The worst case for the

approximation is if the true sum gives weight wmax to S+
n

and wmin to S-
n (or vice versa), yielding an approximation

error of∣∣∣∣(wmaxS
+
n + wminS

−
n
)
− wmax + wmin

2
SUW

n

∣∣∣∣ = εn.

Intuitively, we see that εn is small whenever the leaves be-
low n have nearly uniform weights, or when the total mass
of K−1y entries under n is small. This motivates our cutoff
rule

εn ≤ κn/(n− κ) · (εabs − ε), (8)

in which εabs is a user-specified bound on the absolute er-
ror of the overall computation, κn denotes the number of
leaves below n, n and κ denote respectively the total num-
ber of leaves in the tree and the leaves included thus far
in the partially computed sum, and ε =

∑
n∈C εn, where

C is the set of all intermediate nodes whose leaf sums we
have previously approximated, is a running upper bound on
the total error accumulated thus far in the sum. Intuitively,
(εabs − ε) gives the “error budget” remaining out of an ini-
tial budget of εabs; each cutoff is allowed to use a fraction
of this budget proportional to the number of leaves being
approximated. We show the following correctness result:
Theorem 1. Let T be a product tree constructed on K−1y ,
where Σ̂∗ij=K

∗∗
ij −WEIGHTEDMETRICSUM(T, (x∗i , x∗j ), εabs)

denotes the approximation returned by the tree recursion
to the true posterior covariance Σ∗ij . Then

∣∣∣Σ∗i,j − Σ̂∗i,j

∣∣∣ ≤
εabs.

Proof. By our cutoff rule (8), we proceed with the approx-
imation at n only if ε′ := εn + ε ≤ εabs, i.e. only if the new
error being introduced (bounded by Lemma 1), plus the er-
ror already accumulated, is still bounded by εabs.1 Thus at

1We have ignored the factor κn/(n−κ) here since it is always
≤ 1; this factor is included to help “pace” the computation and is
not necessary for correctness.

every step we maintain the invariant ε ≤ εabs, which estab-
lishes the result.

Remark. Although Theorem 1 bounds absolute error, we
can also apply it to bound relative error in the case of com-
puting a predictive variance that includes a noise compo-
nent. Since the noise variance σ2

n is a lower bound on the
predictive variance Σ∗ii, setting εabs = εrel·σ2

n is sufficient to
ensure that the approximation error is smaller than εrel·Σ∗ii.

Note that this cutoff rule and correctness proof can be eas-
ily back-ported into the WEIGHTEDSUM algorithm of Shen
et al. (2006), providing a bounded error guarantee for tree-
based calculations of GP posterior means as well as covari-
ances.

3.2 OTHER KERNEL FUNCTIONS

As noted above, the SE kernel has the lucky property that,
if we choose product metric δ =

√
d21 + d22, then the prod-

uct of two SE kernels is equal to the kernel of the product
metric δ:

kSE(d1)kSE(d2) = exp
(
−d21 − d22

)
= kSE(δ).

In general, however, we are not so lucky: it is not the case
that every kernel we might wish to use has a correspond-
ing product metric such that a product of kernels can be
expressed in terms of the product metric. In such cases, we
may resort to upper and lower bounds in place of comput-
ing the exact kernel value. Note that such bounds are all we
require to evaluate the error bound (7), and that when we
reach a leaf node representing a specific pair of points we
can always evaluate the exact product of kernels directly at
that node.

For example, consider the kernel kCS,0(d) = (1− d)
j
+

(taking j=bD2 c+1, where D is the input dimension); this
is a simple example of a more general class of piecewise-
polynomial compactly supported kernels (Rasmussen and
Williams, 2006) whose computational advantages are es-
pecially relevant to tree-based algorithms. Considering the
product of two such kernels,

kCS,0(d1)kCS,0(d2) = (1− (d1 + d2) + ∆)
j
+

where ∆ = d1d2 if (d1 < 1, d2 < 1) else 0

we notice that this is almost equivalent to kCS,0(δ) for the
choice of δ = d1 +d2, but with an additional pairwise term
∆. We bound this term by noting that it is maximized when
d1 = d2 = δ/2 (for δ < 2) and minimized whenever either
d1 = 0 or d2 = 0, so we have (δ/2)2 ≥ ∆ ≥ 0. This yields
the bounds kprod

lower and kprod
upper as shown in Table 1. Bounds for

other common kernels are obtained analogously in Table 1.

3.3 OPTIMIZATIONS

A naı̈ve product tree on n points will have n2 leaves, but
we can reduce this and achieve substantial speedups by



Kernel k(d) k(d1)k(d2) δ(d1, d2) kprod
lower(δ) kprod

upper(δ)
SE exp

(
−d2

)
exp

(
−d21−d

2
2

) √
d21+d22 exp

(
−(δ)2

)
exp

(
−(δ)2

)
γ-exponential exp (−dγ) exp

(
−dγ1−d

γ
2

) (
d
γ
1 +d

γ
2

)1/γ exp (−(δ)γ) exp (−(δ)γ)

Piecewise polynomial

CSD,q=0 , j=
⌊
D
2

⌋
+1

(1−d)j+ (1− (d1 + d2) + ∆)
j
+

where ∆ = d1d2
if (d1 < 1, d2 < 1) else 0

d1 + d2 (1−δ)j+

(
1−δ+ (δ)2

4

)j
+

Rational Quadratic
(

1+ d2

2α

)−α (
1+

d21+d22
2α

+
d21d

2
2

4α2

)−α √
d21+d22

(
1+

(δ)2

2α
+

(δ)4

16α2

)−α (
1+

(δ)2

2α

)−α

Matérn (ν = 3/2)
(
1+
√

3d
)

· exp
(
−
√

3d]
)

(
1+
√

3 (d1+d2) +3d1d2

)
· exp

(
−
√

3(d1+d2)
) d1+d2

(
1+
√

3δ
)
· exp

(
−
√

3δ
) (

1+
√

3δ+3(δ/2)2
)
· exp(−

√
3δ)

Table 1: Bounds for products of common kernel functions, all from from Rasmussen and Williams (2006).

exploiting the structure of K−1y and of the product space
M×M:

Sparsity. If Ky is sparse, as with compactly supported
kernel functions, or can be well-approximated as sparse, as
when using standard kernels with short lengthscales, then it
can be shown thatK−1y may also be approximated as sparse
(Bickel and Lindner, 2012, sections 2 and 4.1). When this
is the case, the tree need include only those pairs (xp,xq)
for which (K−1y )pq is non-negligible.

Symmetry. Since K−1y is a symmetric matrix, it is redun-
dant to include leaves for both (xp,xq) and (xq,xp) in our
tree. Instead, we can build separate trees to compute the
diagonal and upper-triangular components of the sum, then
reuse the upper-triangle result for the lower triangle.

Factorization of product distances. In general, comput-
ing the product distance δ will usually involve two calls to
the underlying distance metric d; these can often be reused.
For example, when calculating both δ((xa,xb), (xc,xd))
and δ((xa,xe), (xc,xd)), we can reuse the value of
d(xa,xc) for both computations. This reduces the total
number of calls to the distance function during tree con-
struction from a worst-case n4 (for all pairs of pairs of
training points) to a maximum of n2, and in general much
fewer if other optimizations such as sparsity are imple-
mented as well.

Leaf binning at short distances. If all leaves below a node
n are within a kernel lengthscale of n, we cut off the tree
at n and just compute the exact weighted sum over those
leaves, avoiding the tree recursion.

4 MIXED LOCAL/GLOBAL GP
REPRESENTATIONS

In this section, we extend the GP model (1) to include both
a local and a global component g(xi), i.e.,

yi = h(xi) + εi = f(xi) + g(xi) + εi, (9)

where f is modeled by a short-lengthscale/compactly-
supported GP, and g is a global component of constant rank
(i.e., not directly dependent on n). We will show how to

efficiently calculate posteriors from such models using a
product tree.

Formally, we assume a GP of the form

h(X) ∼ N (φ(X)Tb, kf (X) + φ(X)TBφ(X)) (10)

where kf (X) is a sparse matrix, B is an m×m matrix and
b an m-dimensional vector, and φ(X) computes an n×m
feature representation where m � n. This “sparse+low
rank” formulation includes a wide range of models cap-
turing global and local structure. For example, we can
express the “explicit basis functions” model from section
2.7 of Rasmussen and Williams (2006) by letting φ(X) de-
note the basis functions H(X) and letting b, B denote the
mean and covariance of a Gaussian prior on their weights.
Similarly, the CS+FIC model given by Vanhatalo and Ve-
htari (2008) may be represented2 by taking φ(X) = Ku,n,
B = K−1u,u, b = 0, and letting kf (X) absorb the diagonal
term Λ. Other approximate GP models for global variation
(e.g., Quiñonero-Candela and Rasmussen, 2005; Snelson
and Ghahramani, 2007; Rahimi and Recht, 2007; Vedaldi
and Zisserman, 2010) can also be expressed in this form.

Given any model in the form of Eqn. (10), the posterior dis-
tribution h(X∗) ∼ N (µ′∗,Σ

′
∗) can be derived (Rasmussen

and Williams, 2006) as

µ′∗ = φ∗T β̄ +K∗TK−1y (y − φ∗β̄) (11)

Σ′∗ = K∗∗ −K∗TK−1y K∗

+RT (B−1 + φK−1y φT )R
(12)

where we let φ = φ(X) and φ∗ = φ(X∗), and we
have β̄ = (B−1 + φK−1y φT )−1(φK−1y y + B−1b) and
R = φ∗ − φ(X)K−1y K∗. Section 2.7 of Rasmussen and
Williams (2006) gives further details.

4.1 EFFICIENT OPERATIONS IN SPARSE+LOW
RANK MODELS

Calculating the posterior given by (11, 12) is a straight-
forward extension of the standard case. The predictive

2Here the right side of each expression follows the notation of
Vanhatalo and Vehtari.



(a) As a function of input density for a fixed-size (5000
points) training set, with error bars at the 10th to 90th per-
centiles.

(b) As a function of training set size with constant density
v = 5.

Figure 3: Mean times to compute posterior variance on 2D synthetic data using a piecewise-polynomial CS2,2 kernel.

mean (11) can be accommodated within the framework of
Shen et al. (2006) using a tree representation of the vector
K−1y

(
y − φ∗T β̄

)
, then adding in the easily evaluated para-

metric component φ∗T β̄. In the covariance (12) we can use
a product tree to approximate K∗TK−1y K∗ as described
above; of the remaining terms, β̄ and B−1 + φK−1y φT can
be precomputed at training time, and φ∗ and K∗∗ don’t de-
pend on the training set. This leaves φK−1y K∗ as the one
remaining challenge; we note that this quantity can be com-
puted efficiently using m applications per test point of the
vector multiplication primitive from Shen et al. (2006), re-
using the same tree structure to multiply each column of
K∗ by each row of φK−1y . Thus, the full posterior distri-
bution at a test point can be calculated efficiently with no
explicit dependence on n (i.e., with no direct access to the
training points except through space-partitioning tree struc-
tures).

5 EVALUATION

We compare the use of a product tree (PT) for predictive
variance calculation with several alternatives:

Direct: sparse matrix multiplication, using a sparse repre-
sentation of K−1y and dense representation of k∗i .

Hybrid Sparse (HS): sparse matrix multiplication, using a
sparse representation of k∗i constructed by querying a cover
tree for all training points within distance r of the query
point x∗i , where r is chosen such that k(r′) is negligible for
r′ > r, and then filling in only those entries of k∗i deter-
mined to be non-negligible. Since all our experiments in-
volve kernels with compact support, we simply set r equal
to the kernel lengthscale.

Hybrid Dense (HD):3 dense matrix multiplication, using
only those entries ofK−1y that correspond to training points
within distance r of the query point. These training points
are identified using a cover tree, as above, and entries of
K−1y are retrieved from a hash table.

We do not show a comparison to the naı̈ve dense matrix
approach, since this is generally slower by orders of mag-
nitude on the datasets we consider.

Our product tree implementation is a Python extension
written in C++, based on the cover tree implementation of
Beygelzimer et al. (2006) and implementing the optimiza-
tions from Section 3.3. In all experiments we set the ap-
proximation parameter εrel to ensure an approximation er-
ror of less than 0.1% of the exact variance. All sparse ma-
trix multiplications are in CSR format using SciPy’s sparse
routines; we impose a sparsity threshold of 10−8 such that
any entry less than the threshold is set to zero. Code to
reproduce all experiments, along with the datasets, is in-
cluded in the supplementary materials.

5.1 SYNTHETIC DATA

Figures 3a and 3b compare our methods on a simple two-
dimensional synthetic data set, consisting of points sam-
pled uniformly at random from the unit square. We train a
GP on n such points and then measure the mean time per
point to compute the predictive variance at 1000 random
test points. The GP uses a piecewise-polynomial CS2,2

kernel with observation noise σ2
n = 1.0 and lengthscale

` =
√
vπ/n, where v is a parameter indicating the average

number of training points within a one-lengthscale ball of

3We are grateful to Iain Murray for suggesting this approach
for comparison.



(a) Clumpy data with σ = 0.01, with a ball of covariance
lengthscale 1√

10π
overlayed.

(b) Mean times to compute posterior variance on data of vary-
ing clumpiness, using a piecewise-polynomial CS2,2 kernel.

Figure 4: HD versus PT on clumpy data.

a random query point.

We see from Figure 3a that the hybrid dense method per-
forms best when the kernel lengthscale is extremely short,
followed by the product tree; in the most extreme cases
these methods outperform the alternatives by an order of
magnitude. However, performance degrades as the kernel
lengthscale increases.

Figure 3b examines the scaling behavior of the algorithms
in a relatively sparse setting, v = 5, chosen to allow the
tractable inversion of large kernel matrices. Here we see
that the direct calculation scales quite steeply (though lin-
early: the runtime at n = 160000 is approximately 15ms)
with training size due to the need to explicitly compute
all n entries of k∗i . The hybrid sparse calculation avoids
this bottleneck and is significantly more efficient, but its
scaling is ultimately also linear with n, an inherent limi-
tation of sparse matrix multiplication (Bank and Douglas,
1993) since it does not have access to the geometry of the
data. By contrast, in this sparse setting the hybrid dense
and product tree approaches remain efficient even for very
large datasets, with a small constant-factor advantage for
the hybrid dense method.

5.2 CLUMPINESS

The strong performance in the previous experiments of the
hybrid dense method, relative to the product tree, is due to
the uniformity of the training data. With no natural clus-
ters, the only available optimization is to discard faraway
points. The product tree would be expected to perform bet-
ter when the data are ‘clumpy’, allowing it to merge kernel
evaluations from nearby points. This is explored in Fig-
ure 4b, which compares the two methods on a synthetic
dataset of 5000 points, sampled from a mixture of 50 Gaus-

sians each with covariance σ2I for varying clumpiness σ.
As expected, the product tree is fastest when the data are
tightly clustered and many points can be merged. Figure 4a
shows an example of a dataset at σ=0.01, the approximate
’crossover’ point at which the lower constant factor of the
hybrid dense method begins to outweigh the advantages of
the product tree.

5.3 REAL DATA

We evaluate the performance of our methods on the follow-
ing datasets, shown in Table 2:

seismic: 20000 travel-time residuals between observed P-
wave travel times to the seismic array in Alice Springs,
Australia, and the times predicted by a one-dimensional
IASPEI91 model (Kennett and Engdahl, 1991), indexed by
latitude/longitude and depth of the source event.

snow: 20000 observations of water content of California
snow pack recorded daily at 128 stations from November
1, 2011 to June 1, 2012, indexed by date, latitude/longitude
and elevation. Collected from http://cdec.water.
ca.gov/queryCSV.html.

precip: shown in Figure 1, total annual precipitation
recorded in 1995 by each of 5775 stations in the continental
US, indexed by latitude, longitude, and elevation (Vanhat-
alo and Vehtari, 2008).

tco: Total column ozone as recorded over the Earth’s sur-
face by the NIMBUS-7/TOMS satellite on October 1, 1998
(Park et al., 2011). Our experiments use a random sample
of 20000 from the full 48331 measurements.

housing: Data from the 1990 California census, as used by
Shen et al. (2006). We predict the median income of each
block group as a function of median age and median house



value.

Table 3 compares, for each dataset, the performance of an
SE kernel to that of a piecewise-polynomial, compactly-
supported kernel CSD,2 with a hand-selected number of
FIC inducing points capturing global variation. The goal
here is to show that the CS+FIC models, which are well-
suited for fast tree-based calculations at test time, are a
reasonable modeling choice even for purely predictive rea-
sons. Model quality is measured by the Standardized Mean
Squared Error (SMSE), i.e., the squared error divided by
the squared error of the trivial predictor that just predicts
the mean of the training set, and Mean Standardized Log
Loss (MSLL), obtained by averaging − log p(y∗i |x∗i , X,y)
over the test set and subtracting the same score for a triv-
ial model which always predicts the mean and variance of
the training set. Hyperparameters for each model were ob-
tained by maximizing the marginal likelihood over a ran-
dom subset of 5000 training points using a truncated New-
ton method; a prior was used to encourage short length-
scales for the CS components of the CS+FIC models. Note
that, for each of the datasets considered in this paper, the
CS+FIC model provides better posterior probability esti-
mates (lower MSLL) than an SE model.4

In Table 4 we show, for each method and dataset, the mean
and standard deviation of posterior variance computation
time evaluated over the test set. Here the HS, HD, and PT
methods use the tree-optimized FIC calculations from Sec-
tion 4.1, while the Direct and HSN methods use a naive
FIC calculation; the latter is included explicitly for com-
parison with the tree-optimized version. Interestingly, the
hybrid dense calculation is quickest in every case, some-
times tied by the product tree, suggesting that these real
datasets do not possess the degree of clumpiness necessary
for the product tree to dominate (Table 5 directly compares
the number of terms used by the two method, showing that
the product tree succeeds in merging a significant number
of points only on the housing dataset). Both the product
tree and the hybrid dense method are generally faster than
the hybrid sparse method, with the exception of the US pre-
cipitation data in which the relative fullness of the inverse

4The SE model may still be superior in many cases, of course.
For example, we experimented with the well-known SARCOS in-
verse kinematics dataset but were unable to find a CS+FIC model
that was competitive with the SE baseline.

d ntrain ntest tbuild

seismic 3 16000 4000 4.9s
snow 4 15000 5000 4.2s
precip 3 5000 775 23.0s
tco 2 15000 5000 2.2s
housing 2 18000 2000 3.3s

Table 2: Datasets, with product tree construction times.

model K−1
y % SMSE MSLL

seismic CS+FIC (20) 0.6% 0.82 -0.20
SE 33.9% 0.84 -0.11

snow CS+FIC (20) 0.8% 0.0030 -2.91
SE 36.3% 0.0097 -2.31

precip CS+FIC (20) 45.3% 0.129 -1.17
SE 50.2% 0.125 -1.06

tco CS+FIC (90) 0.4% 0.041 -1.63
SE 34.6% 0.054 -1.45

housing CS+FIC (20) 0.5% 0.83 -0.18
SE 100% 0.80 -0.086

Table 3: Predictive performance of compactly-supported
and squared-exponential kernels on the test datasets.
Smaller is better for both SMSE and MSLL.

kernel matrix for that model (Table 3) greatly increases the
size of the product tree. Comparing HS to HSN , we see
that the tree-optimized FIC calculation provides significant
speedups on all datasets except for the precipitation data,
with an especially significant speedup for the tco data
which uses 90 inducing points.

6 CONCLUSION AND FUTURE WORK

This paper introduces the product tree, a method for effi-
cient adaptive calculation of GP covariances using a mul-
tiresolution clustering of pairs of training points. We em-
pirically evaluate the performance of several such methods
and find that a simple heuristic that discards faraway train-
ing points (the hybrid dense method described above) may
yield the best performance on many real datasets. This fol-
lows Murray (2009), who found that tree-based methods
are often unable to effectively merge points, though we do
identify a regime of clustered data in which the product
tree has an advantage. Other contributions of this paper in-
clude a cutoff rule with provable error bounds, applicable
to both mean and covariance calculations on trees, and a
description of efficient calculation in GP models incorpo-
rating both sparse and low-rank components, showing how
such models can model global-scale variation while main-
taining the efficiency of short-lengthscale GPs.

A limitation of all of the approaches considered in this pa-
per is the need to invert the kernel matrix during training;
this can be difficult for large problems. One avenue for
future work could be an iterative factorization ofKy analo-
gous to the CG training performed by MVM methods (Shen
et al., 2006; Gray, 2004; Morariu et al., 2008).

Although our work has been focused primarily on low-
dimensional applications, the use of cover trees instead of
k-d trees ought to enable an extension to higher dimen-
sions. We are not aware of previous work applying tree-
based regression algorithms to high-dimensional data, but



Direct (ms) HSN (ms) HS (ms) HD (ms) PT (ms)
seismic 13.1 ± 1.1 4.5 ± 0.9 2.0 ± 1.6 1.5 ± 2.7 1.6 ± 2.4
precip 45.0 ± 2.0 5.0 ± 1.5 5.7 ± 2.3 3.0 ± 1.0 7.3 ± 3.4
snow 13.0 ± 1.0 4.3 ± 0.6 1.6 ± 0.4 0.9 ± 0.5 1.0 ± 0.5
tco 19.4 ± 4.9 17.4 ± 6.4 2.7 ± 1.2 1.7 ± 0.2 1.7 ± 0.5
housing 12.2 ± 1.0 4.9 ± 0.8 1.5 ± 0.3 0.8 ± 0.3 0.8 ± 0.3

Table 4: Time to compute posterior variance of a CS+FIC model at points from the test set: mean ± standard deviation.
HD PT

seismic 6912 6507
precip 21210 22849
snow 1394 1374
tco 169 177
housing 1561 670

Table 5: Mean number of nonzero terms in the approximate weighted sums computed at test points.

as high-dimensional covariance matrices are often sparse,
this may be a natural fit. For high-dimensional data that
do not lie on a low-dimensional manifold, other nearest-
neighbor techniques such as locality-sensitive hashing (An-
doni and Indyk, 2008) may have superior properties to tree
structures; the adaptation of such techniques to GP regres-
sion is an interesting open problem.

Acknowledgements

The authors are grateful to the anonymous reviewers for
their helpful feedback, and to Iain Murray for suggesting
the hybrid dense method. This work was supported by
DTRA grant #HDTRA-11110026.

References
Andoni, A. and Indyk, P. (2008). Near-optimal hashing

algorithms for approximate nearest neighbor in high di-
mensions. Communications of the ACM, 51(1):117–122.

Bank, R. E. and Douglas, C. C. (1993). Sparse matrix
multiplication package (SMMP). Advances in Compu-
tational Mathematics, 1(1):127–137.

Beygelzimer, A., Kakade, S., and Langford, J. (2006).
Cover trees for nearest neighbor. In Proceedings of
the 23rd International Conference on Machine Learning
(ICML), pages 97–104.

Bickel, P. J. and Lindner, M. (2012). Approximating the
inverse of banded matrices by banded matrices with ap-
plications to probability and statistics. SIAM Journal on
Probability Theory and Applications, 56:1–20.

Chalupka, K., Williams, C. K., and Murray, I. (2013).
A framework for evaluating approximation methods for
Gaussian process regression. Journal of Machine Learn-
ing Research, 14:333–350.

Friedman, J. H., Bentley, J. L., and Finkel, R. A. (1977).
An algorithm for finding best matches in logarithmic ex-

pected time. ACM Transactions on Mathematical Soft-
ware (TOMS), 3(3):209–226.

Gray, A. (2004). Fast kernel matrix-vector multiplication
with application to Gaussian process learning. Technical
Report CMU-CS-04-110, School of Computer Science,
Carnegie Mellon University.

Gray, A. G. and Moore, A. W. (2001). N-body problems in
statistical learning. In Advances in Neural Information
Processing Systems (NIPS), pages 521–527.

Kennett, B. N. and Engdahl, E. (1991). Traveltimes
for global earthquake location and phase identification.
Geophysical Journal International, 105(2):429–465.

Moore, A. W., Schneider, J., and Deng, K. (1997). Ef-
ficient locally weighted polynomial regression predic-
tions. In Proceedings of the 14th International Confer-
ence on Machine Learning (ICML).

Morariu, V., Srinivasan, B. V., Raykar, V. C., Duraiswami,
R., and Davis, L. (2008). Automatic online tuning for
fast Gaussian summation. Advances in Neural Informa-
tion Processing Systems (NIPS), 21:1113–1120.

Murray, I. (2009). Gaussian processes and fast matrix-
vector multiplies. In Numerical Mathematics in Machine
Learning workshop at the 26th International Conference
on Machine Learning (ICML 2009).

Park, C., Huang, J. Z., and Ding, Y. (2011). Domain de-
composition approach for fast gaussian process regres-
sion of large spatial data sets. The Journal of Machine
Learning Research, 12:1697–1728.

Quiñonero-Candela, J. and Rasmussen, C. E. (2005). A
unifying view of sparse approximate Gaussian process
regression. The Journal of Machine Learning Research,
6:1939–1959.

Rahimi, A. and Recht, B. (2007). Random features for
large-scale kernel machines. Advances in Neural Infor-
mation Processing Systems (NIPS), 20:1177–1184.



Rasmussen, C. and Williams, C. (2006). Gaussian Pro-
cesses for Machine Learning. MIT Press.

Shen, Y., Ng, A., and Seeger, M. (2006). Fast Gaussian
process regression using kd-trees. In Advances in Neu-
ral Information Processing Systems (NIPS), volume 18,
page 1225.

Snelson, E. and Ghahramani, Z. (2006). Sparse Gaussian
processes using pseudo-inputs. In Advances in Neural
Information Processing Systems (NIPS).

Snelson, E. and Ghahramani, Z. (2007). Local and global
sparse Gaussian process approximations. In Artificial In-
telligence and Statistics (AISTATS), volume 11.

Uhlmann, J. K. (1991). Satisfying general proximity / sim-
ilarity queries with metric trees. Information Processing
Letters, 40(4):175 – 179.

Vanhatalo, J. and Vehtari, A. (2008). Modelling local
and global phenomena with sparse Gaussian processes.
In Proceedings of Uncertainty in Artificial Intelligence
(UAI).

Vedaldi, A. and Zisserman, A. (2010). Efficient additive
kernels via explicit feature maps. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on, pages 3539–3546. IEEE.


