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Abstract

In this paper we study lifted inference for
the Weighted First-Order Model Counting prob-
lem (WFOMC), which counts the assignments
that satisfy a given sentence in first-order
logic (FOL); it has applications in Statisti-
cal Relational Learning (SRL) and Probabilis-
tic Databases (PDB). We present several results.
First, we describe a lifted inference algorithm
that generalizes prior approaches in SRL and
PDB. Second, we provide a novel dichotomy
result for a non-trivial fragment of FO CNF
sentences, showing that for each sentence the
WFOMC problem is either in PTIME or #P-
hard in the size of the input domain; we prove
that, in the first case our algorithm solves the
WFOMC problem in PTIME, and in the second
case it fails. Third, we present several proper-
ties of the algorithm. Finally, we discuss limi-
tations of lifted inference for symmetric proba-
bilistic databases (where the weights of ground
literals depend only on the relation name, and
not on the constants of the domain), and prove
the impossibility of a dichotomy result for the
complexity of probabilistic inference for the en-
tire language FOL.

1 INTRODUCTION

Weighted model counting (WMC) is a problem at the core
of many reasoning tasks. It is based on the model count-
ing or #SAT task (Gomes et al., 2009), where the goal is
to count assignments that satisfy a given logical sentence.
WMC generalizes model counting by assigning a weight to
each assignment, and computing the sum of their weights.
WMC has many applications in AI and its importance is
increasing. Most notably, it underlies state-of-the-art prob-
abilistic inference algorithms for Bayesian networks (Dar-
wiche, 2002; Sang et al., 2005; Chavira and Darwiche,

2008), relational Bayesian networks (Chavira et al., 2006)
and probabilistic programs (Fierens et al., 2011).

This paper is concerned with weighted first-order model
counting (WFOMC), where we sum the weights of assign-
ments that satisfy a sentence in finite-domain first-order
logic. Again, this reasoning task underlies efficient algo-
rithms for probabilistic reasoning, this time for popular rep-
resentations in statistical relational learning (SRL) (Getoor
and Taskar, 2007), such as Markov logic networks (Van
den Broeck et al., 2011; Gogate and Domingos, 2011) and
probabilistic logic programs (Van den Broeck et al., 2014).
Moreover, WFOMC uncovers a deep connection between
AI and database research, where query evaluation in prob-
abilistic databases (PDBs) (Suciu et al., 2011) essentially
considers the same task. A PDB defines a probability, or
weight, for every possible world, and each database query
is a sentence encoding a set of worlds, whose combined
probability we want to compute.

Early on, the disconnect between compact relational repre-
sentations of uncertainty, and the intractability of inference
at the ground, propositional level was noted, and efforts
were made to exploit the relational structure for inference,
using so-called lifted inference algorithms (Poole, 2003;
Kersting, 2012). SRL and PDB algorithms for WFOMC all
fall into this category. Despite these commonalities, there
are also important differences. SRL has so far considered
symmetric WFOMC problems, where relations of the same
type are assumed to contribute equally to the probability
of a world. This assumption holds for certain queries on
SRL models, such as single marginals and partition func-
tions, but fails for more complex conditional probability
queries. These break lifted algorithms based on symmetric
WFOMC (Van den Broeck and Darwiche, 2013). PDBs, on
the other hand, have considered the asymmetric WFOMC
setting from the start. While there are many semantics
for PDBs, the most common models are tuple-independent
PDBs, which assign each tuple a distinct probability, many
tuples have probability zero, and no symmetries can be ex-
pected. However, current asymmetric WFOMC algorithms
(Dalvi and Suciu, 2012) suffer from a major limitation of



their own, in that they can only count models of sentences
in monotone disjunctive normal form (MDNF) (i.e., DNF
without negation). Such sentences represent unions of con-
junctive database queries (UCQ). WFOMC encodings of
SRL models almost always fall outside this class.

The present work seeks to upgrade a well-known PDB al-
gorithm for asymmetric WFOMC (Dalvi and Suciu, 2012)
to the SRL setting, by enabling it to count models of ar-
bitrary sentences in conjunctive normal form (CNF). This
permits its use for lifted SRL inference with arbitrary soft
or hard evidence, or equivalently, probabilistic database
queries with negation. Our first contribution is this algo-
rithm, which we call LiftR, and is presented in Section 3.

Although LiftR has clear practical merits, we are in fact
motivated by fundamental theoretical questions. In the
PDB setting, our algorithm is known to come with a sharp
complexity guarantee, called the dichotomy theorem (Dalvi
and Suciu, 2012). By only looking at the structure of the
first-order sentence (i.e., the database query), the algorithm
reports failure when the problem is #P-hard (in terms of
data complexity), and otherwise guarantees to solve it in
time polynomial in the domain (i.e., database) size. It can
thus precisely classify MDNF sentences as being tractable
or intractable for asymmetric WFOMC. Whereas several
complexity results for symmetric WFOMC exist (Van den
Broeck, 2011; Jaeger and Van den Broeck, 2012), the com-
plexity of asymmetric WFOMC for SRL queries with evi-
dence is still poorly understood. Our second and main con-
tribution, presented in Section 4, is a novel dichotomy result
over a small but non-trivial fragment of CNFs. We com-
pletely classify this class of problems as either computable
in polynomial time or #P-hard. This represents a first step
towards proving the following conjecture: LiftR provides
a dichotomy for asymmetric WFOMC on arbitrary CNF
sentences, and therefore perfectly classifies all related SRL
models as tractable or intractable for conditional queries.

As our third contribution, presented in Section 5, we illus-
trate the algorithm with examples that show its application
to common probabilistic models. We discuss the capabil-
ities of LiftR that are not present in other lifted inference
techniques.

As our fourth and final contribution, in Section 6, we dis-
cuss extensions of our algorithm to symmetric WFOMC,
but also show the impossibility of a dichotomy result for
arbitrary first-order logic sentences.

2 BACKGROUND

We begin by introducing the necessary background on re-
lational logic and weighted model counting.

2.1 RELATIONAL LOGIC

Throughout this paper, we will work with the relational
fragment of first-order logic (FOL), which we now briefly
review. An atom P (t1, . . . , tn) consists of predicate P /n
of arity n followed by n arguments, which are either con-
stants or logical variables {x, y, . . .}. A literal is an atom
or its negation. A formula combines atoms with logical
connectives and quantifiers ∃ and ∀. A substitution [a/x]
replaces all occurrences of x by a. Its application to for-
mula F is denoted F [a/x]. A formula is a sentence if each
logical variable x is enclosed by a ∀x or ∃x. A formula
is ground if it contains no logical variables. A clause is a
universally quantified disjunction of literals. A term is an
existentially quantified conjunction of literals. A CNF is a
conjunction of clauses, and a DNF is a disjunction of terms.
A monotone CNF or DNF contains no negation symbols.
As usual, we drop the universal quantifiers from the CNF
syntax.

The semantics of sentences are defined in the usual
way (Hinrichs and Genesereth, 2006). An interpretation, or
world, I that satisfies sentence ∆ is denoted by I ⊧ ∆, and
represented as a set of literals. Our algorithm checks prop-
erties of sentences that are undecidable in general FOL, but
decidable, with the following complexity, in the CNF frag-
ment we investigate.

Theorem 2.1. (Sagiv and Yannakakis, 1980) (Farré et al.,
2006) Checking whether logical implication Q ⇒ Q′ or
equivalence Q ≡ Q′ holds between two CNF sentences is
Πp

2-complete.

2.2 WEIGHTED MODEL COUNTING

Weighted model counting was introduced as a proposi-
tional reasoning problem.

Definition 2.2 (WMC). Given a propositional sentence ∆
over literals L, and a weight function w ∶ L → R≥0, the
weighted model count (WMC) is

WMC(∆,w) = ∑
I⊧∆

∏
`∈I

w(`).

We will consider its generalization to weighted first-order
model counting (WFOMC), where ∆ is now a sentence in
relational logic, and L consists of all ground first-order lit-
erals for a given domain of constants.

The WFOMC task captures query answering in probabilis-
tic database. Take for example the database

Prof(Anne) ∶ 0.9 Prof(Charlie) ∶ 0.1
Student(Bob) ∶ 0.5 Student(Charlie) ∶ 0.8

Advises(Anne,Bob) ∶ 0.7 Advises(Bob,Charlie) ∶ 0.1
and the UCQ (monotone DNF) query

Q = ∃x,∃y, Prof(x) ∧ Advises(x, y) ∧ Student(y).



If we set ∆ = Q and w to map each literal to its probability
in the database, then our query answer is

Pr(Q) = WFOMC(∆,w) = 0.9 ⋅ 0.7 ⋅ 0.5 = 0.315.

We refer to the general case above as asymmetric WFOMC,
because it allows w(Prof(Anne)) to be different from
w(Prof(Charlie)). We use symmetric WFOMC to refer to
the special case where w simplifies into two weight func-
tions w⋆, w̄⋆ that map predicates to weights, instead of lit-
erals, that is

w(`) =
⎧⎪⎪⎨⎪⎪⎩

w⋆(P ) when ` is of the form P (c)
w̄⋆(P ) when ` is of the form ¬P (c)

Symmetric WFOMC no longer directly captures PDBs.
Yet it can still encode many SRL models, including
parfactor graphs (Poole, 2003), Markov logic networks
(MLNs) (Richardson and Domingos, 2006) and probabilis-
tic logic programs (De Raedt et al., 2008). We refer to
(Van den Broeck et al., 2014) for the details, and show here
the following example MLN.

2 Prof(x) ∧ Advises(x, y) ⇒ Student(y)
It states that the probability of a world increases by a fac-
tor e2 with every pair of people x, y for which the formula
holds. Its WFOMC encoding has ∆ equal to

∀x,∀y, F(x, y) ⇔
[Prof(x) ∧ Advises(x, y) ⇒ Student(y)]

and weight functions w⋆, w̄⋆ such that w⋆(F) = e2 and all
other predicates map to 1.

Answering an SRL query Q given evidence E, that is,
Pr(Q ∣E), using a symmetric WFOMC encoding, gener-
ally requires solving two WFOMC tasks:

Pr(Q ∣E) = WFOMC(Q ∧E ∧∆,w)
WFOMC(E ∧∆,w)

Symmetric WFOMC problems are strictly more tractable
than asymmetric ones. We postpone the discussion of this
observation to Section 5, but already note that all theories
∆ with up to two logical variables per formula support
domain-lifted inference (Van den Broeck, 2011), which
means that any WFOMC query runs in time polynomial in
the domain size (i.e, number of constants). For conditional
probability queries, even though fixed-parameter complex-
ity bounds exist that use symmetric WFOMC (Van den
Broeck and Darwiche, 2013), the actual underlying reason-
ing task is asymmetric WFOMC, whose complexity we in-
vestigate for the first time.

Finally, we make three simplifying observations. First,
SRL query Q and evidence E typically assign values to
random variables. This means that the query and evidence
can be absorbed into the asymmetric weight function, by
setting the weight of literals disagreeing with Q or E to

zero. We hence compute:

Pr(Q ∣E) = WFOMC(∆,wQ∧E)
WFOMC(∆,wE)

This means that our complexity analysis for a given en-
coding ∆ applies to both numerator and denominator for
arbitrary Q and E, and that polytime WFOMC for ∆ im-
plies polytime Pr(Q ∣E) computation. The converse is not
true, since it is possible that both WFOMC calls are #P-
hard, but their ratio is in PTIME. Second, we will from
now on assume that ∆ is in CNF. The WFOMC encod-
ing of many SRL formalisms is already in CNF, or can
be reduced to it (Van den Broeck et al., 2014). For PDB
queries that are in monotone DNF, we can simply compute
Pr(Q) = 1 − Pr(¬Q), which reduces to WFOMC on a
CNF. Moreover, by adjusting the probabilities in the PDB,
this CNF can also be made monotone. Third, we will as-
sume that w(`) = 1−w(¬`), which can always be achieved
by normalizing the weights.

Under these assumptions, we can simply refer to
WFOMC(Q,w) as Pr(Q), to Q as the CNF query, to
w(`) as the probability Pr(`), and to the entire weight
function w as the PDB. This is in agreement with notation
in the PDB literature.

3 ALGORITHM LiftR

We present here the lifted algorithm LiftR (pronounced lift-
ER), which, given a CNF formula Q computes Pr(Q) in
polynomial time in the size of the PDB, or fails. In the next
section we provide some evidence for its completeness: un-
der certain assumptions, if LiftR fails on formula Q, then
computing Pr(Q) is #P-hard in the PDB size.

3.1 DEFINITIONS

An implicate of Q is some clause C s.t. the logical impli-
cation Q ⇒ C holds. C is a prime implicate if there is no
other implicate C ′ s.t. C ′ ⇒ C.

A connected component of a clause C is a minimal subset
of its atoms that have no logical variables in common with
the rest of the clause. If some prime implicate C has more
than one connected component, then we can write it as:

C =D1 ∨D2 ∨⋯ ∨Dm

where eachDi is a clause with distinct variables. Applying
distributivity, we write Q in union-CNF form:

Q = Q1 ∨Q2 ∨⋯ ∨Qm
where each Qi is a CNF with distinct variables.

We check for disconnected prime implicatesD1∨D2 where
both D1 and D2 subsume some clause of Q. Intuitively,
this means that when we apply inclusion/exclusion to the
union-CNF, the resulting queries are simpler. The search



for D1, D2 can proceed using some standard inference al-
gorithm, e.g. resolution. By Theorem 2.1, this problem is
Πp

2-complete in the size of the query Q, but independent of
the PDB size.

A set of separator variables for a queryQ = ⋀ki=1Ci is a set
of variables xi, i = 1, k such that, (a) for each clause Ci, xi
occurs in all atoms of Ci, and (b) any two atoms (not nec-
essarily in the same clause) referring to the same relation
R have their separator variable on the same position.

3.2 PREPROCESSING

We start by transforming Q (and PDB) such that:

1. No constants occur in Q.
2. If all the variables in Q are x1, x2, . . . , xk, then ev-

ery relational atom in Q (positive or negated) is of the
form R(xi1 , xi2 , . . . ) such that i1 < i2 < . . .

Condition (1) can be enforced by shattering Q w.r.t. its
variables. Condition (2) can be enforced by modifying both
the query Q and the database, in a process called ranking
and described in the appendix. Here, we illustrate ranking
on an example. Consider the query:

Q = (R(x, y) ∨ S(x, y)) ∧ (¬R(x, y) ∨ ¬S(y, x))
Define R1(x, y) ≡ R(x, y) ∧ (x < y); R2(x) ≡ R(x,x);
R3(y, x) ≡ R(x, y) ∧ (x > y). Define similarly S1, S2, S3.
Given a PDB with relations R, S, we define a new
PDB′ over the six relations by setting Pr(R1(a, b)) =
Pr(R(a, b)) when a < b, Pr(R1(a, b)) = 0 when a > b,
Pr(R2(a)) = Pr(R(a, a)), etc. Then, the query Q over
PDB is equivalent to the following query over PDB′:

(R1(x, y) ∨ S1(x, y)) ∧ (¬R1(x, y) ∨ ¬S3(x, y))∧
(R2(x) ∨ S2(x)) ∧ (¬R2(x) ∨ ¬S2(x))∧
(R3(x, y) ∨ S3(x, y)) ∧ (¬R3(x, y) ∨ ¬S1(x, y))

3.3 ALGORITHM DESCRIPTION

Algorithm LiftR, given in Figure 1, proceeds recursively on
the structure of the CNF query Q. When it reaches ground
atoms, it simply looks up their probabilities in the PDB.
Otherwise, it performs the following sequence of steps.

First, it tries to express Q as a union-CNF. If it succeeds,
and if the union can be partitioned into two sets that do not
share any relational symbols, Q = Q1 ∨Q2, then it applies
a Decomposable Disjunction:

Pr(Q) = 1 − (1 −Pr(Q1)(1 −Pr(Q2))
Otherwise, it applies the Inclusion/Exclusion formula:

Pr(Q) = − ∑
s⊆[m]

(−1)∣s∣ Pr(⋀
i∈s
Qi)

However, before computing the recursive probabilities, our
algorithm first checks for equivalent expressions, i.e. it

Algorithm LiftR

Input: Ranked and shattered queryQ
Probabilistic DB with domainD

Output: Pr(Q)

1 S tep 0 : I f Q i s a s i n g l e ground l i t e r a l ` , r e t u r n
i t s p r o b a b i l i t y Pr(`) i n PDB

2 Step 1 : Wr i t e Q as a union−CNF : Q = Q1 ∨Q2 ∨⋯ ∨Qm

3 S tep 2 : I f m > 1 and Q can be p a r t i t i o n e d i n t o two
s e t s Q = Q′ ∨Q′′ wi th d i s j o i n t r e l a t i o n s y m b o l s ,
r e t u r n 1 − (1 −Pr(Q1)) ⋅ (1 −Pr(Q2))

4 / * Decomposable D i s j u n c t i o n * /
5 S tep 3 : I f Q c a n n o t be p a r t i t i o n e d , r e t u r n

∑s⊆[m](−1)∣s∣ Pr(⋀i∈sQi)
6 / * I n c l u s i o n / E x c l u s i o n − pe r fo rm c a n c e l l a t i o n s

b e f o r e r e c u r s i o n * /
7 S tep 4 : Wr i t e Q i n CNF: Q = C1 ∧C2 ∧⋯ ∧Ck

8 S tep 5 : I f k > 1 , and Q can be p a r t i t i o n e d i n t o two
s e t s Q = Q′ ∧Q′′ wi th d i s j o i n t r e l a t i o n s y m b o l s ,
r e t u r n Pr(Q1) ⋅Pr(Q2)

9 / * Decomposable Conjunct ion * /
10 S tep 6 : I f Q has a s e p a r a t o r v a r i a b l e , r e t u r n

∏a∈D Pr(C1[a/x1] ∧ ⋯ ∧Ck[a/xk])
11 / * Decomposable U n i v e r s a l Q u a n t i f i e r * /
12 O t h e r w i s e FAIL

Figure 1: Algorithm for Computing Pr(Q)

checks for terms s1, s2 in the inclusion/exclusion formula
such that ⋀i∈s1 Qi ≡ ⋀i∈s2 Qi: in that case, these terms
either cancel out, or add up (and need be computed only
once). We show in Section 5.4 the critical role that the can-
cellation step plays for the completeness of the algorithm.
To check cancellations, the algorithm needs to check for
equivalent CNF expressions. This can be done using some
standard inference algorithm (recall from Theorem 2.1 that
this problem is Πp

2-complete in the size of the CNF expres-
sion).

If neither of the above steps apply, then the algorithm
checks if Q can be partitioned into two sets of clauses that
do not share any common relation symbols. In that case,
Q = Q′ ∧Q′′, and its probability is computed using a De-
composable Conjunction:

Pr(Q) = Pr(Q′) ⋅Pr(Q′′)
Finally, if none of the above cases apply to the CNF query
Q = C1 ∧C2 ∧⋯∧Ck, then the algorithm tries to find a set
of separator variables x1, . . . , xk (one for each clause). If it
finds them, then the probability is given by a Decomposable
Universal Quantifier:

Pr(Q) = ∏
a∈Domain

Pr(C1[a/x1] ∧ ⋯ ∧Ck[a/xk])

We prove our first main result:

Theorem 3.1. One of the following holds: (1) either LiftR
fails onQ, or (2) for any domain size n and a PDB consist-
ing of probabilities for the ground tuples, LiftR computes



Pr(Q) in polynomial time in n.

Proof. (Sketch) The only step of the algorithm that de-
pends on the domain size n is the decomposable universal
quantifier step; this also reduces by 1 the arity of every re-
lation symbol, since it substitutes it by the same constant
a. Therefore, the algorithm runs in time O(nk), where k
is the largest arity of any relation symbol. We note that the
constant behind O(⋯) may be exponential in the size of
the query Q.

4 MAIN COMPLEXITY RESULT

In this section we describe our main technical result of the
paper: that the algorithm is complete when restricted to a
certain class of CNF queries.

We first review a prior result, to put ours in perspective.
(Dalvi and Suciu, 2012) define an algorithm for Monotone
DNF (called Unions Of Conjunctive Queries), which can
be adapted to Monotone CNF; that adaptation is equivalent
to LiftR restricted to Monotone CNF queries. (Dalvi and
Suciu, 2012) prove:

Theorem 4.1. If algorithm LiftR FAILS on a Monotone
CNF query Q, then computing Pr(Q) is #P-hard.

However, the inclusion of negations in our query language
increases significantly the difficulty of analyzing query
complexities. Our major technical result of the paper ex-
tends Theorem 4.1 to a class of CNF queries with negation.

Define a Type-1 query to be a CNF formula where each
clause has at most two variables denoted x, y, and each
atom is of one of the following three kinds:

– Unary symbols R1(x),R2(x),R3(x), . . .
– Binary symbols S1(x, y), S2(x, y), . . .
– Unary symbols T1(y), T2(y), . . .

or the negation of these symbols.

Our main result is:

Theorem 4.2. For every Type-1 queryQ, if algorithm LiftR
FAILS then computing Pr(Q) is #P-hard.

The proof is a significant extension of the techniques used
by (Dalvi and Suciu, 2012) to prove Theorem 4.1; we give
a proof sketch in Section 7 and include the full proof in the
appendix.

5 PROPERTIES OF LiftR

We now describe several properties of LiftR, and the rela-
tionship to other lifted inference formalisms.

5.1 NEGATIONS CAN LOWER THE
COMPLEXITY

The presence of negations can lower a query’s complexity,
and our algorithm exploits this. To see this, consider the
following query

Q = (Tweets(x) ∨ ¬Follows(x, y))
∧ (Follows(x, y) ∨ ¬Leader(y))

The query says that if x follows anyone then x tweets, and
that everybody follows the leader1.

Our goal is to compute the probability Pr(Q), knowing the
probabilities of all atoms in the domain. We note that the
two clauses are dependent (since both refer to the relation
Follow), hence we cannot simply multiply their proba-
bilities; in fact, we will see that if we remove all negations,
then the resulting query is #P-hard; the algorithm described
by (Dalvi and Suciu, 2012) would immediately get stuck on
this query. Instead, LiftR takes advantage of the negation,
by first computing the prime implicate:

Tweets(x) ∨ ¬Leader(y)
which is a disconnected clause (the two literals use disjoint
logical variables, x and y respectively). After applying dis-
tributivity we obtain:

Q ≡(Q ∧ (Tweets(x))) ∨ (Q ∧ (¬Leader(y)))
≡Q1 ∨Q2

and LiftR applies the inclusion-exclusion formula:

Pr(Q) =Pr(Q1) +Pr(Q2) −Pr(Q1 ∧Q2)
After simplifying the three queries, they become:

Q1 =(Follows(x, y) ∨ ¬Leader(y))
∧ (Tweets(x))

Q2 =(Tweets(x) ∨ ¬Follows(x, y))
∧ (¬Leader(y))

Q1 ∧Q2 =(Tweets(x)) ∧ (¬Leader(y))
The probability of Q1 can now be obtained by multiply-
ing the probabilities of its two clauses; same for the other
two queries. As a consequence, our algorithm computes
the probability Pr(Q) in polynomial time in the size of the
domain and the PDB.

If we remove all negations from Q and rename the predi-
cates we get the following query:

h1 =(R(x) ∨ S(x, y)) ∧ (S(x, y) ∨ T (y))
(Dalvi and Suciu, 2012) proved that computing the prob-
ability of h1 is #P-hard in the size of the PDB. Thus, the
query Q with negation is easy, while h1 is hard, and our
algorithm takes advantage of this by applying resolution.

1To see this, rewrite the query as (Follows(x, y) ⇒
Tweets(x)) ∧ (Leader(y) ⇒ Follows(x, y)).



5.2 ASYMMETRIC WEIGHTS CAN INCREASE
THE COMPLEXITY

(Van den Broeck, 2011) has proven that any query with at
most two logical variables per clause is domain-liftable.
Recall that this means that one can compute its probabil-
ity in PTIME in the size of the domain, in the symmetric
case, when all tuples in a relation have the same probabil-
ity. However, queries with at most two logical variables per
clause can become #P-hard when computed over asymmet-
ric probabilities, as witnessed by the query h1 above.

5.3 COMPARISON WITH PRIOR LIFTED
FO-CIRCUITS

(Van den Broeck et al., 2011; Van den Broeck, 2013)
introduce FO d-DNNF circuits, to compute symmetric
WFOMC problems. An FO d-DNNF is a circuit whose
nodes are one of the following: decomposable conjunction
(Q1 ∧ Q2 where Q1,Q2 do not share any common pred-
icate symbols), deterministic-disjunction (Q1 ∨ Q2 where
Q1 ∧ Q2 ≡ false), inclusion-exclusion, decomposable
universal quantifier (a type of ∀x,Q(x)), and determinis-
tic automorphic existential quantifier. The latter is an op-
eration that is specific only to structures with symmetric
weights, and therefore does not apply to our setting. We
prove that our algorithm can compute all formulas that ad-
mit an FO d-DNNF circuit.

Fact 5.1. IfQ admits an FO d-DNNF without a determinis-
tic automorphic existential quantifier, then LiftR computes
Pr(Q) in PTIME in the size of the PDB.

The proof is immediate by noting that all other node
types in the FO d-DNNF have a corresponding step in
LiftR, except for deterministic disjunction, which our algo-
rithm computes using inclusion-exclusion: Pr(Q1 ∨Q2) =
Pr(Q1) +Pr(Q2) −Pr(Q1 ∧Q2) = Pr(Q1) +Pr(Q2) be-
cause Q1 ∧Q2 ≡ false.

5.4 CANCELLATIONS IN
INCLUSION/EXCLUSION

We now look at a more complex query. First, let us denote
four simple queries:

q0 = (R(x0) ∨ S1(x0, y0))
q1 = (S1(x1, y1) ∨ S2(x1, y1))
q2 = (S2(x2, y2) ∨ S3(x2, y2))
q3 = (S3(x3, y3) ∨ T (y3))

(Dalvi and Suciu, 2012) proved that their conjunction, i.e.
the query h3 = q0∧q1∧q2∧q3, is #P-hard in data complexity.
Instead of h3, consider:

QW = (q0 ∨ q1) ∧ (q0 ∨ q3) ∧ (q2 ∨ q3)
There are three clauses sharing relation symbols, hence we
cannot apply a decomposable conjunction. However, each

clause is disconnected, for example q0 and q1 do not share
logical variables, and we can thus write QW as a disjunc-
tion. After removing redundant terms:

QW = (q0 ∧ q2) ∨ (q0 ∧ q3) ∨ (q1 ∧ q3)
Our algorithm applies the inclusion/exclusion formula:

Pr(QW ) = Pr(q0 ∧ q2) +Pr(q0 ∧ q3) +Pr(q1 ∧ q3)
−Pr(q0 ∧ q2 ∧ q3) −Pr(q0 ∧ q1 ∧ q3) −Pr(q0 ∧⋯ ∧ q3)
+Pr(q0 ∧⋯ ∧ q3)

At this point our algorithm performs an important step: it
cancels out the last two terms of the inclusion/exclusion
formula. Without this key step, no algorithm could com-
pute the query in PTIME, because the last two terms are
precisely h3, which is #P-hard. To perform the cancella-
tion the algorithm needs to first check which FOL formulas
are equivalent, which, as we have seen, is decidable for our
language (Theorem 2.1). Once the equivalent formulas are
detected, the resulting expressions can be organized in a lat-
tice, as shown in Figure 2, and the coefficient of each term
in the inclusion-exclusion formula is precisely the lattice’s
Möbius function (Stanley, 1997).

6 EXTENSIONS AND LIMITATIONS

We describe here an extension of LiftR to symmetric
WFOMC, and also prove that a complete characterization
of the complexity of all FOL queries is impossible.

6.1 SYMMETRIC WFOMC

Many applications of SRL require weighted model count-
ing for FOL formulas over PDBs where the probabilities
are associated to relations rather than individual tuples.
That is, Friend(a, b) has the same probability, indepen-
dently of the constants a, b in the domain. In that symmet-
ric WFOMC case, the model has a large number of sym-
metries (since the probabilities are invariant under permu-
tations of constants), and lifted inference algorithms may
further exploit these symmetries. (Van den Broeck, 2013)
employ one operator that is specific to symmetric proba-
bilities, called atom counting, which is applied to a unary
predicate R(x) and iterates over all possible worlds of that
predicate. Although there are 2n possible worlds for R,
by conditioning on any world, the probability will depend
only on the cardinality k of R, because of the symmetries.
Therefore, the system iterates over k = 0, n, and adds the
conditional probabilities multiplied by (n

k
). For example,

consider the following query:

H = (¬R(x) ∨ S(x, y) ∨ ¬T (y)) (1)

Computing the probabilities of this query is #P-hard (The-
orem 4.2). However, if all tuplesR(a) have the same prob-
ability r ∈ [0,1], and similarly tuples in S,T have proba-



1̂

q0 ∧ q2 q0 ∧ q3 q1 ∧ q3

q0 ∧ q2 ∧ q3 q0 ∧ q1 ∧ q3

q0 ∧ q1 ∧ q2 ∧ q3

Figure 2: Lattice for Qw. The bottom query is #P-hard, yet all terms in the inclusion/exclusion formula that contain this
term cancel out, and Pr(QW ) is computable in PTIME.

bilities s, t, then one can check that2

Pr(H) = ∑
k,l=0,n

rk ⋅ (1 − r)n−k ⋅ tl ⋅ (1 − t)n−l ⋅ (1 − skl)

Denote Sym-LiftR the extension of LiftR with a determin-
istic automorphic existential quantifier operator. The ques-
tion is whether this algorithm is complete for computing the
probabilities of queries over PDBs with symmetric proba-
bilities. Folklore belief was that this existential quantifier
operator was the only operator required to exploit the extra
symmetries available in PDBs with symmetric probabili-
ties. For example, all queries in (Van den Broeck et al.,
2011) that can be computed in PTIME over symmetric
PDBs have the property that, if one removes all unary pred-
icates from the query, then the residual query can be com-
puted in PTIME over asymmetric PDBs.

We answer this question in the negative. Consider the fol-
lowing query:

Q =(S(x1, y1) ∨ ¬S(x1, y2) ∨ ¬S(x2, y1) ∨ S(x2, y2))
Here, we interpret S(x, y) as a typed relation, where the
values x and y are from two disjoint domains, of sizes
n1, n2 respectively, in other words, S ⊆ [n1] × [n2].

Theorem 6.1. We have that

– Pr(Q) can be computed in time polynomial in the size
of a symmetric PDB with probability p as Pr(Q) =
f(n1, n2) + g(n1, n2) where:

f(0, n2) =1 f(n1, n2) =
n1

∑
k=1

pkn2g(n1 − k,n2)

g(n1,0) =1 g(n1, n2) =
n2

∑
`=1

(1 − p)n1`f(n1, n2 − `)

– Sym-LiftR fails to compute Q.

The theorem shows that new operators will be required
for symmetric WFOMC. We note that it is currently open
whether computing Pr(Q) is #P-hard in the case of asym-
metric WFOMC.

2Conditioned on ∣R∣ = k and ∣T ∣ = l, the query is true if S
contains at least one pair (a, b) ∈ R × T .

Proof. Denote Dx,Dy the domains of the variables x
and y. Fix a relation S ⊆ D1 × D2. We will denote
a1, a2, . . . ∈ D1 elements from the domain of the variable
x, and b1, b2, . . . ∈ D2 elements from the domain of the
variable y. For any a, b, define a ≺ b if (a, b) ∈ S, and a ≻ b
if (a, b) /∈ S; in the latter case we also write b ≺ a. Then,
(1) for any a, b, either a ≺ b or b ≺ a, (2) ≺ is a partial or-
der on the disjoint union of the domains D1 and D2 iff S
satisfies the query Q. The first property is immediate. To
prove the second property, notice that Q states that there is
no cycle of length 4: x1 ≺ y2 ≺ x2 ≺ y1 ≺ x1. By repeat-
edly applying resolution between Q with itself, we derive
that there are no cycles of length 6, 8, 10, etc. Therefore, ≺
is transitive, hence a partial order. Any finite, partially or-
dered set has a minimal element, i.e. there exists z s.t. ∀x,
x /≺ z. Let Z be the set of all minimal elements, and denote
X = D1 ∩ Z and Y = D2 ∩ Z. Then exactly one of X or
Y is non-empty, because if both were non-empty then, for
a ∈ X and b ∈ Y we have either a ≺ b or a ≻ b contra-
dicting their minimality. Assuming X ≠ ∅, we have (a) for
all a ∈ X and b ∈ D2, (a, b) ∈ S, and (b) Q is true on the
relation S′ = (D1 −X) ×D2. This justifies the recurrence
formula for Pr(Q).

6.2 THE COMPLEXITY OF ARBITRARY FOL
QUERIES

We conjecture that, over asymmetric probabilities (asym-
metric WFOMC), our algorithm is complete, in the sense
that whenever it fails on a query, then the query is prov-
ably #P-hard. Notice that LiftR applies only to a fragment
of FOL, namely to CNF formulas without function sym-
bols, and where all variables are universally quantified. We
present here an impossibility result showing that a com-
plete algorithm cannot exist for general FOL queries. We
use for that a classic result by Trakhtenbrot (Libkin, 2004):
Theorem 6.2 (Finite satisfiability). The problem: “given a
FOL sentence Φ, check whether there exists a finite model
for Φ” is undecidable.

From here we obtain:
Theorem 6.3. There exists no algorithm that, given any
FOL sentence Q checks whether Pr(Q) can be computed



in PTIME in the asymmetric PDB size.

Proof. By reduction from the finite satisfiability problem.
Fix the hard query H in Eq.(1), for which the count-
ing problem is #P-hard. Recall that H uses the symbols
R,S,T . Let Φ be any formula over a disjoint relational vo-
cabulary (i.e. it doesn’t use R,S,T ). We will construct a
formula Q, such that computing Pr(Q) is in PTIME iff Φ
is unsatisfiable in the finite: this proves the theorem. To
construct Q, first we modify Φ as follows. Let P (x) be an-
other fresh, unary relational symbol. Rewrite Φ into Φ′ as
follows: replacing every (∃x.Γ) with (∃x.P (x) ∧ Γ) and
every (∀x.Γ) with (∀x.P (x) ⇒ Γ) (this is not equivalent
to the guarded fragment of FOL); leave the rest of the for-
mula unchanged. Intuitively, Φ′ checks if Φ is true on the
substructure defined by the domain elements that satisfy P .
More precisely: for any database instance I , Φ′ is true on I
iff Φ is true on the substructure of I defined by the domain
elements that satisfy P (x). Define the queryQ = (H∧Φ′).
We now prove the claim.

If Φ is unsatisfiable then so is Φ′, and therefore Pr(Q) = 0
is trivially computable in PTIME.

If Φ is satisfiable, then fix any deterministic database in-
stance I that satisfies Φ; notice that I is deterministic, and
I ⊧ Φ. Let J be any probabilistic instance over the vo-
cabulary for H over a domain disjoint from I . Define
P (x) as follows: P (a) is true for all domain elements
a ∈ I , and P (b) is false for all domain elements b ∈ J .
Consider now the probabilistic database I ∪ J . (Thus,
P (x) is also deterministic, and selects the substructure I
from I ∪ J ; therefore, Φ′ is true in I ∪ J .) We have
Pr(Q) = Pr(H ∧ Φ′) = Pr(H), because Φ′ is true on
I ∪ J . Therefore, computing Pr(Q) is #P-hard. Notice
the role of P : while I satisfies Φ, it is not necessarily the
case that I ∪ J satisfies Φ. However, by our construction
we have ensured that I ∪ J satisfies Φ′.

7 PROOF OF THEOREM 4.2

The proof of Theorem 4.2 is based on a reduction from the
#PP2-CNF problem, which is defined as follows. Given
two disjoint sets of Boolean variables X1, . . . ,Xn and
Y1, . . . , Yn and a bipartite graph E ⊆ [n] × [n], count the
number of satisfying truth assignments #Φ to the formula:
Φ = ⋀(i,j)∈E(Xi ∨ Yj). (Provan and Ball, 1983) have
shown that this problem is #P-hard.

More precisely, we prove the following: given any Type-1
query Q on which the algorithm LiftR fails, we can reduce
the #PP2-CNF problem to computing Pr(Q) on a PDB
with domain size n. The reduction consists of a combi-
natorial part (the construction of certain gadgets), and an
algebraic part, which makes novel use of the concepts of al-
gebraic independence (Yu, 1995) and annihilating polyno-
mials (Kayal, 2009). We include the latter in the appendix,

and only illustrate here the former on a particular query of
Type-1.

We illustrate the combinatorial part of the proof on the fol-
lowing query Q:

(R(x) ∨ ¬S(x, y) ∨ T (y)) ∧ (¬R(x) ∨ S(x, y) ∨ ¬T (y))
To reduce Φ to the problem of computing Pr(Q), we con-
struct a structure with unary predicates R and T and binary
predicate S, with active domain [n].
We define the tuple probabilities as follows. Letting
x, y, a, b ∈ (0,1) be four numbers that will be specified
later, we define:

Pr(R(i)) = x
Pr(T (j)) = y

Pr(S(i, j)) = { a if (i, j) ∈ E
b if (i, j) /∈ E

Note this PDB does not have symmetric probabilities: in
fact, over structures with symmetric probabilities one can
compute Pr(Q) in PTIME.

Let θ denote a valuation of the variables in Φ. Let Eθ de-
note the event ∀i.(R(i) = true iff θ(Xi) = true)
∧ ∀j.(T (j) = true iff θ(Yj) = true).

Eθ completely fixes the unary predicates R and T and
leaves S unspecified. Given Eθ, each Boolean variable
corresponding to some S(x, y) is now independent of ev-
ery other S(x′, y′). In general, given an assignment of
R(i) and T (j), we examine the four formulas that de-
fine the probability that the query is true on (i, j): F1 =
Q[R(i) = 0, T (j) = 0], F2 = Q[R(i) = 0, T (j) = 1],
F3 = Q[R(i) = 1, T (j) = 0], F4 = Q[R(i) = 1, T (j) = 1].
For Q, F1, F2, F3, F4 are as follows:

F1 = ¬S(i, j) F2 = F3 = true F4 = S(i, j)
Denote f1, f2, f3, f4 the arithmetization of these Boolean
formulas:

f1 = { 1 − a if (i, j) ∈ E
1 − b if (i, j) /∈ E

f4 = { a if (i, j) ∈ E
b if (i, j) /∈ E

Note that f2 = f3 = 1 and do not change Pr(Q).

Define the parameters k, l, p, q of Eθ as k = number of i’s
s.t. R(i) = true, l = number of j’s s.t. T (j) = true, p =
number of (i, j) ∈ E s.t. R(i) = T (j) = true, q = number
of (i, j) ∈ E s.t. R(i) = T (j) = false.

Let N(k, l, p, q) = the number of θ’s that have pa-
rameters k, l, p, q. If we knew all (n + 1)2(m + 1)2

values of N(k, l, p, q), we could recover #Φ by sum-
ming over N(k, l, p, q) where q = 0. That is, #Φ =
∑k,l,pN(k, l, p,0).



We now describe how to solve forN(k, l, p, q), completing
the hardness proof for Pr(Q).

We have Pr(Eθ) = xk(1 − x)n−kyl(1 − y)n−l and
Pr(Q∣Eθ) = ap(1−a)qbkl−p(1−b)(n−k)(n−l)−q . Combined,
these give the following expression for Pr(Q):

Pr(Q) = ∑
θ

Pr(Q∣Eθ)Pr(Eθ)

= (1 − b)n
2

(1 − x)n(1 − y)n ∑
k,l,p,q

T (1)

where:

T =N(k, l, p, q) ∗ (a/b)p[(1 − a)/(1 − b)]q

[x/(1 − b)n(1 − x)]k[y/(1 − b)n

(1 − y)]l[b(1 − b)]kl

=N(k, l, p, q) ∗ApBqXkY lCkl (2)

Equations (1) and (2) express Pr(Q) as a polynomial in
X,Y,A,B,C with unknown coefficientsN(k, l, p, q). Our
reduction is the following: we choose (n + 1)2(m + 1)2

values for the four parameters x, y, a, b ∈ (0,1), consult
an oracle for Pr(Q) for these settings of the parameters,
then solve a linear system of (n + 1)2(m + 1)2 equa-
tions in the unknowns N(k, l, p, q). The crux of the proof
consists of showing that the matrix of the system is non-
singular: this is far from trivial, in fact had we started from
a PTIME query Q then the system would be singular. Our
proof consists of two steps (1) prove that we can choose
X,Y,A,B independently, in other words that the mapping
(x, y, a, b) ↦ (X,Y,A,B) is locally invertible (has a non-
zero Jacobian), and (2) prove that there exists a choice of
(n+1)2(m+1)2 values for (X,Y,A,B) such that the ma-
trix of the system is non-singular: then, by (1) it follows
that we can find (n+1)2(m+1)2 values for (x, y, a, b) that
make the matrix non-singular, completing the proof. For
our particular example, Part (1) can be verified by direct
computations (see Section A.3); for general queries this re-
quires Section A.12. Part (2) for this query is almost as
general as for any query and we show it in Section A.2.

8 RELATED WORK

The algorithm and complexity results of (Dalvi and Su-
ciu, 2012), which apply to positive queries, served as the
starting point for our investigation of asymmetric WFOMC
with negation. See (Suciu et al., 2011) for more back-
ground on their work. The tuple-independence assumption
of PDBs presents a natural method for modeling asymmet-
ric WFOMC. Existing approaches for PDBs can express
complicated correlations (Jha et al., 2010; Jha and Suciu,
2012) but only consider queries without negation.

Close in spirit to the goals of our work are (Van den Broeck,
2011) and (Jaeger and Van den Broeck, 2012). They intro-
duce a formal definition of lifted inference and describe a

powerful knowledge compilation technique for WFOMC.
Their completeness results for first-order knowledge com-
pilation on a variety of query classes motivate our explo-
ration of the complexity of lifted inference. (Cozman and
Polastro, 2009) analyze the complexity of probabilistic de-
scription logics.

Other investigations of evidence in lifted inference include
(Van den Broeck and Davis, 2012), who allow arbitrary
hard evidence on unary relations, (Bui et al., 2012), who
allow asymmetric soft evidence on a single unary relation,
and (Van den Broeck and Darwiche, 2013), who allow evi-
dence of bounded Boolean rank. Our model allows entirely
asymmetric probabilities and evidence.

9 CONCLUSION

Our first contribution is the algorithm LiftR for counting
models of arbitrary CNF sentences over asymmetric prob-
abilistic structures. Second, we prove a novel dichotomy
result that completely classifies a subclass of CNFs as ei-
ther PTIME or #P-hard. Third, we describe capabilities of
LiftR not present in prior lifted inference techniques. Our
final contribution is an extension of our algorithm to sym-
metric WFOMC and a discussion of the impossibility of
establishing a dichotomy for all first-order logic sentences.
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