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Abstract

In this paper we develop a Hierarchi-
cal Switching Linear Dynamical System
(HSLDS) for the detection of sepsis in
neonates in an intensive care unit. The Fac-
torial Switching LDS (FSLDS) of Quinn et al.
(2009) is able to describe the observed vital
signs data in terms of a number of discrete
factors, which have either physiological or ar-
tifactual origin. In this paper we demonstrate
that by adding a higher-level discrete variable
with semantics sepsis/non-sepsis we can de-
tect changes in the physiological factors that
signal the presence of sepsis. We demonstrate
that the performance of our model for the
detection of sepsis is not statistically differ-
ent from the auto-regressive HMM of Stan-
culescu et al. (2013), despite the fact that
their model is given “ground truth” annota-
tions of the physiological factors, while our
HSLDS must infer them from the raw vital
signs data.

1 INTRODUCTION

In condition monitoring, we are often interested in in-
ferring when a dynamical system “switches” its mode
of operation. Inside Neonatal Intensive Care Units
(NICUs), one the most important “switches” is as-
sociated with the start of late onset neonatal sepsis
(LONS). LONS is a bloodstream infection, usually
bacterial, which generally occurs after the third day of
life. It is a major cause of mortality, lifelong neurodis-
ability and increased health care costs (Modi et al.,
2009).

Since early clinical signs are subtle, making the diag-
nosis of infection is a great challenge. A deterioration
of the baby’s condition prompts clinicians to take a
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blood sample for laboratory testing. However, labora-
tory culture results can take up to a day before becom-
ing available. This delay is known to prevent effective
treatment (Griffin et al., 2003). Thus, a dependable
early sepsis detector would have a major impact on
NICU care. In this work, we discuss a solution which
relies exclusively on vital signs monitoring data.

We propose a Hierarchical Switching Linear Dynam-
ical System (HSLDS) to model a dynamical system
with complex interactions between modes of operation.
The structure of the model is shown in Fig. 1. In the
HSLDS, the switch state is represented as a two-level
discrete hierarchical structure. The top layer switch
variables control the transition matrices used by the
lower discrete layer, whose variables are assumed to be
conditionally independent given the top layer. Condi-
tioned on the hidden discrete structure, the model is
a Linear Dynamical System (LDS), which models con-
tinuous hidden state variables and continuous obser-
vations. The observations are assumed to come from
readings of the monitoring equipment.

The HSLDS can be applied for the real-world task of
detecting neonatal sepsis. The discrete top layer deter-
mines the state of the infection and the lower-level dis-
crete factors are baby-generated physiological events.
The physiological events we monitor for sepsis detec-
tion are:

e bradycardia: a spontaneous fall in heart rate mea-
surements (Figure 2a), and

e desaturation: a drop in the concentration of oxy-
gen in arterial blood (Figure 2b).

The problem of detecting neonatal sepsis from moni-
toring data has been previously studied. Griffin et al.
(2003) and Moorman et al. (2011) have found a posi-
tive skew in the inter-beat (RR) interval histograms in
the hours before the clinical suspicion of sepsis, and an
absence of skew during normal periods. They used this
finding to build features subsequently fed to a logistic



regression classifier. However, this work does not use
other vital signs apart from the heart rate and also
assumes access to the high-frequency RR data. The
work of Stanculescu et al. (2013) is probably closest to
our approach. They propose using an auto-regressive
HMM (AR-HMM) to capture trends of increased phys-
iological event incidence. Unlike the HSLDS, their
model uses annotations of physiological events as in-
put, which limits the possibility of model deployment.

The main contributions of this work are: (i) to de-
velop the FSLDS model of Quinn et al. (2009) into
a HSLDS in a “deep learning” style by adding a set
of higher-level variables to model correlations in the
physiological factors in order to detect sepsis, and (ii)
to demonstrate that the performance of our model for
the detection of sepsis is almost as good as the auto-
regressive HMM of Stanculescu et al. (2013), despite
the fact that their model is given “ground truth” anno-
tations of the physiological factors, while our HSLDS
must infer them from the raw vital signs data.

The structure of the remainder of the paper is as fol-
lows: In Section 2 we describe the proposed model, and
discuss inference, learning and related work. Section 3
explains how the HSLDS can be used to obtain early
predictions about neonatal sepsis and inferences about
clinical events. Experimental results are presented in
Section 4 and we provide a discussion in Section 5.

2 THE HSLDS

In order to facilitate the introduction of our hierarchi-
cal model, we begin with a brief review of the Switch-
ing LDS (SLDS). The SLDS is a generative model for
sequential data which switches between several differ-
ent modes of operation. Each mode of operation is
modelled as a LDS (Kalman filter), and thus the SLDS
can be thought of as a dynamical mixture of LDS mod-
els. As the switch settings are hidden, often the main
task is to recover them given the observations. For-
mally, at time ¢ the SLDS has a discrete-continuous
hybrid hidden state consisting of a hidden switch vari-
able s; and a hidden continuous state x; € R% . This
hybrid state attempts to explain how measurements
y: € R% are generated. More precisely, the switch
setting s; determines the set of LDS parameters used
at time ¢:

x; ~ N(A(st)x:-1, Q(s1)), (1)
yi ~ N(C(s)xs, R(st)), (2)

where A(s;) and Q(s;) are the dynamics and dynam-
ics noise covariance matrices, and C(s;) and R(s;) are
the observation and observation noise covariance ma-
trices. The switch settings are sampled from a Markov
transition matrix p(s¢|si—1).
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Figure 1: HSLDS with K = 2. Squares represent dis-
crete variables and circles represent continuous ones.
Shaded nodes are observed variables.

The FSLDS assumes a set of K discrete factors
t(l), 52), ceey ft(K) are collectively affecting the data.
The model is obtained by representing the switch vari-
able of the SLDS as the cross product ft(l) ® ft(z)
t(K). An important assumption made by the FSLDS
is that the factors are a priori independent:
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In the HSLDS, we propose relaxing this assumption
by introducing a hierarchical structure for the discrete
hidden variables. The discrete state is now repre-
sented by two layers of variables (see Figure 1). The
top layer variable z; controls the Markovian dynamics

p(ft(') |2, ftQI) used by each factor. Conditional on the

setting of the top layer switch variable z;, the model
becomes equivalent to an FSLDS. Thus, the HSLDS
can be thought of as a dynamical mixture of FSLDS
models. If we define a full expansion of the discrete
hidden state as s; = z; ® ft(l) ® ft(Q) ®.0 ft(K), then
the joint distribution of the HSLDS can be written as:

p(81:T7X1;T,Y1:T) = p(81)p(x1|81)p(}’1|x1,81)

T
L1 pGselse—1)p(xelxe—1, s)p(yilxi, si),  (3)
t=2
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K
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K
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A o
S1.7 = S81,82,...,57, and x1.7r and yp.r are similarly

defined.

Note that the top hidden layer is conditionally inde-
pendent of the continuous variables given the factor
settings: X1.7,y1.r 1L z1.7|f1.7, where we have de-
fined f; = | t(l), t(2)7...,ft(K)]. This simplifies both

learning and inference.

2.1 RELATED WORK

The basic SLDS model has a long history, see e.g.
Shumway and Stoffer (1991), and has been used in
many applications. Factorization of the SLDS discrete
state gives the Factorial Switching LDS (FSLDS),
which has been used for neonatal condition moni-
toring by Williams et al. (2006) and Quinn et al.
(2009), in speech recognition (Deng, 2006) and in mu-
sic transcription (Cemgil et al., 2006). This mirrors
the development of the factorial hidden Markov model
(FHMM) of Ghahramani and Jordan (1997) from the
standard HMM.

The HMM model has also been elaborated hierarchi-
cally by Fine and Singer (1998) to give the hierarchical
hidden Markov model (HHMM). A similar construc-
tion can be used to create a hierarchical switching LDS
(HSLDS). The only previous example of this model we
are aware of in the literature is the work of Zoeter and
Heskes (2003) which used a HSLDS for visualization
of time-series data. Their motivation is to allow a
successive refinement of a visualization, starting from
projecting onto a single LDS with a two-dimensional
(2-d) hidden space. This can be broken down into a
SLDS of 2-d LDSes, and then each 2-d LDS can be fur-
ther independently decomposed into a SLDS. Thus, a
set of lower-level states correspond to one higher-level
state. Also note that their use case involves interaction
from the user to initialise the decomposition.

In contrast, we more naturally think of building our
model bottom up, first identifying a set of factors for
the FSLDS, and then modelling their correlations with
a top-level variable. Notice that in our work the state
of the top-level variable affects all of the second-level
variables below it.

There are also some similarities between our work
and the paper by Taylor et al. (2010). Under their
approach, the x dynamics are modelled by an Im-
plicit Mixture of Conditional Restricted Boltzmann
Machines (imCRBM). This is similar to us in that the
CRBM part of the model uses a number of discrete
latent variables (analogous to our f’s) to affect the x
dynamics. The implicit mixture variable (analogous to
our z) switches between different dynamics models. Of
course, the details of the model are quite different as

it is in part undirected, and that there are no explicit
discrete latent variable chains through time, instead
these variables “hang off” the x chain.

2.2 INFERENCE

Since real-time inference is the major concern in physi-
ological condition monitoring, we are mainly interested
in marginal filtering distributions. More precisely, we
require sepsis predictions of the form p(z¢|yi.:) and
clinical event posteriors p( ft(‘)|y1:t). These marginal
posteriors can be immediately obtained from the filter-
ing distribution of the fully expanded state p(s¢|y1:t)-
Thus, running SLDS inference suffices for HSLDS in-
ference. Note that the more general goal of SLDS fil-
tering is inferring p(x1.¢, $1.¢|y1:1)-

Exact SLDS inference requires computing Gaussian
mixtures with a number of components exponential
in the length of the sequence. Clearly, this is com-
putationally intractable for most practical purposes
(Lerner and Parr, 2001). Several approximate SLDS
inference methods have been previously proposed:
Gaussian sum approximations (Murphy, 1998; Barber
and Mesot, 2007), Rao-Blackwellised Particle Filtering
(Murphy and Russell, 2001; de Freitas et al., 2004),
variational inference (Ghahramani and Hinton, 2000)
or expectation propagation (Zoeter and Heskes, 2003).

Here, we apply the Gaussian Sum approximation
described in Murphy (1998). The method ensures
tractability by using moment matching to collapse a
Gaussian mixture onto a single Gaussian. At any time
step, each p(x¢|st,y1.+) is approximated by a single
Gaussian, which corresponds to p(x:|y1.:) being ap-
proximated by a mixture of Gaussians.

When the hidden discrete state is a cross-product of
variables, we can speed up inference by allowing at
most one variable to change its setting at each time
step. This procedure has been previously discussed in
Quinn et al. (2009) or Kolter and Jaakkola (2012).

A particular aspect of the baby monitoring application
is the presence of several missing data sources. The
treatment of this problem will be discussed in detail
in Section 3.3.

2.3 LEARNING

HSLDS learning is similar to FSLDS learning to a
large extent. Here, we first emphasize the most signif-
icant common aspects and then discuss HSLDS learn-
ing specifics.

For our application we assume that there are a number
of interpretable regimes for which labelled data are
available. Labelled data for the HSLDS model are of



the form {yt, Zt, t(1)7 ft@), cee ft(K)}'

As in the FSLDS case, the availability of labelled data
makes learning equivalent to learning one LDS model
for each switch setting. In general, we parameterise
LDS dynamics as autoregressive processes and use Ex-
pectation Maximisation (EM) for training (Ghahra-
mani and Hinton, 1996). Learning is performed inde-
pendently for each factor, and then the fitted param-
eters are carefully combined for each switch setting.
This procedure is greatly simplified by considering the
interactions between factors. For instance, the acti-
vation of one factor might “overwrite” any effect of
another factor on certain observation channels. In the
neonatal monitoring application, domain knowledge is
used to define a factor overwriting ordering, as further
discussed in Section 3.2.

For the HSLDS in particular, we use the conditional in-
dependence between the continuous variables and the
top layer discrete variables to further simplify learn-
ing. This means that the (parameters of the) continu-
ous variable distributions (egs. 1 and 2) do not depend
on the setting of z;.

A straightforward way of learning the Markov tran-
sition matrices for individual factors p( ft(')|zt, ft(31)
would be to make use of the labelled data and maxi-
mize the conditional likelihood p(fi.7|21.7). Estimates
of the factor transition probabilities have the form:

N4 + No

) : ) :
=jlzz=0f"1=1) = =————,
p(ft j' ! ft ! ) E:jf(mj'l+no)

(4)

where n;;; is the number of transitions from state 7 to
state j for factor f() under the z-regime [ counted over
all the training data. The constant count ng comes
from placing a Dirichlet prior which prevents proba-
bilities from being too close to zero.

However, we have found that an alternative “deep
learning” style method can give rise to better results
(Section 4.1). Although the f data is available at train-
ing time, at test time these labels must be inferred
from the y data. Hence it makes sense to build a
model which looks at the actual inferences of the fac-
tors, rather than the ground truth labels.

If Y is the training set of sequences and the corre-
sponding F are treated as hidden variables, we could
use EM and attempt to optimise p(Y|Z). The M-
step is equivalent to maximizing the expected complete
data log likelihood:

Q = Ep(X,F\Y,Z) lng(Y7 X, F|Z), (5)

where p(X, F|Y,Z) was computed in the preceding E-
step using the old parameter settings. Factor transi-

tion estimates are of the from:
N1 + N

) : ) ;
= 7|z = 17 =) = = ,
p( t ]| t ft 1 ) Zj/(nij'l+n0)

(6)
where

Niji = Zp(ft('_)l =i, £ = Y, Z) (2 =)
t

is commonly referred to as a “soft” data count, I is
the indicator function, and the sum is taken over all
t’s in the training data.

Running EM until convergence is likely to be unsatis-
factory, as there are no guarantees that the learnt fac-
tor transition matrices would produce good factor pos-
teriors. Our solution is to approximate p(F|Y,Z), by
prsrps(F|Y). Here, the FSLDS model is trained us-
ing the standard learning routine of Quinn et al. (2009)
and the factor models discussed in Section 3.2, and is
thus unaware of the existence of multiple z-regimes. In
practice, we found it sufficient to obtain “soft” counts
of pairwise filtering marginals prsrps (ft(;)l, ft(')|y1;t)
for each training sequence. Since FSLDS posteriors
do not depend on the learnt HSLDS parameters, the
method is non-iterative.

This procedure follows ideas in the “deep learning” lit-
erature (Hinton et al., 2006) where layer-wise training
of a model is carried out. Similar ideas can also be
found e.g. in Karklin and Lewicki (2005) or Farhadi
et al. (2009), although in all these cases the models are
not for time series.

Finally, estimates of the Markov transition matrix
p(2t|zt—1) are learnt from the z-labels. Also note that
in the absence of the labelled data, unsupervised learn-
ing for the full model would be possible using EM.

3 AN HSLDS FOR NEONATAL
CONDITION MONITORING

This section is concerned with applying the HSLDS for
condition monitoring in NICUs. We begin with a brief
description of baby monitoring, focusing on the early
detection of neonatal sepsis. We then explain how the
problem can be solved by formulating it as learning
and inference in an HSLDS.

3.1 NICU MONITORING AND SEPSIS
DETECTION

NICU babies are born several months prematurely and
are intrinsically unstable. They are nursed in incuba-
tors, and their vital signs are continuously displayed
on bedside screens. Clinicians apply their expertise
to interpret patterns in the monitoring traces and use



this information in support of their diagnostic infer-
ence. The task is challenging for reasons including the
amount, dimensionality and frequency of the data, and
the need to analyse patient physiology across multiple
time scales.

The present application focuses on the early detec-
tion of neonatal sepsis based on the information con-
tained in the monitoring data. The hypothesis is that
an increased incidence of baby generated physiologi-
cal events is a symptom of sepsis. In current clini-
cal practice, the laboratory result of a blood culture
is taken taken as the “gold standard” for diagnosing
neonatal sepsis. Here, we adopted the laboratory re-
sult interpretation proposed by Modi et al. (2009) and
also discussed by Stanculescu et al. (2013).

The measurement channels used in this work moni-
tor several vital physiological systems. The heart rate
measures the cardiovascular system. It is available
from two sources: the ECG leads - HR (beats per
minute - bpm) and the pulse oximeter - PR (bpm).
The core and peripheral temperatures, TC (°C) and
TP (°C), monitor the thermoregulatory system. The
saturation of oxygen in arterial blood, SO (%), reflects
the evolution of the respiratory system. All channels
are sampled second-by-second (1Hz).

Our data samples are monitoring windows with a du-
ration of 30 hours, and fall into either a sepsis group
or a control group. Sepsis samples have been chosen
such that the time the positive blood sample was col-
lected occurs precisely 24 hours after the start of the
window. For control samples, there was no suspicion
of sepsis in a consecutive 3 day period around the se-
lected windows, and no blood sample had been taken
for laboratory testing.

3.2 LEARNING A SEPSIS DETECTION
MODEL

We now detail how the baby monitoring HSLDS is
trained. We first discuss parameter fitting for the con-
tinuous variable distributions and then continue with
learning the hidden discrete layers of the HSLDS.

Learning continuous variable distributions

A natural classification of the regimes appearing in
the NICU monitoring application is: stability, known
factors and unknown factors.

Babies within the NICU are in a stable condition for
much of the time, generally being asleep and motion-
less. We call this regime stability and separately fit
univariate LDSes to each measurement channel. Thus,
the dynamics parameters A and Q will have a block
diagonal structure (see Quinn et al. (2009) for details).
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Figure 2: Examples of physiological events. They are
notable for the lack of artifact.

When clinical events associated with stereotypical pat-
terns occur on the monitoring traces, the regimes will
be referred to as known factors. Here, we model two
physiological events: braydcardias and desaturations
(see Figure 2 for examples). Both are characterised by
a drop in the monitored signal (a slowing of the heart
rate for bradycardias, and a decrease in the saturation
of oxygen in arterial blood for desaturations), after
which measurements rise back. We model these fac-
tors as two-stage events. The first stage corresponds
to measurements dropping and can be explained by
an exponential decay, the discrete time equivalent of
which is an AR(1) process. To set the mean of the de-
cay process we first compute the empirical distribution
F' of minimum channel measurements during events.
The quantile ¢* of F' corresponding to F(¢*) = 0.05 is
chosen to be the decay mean. In the second stage of
the event the measurements rise back. This will be re-
ferred to as the recovery stage. Recovery dynamics are
also modelled as an AR(1) process, where the mean is
now the same as the channel’s stability mean. The



Table 1: Overwriting Ordering of Factors

Channel Bradycardia Desaturation X  Stability
HR ° ° °
SO . ° .

parameters for both decay and recovery models are
learnt by running EM, where we chose the dynamics
initialisation A = 0.

Finally, certain events cannot be explained by either
stability or by any of the known factors. These pat-
terns represent either novel dynamics or their low in-
cidence makes them impractical to model as known
factors. Here, we follow the approach of Quinn et al.
(2009), where they propose a factor explaining these
“known unknowns”, the X-factor. It shares the same
dynamics matrix with stability, but uses an inflated
system noise covariance matrix. As the X-factor can
claim patterns of both physiology and artifact, we do
not use it directly for inferring the presence of sepsis.

Once the factor models have been separately learnt,
they are combined using the overwriting order shown
in Table 1. For each measurement channel, factors
placed towards the left of the table overwrite factors
placed towards the right.

Learning discrete variable distributions

In the baby monitoring application the top discrete
layer of the HSLDS models the state of the sepsis in-
fection. Here, we assume z; is a binary variable taking
on values z; = sepsis or z; = normal. We first explain
how labels of the form {y¢, z:} have been defined. We
then discuss how these labels are used to train the
HSLDS’s discrete variable layers.

The task of providing labels for the sepsis indicator
variable is non-trivial. For patients in the sepsis group,
clinicians only hold records for the exact time of the
positive blood test. It is almost certain that the onset
of the infection occurred in the hours prior to this time
stamp. However, the onset cannot be assumed to be an
instantaneous switch. The following labelling scheme
has been proposed for samples belonging to the sepsis
group; see Stanculescu et al. (2013). First, a period
of 6 hours before the time of the positive blood test is
labelled as sepsis. Second, we introduce a transition
period during which the baby progresses from being
in the normal state to being in the sepsis state. The
transition period is defined as the 12 hour interval be-
tween 18 and 6 hours before the positive test. We do
not assign a label for this period and it is not used
for either training or testing the discrete layers of the
HSLDS. Third, the monitoring data before the tran-
sition period (i.e. the first 6 hours of a sample in the

Table 2: Missing Data Sources Affecting Baby-
generated Physiological Events.
Bradycardia  Desaturation
Handling ° °
Oximeter error °
HR dropout o
SO dropout .

sepsis group) is labelled as normal. Fourth, we do not
assign a label to data after the positive test, as these
measurements are likely to be affected by the patient’s
response to treatment and have less relevance for the
task of real-time sepsis detection. Finally, all the data
in the control group is assigned the normal label.

Using the sepsis labels, an estimate of p(z¢|z;—1) can be
directly obtained using data counts. For learning the
z-conditioned known factors’ transition matrices, we
apply the procedure explained in Section 2.3; see eq. 5
and the surrounding text . The X-factor’s incidence is
assumed to be independent of the state of the infection,
and thus the factor transition matrix is copied from the
previously learnt FSLDS.

3.3 INFERENCE WITH MISSING DATA

We reiterate that this work is centred on the idea of
monitoring baby-generated bradycardias and desatu-
rations in order to predict sepsis. However, there are
periods of time during which labels for these events
cannot be provided even by an expert annotator. We
will treat such periods as missing data. There are
three distinct sources of missing data: probe dropouts,
oximeter errors and patient handling. We first describe
these sources and then explain how inference can be
performed during such periods.

During probe dropouts measurements are not available
due to either malfunctioning or temporary removal of
the monitoring devices. They can be readily recog-
nised by the zero values on the recorded channels.

An oximeter error occurs when there is a disagreement
between the HR and PR traces. This indicates a tem-
porary unreliability of the SO trace, and thus the im-
possibility to monitor desaturations. Here, we adopt
the approach in Stanculescu et al. (2013), where an au-
tomated oximeter error detection algorithm has been
applied as a preprocessing step.

Patients are regularly handled by clinical staff (e.g. for
changing nappies). During such episodes, we usually
see an increased variability in the monitoring chan-
nels and often patterns of bradycardia or desatura-
tion. We cannot distinguish whether such instances
are caused merely by handling an extremely frag-
ile baby, or they actually reflect the patient’s true



Table 3: Population Demographics: Gestation, Birth
Weight (BW) and Post Partum Age

Group  Statistic =~ Gestation BW Age

Sepsis mean 27.2 weeks 873 gr  14.5 days
std.dev. 1.5 weeks 256 gr 8.5 days

Control mean 26.7 weeks 837 gr 15.2 days
std.dev. 1.7 weeks 139 gr 14 days

state of health. Thus, for sepsis detection we analyse
only physiological events happening outside handling
episodes. Our work still relies on having expert anno-
tations for handling. Quinn et al. (2009) have shown
that these episodes can be inferred by monitoring envi-
ronmental channels such as the incubator’s humidity,
but such channels have not been available in this work.

Table 2 shows how physiological events are affected by
the presence of each missing data source.

For running inference with missing data, we extend
the ideas in Quinn et al. (2009). Whenever a miss-
ing data source is present, the measurements do not
carry information about the true physiology of the pa-
tient, and thus should not influence the hidden state
estimates. The latter continue to evolve according to
the dynamics equations, but without measurement up-
date. Technically, rows of the observation matrix are
set to zero whenever there is missing data on the cor-
responding measurement channel. For these channels
the Kalman gain will be zero. Thus, the corresponding
hidden continuous state dimensions will be estimated
with increasing uncertainty before reaching the stable
state of the Kalman filter.

4 EXPERIMENTS

This section describes the experiments we have per-
formed to assess the neonatal condition monitoring
model introduced in Section 3. The detection of sepsis
is discussed in Section 4.1. Section 4.2 is concerned
with the quality of physiological event posteriors.

The dataset we use in this work consists of data col-
lected exclusively from very low birth weight patients
(VLBW, birth weight < 1500 grams). It has been pre-
viously used by Stanculescu et al. (2013), and contains
36 monitoring samples equally split between the sepsis
and the control groups. All sepsis samples come from
different patients. In the control group we have two
samples from each of 9 different babies. Three patients
have samples in both groups, corresponding to a total
of 24 different patients. The demographics of the two
groups are shown in Table 3.

Expert annotations have been obtained for all the
data. A summary of the annotation process is pro-

Table 4: Clinical Event Incidence

Event Group Incidence Total Median
Bradycardia Sepsis 1718 24 hrs 39 sec
Control 1133 12 hrs 35 sec

Desaturation Sepsis 738 32 hrs 101 sec
Control 231 11 hrs 132 sec

X-factor Sepsis 226 10 hrs 94 sec
Control 171 7 hrs 114 sec

Handling Sepsis 204 44 hrs 530 sec
Control 210 55 hrs 592 sec

Ox. err Sepsis 4051 45 hrs 16 sec

’ ’ Control 3395 36 hrs 18 sec

vided in Table 4. The total amount of data for each
group is 18 x 30 = 540 hours and only baby gener-
ated physiological events have been considered. Im-
portantly, the incidence of baby generated bradycar-
dias and desaturations is higher in the sepsis group.
As expected, the differences for the X-factor are much
smaller. In terms of missing data sources, the amounts
of handling and oximeter error are similar between pa-
tient groups. Probe dropout statistics are different for
each channel, but on average we lack observations for
2% of the time. In addition, a stability period of 15—30
minutes was marked near the start of each sample.

In order to reduce bias, we test our predictions using
N-fold cross-validation. Considering the size of our
dataset we decided to use N = 9 folds. Each fold
contains 4 data samples, 2 from each patient group.
The 2 control samples are chosen such that they belong
to the same patient. Apart from these constraints, the
folds have been randomly chosen.

4.1 SEPSIS DETECTION

To gain a better understanding of the HSLDS’s effec-
tiveness, we compare its predictions against filtering
results obtained with the AR-HMM model of Stan-
culescu et al. (2013). While the HSLDS infers the pos-
terior distributions of bradycardias and desaturations,
the AR-HMM uses expert annotations of these events
as input. Note that in the AR-HMM it was possible
to run inference exactly and also marginalise over the
missing data exactly. For the purposes of this work,
the central question is how well the HSLDS inferences
match the AR-HMM ones.

In the following we discuss two HSLDS models. The
HSLDS learnt as explained in Section 2.3 will be re-
ferred to as HSLDSdeep. We will compare it against
an HSLDS where the factor transitions for baby-
generated events are learnt directly from the expert
annotations, HSLDSkf (known factors).

We provide the second-by-second sepsis inferences pro-
duced by both the AR-HMM and HSLDSdeep in Fig-



L R T R T Y7 R S 7 N )
© Yo "N Yo T P T I B

i

.
S

cl
! — S o T - ! ! —]
I S ! ! ! ! !
SO RLIM LY S S | S —— ! ! i
S ! ! ! ! .
M ol I " ! i w I [ ==
[ U R R [ [ [ !
! ! - ¢ ! ! ! = ol
e T T T L p— " = = = i ! o ]
[

s ! c I
st = T il T - IS L T T T ]
. — ! R Rl ! 1 1 ]
Sla [ T T T T Cl3 & T —— TTEEET I it |
Y — | FUEENENE. 00 | 20 ™y ¢ ! - 700 T, )
s® [ [ I [ ¢ rh [ I [ . I !
s ! } L - s ] | & ! ] !
st ! ! i u ] ¢ [ o ! ] ! ] !
s8] & ' i el T Bl bk ol ]| | I I i o | !
-18 -12 -6 0 -18 -12 -6 0 6
Time(hours) Time(hours)

(a) Sepsis group

(b) Control group

Figure 3: Sepsis filtering distributions obtained using 9-fold Cross-Validation. On the z-axis, 0 denotes the
time the positive blood sample was taken. For each group, the top row represents the sepsis labelling: normal
periods are white (probability 0), sepsis periods are black (probability 1); transitioning and treatment periods
are not assigned labels. For each data sample the top row corresponds to the AR-HMM model, the bottom row

corresponds to HSLDSdeep.

Table 5: Sepsis Inference Summaries Using 9-fold
Cross-Validation
Second-by-second

Episode-based

Model AUC EER AP  F-score
AR-HMM 0.72 0.34 0.62 0.65
HSLDSdeep  0.69 0.37 0.51 0.54
HSLDSkf 0.62 0.41 0.45 0.47

ure 3. In general, there is strong correlation between
the predictions of the two models and we find the in-
ferences of HSLDSdeep to be a good match to the
AR-HMM ones. However, in samples s2, s7 and s'!
HSLDSdeep detects sepsis noticeably later than the
AR-HMM, and in samples , s* and s® it does so ear-
lier. In the control group, HSLDSdeep does slightly
worse on samples ¢’ and ¢'®, but outperforms the AR-
HMM on samples ¢* and ¢'3.

For quantifying those results, we project the inferences
onto two different metrics. This opens the possibility
to reveal different aspects of performance.

Firstly, we are mainly interested in the second-by-
second inferences produced by our hierarchical models
and use the z-labels to draw ROC curves. The AUC
(area under the ROC curve) and EER! computed by
aggregating predictions over folds are shown in Ta-

'EER is the error rate computed for the threshold at
which the false positive rate (FPR) equals the false nega-
tive rate (FNR).

ble 5. Compared to HSLDSkf, HSLDSdeep produced
results much closer to the AR-HMM benchmark.

We obtained more insight into how the HSLDS pre-
dictions compare against the AR-HMM results via
an N-fold cross-validated paired t test on the AUC.
We found the performance difference between the AR-
HMM and our proposed HSLDSdeep model not to be
statistically significant (p = 0.552). This is a good
indication that the HSLDSdeep model can be used in-
stead of the AR-HMM, and thus significantly reduce
the need for expert input needed to detect sepsis. At
the same time the performance difference between the
AR-HMM and the HSLDSkf model is statistically sig-
nificant (p = 0.0064). This suggests HSLDSkf should
not be used instead of the AR-HMM.

Secondly, we analyse the inferred episodes of infection
and draw precision-recall (PR) curves. This analysis
has been proposed by Stanculescu et al. (2013), where
they argue that it could be more relevant in clinical
practice than a second-by-second one. Here we report
average precision (AP) and the maximum F-score (see
Table 5). Again, the performance of HSLDSdeep is
closer to the AR-HMM than the HSLDSk(.

4.2 PHYSIOLOGICAL EVENT
POSTERIORS

We can obtain filtering distributions for physiologi-
cal events by marginalising the sepsis variable from
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Figure 4: Median weighted number of true and inferred bradycardias separately computed for each patient group.
The counts were computed hourly and summarize the preceding 3 hour period. Error bars mark first and third
quartiles. The small offset between the two patient groups was used to improve readability.

Table 6: Factor Inference Summaries Using 9-fold
Cross-Validation

Brady. Desat. X
AUC 08 08I 063
FSLDs  AUC 083 DT 0.6
HSLDSdeep AUC 086 082 060

EER 0.21 0.27 0.42

HSLDS posteriors. As we have labelled data for the
predicted factors, we can we compare HSLDS posteri-
ors against FSLDS ones. Summary results computed
by aggregating predictions obtained with 9-fold cross-
validation are shown in Table 6. Even though the
FSLDS has been trained solely for inferring clinical
events, there is very little difference between the per-
formance of the two models.

Bradycardia and X-factor inferences obtained using
an FSLDS have been previously assessed in (Quinn
et al., 2009). The bradycardia results reported here
are very similar to that work, but X-factor predictions
are worse. Results on oxygen desaturation have not
been previously reported.

We also found it interesting to compare the true in-
cidence of baby-generated physiological events against
the inferred one. For this purpose we obtained inferred
events by binarising factor posteriors. Figure 4 shows a
comparative visualisation of the time evolution of an-
notated and inferred bradycardias. The counts have
been weighted in accordance to the amount of missing
data in the analysed 3 hour periods. On both plots,
there is a clear increase in the incidence of bradycar-
dias in the hours before the sepsis diagnosis.

5 CONCLUSION

In this paper, we have proposed a framework for con-
dition monitoring in situations when the factors that
govern the data can be organised in a hierarchy. The
structure of our model allows domain knowledge to be
naturally incorporated. In addition, we have described
a “deep learning” inspired training method.

The effectiveness of our model has been demonstrated
for the difficult task of detecting the onset of sepsis in
NICU patients. When compared against an AR-HMM
model which heavily relies on expert annotations, we
found the performance difference not to be statistically
significant.

The are several directions in which this work could
be extended. It would be interesting to run (H)SLDS
smoothing, e.g. as described by Barber and Mesot
(2007). This would prove useful both as a retrospec-
tive analysis of sepsis detection, and for refining our
approach to learning factor transitions. Explicit mod-
elling of event duration could improve the results, as
demonstrated by Stanculescu et al. (2013). While
we showed that the HSLDS performs similarly to the
AR-HMM, sepsis predictions still need improvement.
Finally, the X-factor predictions indicate more work
could be done on novelty detection.
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