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Abstract

In this paper we present a novel non-parametric
approach to Bayesian filtering, where the predic-
tion and observation models are learned in an
online fashion. Our approach is able to han-
dle multimodal distributions over both models by
employing a mixture model representation with
Gaussian Processes (GP) based components. To
cope with the increasing complexity of the esti-
mation process, we explore two computationally
efficient GP variants, sparse online GP and local
GP, which help to manage computation require-
ments for each mixture component. Our exper-
iments demonstrate that our approach can track
human motion much more accurately than exist-
ing approaches that learn the prediction and ob-
servation models offline and do not update these
models with the incoming data stream.

1 INTRODUCTION

Many real world problems involve high dimensional data.
In this paper we are interested in modeling and tracking
human motion. In this setting, dimensionality reduction
techniques are widely employed to avoid the curse of di-
mensionality.

Linear approaches such as principle component analysis
(PCA) are very popular as they are simple to use. However,
they often fail to capture complex dependencies due to their
assumption of linearity. Non-linear dimensionality reduc-
tion techniques that attempt to preserve the local structure
of the manifold (e.g., Isomap [21, 8], LLE [19, 14]) can
capture more complex dependencies, but often suffer when
the manifold assumptions are violated, e.g., in the presence
of noise.

Probabilistic latent variable models have the advantage of
being able to take the uncertainties into account when
learning the latent representations. Perhaps the most suc-
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cessful model in the context of modelling human motion is
the Gaussian process latent variable model (GPLVM) [12],
where the non-linear mapping between the latent space and
the high dimensional space is modeled with a Gaussian
process. This provides powerful prior models, which have
been employed for character animation [28, 26, 15] and hu-
man body tracking [24, 16, 25].

In the context of tracking, one is interested in estimating
the state of a dynamic system. The most commonly used
technique for state estimation is Bayesian filtering, which
recursively estimates the posterior probability of the state
of the system. The two key components in the filter are
the prediction model, which describes the temporal evolu-
tion of the process, as well as the observation model which
links the state and the observations. A parametric form is
typically employed for both models.

Ko and Fox [10] introduced the GP-BayesFilter, which
defines the prediction and observation models in a non-
parametric way via Gaussian processes. This approach is
well suited when accurate parametric models are difficult
to obtain. Its main limitation, however, resides in the fact
that it requires ground truth states (as GPs are supervised),
which are typically not available. GPLVMs were employed
in [11] to learn the latent space in an unsupervised manner,
bypassing the need for labeled data. This, however, can not
exploit the incoming stream of data available in the online
setting as the latent space is learned offline. Furthermore,
only unimodal prediction and observation models can be
captured due to the fact that the models learned by GP are
nonlinear but Gaussian.

In this paper we extend the previous non-parametric filters
to learn the latent space in an online fashion as well as to
handle multimodal distributions for both the prediction and
observation models. Towards this goal, we employ a mix-
ture model representation in the particle filtering frame-
work. For the mixture components, we investigate two
computationally efficient GP variants which can update the
prediction and observation models in an online fashion, and
cope with the growth in complexity as the number of data
points increases over time. More specifically, the sparse



online GP [3] selects the active set in a online fashion to
efficiently maintain sparse approximations to the models.
Alternatively, the local GP [26] reduces the computation
by imposing local sparsity.

We demonstrate the effectiveness of our approach on a
wide variety of motions, and show that both approaches
perform better than existing algorithms. In the remainder
of the paper we first present a review on Bayesian filter-
ing and the GPLVM. We then introduce our algorithm and
show our experimental evaluation followed by the conclu-
sions.

2 BACKGROUND

In this section we review Bayesian filtering and Gaussian
process latent variable models.

2.1 BAYESIAN FILTERING

Bayesian filtering is a sequential inference technique typi-
cally employed to perform state estimation in dynamic sys-
tems. Specifically, the goal is to recursively compute the
posterior distribution of the current hidden state x; given
the history of observations y1.; = (y1,...,y:) up to the
current time step

p(th’Lt) OCP(Yt|Xt)/p(Xt|Xt—1)p(Xt—1|Y1:t—1)dxt—1

where p(x;|x;—1) is the prediction model that represents
the system dynamics, and p(y:|x;) is the observation
model that represents the likelihood of an observation y;
given the state x;.

One of the most fundamental Bayesian filters is the Kalman
filter, which is a maximum-a-posteriori estimator for linear
and Gaussian models. Unfortunately, it is often not applica-
ble in practice since most real dynamical systems are non-
linear and/or non-Gaussian. Two popular extensions for
non-linear systems are the extended Kalman filter (EKF)
and the unscented Kalman filter (UKF) [9]. However, sim-
ilar to the Kalman filter, the performance of EKF and UKF
is poor when the models are multimodal [5].

In contrast, particle filters that are not restricted to lin-
ear and Gaussian models have been developed by using
sequential Monte Carlo sampling to represent the under-
lying posterior p(x;|y1.¢) [5]. More specifically, at each
time step, IV, particles of x; are drawn from the prediction
model p(x;|x:—1), and then all the particles are weighted
according to the observation model p(y|x;). The posterior
p(X¢|y1:¢) is approximated using these N, weighted parti-
cles. Finally, the IV, particles are resampled for the next
step. Unfortunately, the parametric description of the dy-
namic models limits the estimation accuracy of Bayesian
filters.

Recently, a number of GP-based Bayesian filters were pro-
posed by learning the prediction and observation models
using GP regression [10, 4]. This is a promising alternative
as GPs are non-parametric and can capture complex map-
pings. However, training these methods requires access to
ground truth data before filtering. Unfortunately, the in-
puts of the training set are the hidden states which are not
always known in real-world applications. Two extensions
were introduced to learn the hidden states of the training
set via a non-linear latent variable model [11] or a sparse
pseudo-input GP regression [22]. However, these methods
require offline learning procedures, which are not able to
exploit the incoming data streams. In contrast, we propose
two non-parametric particle filters that are able to exploit
the incoming data to learn better models in an online fash-
ion.

2.2 GAUSSIAN PROCESS DYNAMICAL MODEL

The Gaussian Process Latent Variable Model (GPLVM) is
a probabilistic dimensionality reduction technique, which
places a GP prior on the observation model [12]. Wang
et al. [28] proposed the Gaussian Process Dynamical
Model (GPDM), which enriches the GPLVM to capture
temporal structure by incorporating a GP prior over the dy-
namics in the latent space. Formally, the model is:

Xt = fx(xt—l) + 1x
Yt Jy(xt) +ny

where y € RP> represents the observation and x €
RP= the latent state, with Dy, > Dy. The noise pro-
cesses are assumed to be Gaussian 7, ~ N(0,021) and
ny ~ N(0,031). The nonlinear functions f. and f}
have GP priors, ie., fi ~ GP(0,k.(x,x")) and f, ~
GP(0, ky(x,x")) where k,(-,-) and k,(-,-) are the kernel
functions. For simplicity, we denote the hyperparameters
of the kernel functions by 6.

Let x1.1,, = (x1,---,X7,) be the latent space coordi-
nates from time ¢ = 1 to time ¢t = T,. GPDM is
typically learned by minimizing the negative log poste-
rior —log(p(x1.1,,0|y1:1,)) With respect to x;.7,, and 0
[28]. After x1.7, and 6 are obtained, a standard GP pre-
diction is used to construct the model p(x:|x:—1,6, X1,)
and p(y:|x:, 0, Vr,) with data X7, = {(xkp_1,%5)}12,
and Vrp, = {(xk,yk)}gf):l. Tracking (t > Tp) is then per-
formed assuming the model is fixed and can be done using,
e.g., a particle filter as described above. The major draw-
back of this approach is that it is not able to adapt to new
observations during tracking. As shown in our experimen-
tal evaluation, this results in poor performance when the
training set is small.



3 ONLINE GP PARTICLE FILTER

In order to solve the above-mentioned difficulties in learn-
ing and filtering with dynamic systems, we propose an
Online GP PFarticle Filter framework to learn and refine
the model during tracking, i.e., the prediction p(x;|x;—1)
and observation p(y:|x;) models are updated online in
the particle filtering framework. To account for multi-
modality and the significant amount of uncertainty that can
be present, we propose to represent the prediction and ob-
servation models by a mixture model. For each mixture
component, we will investigate two different GP variants.

Let the prediction and observation models at ¢ — 1 be

P(Xe|x¢—1,O—1,m) = %M Zfﬁ p(xe]xi-1,0]_1 K1)

R i
p(ye[xt, O1-1.0) = % D p(Yt|Xt,@t,1,o) @)

where 6;'71’ o and @LL o represents the parameters of the
i-th component, ©;_1 s = {@i_LM}f;Ml’ and ©;_10 =
{9171,0}2()1 are the parameters of all components. At
the ¢-th time step, we run a standard particle filter to ob-
tain a number of weighted particles. The latent space rep-
resentations at time ¢ can be obtained by resampling the
weighted particles. Then, we assign each particle to the
most likely mixture component of p(x;|x;—1,©;_1 ) and
p(¥i|xt, ©1—1,0) to capture the multi-modality of the pre-
diction and observation models. Finally, we compute the
mean latent states of the assigned particles and use this
mean state to update the corresponding components param-
eters, ©f ,, for the prediction (or motion) model and ©;
for the observation model. The whole framework is sum-
marized in Algorithm 1.

What remains is to specify how the parameters of individ-
ual components are represented and updated (lines 18 and
23 in Algorithm 1). As noted above, we aim to use a GP
model for each mixture component. However, a standard
implementation would require O(#3) operations and O(t?)
memory. As t grows linearly over time, the particle fil-
ter will quickly become too computationally and memory
intensive. Thus a primary challenge is how to efficiently
update the GP mixture components in the prediction and
observation models.

In order to efficiently update ©; ;, and O ,, in an online
manner, we consider two fast GP-based strategies: Sparse
Online GP (SOGP) and Local GPs (LGP) in which the re-
duction in memory and/or computation is achieved by an
online sparsification and a local experts mechanism respec-
tively. A detailed review of fast GP approaches can be
found in [1, 18].

The specific contents of ©; ;, or O] , will vary depending
on the method used. In the case of SOGP it will contain
some computed quantities and the active set while for LGP
it will simply be the set of all training points. While we will

Algorithm 1 Online GP-Particle Filter
1: Initialize model parameters © based on y;.7,
2: Initialize particle set x(Tl0 Np)
3: fort =Ty + 1to T do

4: fori=1to N, do

based on y1.7,

5 xil) ~ p(Xt\XE?p Or—1,m)
6: uA)t(l) = p(}’t|X§1)’ O¢-1,0)
7:  end for , , .
8:  Normalize weights wﬁz) = ﬁ)y)/(ZﬁV:pl ﬁ)y))
9:  Resample particle set with probabilities wgl:N" )
10:  fori=1to N, do
11: n4, = arg max; p(x§1)|x§1_)1, @i—l,M)
12: = argmax; p(y:|xi”, 0], )
13:  end for
14:  for j =1to Ry do
1 Np 7 y
15: ni_y =30 0(nhy = J)
_q N, i . 7
16: X, = i it 0y = ])ng
—j N, i . i
17: Xi = n{l,l Zi:l 5(77M = ])xi )
18: Update @{M with (%]_,,%])
19:  end for
20: forj =1to Rp do
j Ny i ;
21 ni_y =2 0(nh = 74)
_q N, i . 7
22 x] = n{: > i1 0o = J)Xg )
23: Update G){_’O with (%7, y¢)
24:  end for
25: end for

focus on these two strategies, we note that in principle any
similar update strategy could be used instead, such as infor-
mative vector machines [13] or local regression approaches
[7, 6, 20]. In what follows, to avoid confusion with the no-
tations of the latent state and observation, we will use a
and b to indicate the input and output when we describe
SOGP and LGP regression in which we consider modeling
a generic function b = f(a) + &, with & ~ N(0,0%1).

3.1 SPARSE ONLINE GAUSSIAN PROCESS

The Sparse Online Gaussian Process (SOGP) of [3, 27] is
a well-known algorithm for online learning of GP models.
To cope with the fact that data arrives in an online manner,
SOGP trains a GP model sequentially by updating the pos-
terior mean and covariance of the latent function values of
the training set. This online procedure is coupled with a
sparsification strategy which iteratively selects a fixed-size
subset of points to form the active set, preventing the oth-
erwise unbounded growth of the computation and memory
load.

The key of SOGP is to maintain the joint posterior over the
latent function values of the fixed-size active set D;_1, i.e.,



N(pi—1,%¢—1), by recursively updating p;—1 and 3.
When a new observation (a;, b;) ! is available, we perform
the following update to take the new data point into account
[27]

a = Qiiki_i(ay) 3)
p; = k(asa) —ke—1(ar)” Qi1ki—1(ay) 4
67 = oP+pi+aSiiq )
[ Y14 ]
o = 6
! _P% +af Siq ©)
Mt = #t_l } + 67 %(by — af pre—1)0 @)
1At Ht—1
[ X4 Yi_1q¢ ] \—2c T
¥y = — 6:0; (8
! _thEt—l pi+al S o1 "0u0; (8)

where k;_1(a;) is the kernel vector which is constructed
from a; and the active set D;_1, and Q;_1 is the inverse
kernel matrix of the active set D;_1.

One of the key steps in this algorithm is how to decide when
to add the new point to the active set. We employed the
strategy suggested by [3, 27], and ignore the new point with
p? < e for some small value of € (we use ¢ = 107%). In
this case, the u¢, X are updated as p; + [ue]—i, ¢
[X¢]—i,—; where i = t is the index of the new point, [-]_;
removes the i-th entry of a vector, and [-]_; _; removes the
i-th row and column of a matrix. Additionally, the inverse
kernel matrix is simply (); = (Q;_1 because the new point
is not included in the active set. When pf > ¢, we add the
new point to the active set D; = D;_1 U {(a;,b:)}. The
L, 2 are then the same as Eq.(7) and (8), and the inverse
kernel matrix is updated to be [27]

-1 0 _ r -
Q = {le 0}+pt2[‘fg§ f“} ©)

When the size of the active set is larger than the fixed size
N4 because a new point was added, we must remove a
point. This is done by selecting the one which minimally
affects the predictions according to the squared predicted
error. Following [3, 27], we remove the j-th data point
with [ | )
. . Qe j>

where [-]; selects the j-th entry of a vector and [-]; ; select
the jth diagonal entry of a matrix. Once a point has been
selected for removal, p, ¢ and Q; are updated as

pe (] (11)
5 o [Boj—; (12)
Q « [Qt]_j,_j—[Qt][ag?j]‘“ (13)

"For simplicity of presentation, we assume that b is a scalar.
The extension to vector valued b is straightforward.

Algorithm 2 SOGP Update
input Previous posterior quantities fz—1, 2t—1, Qt—1
input Previous active set D;_
input New input-output observation (a;, b;) pair
1: Compute py, 1y and 34 as in Equations (4), (7) and (8).
2: if p? < e then
3:  Perform update p1; < [p]—s, X < [X¢]—i,—; Where
1 is the index of the newly added row to ;.
Set Q; = Qi—1, Dy = Dy_1.
else
Compute Q; as in Equation (9).
Add to active set Dy = D1 U {(as, by)}.
end if
if |D¢| > N4 then
Select point j to remove using Equation (10).
Perform update pi; < [p¢]—;, 3¢ < [X¢]_;—; and
L [Qt]*ﬁj[Qi]?j.j
Qe (@il = o,
12:  Remove j from active set D, <— D, \ {(a;,b;)}.
13: end if
output uy, >y, Q¢ and Dy

H
AN B A AR A

—

where [-]_; ; selects the j-th column of the matrix with the
7-th row removed and the point is removed from the active
set Dt — Dt \ {(aj, b])}

The joint posterior at time ¢ can be used to construct the
predictive distribution for a new input a*

p°9%P (bla*, Dy, 0) = N(b|b, 5?) (14)

where b = ky(a*)TQuu and 62 = o2 + k(a*,a*) +
ki (a*)T(Q:2: Qs — Q¢)ks(a*). We summarize the SOGP
updates in Algorithm 2.

3.2 LOCAL GAUSSIAN PROCESSES

An alternative to the SOGP approach is to use Local Gaus-
sian Processes (LGP), which was developed specifically to
deal with large, multi-modal regression problems [17, 23].
In LGP, given a test input a* and a set of input-output pairs
D = {(a;,b;)}Y,}, the My-nearest neighbors Dpx =
{(ar, bg)})"2 are selected based on the distance in the in-
put space dy = |lag — a*||. Then, for each of the M,
neighbors, My-nearest neighbors Dy, = {(a;, bj)}?/ibl
are selected based on the distance in the output space to
b,. These neighbors are then combined to form a local GP
expert which makes a Gaussian prediction with mean and
covariance

-1 *
BDbl K-Db[.,Db2 kaz (a )

kj(a*7 a*) - kaz (a*)TK’B;,’DbZ kaé (a*) +0°

He =
or =
where Bp,, is the matrix whose columns are the My, near-

est neighbors of by, kaF (a*) is the vector of kernel func-
tion values for the input a* and the points in Dy, and



Kp,, Dy, is the kernel matrix for the points in Dy,,. The fi-
nal predictive distribution is then formed by combining all
local experts in a mixture model

M,
PP (bla*, D,0) =Y wN(blue,ofl) (15
/=1

with weights wy « 1/d,.

4 EXPERIMENTAL EVALUATION

To illustrate our approach we choose 4 very different mo-
tions, i.e., walking, golf swing, swimming as well as exer-
cises (composed of side twist and squat). The data consists
of motion capture from the CMU dataset [2], where each
observation is a 62 dimensional vector containing the 3D
rotations of all joints. We normalize the data to be mean
zero and subsample the observations to reduce the correla-
tion between consecutive frames. We use a frequency of 12
frames/s for walking and swimming, 24 frames/s for golf
swing and 30 frames/s for the exercise motion. We com-
pute all results averaged over 3 trials and report the average
root mean squared error as our measure of performance.

In all the experiments, the latent space dimensionality
is set to be 3 as is common for human motion mod-
els [28]. We use PCA to initialize the latent space and
K-means to obtain the data points used for the mixture
components. We choose the compound kernel function
k(x,x') = ofexp(=05 || x —x' [|* /%) + 12xTx!
for both prediction and observation mappings. Unless
otherwise stated, we use 50 particles, a training set of
size of 20/30/50/450 and 2/2/5/5 mixture components for
walking/golf/swimming/exercise motions respectively. For
LGP, the number of local GP experts is 2/2/2/5, and the size
of each local expert is 5/8/5/20. For SOGP, the size of the
active set is 20/5/50/20. The parameter values were chosen
to balance computational cost with the prediction accuracy
and in our experiments we demonstrate the robustness of
our approach to these parameters.

4.1 COMPARISON TO STATE-OF-THE-ART

We compare our approaches to two baselines: The first
one is the approach of Ko and Fox [11] where a GPDM is
learned offline with gradient descent [28] before perform-
ing particle filtering for state estimation. The second base-
line is similar, but learns the GPDM offline using stochastic
gradient descent [29]. We tested the baselines in two differ-
ent settings. First, only the initial training set is available
to learn the prediction and observation models. Second, all
the data (including future streamed examples) are used to
learn the prediction and observation models. Note that the
latter represents the oracle for Ko and Fox [11].

Number of Particles: We evaluate how the accuracy
changes as a function of the number of particles, IV,. As

expected, the prediction error is reduced in all the meth-
ods when the number of particles increases. As shown in
the first row of Fig. 1, our approaches are superior to the
baselines. Importantly, we outperformed the oracle base-
line as we are able to represent multi-modal distributions
effectively. This is particularly important in the exercise
sequence as the dynamics are clearly multimodal due to the
different motions that are performed in the sequence. Fur-
thermore, our LGP variant outperforms SOGP. We believe
this is due to the fact that SOGP has a fixed capacity while
LGP is able to leverage more training data when making
predictions.

Influence of noise: In this experiment we evaluate the ro-
bustness of all approaches to additive noise in the observa-
tions. The second row of Fig. 1 shows that our LGP particle
filter significantly outperforms the baselines, particularly in
the exercise sequence. Our SOGP outperforms all baselines
that have access to the same training set, and is only beaten
by the oracle for walking.

Size of Training Set: We next evaluate how the accuracy
depends on the size of the inital training set, Tj. The first
row of Fig. 2 clearly indicates that our methods perform
well even when the training set is very small. In contrast,
the two baselines require bigger training sets to achieve
comparable performance. This is expected as the baselines
do not update the latent space to take the incoming obser-
vations into account.

4.2 QUALITATIVE EXPERIMENTS

Fig. 3 shows the latent space of both SOGP and LGP filters
when employing 50 particles for each time step (depicted
in blue). From the 3D latent space and predicted skeletons,
we find that the manifolds of both LGP and SOGP particle
filters have a good representation of the high-dimensional
human motion data.

4.3 PROPERTIES OF OUR METHODS

We next discuss various aspects of our method and evaluate
the influence of the parameters of SOGP and LGP filters.
For LGP, due to the fact that the data sizes of walking, golf
and swimming motions are small, we reduced the number
(size) of local experts to be able to increase the size (num-
ber) of the local experts.

Computational Complexity: Overall the computational
complexity of our method (Alg 1) is mainly determined by
the complexity of constructing a prediction distribution for
each components (lines 5-6 and 11-12) and model updates
(line 18 and line 23). Specifically, for an individual com-
ponent which is either SOGP or LGP, computing the pre-
diction distribution is O(N3) or O(Ma M + T MaMy,)
respectively where N4 is the size of active set, M, is the
number of local experts, My, are the number of neigh-
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bors in the output space and T'M, M}, comes from the nents (lines 18 and 23) have a computational complexity of
KNN search. The model updates for the mixture compo- O(N3) and O(1) for SOGP and LGP respectively.
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Number of Mixture Components: Fig. 4 shows perfor- cally increases with the number of mixture components, for
mance as a function of the number of mixture compo- SOGP, but less so for LGP. Furthermore, our approaches
nents, Ry; and Rp, for both SOGP and LGP. For LGP+PF outperform the baselines in which the model is not updated
in walk/golf/swim/exercise, the number of local GPs are during filtering indicating that the online model updating is
1/1/2/5 and the size of each local GP are 3/3/5/20. In all very important in practice. Also note that while LGP gen-
cases, we set R); = Ro. Note that performance typi- erally outperforms SOGP, the difference quickly declines
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Figure 5: Root mean squared error as a function of the size of the active set in SOGP, the number of the local GP experts
and the size of each local GP expert in LGP. In the subplot 5(c), the top z-axis is for exercise and the bottom one for the

other motions.

Figure 6: Predicted skeleton for missing parts (Walk: two legs; Golf, Swim and Exercise: left arm). The ground truth is
shown in green, our SOGP particle filter in blue and LGP particle filter in red. We show the predicted performance at ¢=24,
27, 32 for walk, t=34, 38, 50 for golf, t=71,79 for swim, t=470, 592, 711 for exercise.

as the number of mixture components increases. This sug-
gests that, when the fixed memory requirements of SOGP
is desirable, a larger number of mixture components will
achieve performance comparable to LGP.

Active Set size in SOGP: To explore the effect of the size
of the active set, N4, on performance we set the number
of mixture components, Ry; and Rp, to be 2/1/5/5 for
walk/golf/swim/exercise, and use the same settings as be-
fore for the other parameters. Results are shown in Fig.
5(a). As expected performance improves when the size of
the active set increases.

Number and Size of Local Experts in LGP: Figs. 5(b)
and 5(c) show the performance of our approach as a func-
tion of the number of local GP experts, M,, as well as
their size, My,. For this experiment we set the number of
mixture components, Ry, and Rp, to be 1/2/1/5 and used
the same settings as before for the other parameters except
when evaluating the size of each local GP expert where we
set the number of local GP experts to 5/2/5/5. As shown in
the figure, even with the small number (size) of local GP
experts, we still achieve good performance.

4.4 HANDLING MISSING DATA

In this setting, we evaluate the capabilities of our ap-
proaches to handle missing data. We assume that the initial
set has no missing values, but a fixed set of joint angles are

missing for all incoming frames. Our approach is able to
cope with missing data with only two small modifications.
First, particles are weighted only based on the observed di-
mensions. Furthermore, when updating the prediction and
observation models, we employ mean imputation for the
missing observation dimensions. Fig. 6 shows reconstruc-
tions of the missing dimensions for all our motions, which
consists of the two legs for walking, the left arm for golf
swing, swimming and exercise motions. We can see that
our approach is able to reconstruct the missing parts well.

Finally, to evaluate the tracking performance as a function
of the number of missing dimensions, we randomly gener-
ate the indices for the missing dimensions and use the same
missing dimensions for all incoming frames. The second
row of Fig. 2 shows that, compared to the baselines, our
methods perform well even when the number of missing
dimensions is 20 (1/3 of the skeleton) for all the motions.
In addition, our LGP particle filter outperforms our SOGP
variant.

5 CONCLUSION

In this paper we have presented a novel non-parametric
approach to Bayesian filtering, where the observation and
prediction models are constructed using a mixture model
with GP components learned in an online fashion. We
have demonstrated that our approach can capture the mul-



timodality accurately and efficiently by online updates. We
have explored two fast GP variants for updating which keep
memory and computation bounded for individual mixture
components. We have demonstrated the effectiveness of
our approach when tracking different human motions and
explored the impact of various parameters on performance.
The Local GP particle filter proved superior to our SOGP
variant, however these differences can be mitigated by us-
ing more mixture components when using SOGP. In the fu-
ture, we plan to investigate the usefulness of our approach
in other settings such as shape deformation estimation and
financial time series.
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