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Abstract

A popular approach for online decision making
in large MDPs is time-bounded tree search. The
effectiveness of tree search, however, is largely
influenced by the action branching factor, which
limits the search depth given a time bound. An
obvious way to reduce action branching is to
consider only a subset of potentially good ac-
tions at each state as specified by a provided
partial policy. In this work, we consider offline
learning of such partial policies with the goal of
speeding up search without significantly reduc-
ing decision-making quality. Our first contribu-
tion is to study learning algorithms based on re-
ducing our learning problem to i.i.d. supervised
learning. We give a reduction-style analysis of
three such algorithms, each making different as-
sumptions, which relates the supervised learning
objectives to the sub-optimality of search using
the learned partial policies. Our second contribu-
tion is to describe concrete implementations of
the algorithms within the popular framework of
Monte-Carlo tree search. Finally, the third con-
tribution is to evaluate the learning algorithms in
two challenging MDPs with large action branch-
ing factors, showing that the learned partial poli-
cies can significantly improve the anytime per-
formance of Monte-Carlo tree search.

1 INTRODUCTION

Lookahead tree search is a common approach for time-
bounded decision making in large Markov Decision Pro-
cesses (MDPs). Actions are selected by estimating ac-
tion values at the current state by building a finite-horizon
lookahead tree using an MDP model or simulator. A va-
riety of algorithms are available for building such trees,
including instances of Monte-Carlo Tree Search (MCTS)
such as UCT (Kocsis and Szepesvári, 2006), Sparse Sam-

pling (Kearns et al., 2002), and FSSS (Walsh et al., 2010),
along with model-based search approaches such as RTDP
(Barto et al., 1995) and AO* (Bonet and Geffner, 2012).
Given time constraints, however, the performance of these
approaches depends on the action branching factor, which
is often considerable and greatly limits the feasible search
depth. An obvious way to address this problem is to pro-
vide prior knowledge for explicitly pruning bad actions
from consideration. In this paper, we consider offline learn-
ing of such prior knowledge in the form of partial policies.

A partial policy is a function that quickly returns an action
subset for each state and can be integrated into search by
pruning away actions not included in the subsets. Thus, a
partial policy can significantly speedup search if it returns
small action subsets, provided that the overhead for apply-
ing the partial policy is small enough. If those subsets typ-
ically include high-quality actions, then we might expect
little decrease in decision-making quality. Although learn-
ing partial policies to guide tree search is a natural idea, it
has received surprisingly little attention, both in theory and
practice. In this paper we formalize this learning problem
from the perspective of “speedup learning”. We are pro-
vided with a distribution over search problems in the form
of a root state distribution and a search depth bound. The
goal is to learn partial policies that significantly speedup
depth D search, while bounding the expected regret of se-
lecting actions using the pruned search versus no pruning.

In order to solve this learning problem, there are at least
two key choices that must be made: 1) Selecting a train-
ing distribution over states arising in lookahead trees, and
2) Selecting a loss function that the partial policy is trained
to minimize with respect to the chosen distribution. The
key contribution of our work is to consider a family of
reduction-style algorithms that answer these questions in
different ways. In particular, we consider three algorithms
that reduce partial policy learning to i.i.d. supervised learn-
ing problems characterized by choices for (1) and (2). Our
main results bound the sub-optimality of tree search using
the learned partial policies in terms of the expected loss of
the supervised learning problems. Interestingly, these re-



sults for learning partial policies mirror similar reduction-
style results for learning (complete) policies via imitation,
e.g. (Ross and Bagnell, 2010; Syed and Schapire, 2010;
Ross et al., 2011).

We empirically evaluate our algorithms in the context of
learning partial policies to speedup MCTS in two chal-
lenging domains with large action branching factors: 1)
the classic dice game, Yahtzee, and 2) a real-time strategy
game, Galcon. The results show that using the learned par-
tial policies to guide MCTS leads to significantly improved
anytime performance in both domains. Furthermore, we
show that several other existing approaches for injecting
knowledge into MCTS are not as effective as using partial
policies for action pruning and can often hurt search per-
formance rather than help.

2 PROBLEM SETUP

We consider sequential decision making in the framework
of Markov Decision Processes (MDPs) and assume basic
familiarity. An MDP is a tuple (S,A, P,R), where S is a
finite set of states, A a finite set of actions, P (s′|s, a) is the
transition probability of arriving at state s′ after executing
action a in state s, and R(s, a) ∈ [0, 1] is the reward func-
tion giving the reward of taking action a in state s. The
typical goal of MDP planning and learning is to compute a
policy for selecting an action in any state, such that follow-
ing the policy (approximately) maximizes some measure of
long-term expected reward.

In practice, regardless of the long-term reward measure, for
large MDPs, the offline computation of high-quality poli-
cies over all environment states is impractical. In such
cases, a popular action-selection approach is online tree
search, where at each encountered environment state, a
time-bounded search is carried out in order to estimate ac-
tion values. Note that this approach requires the availabil-
ity of either an MDP model or an MDP simulator in order
to construct search trees. In this paper, we assume that a
model or simulator is available and that online tree search
has been chosen as the action selection mechanism. Next,
we formally describe the paradigm of online tree search,
introduce the notion of partial policies for pruning tree
search, and then formulate the problem of offline learning
of such partial policies.

Online Tree Search. We will focus on depth-bounded
search assuming a search depth bound of D throughout,
which bounds the length of future action sequences to be
considered. Given a state s, we denote by T (s) the depth
D expectimax tree rooted at s. T (s) alternates between
layers of state nodes and action nodes, labeled by states
and actions respectively. The children of each state node
are action nodes for each action in A. The children of an
action node a with parent labeled by s are all states s′ such
that P (s′|s, a) > 0. Figure 1(a) shows an example of a

depth two expectimax tree. The depth of a state node is the
number of action nodes traversed from the root to reach it,
noting that leaves of T (s) will always be action nodes.

The optimal value of a state node s at depth d, denoted
by V ∗d (s), is equal to the maximum value of its child ac-
tion nodes, which we denote by Q∗d(s, a) for child a. We
define Q∗d(s, a) to be R(s, a) if d = D − 1 (i.e. for
leaf action nodes) and otherwise R(s, a) + E

[
V ∗d+1(s′)

]
,

where s′ ∼ P (·|s, a) ranges over children of a. The opti-
mal action policy for state s at depth d will be denoted by
π∗d(s) = arg maxaQ

∗
d(s, a). Given an environment state s,

online search algorithms such as UCT or RTDP attempt to
completely or partially search T (s) in order to approximate
the root action values Q∗0(s, a) well enough to identify the
optimal action π∗d(s). It is important to note that optimality
in our context is with respect to the specified search depth
D, which may be significantly smaller than the expected
planning horizon in the actual environment. This is a prac-
tical necessity that is often referred to as receding-horizon
control. Here we simply assume that an appropriate search
depthD has been specified and our goal is to speedup plan-
ning within that depth.

Search with Partial Policies. One way to speedup depth
D search is to prune actions from T (s). In particular, if
a fixed fraction σ of actions are removed from each state
node, then the size of the tree would decrease by a factor of
(1−σ)D, potentially resulting in significant computational
savings. For this purpose we will utilize partial policies.
A depth D (non-stationary) partial policy ψ is a sequence
(ψ0, . . . , ψD−1) where each ψd maps a state to an action
subset. Given a partial policy ψ and root state s, we can
define a pruned tree Tψ(s) that is identical to T (s), except
that each state s at depth d only has subtrees for actions in
ψd(s), pruning away subtrees for any child a /∈ ψd(s). Fig-
ure 1(b) shows a pruned tree Tψ(s), where ψ prunes away
one action at each state. It is straightforward to incorporate
ψ into a search algorithm by only expanding actions at state
nodes that are consistent with ψ.

We define the state and action values relative to Tψ(s)

the same as above and let V ψd (s) and Qψd (s, a) denote
the depth d state and action value functions. We will de-
note the highest-valued, or greedy, root action of Tψ(s) by
Gψ(s) = arg maxa∈ψ0(s)Q

ψ
0 (s, a). This is the root action

that a depth D search procedure would attempt to return in
the context of ψ. Note that a special case of partial policies
is when |ψd(s)| = 1 for all s and d, which means that ψ de-
fines a traditional (complete) deterministic MDP policy. In
this case, V ψd andQψd represent the traditional depth d state
value and action value functions for policies. We say that a
partial policy ψ subsumes a partial policy ψ′ if for each s
and d, ψ′d(s) ⊂ ψd(s). In this case, it is straightforward to
show that for any s and d, V ψ

′

d (s) ≤ V ψd (s).

Clearly, a partial policy can reduce the complexity of



search. However, we are also concerned with the quality of
decision making using Tψ(s) versus T (s), which we will
quantify in terms of expected regret. The regret of select-
ing action a at state s relative to T (s) is equal to V ∗0 (s) −
Q∗0(s, a), noting that the regret of the optimal action π∗0(s)
is zero. We prefer partial policies that result in root deci-
sions with small regret over the root state distribution that
we expect to encounter, while also supporting significant
pruning. For this purpose, if µ0 is a distribution over root
states, we define the expected regret of ψ with respect to
µ0 as REG(µ0, ψ) = E [V ∗0 (s0)−Q∗0(s0, Gψ(s0)], where
s0 ∼ µ0.

Learning Problem. We consider an offline learning set-
ting where we are provided with a model or simulator of
the MDP in order to train a partial policy that will be used
later for online decision making. That is, the learning prob-
lem provides us with a distribution µ0 over root states (or a
representative sample from µ0) and a depth bound D. The
intention is for µ0 to be representative of the states that
will be encountered during online use. In this work, we are
agnostic about how µ0 is defined for an application. How-
ever, a typical example and one used in our experiments,
is for µ0 to correspond to the distribution of states encoun-
tered along trajectories of a receding horizon controller that
makes decisions based on unpruned depth D search.

Given µ0 and D, our “speedup learning” goal is to learn
a partial policy ψ with small expected regret REG(µ0, ψ),
while providing significant pruning. That is, we want to
approximately imitate the decisions of depth D unpruned
search via a much less expensive depth D pruned search.
In general, there will be a tradeoff between the potential
speedup and expected regret. At one extreme, it is always
possible to achieve zero expected regret by selecting a par-
tial policy that does no pruning and hence no speedup. At
the other extreme, we can remove the need for any search
by learning a partial policy that always returns a single ac-
tion (i.e. a complete policy). However, for many complex
MDPs, it can be difficult to learn computationally efficient,
or reactive, policies that achieve small regret. Rather, it
may be much easier to learn partial policies that prune away
many, but not all actions, yet still retain high-quality ac-
tions. While such partial policies lead to more search than
a reactive policy, the regret can be much less.

In practice, we seek a good tradeoff between the two ex-
tremes, which will depend on the application. Instead of
specifying a particular trade-off point as our learning ob-
jective, we develop learning algorithms in the next section
that provide some ability to explore different points. In
particular, the algorithms are associated with regret bounds
in terms of supervised learning objectives that measurably
vary with different amounts of pruning.

Algorithm 1 A template for learning a partial policy ψ =
(ψ0, . . . , ψD−1). The template is instantiated by specifying
the pairs of distributions and cost functions (µd, Cd) for
d ∈ {0, . . . , D−1}. LEARN is an i.i.d. supervised learning
algorithm that aims to minimize the expected cost of each
ψd relative to Cd and µd.

1: procedure PARTIALPOLICYLEARNER({(µd, Cd)})
2: for d = 0, 1, . . . , D − 1 do
3: Sample a training set of states Sd from µd
4: ψd ← LEARN(Sd, Cd)
5: end for
6: return ψ = (ψ0, ψ1, . . . , ψD−1)
7: end procedure

3 LEARNING PARTIAL POLICIES

Given µ0 and D, we now develop reduction-style algo-
rithms for learning partial policies. The algorithms reduce
partial policy learning to a sequence of D i.i.d. supervised
learning problems, each producing one partial policy com-
ponent ψd. The supervised learning problem for ψd will be
characterized by a pair (µd, Cd), where µd is a distribution
over states, andCd is a cost function that, for any state s and
action subset A′ ⊆ A assigns a prediction cost Cd(s,A′).
The cost function is intended to measure the quality of A′

with respect to including actions that are high quality for s.
Typically the cost function is monotonically decreasing in
A′ and Cd(s,A) = 0.

In this section we assume the availability of an i.i.d. su-
pervised learner LEARN that takes as input a set of states
drawn from µd, along with Cd, and returns a partial pol-
icy component ψd that is intended to minimize the ex-
pected cost of ψd on µd, i.e. minimize E [Cd(s, ψd(s))]
for s ∼ µd. In practice, the specific learner will depend
on the cost function and we describe our particular imple-
mentations in Section 4. Rather, in this section, we focus
on defining reductions that allow us to bound the expected
regret of ψ by the expected costs of the ψd returned by
LEARN. The generic template for our reduction algorithms
is shown in Algorithm 1.

In the following, our state distributions will be specified in
terms of distributions induced by (complete) policies. In
particular, given a policy π, we let µd(π) denote the state
distribution induced by drawing an initial state from µ0 and
then executing π for d steps. Since we have assumed an
MDP model or simulator, it is straightforward to sample
from µd(π) for any provided π. Before proceeding we state
a simple proposition that will be used to prove our regret
bounds.

Proposition 3.1. If a complete policy π is subsumed by
partial policy ψ, then for any initial state distribution µ0,
REG(µ0, ψ) ≤ E [V ∗0 (s0)]− E [V π0 (s0)], for s0 ∼ µ0.



(a) Unpruned expectimax tree T (s) with D = 2 (b) Pruning T with partial policy ψ gives Tψ where a
third of the actions have been pruned.

Figure 1: Unpruned and pruned expectimax trees with depth D = 2 for an MDP with |A| = 3 and two possible next states.

Proof. Since π is subsumed by ψ, we know that
Qψ0 (s,Gψ(s)) = V ψ0 (s) ≥ V π0 (s). Since for any
a, Q∗0(s, a) ≥ Qψ0 (s, a), we have for any state s,
Q∗0(s,Gψ(s)) ≥ V π0 (s). The result follows by negating
each side of the inequality, followed by adding V ∗0 (s), and
taking expectations.

Thus, we can bound the regret of a learned ψ if we can
guarantee that it subsumes a policy whose expected value
has bounded sub-optimality. Next we present three reduc-
tions for doing this, each having different requirements and
assumptions.

3.1 OPI : OPTIMAL PARTIAL IMITATION

Perhaps the most straightforward idea for learning a par-
tial policy is to attempt to find a partial policy that is usu-
ally consistent with trajectories of the optimal policy π∗.
That is, each ψd should be learned so as to maximize the
probability of containing actions selected by π∗d with re-
spect to the optimal state distribution µd(π

∗). This ap-
proach is followed by our first algorithm called Optimal
Partial Imitation (OPI). In particular, Algorithm 1 is instan-
tiated with µd = µd(π

∗) (noting that µ0(π∗) is equal to
µ0 as specified by the learning problem) and Cd equal to
zero-one cost. Here Cd(s,A′) = 0 if π∗d(s) ∈ A′ and
Cd(s,A

′) = 1 otherwise. Note that the expected cost of
ψd in this case is equal to the probability that ψd does
not contain the optimal action, which we will denote by
e∗d(ψ) = Prs∼µd(π∗) (π∗d(s) /∈ ψd(s)).

A naive implementation of OPI is straightforward. We can
generate length D trajectories by drawing an initial state
from µ0 and then selecting actions (approximately) accord-
ing to π∗d using standard unpruned search. Defined like this,
OPI has the nice property that it only requires the ability to
reliably compute actions of π∗d , rather than requiring that
we also estimate action values accurately. This allows us
to exploit the fact that search algorithms such as UCT of-
ten quickly identify optimal actions, or sets of near-optimal
actions, well before the action values have converged.

Intuitively we should expect that if the expected cost e∗d is

small for all d, then the regret of ψ should be bounded,
since the pruned search trees will generally contain opti-
mal actions for state nodes. The following clarifies this
dependence. For the proof, given a partial policy ψ, it is
useful to define a corresponding complete policy ψ+ such
that ψ+

d (s) = π∗d(s) whenever π∗d(s) ∈ ψd(s) and other-
wise ψ+

d (s) is the lexicographically least action in ψd(s).
Note that ψ+ is subsumed by ψ.

Theorem 3.2. For any initial state distribution µ0 and par-
tial policy ψ, if for each d ∈ {0, . . . , D − 1}, e∗d(ψ) ≤ ε,
then REG(µ0, ψ) ≤ εD2.

Proof. Given the assumption that e∗d(ψ) ≤ ε and that
ψ+ selects the optimal action whenever ψ contains it,
we know that e∗d(ψ

+) ≤ ε for each d ∈ {0, . . . , D}.
Given this constraint on ψ+ we can apply Lemma 31 from
(Syed and Schapire, 2010) which implies E[V π

+

0 (s0)] ≥
E[V ∗0 (s0)] − εD2, where s0 ∼ µ0. The result follows by
combining this with Prop. 3.1.

This result mirrors work on reducing imitation learning to
supervised classification (Ross and Bagnell, 2010; Syed
and Schapire, 2010), showing the same dependence on
the planning horizon. While space precludes details, it is
straightforward to construct an example problem where the
above regret bound is shown to be tight. This result moti-
vates a learning approach where we have LEARN attempt
to return ψd that each maximizes pruning (returns small ac-
tion sets) while maintaining a small expected cost.

3.2 FT-OPI : FORWARD TRAINING OPI

OPI has a potential weakness, similar in nature to issues
identified in prior work on imitation learning (Ross and
Bagnell, 2010; Ross et al., 2011). In short, OPI does not
train ψ to recover from its own pruning mistakes. Consider
a node n in the optimal subtree of a tree T (s0) and suppose

1The main result of (Syed and Schapire, 2010) holds for
stochastic policies and requires a more complicated analysis that
results in a looser bound. Lemma 3 is strong enough for deter-
ministic policies.



that the learned ψ erroneously prunes the optimal child ac-
tion of n. This means that the optimal subtree under n will
be pruned from Tψ(s), increasing the potential regret. Ide-
ally, we would like the pruned search in Tψ(s) to recover
from the error gracefully and return an answer based on the
best remaining subtree under n. Unfortunately, the distri-
bution used to train ψ by OPI was not necessarily repre-
sentative of this alternate subtree under n, since it was not
an optimal subtree of T (s). Thus, no guarantees about the
pruning accuracy of ψ can be made under n.

In imitation learning, this type of problem has been dealt
with via “forward training” of non-stationary policies (Ross
et al., 2011) and a similar idea works for us. The Forward
Training OPI (FT-OPI) algorithm differs from OPI only in
the state distributions used for training. The key idea is
to learn the partial policy components ψd in sequential or-
der from d = 0 to d = D − 1 and then training ψd on a
distribution induced by ψ0:d−1 = (ψ0, . . . , ψd−1), which
will account for pruning errors made by ψ0:d−1. Specifi-
cally, recall that for a partial policy ψ, we defined ψ+ to
be a complete policy that selects the optimal action if it is
consistent with ψ and otherwise the lexicographically least
action. The state distributions used to instantiate FT-OPI is
µd = µd(ψ

+
0:d−1) and the cost function remains zero-one

cost as for OPI. We will denote the expected cost of ψd
in this case by e+

d (ψ) = Prs∼µd(ψ+
0:d−1) (π∗d(s) /∈ ψd(s)),

which gives the probability of pruning the optimal action
with respect to the state distribution of ψ+

0:d−1.

Note that as for OPI, we only require the ability to compute
π∗ in order to sample from µd(ψ

+
0:d−1). In particular, note

that when learning ψd, we have ψ0:d−1 available. Hence,
we can sample a state for µd by executing a trajectory of
ψ+

0:d−1. Actions for ψ+
d can be selected by first computing

π∗d and selecting it if it is in ψd and otherwise selecting the
lexicographically least action.

As shown for the forward training algorithm for imitation
learning (Ross et al., 2011), we give below an improved
regret bound for FT-OPI under an assumption on the max-
imum sub-optimality of any action. The intuition is that if
it is possible to discover high-quality subtrees, even under
sub-optimal action choices, then FT-OPI can learn on those
trees and recover from errors.

Theorem 3.3. Assume that for any state s, depth d, and
action a, we have V ∗d (s) − Q∗d(s, a) ≤ ∆. For any initial
state distribution µ0 and partial policy ψ, if for each d ∈
{0, . . . , D − 1}, e+

d (ψ) ≤ ε, then REG(µ0, ψ) ≤ ε∆D.

Proof. The theorem’s assumptions imply that ψ+ and the
search tree T (s) satisfies the conditions of Theorem 2.2 of
(Ross et al., 2011). Thus we can infer that E[V π

+

0 (s0)] ≥
E[V ∗0 (s0)] − ε∆D, where s0 ∼ µ0. The result follows by
combining this with Proposition 3.1.

Thus, when ∆ is significantly smaller than D, FT-OPI has
the potential to outperform OPI given the same bound on
zero-one cost. In the worst case ∆ = D and the bound will
equal to that of OPI.

3.3 FT-QCM: FORWARD TRAINING Q-COST
MINIMIZATION

While FT-OPI addressed one potential problem with OPI,
they are both based on zero-one cost, which raises other po-
tential issues. The primary weakness of using zero-one cost
is its inability to distinguish between highly sub-optimal
and slightly sub-optimal pruning mistakes. It was for this
reason that FT-OPI required the assumption that all action
values had sub-optimality bounded by ∆. However, in
many problems, including those in our experiments, that
assumption is unrealistic, since there can be many highly
sub-optimal actions (e.g. ones that result in losing a game).
This motivates using a cost function that is sensitive to the
sub-optimality of pruning decisions.

In addition, it can often be difficult to learn a ψ that
achieves both, a small zero-one cost and also provides sig-
nificant pruning. For example, in many domains, in some
states there will often be many near-optimal actions that
are difficult to distinguish from the slightly better optimal
action. In such cases, achieving low zero-one cost may re-
quire producing large action sets. However, learning a ψ
that provides significant pruning while reliably retaining at
least one near-optimal action may be easily accomplished.
This again motivates using a cost function that is sensitive
to the sub-optimality of pruning decisions, which is accom-
plished via our third algorithm, Forward Training Q-Cost
Minimization (FT-QCM)

The cost function of FT-QCM is the minimum sub-
optimality, or Q-cost, over unpruned actions. In particu-
lar, we use Cd(s,A′) = V ∗d (s) − maxa∈A′ Q

∗
d(s, a). Our

state distribution will be defined similarly to that of FT-
OPI, only we will use a different reference policy. Given
a partial policy ψ, define a new complete policy ψ∗ =
(ψ∗0 , . . . , ψ

∗
D−1) where ψ∗d(s) = arg maxa∈ψd(s)Q

∗
d(s, a),

so that ψ∗ always selects the best unpruned action. We
define the state distributions for FT-QCM as the state dis-
tribution induced by ψ∗, i.e. µd = µd(ψ

∗
0:d−1). We

will denote the expected Q-cost of ψ at depth d to be
∆d(ψ) = E

[
V ∗d (sd)−maxa∈ψd(sd)Q

∗
d(sd, a)

]
, where

sd ∼ µd(ψ∗0:d−1).

Unlike OPI and FT-OPI, this algorithm requires the abil-
ity to estimate action values of sub-optimal actions in or-
der to sample from µd. That is, sampling from µd re-
quires generating trajectories of ψ∗d , which means we must
be able to accurately detect the action in ψd(s) that has
maximum value, even if it is a sub-optimal action. The
additional overhead for doing this during training depends
on the search algorithm being used. For many algorithms,



near-optimal actions will tend to receive more attention
than clearly sub-optimal actions. In those cases, as long as
ψd(s) includes reasonably good actions, there may be little
additional regret. The following regret bound motivates the
FT-QCM algorithm.

Theorem 3.4. For any initial state distribution µ0 and par-
tial policy ψ, if for each d ∈ {0, . . . , D − 1}, ∆d(ψ) ≤ ∆,
then REG(µ0, ψ) ≤ 2D

3
2

√
∆.

Proof. Consider any pair of non-negative real numbers
(ε, δ) such that for any d, the probability is no more than ε
of drawing a state from µd(ψ

∗) with Q-cost (wrt ψ) greater
than δ. That is Pr(Cd(sd, ψd(sd)) ≥ δ) ≤ ε. We will first
bound REG(µ0, ψ) in terms of ε and δ.

Let Πδ be the set of policies for which all selected actions
have regret bounded by δ. It can be shown by induction on
the depth that for any π ∈ Πδ and any state s, V π0 (s) ≥
V ∗0 (s) − δD. For the chosen pair (ε, δ) we have that for
a random trajectory t of ψ∗ starting in a state drawn from
µ0 there is at most an εD probability that the Q-cost of ψ∗
on any state of t is greater than δ. Thus, compared to a
policy that always has Q-cost bounded by δ, the expected
reduction in total reward of ψ for initial state distribution
µ0 is no more than εD2. This shows that

E
[
V ψ
∗

0 (s0)
]

≥ min
π∈Πδ

E [V π0 (s0)]− εD2

≥ E [V ∗0 (s0)]− δD − εD2

Since ψ∗ is subsumed by ψ, Proposition 3.1 implies that
REG(µ0, ψ) ≤ δD + εD2.

We now reformulate the above bound in terms of the bound
on expected Q-cost ∆ assumed by the theorem. Since Q-
costs are non-negative, we can apply the Markov inequality
to conclude that Pr(Cd(sd, ψd(sd)) ≥ δ) ≤ ∆d(ψ)

δ ≤ ∆
δ .

The pair (∆
δ , δ) then satisfies the above condition for ψ∗.

Thus, we get REG(µ0, ψ) ≤ δD + ∆
δ D

2. The bound is
minimized at δ =

√
D∆, which yields the result.

FT-QCM tries to minimize this regret bound by minimizing
∆d(ψ) via supervised learning at each step. Importantly,
as we will show in our experiments, it is often possible to
maintain small expected Q-cost with significant pruning,
while the same amount of pruning would result in a much
larger zero-one cost. It is an open problem as to whether
this bound is tight in the worst case.

4 IMPLEMENTATION DETAILS

In this section, we describe our concrete implementation of
the above abstract algorithms using the MCTS algorithm
UCT (Kocsis and Szepesvári, 2006) for tree search.

UCT is a popular MCTS algorithm, perhaps most famous
for leading to significant advances in computer Go (Gelly
et al., 2006; Gelly and Silver, 2007). Space precludes a

complete description and we only outline the high-level
ideas and issues relevant to our work. Given a root state
and a time budget, UCT executes a series of Monte-Carlo
simulations in order to build an asymmetric search tree that
explores more promising parts of the tree first, compared to
less promising parts. The key idea behind UCT is to utilize
a variant of the multi-armed bandit algorithm UCB (Auer
et al., 2002) for selecting actions during the Monte-Carlo
simulations. The objective is to balance the exploration
of less frequently visited parts of the tree versus exploring
nodes that look most promising. State and action values
for nodes in the UCT tree are estimated based on the aver-
age reward of Monte-Carlo trajectories that go through the
nodes. In the limit, UCT will converge to optimal state and
action values. In practice, the values computed in a UCT
tree after a finite time budget are most accurate for higher
quality actions, since they tend to be explored more often.
It is straightforward to integrate a partial policy into UCT,
by simply removing pruned actions from consideration.

Partial Policy Representation. Our partial policies op-
erate by simply ranking the actions at a state and then
pruning a percentage of the bottom actions. Specifically,
partial policy components have the form ψd(s | wd, σd),
parameterized by an n-dimensional weight vector wd and
pruning fraction σd ∈ [0, 1). Given a state s, each ac-
tion a is ranked according to the linear ranking function
fd(s, a) = wTd φ(s, a), where φ(s, a) is a user provided
n-dimensional feature vector that describes salient prop-
erties of state-action pairs. Using fd we can define a
total order over actions, breaking ties lexicographically.
ψd(s | wd, σd) is then equal to the set of the d(1− σd)|A|e
highest ranked actions. This representation is useful as it
allows us to separate the training of fd from the selection
of the pruning fraction.

Generating Training States. Each of our algorithms re-
quires sampling training states from trajectories of partic-
ular policies that either require approximately computing
π∗d (OPI and FT-OPI) or also action values for sub-optimal
actions (FT-QCM). Our implementation of this is to first
generate a set of trees using substantial search, which pro-
vides us with the required policy or action values and then
to sample trajectories from those trees.

More specifically, our learning algorithm is provided with
a set of root states S0 sampled from the target root distri-
bution µ0. For each s0 ∈ S0 we run UCT for a specified
time bound, which is intended to be significantly longer
than the eventual online time bound. Note that the result-
ing trees will typically have a large number of nodes on
the tree fringe that have been explored very little and hence
will not be useful for learning. Because of this we select a
depth bound D for training such that nodes at that depth or
less have been sufficiently explored and have meaningful
action values. The trees are then pruned until depth D.



Given this set of trees we can then generate trajectories us-
ing the MDP simulator of the policies specified for each
algorithm. For example, OPI simply requires running tra-
jectories through the trees based on selecting actions ac-
cording to the optimal action estimates. The state at depth
d along each trajectory is added to the data set for train-
ing ψd. FT-QCM samples states for training ψd by gen-
erating length d trajectories of ψ∗0:d−1. Each such action
selection requires referring to the estimated action values
and returning the best one that is not pruned. The final
state on the trajectory is then added to the training set for
ψd. Note that since our approach generates multiple trajec-
tories from each tree the training sets for each ψd are not
truly i.i.d. This is an acceptable trade-off in practice since
tree construction is expensive and this approach allows for
many examples to be generated per tree.

Supervised Learner. It remains to specify how we imple-
ment the LEARN procedure. Each training set will consist
of pairs {(si, ci)} where si is a state and ci is a vector that
assigns a cost to each action. For OPI and FT-OPI the cost
vector assigns 0 to the optimal action and 1 to all other
actions. For FT-QCM the ci give the Q-costs of each ac-
tion. We learn the partial policy by first learning the rank-
ing function in a way that attempts to rank low-cost actions
as highly as possible and then select an appropriate pruning
percentage based on the learned ranker.

For rank learning, we follow a common approach of con-
verting the problem to cost-sensitive binary classification.
In particular, for a given example (s, c) we create a cost-
sensitive classification example for each pair of actions a1

and a2 of the form (φ(s, a1) − φ(s, a2), c(a2) − c(a1)).
Learning a linear classifier for such an example will attempt
to rank a1 above or below a2 according to the cost differ-
ence. We apply an existing cost-sensitive learner (Lang-
ford, 2011) to learn a weight vector based on the pairwise
data. Note that for zero-one loss, we do not create pairwise
examples involving just sub-optimal actions since their cost
difference will always be zero.

Finally, after learning the ranking function for a particular
ψd, we must select an appropriate pruning percentage σd.
In practice, we do this by analyzing the expected cost of
ψd for a range of pruning values and select a pruning value
that yields reasonably small costs. Section 6 gives details
of the selections for our experiments.

5 RELATED WORK

While there is a large body of work on integrating learning
and planning, to the best of our knowledge, we do not know
of any work on learning partial policies for speeding up
online MDP planning.

There are a number of efforts that study model-based re-
inforcement learning (RL) for large MDPs that utilize tree

search methods for planning with the learned model, e.g.
RL using FSSS (Walsh et al., 2010), Monte-Carlo AIXI
(Veness et al., 2011), and TEXPLORE (Hester and Stone,
2013). However, these methods focus on model/simulator
learning and do not attempt to learn to speedup tree search
using the learned models, which is the focus of our work.

A more related body of work is on learning search
control knowledge in deterministic planning and games.
One thread of work has been on learning knowledge for
STRIPS-style deterministic planners, e.g. learning heuris-
tics and policies for guiding best-first search (Yoon et al.,
2008) or state ranking functions (Xu et al., 2009). The
problem of learning improved leaf evaluation heuristics has
also been studied in the context of deterministic real-time
heuristic search (Bulitko and Lee, 2006). As one more ex-
ample, evaluation functions have been learned for game
tree search based on learning from “principle variations”
of deep searches (Veness et al., 2009). The training data
for this approach is similar in spirit to that of our OPI algo-
rithm. Since these algorithms have been developed for de-
terministic settings, it is not straightforward to adapt them
to the general MDP setting. Further, none of these exist-
ing methods, to our knowledge, have provided a theoretical
analysis of the possible regret of using the learned knowl-
edge, which is one of our main contributions.

There have been a number of efforts for utilizing domain-
specific knowledge in order to improve/speedup MCTS,
many of which are covered in a recent survey (Browne
et al., 2012). A popular technique is to use a bias term
f(s, a) for guiding action selection during search. f is
hand-provided in (Chaslot et al., 2007; Couëtoux et al.,
2011) and learned in (Gelly and Silver, 2007; Sorg et al.,
2011). Generally there are a number of parameters that
dictate how strongly f(s, a) influences search and how that
influence decays as search progresses. In our experience,
tuning the parameters for a particular problem can be te-
dious and difficult to do in a domain-independent way.
Similar issues hold for the approach in (Gelly and Sil-
ver, 2007) which attempts to learn an approximation of
Q∗ and then initializes search nodes with the estimate. In
(Sorg et al., 2011), control knowledge is learned via policy-
gradient techniques in the form of a reward function and
used to guide MCTS with the intention of better perfor-
mance given a time budget. So far, however, the approach
has not been analyzed formally and has not been demon-
strated on large MDPs. Experiments in small MDPs have
also not demonstrated improvement in terms of wall clock
time over vanilla MCTS.

Finally, MCTS methods often utilize hand-coded or learned
“default policies” (e.g., MoGo (Gelly et al., 2006)) to im-
prove anytime performance. While this has shown some
promise in specific domains such as Go, where the policies
can be highly engineered for efficiency, we have found that
the computational overhead of using learned default poli-



cies is often too high a price to pay. In particular, most such
learned policies require the evaluation of a feature vector at
each state encountered, or for each state-action pair. This
may cause orders of magnitude fewer trajectories to be ex-
ecuted compared to vanilla MCTS. In our experience, this
can easily lead to degraded performance per unit time. Fur-
thermore, there is little formal understanding about how to
learn such rollout policies in principled ways, with straight-
forward approaches often yielding decreased performance
(Silver and Tesauro, 2009).

6 EXPERIMENTS

We consider learning partial policies in two domains.

Yahtzee is a classic dice game with ≈ 17 actions on av-
erage. Actions correspond to selecting subsets of dice to
roll and selecting categories to score. The objective is to
maximize the sum of category scores. We use 26 features
for learning the partial policy which encode the impact of a
roll action or select action for each of the 13 categories.

Galcon is a two-player real-time strategy game with ap-
proximately 174 actions per move on average (max. ≈
800). The objective is to maximize one’s own population
on a 2-D grid of planets by directing variable-sized fleets
of units between planets to capture enemy planets or fortify
one’s own. Transitions are stochastic when opposing pop-
ulations battle over a planet. We use 20 real-valued state-
action features that coarsely encode the impact of an action
on population size, planet ownership, etc.

In what follows, we experiment with the two extreme al-
gorithms, OPI and FT-QCM. The intermediate algorithm
FT-OPI is excluded in this paper due to the time required to
perform large-scale evaluations across a wide spectrum of
time bounds. Preliminary experiments suggest that FT-OPI
performs between OPI and FT-QCM.

Setup. For training we provide our learning algorithms
with root states generated by playing 100 full games al-
lowing UCT 64 seconds per move per tree. This produces
thousands of root states along with the search trees, which
we use for training as described in Section 4. Due to the
large action and stochastic branching factors, even with 64
seconds per move, we selectedD = 3 for learning since the
value estimates produced by UCT for deeper nodes were
not accurate. Note that in our evaluations we do not limit
the rollouts of UCT to depth 3, rather the rollouts proceed
until terminal states, which provide a longer term heuristic
evaluation for tree nodes.2 In order to select the pruning
fractions σd, in results not shown for space reasons, we
plotted the supervised losses achieved for various learned
ranking functions for a variety of σd. We found that in

2When UCT generates tree nodes at depths greater than D, in
these experiments we prune using ψD . However, we have con-
firmed experimentally that typically such nodes are not visited
frequently enough for pruning to have a significant impact.

Galcon a value of σd = 0.75 provided a good trade-off
point since the supervised average costs began to sharply
increase beyond that point. For Yahtzee we found that
σd = 0.75 was a good trade-off point for all depths except
the root. At the root we used a less aggressive pruning frac-
tion σ0 = 0.5 since the cost increased more quickly with
σ0. Finally, all of our online evaluations of the learned par-
tial policies within UCT are averaged across 1000 games
and 95% confidence intervals are plotted.

FT-QCM v OPI. Figures 2(a) and 2(d) compare the search
performance of UCT given various amounts of time per
move, when using the partial policies learned by FT-QCM
to that learned by OPI. FT-QCM has clear wins across most
of the anytime curve, with OPI achieving parity at suffi-
ciently large budgets in both domains. In results not shown
for space reasons, we repeated this experiment for a vari-
ety of sets of the pruning fraction σd. In all cases, OPI
never outperforms FT-QCM for any setting of σd and at
best, achieves parity. Based on this result the remainder of
our experimental evaluation is based on FT-QCM.

FT-QCM v baselines. We now compare the performance
of pruning with FT-QCM partial policies to other ap-
proaches for injecting control knowledge into UCT. Most
other approaches require an action scoring function of
some form, for which we use the ranking function f0

learned for the root partial policy by FT-QCM. The first
baseline is vanilla UCT without any knowledge injection.
Second, we use (decaying) heuristic bias (HB) in UCT
as discussed in the related work, using the best settings
found by experimenting with different methods of setting
the bias component. Our third baseline uses a softmax
policy, parameterized by f0, as the default policy (DP).
During a rollout, an action is sampled with probability
exp(f0(s, a))/

∑
a′∈A(s) exp(f0(s, a′)) instead of uniform

random selection. Our fourth and last baseline, greedy,
does not search and selects root actions greedily accord-
ing to the learned root ranking function. Note that this final
baseline can be viewed as an attempt to apply traditional
imitation learning to our problem.

Figures 2(b) and 2(e) give the results for Galcon and
Yahtzee. For Galcon, which is two-player, the curves cor-
respond to each method playing against vanilla UCT us-
ing the same budget on wall-clock time. The heuristic
bias (HB) technique is unable to show any improvement
over vanilla when evaluated in terms of performance ver-
sus wall-clock time. This is likely due to f0 being inaccu-
rate and highly biased when used as an evaluation func-
tion. Furthermore, tuning the complex interaction of Q
estimates, exploration bonus and noisy bias terms is chal-
lenging and time-consuming. Note that HB does not de-
crease search performance unlike the informed default pol-
icy (DP) baseline. Here, the cost of using the expensive
softmax rollout policy dwarfs any benefit. DP only seems
to “pay for itself” at the largest budgets where parity is
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Figure 2: The first column shows a comparison between partial policies learned by FT-QCM and OPI when used inside
UCT for different time bounds. In (a), the baseline player is OPI instead of vanilla (b,c). The second column shows the
main experimental result where FT-QCM consistently outperforms baselines in both domains. DP and HB are surprisingly
bad when knowledge costs are taken into account. The third column shows performance under zero knowledge costs by
measuring the budget in simulation counts. Again, FT-QCM does well consistently but now DP and HB perform better.

achieved with the other baselines. The last baseline greedy
demonstrates the limited strength of the reactive policy
which is only competitive in Galcon when the search is
very time-constrained. In Yahtzee, greedy is not compet-
itive at any budget. We note that we have attempted to
apply alternative imitation learning approaches to arrive at
improved reactive policies, with little improvement. It ap-
pears that our feature representation is not powerful enough
to accurately discriminate optimal actions. By relaxing our
goal to learning a partial policy and integrating with search,
we are able to benefit significantly from learning.

In both domains, FT-QCM outperforms every baseline at
every budget considered. In Galcon, it has large wins on
the left of the anytime curve and smaller wins on the right
(not visible due to scale). In Yahtzee as well, FT-QCM
achieves higher scores consistently. Furthermore, it contin-
ues to improve even at the largest budgets. In Yahtzee, in-
creasing average score above 200 is extremely challenging
and FT-QCM’s performance improvement is significant.

The cost of knowledge. It is initially surprising that the
heuristic bias and informed default policy methods do not
improve over vanilla MCTS. It turns out these methods do
well as long as the cost of using knowledge is set to zero.
That is, budgets are specified in terms of the number of
simulations conducted by UCT instead of wall-clock time.

The difference is shown in Figures 2(c) and 2(f) where all
the planners were re-run using simulations instead of time.
Now HB outperforms vanilla in both domains while DP
is competitive or wins by small amounts. However, our
method FT-QCM is again better across most of the anytime
curve in both domains. This result shows the importance
of evaluating in terms of wall-clock time, which has not
always been common practice in prior work.

7 SUMMARY
We have shown algorithms for offline learning of partial
policies for reducing the action branching factor in time-
bounded tree search. The algorithms leverage a reduction
to i.i.d supervised learning and are shown to have bounds
on the worst case regret. Experiments on two challenging
domains show significantly improved anytime performance
in Monte-Carlo Tree Search. One line of future work in-
volves more sophisticated uses of partial policies during
search (e.g., progressive widening, time-aware search con-
trol) for further improvements in anytime performance. We
are also interested in iterating the learning process, where
we use a learned ψ to guide deeper search in order to gen-
erate training data for learning an even better ψ.
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Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In AISTATS, pages 627–
635, 2011.

David Silver and Gerald Tesauro. Monte-Carlo simulation
balancing. In ICML, pages 945–952, 2009.

Jonathan Sorg, Satinder P Singh, and Richard L Lewis. Op-
timal rewards versus leaf-evaluation heuristics in plan-
ning agents. In AAAI, 2011.

Umar Syed and Robert E Schapire. A reduction from ap-
prenticeship learning to classification. In NIPS, pages
2253–2261, 2010.

Joel Veness, David Silver, Alan Blair, and William W Co-
hen. Bootstrapping from game tree search. In NIPS,
pages 1937–1945, 2009.

Joel Veness, Kee Siong Ng, Marcus Hutter, William Uther,
and David Silver. A Monte-Carlo AIXI approximation.
JAIR, 40(1):95–142, 2011.

Thomas J. Walsh, Sergiu Goschin, and Michael L. Littman.
Integrating sample-based planning and model-based re-
inforcement learning. In AAAI, 2010.

Yuehua Xu, Alan Fern, and Sungwook Yoon. Learning lin-
ear ranking functions for beam search with application
to planning. JMLR, 10:1571–1610, December 2009.

Sungwook Yoon, Alan Fern, and Robert Givan. Learning
control knowledge for forward search planning. JMLR,
9:683–718, 2008.


	INTRODUCTION
	PROBLEM SETUP
	LEARNING PARTIAL POLICIES
	OPI : OPTIMAL PARTIAL IMITATION
	FT-OPI : FORWARD TRAINING OPI
	FT-QCM: FORWARD TRAINING Q-COST MINIMIZATION

	IMPLEMENTATION DETAILS
	RELATED WORK
	EXPERIMENTS
	SUMMARY

