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Abstract

Interactive learning deals with the problem of
learning and solving tasks using human instruc-
tions. It is common in human-robot interac-
tion, tutoring systems, and in human-computer
interfaces such as brain-computer ones. In most
cases, learning these tasks is possible because
the signals are predefined or an ad-hoc calibra-
tion procedure allows to map signals to specific
meanings. In this paper, we address the problem
of simultaneously solving a task under human
feedback and learning the associated meanings of
the feedback signals. This has important practi-
cal application since the user can start controlling
a device from scratch, without the need of an ex-
pert to define the meaning of signals or carrying
out a calibration phase. The paper proposes an
algorithm that simultaneously assign meanings
to signals while solving a sequential task under
the assumption that both, human and machine,
share the same a priori on the possible instruc-
tion meanings and the possible tasks. Further-
more, we show using synthetic and real EEG data
from a brain-computer interface that taking into
account the uncertainty of the task and the signal
is necessary for the machine to actively plan how
to solve the task efficiently.

1 INTRODUCTION

Interactive learning [1, 2] aims at developing systems that
can learn by practical interaction with the user and finds
applications in a wide range of fields such as human-robot
interaction, tutoring systems or human-machine interfaces.
This type of learning combines ideas of learning from
demonstration [3], learning by exploration [4] and tutor
feedback [5]. Under this approach the human teacher in-
teracts with the machine and provides extra feedback or
guidance.

Approaches have considered: extra reinforcement signals
[6], action requests [7], disambiguation among actions [8],
preferences among states [9], iterations between practice
and user feedback sessions [10], and choosing actions that
maximize the user feedback [11].

A usual assumption in such systems is that the learner and
the teacher share a mutual understanding of the meaning of
each others’ signals, and in particular the learning agent is
usually assumed to know how to interpret teaching instruc-
tions from the human. In practice, this problem is solved
due to two simplifications. On the one hand, the range
of accepted instructions is limited to those predefined by
the system developer. This approach, commonly used in
human-robot interaction, lacks flexibility and adaptation to
user specificities and, consequently, may not be well ac-
cepted by non-experts users with different preferences. On
the other hand, sometimes it is not enough to predefine the
instruction sets and it is necessary to perform a calibration
phase to map raw signals such as speech or brain activity
to their meanings. This is usually done using an ad-hoc
protocol to collect labeled samples of the user instruction
signals. This process must be well controlled to ensure sig-
nals are associated to the true intended meaning of the user.

The previous engineering solution is needed due to the
chicken egg nature of the problem. In order to teach a sys-
tem a new skill, it needs to understand the human instruc-
tions. And, in order to understand this feedback, the system
must have some interaction with the human (e.g. through a
controlled task as done in the calibration process) to learn
what the instructions mean. Few works have studied and
developed interactive learning systems that can learn both
the meaning of signals and the task simultaneously. In
human-robot interaction Griffiths et al. [12] conducted an
experiment with humans learning the meaning of unknown
symbolic teaching signals. Lopes et al. [13] presented
sequential task experiments considering symbolic teach-
ing signals and requiring a bootstrap with known signals.
Grizou et al. [14] extended their system for non-symbolic
teaching signals while removing the need for bootstrapping
with known signals. Which they later extended to non-



invasive brain-computer interfaces (BCIs), proposed an un-
certainty measure on both the task and the signal model for
efficient planning, and performed online experiments [15].
Also, for P300 spellers, Kindermans et al. have shown that
it is possible to exploit the repetition of signals [16] to-
gether with prior information (language models, informa-
tion from other subjects) [17] to calibrate the EEG decoder
while using the speller. They exploit the particular fact that
only one event out of six encodes a P300 potential in the
speller paradigm. BCIs usually require user-dependent cal-
ibration and have to deal with the EEG brain signals non-
stationarities. These facts, together with the poor signal-to-
noise ratio of the EEG, make the EEG self-calibration one
of the most challenging ones.

This paper aims at solving the general problem of devel-
oping machines that can execute a task from human in-
structions and simultaneously learn the communicative sig-
nals. Our approach is based on a discretization of the pos-
sible tasks into a finite number. Each task assigns differ-
ent expected meanings to the instruction provided by the
user. The machine solves the most likely task according
to a pseudo-likelihood function computed using the corre-
sponding task labels. The experimental results, both syn-
thetic and based on real EEG data, show that in order to
simultaneously recover the meanings and solve the task it
is of paramount importance to take into account the uncer-
tainty on both task and signal space.

Compared to the work of Grizou et al. [14,15], we improve
the algorithm formalism for both learning and planning, the
robustness to noisy high-dimensional signals (e.g. EEG),
and allow to seamlessly transition from task to task with-
out changing the algorithm paradigm. Grizou at al. meth-
ods in [14] and [15] required a different set of equations for
the first task than for the further ones where only a fixed
classifier, common for all hypothesis, was used. Compared
to the work of Kindermans et al. [16, 17], our approach is
more general and do not need to rely on specific patterns in
the signal occurrences, i.e. they exploit the fact that only
one event out of six encodes a P300 potential in the speller
paradigm. The setup considered in this paper can not guar-
antee a specific ratio of meanings between received feed-
back signals.

In the following section, we present the set of assumptions
and algorithmic details of our system. Then we introduce
the specificity of the uncertainty inherent to our problem
using an intuitive example and present the details of our ac-
tion selection method. Finally we present a set of simulated
experiment showing that a) our action selection method is
reliable and improve over other methods, b) our algorithm
scale to the use of high dimensional signals coming from
previously recorded brain signals, and c) by being opera-
tional from the first step, as opposed to calibration proce-
dure, we can estimate the correct task as soon as sufficient
evidence has been collected.

2 ALGORITHM

2.1 Problem definition

We consider interaction sessions where a machine can per-
form discrete actions from a set of available actions a ∈ A
in an either discrete or continuous state space s ∈ S . The
user, that wants to achieve a task ξ̂, is providing feedback
to the machine using some specific signal e, represented as
a feature vector. The task is sequential meaning it is com-
pleted by performing a sequence of actions. The machine
ignores the task the user has in mind, as well as the actual
meaning of each user’s signal. Its objective is to simultane-
ously solve the task and learn a model for the user’s signals.
To achieve this, it has access to a sequence of triplets in the
form DM = {(si, ai, ei), i = 1, . . . ,M}, where si, ai
and ei represent, respectively, the state, action and instruc-
tion signals at time step i. The behavior of the machine is
determined by the actions a ∈ A and the corresponding
transition model p(s′ | s, a).

We make the following assumptions under this general
paradigm. First, the system has access to a set of tasks
ξ1, . . . , ξT which includes the task the user wants to solve.
We assume the instruction signals e have a finite and dis-
crete number of meanings l ∈ {l1, l2, . . . , lL} which we
call labels and this is known by the user and the machine.
In this work we will consider two possible meanings for
the signals: correct or incorrect; but more complex mean-
ings could be used, such as guidance instructions (go up,
go left, ...). We assume that given these labels, it is possi-
ble to compute a model that generates or classifies signals
e into meanings l. The parameters of such a model will be
denoted by θ and we assume this mapping between signal
e and their label l to be fixed. However this mapping is
unknown to the agent at start.

2.2 Estimating Tasks Likelihoods

We start by assuming we are provided a signal decoder θ̂
and relax this assumption later on. As mentioned in the
introduction, knowing θ̂, we can compute the probability of
each task ξt after observation of a signal ewhen performing
action a in state s:

p(ξt|e, s, a, θ̂) ∝ p(e|s, a, θ̂, ξt)p(ξt) (1)

where p(e|s, a, θ̂, ξt) needs to take into account the prob-
ability of each possible meaning l given the target ξt, the
current state s and the action a executed by the machine:

p(e|s, a, θ̂, ξt) =
∑

k∈1,...,L

p(e|l = lk, θ̂)p(l = lk|s, a, ξt) (2)

This process can be repeated recursively for several inter-



action steps i:

Lξti = p(ξt|Dξt
i , θ̂)

∝ p(ei|si, ai, θ̂, ξt)p(ξt|Dξt
i−1, θ̂) (3)

with p(ξt|Dξt
0 , θ̂) being the prior at time 0 (before the ex-

periment starts) for the task ξt, usually uniform over the
task distribution.

We now relax the assumption we are given a model θ̂.
The natural extension from the previous models is to com-
pute the posterior distribution over the task and the model,
p(ξ, θ|e, s, a). However, the resulting distribution does not
have a close form solution even when linear Gaussian like-
lihoods are used due to the combination of mixtures for
each possible task. Another alternative is to compute the θ
and ξ that maximize the data likelihood. This is prone to
fail in certain scenarios due to two reasons. First, it is com-
mon that different tasks share many labels (e.g. the policies
to reach neighboring cells on a grid world are almost iden-
tical and, therefore, share most of the labels l) and results
on large uncertainties in the task space that require multiple
actions to be disambiguated. Second, if the signals are not
well separated the meaning parameters θ of different tasks
will not differ much.

For instance, under Gaussian assumptions for p(e|l =
lk, θ) and deterministic task labels p(l = lk|s, a, ξ), it is
possible to integrate out θ to compute the marginal likeli-
hood p(DM | ξ). The resulting likelihood depends only
on the traces of each p(e|l = lk, θ). Empirical results with
synthetic and EEG data for a reaching task on a grid re-
vealed that, when the distributions over e overlap, the traces
were not enough to recover the most likely task and the cor-
responding meaning parameters.

To cope with these problems, we define the following
pseudo-likelihood function:

P (DM |ξ, θ) ≈
M∏
i=1

p(ei|si, ai, ξ, θ−i) (4)

=

M∏
i=1

∑
lc

∑
l

p(ei|lc, θ−i)p(lc|l, θ−i)p(l|si, ai, ξ)(5)

where l represents the meaning assigned by task ξ, action
ai and state si and lc is the label corrected based on what
we know about our classifier θ−i for a given label l.

The pseudo-likelihood is built using a leave-one-out
cross-validation strategy to evaluate the likelihood
p(ei|si, ai, ξ, θ−i) of each signal based on the meaning
parameters θ−i learned for each task using all the other
available signals. The use of θ−i indicates we use a leave
one out method. If we interpret p(ei|si, ai, ξ, θ−i) as
a classifier, its predicted labels should match the ones
provided by the task for different state-actions pairs. The
rationale behind it is that for the correct task, the signals

and labels will be more coherent than for other tasks,
which we measure as the predictive ability of a classifier
trained on the signal-label pairs. Note that wrong tasks
will assign wrong labels l to the signals e, therefore the
learned models will have larger overlaps (see Figure 1c).

Each term of the pseudo-likelihood is computed from three
terms. p(l|si, ai, ξ) represents the probability distributions
of the meanings according to a task, the executed action
and the current state. p(lc|l, θ−i) encodes which label will
be actually recovered by θ−i. Intuitively, it models the
quality of the model θ−i. p(ei|lc, θ−i) is the likelihood
of the signal given the meaning. The pseudo-likelihood
is maximized in two steps. First, the maximum a poste-
riori estimate θ−i of each task is computed. Then, the term
p(lc|l, θ−i) is approximated by the corresponding confu-
sion matrix of the classifier based on θ−i. It is the prob-
ability that the classifier itself is reliable in its prediction.
Finally, the best task ξ should be the one that maximizes
the pseudo-likelihood in Eq. 4.

2.3 Decision and Task Change

The machine must decide which task is the correct one. To
do so, we define W ξt the minimum of pairwise normalized
likelihood between hypothesis ξt and each other hypothe-
sis:

W ξt = min
x ∈ 1,...,Tr{t}

P (DM |ξt, θ)
P (DM |ξt, θ) + P (DM |ξx, θ)

(6)

When it exists a t such that W ξt exceeds a threshold β ∈
]0.5, 1] we consider task ξt is the one taught by the user.

Once a task is identified with confidence, the robot exe-
cutes it and prepares to receive instructions from the user
to execute a new task. Assuming the user starts teaching a
new task using the same kind of signals, we now have much
more information about the signal model. Indeed, we are
confident that the user was providing instructions related
to the previously identified task; therefore we can infer the
true labels of the past signals. We can now assign such
labels to all hypothesis and by using the same algorithm
we can start learning the new task faster as all hypothesis
now share a common set of signal-label pairs. The meaning
models for each hypothesis are still updated step after step
until the new task is identified and labels reassigned.

3 PLANNING UNDER UNCERTAINTY

To solve our problem we need to identify simultaneously
the task and how to interpret teaching signals. To do so the
system has to explore regions that allow to disambiguate
among hypothesis. There are several efficient model-based
reinforcement learning exploration methods that add an ex-
ploration bonus for states that might provide more learn-



ing gains. Several theoretical results show that these ap-
proaches allow to learn tasks efficiently [18, 19]. We de-
fine an uncertainty measure and use model-based planning
to select sequences of actions that guide the agent toward
states that better identify the desired task.

In order to exemplify the specificity of our problem in terms
of planning we present a simple experiment and compare
the effect of different action selection strategies. In this
scenario, the agent is in a T world with 7 states and can
perform 4 actions (right, left, up, and down). The user
wants the robot to reach the left edge (marked by G1) of
the T, (see Figure 1 top). The agent knows the users wants
it to go to one of the two edges (G1 or G2) but not which
one. The agent will perform some actions, and the user
will assess the correctness of each agent’s action by pro-
viding a two dimensional teaching signal. The agent does
not known which signal means “correct” and which signal
means “incorrect”. As there is two possible tasks, the agent
will assign labels to every user’s signals according to each
hypothesis. The result of the labeling process is displayed
as colored dots (green for “correct”and red for “incorrect”)
in Figure 1 (a, b, and c), where the left part corresponds to
hypothesis 1 (G1) and the right part to hypothesis 2 (G2).

If the agent knew how to interpret the signal, i.e. which
signal corresponds to correct or incorrect feedback, the op-
timal action to differentiate between the two hypothesis
would be to perform right and left actions in the top part
of the T. However in our problem the classifier is not given
and the agent is building a different model for each hy-
pothesis. As a results, we end up with two opposite inter-
pretations of the user signal, which are both as valid (see
Figure 1a) and do not allow to differentiate between hy-
pothesis.

Considering that the agent does not know the signal to
meaning classifier, a sensitive option is to select actions
that allow to unequivocally identify the model. In our sce-
nario taking only up and down actions in the trunk of the
T leads to identical interpretation for each hypothesis (see
Figure 1b). However this method do not allow to disam-
biguate between hypothesis and in most setting, such as
the grid world we consider later, there is no state-action
pair leading to unequivocal interpretations.

However performing all the four actions allow to disam-
biguate between hypothesis. As shown in Figure 1c, hy-
pothesis 1 stands out by the nice coherence between the la-
bels and the spacial organization of the data. This informs
us that hypothesis 1 is the task the user has in mind and
that feedback signals in the right and left part of the feature
space means “correct” and “incorrect” respectively.

For our kind of problem the agent can not just try to dif-
ferentiate hypothesis by finding state-action pair where ex-
pected feedback differs but should also collect data to build
a good model or at least invalidate other models. Can we

Figure 1: A “T world” scenario and the interpretation re-
sults for different planning strategies. The agent knows it
should reach either of the two edges of the T world (marked
with the letter G). The arrows represent the optimal policy.
For each move the agent receives an unlabeled two dimen-
sional teaching signal, corresponding to user’s assessments
on the agent’s actions. The teacher’s goal is to have the
agent reach G1. As the agent do not have access to this
information, it interprets the signal according to each hy-
pothesis (G1 and G2). a) shows the interpretation results
if the agent only perform right and left actions in the top
of the T world, b) shows the interpretation results when the
agent only performs up and down actions in the trunk of
the T, and c) shows the interpretation results for an agent
performing all possible actions. Only the method c) allow
to differentiate between hypothesis.



find a measure of uncertainty that account for both? Going
back to Figure 1 (a and b), we understand that, to differen-
tiate hypothesis in situation a) the best actions to perform
are up and down in the T trunk while in situation b) the best
actions to perform are right and left in the top part of the
T. This corresponds to the uncertainty in the signal space.
In the case of a) when going left both hypothesis agree that
they will receive a signal in the right part of the feature
space even if they disagree on its meaning. However for
action down, both hypothesis agree they should receive a
signal of meaning “incorrect” but disagree on the expected
location of such signal in the feature space. In the case of
b) when going up both hypothesis agree they will receive a
signal in the right part of the feature space and agree on its
meaning. However for action left, both hypothesis disagree
about the meaning of the signal they should receive and as
both share the same signal model they expect a signal in
different locations of the feature space.

Estimating uncertainty in the signal space is in practice too
costly as it requires to compute, for every state-action pair,
the overlap between many continuous probability distribu-
tions weighted by their respective expected contribution.
Following the discussion presented in previous section, we
will rely on our pseudo-likelihood metric. As we cannot
predict, neither control, the signal we will receive for a
particular state-action, we will rely on our past history of
signal and compute the expected joint probability based on
previously experienced signals.

We note:

Jξt(s, a, e) =
∑
lc

∑
l

p(e|lc, θ)p(lc|l, θ)p(l|s, a, ξt)

which is Eq. 5 for only one new expected observation e, so
the product over iterations disappears. And Jξ(s, a, e) the
vector [Jξ1(s, a, e), . . . , JξT (s, a, e)].

The uncertainty of one state-action pair given a signal e is
computed as the weighted variance of the joint probabil-
ity predictions with weights W ξ = [W ξ1 , . . . ,W ξT ] (see
Eq. 6):

U(s, a|e) = weightedV ariance(Jξ(s, a, e),W ξ) (7)

The uncertainty for a state-action pair is given by:

U(s, a) =

∫
e

U(s, a|e)p(e)de (8)

which we approximate by summing values of U(s, a|e) for
different signals e:

U(s, a) ≈
∑
e

U(s, a|e)p(e) (9)

with p(e) assumed uniform.

Our measure of global uncertainty U(s, a) will be higher
when, for a given state-action there is a high incongruity of
expectation between each hypothesis and according to each
hypothesis current probability.

This measure is then used as a classical exploration bonus
method. We will switch to a pure exploitation of the task
after reaching the desired confidence level.

Interestingly this approach generalizes over other active
sampling method [7], if the classifier is known, equation
7 reduces to the one presented in [13] and is no longer de-
pendent on signal e. As our uncertainty function combines
uncertainty on both signal and task space, when the former
is known, the latter becomes the sole source of ambiguity.

4 METHOD

In the subsequent analysis, we assume that a trainer pro-
vides feedback for the actions taken by a learner. Specifi-
cally, we consider the user is delivering signals that can be
mapped into binary feedback: correct c and incorrect w.

4.1 World and Task

We consider a 5x5 grid world, where an agent can per-
form five different discrete actions: move up, down, left,
right, or a “no move” action. The user goal is to teach the
agent to reach one (unknown to the agent) of the 25 dis-
crete positions which represent the set of possible tasks.
We thus consider that the agent has access to 25 different
task hypothesis (one with goal location at each of the cells).
We use Markov Decision Processes (MDP) to represent the
problem [4]. From a given task ξ, represented as a reward
function, we can compute the corresponding policy πξ us-
ing, for instance, Value Iteration [4]. The policies allow
us to interpret the teaching signals with respect to the in-
teraction protocol defined. For the current work we will
consider the user is providing feedback on the agent action.
We define p(l|s, a, ξ) as:

p(l|s, a, ξ) =

{
1− α if a = argmaxa π

ξ(s, a)

α otherwise

with α modeling the expected error rate of the user.

4.2 Signal properties and classifier

We aim at applying this algorithm to error-related poten-
tials (ErrPs) for EEG-based BCI applications. These sig-
nals are generated in the user’s brain after s/he assesses ac-
tions performed by an external agent [20], where correct
and erroneous assessments will elicit different brain sig-
nals. Past approaches have already demonstrated that these
signals can be classified online with accuracies of around
80% and translated into binary feedback, thanks to a prior
calibration session that lasts for 30-40 minutes [20, 21].



Following the literature [22], we will model the signals us-
ing independent multivariate normal distributions for each
class, N (µc,Σc),N (µw,Σw). With θ the set of parame-
ters {µc,Σc, µw,Σw}. Given the high dimensionality of
the problem we will also need to regularize. For this we
apply shrinkage to the covariance matrix (λ = 0.5) and
compute the value of the marginal pdf function using a non-
informative (Jeffreys) prior [ [23], p88]:

p(e|l, θ) = tn−d(e|µl,
Σl(n+ 1)

n(n− d)
) (10)

where θ represents the ML estimates (mean µl and covari-
ance Σl for each class l) required to estimate the marginal
under the Jeffreys prior, n is the number of signals, and d
is the dimensionality of a signal feature vector.

4.3 Task Achievement

A task is considered completed when the confidence level
β as been reached for this task and the agent is located at
the task associated goal state. If the state is the one intended
by the user it is a success. Whatever the success or failure
of the first task, the user selects a new goal state randomly,
the agent resets task likelihoods, propagates the believed
labels, and teaching starts again. At no point the agent has
access to a measure of its performance, it can only refer to
the unlabeled feedback signals from the user.

4.4 Evaluation scenarios

Two different evaluation scenarios were tested with two
different types of signals: artificial datasets, and real ErrP
datasets recorded from previous experiments [21].

Artificial datasets The goal of this evaluation was to an-
alyze the feasibility of learning a task from scratch in a
5x5 grid world. The artificial dataset was composed of
two classes, with 1000 examples per class. Each example
was generated by sampling from a normal distribution with
a covariance matrix of diagonal 1 and mean selected ran-
domly. The datasets were generated while varying two fac-
tors: (i) the dimensionality of the data, where 2, 5, 10 and
30 features were tested; and (ii) the quality of the dataset,
measured in terms of the ten-fold accuracy the classifier
would obtain.

Once the datasets were generated, two different evaluations
were performed: (i) the goodness of our proposed planning
strategy versus a) random action selection, b) greedy action
selection, and c) a task-only uncertainty based method; (ii)
the time required by the agent to learn the first task (i.e. to
reach the first target), and (iii) the number of tasks that can
be learned in 500 iterations.

EEG datasets Once the algorithm was evaluated with ar-
tificial datasets, we tested the feasibility of the proposed

self-calibration approach using real ErrP datasets. The ob-
jective of this analysis is to study the scalability of our
method to EEG data, which may have different properties
than our artificial dataset.

The EEG data were recorded in a previous study [21] where
participants monitored on a screen the execution of a task
where a virtual device had to reach a given goal. The mo-
tion of the device could be correct (towards the goal) or er-
roneous (away from the goal). The subjects were asked to
mentally assess the device movements as erroneous or non-
erroneous. The EEG signals were recorded with a gTec
system with 32 electrodes distributed according to an ex-
tended 10/20 international system with the ground on FPz
and the reference on the left earlobe. The ErrP features
were extracted from two fronto-central channels (FCz and
Cz) within a time window of [200, 700] ms (being 0 ms the
action onset of the agent) and downsampled to 32 Hz. This
leaded to a vector of 34 features.

Comparison with calibration methods In order to show
the benefit of learning without explicit calibration, we com-
pare our method with the standard supervised BCI cali-
bration procedure. In this calibration procedure, which
can last for up to 40 minutes, the experimenter needs to
record enough data from the user from several offline runs,
where the user is not controlling the agent but just pas-
sively assessing its actions. Following the literature on Er-
rPs [20, 21] our training data will consist of 80 percent of
positive examples (associated to a correct feedback) and
20 percent of negative examples (associated to an incorrect
feedback). Our proposed algorithm is compared with dif-
ferent (but standard) sizes of calibration datasets: 200, 300
and 400 examples.

4.5 Settings

We used α = 0.1, β = 0.9. For dataset of dimension d, we
started computing likelihoods after d+10 steps as equation
10 requires at least d + 1 samples and to allow for cross
validation. For the planning (Eq. 9) we selected randomly
20 signals from DM .

5 RESULTS

We present most of the results in terms of the quality of
the dataset, measured as the ten-fold classification accuracy
that a calibrated signal classifier would obtain. Each simu-
lation was run 100 times using different sampled datasets,
and their associated box plots were computed. For each
boxplot, colored bars show the interquartile range (between
25th and 75th percentile), and the median and the mean
are marked as a horizontal line and a colored dot respec-
tively. Additionally, the two “whiskers” show the 5th and
95th percentiles, black crosses are outliers.



5.1 Artificial Datasets

The first objective is to study the impact of the exploration
approach proposed in Section 3. The second is to evaluate
performances and robustness with respect to the dimension
and the quality of each dataset.

Planning Methods Figure 2 compares the number of
steps (with maximum values of 500 steps) needed to iden-
tify the first task when learning from scratch with different
planning methods. Following the most probable task (i.e.
going greedy) does not allow the system to explore suffi-
ciently. On the contrary, our proposed planning method
leads the system towards regions that maximize disam-
biguation among hypotheses. Furthermore, it also performs
better than assessing uncertainty on the task space only.
Given these results, the remainder of this section will only
consider our planning method.

50−60 60−70 70−80 80−90 90−100
0

50

100

150

200

250

300

350

400

450

500

Dataset Accuracies

N
u
m
b
e
r
 
o
f
 
i
t
e
r
a
t
i
o
n
 
t
o
 
f
i
r
s
t
 
t
a
s
k

 

 

greedy

random

uncertainty task space

uncertainty task−signal space

Figure 2: Number of steps to complete first task, compar-
ison of different exploration methods with 30 dimensional
artificial data. When learning from scratch, planning upon
uncertainty in both task and signal space performs better
than relying only on task uncertainty. Greedy action selec-
tion rarely disambiguates between hypothesis.

As depicted in Figure 1, the system needs to collect two
types of information, some about the true underlying model
(Fig. 1b) and some to differentiate between hypotheses
(Fig. 1a). The properties of the grid world make the ran-
dom strategy quite efficient at collecting those two types
of information. The differences between planning meth-
ods should be more evident when navigating a complex
maze since our method allows to plan in order to collect
the type of information we need. Studying how different
world properties affect the learning efficiency is part of our
future work. Also, we note that all planning methods were
switched to pure exploitation (greedy) once the confidence
level was reached. Therefore the performance in Figure 2

compares the ability of the different methods to discrimi-
nate between different task hypotheses, not their ability to
solve the task itself.

Dimensionality Figure 3 compares the number of steps
(with maximum values of 500 steps) needed to identify
the first task when learning from scratch with different di-
mensionality of datasets. The convergence speed is only
slightly affected by the features dimensionality. On the
other hand, the dataset quality (measured in terms of it
associated ten-fold accuracy) is the main cause of perfor-
mances decay. Furthermore, for those datasets with ac-
curacies between 50% and 60%, the system is not able to
identify a task with confidence after 500 steps.
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Figure 3: Number of steps to complete first task using ar-
tificial data. Under 60 percent accuracy, the confidence
threshold cannot be reached in 500 steps. The dataset qual-
ities, more than their dimensionality, impact the learning
time.

Once one task is completed, a new one is selected ran-
domly. Figure 4 compares the number of tasks that can be
achieved in 500 steps. As expected, the lower the quality
of the data, the less number of task can be completed. With
dataset accuracies higher than 90% we can achieve more
than 30 tasks on average.

An important aspect of the proposed learning approach
was that the first task learned was always the correct one.
We reported only 9 erroneous estimations across all simu-
lated experiments (5 in the 70-80 group and 4 in the 80-90
group).

5.2 EEG datasets and comparison with calibration
method

Example Figure 5 shows one particular run of 500 steps
comparing our self-calibration method with a calibration



50−60 60−70 70−80 80−90 90−100

0

5

10

15

20

25

30

35

40

45

50

55

Dataset Accuracies

N
u
m
b
e
r
 
o
f
 
c
o
r
r
e
c
t
 
t
a
s
k

 

 

30D

10D

5D

2D

Figure 4: Number of tasks correctly achieved in 500 steps,
artificial data. Quality of dataset impacts the number of
task identified in 500 steps as more evidence should be col-
lected to reach the confidence threshold.

procedure of 400 steps. The two independent runs use as
real EEG dataset with 80% ten-fold classification accuracy.
As our algorithm is operational from the first step, it can
estimate the real task when sufficient evidence has been
collected. On the other hand, a calibration approach col-
lects signal-label pairs for a fixed number of steps and use
the resulting classifier without updating it. This provokes
that, during the calibration phase, no tasks can be learned,
substantially delaying the user’s online operation.

Figure 5: Time-line of one run from EEG dataset of 80 per-
cent ten-fold classification accuracy, self-calibration (top)
versus 400 steps calibration (bottom). Green (filled) and
red (dashed) bars represents respectively correct and in-
correct task achievement. The proposed self-calibration
method allow to reach a first task faster than would take
a calibration procedure.

Figure 6 shows the evolution of classification rate between
our self-calibration method with a calibration procedure of
400 steps. As our method assigns different labels to each
new teaching signal, the resulting classifiers have differ-
ent performances, which help identifying the correct task.

Once a task is identified (e.g. step 85 and 134), the corre-
sponding labels are taken as ground truth, and all classifiers
will have the same accuracies. As the agent starts exploring
again to estimate the new tasks, all the classifiers except the
true one will start to have worse accuracies again.
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Figure 6: Evolution of classification rate of one run from
EEG data, self-calibration (top) versus 400 steps calibra-
tion (bottom). On top, the red line represents the classifier
corresponding to the successive tasks taught by the user,
the dashed blue lines represent all others tasks. Our method
updates classifiers every steps.

Time to first task Figure 7 shows the results per group
of dataset. Our algorithm allows to complete the first task
without errors and in a fair amount of iteration. For our
method, the learning time is strongly correlated with the
dataset quality. However calibration methods, which do not
update their classifier once calibrated, identify more tasks
incorrectly.

50−60 60−70 70−80 80−90 90−100
0

50

100

150

200

250

300

350

400

450

500

550

Dataset Accuracies

N
u
m
b
e
r
 
o
f
 
i
t
e
r
a
t
i
o
n
 
t
o
 
f
i
r
s
t
 
t
a
s
k

 

 

25% 50% 23% 100% 39% 41% 31% 100% 32% 37% 55% 100% 53% 53% 57% 100% 76% 73% 75% 100%

C
a
lib

ra
ti
o
n

Percentage of correct first task

Calibration 400

Calibration 300

Calibration 200

Self−calibration

Figure 7: Number of steps to complete first task with EEG
data. The method scale well to EEG data. Contrary to the
standard calibration approaches, we do not make mistakes
with low quality datasets.



Cumulative performances Figure 8 compares the num-
ber of tasks that can be achieved in 500 steps. With 90%
and more dataset quality we can achieve about 20 tasks on
average. The results are consistent with artificial dataset
analysis.
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Figure 8: Number of task correctly achieved in 500 steps
with EEG data. Calibration methods can not complete a
significant number of task as most of the time is spent on
calibration.

The calibration methods can not complete many task as a
significant amount of iteration was used for calibrating the
system. A calibration of 200 steps makes as many good
estimation than our method, but it also makes many wrong
estimation, see Figure 9. For calibration methods, the less
time spent on calibration, the poorer the classifier which
implies more mistakes.
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Figure 9: Number of task incorrectly achieved in 500 steps
with EEG data. Calibration methods, which do not update
their models once calibrated, make more errors.

6 CONCLUSION

In this paper we have shown that, given a limited number
of possible tasks, it is possible to solve sequential tasks us-
ing human feedback without defining a map between feed-
back signals and their meaning beforehand. The proposed
algorithm optimizes a pseudo-likelihood function and per-
forms active planing according to the uncertainty in the task

and meaning spaces. Indeed, taking into account this un-
certainty is crucial to solve the task efficiently and to re-
cover the actual meanings. This combination allows: a) a
human to start interacting with a system without calibra-
tion; b) to automatically adapt calibration time to the user
needs which can even outperform fixed calibration proce-
dures; c) to adapt to the uncertainty of the information
source from scratch. We showed the applicability of the
approach to brain-machine interfaces based on error poten-
tials which could work out of the box without calibration,
a long-desired property of this type of systems.

A number of open questions remain to be addressed:

• How the task properties (symmetries, size, . . . ) affect
the learning properties?

• How to leverage from the finite set of hypothesis con-
straint? A potential avenue is to use a combination of
particle filter and regularization on the task space.

• In real-world applications, users are usually told how
to interact with machines. Do people want to have an
open-ended choice about what signal to use? Would
they be more efficient? When is it better to use a cali-
bration procedure?

• Only prerecorded datasets have been used. However,
signals may change during the learning. For instance,
people can try to adapt themselves to a robot if they
believe the latter is not understanding properly. Or,
brain signals are sensitive to the protocol, the dura-
tion of the experiment or even the percentage of errors
made by the agent [20]. To which extend the behav-
ior of our agent changes the properties of the teaching
signal? Can we adapt to such changes online?

Finally, while we only considered correct/incorrect labels,
in other works we have considered the use of guidance in-
structions (go up, go left, ...) in human-robot interaction
scenario [14]. But increasing the set of possible labels log-
ically requires collecting more examples to obtain a good
enough representation of the different signals. Hence, for
BCI domains, it is reasonable to keep a limited number of
labels.
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