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Abstract

Marginal MAP problems are known to be very
difficult tasks for graphical models and are so far
solved exactly by systematic search guided by a
join-tree upper bound. In this paper, we develop
new AND/OR branch and bound algorithms for
marginal MAP that use heuristics extracted from
weighted mini-buckets enhanced with message-
passing updates. We demonstrate the effective-
ness of the resulting search algorithms against
previous join-tree based approaches, which we
also extend to accommodate high induced width
models, through extensive empirical evaluations.
Our results show not only orders-of-magnitude
improvements over the state-of-the-art, but also
the ability to solve problem instances well be-
yond the reach of previous approaches.

1 INTRODUCTION

Graphical models provide a powerful framework for rea-
soning with probabilistic and deterministic information.
These models use graphs to capture conditional indepen-
dencies between variables, allowing a concise representa-
tion of knowledge as well as efficient graph-based query
processing algorithms. Combinatorial maximization or
maximuma posteriori(MAP) tasks arise in many applica-
tions and often can be efficiently solved by search schemes.

The marginal MAP problem distinguishes between maxi-
mization variables (called MAP variables) and summation
variables (the others). Marginal MAP is NPPP-complete
[1]; it is difficult not only because the search space is expo-
nential in the number of MAP variables, but also because
evaluating the probability of any full instantiation of the
MAP variables is PP-complete [2]. Algorithmically, this
means that the variable elimination operations (max and
sum) are applied in a constrained, often more costly order.

State-of-the-art exact algorithms for marginal MAP are

typically based on depth-first branch and bound search. A
key component of branch and bound search is the heuristic
function; while partitioning based heuristics such asmini-
bucket elimination(MBE) [3] or mini-cluster-tree elimina-
tion (MCTE) [4, 5] can be applied to the constrained elimi-
nation order, the current state-of-the-art is to use a heuristic
based on anexactsolution to anunconstrainedordering,
introduced by Park and Darwiche [6] and then refined by
Yuan and Hansen [7]. These techniques appear to work
well when the unconstrained ordering results in a smallin-
duced width. However, in many situations this is a serious
limitation. As one contribution, we extend both algorithms
to use mini-bucket partitionings schemes, enabling them to
be applied to a wider variety of problem instances.

Importantly however, exact algorithms for pure max- or
sum-inference problems have greatly improved in recent
years. AND/OR branch and bound (AOBB) algorithms ex-
plore a significantly smaller search space, exploiting prob-
lem structure far more effectively [8]. The partition-based
heuristics used by AOBB have also seen significant im-
provements – for MAP, cost-shifting [9] can be used to
tighten the heuristic, while for summation, an extension
of MBE called weighted mini-bucket(WMB) [10] uses
Hölder’s inequality and cost-shifting to significantly en-
hance the likelihood bounds. WMB is closely related to
variational bounds such as tree-reweighted belief propaga-
tion [11] and conditional entropy decompositions [12], and
similar principles have also been used recently to develop
message-passing approximations for marginal MAP [13].

Our contributions. In this paper, we develop AND/OR
branch and bound search for marginal MAP, using a heuris-
tic created by extending weighted mini-bucket to the con-
strained elimination order of marginal MAP. We evaluate
both a single-pass heuristic, which uses cost-shifting by
moment matching (WMB-MM) during construction, and
an iterative version that passes messages on the correspond-
ing join-graph (WMB-JG). We show empirically that the
new heuristic functions almost always improve over stan-
dard mini-bucket, and in many cases give tighter bounds
and faster searches than the unconstrained join-tree meth-



ods, yielding far more empowered search algorithms.

We demonstrate the effectiveness of the proposed search
algorithms against the two previous methods at solving a
variety of problem instances derived from the recent PAS-
CAL2 Inference Challenge benchmarks. Our results show
not only orders of magnitude improvements over the cur-
rent state-of-the-art approaches but also the ability to solve
many instances that could not be solved before.

Following background and brief overview of earlier work
(Sections 2 and 3), Section 4 presents the AND/OR
search approach for marginal MAP. Section5 describes the
weighted mini-bucket schemes, Section6 is dedicated to
our empirical evaluation and Section7 concludes.

2 BACKGROUND

A graphical modelis a tupleM = 〈X,D,F〉, where
X = {Xi : i ∈ V } is a set of variables indexed by set
V andD = {Di : i ∈ V } is the set of their finite domains
of values.F = {ψα : α ∈ F} is a set of discrete positive
real-valued local functions defined on subsets of variables,
where we useα ⊆ V andXα ⊆ X to indicate thescope
of functionψα, ie,Xα = var(ψα) = {Xi : i ∈ α}. The
function scopes imply aprimal graphwhose vertices are
the variables and which includes an edge connecting any
two variables that appear in the scope of the same function.
The graphical modelM defines a factorized probability
distribution onX, P (X) = 1

Z

∏

α∈F ψα. The partition
function, Z, normalizes the probability to sum to one.

LetXS be a subset ofX andXM = X\XS be the comple-
ment ofXS . TheMarginal MAPproblem is to find the as-
signmentx∗M to variablesXM that maximizes the value of
the marginal distribution after summing out variablesXS :

x∗M = argmax
XM

∑

XS

∏

α∈F

ψα (1)

We callXM “MAP variables”, andXS “sum variables”.

If XS = ∅ then the problem is also known as maximuma
posteriori (MAP) inference. The marginal MAP problem
is however significantly more difficult. The decision prob-
lem for marginal MAP was shown to be NPPP-complete [1],
while the decision problem for MAP is only NP-complete
[14]. The main difficulty arises because the max and sum
operators in Eq. (1) do not commute, which restricts effi-
cient elimination orders to those in which all sum variables
XS are eliminated before any max variablesXM .

Bucket Elimination(BE) [15] solves the marginal MAP
problem exactly by eliminating the variables in sequence.
Given aconstrained elimination orderensuring the sum
variables are processed before the max variables, BE par-
titions the functions into buckets, each associated with a
single variable. A function is placed in the bucket of its

argument that appears latest in the ordering. BE processes
each bucket, from last to first, by multiplying all functions
in the current bucket and eliminating the bucket’s variable
(by summation for sum variables and by maximization for
MAP variables), resulting in a new function which is placed
in an earlier bucket. The complexity of BE is time and
space exponential in theconstrained induced widthw∗

c of
the primal graph given a constrained elimination order [15].
BE can be viewed as message passing in a join-tree whose
nodes correspond to buckets and which connects nodesa, b
if the function generated bya’s bucket is placed inb’s [16].

Mini-Bucket Elimination(MBE) [3] is an approximation
algorithm designed to avoid the space and time complex-
ity of full bucket elimination by partitioning large buckets
into smaller subsets, calledmini-buckets, each containing at
mosti (calledi-bound) distinct variables. The mini-buckets
are processed separately [3]. MBE processes sum buck-
ets and the max buckets differently. Max mini-buckets (in
XM ) are eliminated by maximization, while for variables
in XS , one (arbitrarily selected) mini-bucket is eliminated
by summation, while the rest of the mini-bucket are elim-
inated by maximization. MBE outputs an upper bound on
the optimal marginal MAP value. The complexity of the al-
gorithm, which is parametrized by thei-bound, is time and
space exponential ini only. Wheni is large enough (i.e.,
i > w∗

c ), MBE coincides with full BE. MBE is often used
to generate heuristics for branch and bound search.

Another related approximation with bounded complexity,
more similar in structure to join-tree inference, isMini-
Cluster-Tree Elimination(MCTE) [5]. In MCTE, we pass
messages along the structure of the join-tree, except that
when computing a message, rather than combining all the
functions in the cluster, we first partition it into mini-
clusters, such that each mini-cluster has a bounded num-
ber of variables (thei-bound). Each mini-cluster is then
processed separately to compute a set of outgoing mes-
sages. Like MBE, this procedure produces an upper bound
on the results of exact inference, and increasingi typically
provides tighter bounds, but at higher computational cost.
Thus, both MBE and MCTE allow the user to trade upper
bound accuracy for time and space complexity.

3 CURRENT SEARCH METHODS

The current state-of-the-art methods for marginal MAP are
based on branch and bound search using specialized heuris-
tics. In particular, Park and Darwiche [6] construct an up-
per bound on each subproblem using a modified join-tree
algorithm along anunconstrainedelimination order that in-
terleaves the MAP and sum variables. During search, the
join-tree is fully re-evaluated at each node in order to com-
pute upper bounds for all uninstantiated MAP variables si-
multaneously, which allows the use of dynamic variable or-
dering. Although this approach provides effective bounds,



Algorithm 1: BBBT for marginal MAP
Input: Graphical modelM = 〈X,D,F〉, i-boundi, unassigned

MAP variablesXM , lower boundL, partial assignment
to MAP variables̄x

Output: Optimal marginal MAP value
if XM = ∅ then1

return Solve(M|x̄);2

else3
Xk ← SelectV ar(XM );4
Update MCTE(i) ;5
foreach valuexk ∈ Dk do6

AssignXk to xk: x̄← x̄ ∪ {Xk = xk};7
U(x̄)← extract(MCTE(i))8
if U(x̄) > L then9

L = max(L,BBBT(i,XM \ {Xk}, L, x̄);10

x̄← x̄ \ {Xk = xk};11

return L;12

the computation can be quite expensive. More recently,
Yuan and Hansen [7] proposed an incremental evaluation
of the join-tree bounds which reduces significantly their
computational overhead during search. However, this re-
quires the search algorithm to follow a static variable order-
ing. In practice, Yuan and Hansen’s method proved to be
cost effective, considerably outperforming [6]. However,
both methods require that the induced width of the uncon-
strained join tree is small enough to be feasible, which of-
ten may not be the case.

3.1 ALGORITHM BBBT

Our first two algorithms, then, can be viewed as general-
izations of [6] and [7] schemes for models with high un-
constrained induced width. In particular, we use MCTE(i)
to approximate the exact, unconstrained join-tree inference
to accommodate a maximum clique size defined by thei-
boundi. The resulting branch and bound with MCTE(i)
heuristics, abbreviated hereafter by BBBT1, for marginal
MAP is given in Algorithm1.

The algorithm is called initially as BBBT(i, XM , 0, ∅),
whereXM are the MAP variables of the input graphical
model, andi is thei-bound. The algorithm maintains the
best solution found so far, giving a lower boundL on the
optimal marginal MAP value. The algorithm searches the
simple tree of all partial variable assignments (also called
the OR tree). At each step, BBBT uses MCTE(i) to com-
pute an upper boundU(x̄) on the optimal marginal MAP
extension of the current partial MAP assignmentx̄ (lines
5-8). If U(x̄) ≤ L, then the current assignmentx̄ cannot
lead to a better solution and the algorithm can backtrack
(line 9). Otherwise, BBBT expands the current assignment
by selecting the next MAP variable in a static or dynamic

1For consistency with prior work, we use the name used in
[17], (Branch and Bound with Bucket-Tree heuristic) to denote
the same algorithm applied to pure MAP queries.

variable ordering (line 4) and recursively solves a set of
subproblems, one for each un-pruned domain value. No-
tice that when̄x is a complete assignment, BBBT calcu-
lates its marginal MAP value by solving a summation task
overM|x̄, the subproblem defined by the sum variables
conditioned on̄x (line 2). Given sufficient resources (high
enoughi-bound), this can be done by variable elimination,
but for consistency with our other algorithms, our imple-
mentation uses AND/OR search with caching [18] (see also
Section4). If a better new assignment is found then the
lower boundL is updated (line 10).

If MCTE(i) is fully re-evaluated at each iteration, it pro-
duces upper bounds for all uninstantiated MAP variables
simultaneously. In this case, BBBT can accommodate
dynamic variable orderings and can thus be viewed as a
generalization of Park and Darwiche [6]. Alternatively,
MCTE(i) can be done in an incremental manner as in [7].
In this case BBBT requires a static variable ordering and
can be viewed as a generalization of Yuan and Hansen.

4 AND/OR SEARCH

Significant improvements in search for pure MAP infer-
ence have been achieved by using AND/OR search spaces,
which often capture problem structure far better than stan-
dard OR search methods [18]. In this section, we give an
AND/OR search algorithm for marginal MAP. First, we de-
fine thepseudo treeof the primal graph, which defines the
search space and captures problem decomposition.

DEFINITION 1 (pseudo tree) A pseudo treeof an undi-
rected graphG = (V,E) is a directed rooted treeT =
(V,E′) such that every arc ofG not included inE′ is a
back-arc inT , namely it connects a node inT to one of its
ancestors. The arcs inE′ may not all be included inE.

The set of valid pseudo trees for marginal MAP is restricted
to those for which the MAP variables form astart pseudo
tree, a subgraph of pseudo treeT that has the same root
asT . Given a graphical modelM = 〈X,D,F〉 with pri-
mal graphG and pseudo treeT of G, theAND/OR search
treeST based onT has alternating levels of OR nodes cor-
responding to the variables and AND nodes correspond-
ing to the values of the OR parent’s variable, with edges
weighted according toF. Identical subproblems, identi-
fied by theircontext(the partial instantiation that separates
the subproblem from the rest of the problem graph), can
be merged, yielding anAND/OR search graph[18]. Merg-
ing all context-mergeable nodes yields thecontext minimal
AND/OR search graph, denotedCT . The size ofCT is
exponential in the induced width ofG along a depth-first
traversal ofT (i.e., the constrained induced width) [18].

A solution treex̂ of CT is a subtree that: (1) contains the
root of CT ; (2) if an internal OR noden ∈ CT is in x̂,
thenn is labeled by a MAP variable and exactly one of its



(a) Primal graph (b) Pseudo tree

Figure 1: A simple graphical model.

children is inx̂; (3) if an internal AND noden∈CT is in x̂
then all its OR children labeled by MAP variables are inx̂.

Each noden in CT can be associated with avaluev(n); for
MAP variables,v(n) captures the optimal marginal MAP
value of the conditioned subproblem rooted atn, while for
sum variables it is the conditional likelihood of the sub-
problem. Clearly,v(n) can be computed recursively based
on the values ofn’s successors: OR nodes by maximization
or summation (for MAP or sum variables, respectively),
and AND nodes by multiplication.

Example 1 Figure 1(a) shows a simple graphical model
with XM = {A,B,C,D} andXS = {E,F,G,H}. Fig-
ure 2 displays the context minimal AND/OR search graph
based on the constrained pseudo tree from Figure1(b) (the
contexts are shown next to the pseudo tree nodes). It is
easy to see that the MAP variables form a start pseudo
tree. A solution tree corresponding to the MAP assignment
(A = 0, B = 1, C = 1, D = 0) is indicated in red.

Algorithm 2 describes the AND/OR Branch and Bound
(AOBB) for marginal MAP. We use the notation thatx̄ is
the current partial solution and the tableCache, indexed
by node contexts, holds the partial search results. The algo-
rithm assumes that variables are selected statically accord-
ing to a valid pseudo treeT . A heuristicf(x̄) calculates an
upper bound on the optimal marginal MAP extension ofx̄.

If the setX is empty, the result is trivially computed (line
1). Else, AOBB selects the next variableXk in T and if
the corresponding OR node is not found in cache, it ex-
pands it and iterates over its domain values to compute
the OR valuev(Xk) (lines 7-22). Notice that ifXk is a
MAP variable, then AOBB attempts to prune unpromis-
ing domain values by comparing the upper boundf(x̄) of
the current partial solution treēx to the current best lower
boundLwhich is maintained by the root node of the search
space (line 10). For each domain valuexk, the problem
rooted at AND node〈Xk, xk〉 is decomposed intoq in-
dependent subproblemsMl = 〈Xl,Dl,Fl〉, one for each
childXl of Xk in T . These problems are then solved inde-
pendently and their results accumulated by the AND node
valuev(Xk, xk) (lines 12-13 and 18-19). After trying all

Figure 2: AND/OR search spaces for marginal MAP.

Algorithm 2: AOBB for marginal MAP
Input: Graphical modelM = 〈X,D,F〉, pseudo treeT , partial

solution treēx, heuristic evaluation functionf(x̄)
Output: Optimal marginal MAP value
if X = ∅ then return 1;1
else2

Xk ← SelectV ar(X) according toT ;3
if v(Xk) ∈ Cache then return v(Xk);4
if Xk ∈ XM then v(Xk)← −∞;5
else v(Xk)← 0;6
foreach valuexk ∈ Dk do7

if Xk ∈ XM then8
x̄← x̄ ∪ {Xk = xk};9
if f(x̄) > L then10

v(Xk, xk)← 1;11
foreach childXl ofXk in T do12

v(Xk, xk)← v(Xk, xk)× AOBB(Ml);13

else v(Xk, vj)← −∞;14
x̄← x̄ \ {Xk = xk};15

else16
v(Xk, xk)← 1;17
foreach childXl ofXk in T do18

v(Xk, xk)← v(Xk, xk)× AOBB(Ml);19

val← w(Xk, xk)× v(Xk, xk);20
if Xk ∈ XM then v(Xk)← max(v(Xk), val);21
else v(Xk)← v(Xk) + val;22

Cache← Cache ∪ v(Xk);23
return v(Xk)24

possible values of variableXk, the marginal MAP value
of the subproblem rooted byXk is v(Xk) if Xk is a MAP
variable, and is returned (line 21). IfXk is a sum variable,
thenv(Xk) holds the likelihood value of that conditioned
subproblem (line 22). The optimal marginal MAP value to
the original problem is returned by the root node.

AOBB typically computes its heuristicf(·) using a mini-
bucket bounding scheme (see Section2), which can be pre-
compiled along the reverse order of a depth-first traversal
of the pseudo tree (which is a valid constrained elimina-
tion order). Unfortunately, our AOBB cannot use the join-
tree/MCTE(i) based heuristics of Section3, since these are
compiled along an unconstrained variable ordering which



is not compatible, in general, with the constrained pseudo
tree that drives the AOBB search order. For this reason, we
next turn to improving our mini-bucket bounds.

5 MINI-BUCKET FOR MARGINAL MAP

In this section, we develop improved, constrained order
mini-bucket bounds compatible with AOBB search. MBE
has been effective for pure MAP, but less so for marginal
MAP; previously, its bounds appeared to be far less accu-
rate than the unconstrained join-tree bounds [6, 7]. There-
fore, we revisit the mini-bucket approach and enhance it
with recent iterative cost-shifting schemes [10, 9, 13].

5.1 WEIGHTED MINI-BUCKETS

Weighted mini-bucket elimination(WMB) [10] is a recent
algorithm developed for likelihood (summation) tasks that
replaces the naı̈ve mini-bucket bound with Ḧolder’s in-
equality. For a given variableXk, the mini-bucketsQkr
associated withXk are assigned a non-negativeweight
wkr ≥ 0, such that

∑

r wkr = 1. Then, each mini-
bucket r is eliminated using a weighted or power sum,
(
∑

Xk
f(X)1/wkr )wkr . It is useful to note thatwkr can

be interpreted as a “temperature”; ifwkr = 1, it corre-
sponds to a standard summation, while ifwkr → 0, it in-
stead corresponds to a maximization overXk. Thus, stan-
dard mini-bucket corresponds to choosing one mini-bucket
r with wkr = 1, and the rest with weight zero.

Weighted mini-bucket is closely related to variational
bounds on the likelihood, such as conditional entropy de-
compositions [12] and tree-reweighted belief propagation
(TRBP) [11]. The single-pass algorithm of Liu and Ih-
ler [10] mirrors standard mini-bucket, except that within
each bucket a cost-shifting (or reparameterization) opera-
tor is performed, which matches the marginal beliefs (or
“moments”) across mini-buckets to improve the bound.

The temperature viewpoint of the weights enables us to ap-
ply a similar procedure for marginal MAP. In particular, for
Xk ∈ XS , we enforce

∑

r wkr = 1, while forXk ∈ XM ,
we take

∑

r wkr = 0 (so thatwkr = 0 for all r). The
resulting algorithm, listed in Algorithm3, treats MAP and
sum variables differently: for sum variables it mirrors [10],
while taking the zero-temperature limit for MAP variables
we obtain the max-marginal matching operations described
for pure MAP problems in [9]. This mirrors the result of
Weiss et al. [19], that the linear programming relaxation
for MAP corresponds to a zero-temperature limit of TRBP.

5.2 ITERATIVE UPDATES

While the single-pass algorithm is often very effective, we
can further improve it using iterative updates. The iter-
ative weighted mini-bucket algorithm [10], alternates be-

Algorithm 3: WMB-MM( i)
Input: Graphical modelM = 〈X,D,F〉, MAP variablesXM ,

constrained orderingo = X1, . . . , Xn, i-boundi
Output: Upper bound on optimal marginal MAP value
foreach k ← n downto1 do1

// Create bucket Bk and mini-buckets Qkr
Bk ← {ψα|ψα ∈ F, Xk ∈ var(ψα)}; F← F \Bk;2
LetQ = {Qk1, . . . , QkR} be ani-partition ofBk;3
foreach r = 1 toR do4

ψkr =
∏

ψ∈Qkr
ψ; Yr = vars(Qkr) \Xk;5

// Moment Matching
if Xk ∈ XS then6

Assign mini-bucketr weightwkr > 0, st
∑

r wkr = 1;7

µr =
∑

Yr
(ψkr)

1/wkr ; µ =
∏

r (µr)
wkr ;8

Updateψkr = ψkr ·
(

µ
µr

)wkr

;9

else10

µr = maxYr
ψkr; µ =

(
∏

r µr
)1/R

;11

Updateψkr = ψkr ·
(

µ
µr

)

;12

// Downward Messages (eliminate Xk)
foreach r = 1 toR do13

if Xk ∈ XS then λkr ← (
∑

Xk
(ψkr)

1/wkr )wkr ;14

else λkr ← maxXk
ψkr;15

F← F ∪ {λkr};16

return
∏

ψ∈F
ψ17

tween downward passes, which look like standard mini-
bucket with cost-shifting, and upward passes, which com-
pute messages used to “focus” the cost shifting in the next
downward pass. The algorithm can be viewed as message
passing on a join graph defined by the mini-bucket cliques,
and is listed in Algorithm4.

Standard MBE computes “downward” messagesλkr =
ma→c from each cliquea = (kr) (the rth mini-bucket
for variableXk) to a single child cliquec = ch(a). For
the iterative version, we also compute “upward” messages
mc→a from cliquec to its parent cliquesa ∈ pa(c). For
wa > 0, wc > 0, these upward messages are given by [10]:

mc→a ∝
[

∑

Yc\Ya

(ψc m∼c)
1/wc m−1/wa

a→c

]wa

whereψc =
∏

ψ∈Qc
ψ are the model factors assigned to

cliquec, andm∼c is the product of all messages intoc.

These upward messages are used during the cost-shifting
updates ofXk in later downward passes:

∀r, µkr ∝
∑

Ykr

(ψkrm∼kr)
1/wkr ; µ =

(

∏

r

(µkr)
wkr

)1/wk

∀r, ψkr ← ψkr
( µ

µkr

)γ wkr

in which we include the upward messagemch(kr)→kr in the
marginalsµkr being matched, and definewk =

∑

r wkr.
These fixed-point updates are not guaranteed to be mono-
tonic; to assist convergence, we also include a “step size”



γ ≤ 1. By initializing the upward messagesmch(c)→c = 1
and takingγ = 1/t, the first iteration of Alg.4 corresponds
exactly to WMB-MM (Alg. 3).

For marginal MAP, we can take the limit as some weights
wa = ǫ→ 0; then, when botha andc = ch(a) correspond
to MAP variables we have

mc→a ∝
[

max
Yc\Ya

(ψcm∼c)m
−1
a→c

]

µa=max
Ya

(ψam∼a); µ=
(

∏

a

µa
)

1

|Q| ; ψa ← ψa
( µ

µa

)γ

When cliquea corresponds to a sum variable and clique
c = ch(a) to a MAP variable, we takewc = ǫ to give:

mc→a ∝
[

∑

Yc\Ya

σǫ(ψcm∼c)m
−1/wa

a→c

]wa

σǫ(f(X)) =
(

f(X)/max
x

f(x)
)1/ǫ

Whenǫ→ 0, σǫ becomes an indicator function of the max-
imizing arguments off , “focusing” the matching step at
parenta on configurations relevant to the max values of
child c. The resulting algorithm is also closely related to
a (tree-reweighted) mixed-product belief propagation al-
gorithm for marginal MAP [13]. Unfortunately, directly
taking ǫ= 0 can cause the objective function to be highly
non-smooth, and lead to undesirable, non-monotonic fixed-
point updates. To alleviate this, in practice we use a sched-
ule ǫ=1/t to decrease the temperature over iterations.

6 EXPERIMENTS

We empirically evaluate the proposed branch and bound
algorithms on problem instances derived from benchmarks
used in the PASCAL2 Inference Challenge [20] as well as
the original instances from [7].

Algorithms. We consider three AND/OR branch and
bound search algorithms (Section4): AOBB guided by ba-
sic MBE(i) heuristics (denoted AOBB), AOBB guided by
heuristics from WMB-MM(i) (denoted AOBB-MM), and
AOBB guided by heuristics from WMB-JG(i) (denoted by
AOBB-JG), respectively. All of the mini-bucket heuristics
were generated in a pre-processing phase, prior to search.
The weighted schemes used uniform weights. In addition,
we also tested two OR branch and bound schemes guided
by MCTE(i) heuristics, denoted BBBTi and BBBTd, re-
spectively. BBBTi performs MCTE(i) incrementally, while
BBBTd fully re-evaluates MCTE(i) at each iteration.

We compare all five algorithms against each other and
against the current state-of-the-art branch and bound with
incremental join-tree upper bounds [7], denoted by YUAN,
along with the original approach by Park and Darwiche
[6], denoted by PARK. Algorithms BBBTd and PARK

Algorithm 4: WMB-JG(i)
Input: Graphical modelM = 〈X,D,F〉, constrained ordering

o = X1, . . . , Xn, i-boundi, number of iterationsT
Output: Upper bound on optimal marginal MAP value
for t = 1 to T do1

// Downward pass with moment matching
foreach k ← n downto1 do2

LetQ = {Qa|a = kr} be the mini-buckets ofBk;3
foreach Qa ∈ Q do4

ψa =
∏

ψ∈Qa
ψ;5

Ya = vars(Qa) \Xk;6
m∼a = mch(a)→a ·

∏

p∈pa(a)mp→a;7

if Xk ∈ XS then8

foreach Qa ∈ Q do µa =
∑

Ya
(ψam∼a)

1/wa ;9

µ =
∏

Qa∈Q(µa)
wa ;10

foreach Qa ∈ Q do Updateψa = ψa · (µ/µa)
wa ;11

else12
foreach Qa ∈ Q do µa = maxYa

(ψam∼a);13

µ =
∏

Qa∈Q(µa)
1/|Q|;14

foreach Qa ∈ Q do Updateψa = ψa · (µ/µa);15

foreach Qa ∈ Q, c = ch(a), do16
if Xk ∈ XS then17

ma→c = (
∑

Xk
(ψa ma)

1/wa )wa ;18

else19
ma→c = maxXk

(ψa ma);20

// Backward pass
foreach k ← 1 to n do21

LetQ = {Qc|c = kr} be the mini-buckets ofBk;22
foreach Qc∈Q anda∈pa(c), with c=kr, a=js do23

Y = vars(Qc) \ vars(Qa);24
if Xk ∈ XS andXj ∈ XS then25

mc→a =26

(
∑

Y
(ψcm∼c)

1/wc · (ma→c)
−1/wa)wa ;

if Xk ∈ XM andXj ∈ XM then27

mc→a = (maxY(ψcm∼c) · (ma→c)
−1);28

if Xk ∈ XS andXj ∈ XM then29
mc→a =30

(
∑

Y
σǫ(ψcm∼c) · (ma→c)

−1/wa)wa ;

return upper bound fromB1;31

use a dynamic variable ordering and select the next MAP
variable whose domain values have the most asymmetric
bounds. Algorithms BBBTi and YUAN are restricted to
a static variable ordering that corresponds to a post-order
traversal of the underlying join-tree. The pseudo trees guid-
ing the AND/OR algorithms were obtained by a modified
min-fill heuristic [18] that constrained the MAP variables
to form a start pseudo tree. All algorithms were imple-
mented in C++ (64-bit) and the experiments were run on a
2.6GHz 8-core processor with 80 GB of RAM.

Benchmarks. Our problem instances were derived
from three PASCAL2 benchmarks:segbin (image seg-
mentation),protein (protein side-chain interaction) and
promedas (medical diagnosis expert system). For each



Table 1: Upper bounds (log scale) and CPU time (sec) for a typical set of instances.i = 10 andi = 20.
instance i MBE WMB-MM MCTE WMB-JG JT

5 iterations 10 iterations 100 iterations
(n,m, k, w∗

c
, w∗

u
) UB/time UB/time UB/time UB/time UB/time UB/time UB/time

cpcs360 10 5.9607/0.03 -0.0228/0.04 4.3008/0.16 -0.0353/0.34 -0.0360/0.75 -0.0363/6.71 -0.0468/4.73
(360,25,2,24,20) 20 2.4871/11.4 -0.0402/1.36 -0.0468/3.45 -0.0465/47.2 -0.0467/145 -0.0468/1339
2-17-s-s 10 -44.2658/0.02 -49.5830/0.01 -40.3520/0.06 -55.4555/0.12 -55.5996/0.24 -55.6633/2.44 -55.5170/0.31
(228,69,2,20,15) 20 -55.5083/3.54 -55.5082/0.30 -55.5170/0.36 -55.7433/5.38 -55.7436/12.7 -55.7437/197
or-chain-10.fg-s 10 -10.5621/0.01 -13.2118/0.01 -6.4940/0.1 -17.2899/0.10 -18.7859/0.18 -21.3428/1.71 -21.0314/4.29
(453,135,2,22,18) 20 -18.2977/3.56 -19.3815/0.33 -9.8054/0.5 -21.3600/5.46 -21.3600/11.8 -21.3600/137
cpcs422 10 10.026/0.61 -1.3206/0.88 7.0553/1.62 -1.3764/4.06 -1.3878/8.67 -1.4275/75.1 -1.4982/41.6
(422,74,2,74,23) 20 7.9245/18.5 -1.4427/9.29 -0.1331/9.78 -1.4545/191 -1.4554/371 -1.4718/2353
2-2-s-l 10 -57.0433/0.04 -75.1643/0.03 -39.1568/0.07 -80.9224/0.17 -81.5811/0.33 -81.9044/3.56 -81.5883/0.14
(227,68,2,73,14) 20 -67.2268/5.52 -80.4492/1.68 -81.5883/0.17 -82.0108/25.0 -82.1039/58.6 -82.1960/400
or-chain-18.fg-l 10 -2.7317/0.01 -2.5168/0.02 -2.3325/0.42 -6.4279/0.36 -7.1655/0.51 -11.1244/3.78 -11.4487/0.43
(890,267,2,25,8) 20 -10.2463/0.88 -11.4534/0.07 -11.4487/0.46 -11.4534/1.48 -11.4534/2.97 -11.4534/31.7
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Figure 3: Average relative error (w.r.t. tightest upper bound) as a function ofi-bound. WMB-JG(i) ran for 10 iterations.

network, we generated two marginal MAP problem in-
stances withm MAP variables, as follows: aneasy in-
stance such that the MAP variables were selected as the
first m variables from a breadth-first traversal of a pseudo
tree obtained from a hypergraph decomposition of the pri-
mal graph (ties were broken randomly) [8], and ahard
instance where the MAP variables were selected uniformly
at random. Theeasy instances were designed such that
problem decomposition is maximized and the constrained
and unconstrained elimination orders are relatively close
to each other, thus having comparable induced widths. In
contrast, thehard instances tend to have very large con-
strained induced widths. We selected 30% of the variables
as MAP variables. In total we evaluated 120 problem in-
stances (20easy and 20hard instances per benchmark).

In all experiments we report total CPU time in seconds and
number of nodes visited during search. We also record the
problem parameters: number of variables (n), max domain
size (k), number of MAP variables (m), and the constrained
(w∗
c ) and unconstrained (w∗

u) induced widths. The best
performance points are highlighted. In each table, ’oom’
stands for out-of-memory, while ’-’ denotes out-of-time.

Results: quality of the upper bounds. We compare the
accuracy of the upper bounds obtained by the mini-bucket
schemes MBE(i), WMB-MM( i) and WMB-JG(i) against
those produced by the unconstrained join-tree scheme, de-
noted JT, and its generalization MCTE(i).

Table1 shows results on a typical set of problem instances
from botheasy (top 3) andhard (bottom 3) categories,
for two values ofi-bound: i = 10, 20. For every problem
instance, for each algorithm we report the upper bound ob-

tained (lower values are better) and CPU time in seconds.
The iterative scheme WMB-JG(i) ran for 5, 10 or 100 it-
erations, respectively. We see clearly that for all instances
WMB-MM( i) provides significantly tighter upper bounds
than the corresponding pure MBE(i) in a comparable CPU
time (see also Figure3). On the other hand, WMB-JG(i) is
able to converge to the most accurate bounds in 4 out of 6
cases, but at a much higher computational cost. JT bounds
are typically tighter than those produced by MCTE(i) and
MBE(i) which is consistent with previous studies [6, 7].

In Figure3 we plot the average relative error with respect
to the tightest upper bound obtained, as a function of the
i-bound. Since, the JT bounds were available only on a
relatively small fraction of the instances tested, they are
omitted for clarity. We observe that if given enough time
WMB-JG(i) is superior to all its competitors, especially
for larger i-bounds. However, if time is bounded, then
WMB-MM( i) provides a cost-effective alternative. No-
tice also that when the gap between the constrained and
unconstrained induced width is very large, then MCTE(i)
provides more accurate bounds than MBE(i) and WMB-
MM( i) (eg, promedashard), because MCTE(i) does less
partitioning in this case. When the gap is relatively small,
then the mini-bucket based bounds are often superior to the
MCTE(i) ones for the samei-bound (eg, segbineasy).

Results: comparison with state-of-the-art search. Ta-
bles 2 and 3 report CPU time in seconds and number of
nodes expanded by each search algorithm on a subset of
instances from the protein and promedas benchmarks. The
columns are indexed by thei-bound and the time limit was
set to 1 hour. WMB-JG(i) ran for 10 iterations. We can



Table 2: CPU time (sec) and nodes for the protein instances. Time limit 1 hour. WMB-JG(i) ran for 10 iterations.
instance algorithm i = 2 i = 3 i = 4 i = 5 i = 6 YUAN

PARK
(n,m, kw∗

c
, w∗

u
) time nodes time nodes time nodes time nodes time nodes time nodes

proteineasy instances
AOBB - - - - -

pdb1a1x AOBB-JG 539 1746192 85 314801 164 3415 3067 746 - oom
(95,28,81,14,14) AOBB-MM - - 601 7625110 709 9004715 2087 316563 oom

BBBTd - - - - -
BBBTi - - - - -
AOBB - 1533 12650401 379 1505951 228 169618 753 274565

pdb1a62 AOBB-JG - 13 35 62 35 523 35 2228 35 oom
(105,31,81,13,10) AOBB-MM 697 2437932 169 359560 114 135525 138 181286 112 1107 oom

BBBTd - - - - -
BBBTi - - - - -
AOBB - - - - -

pdb1ad2 AOBB-JG - 76 1355 227 431 3368 424 oom
(177,53,81,12,9) AOBB-MM - - 983 838218 211 13902 - oom

BBBTd - - - - -
BBBTi - - - - -
AOBB 61 119726 9 5483 4 735 21 283 154 48

pdb1aho AOBB-JG 6 6581 4 365 19 271 65 17 1251 17 299 55
(54,16,81,7,6) AOBB-MM 49 19890 10 3274 8 2057 7 593 44 17 963 16

BBBTd 7 1224 6 128 28 26 165 29 426 17
BBBTi 77 291321 949 1151691 345 35506 - 356 4679

Table 3: CPU time (sec) and nodes for the promedas instances.Time limit 1 hour. WMB-JG(i) ran for 10 iterations.
instance algorithm i = 4 i = 6 i = 10 i = 14 i = 18 i = 20 PARK

YUAN
(n,m, k, w∗

c
, w∗

u
) time nodes time nodes time nodes time nodes time nodes time nodes time nodes

promedaseasy instances
AOBB - - 65 6242529 14 1871710 4 471708 7 235860

or-chain-4.fg-e AOBB-JG - 1046 75598793 9 1045873 55 5457626 6 208 19 1144 oom
(691,207,2,33,26) AOBB-MM - - 116 7354956 8 991915 1 156030 1 73526 oom

BBBTd - - 579 39989 132 4624 233 1900 425 1285
BBBTi - - - 394 2001912 - -
AOBB 447 67968093 64 12082065 3 518292 1 162224 1 1920 2 0

or-chain-17.fg-e AOBB-JG 38 3943341 57 8830508 0 72575 0 6940 3 160 6 160 87 159
(531,159,2,20,18) AOBB-MM 238 26609470 65 9743803 2 306313 0 45462 0 757 0 521 3 162

BBBTd - - 103 5520 85 2921 125 1363 148 633
BBBTi - - - 5 61467 10 29232 12 25588
AOBB - - - - - -

or-chain-22.fg-e AOBB-JG - - - 2118 183274481 - - oom
(1044,313,2,72,59) AOBB-MM - - - - - - oom

BBBTd - - - - - -
BBBTi - - - - - -

promedashard instances
AOBB - - - - - 2254 124886725

or-chain-4.fg-h AOBB-JG - - 192 5529085 11 555059 21 377992 66 215655 oom
(691,207,2,140,28) AOBB-MM - - 752 17706171 304 13152476 188 5662611 78 2134464 oom

BBBTd - - - - 1810 12397 -
BBBTi - - - - - -
AOBB - - - - - -

or-chain-8.fg-h AOBB-JG - - - - - 1786 31316917 oom
(1195,358,2,255,39) AOBB-MM - - - - - - oom

BBBTd - - - - - -
BBBTi - - - - - -
AOBB - - 67 7544343 12 1282228 13 1556793 11 606211

or-chain-17.fg-h AOBB-JG - - 42 3992210 3 212839 8 230955 29 169192 259 159
(531,159,2,72,18) AOBB-MM - - - - 7 793696 287 9274776 4 439

BBBTd - - - 412 12954 861 6003 1931 4649
BBBTi - - 477 5618175 61 494659 54 136679 106 126093

see clearly that AOBB-JG(i) is the overall best performing
algorithm, especially for relatively smalli-bounds. For ex-
ample, on thepdb1a62, AOBB-JG(3) proves optimality
in 13 seconds while AOBB(3) and AOBB-MM(3) finish in
1533 and 169 seconds, respectively. The search space ex-
plored by AOBB-JG(3) is also dramatically smaller than
those explored by AOBB(3) or AOBB-MM(3). There-
fore, the much stronger heuristics generated by WMB-
JG(i) translate into impressive time savings. When thei-
bound increases, the accuracy ceases to offset the compu-
tational overhead and the running time of AOBB-JG(i) in-
creases (e.g.,pdb1aho). In this case, AOBB-MM(i) is
a cost-effective alternative, with reduced overhead for pre-
compiling the heuristic (see also Figure4 for a profile of the

CPU time of the algorithms across all benchmarks). The
performance of algorithms YUAN and PARK is quite poor
in this domain due to the relatively large unconstrained in-
duced widths, which prevent computation of their heuristic.
In contrast, BBBTi/BBBTd with relatively higheri-bounds
are sometimes competitive and are able to solve more prob-
lem instances than YUAN/PARK.

For completeness, we also tested on the Bayesian net-
works from [7] (results omitted for space). We ob-
served that all of our proposed algorithms were competitive
with YUAN/PARK, but due to the relatively small uncon-
strained induced widths on these problems, very accurate
join-tree heuristics could be computed. Thus, there was
very little room for improvement by the new methods.
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Figure 4: Number of instances solved (top) and median CPU time (bottom) as a function ofi-bound for the segbin,
promedas and protein instances. Time limit 1 hour. WMB-JG(i) ran for 10 iterations.
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Figure 5: Number of instances solved (top) and number of
wins (bottom) by benchmark.

Summary of the experiments. Figure4 plots the num-
ber of problem instances solved from each benchmark (top)
and the median CPU time (bottom) as a function of thei-
bound. Clearly, AOBB-JG solves the largest number of in-
stances acrossi-bounds. Moreover, the running time pro-
file shows that AOBB-JG is faster at loweri-bounds due
to more accurate heuristics, while AOBB-MM is faster at
higher i-bounds due to reduced overhead. Figure5 sum-
marizes the total number of instances solved as well as the
total number of wins (defining a ‘win’ as the fastest time)
across the benchmarks, for all competing algorithms. Over-

all, we see that the proposed search algorithms consistently
solve more problems and in many cases are significantly
faster than the current approaches.

In summary, based on our empirical evaluation, we can
conclude that:

• Cost-shifting (especially the iterative version) tight-
ened significantly the MBE bounds for marginal MAP.
This yielded considerably faster AOBB search.

• The AOBB algorithms with improved mini-bucket
heuristics outperformed in many cases the previous
search methods guided by join-tree based heuristics.

7 CONCLUSION

In this paper, we develop AND/OR branch and bound
search algorithms for marginal MAP that use heuristics ex-
tracted from weighted mini-buckets with cost-shifting. We
evaluate both a single-pass version of the heuristic with
cost-shifting by moment matching as well as an iterative
version that passes messages on the corresponding join-
graph. We demonstrate the effectiveness of our proposed
search algorithms against previous unconstrained join-tree
based methods, which we also extend to apply to high
induced-width models, through extensive empirical eval-
uations on a variety of benchmarks. Our results show not
only orders of magnitude improvements over the current
state-of-the-art, but also the ability to solve many instances
that could not be solved before.
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