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Abstract

We introduce the collaborative multi-output
Gaussian process (GP) model for learning
dependent tasks with very large datasets.
The model fosters task correlations by mixing
sparse processes and sharing multiple sets of
inducing points. This facilitates the applica-
tion of variational inference and the deriva-
tion of an evidence lower bound that decom-
poses across inputs and outputs. We learn
all the parameters of the model in a sin-
gle stochastic optimization framework that
scales to a large number of observations per
output and a large number of outputs. We
demonstrate our approach on a toy prob-
lem, two medium-sized datasets and a large
dataset. The model achieves superior per-
formance compared to single output learn-
ing and previous multi-output GP models,
confirming the benefits of correlating spar-
sity structure of the outputs via the inducing
points.

1 INTRODUCTION

Gaussian process models (GPs, Rasmussen and
Williams, 2006) are a popular choice in Bayesian re-
gression due to their ability to capture complex depen-
dencies and non-linearities in data. In particular, when
having multiple outputs or tasks they have proved
effective in modeling the dependencies between the
tasks, outperforming competitive baselines and sin-
gle output learners (Bonilla et al., 2008; Teh et al.,
2005; Alvarez and Lawrence, 2009; Wilson et al., 2012).
However, the prohibitive cost of performing exact in-
ference in GP models severely hinders their applica-
tion to large scale multi-output problems. For exam-
ple, näıve inference in a fully coupled Gaussian process
model over P outputs and N data points can have

a complexity of O(N3P 3) and O(N2P 2) in time and
memory, respectively.

A motivating example of a large scale multi-output ap-
plication is the tracking of movements of a robot arm
using 2 or more joint torques. If one of the robot mo-
tors malfunctions and fails to record a torque, data
collected from the other motors may be used to in-
fer the missing torque values. However, taking 100
measurements per second already results in a total of
over 40,000 data points per torque in just 7 minutes.
Clearly this problem is well beyond the capabilities
of conventional multiple output GPs. Building multi-
output GP models that can learn correlated tasks at
the scale of these types of problems is thus the main
focus of this paper.

In the single output setting previous attempts to scale
up GP inference resort to approximate inference. Most
approximation methods can be understood within a
single probabilistic framework that uses a set of induc-
ing points in order to obtain an approximate process
(or a low-rank approximate covariance) over which in-
ference can be performed more efficiently (Quiñonero-
Candela and Rasmussen, 2005). These models have
been referred to in the literature as sparse models.
Nevertheless, straightforward application of such ap-
proximate techniques will yield a computational cost
of at least O(PNM2) in time and O(PNM) in mem-
ory, where M is the number of inducing points. This
high complexity still prevents us from applying GP
models to large scale multi-output problems.

In this work we approach the challenge of building scal-
able multi-output Gaussian process models based on
the following observations. Firstly, inducing variables
are the key catalyst for achieving sparsity and dealing
with large scale problems in Gaussian process models.
In particular, they capture the sufficient statistics of
a dataset allowing the construction of sparse processes
that can approximate arbitrarily well the exact GP
model (Titsias, 2009). Secondly, the use of global la-
tent variables (such as the inducing points) allows us



to induce dependencies in a highly correlated model
efficiently. This observation is exploited in Hensman
et al. (2013) for single output GP regression models
where, by explicitly representing a distribution over
the inducing variables, stochastic variational inference
can be used to work with millions of data points. Fi-
nally, the key to multi-output and multi-task learning
is to model dependencies between the outputs based
on realistic assumptions of what can be shared across
the tasks. It turns out that sharing “sparsity struc-
ture” can not only be a reasonable assumption but
also a crucial component when modeling dependencies
between different related tasks.

Based on these observations, we propose the collabo-
rative multi-output Gaussian Process (COGP) model
where latent processes are mixed to generate depen-
dent outputs. Each process is sparse and character-
ized by its own set of inducing points. The sparsity
structure enabling output correlations is thus created
via the shared inducing sets. To learn this structure,
we maintain an explicit representation of the posterior
over the inducing points which in turn allows inference
to be carried out efficiently. In particular, we obtain
a variational lower bound of the model evidence that
decomposes across inputs and outputs. This decom-
position makes possible the application of stochastic
variational inference, thus allowing the model to han-
dle a large number of observations per output and a
large number of outputs. Furthermore, learning of all
the parameters in the model, including kernel hyperpa-
rameters and inducing inputs, can be done in a single
stochastic optimization framework.

We analyze our multi-out model on a toy problem
where the inducing variables are shown to be con-
ducive to the sharing of information between two re-
lated tasks. Additionally, we evaluate our model on
two moderate-sized datasets in which we show that
it can outperform previous non-scalable multi-output
approaches as well as single output baselines. Finally,
on a large scale experiment regarding the learning of
robot inverse dynamics we show the substantial bene-
fits of collaborative learning provided by our model.

Related work. Most GP-based multi-output mod-
els create correlated outputs by mixing a set of inde-
pendent latent processes. The mixing can be a lin-
ear combination with fixed coefficients (see e.g. Teh
et al., 2005; Bonilla et al., 2008). This is known
in the geostatistics community as the “linear model
of coregionalization” (Goovaerts, 1997). Such mod-
els may also be reformulated in a common Bayesian
framework, for example by placing a spike and slab
prior over the coefficients (Titsias and Lázaro-Gredilla,
2011). More complex dependencies can be induced

by using input-dependent coefficients (Wilson et al.,
2012; Nguyen and Bonilla, 2013) or convolving pro-
cesses (Boyle and Frean, 2005; Alvarez and Lawrence,
2009; Álvarez et al., 2010).

While we also use the mixing construction, the key
difference in our model is the role of inducing vari-
ables. In particular, when used in previous models
to reduce the computational costs (see e.g. Alvarez
and Lawrence, 2009; Álvarez et al., 2010), the induc-
ing points are integrated out or collapsed. In contrast,
our model maintains an explicit representation of the
posterior over the inducing variables that is learned
using data from all outputs. This explicit represen-
tation facilitates scalable learning in a similar fashion
to the approach in Hensman et al. (2013), making it
applicable to very large datasets.

2 MODEL SPECIFICATION

Before diving into technical details of the model spec-
ification, we discuss the modeling philosophy behind
our collaborative multi-output Gaussian processes.
To learn the outputs jointly, we need a mechanism
through which information can be transferred among
the outputs. This is achieved in the model by allowing
the outputs to share multiple sets of inducing vari-
ables, each of which captures a different pattern com-
mon to the outputs. These variables play a double
pivotal role in the model: they collaboratively share
information across the outputs and provide sufficient
statistics so as to induce sparse processes.

Consider the joint regression of P tasks with inputs
X = {xn ∈ RD}Nn=1 and outputs y = {yi}Pi=1

where yi = {yin}Nn=1. We model each output as a
weighted combination of Q shared latent functions
{gj}Qj=1, plus an individual latent function {hi}Pi=1

unique to that output for greater flexibility. The Q
shared functions have independent Gaussian process
priors gj(x) ∼ GP(0, kj(·, ·)). Similarly, each indi-
vidual function of an output also has a GP prior,
i.e. hi(x) ∼ GP(0, khi (·, ·)).

As we want to sparsify these processes, we introduce
a set of shared inducing variables uj for each gj(x),
i.e. uj contains the values of gj(x) at the inducing
inputs Zj . Likewise, we have individual inducing vari-
ables corresponding to each hi(x), which we denote
with vi and their corresponding inducing inputs Zh

i .
The inducing inputs lie in the same space as the in-
puts X. For convenience, we assume all processes have
the same number of inducing points, M . However we
emphasize that this is not imposed in practice.

We denote the collective variables: g = {gj}, h =
{hi}, u = {uj}, v = {vi}, Z = {Zj}, and Zh = {Zh

i }



where gj = {gj(xn)}, hi = {hi(xn)}. Note that we
reserve subscript i for indexing the outputs and their
corresponding individual processes (i = 1 . . . P ), j for
the shared latent processes (j = 1 . . . Q), and n for the
inputs (n = 1 . . . N).

2.1 PRIOR MODEL

From the definition of the GPs and the independence
of the processes, the prior of the multi-output model
can be written as:

p(g|u) =

Q∏
j=1

p(gj |uj) =

Q∏
j=1

N (gj ;µj , K̃j) (1)

p(u) =

Q∏
j=1

p(uj) =

Q∏
j=1

N (uj ; 0, k(Zj ,Zj)) (2)

p(h|v) =

P∏
i=1

p(hi|vi) =

P∏
i=1

N (hi;µ
h
i , K̃

h
i ) (3)

p(v) =

P∏
i=1

p(vi) =

P∏
i=1

N (vi; 0, k(Zh
i ,Z

h
i )), (4)

where the corresponding means and covariances of the
Gaussians are given by:

µj = k(X,Zj)k(Zj ,Zj)
−1uj (5)

µh
i = k(X,Zh

i )k(Zh
i ,Z

h
i )−1vi (6)

K̃j = kj(X,X)− k(X,Zj)k(Zj ,Zj)
−1k(Zj ,X) (7)

K̃h
i = khi (X,X)− k(X,Zh

i )k(Zh
i ,Z

h
i )−1k(Zh

i ,X).
(8)

In the equations and hereafter, we omit the subscripts
j, h, i from the kernels kj(·, ·) and khi (·, ·) when it is
clear from the parameters inside the parentheses which
covariance function is in action.

Equations (2) and (4) follow directly from the proper-
ties of GPs, while the expressions for p(g|u) and p(h|v)
(Equations (1) and (3)) come from the conditionals
of the multivariate Gaussian distributions. Instead of
writing the joint priors p(g,u) and p(h,v), the above
equivalent equations are given to emphasize the suf-
ficient statistics role of u and v in the model. Here
by sufficient statistics we mean, for any sparse process
(say gj), any other set of function values is indepen-
dent of gj given the inducing variables uj .

2.2 LIKELIHOOD MODEL

As mentioned above, we assume that observations for
each output are (noisy) linear combinations of the Q
latent functions gj(x) plus an independent function
hi(x). Hence we have that the likelihood with stan-

dard iid Gaussian noise is given by:

p(y|g,h) =

P∏
i=1

N∏
n=1

N (yin;

Q∑
j=1

wijgj(xn) + hi(xn), β−1i ),

(9)

where wij are the corresponding weights and βi is the
precision of each Gaussian. As the latent values g are
specified conditioned on the inducing variables u, this
construction implies that each output is a weighted
combination of the inducing values. We note that if u
and v are marginalized out, we obtain the semipara-
metric latent factor model (Teh et al., 2005). However,
doing so is against the purpose of our model which en-
courages sharing of outputs via the inducing variables.
Furthermore, as we shall see in the next section, ex-
plicit representation of these variables is fundamental
to scalable inference of the model.

3 INFERENCE

We approximate the posterior over the latent variables
g,h,u,v given observations y using variational infer-
ence (Jordan et al., 1999). In section 3.1 we derive a
lower bound of the marginal likelihood which has the
key property of factorizing over the data points and
outputs. Section 3.2 takes advantage of this factoriza-
tion to derive stochastic variational inference, allowing
the model to scale to very large datasets. Section 3.3
compares the complexity of the model with previous
multi-output methods.

3.1 VARIATIONAL LOWER BOUND

In variational inference, we find the “closest” approxi-
mate distribution to the true posterior in terms of the
KL divergence. We first observe that the true poste-
rior distribution can be written as:

p(g,h,u,v|y) = p(g|u,y)p(h|v,y)p(u,v|y). (10)

Here we recall the modeling assumption that each set
of inducing variables is the sufficient statistics of the
corresponding latent process. This motivates replacing
the true posteriors over g and h with their conditional
distributions given the inducing variables, leading to a
distribution of the form:

q(g,h,u,v|y) = p(g|u)p(h|v)q(u,v), (11)

with

q(u,v) =

Q∏
j=1

N (uj ; mj ,Sj)︸ ︷︷ ︸
q(uj)

P∏
i=1

N (vi; m
h
i ,S

h
i )︸ ︷︷ ︸

q(vi)

. (12)



This technique has been used by Titsias (2009) and
Hensman et al. (2013) to derive variational inference
algorithms for the single output case. Since the con-
ditionals p(g|u) and p(h|v) are known (Equations (1)
and (3)), we only need to learn q(u,v) so as to min-
imize the divergence between the approximate poste-
rior and the true posteriors. The quality of approxi-
mation depends entirely on the posterior over the in-
ducing variables, thus underlining their pivotal role in
the model as previously discussed.

To find the best q(u,v), we optimize the evidence
lower bound (ELBO) of the log marginal:

log p(y) ≥
∫
q(u,v) log p(y|u,v)dudv

−
Q∑

j=1

KL[q(uj)||p(uj)]−
P∑
i=1

KL[q(vi)||p(vi)], (13)

which is derived using Jensen’s inequality and the fact
that both of q(u,v) and p(u,v) fully factorize. Since
q(uj), q(vi), p(uj), p(vi) are all multivariate Gaussian
distributions, the KL divergence terms are analytically
tractable. To compute the expected likelihood term in
the ELBO we first see that

log p(y|u,v) ≥ 〈log p(y|g,h)〉p(g,h|u,v)

=

P∑
i=1

N∑
n=1

〈log p(yin|gn, hin)〉p(g|u)p(hi|vi)
(14)

where gn = {gjn = (gj)n}Qj=1. The inequality is due
to Jensen’s inequality and the equality is due to the
factorization of the likelihood.

The ELBO can be computed by first solving for
the individual expectations 〈log p(yin|gn, hin)〉 over
p(g|u)p(hi|vi) and then substituting these into Equa-
tion (13) (see the supplementary material for details).
Hence the resulting lower bound is given by:

L =
∑
i,n

(
logN (yin; µ̃in, β

−1
i )− 1

2
βi

Q∑
j=1

w2
ij k̃jnn

− 1

2
βik̃

h
inn −

1

2
βi

Q∑
j=1

tr w2
ijSjΛjn − βi

1

2
tr Sh

i Λin

)

−
Q∑

j=1

(
1

2
log |KjzzS

−1
j |+

1

2
tr K−1jzz

(
mjm

T
j + Sj

))

−
P∑
i=1

(
1

2
log |Kizz(Sh

i )−1|

+
1

2
tr K−1izz

(
mh

i (mh
i )T + Sh

i

))
, (15)

where Kjzz = k(Zj ,Zj), Kizz = k(Zh
i ,Z

h
i ), and:

µ̃in =

Q∑
j=1

wijAj(n, :)mj + Ah
i (n, :)mh

i , (16)

Λjn = Aj(n, :)
TAj(n, :), (17)

Λin = Ah
i (n, :)TAh

i (n, :), (18)

with k̃jnn = (K̃j)nn; k̃hinn = (K̃h
i )nn; µjn = (µj)n;

µh
in = (µh

i )n; and we have defined the auxiliary ma-
trices Aj = k(X,Zj)K

−1
jzz and Ah

i = k(Xi,Z
h
i )K−1izz

and used Aj(n, :) to denote the n-th row vector of Aj .
Notice that this ELBO generalizes the bound for stan-
dard GP regression derived in Hensman et al. (2013),
which can be recovered by setting P = Q = 1, wij = 1
and hi(x) = 0.

The novelty of the variational lower bound in Equa-
tion (15) is that it decomposes across both inputs
and outputs. This enables the use of stochastic op-
timization methods, which allow the model to handle
very large datasets for which existing GP-based multi-
output models are simply impractical.

3.2 STOCHASTIC VARIATIONAL
INFERENCE

So far in the description of the model and inference
we have implicitly assumed that every output has full
observations at all inputs X. To discern where learn-
ing occurs for each output, we make the missing data
scenario more explicit. Specifically, each output i can
have observations at a different set of inputs Xi. We
shall use oi to denote the indices of Xi (in the set X)
and use the indexing operator B(oi) to select the rows
corresponding to oi from any arbitrary matrix B. We
also overload yi as the observed targets of output i.

3.2.1 Learning the Parameters of the
Variational Distribution

We can obtain the derivatives of the ELBO in Equa-
tion (15) wrt the variational parameters for optimiza-
tion. The derivatives of L wrt the parameters of q(uj)
are given by:

∂L
∂mj

=

P∑
i=1

βiwijAj(oi)
Ty
\j
i (19)

−
[
K−1jzz +

P∑
i=1

βiw
2
ijAj(oi)

TAj(oi)

]
mj ,

∂L
∂Sj

=
1

2
S−1j −

1

2

[
K−1jzz +

P∑
i=1

βiw
2
ijAj(oi)

TAj(oi)

]
,

(20)

where y
\j
i = yi −Ah

i (oi)m
h
i −

∑
j′ 6=j wij′Aj′(oi)mj′ .



The derivatives of L wrt the parameters of q(vi) are
given by:

∂L
∂mh

i

=βiA
h
i (oi)

Ty
\h
i

−
[
K−1izz + βiA

h
i (oi)

TAh
i (oi)

]
mi, (21)

∂L
∂Sh

i

=
1

2
S−1i −

1

2

[
K−1izz + βiA

h
i (oi)

TAh
i (oi)

]
, (22)

where y
\h
i = yi −

∑Q
j=1 wijAj(oi, :)mj .

It can be seen that the derivatives of the parameters
of q(vi) only involve the observations of the output
i. The derivatives of the parameters of q(uj) involve
the observations of all outputs but is a sum of con-
tributions from individual outputs. Computation of
the derivatives can therefore be easily distributed or
parallelized.

Since the optimal distributions q(uj) and q(vi) are in
the exponential family, it is more convenient to use
stochastic variational inference (Hensman et al., 2012,
2013) to perform update of their canonical parameters.
This works by taking a step of length l in the direction
of the natural gradient approximated by mini-batches
of the data. For instance, consider q(uj) whose canon-
ical parameters are Φ1 = S−1j mj and Φ2 = − 1

2S−1j .
Their stochastic update equations at time t + 1 are
given by:

Φ1(t+1) = S−1j(t)mj(t)

+ l

( P∑
i=1

βiwijAj(oi)
Ty
\j
i − S−1j(t)mj(t)

)
(23)

Φ2(t+1) = −1

2
S−1j(t) + l

(
1

2
S−1j(t) −

1

2
Λ

)
, (24)

where Λ = K−1jzz +
∑P

i=1 βiw
2
ijAj(oi)

TAj(oi).

3.2.2 Inducing Inputs and Hyper-parameters

To learn the hyperparameters, which in this model in-
clude the mixing weights, the covariance hyperparam-
eters of the latent processes, and the noise precision of
each output, we follow standard practice in GP infer-
ence. For this model this involves taking derivatives of
the ELBO and applying standard stochastic gradient
descent in alternative steps with the variational pa-
rameters, much like a variational EM algorithm. The
derivatives are given in the supplementary material.

Learning of the inducing inputs, which was not con-
sidered in the single output case in Hensman et al.
(2013), is also possible in our stochastic optimization
approach. In the supplementary material, we show

Table 1: Comparison of the time and storage com-
plexity of approximate inference of multi-output GP
models. A&W, 2009 refers to Alvarez and Lawrence
(2009). COGP is the only method with complexity
independent of the number of inputs N and outputs
P , thus it can scale to very large datasets.

METHOD TIME STORAGE
COGP, this paper O(M3) O(M2)
SLFM, (Teh et al., 2005) O(QNM2

t ) O(QNMt)
MTGP, (Bonilla et al., 2008) O(PNM2

t ) O(PNMt)
CGP-FITC (A&W, 2009) O(PNM2

t ) O(PNMt)
GPRN, (Wilson et al., 2012) O(PQN3) O(PQN2)

that the additional cost of computing the derivatives of
the lower bound wrt the inducing inputs is not signifi-
cantly higher than the cost of updating the variational
parameters. This makes optimizing the inducing loca-
tions a practical option, which can be critical in high-
dimensional problems. Indeed, our experiments on a
large scale multi-output problem show that automatic
learning of the inducing inputs can lead to significant
performance gain with little overhead in computation.

3.3 COMPLEXITY ANALYSIS

In this section we analyze the complexity of the model
and compare it to existing multi-output approaches.
For consistency, we first unify common notations used
for all models. We use P as the number of outputs; N
as the number of inputs; Q as the number of shared la-
tent processes; and Mt as the total number of inducing
inputs. It is worth noting that Mt = (P +Q)×M in
our COGP model, assuming that each sparse process
has equal number of inducing points. Also, COGP has
P additional individual processes, one for each output.

The complexity of COGP can be read off by inspect-
ing the ELBO in Equation (15), with the key observa-
tion that it contains a sum over the outputs as well as
over the inputs. This means a mini-batch containing
a small subset of the inputs and outputs can be used
for stochastic optimization. Technically, the cost is
O(M3) or O(NbM

2), where Nb is the size of the mini-
batches, depending on which is larger between M and
Nb. In practice, we may use Nb > M as a large batch
size (e.g. Nb = 1000) helps reduce stochasticity of the
optimization. However, here we use O(M3) for easier
comparison with other models whose time and storage
demands are given in Table 1. We see that COGP has
a computational complexity that is independent of the
size of the inputs and outputs, which makes it the only
method capable of handling large scale problems.



3.4 PREDICTION

The predictive distribution of the i-th output for a test
input x∗ is given by:

p(f∗|y,x∗) = N (f∗;

Q∑
j=1

wijµj∗ + µh
i∗, w

2
ijsj∗ + shi∗),

(25)

where µj∗ and sj∗ are the mean and variance of
the prediction for gj∗ = gj(x∗), i.e. p(gj∗|y,x∗) =
N (gj∗;µj∗, sj∗). Likewise, µh

i∗ and shi∗ are the mean
and variance of the prediction for hi∗ = hi(x∗),
p(hi∗|y,x∗) = N (hi∗;µ

h
i∗, s

h
i∗). These predictive

means and variances are given by:

µj∗ = kj∗zK
−1
jzzmj , (26)

sj∗ = kj∗∗ − kj∗z
(
K−1jzz −K−1jzzSjK

−1
jzz

)
kT
j∗z, (27)

µh
i∗ = ki∗zK

−1
izzm

h
i , (28)

shi∗ = ki∗∗ − ki∗z
(
K−1izz −K−1izzSiK

−1
izz

)
kT
i∗z, (29)

where kj∗∗ = kj(x∗,x∗), ki∗∗ = khi (x∗,x∗), kj∗z is the
covariance between x∗ and Zj , and ki∗z is the covari-
ance between x∗ and Zh

i .

4 EXPERIMENTS

We evaluate the proposed approach with four experi-
ments. A toy problem is first used to study the trans-
fer of learning between two related processes via the
shared inducing points. We then compare the model
with existing multi-output models on the tasks of pre-
dicting foreign exchange rate and air temperature. In
the final experiment, we show that joint learning un-
der sparsity can yield significant performance gain on
a large scale dataset of inverse dynamics of a robot
arm.

Since we are using stochastic optimization, the learn-
ing rates need to be chosen carefully. We found that
the rates used in Hensman et al. (2013) also work well
for our model. Specifically, we used the learning rates
of 0.01 for the variational parameters, 1 × 10−5 for
the covariance hyperparameters, and 1× 10−4 for the
weights, noise precisions, and inducing inputs. We also
included a momentum term of 0.9 for all of the param-
eters except the variational parameters and the induc-
ing inputs. All of the experiments are executed on an
Intel(R) Core(TM) i7-2600 3.40GHz CPU with 8GB
of RAM using Matlab R2012a.

4.1 TOY PROBLEM

In this toy problem, two related outputs are simu-
lated from the same latent function sin(x) and cor-
rupted by independent noise: y1(x) = sin(x) + ε and

y2(x) = −sin(x) + ε, ε ∼ N (0, 0.01). Each output
is given 200 observations with missing values in the
(−7,−3) interval for the first output and the (4, 8)
interval for the second output. We used Q = 1 la-
tent sparse process with squared exponential kernel,
h1(x) = h2(x) = 0, and M = 15 inducing inputs for
our model.

Figure 1 shows the predictive distributions by our
model (COGP) and independent GPs with stochas-
tic variational inference (SVIGP, one for each output).
The locations of the inducing inputs are fixed and iden-
tical for both methods. It is apparent from the figure
that the independent GPs fail to predict the functions
in the unobserved regions, especially for output 1. In
contrast, by using information from the observed in-
tervals of one output to interpolate the missing signal
of the other, COGP makes perfect prediction for both
outputs. This confirms the effectiveness of collabora-
tive learning of sparse processes via the shared induc-
ing variables. Additionally, we note that the inference
procedure learned that the weights are w11 = 1.07 and
w21 = −1.06 which accurately reflects the correlation
between the two outputs.

4.2 FOREIGN EXCHANGE RATE
PREDICTION

The first real world application we consider is to pre-
dict the foreign exchange rate w.r.t the US dollar of
the top 10 international currencies (CAD, EUR, JPY,
GBP, CHF, AUD, HKD, NZD, KRW, and MXN) and
3 precious metals (gold, silver, and platinum)1. The
setting of our experiment described here is identical to
that in Álvarez et al. (2010). The dataset consists of
all the data available for the 251 working days in the
year of 2007. There are 9, 8, and 42 days of missing
values for gold, silver, and platinum, respectively. We
remove from the data the exchange rate of CAD on
days 50–100, JPY on day 100–150, and AUD on day
150–200. Note that these 3 currencies are from very
different geographical locations, making the problem
more interesting. The 153 points are used for test-
ing, and the remaining 3051 data points are used for
training. Since the missing data corresponds to long
contiguous sections, the objective here is to evaluate
the capacity of the model to impute the missing cur-
rency values based on other currencies.

For preprocessing we normalized the outputs to have
zero mean and unit variance. Since the exchange rates
are driven by a small number of latent market forces
(see e.g. Álvarez et al., 2010), we tried different val-
ues of Q = 1, 2, 3 and selected Q = 2 which gave the
best model evidence (ELBO). We used the squared-

1Data is available at http://fx.sauder.ubc.ca
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Figure 1: Simulated data and predictive distributions of by COGP (first and third figure) and independent GPs
using stochastic variational inference (second and last figure) for the toy problem. Solid black line: predictive
mean; grey bar: two standard deviations; magenta dots: real observations; blue dots: missing data. The
black crosses show the locations of the inducing inputs. By sharing inducing points across the outputs, COGP
accurately interpolates the missing function values.
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Figure 2: Real observations and predictive distributions for CAD (left), JPY (middle), and AUD (right). The
model used information from other currencies to effectively extrapolate the exchange rates of AUD. The color
coding scheme is the same as in Figure 1.

Table 2: Performance comparison on the foreign ex-
change rate dataset. Results are averages of the 3 out-
puts over 5 repetitions. Smaller figures are better.

METHOD SMSE NLPD
COGP 0.2125 -0.8394
CGP 0.2427 -2.9474
IGP 0.5996 0.4082

exponential covariance function for the shared pro-
cesses and the noise covariance function for the indi-
vidual process of each output. M = 100 inducing in-
puts (per sparse process) were randomly selected from
the training data and fixed throughout training.

The real data and predictive distributions by our
model are shown in Figure 2. They exhibit similar
behaviors to those by the convolved model with induc-
ing kernels in Álvarez et al. (2010). In particular, both
models perform better at capturing the strong depreci-
ation of the AUD than the fluctuations of the CAD and
JPY currency. Further analysis of the dataset found
that 4 other currencies (GBP, NZD, KRW, and MXN)
also experienced the same trend during the days 150

– 200. This information from these currencies was ef-
fectively used by the model to extrapolate the values
of the AUD.

We also report in Table 2 the predictive performance of
our model compared to the convolved GPs model with
exact inference (CGP, Alvarez and Lawrence, 2009)
and independent GPs (IGP, one for each output). Our
model outperforms both of CGP and IGP in terms of
the standardized mean squared error (SMSE). CGP
has lower negative log predictive density (NLPD),
mainly due to the less conservative predictive variance
of the exact CGP for the CAD currency. For refer-
ence, the convolved GPs with approximation via the
variational inducing kernels (CGPVAR, Álvarez et al.,
2010) has an SMSE of 0.2795 while the NLPD was not
provided. Training took only 10 minutes for our model
compared to 1.4 hours for the full CGP model.

4.3 AIR TEMPERATURE PREDICTION

Next we consider the task of predicting air tempera-
ture at 4 different locations in the south coast of Eng-
land. The air temperatures are recorded by a net-
work of weather sensors (named Bramblemet, Soton-
met, Cambermet, and Chimet) during the period from



Table 3: Performance comparison on the air tempera-
ture dataset. Results are averages of 2 outputs over 5
repetitions.

METHOD SMSE NLPD
COGP 0.1077 2.1712
CGP 0.1125 2.2219
IGP 0.8944 12.5319

July 10 to July 15, 2013. Measurements were taken
every 5 minutes, resulting in a maximum of 4320 ob-
servations. There are missing data for Bramblemet
(100 points), Chimet (15 points), and Sotonmet (1002
points), possibly due to network outages or hardware
failures. We further simulated failure of the sensors by
removing the observations from the time periods [10.2 -
10.8] for Cambermet and [13.5 - 14.2] for Chimet. The
removed data comprises 375 data points and is used
for testing. The remaining data consisting of 15,788
points is used for training. Similar to the previous ex-
periment, the objective is to evaluate the ability of the
model to use the signals from the functioning sensors
to extrapolate the missing signals.

We normalized the outputs to have zero mean and
unit variance. We used Q = 2 sparse processes with
the squared exponential covariance function and in-
dividual processes with the noise covariance function.
M = 200 inducing inputs were randomly selected from
the training set and fixed throughout training.

The real data and the predictive distributions by
our model, CGP with exact inference (Alvarez and
Lawrence, 2009), and independent GPs are shown in
Figure 3. It is clear that the independent GP model
is clueless in the test regions and thus simply uses the
average temperature as its prediction. For Camber-
met, both COGP and CGP can capture the rising in
temperature from the morning until the afternoon and
the fall afterwards. The performance of the models are
summarized in Table 3, which shows that our model
outperforms CGP in terms of both SMSE and NLPD.
It took 5 minutes on average to train our model com-
pared to 3 hours of CGP with exact inference.

It is also worth noting the characteristics of the sparse
processes learned by our model as they correspond to
different patterns in the data. In particular, one pro-
cess has an inverse lengthscale of 136 which captures
the global increase in temperature during the training
period while the other has an inverse lengthscale of 0.5
to model the local variations within a single day.

Table 4: Performance comparison on the robot inverse
dynamics dataset. In the last two lines, standard GP
is applied to output 1 and the other method is applied
to output 2. Results are averaged over 5 repetitions.

OUTPUT 1 OUTPUT 2

METHOD SMSE NLPD SMSE NLPD

COGP, learn z 0.2631 3.0600 0.0127 0.8302
COGP, fix z 0.2821 3.2281 0.0131 0.8685
GP, SVIGP 0.3119 3.2198 0.0101 1.1914
GP, SOD 0.3119 3.2198 0.0104 1.9407

4.4 ROBOT INVERSE DYNAMICS

Our last experiment is with a dataset relating to an in-
verse dynamics model of a 7-degree-of-freedom anthro-
pomorphic robot arm (Vijayakumar and Schaal, 2000).
The data consists of 48,933 datapoints mapping from a
21-dimensional input space (7 joints positions, 7 joint
velocities, 7 joint accelerations) to the corresponding
7 joint torques. It has been used in previous work (see
e.g. Rasmussen and Williams, 2006; Vijayakumar and
Schaal, 2000) but only for single task learning. Chai
et al. (2008) considered multitask learning of robot in-
verse dynamics but on a different and much smaller
dataset.

Here we consider joint learning for the 4th and 7th
torques, where the former has 2,000 points while the
latter has 44,484 points for training. The test set con-
sists of 8,898 observations equally divided between the
two outputs.

Since none of the existing multi-output models are ap-
plicable to problems of this scale, we compare with in-
dependent models that learn each output separately.
Standard GP is applied to the first output as it has
only 2,000 observations for training. For the second
output, we used two baselines. The first is the sub-
set of data (SOD) approach where 2,000 data points
are randomly selected for training with a standard GP
model. The second is the sparse GP with stochastic
variational inference (SVIGP) using 500 inducing in-
puts and a batch size of 1,000. In case of COGP, we
also used a batch size of 1,000 and 500 inducing points
for the shared process (Q = 1) and each of the indi-
vidual processes.

The performance of all methods in terms of SMSE and
NLPD is given in Table 4. The benefits of learning the
two outputs jointly are evident, as can be seen by the
significantly lower SMSE and NLPD of COGP com-
pared to the full GP for the first output (4th torque).
While the SMSE of the second output is essentially
the same for all methods, the NLPD of COGP is sub-
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Figure 3: Real data and predictive distributions by our method (COGP, left figures), the convolved GP method
with exact inference (CGP, middle figures), and full independent GPs (right figures) for the air temperature
problem. The coding color scheme is the same as in Figure 1.

stantially better than that of the independent SVIGP
model which has the same amount of training data for
this torque. These results validate the impact of col-
laborative learning under sparsity assumptions, open-
ing up new opportunities for improvement over single
task learning with independent sparse processes.

Finally, we see on Table 4 that optimizing the induc-
ing inputs can yield better performance than fixing
them. More importantly, the overhead in computa-
tion is small, as demonstrated by the training times
shown in Figure 4. For instance, the total training
time is only 1.9 hours when learning with 500 induc-
ing inputs compared to 1.6 hours when fixing them.
As this dataset is 21-dimensional, this small difference
in training time confirms that learning of the induc-
ing inputs is a practical option even when dealing with
problems of high dimensions.

5 DISCUSSION

We have presented scalable multi-output GPs for
learning of correlated functions. The formulation
around the inducing variables was shown to be con-
ducive to effective and scalable joint learning under
sparsity. We note that although our large scale exper-
iments were done with over 40,000 observations – the
largest publicly available multi-output dataset found,
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Figure 4: Learning of the inducing inputs is a practical
option as the overhead in training time is small.

the model can easily handle much bigger datasets.
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