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Abstract

Active learning has been proven to be quite effec-
tive in reducing the human labeling efforts by ac-
tively selecting the most informative examples to
label. In this paper, we present a batch-mode ac-
tive learning method based on logistic regression.
Our key motivation is an out-of-sample bound on
the estimation error of class distribution in lo-
gistic regression conditioned on any fixed train-
ing sample. It is different from a typical PAC-
style passive learning error bound, that relies on
the i.i.d. assumption of example-label pairs. In
addition, it does not contain the class labels of
the training sample. Therefore, it can be imme-
diately used to design an active learning algo-
rithm by minimizing this bound iteratively. We
also discuss the connections between the pro-
posed method and some existing active learn-
ing approaches. Experiments on benchmark UCI
datasets and text datasets demonstrate that the
proposed method outperforms the state-of-the-art
active learning methods significantly.

1 INTRODUCTION

In a typical supervised learning problem, one often re-
quires sufficient labeled data to train an accurate classifier,
whereas the labeling process may be expensive and time
consuming. This motivates Active Learning [11], which
has been proven to be effective in reducing the human la-
beling efforts by actively selecting the most informative ex-
amples for labeling. The goal of active learning is to learn
a classifier which accurately predicts the labels of new ex-
amples, while requesting as few labels as possible.

In the past decades, many active learning methods have
been proposed. Depending on the label query strategy,
active learning can be roughly categorized into fully se-
quential active learning [13, 27, 30, 5, 24, 7, 22], batch-

mode active learning [20, 17, 21] and one-shot active learn-
ing [29, 15, 16, 14]. Fully sequential active learning algo-
rithms select only one example to query its label at one
time, and update the classifier. In contrast, batch-mode
active learning algorithms select multiple examples at one
time. It is more efficient since the classifier is trained fewer
times. More importantly, it is able to take into account the
information overlap among the multiple examples. Both
fully sequential and batch-model active learning are adap-
tive, as in the query process, the newly labeled data in an
earlier iteration can be used to guide the selection of unla-
beled data in a latter iteration (e.g., by updating the classi-
fier). In contrast, one-shot active learning is non-adaptive.
In this paper, we consider batch-mode active learning, be-
cause it is more general than the other two query strategies
both in theory and practice. It can be directly adapted to
fully sequential and one-short active learning, by simply
setting the batch-size to one or to a sufficient large number.

On the other hand, the most widely used criteria for ac-
tive learning include but not limited to uncertainty sam-
pling [27, 21], query by committee [13], mutual informa-
tion [24, 16], experimental design [29, 3], and expected
error minimization [15, 14]. Besides these practical algo-
rithms mentioned above, there are also several theoretical
studies [5, 12, 7, 18, 1], which provide bounds on the label
complexity. The method we are going to propose belongs
to the family of expected error minimization. The main ad-
vantage of the methods in this family is that the criteria are
minimizing certain kind of error bounds, which directly re-
late the label selection procedure with the prediction error.
As a result, we are particularly interested in designing such
kind of active learning algorithm.

With the above motivation, we present a batch-mode active
learning method, which is based on the well-known statis-
tical model of logistic regression [19]. One advantage of
logistic regression is that it has an inherent model assump-
tion and thus it is amenable to theoretical analysis. Further-
more, it is in nature a classification model and consequently
more suitable for active learning towards classification. We
perform a finite sample analysis on the logistic regression



and derive an error bound on the class distribution condi-
tioned on any fixed training sample. This bound is essential
because it is different from a typical PAC-style error bound
for model-free passive learning [8], that relies on the i.i.d.
assumption of the example-class pairs. In contrast, our de-
rived bound allows the training examples to be dependent,
which meets the scenario of active learning. Furthermore,
the derived error bound does not contain the class labels of
the training sample, which allows us to do minimization by
choosing training examples without knowing their labels.
We propose an active learning criterion to select the exam-
ples by minimizing this upper bound iteratively. The result-
ing method is a combinatorial optimization problem, which
is relaxed and solved approximately by projected gradient
descent. It is worth noting that the derivation approach we
proposed is quite general and is applicable to other gener-
alized linear models beyond logistic regression.

As we mentioned before, although we mainly study batch-
mode active learning in this paper, our proposed method
supports fully sequential and one-short active learning as
well. Furthermore, unlike many active learning methods [5,
12, 7], which rely on sampling the hypothesis space, our
method is deterministic and easy to implement. Extensive
experiments on UCI datasets and text datasets show that
the proposed method significantly outperforms the state-
of-the-art active learning methods.

The remainder of this paper is organized as follows. In
Section 2, we analyze the logistic regression, and derive a
finite sample error bound on its response distribution. In
Section 3, we present an active learning criterion based on
minimizing the derived error bound, followed by its opti-
mization algorithm. We discuss some related methods in
Section 4. The experiments are demonstrated in Section 5.
Finally, we draw conclusions and point out the future work
in Section 6.

2 FINITE SAMPLE ANALYSIS OF
LOGISTIC REGRESSION

In this section, to keep this paper self-contained, we first
briefly review logistic regression [19]. Then we derive an
estimation error bound for the conditional class distribu-
tion based on finite-sample analysis. It is among the main
contributions of this paper, and is the theoretical underpin-
ning of the active learning approach proposed in the next
section.

2.1 NOTATION

Throughout this paper, we will use lower case letters to
denote scalars, lower case bold letters to denote vectors,
upper case letters to denote the elements of a matrix or
a set, and bold-face upper case letters to denote matri-
ces. I is an identity matrix with an appropriate size. We

use superscript ⊤ to denote the transpose of a vector or a
matrix. The ℓ2-norm of a vector x ∈ Rd is defined as

∥x∥2 =
√∑d

i=1 x
2
i . The spectral norm of a matrix A

is defined as ∥A∥2 = max∥x∥2=1 ∥Ax∥2. In particular,
for a squared matrix A ∈ Rd×d, we denote its maximum
eigenvalue by λmax(A), and its minimum eigenvalue by
λmin(A). We use [n] to denote the index set {1, 2, . . . , n}.
Given a matrix X ∈ Rd×n, XL denotes a submatrix of X,
which consists of the columns of X indexed by L ⊂ [n].
xi denotes the i-th column of X. And for a symmetric ma-
trix D ∈ Rn×n, DLL denotes a submatrix of D, which
contains the rows and columns indexed by L.

2.2 LOGISTIC REGRESSION

Let us consider the binary classification case for simplic-
ity. Given a sample set S = {(xi, yi)}ni=1 where xi ∈ Rd

and yi ∈ {±1}, to have a simpler derivation without con-
sidering the bias term θ, one often augments each exam-
ple with an additional dimension: x⊤ ← [x⊤; 1] and
w⊤ ← [w⊤; θ]. In logistic regression [19], the conditional
class probability Pr(y|x) is given by

Pr(y|x;w) = σ(yw⊤x),

where σ(a) is the logistic sigmoid function, i.e., σ(a) =
1/(1 + exp(−a)). Note that σ(a) is a concave function
when a > 0.

To avoid over-fitting, we place a prior on w in the form of a
zero-mean Gaussian distribution with isotropic covariance,
i.e., N (0, 1/λI), and seek a w which maximizes the log-
likelihood of the posterior distribution given the training
data S, which is equivalent to

ŵ = argmin
w

λ∥w∥22 −
1

n

n∑
i=1

log σ(yiw
⊤xi), (1)

where λ is a positive regularization parameter. Eq. (1) is
also known as penalized logistic regression, or more pre-
cisely, ℓ2-regularized Logistic regression. It is worth not-
ing that although logistic regression is called “regression”,
it is in nature a classification model, because its response is
binary and it directly estimates the conditional class prob-
ability given the data. This is also the reason that we deem
that deriving an active learning algorithm based on logistic
regression is more natural and effective for classification
than inventing one from the real regression models [29, 14].

2.3 ERROR BOUNDS FOR LOGISTIC
REGRESSION

In the following, we will analyze ℓ2-regularized logistic re-
gression reviewed above. First of all, we assume that there
exists an unknown true parameter w∗ ∈ Rd, by which the
class label of an example is generated as follows

Pr(y|x) = σ(yw⊤
∗ x). (2)



where ∥w∗∥2 ≤ R for some R > 0. This is our model as-
sumption. All the theoretical results we are going to present
are built up on this assumption.

Without loss of generality, we assume ∥xi∥2 ≤ 1 for ∀i.
Then it is easy to verify that∥∥∥∥∥ 1n

n∑
i=1

xix
⊤
i

∥∥∥∥∥
2

≤ 1.

The following theorem provides a bound on the estimation
error of ŵ, which is central in our theoretical results. The
detailed proofs can be found in the supplementary material.

Theorem 1. For any fixed sample S = {(xi, yi)}ni=1,
where yi follows the conditional distribution as in Eq. (2),
and ∥xi∥2 ≤ 1 for ∀i. ŵ is the estimated weight vector by
logistic regression on S, then the estimation error of ŵ is
upper bounded as

EY |X [∥ŵ −w∗∥2]

≤C1λmax

((
λI+

1

n
XDX⊤

)−1
)
,

where EY |X is the shorthand for Ey1,...,yn|x1,...,xn
, C1 =

1 + 2λR, X = [x1, . . . ,xn], D is a diagonal matrix with
diagonal elements defined as follows

Dii =
(
1− σ(w⊤

∗ xi)
)
σ(w⊤

∗ xi). (3)

Proof. (Sketch of proof): We use a similar tech-
nique adopted in [25]. Define f(w) = λ∥w∥22 −
1/n

∑n
i=1 log σ(yiw

⊤xi). Let ŵ = argminw f(w).

Define g(∆) as follows

g(∆) =EY |X [λ∥w∗ +∆∥22 −
1

n

n∑
i=1

log σ(yi(w∗ +∆)⊤xi)

−λ∥w∗∥22 +
1

n

n∑
i=1

log σ(yiw
⊤xi)],

where ∆ = w−w∗. It is easy to verify that g(0) = 0. Us-
ing the optimality of ŵ, we have f(ŵ) ≤ f(w∗), yielding

λ∥ŵ∥22 −
1

n

n∑
i=1

log σ(yiŵ
⊤xi)

≤λ∥w∗∥22 −
1

n

n∑
i=1

log σ(yiw
⊤
∗ xi).

Therefore, we have g(∆̂) ≤ 0 with ∆̂ = ŵ−w∗. Suppose
that we show for some radius B > 0, and for ∆ ∈ Rd with
∥∆∥2 = B, we have g(∆) > 0. We then can claim that
∥∆̂∥2 ≤ B. We prove it by contradiction: If ∆̂ lies outside
the ball of radius B, then by convexity of g(·), we have

g(t∆̂ + (1− t)0) ≤ tg(∆̂) + (1− t)g(0) ≤ 0,

for some appropriately chosen t ∈ (0, 1) such that t∆̂ +
(1− t)0 lies on the boundary of the ball. This is contradict
with the fact that g(t∆̂ + (1− t)0) > 0.

By some calculations, we have

g(∆) ≥ CminB
2 −B − 2λRB + λB2,

where Cmin = λmin(1/n
∑n

i=1 σ(w
⊤
∗ xi)(1 −

σ(w⊤
∗ xi))xix

⊤
i ).

It is easy to show that B = (1 + 2λR)/(Cmin + λ) makes
g(∆) > 0. Based on previous argument, since g(∆̂) ≤ 0,
we have

∥∆̂∥2 ≤
1 + 2λR

Cmin + λ

=
1 + 2λR

λmin

(
λI+ 1

n

∑n
i=1 σ(w

⊤
∗ xi)(1− σ(w⊤

∗ xi))xix⊤
i

)
=(1 + 2λR)λmax

(λI+ 1

n

n∑
i=1

Diixix
⊤
i

)−1
 .

Remark 1: The above bound is derived by analyzing the
second-order Taylor expansion of Eq. (1). If we simply
use the strongly convex property of Eq. (1), we cannot get
the desired bound, because the information of the second-
order derivative will not be fully utilized. Consequently, the
above bound is sharper than the bound derived by strong
convexity.

In logistic regression, the classification of a new example is
solely based on its estimated conditional class probability.
Therefore, we aim to bound the estimation error of the con-
ditional class probability rather than (ŵ⊤v−w⊤

∗ v)
2 as in

linear regression. Based on Theorem 1, we can prove the
following theorem, which achieves our goal.
Theorem 2. For any fixed sample S = {(xi, yi)}ni=1 where
yi follows the conditional distribution as in Eq. (2), and
∥xi∥2 ≤ 1 for ∀i. ŵ is the estimated weight vector by lo-
gistic regression on S. Then the estimated conditional class
probability on a validation set {vj}mj=1 is upper bounded
as

EY |X

 m∑
j=1

(Pr(y|vj ; ŵ)− Pr(y|vj ;w∗))
2


≤C2tr

((
λI+

1

n
XDX⊤

)−1

VΣV⊤

)
,

where C2 = (1+λR)2(λ+1)2/λ2, X = [x1, . . . ,xn] and
V = [v1, . . . ,vm], Σ is a diagonal matrix with diagonal
elements defined as follows

Σjj =
(
1− σ(w̃⊤vi)

)
σ(w̃⊤vi), (4)

with w̃ = w∗ + α(ŵ −w∗) for some α ∈ [0, 1].



Proof. (Sketch of proof): Consider the second-order Tay-
lor expansion of σ(ŵ⊤vj), we have the following inequal-
ity,

σ(ŵ⊤vj) = σ(w⊤
∗ vj) + σ(w̃⊤vj)

(
1− σ(w̃⊤vj)

)
vj · ∆̂,

where w̃ = w∗ + α(ŵ − w∗) = w∗ + α∆̂ for some
α ∈ [0, 1].

Then we have

EY |X

 m∑
j=1

(Pr(y|vj , ŵ)− Pr(y|vj ,w
∗))

2


=

m∑
j=1

(
σ(ŵ⊤vj)− σ(w⊤

∗ vj)
)2

=
m∑
j=1

(
σ(w̃⊤vj)

(
1− σ(w̃⊤vj)

)
vj · ∆̂

)2
=

m∑
j=1

(
Σjjvj · ∆̂

)2
,

which can be further bounded by Theorem 1.

Remark 2: All the above theoretical results hold under
the conditional expectation with respect to the conditional
class distribution Pr(Y |X), given any fixed design matrix
X. They do not require either {(xi, yi)}ni=1 or {xi}ni=1 to
be i.i.d., which is the common assumption in passive learn-
ing. In addition, the derived bounds do not depend on the
class labels of the training sample explicitly.

It can be observed from Theorem 2 that, the expected es-
timation error of the conditional class probability P (Y |X)
on a validation set is upper bounded by a term which can be
approximately computed based on the training set together
with the validation set without their labels. Therefore, they
can be used to guide the design of active learning algo-
rithms, because the examples in the pool are not only de-
pendent (starting from the second round of label query) in
active learning, but also unlabeled. It also explains why we
need to derive such a kind of bounds to design active learn-
ing algorithms rather than using existing PAC-style bounds
for model-free learning [8]. In a nutshell, we can minimize
this bound by choosing a subsample of the training set. We
will discuss this in details in the next section.

3 ACTIVE LEARNING BASED ON
ERROR BOUND MINIMIZATION

Before presenting the new active learning method, let
us recall the basic setting of batch-mode active learn-
ing as follows. Given a training data matrix, i.e., X =
[x1, . . . ,xn] ∈ Rd×n, and an initial labeled set L, together
with a set of unlabeled examples, i.e., U . Batch-mode ac-
tive learning operates in T iterations. In each iteration, the

learner will choose b examples (denoted by B) from the un-
labeled set U to label, and add these labeled examples into
the existing labeled set L (also remove B from the unla-
beled set U). The goal of batch-mode active learning is to
find bT examples in total, which are the most informative
examples, namely selected subsample set, to query their la-
bels.

3.1 THE CRITERION

The proposed active learning method is motivated by The-
orem 2. In Theorem 2, we can see that the estimation er-
ror of the conditional class probability is upper bounded by
tr(Σ

1
2V⊤(λI + 1/nXDX⊤)−1V⊤Σ

1
2 ), where D and Σ

are depending on w∗ and w̃. Since w∗ and w̃ are unknown,
we cannot calculate D and Σ exactly. Instead, we use the
current ŵ to approximate w∗ and w̃. Based on the approx-
imate D and Σ, we can choose b examples from U which
minimizes the upper bound. Then we will use these newly
labeled b examples together with existing labeled examples
to update the classifier. After that, we may get better ap-
proximations to D and Σ. This process is repeated until
the label budget is used out.

More specifically, in the t-th iteration, we have labeled set
L and unlabeled set U . We also have the classifier ŵt,
based on which we can get approximations of D and Σ.
Then we are going to choose the next b examples by mini-
mizing the following criterion,

arg min
B⊂U

tr
(
Σ

1
2V⊤ (λI+XBDBBX

⊤
B
)−1

VΣ
1
2

)
,

where we absorb 1/n into λ. By introducing ṽj =√
Σjjvj and x̃i =

√
Diixi, the above optimization prob-

lem can be simplified as

arg min
B⊂U

tr
(
Ṽ⊤

(
λI+ X̃BX̃

⊤
B

)−1

Ṽ

)
. (5)

It is a combinatorial optimization problem. Similar prob-
lems have been encountered in previous work [29]. One
way to solve it is applying the sequential minimization al-
gorithm derived in [29] b times, to get a batch B. However,
this sacrifices the advantage of batch-mode active learning,
because it neglects the information overlap among exam-
ples. Another way is formulating it as a semi-definite pro-
gramming [9], which is computationally very expensive.
Here, we do some relaxation and use the projected gradient
descent to solve it, following the idea adopted in [14].

3.2 OPTIMIZATION

We introduce a selection matrix S ∈ R|U|×b, which is de-
fined as

Sij =

 1, if the i-th example in U is selected
as the j-point in B

0, otherwise.



It is easy to check that each column of S has one and only
one 1, and each row has at most one 1. We denote the
constraint set for S by S1 = {S|S ∈ {0, 1}|U|×b,S⊤S =
I}.

With S, we have X̃B = X̃S. Then Eq. (5) can be simplified
as

arg min
S∈S1

tr
(
Ṽ⊤(λI+ X̃SS⊤X̃⊤)−1Ṽ

)
.

The above optimization problem is almost continuous, ex-
cept the constraint set S1. In order to apply continuous
optimization algorithms, we relax it into the following con-
tinuous domain, i.e., S2 = {S|S ≥ 0,S⊤S = I}.

Since the projection onto {S : S⊤S = I} is computa-
tionally expensive, we would like to design an algorithm
in which the constraint S⊤S = I is automatically satisfied
after each gradient descent. To cope with S⊤S = I, we in-
troduce a Lagrange multiplier Λ ∈ Rb×b, and write down
the Lagrangian function as

L(S) =tr
(
Ṽ⊤(λI+ X̃SS⊤X̃⊤)−1Ṽ

)
+tr
(
Λ(S⊤S− I)

)
.

The derivative of L(S) with respect to S is

∂L

∂S
= −2X̃⊤BX̃S+ 2SΛ, (6)

where B = A−1(ṼṼ⊤)A−1 and A = λI + X̃SS⊤X̃⊤.
Using the fact that S⊤S = I yields Λ = S⊤X̃⊤BX̃S.
Substituting the Lagrange multiplier Λ back into Eq. (6),
we obtain the derivative depending solely on S. Then fol-
lowing [14], we can use projected gradient descent to find
a local optimal solution for Eq. (6), where the projection
is only onto {S : S ≥ 0}. After the local optimal S∗

is obtained, we can discretize it to obtain the desired so-
lution. The analysis of the gap between the local optima
and the global optima is challenging and perhaps an open
problem. It may be helpful to realize that S2 is a matching
polytope [23] for such kind of analysis.

In summary, we present the whole algorithm for active
learning based on error bound minimization in Algorithm
1. Since our algorithm is designed from logistic regression,
we call it Logistic Bound. In the special case that b = 1,
i.e., fully sequential active learning, we do not need to use
projected gradient descent in each iteration. In that case,
we can find the best single example by sorting.

We emphasize that α in Theorem 2 is some parameter
within [0, 1]. This parameter comes from the mean value
theorem in the derivation. It is not a parameter of our algo-
rithm, because we use ŵ to approximate w̃ in Algorithm 1.
So we do not need to tune α at all.

Algorithm 1 Batch-Mode Active Learning Based on Error
Bound Minimization (Logistic Bound)

Input: X,V, number of iterations T , batch size b, reg-
ularization parameter λ, initial labeled set L and unla-
beled set U ;
for t = 1→ T do

Compute ŵt based on L;
Compute D and Σ based on Eqs. (3) and (4);
Compute B ⊂ U based on Eq. (5);
Update L = L ∪ B and U = U \ B;

end for

3.3 TIME COMPLEXITY

In this subsection, we analyze the time complexity of the
proposed active learning algorithm. The computation of
Eq. (6) involves A−1, which is the inverse of a d × d ma-
trix. However, we do not need to compute it directly. Since
A−1 = (λI + XSS⊤X⊤)−1, by applying the Woodbury
matrix identity, we have A−1 = 1/λI − 1/λXS(λI +
S⊤X⊤XS)−1S⊤X⊤. Thus we only need to calculate the
inverse of (λI + S⊤X⊤XS), whose size is b × b, where b
is the batch size. So the time complexity of computing the
gradient in Eq. (6) can be reduced to O(ndb + db2 + b3),
which is dominated by O(ndb) because b is often set to 5
to 50. The total complexity of the projected gradient de-
scent is O(ndbt), where t is the iteration number. The time
complexity is clearly linear to the sample size n, and the
dimension of the input space d.

4 RELATED WORK

In this section, we show the connections of the proposed
approach with some existing active learning methods.

One thread of related work is experimental design [2].
For instance, Yu et al. [29] proposed transductive experi-
mental design (TED), whose intent is to select the exam-
ples to learn a least squares regression function which has
minimum prediction variance on the validation data. As
we mentioned before, it is a non-adaptive active learning
method, because the label information of the selected ex-
amples cannot be utilized to select subsequent unlabeled
examples. Intuitively, taking into account the labels of
queried examples is beneficial for subsequent label query.
Our method is able to utilize the labeled examples obtained
up to now to choose the next batch of examples through
D and Σ. Recall that in our method, each example in
the pool is weighted by Dii = σ(ŵ⊤xi)(1 − σ(ŵ⊤xi)).
Apparently, the more uncertain an example is, the big-
ger its weight will be (because Dii is maximized when
σ(ŵ⊤xi) = 1/2). In the special case, if σ(ŵ⊤xi) = 1/2
for every example in the pool, then all the examples are
equally weighted, and our method will degrade to TED. By
applying the derivation technique to ridge regression, we



can obtain a very similar result to [29]. However, using the
derivation technique from experimental design, we cannot
get the results in this paper. So the derivation technique
used in this paper is more general.

The second line of related work is active learning based
on logistic regression [30, 26]. Based on the asymptotic
analysis, Zhang and Oles [30] derived the inverse of the
Fisher information matrix of the maximum likelihood es-
timation (MLE) of logistic regression, which measures the
variance of model. Thus they proposed an active learning
criterion by minimizing the variance. Our criterion derived
in Theorem 2 is from finite sample analysis, which is non-
asymptotic and different from the criterion derived in [30].
Since finite sample error bounds characterize the behavior
of a classifier provided with a finite training sample, they
provide more accurate guidance on algorithm design than
asymptotic analysis. Following this seminal work, several
incremental studies were presented, which solve the same
criterion using different sophisticated optimization algo-
rithms. For example, Hoi et al. [20] proposed to refor-
mulate it as a submodular function maximization problem.
On the other hand, Guo and Schuurmans [17] proposed a
batch-mode active learning algorithm based on logistic re-
gression, by maximizing the likelihood on the labeled train-
ing sample and minimizing the entropy on the selected un-
labeled training sample. The main innovation lies in the
optimization part rather than the theoretical results.

The last but not least related work is the family of expected
error minimization-based approaches. Recently, Gu et al.
[14] proposed an active learning method based on mini-
mizing the out-of-sample error bound for Laplacian regu-
larized least squares (LapRLS) [6], a semi-supervised ver-
sion of least squares regression. It sheds light on designing
active learning algorithms via deriving certain kind of er-
ror bounds, which do not rely on the i.i.d assumption of the
training sample nor the class labels. The method is non-
adaptive1, raising a question that whether we can design an
adaptive active learning algorithm along this line. Our re-
sult in this paper is in the affirmative. However, the linear
regression model as well as the derivation technique used
there are not capable to achieve this goal. So we study
logistic regression with a new analyzing technique instead.
Note also that in the supervised case, the methods proposed
in [14] and [29] are identical in terms of the criterion.

1It is nonadaptive, in the sense that when the model (ŵ) is up-
dated using the newly labeled examples, the algorithm is not able
to use the information from the updated model (ŵ) to choose next
batch of examples to label. In fact, the active learning algorithm
in [14] does not use any information from ŵ in the process of
active learning, because its criterion does not depend on ŵ.

5 EXPERIMENTS

In this section, we evaluate the proposed method on both
UCI datesets [3] (wdbc, wpbc, sonar, heart, australian, dia-
betes, splice) and two text datasets (Text1 and Text2) gener-
ated from the famous 20-newsgroups data set2. For the text
datasets, the original number of features (words) is 8, 014.
We apply principal component analysis (PCA) to reduce
the input dimensionality by projecting the data onto its
leading principal components, where the number of princi-
pal component is determined such that it accounts for 95%
of its total variance. For each example, we normalize it into
a vector with unit ℓ2-norm.

5.1 EXPERIMENTAL SETUP AND BASELINES

In order to randomize the experiments, in each run of ex-
periments, we use 50% data as the training examples. The
remaining 50% data is used as test set. We use the train-
ing set for active learning and evaluate the prediction per-
formance on the fixed test set. This random split was re-
peated 20 times, thus we can do statistical significance test.
We study a difficult case of active learning, where we start
with one randomly selected example per class. All the al-
gorithms start with the same initial labeled set, unlabeled
set and test set.

To demonstrate the effectiveness of our proposed method,
we compare it with existing state-of-the art algorithms, in-
cluding one fully sequential active learning approach, one
non-adaptive active learning algorithm, and three batch-
mode active learning methods. We summarize these meth-
ods as follows:

Random Sampling (Random): It is the simplest baseline,
which uniformly selects examples from the candidate set as
training data.

Query the informative and representative examples
(QUIRE) [22]: it is a fully sequential active learning al-
gorithm.

Transductive experiment design (TED) [29]: it is a non-
adaptive active learning method. Note that it selects all the
examples to label at one shot.

SVM batch-mode active learning (SVM BMAL) [21]: in
our empirical study, we found that it consistently outper-
forms SVM active learning [27], so we only demonstrate
its results while omit the results of SVM active learning.
We use linear kernel for SVM. In fact, SVM active learn-
ing can be seen as a special case of SVM BMAL, where
the batch size is equal to 1.

Discriminative batch-mode active learning (Disc) [17]: it
is a batch-mode active learning algorithm based on logistic
regression.

2http://people.csail.mit.edu/jrennie/20Newsgroups/
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(c) sonar
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(d) heart
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(e) australian
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(f) diabetes
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(h) Text1
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(i) Text2

Figure 1: Comparison of active learning methods on both UCI and text datasets with batch side b = 5, and T = 20
iterations. The x-axis is number of labeled examples, and the y-axis is the classification accuracy (%).

Table 1: Win/tie/loss counts for the proposed method versus the other methods during the whole active learning process,
based on paired t-test at 95% significance level. The first column is the dataset name (#examples/#features).

DATASETS VS RANDOM VS QUIRE VS TED VS SVM BMAL VS DISC VS FISHER

WDBC(569/30) 14/6/0 18/2/0 8/12/0 18/2/0 17/3/0 10/10/0
WPBC(198/33) 9/6/5 9/6/5 13/7/0 4/12/4 10/6/4 11/6/3
SONAR(208/60) 2/16/2 13/7/0 18/2/0 14/6/0 20/0/0 19/1/0
HEART(270/13) 9/11/0 19/1/0 6/13/1 20/0/0 5/15/0 14/6/0
AUSTRALIAN(690/14) 14/6/0 20/0/0 10/10/0 10/10/0 20/0/0 20/0/0
DIABETES(768/8) 1/19/0 20/0/0 11/9/0 20/0/0 17/3/0 15/5/0
SPLICE(1000/60) 15/4/1 18/2/0 14/5/1 18/2/0 16/4/0 0/19/1
TEXT1(1980/991) 20/0/0 20/0/0 13/5/2 20/0/0 19/1/0 19/1/0
TEXT2(1990/768) 18/2/0 20/0/0 9/10/1 20/0/0 18/2/0 18/1/1



Fisher information of logistic regression (Fisher) [20]: It is
also a batch-mode active learning based on logistic regres-
sion. However, it is derived from non-asymptotic analysis
of logistic regression.

For our method, the validation set V is set to the same as
the pool of unlabeled examples. Recall that our method
does not require the labels of the validation set either.

For each dataset, we let the active learning methods in-
crementally choose b = 5 examples to label, and perform
T = 20 iterations in total (except for wpbc, where we only
perform T = 19 iterations due to limited examples). We
did not compare with [16], because we were not able to ac-
quire a working implementation of this algorithm. Accord-
ing to the experimental results (Table 1) reported in [16],
its performance is statistically similar to Disc [17]. We did
not use semi-supervised classifiers. Hence the approach
proposed in [14] reduces to TED. Most of the implemen-
tations are provided by the authors of the corresponding
papers.

One issue with most of the active learning methods we in-
vestigated is that they are invented based on different clas-
sifiers. For example, TED is designed for ridge regression.
Disc and Fisher are developed based on logistic regression.
We use different classifiers for different active learning ap-
proaches, because we found that using the classifier based
on which the active learning method is derived can lead
to better results than using other classifiers. Furthermore,
for each active learning method, its parameter and the pa-
rameter of its corresponding classifier are tuned by 5-fold
cross validation on the labeled set through searching the
grid {10−3, 10−2, . . . , 103}.

5.2 RESULTS AND DISCUSSIONS

The experimental results are shown in Figure 1. In all sub-
figures, the x-axis represents the number of labeled exam-
ples, while the y-axis is the averaged classification accu-
racy on the test data over 20 runs.

We compare all the active learning methods during the en-
tire query process. Recall that in Figure 1, there are 20
query points (except for wpbc, which has only 19), with 20
results on each of them. We therefore run a 2-sided paired
t-test at each query point, at 95% significance level. The
results of t-test can be categorized into three cases: (i) our
method outperforms a specific algorithm significantly, de-
noted by “win”; (ii) our method is significantly worse than
a specific algorithm, denoted by “lose”; (iii) otherwise, de-
noted by “tie”. We summarize the t-test results in terms of
the count of “win”, “tie” and “lose” in Table 1.

We observe that the proposed method outperforms the other
methods significantly at most cases. SVM BMAL and
QUIRE are often the worst. The reason is probably that
their criteria are not related to prediction performance. The

performance of Disc is satisfactory. Yet it performs well
on some datasets while not very well on other datasets.
The performance of TED and Fisher are comparable. Al-
though TED aims to minimize the variance of prediction,
[14] showed that it is actually consistent with minimizing
the out-of-sample error of ridge regression. This explains
its good performance. However, since TED is a nonadap-
tive active learning method, it cannot fully utilize the la-
bel information during the query process. This limits its
performance on many datasets. Fisher minimizes the un-
certainty of the model, which does not necessarily lead to
small generalization error. However, it happens that the un-
certain reduction criterion for logistic regression derived in
[30] is a little similar to our criterion. This may interpret
its general good performance. The superior performance of
our method is attributed to its theoretical foundation, which
guarantees that the classifier can achieve small prediction
error on the unseen data. Lastly, we found that the perfor-
mance of random sampling is not bad. As an unbiased label
selection procedure, random sampling is at least a consis-
tent algorithm to choose the training sample, as is widely
done in passive learning. This is consistent with the result
reported in [17].

5.3 STUDY ON THE BATCH SIZE

In previous experiments, we fixed the batch size to 5, which
could be biased in comparison. So we will compare our
method with those batch-mode active learning algorithms
under different settings of batch size here. We vary the
batch size using the grid {1, 5, 10, 20, 30, 60} and show the
results with 60 labeled examples in Figure 2. We only show
the results on three datasets (Sonar, Heart and Text1). Sim-
ilar results can be observed on the other datasets.

It can be seen that under different batch sizes, our method
outperforms the other batch-mode active learning algo-
rithms in most cases. This strengthens the superiority of
our method over the others. In addition, we also observe
some interesting results. For example, for some batch-
mode active learning algorithms such as SVM BMAL and
Disc, their performance of using a batch size of more than
one example sometimes seems not as good as choosing a
single example at each round. This implies that they may
not be able to address the information overlap among ex-
amples very well. In contrast, our method is able to exploit
the interdependence among examples, because our method
usually achieves better results with batch-size larger than
one.

In addition, we found that our method obtains the best re-
sult when the batch size is either not too small (b = 1) nor
too large (b = 60). This is quite reasonable, because when
b = 1, it is a fully sequential strategy, and we cannot utilize
the dependence among examples. On the contrary, if the
batch size is too large (such as one-short active learning in
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Figure 2: Comparison of batch-mode active learning methods on three datasets with different batch size ranging from b = 1
to b = 60. The x-axis represents the batch size, and the y-axis is the classification accuracy (%) with 60 labeled examples.

the extreme case), the information contained in the newly
labeled examples cannot be immediately exploited through
updating the classifier, which may limit its performance.
This somehow implies the superiority of batch-mode active
learning against both fully sequential and one-short active
learning. It also suggests us to choose a medium size of
batch in practice. More rigorous analysis is required in the
future work.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel active learning method
based on out-of-sample error bound minimization. We use
logistic regression as a running example to derive the al-
gorithm. We would like to emphasize that the derivation
technique developed in this paper applies to other gener-
alized linear models, or even more sophisticated graphical
models. In our future work, we will study these alterna-
tives. We also plan to conduct comparisons with some
other batch-mode active learning methods proposed re-
cently [4, 10, 28]. On the other hand, we aim to develop
an algorithm solving Eq. (5) with provable guarantee.
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