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Abstract

Consider a collection of weighted subsets of a
ground set N . Given a query subset Q of N ,
how fast can one (1) find the weighted sum
over all subsets of Q, and (2) sample a sub-
set of Q proportionally to the weights? We
present a tree-based greedy heuristic, Treedy,
that for a given positive tolerance d answers
such counting and sampling queries to within
a guaranteed relative error d and total vari-
ation distance d, respectively. Experimen-
tal results on artificial instances and in ap-
plication to Bayesian structure discovery in
Bayesian networks show that approximations
yield dramatic savings in running time com-
pared to exact computation, and that Treedy
typically outperforms a previously proposed
sorting-based heuristic.

1 INTRODUCTION

Reasoning with probabilistic models typically deals
with queries on sets of weighted points. For instance,
one may ask a maximum-weight point subject to the
constraint that the point satisfies some given prop-
erty. Likewise, one may ask the total weight (e.g.,
the probability mass) of the points or a random point
sampled proportionally to the weights, subject to the
given constraint. The large number of points and the
complexity of the constraint often render these tasks
computationally very challenging.

The present works addresses a particular class of
queries, we call subset queries, formalized as follows.
Let N be a ground set of n elements and C a collection
of m subsets of N , each subset S ∈ C associated with
a non-negative weight w(S). For convenience, we ex-
tend the weight function to all subsets of the ground
set by letting w(S) = 0 for S 6∈ C. A subset counting

query asks the total weight of all subsets of a given
query subset Q ⊆ N , given by

W (Q) =
∑
S⊆Q

w(S) . (1)

Analogously, a subset sampling query asks a random
subset of the query subset Q, such that any par-
ticular subset S ⊆ Q gets selected with probability
w(S)/W (Q). While queries about maxima, minima,
median, etc. can be defined in a similar fashion, we will
restrict ourselves to counting and sampling queries in
the sequel.

Our focus will be on scenarios where m, the size of
the collection, is much smaller than 2n, the number of
all subsets of the ground set. The opposite case when
m is close to 2n is also fundamental but, to a large
extent, well understood. Namely, using the fast zeta
transform algorithm (Yates, 1937; Kennes and Smets,
1990; Kennes, 1991; Koivisto and Sood, 2004; Koivisto,
2006) the values W (Q) can be computed for all Q ⊆ N
in a total of roughly n2n additions, after which answer-
ing any counting or sampling query is very fast.

1.1 APPLICATION: ORDER-MCMC FOR
BAYESIAN NETWORK LEARNING

A motivating example of subset queries is provided
by the order-MCMC method of Friedman and Koller
(2003) for learning the directed acyclic graph (DAG) of
a Bayesian network model (Pearl, 1988, 2000; Buntine,
1991; Heckerman et al., 1995). For closely related re-
cent developments that likewise involve subset queries,
see the works of Ellis and Wong (2008), Niinimäki et al.
(2011), and Niinimäki and Koivisto (2013).

Order-MCMC samples node orderings by simulating a
Markov chain whose stationary distribution is the pos-
terior distribution. The time consumption of order-
MCMC is determined by the complexity of evalu-
ating the posterior probability (up to a normalizing
constant) of a given node ordering v1v2 · · · vn. Ef-



ficient evaluation is facilitated by the factorization
of the posterior into a product W1W2 · · ·Wn, where
each factor Wj is given by (1) as the total weight
W ({v1, v2, . . . , vj−1}) for a weight function w that de-
pends on the node vj . The interpretation is that any
subset of the nodes preceding vj can form the set of
parents of vj in the network, the weight indicating how
well a particular selection of parents fits the data and
the prior beliefs.

To quantify the time requirements in this example,
suppose that each node is allowed to have at most
k parents—having a relatively small k is a common
practice unless n is very small. Then each Wj can
be evaluated using about

(
j−1
k

)
∗ =

(
j−1

0

)
+
(
j−1

1

)
+

· · · +
(
j−1
k

)
additions, and the posterior using about(

0
k

)
∗+
(

1
k

)
∗+ · · ·+

(
n−1
k

)
∗ =

(
n

k+1

)
∗
−1 >

(
n

k+1

)
additions

(followed by n−1 multiplications). This is tolerable for
small values of n and k, but for larger values, say n =
60 and k = 5, the time requirement becomes infeasible
in practice, for the computations are performed for
thousands of node orderings.

The same concern holds for the possible second phase
of the order-MCMC method, in which each sampled
node ordering is used for sampling some number of
DAGs compatible with the ordering. This amounts to
n subset sampling queries per DAG.

1.2 AN APPROXIMATION APPROACH

One might hope for a data structure that enables rapid
answering of subset queries. Trivially, counting queries
can be answered in O(n) time by precomputing and
storing the answers to all possible 2n queries in ad-
vance. But this approach becomes soon unfeasible for
larger n, especially due to the large memory require-
ment. It is to be contrasted with the other extreme
approach: visit all members S ∈ C and add w(S) to
the sum if S ⊆ Q, taking O(mn) time and essentially
no extra memory. Whether there are efficient ways
to trade memory for time, is an open question. How-
ever, there is strong negative evidence associated with
closely related existence queries (“Does the query set
contain some set in C?”). Namely, the best known
tradeoffs are rather inefficient and of theoretical in-
terest only (Charikar et al., 2002), and lower bounds
that suggest the impossibility of finding much better
tradeoffs are known (Pǎtraşcu, 2011).

Given the state of affairs concerning exact solutions,
we in this work settle for approximations to reduce the
time requirement of subset queries. In counting queries
we allow an additive relative error d. Likewise, in sam-
pling queries we require the sampling distribution be
at a total variation distance at most d from the exact
distribution. Here d is a parameter that can be set to

close to zero, say d = 0.01, to guarantee very accurate
approximations. In the order-MCMC application, for
instance, it is easy to verify that accurate approxima-
tions to subset queries translate, in a straightforward
manner, to accurate approximations at the end results
of posterior inference.

The idea of approximation is not new. Indeed, the
starting point of the present study is the following
heuristic by Friedman and Koller (2003) to speed up
order-MCMC: Given a query set Q, visit a fixed num-
ber m′ of heaviest members S ∈ C in decreasing order
by weight, and if S ⊆ Q, then increase the sum by the
weight of S. Finally, return the accumulated sum, un-
less the largest counted weight fails to be some factor
γ larger than the smallest (last) weight in the list, in
which case compute the sum by brute-force enumer-
ation of all subsets of Q in C. The rationale is that
for large Q it is likely that there is at least one heavy
S ⊆ Q among the m′ heaviest sets in C, and thus the
brute-force phase is avoided. Choosing a large enough
γ guarantees that the lost mass is negligible. Whether
this heuristic is close to the best possible, has remained
an open question.

Here, we address the question in several ways. Our fo-
cus is exclusively on collector algorithms that, like the
aforementioned heuristic by Friedman and Koller, are
based on visiting some of the subsets of the ground set
in some order, adding up the weights of those that are
subsets of the query set, and stopping using some ap-
propriate rule. We begin in Section 2 by showing how
any algorithm of this type for approximative counting
also yields a sampling algorithm with a correspond-
ing accuracy. The section continues by describing two
extreme approaches to counting queries: a brute-force
algorithm Exact that produces the exact value, and
an idealized algorithm Ideal that only visits the min-
imum number of heaviest subsets that suffice for the
desired approximation error, so providing us a lower
bound for the amount of work needed by any collector
algorithm. We also streamline the heuristic of Fried-
man and Koller by formulating a stronger stopping
rule that achieves the same accuracy guarantees with
less work. We call the resulting algorithm Sorted.

Our main contribution is a novel heuristic, presented
in Section 3. The motivation of the heuristic stems
from the observation that Sorted becomes slow when
the heaviest subsets are not contained by the query set.
Our idea is to restrict the search to subsets of the query
set, however, turning the brute-force enumeration into
a controlled approximation algorithm that, in a greedy
fashion, aims to visit first subsets that are “likely” to
be heavier. As the enumeration proceeds from smaller
subsets to larger ones in a tree-structured manner, we
call the algorithm Treedy.



We compare the heuristics to the exact and the ideal-
ized algorithm in Section 4. We report on experiments
with synthetic instances and in application to Bayesian
network learning using order-MCMC.

To keep the presentation simple and succinct, we will
assume that the collection C is downward closed. That
is, we assume that C equals the downward closure C∗ =
{T : T ⊆ S for some S ∈ C}. In the experiments
we further restrict our attention to the case where C
consists of all S ⊆ N with |S| ≤ k for some relatively
small k. These restrictions are, however, not crucial
for the validity of the studied methods. We discuss
this issue, among other things, in Section 5.

2 PRELIMINARIES

Throughout this section and the remainder of the pa-
per, we consider a weighted downward closed collection
C of m subsets of some n-element ground set N . For
a query set Q ⊆ N , we call a set S relevant if S ∈ C
and S ⊆ Q. We denote the collection of relevant sets
by CQ. If Q is clear from the context, we may denote
the total weight W (Q) simply by W . We will denote
by d the approximation tolerance, 0 ≤ d ≤ 1, whether
referring to an upper bound for the additive relative
error or for the total variation distance.

2.1 FROM COUNTING TO SAMPLING

Below is a generic algorithm that uses a collector al-
gorithm for counting queries (the first step) to answer
sampling queries (the second step).

Algorithm Draw
Given a query set Q and tolerance d, do the following:

D1 Visit some relevant sets S1, S2, . . . , Sr whose total
weight W ′ is at least (1 − d)W . Store the cumu-

lative sums Wi =
∑i

j=1 w(Sj).

D2 Draw a random variable U from the uniform dis-
tribution on the interval [0,W ′]. Find an i such
that Wi−1 < U ≤Wi and return Si.

It is easy to see that Draw returns a set S with prob-
ability π′(S) that satisfies π′(S) = w(S)/W ′ if S is
a visited relevant set and π′(S) = 0 otherwise. The
next result shows that this guarantees a small devia-
tion from the exact distribution π(S) = w(S)/W , as
measured by the commonly used total variation dis-
tance. The total variation distance between two prob-
ability measures µ and µ′ on a finite set Ω is defined as
δ(µ, µ′) = maxA⊆Ω |µ(A) − µ′(A)| and can be simpli-
fied to δ(µ, µ′) =

∑
a∈Ω |µ(a)−µ′(a)|/2. We attribute

the following theorem to folklore; the proof is elemen-
tary and included here for convenience.

Theorem 1. The total variation distance between the
above defined π and π′ is at most d.

Proof. As π′(S) ≥ π(S) for each visited relevant set S
and π′(S) = 0 otherwise, we have

2δ(π, π′) =

r∑
i=1

[
π′(Si)− π(Si)

]
+ 1−

r∑
i=1

π(Si)

= 2− 2W ′/W .

Using W ′ ≥ (1− d)W completes the proof.

If the cumulative weights Wi are stored in a simple ar-
ray indexed by i, step D2 can be implemented to run
in O(log r) time by using binary search. However, if
the distribution π′ has small entropy H (i.e., the mass
is concentrated on some subsets), then much faster im-
plementation running in roughly O(H) time is possible
by using, e.g., a Huffman coding based data structure.

The running time of Draw is clearly dominated by step
D1. This, in part, motivates the investigations of effi-
cient collector algorithms for counting queries.

2.2 EXACT AND IDEAL COUNTING

There are two obvious brute-force approaches to com-
pute the exact total weight of the query set Q. One is
to visit every set S in the given collection C and add
the weight of S to a cumulative sum if S ⊆ Q. The
other approach is to only visit sets S ⊆ Q and add
the weight of S to a cumulative sum if S ∈ C. The
following algorithm assumes the latter approach:

Algorithm Exact
Given a query set Q, do the following:

E1 Visit the relevant sets in lexicographic order and
return the sum of their weights.

For downward closed collections C it is, in fact, more
efficient to implement the algorithm so that the mem-
bership test S ∈ C is avoided, at the cost of visiting
also a few sets that are not subsets of Q. The idea is
to use a data structure where each member S of C is
linked to its one-element larger successors S∪{x} ∈ C,
with the link labeled by the element x. Namely, then
the algorithm can proceed in the lexicographic order
at the cost of testing whether x ∈ Q also for some
some irrelevant sets S ∪ {x} 6⊆ Q. Technically, this
makes the number of visited sets generally exceed the
number of relevant sets |CQ|; however, the extra visits
are very quick due to the simplicity of the test.

We note that when C consists of all subsets of size at
most some k, then it is easy to visit only the relevant
sets and avoid the aforementioned technicalities.



When an approximation of the total weight suffices,
the performance of Exact is no longer close to the
best possible. An ideal collector algorithm would visit
as few as possible sets necessary for gathering the re-
quired proportion of the mass:

Algorithm Ideal
Given a query set Q and tolerance d, do the following:

I1 Visit, in some order, the minimum number of the
heaviest relevant sets whose total weight W ′ is at
least (1− d)W . Return W ′.

We should note that Ideal is an “idealized” algorithm
in the sense that we do not know how to efficiently
find the minimum number of the heaviest relevant sets.
Nevertheless, we can estimate the running time of the
algorithm under the supposition that a list of sufficient
relevant sets is available to the algorithm for free.

2.3 COUNTING BY PRE-SORTING

If the query set Q is large, then one can achieve al-
most ideal performance by visiting sufficiently many
members of C in decreasing order by weight. Sorting
needs to be done only in the initialization phase, be-
fore any query. For smaller Q the heaviest sets of C
are, however, likely to include also irrelevant sets that
are not subsets of Q. Then the number of visited sets
may grow much larger than |CQ|. Therefore it is advis-
able to switch over to the exact algorithm after about
|CQ| visited sets. To keep the number of visited sets
as small as possible, it is also crucial to devise an ef-
ficient stopping rule. The following algorithm adapts
these ideas and implements a stopping condition that
is stronger than in the original formulation by Fried-
man and Koller (2003):

Algorithm Sorted

S0 Before any query, sort the sets in C into decreasing
order by weight, w(S1) ≥ w(S2) ≥ · · · ≥ w(Sm).
Store the cumulative sums Wi =

∑m
j=i+1 w(Sj).

S1 Given a query set Q and tolerance d, initialize a
counter for yet nonvisited relevant sets t = |CQ|,
a step counter j = 0, and W ′ = 0, and do the
following: increase j by 1; if j ≥ |CQ|, then switch
to Exact; if Sj ⊆ Q, then add w(Sj) to W ′ and
decrease t by 1; if W ′ ≥ (1−d)(W ′+Wj−Wj+t),
then stop and return W ′.

Theorem 2. Algorithm Sorted is correct.

Proof. If the algorithm switches to Exact at some
point, then the correctness of the algorithm is clear.
Suppose therefore that the algorithm stops when the

Table 1: Processing a Subset Counting Query. For
each algorithm the visiting order of subsets is shown,
for ground set {A, B, C, D}, query set {B, C, D}, and
approximation tolerance 20 %.

S ∈ C w(S) Exact Ideal Sorted Treedy

AB 99 1
AD 90 2
A 85 2 3 2
∅ 80 1 X 4 1
B 70 3 X 5 3

AC 60 6
D 50 8 X 7 4

BD 14 5 5
C 13 6 6

CD 12 7
BC 11 4

condition W ′ ≥ (1− d)(W ′ +Wj −Wj+t) is satisfied.
It suffices to show that W ′+Wj −Wj+t ≥W . To this
end, observe that W ′ is a sum of the weights of the
|CQ| − t heaviest relevant sets, and that Wj −Wj+t is
at least as large as the sum of the t remaining (lightest)
relevant sets.

See Table 1 for an illustration and comparison to Exact
and Ideal. Note that in the example, Sorted achieves
the desired approximation guarantee after visiting 7
sets; it does not switch to Exact.

3 THE TREEDY HEURISTIC

We next present a novel heuristic, Treedy, for approx-
imate counting queries. Like Exact, the heuristic op-
erates on a lexicographically structured tree. The lex-
icographical tree of C is a rooted tree on the collection
C, defined as follows. The empty set is the root of
the tree. Any other set S is a son of another set S′

if S = S′ ∪ {x} where x is the last element in S in
alphabetical order; the notions of a brother, ancestor,
and descendant are defined in the obvious way. For
each set S ∈ C define the weight potential φ(S) as the
sum of the weights of all descendants of S (including
S itself). In the initialization phase, Treedy modifies
this structure appropriately, and in the query phase it
proceeds in a greedy fashion.

Algorithm Treedy

T0 Before any query, modify the lexicographical tree
of C into a greedy tree as follows: For each set,
sort its sons in decreasing order by their weight
potentials. Then remove the links to all but the
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Figure 1: Treedy in action on the example instance described in Table 1. (a) The greedy tree built in step T0 is
shown. (b) The situation at the end of step T1 is shown. Dashed lines connect the visited sets. The sets marked
by thicker rectangles constitute the collection R at the end of step T1. The last set removed from R is {D}. A
subtree that is discarded once found to contain only irrelevant sets is shown in gray. Note that φ and ψ remain
unchanged after step T0; only the values of W ′ and Ψ(R) change during the execution of step T1 (for each set
shown are the values just after removing the set from R and updating W ′).

first son and create a linked list to connect the
brothers in this order. As a result, each set has
(at most) two links: one to its brother with next
largest weight potential and the other to its son
with the largest weight potential. Finally com-
pute the aggregate potential ψ(S) for each set S
by summing the weight potentials of S and its
subsequent smaller brothers.

T1 Given a query set Q and tolerance d, initialize
W ′ = 0 and R = {∅} and repeat the following:
remove from R a set S with the largest aggregate
potential; add w(S) to W ′; add the next relevant
brother (if any) of S intoR and ignore the preced-
ing irrelevant brothers (and their descendants);
add the first relevant son (if any) of S into R and
ignore the preceding irrelevant sons (and their de-
scendants); if W ′ ≥ (1 − d)

(
W ′ + Ψ(R)

)
, where

Ψ(R) =
∑

S∈R ψ(S) is the aggregate potential of
R, then stop and return W ′.

See Table 1 and Figure 1 for an illustration of an ex-
ecution of Treedy. In that small example, the savings
of Treedy compared to Exact are rather modest. We
leave it to the reader to imagine how larger savings are
possible on larger problem instances.

Theorem 3. Algorithm Treedy is correct.

Proof. First note that, during the execution of the al-
gorithm, R contains only relevant sets and thus only
weights of relevant sets are added to W ′. Therefore, it
is sufficient to show that the invariant W ′ + Ψ(R) ≥

W (Q) holds during the execution of the algorithm;
correctness then follows from the stopping condition.

To see that the invariant holds, observe that in the
beginning Ψ(R) is the sum of the weights of all rel-
evant sets plus the weights of all irrelevant sets. In
each step the algorithm removes a set S from R but
adds back the next relevant brother of S and the first
relevant son of S. The aggregate potential of R is thus
decreased by w(S) and by the weight potentials of any
possibly ignored irrelevant brothers and sons. Since
the descendants of irrelevant sets are also irrelevant,
the only relevant set whose weight is subtracted from
Ψ(R) is S. As w(S) is added to W ′, no weight of a
relevant set is removed from W ′ + Ψ(R). Thus, by
the induction principle the invariant holds during the
execution of the algorithm.

The potential efficiency of Treedy stems from the fact
that, contrary to Sorted, none of the descendants of
an irrelevant set will be visited. On the other hand,
the algorithm is allowed to visit some irrelevant sets
to enable efficient implementation of the greedy best-
first order. But visiting irrelevant nodes is fast since
those are just ignored; no update of R, Ψ(R) or W ′ is
needed.

The greedy tree can be constructed in a straightfor-
ward manner in O(m log n) time, for sorting the mS

sons of each set S ∈ C takes O(mS logmS) time,
mS ≤ n, and

∑
S∈CmS = m− 1. Thus the initializa-

tion cost is essentially linear in the input size and neg-
ligible when the number of counting queries is large.



To implement the query algorithm efficiently, we have
to overcome two challenges: (1) how to store R and
(2) how to avoid computing Ψ(R) from scratch in ev-
ery step. We address the first challenge by keeping the
members of R in a binary heap, which enables updat-
ing R in O(log |R|) time per step of the algorithm.

To address the second challenge, we maintain the sum
Ψ(R) during the execution of the algorithm by, in each
step, subtracting from Ψ(R) the aggregate potential of
the set removed fromR and adding to Ψ(R) the aggre-
gate potentials of the sets added to R. However, if the
relative differences of the weights w(S) are large, then
this approach can lead to problems with numerical ac-
curacy. If this is the case, a solution is to not maintain
Ψ(R) at all until we know that the stopping condition
is relatively close to hold. More specifically, suppose
Ψ(R) is computed from scratch and maintained only
after the aggregate potential of the set removed from
R gets smaller than dW ′. Then we know that Ψ(R)
has to decrease at most by the factor |R| before the
stopping condition is met, and thus the accuracy prob-
lems should be gone.

4 EXPERIMENTAL STUDIES

We have implemented the presented algorithms in the
C++ language.1 We next report on experimental stud-
ies on artificially generated instances of subset query
problems as well as several instances of the Bayesian
network learning application using our implementation
of the order-MCMC method of Friedman and Koller
(2003). The focus of the experimental studies is in
investigating the relationship of running time and ap-
proximation guarantee of the four algorithms.

4.1 ARTIFICIAL INSTANCES

We generated various weight functions w(S) on subsets
S ⊆ N of size at most k. We varied n = |N | in {20, 60}
and k in {3, 5}. We considered four types of weight
functions, each based on the following building block:

w(S) = exp

(
λ
∑
i∈S

Ui

)
, Ui

iid∼ Uniform(κ− 1, κ) .

Here λ is a parameter that specifies the variance of
the weights; the larger the λ, the larger the variance.
The parameter κ specifies the (expected) number of
elements of the ground set that contribute positively
to the weight. Note that the weight of the empty set
is always 1. The four types are the following:

Flat: λ = 10, κ = k/n.

1The implementation will be made publicly available
via the authors’ home pages.

Steep: λ = 200, κ = k/n.

Mixture: Take the sum of 5 flat and 5 steep ones,
for both types letting the product κn take the 5
values k−1, k, k+1, k+2, and k+3. This creates
10 distinct “local maxima”.

Shuffled: Like in the mixture type but permuting
the weights w(S) randomly among the subsets of
same size. This destroys the dependence of the
weights of subsets that have large intersection.

For each of the four types and the values of n and k,
we generated 5 random weight functions, executed the
algorithms Exact, Ideal, Sorted, and Treedy, for 1000
query sets sampled uniformly at random for each query
set size from 1 to n. Figure 2 shows average running
times.

We see that for flat weight functions, the approxima-
tion algorithms yield significant speedups over the ex-
act algorithm only when the approximation tolerance
is relatively large. For steep weight functions, as well
as for mixtures and shuffled mixtures, the speedups
are however by two orders or magnitude already with
small approximation tolerance. The speedups become
the more dramatic, the larger the n and k are. Exam-
ining the effect of the query set size reveals that Sorted
performs better than Treedy for larger query sets, but
for smaller query sets Treedy is faster. For larger values
of n and k, Treedy outperforms Sorted by a factor of
about 5. To our surprise, shuffling the weight function
has essentially no effect to the performance of Treedy.

4.2 APPLICATION TO BAYESIAN
NETWORK LEARNING

We ran our implementation of order-MCMC on four
datasets available from the UCI repository (Blake and
Merz, 1998). Votes2 was obtained by concatenat-
ing two random permutations of the 17-variable Votes

Table 2: Datasets, Generative Bayesian Network Mod-
els, and Parameter Settings Used in the Experiments
for Bayesian Network Learning by Order-MCMC.

Name n #Samples k #Steps

Votes2 34 435 5 10000
Chess 37 3196 5 5000
10xPromoters 58 1060 4 2000
Splice 61 3190 4 2000

Alarm 37 50–5000 5 1000
Hailfinder 56 50–5000 4 1000
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Figure 2: Runtime in artificial problem instances. The number of seconds per subset counting query for Exact,
Ideal, Sorted, and Treedy are shown (a) as a function of the query set size, for a fixed approximation tolerance
of 0.1, and (b, c, d) as a function of approximation tolerance.

dataset, so doubling the number variables. 10xPro-
moters was obtained by taking each sample of the
Promoters dataset 10 times. The datasets Chess and
Splice we used as such. In addition, we used datasets
of varying sample sizes generated from the benchmark
Bayesian network models Alarm (Beinlich et al., 1989)
and Hailfinder (Abramson et al., 1996).2 Table 2
shows the key parameters associated with the datasets
and the order-MCMC method, including the maxi-
mum number of parents k and the number of MCMC
steps. The posterior (the structure and parameter pri-
ors) was specified as in the experiments of Niinimäki
et al. (2011).

We observe that approximation expedites the com-
putations by one to several orders of magnitude; see
Figure 3. As expected, the gain of approximation in-
creases with larger datasets and larger error, being,
however, significant already with 200 samples and eas-
ily tolerable error (say 1%). On the larger datasets

2The datasets are available at http://www.dsl-lab.
org/supplements/mmhc_paper/mmhc_index.html.

Treedy performs consistently better than Sorted, the
difference being sometimes nearly one order of magni-
tude (Chess and Alarm with an approximation toler-
ance of at least 1%).

Examining the effect of the query set size for the four
datasets (Figure 3(a)) reveals that Treedy is consis-
tently faster than Sorted on queries that are the hard-
est ones for Sorted. However, Sorted is typically faster
than Treedy on the easier query sets. Thus it depends
on the distribution of queries, whether Treedy or Sorted
should be the algorithm of choice, or whether it would
pay off to use the obvious hybrid: Treedy for smaller
and Sorted for larger query sets.

The results for Ideal suggest that considerable further
speedups, by one to two orders of magnitude, might be
possible using still better algorithms and data struc-
tures.
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Figure 3: Runtime in the Bayesian network application. The number of seconds per MCMC step for Exact,
Ideal, Sorted, and Treedy are shown (a) as a function of the query set size, for a fixed approximation tolerance
of 0.1, and (b, c, d) as a function of approximation tolerance d. Since the approximated posterior probability is
obtained as a product of n approximated total weights, the tolerance per total weight was set to d/n to guarantee
the required accuracy.

5 DISCUSSION

We have studied approximation algorithms for sub-
set counting and sampling queries. After observing
how any collector algorithm for approximate counting
queries can be turned into a sampling algorithm, we
considered four collector algorithms. These include a
slow exact algorithm that serves as a reference and
an “ideal” one that we cannot implement efficiently
but that provides us with a lower bound of the needed
work. Our experimental results suggest that the two
heuristic methods, Sorted and Treedy, can yield dra-
matic speed-ups (by several orders of magnitude) over
the exact algorithm, while not quite achieving the ideal
performance. Typically, Treedy performs as well as
Sorted or significantly better.

We made the assumption that the given collection of
subsets is downward closed. This assumption simpli-
fied the presentation and experimental settings. The
assumption is, however, not well justified in general.

Namely, the input collection can potentially be much
smaller than its downward closure, in which case one
could realistically hope for faster methods whose time
requirement is determined by the size of the input
rather than the size of the closure. We note that Sorted
readily has this desirable property. For example, in the
Bayesian network application it is quite plausible to
expect that some potential parent sets have so small a
weight that they can be discarded in the precomputa-
tion phase. Fortunately, the assumption of downward
closedness seems not crucial for the validity of the pre-
sented methods. Indeed, the data structures and vis-
iting orders underlying the methods Exact and Treedy
can be pruned by introducing shortcuts. Using short-
cuts, only subsets that belong to the collection need be
visited, and so the other subsets can be discarded. We
leave a more detailed description of this generalization
and examination of its impact to the Bayesian network
application to an extended version of this paper.

There are also other avenues for future research. We



restricted our attention to methods whose memory re-
quirement is roughly linear in the size of the input col-
lection. It remains an open question, whether signifi-
cant speedups can be achieved by investing somewhat
more space. Likewise, we have only considered col-
lector algorithms, and it is an open question, whether
there exist faster algorithms of some different type.
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