
Variational Dual-Tree Framework for Large-Scale Transition Matrix
Approximation

Saeed Amizadeh
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA 15213

Bo Thiesson
Microsoft Research

Redmond, WA 98052

Milos Hauskrecht
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15213

Abstract

In recent years, non-parametric methods uti-
lizing random walks on graphs have been
used to solve a wide range of machine learn-
ing problems, but in their simplest form they
do not scale well due to the quadratic com-
plexity. In this paper, a new dual-tree based
variational approach for approximating the
transition matrix and efficiently performing
the random walk is proposed. The approach
exploits a connection between kernel density
estimation, mixture modeling, and random
walk on graphs in an optimization of the tran-
sition matrix for the data graph that ties to-
gether edge transitions probabilities that are
similar. Compared to the de facto standard
approximation method based on k-nearest-
neighbors, we demonstrate order of magni-
tudes speedup without sacrificing accuracy
for Label Propagation tasks on benchmark
data sets in semi-supervised learning.

1 Introduction

Non-parametric methods utilizing random-walks on
graphs have become very popular in Machine Learn-
ing during the last decade. These methods have been
applied to solve Machine Learning problems as diverse
as clustering (von Luxburg, 2007), dimensionality re-
duction (Lafon and Lee, 2006), semi-supervised learn-
ing (SSL) (Zhu, 2005), supervised learning (Yu et al.,
2005), link analysis (Ng et al., 2001), and others. Un-
fortunately, these methods suffer from one fundamen-
tal and recurring problem: the quadratic dependency
on the number of examples, which subsequently affects
their scalability and applicability to large-scale data
sets. Many different approximation frameworks have
been proposed in the literature to tackle the above
problem. Typically, these methods work by sparsifying
the underlying graph representation by either reduc-
ing the number of nodes representing data points or

reducing the number of edges representing data points
similarities.

The first class of techniques aims to reduce the number
of nodes in the graph from N to M (M � N). The
reduction is carried out in various ways: random sam-
pling (Kumar et al., 2009; Amizadeh et al., 2011), mix-
ture modeling (Zhu and Lafferty, 2005), non-negative
matrix factorization (Yu et al., 2005), sparse griding
(Garcke and Griebel, 2005), Latent Markov Analysis
(Lin, 2003), etc. A common problem with these tech-
niques is that it is not clear how fast one should in-
crease M when N increases. Subsequently, although
the memory and the matrix-vector multiplication com-
plexities are reduced to O(M2), we go back to O(N2)
in effect if M changes with the same rate as N does.

The second class of techniques tries to sparsify the
edges in the graph. k-nearest-neighbor graphs (Zhu,
2005) and b-matching (Jebara et al., 2009) are among
the most famous methods in this group. The main
concern with these methods, however, is the compu-
tational complexity of building these sparse graphs.
Even with the smart speed-up techniques, such as
k-nearest-neighbor graphs (Liaw et al., 2010; Moore,
1991), the actual time for building the full sparse graph
can vary in practice.

A third class of methods goes around the problem
of finding a sparse graph representation by trying to
approximate the quantity of interest in the problem
directly. Manifold regularization techniques (Belkin
et al., 2006; Tsang and Kwok, 2006) directly find a
smooth function on the graph. Fergus et al. (2009);
Nadler et al. (2006); Amizadeh et al. (2012) try to di-
rectly estimate the eigen decomposition of the under-
lying transition matrix in the limit assuming factorized
underlying distribution. Although these methods can
be very effective, they are also task specific and do not
give us an explicit approximation of the graph similar-
ity (transition) structure.

The framework proposed in this paper directly approx-
imates the transition matrix of the data graph. Our

method is similar to the second group of approxima-
tion techniques in the sense that it does not reduce
the graph nodes. However, instead of zeroing out the
edges (like in the second group), our framework groups
the edges together to share edge transition probabil-
ities that are similar. To do so, we use a recent ad-
vancement from Thiesson and Kim (2012), which for a
very different task (fast mode-seeking) developed a fast
dual-tree based (Gray and Moore, 2000) variational
framework that exploits a mixture modeling view on
kernel density estimation. Mixture modeling and the
random walk on graphs are also closely related (Yu
et al., 2005). Based on this connection between ker-
nel density estimation, mixture modeling, and random
walk on graphs, we extend the framework in Thiesson
and Kim (2012) to a fast and scalable framework for
1) transition matrix approximation and 2) inference
by the random walk.

By further exploiting the connection between mix-
ture modeling and random walk, we also propose a
lower-bound log-likelihood optimization technique to
find the optimal bandwidth for the Gaussian simi-
larity kernel (which is a very popular kernel for con-
structing transition matrices on data graphs). More-
over, using our framework, one can adjust the trade-
off between accuracy and efficiency by refining the
model. As we show in the paper, at its coarsest level
of refinement, our framework achieves complexity or-
der of O(N1.5 logN) for construction, O(N) inference
via matrix-vector multiplication, and memory con-
sumption of O(N), which improves the performance
of graph sparsification methods reviewed earlier. To
demonstrate the speed-up in practice, we experimen-
tally show that without compromising much in terms
of accuracy, our framework can build, represent and
operate on random-walk transition matrices orders of
magnitude faster than the baseline methods.

2 Background

Kernel density estimation plays an important concep-
tual role in this paper. Let M = {m1,m2, . . . ,mN}
denote a set of kernel centers corresponding to ob-
served data D in Rd. The kernel density estimate for
any data point x ∈ Rd is then defined by the following
weighted sum or mixture model:

p(x) =
∑
j

p(mj)p(x|mj) (1)

where p(mj) = 1
N , p(x|mj) = 1

Zσ
k(x,mj ;σ), and

k is a kernel profile with bandwidth σ and normal-
ization constant Zσ. For the commonly used Gaus-
sian kernel, k(x,mj ;σ) = exp(−‖x − mj‖2/2σ2) and
Zσ = (2πσ2)

d
2 .

Now let us assume we want kernel density estimates

for data points D = {x1, x2, . . . , xN} in Rd that also
define the kernel centers. That is, D =M, and we use
the D and M notation to emphasize the two different
roles every example takes - one as a data point, the
other as a kernel center. Let us exclude the kernel
centered at mi = xi from the kernel density estimate
at that data point. In this case, the estimate at xi ∈ D
can be defined as the N−1 component mixture model:

p(xi) =
∑
j 6=i

p(mj)p(xi|mj) =
∑
j 6=i

1
N − 1

1
Zσ

k(xi,mj ;σ),

(2)
where p(mj) = 1/(N − 1).

In the mixture model interpretation for the kernel den-
sity estimate, the posterior kernel membership proba-
bility for a data point can be expressed as

p(mj |xi) =
p(mj)p(xi|mj)

p(xi)
=

k(xi,mj ;σ)∑N
l=1 k(xi,ml;σ)

(3)

These posteriors form a matrix P = [pij]N×N where
pij = p(mj |xi) for i 6= j are the true posteriors, and
pij = 0 for i = j are neutral elements added for later
notational convenience. Note that in this represen-
tation, each row in P holds a posterior distribution
pi· , {pij |j = 1, . . . , N}.

The complexity of computing and representing P is
O(N2), which is costly for large-scale data sets with
large N . In this work, we seek ways of alleviating
the problem by taking the advantage of the cluster
structure in data (and kernels) that would let us share
posteriors among groups of data points and kernels
instead of computing them for each individual pair.
More precisely, suppose that the data set D consists
of two well-separated clusters in Rd, denoted by C1 and
C2. In this case, it is likely that the posteriors p(mj |xi)
are roughly similar for all xi ∈ C1 and mj ∈ C2 so that
one can approximate all posteriors for the pairs in be-
tween these two clusters with one value. Notice how
this approximation directly targets the posteriors and
not the expensive intermediate kernel summation in
the denominator of (3). This simple idea can be gen-
eralized recursively if we have nested cluster structure
in the form of a cluster hierarchy. In this case, the
computational savings can be dramatic.

3 Dual-tree Based Variational P

Whilst the approximation idea for P outlined above
may appear simple, it needs careful handcrafting in
order to yield a practical and computationally efficient
framework. We start building our framework by bor-
rowing the ideas from the dual-tree-based variational
approach proposed by Thiesson and Kim (2012).

3.1 Dual-tree Block Partitioning

The dual-tree-based variational approach in Thiesson
and Kim (2012) maintains two tree structures; the data
partition tree and the kernel partition tree, that hier-
archically partition data points (kernels) into disjoint
subsets, such that an intermediate node in a tree rep-
resents a subset of data points (or kernels) and leaves
correspond into singleton sets. In this work we assume
the structure of the two trees is identical, leading to
the exactly same subsets of data points and kernels
represented by the tree.

The main reason for introducing the partition tree is
to define relations and permit inferences for groups of
related data points and kernels without the need to
treat them individually. More specifically, we use the
partition tree to induce a block partition of the ma-
trix P , where all posteriors within the block are forced
to be equal. We also refer to this partition as block
constraints on P . Formally, a valid block partition B
defines a mutually exclusive and exhaustive partition
of P into blocks (or sub-matrices) (A,B) ∈ B, where
A and B are two non-overlapping subtrees in the par-
tition tree. That is, A ∩ B = ∅, in the sense that
data-leaves in the subtree under A and kernel-leaves
in the subtree under B do not overlap. (To maintain
the convenient matrix representation of P , the single-
ton blocks representing the neutral diagonal elements
in P are added to this partition.) Figure 1a) shows a
small example with a valid block partition for a parti-
tion tree built for six data points (kernels). This block
partition will, for example, enforce the block constraint
p13 = p14 = p23 = p24 for the block (A,B) = (1−2, 3−4)
(where a−b denotes a through b).

To represent the block-constrained P matrix more
compactly, we utilize the so-called marked partition
tree (MPT) that annotates the partition tree by explic-
itly linking data groups to kernel groups in the block
partition: for each block (A,B) ∈ B, the data-node
A is marked with the matching kernel-node B. Each
node A in the MPT will therefore contain a, possibly
empty, list of marked B nodes. We will denote this
list of marks as Amkd , {B|(A,B) ∈ B}. Figure 1b)
shows the MPT corresponding to the partition in Fig-
ure 1a). For example, the mark of kernels B = 3−4 at
the node representing the data A = 1−2 corresponds
to the same block constraint (A,B) = (1−2, 3−4),
as mentioned above. It is the only mark for this data
node, and therefore Amkd = 1−2mkd = {3−4}. As
another example, the list of marks for node A = 5 has
two elements; Amkd = 5mkd = {5, 6}. An important
technical observation, that we will use in the next sec-
tion, is that each path from a leaf to the root in the
MPT corresponds to the row indexed by that leaf in
the block partition matrix for P . By storing the pos-
terior probabilities at the marks in the MPT, we can

therefore extract the entire posterior distribution pi·
by starting at the leaf that represents the data point
xi and follow the path to the root.

Figure 1: a) A block partition (table) for data partition
tree (left) and identical kernel partition tree (top). b)
MPT representation of the block partition.
Clearly, there are more than one valid partitions of
P ; in fact, any further refinement of a valid partition
results in another valid partition with increased num-
ber of blocks. We postpone the discussion of how to
choose an initial valid partition and how to refine it to
Section 4.4. For now, let us assume that we are given
a valid partition B of P with |B| number of blocks.
By insisting on the block constraint of equality for all
posteriors in a given block, the number of parameters
in P is effectively reduced from N2 to |B|.

3.2 Optimization of Block Partitioning

In general, the block partition approach links groups
of data points and kernels together such that any spe-
cific link is no longer able to distinguish its compo-
nents. The key question now is whether we can cast
the block partitioning problem into an optimization
framework that can approximate well the true uncon-
strained P . We address the question by using a vari-
ational approximation approach. In this case, each
block (A,B) ∈ B is assigned a single variational pa-
rameter qAB that approximates the posteriors pij for
all xi ∈ A and mj ∈ B in that block. That is, for
Q = [qij]N×N

qij = qAB s.t. (A,B) ∈ B, xi ∈ A,mj ∈ B (4)

Recall that in our setup, qij = pij = 0 for i = j.

The trick to solve the problem rests on expressing a
variational lower bound for the log-likelihood of data:

log p(D) =
∑
i

log p(xi) =
∑
i

log
∑
j 6=i

p(mj)p(xi | mj)

=
∑
i

log
∑
j 6=i

qij
qij
p(mj)p(xi | mj)

≥
∑
i

∑
j 6=i

qij log
p(mj)p(xi | mj)

qij
(5)

= log p(D)−
∑
i

DKL

(
qi·‖pi·

)
, `(D), (6)

where DKL(·||·) is the KL-divergence between two dis-
tributions. Notice that optimizing the lower bound
`(D) with respect to Q corresponds to minimizing the
KL-divergence between the two distributions qi· and
pi· for all i, since this is the only term in (6) that de-
pends on Q. The block-constrained Q matrix is there-
fore a good approximation for the unconstrained P .

Let us now explicitly insert the block constraints from
(4) into the expression for `(D) in (5). With p(mi) =
1/(N − 1) and the Gaussian (normalized) kernel for
p(xi|mj), the optimization reduces to finding the vari-
ational parameters qAB that maximizes

`(D) = c− 1
2σ2

∑
(A,B)∈B

qAB ·D2
AB

−
∑

(A,B)∈B

|A||B| · qAB log qAB , (7)

where

c = −N log
(
(2π)d/2σd(N − 1)

)
D2
AB =

∑
xi∈A

∑
mj∈B

‖xi −mj‖2. (8)

Thiesson and Kim (2012)[Algorithm 3] has developed
a recursive algorithm that solves this optimization for
all qAB , (A,B) ∈ B in O(|B|) time. Specifically, their
solution avoids the quadratic complexity that a di-
rect computation of the Euclidean distances in (8)
would demand by factorizing D2

AB into data-specific
and kernel-specific statistics as follows

D2
AB = |A|S2(B) + |B|S2(A)− 2S1(A)TS1(B), (9)

where S1(A) =
∑
x∈A x and S2(A) =

∑
x∈A x

Tx are
the statistics of subtree A. These statistics can be
incrementally computed and stored while the shared
partition tree is being built; an O(N) computation.
Using these statistics, D2

AB is computed in O(1).

Now, the question is how to efficiently construct the
shared partition tree from data. Well-known, effi-
cient partition-tree construction methods include an-
chor tree (Moore, 2000), kd -tree (Moore, 1991) and
cover tree (Ram et al., 2009; Beygelzimer et al., 2006)
construction. We have used the anchor tree. With a
relatively balanced tree, it takes O(N1.5 logN + |B|)
time and O(|B|) memory in total to build and store the
variational approximation for the posterior matrix P
from data. See the supplementary Appendix for more
details on the anchor tree construction complexity.

4 Application to Random Walk

In this section, we show how the variational mixture
modeling framework can be utilized to tackle large-

scale random walk problems. The random walk here
is defined on the graph G which is an undirected sim-
ilarity graph whose nodes are the data points in D
and the edge between nodes xi and xj is assigned the
similarity weight sij = exp(−‖xi − xj‖2/2σ2).

4.1 Variational Random Walk

As we saw in Section 2, p(mj |xi) models the poste-
rior membership of data point xi to the Gaussian ker-
nel mj . However, p(mj |xi) can be interpreted from a
completely different view as the probability of jump-
ing from data point xi to data point mj in a random
walk on G. In fact, (3) is the same formula that is
used to compute the transition probabilities on data
graphs, when the Gaussian similarity is used (Lafon
and Lee, 2006). As a result, the matrix P from the
previous section can be seen as the transition proba-
bility matrix for a random walk on G. Subsequently,
the corresponding variational approximation of Q is
in fact the approximation of the transition probability
matrix using only |B| number of parameters (blocks);
in other words, qAB approximates the probability of
jumping from a data point in A to a data point in B.
This is, in particular, important because it enables us
to compute and store the transition probability ma-
trix in O(N1.5 logN + |B|) time and O(|B|) memory
for large-scale problems.

In the light of this random walk view on Q, the lower
bound log-likelihood `(D) in (7) will also have a new
interpretation. More precisely, the second term in (7)
can be reformulated as:

− 1
2σ2

∑
(A,B)∈B

qAB ·D2
AB = − 1

2σ2

∑
i,j

qij · d̄ij (10)

where, qij is defined as in (4) and d̄ij = D2
AB/|A||B|

is the block-average distance such that (A,B) ∈ B,
xi ∈ A and mj ∈ B. This is, in fact, a com-
mon optimization term in similarity-graph learning
from mutual distances (Jebara et al., 2009) and can
be more compactly represented as − 1

2σ tr(QD̄), where
Q = [qij]N×N and D̄ = [d̄ij]N×N are the similarity
and distance matrices, respectively. However, there is
one problem with a maximization of this term: it will
make each point connect to its closest neighbor with
qij = 1 (and qij = 0 for the rest). In other words, the
similarity graph will be highly disconnected. This is
where the third term in (7) benefits the new interpre-
tation. One can rewrite this term as:

−
∑

(A,B)∈B

|A||B| · qAB log qAB = −
∑
i,j

qij log qij

=
N∑
i=1

H(qi·) (11)

where H(qi·) is the entropy of the transition proba-
bility distribution from data point xi. As opposed
to (10), the term in (11) is maximized by a uniform
distribution over the outgoing probabilities at each
data point xi; that is, a fully connected graph with
equal transition probabilities. The third term in (7)
therefore acts as the regularizer in the learning of the
similarity-graph, trying to keep it connected. The
trade-off between the second and the third terms is
adjusted by the coefficient 1/2σ2: increasing σ will
leave the graph more connected.

4.2 Learning σ

Finding the transition probabilities for a random walk
by the variational optimization of (7) has a side advan-
tage too: (7) is a quasi-concave function of the band-
width σ, which means that, given qAB ’s fixed, one can
find the optimal bandwidth that maximizes the log-
likelihood lower bound. By taking the derivative and
solving for σ, the closed form solution is:

σ∗ =

√∑
(A,B)∈B qAB ·D2

AB

Nd
(12)

In the special case where each element of matrix P
is a singleton block (i.e. the most refined case), one
can find σ∗ independent of qAB ’s values. To do so,
we first form the following log-likelihood lower bound
using the Jensen inequality:

log p(D) ≥
∑
i

∑
j 6=i

p(mj) log p(xi | mj) (13)

By maximizing the right-hand side w.r.t. σ, we get:

σ∗ =
1
N

√∑
i

∑
j 6=i ‖xi − xj‖2

d
(14)

In general, due to the dependence of σ∗ to qAB ’s, we
alternate the optimization of qAB ’s and σ in our frame-
work. In practice, we have observed that the conver-
gence of this alternate optimization is fast and not
sensitive to the initial value of σ.

4.3 Fast Inference

In the previous subsections, we saw how the variational
dual-tree based framework can be used to efficiently
build and store a variational transition matrix Q of a
random walk. We will now demonstrate that the block
structure of this transition matrix can be very useful
for further inference in similarity-graph based learning
algorithms. In particular, using the MPT representa-
tion of Q, we can efficiently compute the multiplication
with an arbitrary vector Y = (y1, y2, . . . , yn)T of ob-
servations to achieve Ŷ = QY ' PY in O(|B|) rather
than O(N2) computations.

Algorithm 1 Calculate Ŷ = QY

Input: MPT with {qAB : B ∈ Amkd} on each node A, and
(xi, yi) on each leaf.

Output: ŷi on each leaf.

A = Root(MPT)
CollectUp(A)
DistributeDown(A, 0)

function CollectUp(A)
if IsLeaf(A) then
TA = yA //null-vector if yA is not observed

else
CollectUp(Al)
CollectUp(Ar)
TA = TAl + TAr

end if
end function

function DistributeDown(A, py)
for all marks B ∈ Amkd do
py += |B|qABTA

end for
if IsLeaf(A) then
ŷA = py

else
DistributeDown(Al, py)
DistributeDown(Ar, py)

end if

end function

Algorithm 1 describes the O(|B|) computation of Ŷ .
The algorithm assumes that each yi is stored at the
corresponding leaf xi in the MPT–e.g., by association
prior to constructing the MPT. Alternatively, an index
to the leaves can be constructed in O(N) time. The
algorithm starts with a CollectUp phase that tra-
verses the MPT bottom-up and stores incrementally
computed sum-statistics at each node A, as

TA =
∑
xi∈A

yi = TAl + TAr ,

where Al, Ar are the left and right children of A. This
is an O(N) computation. Let B(xi) , {(A,B) ∈ B |
xi ∈ A} denote the set of marked blocks that can
be experienced on the path in the MPT from leaf
xi to the root. For example, in Figure 1, B(3) =
{(3, 3), (3, 4), (3−4, 1−2), (1−4, 5−6)}. With each qAB
stored at the node A marked with B in the MPT, a
DistributeDown phase now conceptually computes

ŷi =
∑

(A,B)∈B(xi)

|B|qABTA '
∑
j

pijyj ,

by following the path from each leaf to the root in
the MPT. The more efficient implementation in Al-
gorithm 1 traverses the MPT top-down, avoiding re-
calculations of the shared terms for the updates by
propagating the value of the shared terms through the
variable py. This traversal has complexity O(|B|). On
completion of the algorithm the leaves in the MPT
will contain Ŷ = {yi}Ni=1. The fast matrix-vector mul-
tiplication is a significant achievement because it al-
lows us to significantly speed up any algorithm with
this computational bottleneck. Two such algorithms

are Label Propagation (LP) (Zhou et al., 2003) used
for Semi-supervised Learning and Link Analysis (see,
e.g., Ng et al. (2001)), and Arnoldi Iteration (Saad,
1992) used for spectral decomposition. More specifi-
cally, given a similarity graph over the data points xi,
the LP algorithm iteratively updates the label matrix
Y = [yij]N×C (where C is the number of label classes)
at time t + 1 by propagating the labels at time t one
step forward according to the transition matrix P :

Y (t+1) ← αPY (t) + (1− α)Y 0 (15)

Here, the matrix Y 0 encodes the initial labeling of data
such that y0

ij = 1 for label(xi) = yi = j, and y0
ij = 0

otherwise. The coefficient α ∈ (0, 1) determines how
fast the label values are updated. The repeated matrix
multiplication in (15) definitely poses a bottleneck for
large-scale problems, and this is where our fast frame-
work comes into play.

4.4 Partitioning and Refinement

So far, we have assumed that a valid partition B of
P with |B| number of blocks is given. In this section,
we illustrate how to construct an initial valid partition
of P and how to further refine it to increase accuracy
of the model. We should note that the methods for
partitioning and refinement in this section are different
from the ones in Thiesson and Kim (2012).

Let Bdiag denote the N neutral singleton blocks that
appear on the diagonal of P . The coarsest (with the
smallest number of blocks) valid partition Bc for P is
achieved when for every block (A,B) ∈ Bc = B\Bdiag,
we have that A and B are sibling subtrees in the par-
tition tree. (Recall that data and kernels are parti-
tioned by the same tree.) Any other partition will ei-
ther not be a valid partition conforming with the par-
tition tree, or it will have a larger number of blocks.
The number of blocks in Bc, therefore equals twice
the number of inner nodes in the anchor tree; i.e.
|Bc| = 2(N − 1). Figure 1 is an example of a coarsest
valid block partition. On the other hand, the most
refined partition is achieved when Br = B \ Bdiag con-
tains N2 −N singleton blocks. Hence, the number of
blocks in a valid partition |B| can vary between O(N)
and O(N2). As we saw in the previous sections, |B|
plays a crucial role in the computational performance
of the whole framework and we therefore want to keep
it as small as possible. On the other hand, keeping
|B| too small may excessively compromise the accu-
racy of the model. Therefore, the rational approach
would be to start with the coarsest partition Bc and
split the blocks in Bc into smaller ones only if needed.
This process is called refinement. As we refine more
blocks, the accuracy of the model effectively increases
while its computational performance degrades. Note
that a block (A,B) can be refined in two ways: either

vertically into {(Al, B), (Ar, B)} or horizontally into
{(A,Bl), (A,Br)}. Here the subscript r (l) denotes
the right (left) child node.

After any refinement, we can re-optimize (7) to find
the new variational approximation Q for P . Impor-
tantly, any refinement loosens the constraints imposed
on Q, implying that the KL-divergence from P cannot
increase. From (6) we can therefore easily see that a
refinement is likely to increase the log-likelihood lower
bound `(D), and can never decrease it. Intuitively,
we want to refine those blocks which increase `(D)
the most. To find such blocks, one need to refine each
block in each direction (i.e. horizonal and vertical) one
at a time, re-optimize Q, find the difference between
the new `(D) and the old one (aka log-likelihood gain),
and finally pick the refinements with maximum differ-
ence. However, this is an expensive process since we
need to perform re-optimization per each possible re-
finement. Now the question is, whether we can obtain
an estimate of the log-likelihood gain for each pos-
sible refinement without performing re-optimization.
The answer is positive for horizontal refinements, and
rests on the fact that each row in Q defines a (poste-
rior) probability distribution and therefore must sum
to one. In particular, this sum-to-one constraint can
for B(xi) , {(A,B) ∈ B | xi ∈ A} be expressed as∑

(A,B)∈B(xi)
|B| · qAB = 1 for all xi ∈ D. (16)

Consider the horizontal refinement of (A,B) into
{(A,Bl), (A,Br)}. By this refinement, in essence, we
allow a random walk, where the probability of jumping
from points in A to the ones in Bl (i.e. qABl) is differ-
ent from that of jumping from A to Br (i.e. qABr). If
we keep the q values for other blocks fixed, we can still
locally change qABl and qABr to increase `(D). Since
the sum of the outgoing probabilities from each point
is 1 (see (16)) and the other q’s are unchanged, the
sum of the outgoing probabilities from A to Bl and Br
must be equal to that of the old one from A to B:

|Bl|qABl + |Br|qABr = |B|qAB . (17)

Under this local constraint, we can find qABl and qABr
in closed form such that `(D) is maximized:

qABc =
|B| exp(GABc)qAB∑
t∈{l,r} |Bt| exp(GABt)

, c ∈ {l, r} (18)

where GAB = −D2
AB/(2σ

2|A||B|). By inserting (18)
in (7), we can compute the maximum log-likelihood
gain for the horizontal refinement of (A,B) as

∆h
AB = `′(D)− `(D)

= |A||B|qAB · log
(∑

t∈{l,r} |Bt| exp(GABt)

|B| exp(GAB)

)
, (19)

where `′(D) denotes the log-likelihood lower bound af-
ter the refinement. Note that the actual gain can be

greater than ∆h
AB because after a refinement, all q

values are re-optimized. In other words, ∆h
AB is a

lower bound for the actual gain and is only used to
pick blocks for refinements. Unfortunately, for verti-
cal refinements such a bound is not easily obtainable.
The reason is that the constraints in (16) will not al-
low qAlB and qArB to change if we fix the remaining
q values. The local optimization that we applied for
the horizontal refinement can therefore not be applied
to estimate a vertical refinement. Whenever we pick a
block (A,B) for vertical refinement, we therefore incor-
porate vertical refinements by applying the horizontal
refinement to its symmetric counterpart (B,A) if it
also belongs to B. We call this symmetric refinement.

Now by computing ∆h
AB for all blocks, we greedily

pick the block with the maximum gain and apply sym-
metric refinement. The newly created blocks are then
added to the pool of blocks and the process is repeated
until the number of blocks reaches the maximum al-
lowable block number |B|max, which is an input argu-
ment to the algorithm. This greedy algorithm can be
efficiently implemented using a priority queue.

5 Experiments

In this section, we present the experimental evaluation
of our framework. In particular, we have evaluated
how well our method performs for semi-supervised
learning (SSL) using Label Propagation (LP) (Zhou
et al., 2003). The LP algorithm starts with a partial
vector of labels and iteratively propagates those la-
bels over the underlying similarity graph to unlabeled
nodes (see (15)). After T iterations of propagation,
the inferred labels at unlabeled nodes are compared
against the true labels (which were held out) to com-
pute Correct Classification Rate (CCR). We also mea-
sure the time (in ms) taken to build each model, propa-
gate labels and refine each model. In our experiments,
we set T = 500 and α = 0.01. It should be noted that,
here the goal is not to achieve a state-of-the-art SSL
algorithm, but to relatively compare our framework to
baselines in terms of efficiency and accuracy under the
same conditions. This means that we have not tuned
the SSL parameters to improve SSL; however, we use
the same parameters for all competitor methods.

5.1 The Baselines

We have compared our method, VariationalDT, with
two other methods for building and representing P .
The first method is the straightforward computation
of P using (3). We refer to this representation as the
exact model. In terms of computational complexity, it
takes O(N2) to build, store, and multiply a vector to
P using the exact method. The second method is the
k-nearest-neighbor (kNN) algorithm where each data

point is connected only to its k closest neighbors. In
other words, the rows of matrix P will contain only
k non-zero entries such that P can be represented as
a sparse matrix for small k’s. In that way, kNN ze-
ros out many of these parameters to make P sparse,
as opposed to our VariationalDT method that groups
and shares parameters in P . Note that we still assign
weights to the k edges for each data point using (3).
This means that as we increase k toward N , the model
converges to the exact model. Therefore, k acts as a
tuning parameter to trade off between computational
efficiency and accuracy (the same role that |B| plays
in VariationalDT). We call k and |B| the trade-off pa-
rameters.

Using the kNN representation, P can be stored and
multiplied by an arbitrary vector in O(kN). For con-
structing a kNN graph directly, the computational
complexity is O(rN2) where r = min{k, logN}. A
smarter approach is to use a metric tree in order
to avoid unnecessary distance computations. Moore
(1991) proposed a speedup of the kNN graph construc-
tion that utilizes a kd-tree. In our implementation of
kNN, we have used the same algorithm with the kd-
tree replaced by the anchor tree, introduced in Section
3. We call this algorithm fast kNN. The computational
analysis of fast kNN greatly depends on the distribu-
tion of data points in the space. In the best case,
it takes O

(
N(N0.5 logN + k log k)

)
to build the kNN

graph using fast kNN. However, in the worst case, the
computational order is O

(
N(N0.5 logN + N log k)

)
.

Table 1 summarizes the computational complexity or-
ders for the models compared in the experiments. Note
that for |B| = kN for some integer k, the Variation-
alDT and kNN will have the same memory and mul-
tiplication complexity. To increase k (or equivalently
|B|), one needs to refine the respective model. The last
column in Table 1 contains the complexity of refining
k to k + 1 (or equivalently |B| from kN to (k + 1)N)
for kNN (or VariationalDT).

5.2 Experimental Setup

We have performed three experiments to evaluate the
computational efficiency and accuracy of the models
described above. It should be noted that for all meth-
ods, we have used the log-likelihood lower-bound tech-
nique in Section 4.2 to tune the bandwidth σ.

In the first experiment, we have run the LP algorithm
for semi-supervised learning on the SecStr data set,
one of the benchmark data sets for SSL (Chapelle
et al., 2006). The data set consists of 83,679 different
amino acids each of which is represented by 315 binary
features. The task is to predict the secondary struc-
ture of the amino acids (2 classes). The goal in this
experiment, as we increase the problem size N , is to
study (a) the time needed to build the exact model, the

Models Construction Memory Multiplication Refinement
Exact O(N2) O(N2) O(N2) N/A

Fast kNN O
`
N(N0.5 log N + h log k)

´∗
O(kN) O(kN) O

`
N(log N + N log k)

´
Variational DT O(N1.5 log N + |B|) O(|B|) O(|B|) O(|B| log |B|)

Table 1: Theoretical complexity analysis results. (*) h is equal to k in the best case and N in the worst case.

●

Variational DT
Fast kNN
Exact

Problem size

C
on

st
ru

ct
io

n
tim

e
(m

s)

1e
+

01
1e

+
04

1e
+

07

1e+02 1e+03 1e+04 1e+05

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

A

Problem size

M
ul

tip
lic

at
io

n
tim

e
(m

s)

1e
−

02
1e

+
01

1e
+

04

1e+02 1e+03 1e+04 1e+05

●

●
●

●
●

●
●

●

●
●

●
●

●
●

B

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Problem size

M
ul

tip
lic

at
io

n
tim

e
(m

s)

1e+02 1e+03 1e+04 1e+05

●
● ● ● ● ● ●

●
● ● ● ● ● ●

C

VarDT F−kNN Exact

C
on

st
ru

ct
io

n
tim

e
(m

s)

1e
+

03
1e

+
04

1e
+

05
1e

+
06

D

4000 6000 8000 10000 12000

No. of parameters

R
ef

in
em

en
t t

im
e

(m
s)

1e
+

03
1e

+
04

1e
+

05
1e

+
06

● ● ● ●
E

4000 8000 12000

0.
50

0.
60

0.
70

0.
80

No. of parameters

C
C

R
●

● ● ●
●

●

●
●

●
●

F

4000 8000 12000

0.
80

0.
85

0.
90

0.
95

No. of parameters

C
C

R

●

●

● ● ●

●

●

● ● ●G

VarDT F−kNN Exact

C
on

st
ru

ct
io

n
tim

e
(m

s)

1e
+

03
1e

+
04

1e
+

05
1e

+
06

H

4000 6000 8000 10000 12000

No. of parameters

R
ef

in
em

en
t t

im
e

(m
s)

1e
+

03
1e

+
04

1e
+

05
1e

+
06

● ● ● ●
I

4000 8000 12000

0.
76

0.
78

0.
80

0.
82

0.
84

No. of parameters

C
C

R ●
●

●
● ●●

●

●

●
●

J

4000 8000 12000
0.

86
0.

88
0.

90
0.

92
0.

94

No. of parameters

C
C

R

● ●
●

●
●

● ●
●

●
●

K

Figure 2: The experimental results for Variational DT, kNN and exact methods

coarsest Variational DT model (i.e. |B| = 2(N − 1)),
and the coarsest kNN model (i.e. k = 2), (b) the
time needed for multiplication in these models, and (c)
CCR after label propagation given 10% labeled data.
In particular, we draw samples of size s from the data
set and use each sample to construct a model. Once a
model is built, we choose 10% of the sample randomly
to be fed to the LP algorithm as the labeled parti-
tion. We repeat this process 5 times for each problem
size s and report the average result. Figure 2A) shows
the construction time (in ms) for the three models as
the problem size increases. As the plot shows, our
method is orders of magnitude faster than the other
two baselines (note that it is the log-log scale). In
terms of the time needed for one multiplication, Fig-
ure 2B) shows that our method and kNN have similar
complexity while both are order of magnitudes faster

than the exact method. Note that Figure 2B) also
shows the proportional memory usage for these meth-
ods because according to Table 1 multiplication and
memory usage have the same complexity in all three
methods. Finally, Figure 2C) depicts the CCR for the
three models with different problem sizes. Although
the exact model as expected is slightly more accurate
than kNN and our method, the difference is not that
big. In other words, by using VariationalDT we save
orders of magnitudes in memory and CPU (i.e. both
the construction and multiplication times) while com-
promising a little on accuracy.

In the second experiment, we study the efficiency
and the effectiveness of the refinement process for the
kNN and variationalDT models. To this end, first we
build the coarsest kNN (k = 2) and VariationalDT
(|B| = 2(N −1)) models and then refine each model to

higher levels of refinement. At each refinement level,
we make sure both methods have the same number
of parameters; that is, |B| = kN . We stop refining
both models when the number of parameters reaches
O(N logN). The data sets used for this experiment
are Digit1 and USPS from the set of SLL benchmark
data sets (Chapelle et al., 2006). Both data sets consist
of digit images; while Digit1 is an artificially generated
data set, USPS contains images of handwritten digits.
Each data set has 1500 examples, 241 features and
2 classes. The second (third) row in Figure 2 shows
the results for Digit1 (USPS) data set. Figures 2D,H)
show the construction times for initial coarse models.
Again our method is much faster than the baselines
in terms of construction time. In Figures 2E,I), we
have measured the time needed to refine each model
to the next level of refinement. As the figure illus-
trates, VariationalDT needs an order of magnitude less
time for refinement than kNN. Moreover, at each re-
finement level, we measure the CCR for LP when the
size of the labeled set is 10 (Figure 2F,J) and 100 (Fig-
ure 2G,K). The red flat line in both plots depicts the
CCR for the exact model. As the plots show, kNN and
VariationalDT behave differently for different data sets
and different sizes of labeled data. While refinement
improves the kNN’s performance significantly in Fig-
ure 2G, it degrades the kNN’s performance in Figure
2F,K. We attribute this abrupt behavior to the uni-
form refinement of kNN graph. More precisely, when
the kNN graph is refined, the degrees of all nodes are
uniformly increased by 1 regardless of how much the
log-likelihood lower bound is improved. Our method,
on the other hand, explicitly aims to increase the log-
likelihood lower bound resulting in a non-uniform re-
finement of P as well as more consistent behavior in
terms of accuracy.

In the third experiment, we explore the applicability
and the scalability of the proposed framework for very
large data sets. The two data sets used in this exper-
iment are taken from the Pascal Large-scale Learn-
ing Challenge.1 The first data set, alpha, consists
of 500,000 records with 500 dimensions. The second
data set, ocr, is even larger with 3,500,000 records of
1156 features. Both data sets consist of 2 balanced
classes. Table 2 shows the construction and propaga-
tions times as well as the number of model parameters
when the Variational DT algorithm is applied. We
could not apply other baseline methods for these data
sets due to their infeasible construction times. Nev-
ertheless, by extrapolating the graphs in Figure 2A,
we guess the baselines would be roughly 3-4 orders of
magnitude (103 − 104 times) slower. It should also be
stressed that this experiment is specifically designed
for showing the applicability of our framework for gi-
gantic data sets and not necessarily showing its accu-

1http://largescale.ml.tu-berlin.de/

racy. However, even though we have not tuned the
SSL parameters (like the labeling threshold), we still
got CCR = 0.56 ± 0.01 which is better than the ran-
dom classifier. In conclusion, as a serial algorithm, our
framework takes a reasonable time to construct and
operate on these gigantic data sets. Furthermore, due
to its tree-based structure, the Variational DT frame-
work has the great potential to be parallelized which
will make the algorithm even faster.

Data set N Param# Const. Prop.
alpha 0.5 M 1 M 4.5 hrs 11.7 min
ocr 3.5 M 7 M 46.2 hrs 93.3 min

Table 2: Very large-scale results

6 Conclusions

In this paper, we proposed a very efficient approx-
imation framework based on a variational dual-tree
method to estimate, store and perform inference with
the transition matrix for random walk on large-scale
data graphs. We also developed an unsupervised op-
timization technique to find the bandwidth for the
Gaussian similarity kernel used in building the transi-
tion matrix. Algorithmically, we extended the varia-
tional dual-tree framework with a fast multiplication
algorithm used for random walk inference with ap-
plications in large-scale label propagation and eigen-
decomposition. We also provided a complexity com-
parison between our framework and the popular k-
nearest-neighbor method designed to tackle the same
large-scale problems. In experiments, we demon-
strated that while both the kNN based method and
our method do not compromise much in terms of ac-
curacy compared to the exact method, our method
outperforms the kNN based method in terms of con-
struction time with order of magnitudes difference. We
also showed that our framework scales to gigantic data
sets with millions of records.

Our future directions for this work include adding an
inductive feature to our framework to deal with new
examples as well as exploring the theoretical aspects
of the approximation made by the algorithm.

Acknowledgements

This research work was supported by grants
1R01LM010019-01A1 and 1R01GM088224-01 from
the NIH and by the Predoctoral Andrew Mellon Fel-
lowship awarded to Saeed Amizadeh for the school
year 2011-2012. The content of this paper is solely the
responsibility of the authors and does not necessarily
represent the official views of the NIH.

References

S. Amizadeh, S. Wang, and M. Hauskrecht. An effi-
cient framework for constructing generalized locally-
induced text metrics. In IJCAI:, Proceedings of the
22nd International Joint Conference on Artificial
Intelligence, pages 1159–1164, 2011.

S. Amizadeh, H. Valizadegan, and M. Hauskrecht. Fac-
torized diffusion map approximation. Journal of
Machine Learning Research - Proceedings Track, 22:
37–46, 2012.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold
regularization: A geometric framework for learning
from labeled and unlabeled examples. Journal of
Machine Learning Research, 7:2399–2434, 2006.

A. Beygelzimer, S. Kakade, and J. Langford. Cover
trees for nearest neighbor. In Proceedings of the
23rd international conference on Machine learning,
ICML ’06, pages 97–104, New York, NY, USA, 2006.
ACM.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-
Supervised Learning. MIT Press, Cambridge, MA,
2006.

R. Fergus, Y. Weiss, and A. Torralba. Semi-supervised
learning in gigantic image collection. In NIPS, 2009.

J. Garcke and M. Griebel. Semi-supervised learning
with sparse grids. In Proc. of the 22nd ICML Work-
shop on Learning with Partially Classified Training
Data, 2005.

A. G. Gray and A. W. Moore. ‘N-body’ problems in
statistical learning. In NIPS, pages 521–527. MIT
Press, 2000.

T. Jebara, J. Wang, and S. Chang. Graph construc-
tion and b-matching for semi-supervised learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML 2009, Mon-
treal, Quebec, Canada, June 14-18, 2009, volume
382, page 56. ACM, 2009. ISBN 978-1-60558-516-1.

S. Kumar, M. Mohri, and A. Talwalkar. Sampling
techniques for the nystrom method. Journal of Ma-
chine Learning Research - Proceedings Track, 5:304–
311, 2009.

S. Lafon and A. B. Lee. Diffusion maps and coarse-
graining: A unified framework for dimensionality re-
duction, graph partitioning, and data set parameter-
ization. IEEE Trans. Pattern Analysis and Machine
Intelligence, 28(9):1393–1403, September 2006.

Y. Liaw, M. Leou, and C. Wu. Fast exact k nearest
neighbors search using an orthogonal search tree.
Pattern Recognition, 43(6):2351–2358, 2010.

J. Lin. Reduced rank approximations of transition
matrices. In Proceedings of the Sixth International
Conference on Artificial Intelligence and Statistics,
pages 3–6, 2003.

A. W. Moore. An introductory tutorial on kd-trees.
Technical Report No. 209, Computer Laboratory,
University of Cambridge, 1991.

A. W. Moore. The anchors hierarchy: Using the trian-
gle inequality to survive high dimensional data. In
Proceedings of the 16th Conference on Uncertainty
in Artificial Intelligence, pages 397–405, 2000.

B. Nadler, S. Lafon, R. R. Coifman, and I. G.
Kevrekidis. Diffusion maps, spectral clustering and
reaction coordinates of dynamical systems. In Ap-
plied and Computational Harmonic Analysis: Spe-
cial issue on Diffusion Maps and Wavelets, 2006.

A. Y. Ng, A. X. Zheng, and M. I. Jordan. Link anal-
ysis, eigenvectors and stability. IJCAI, pages 903–
910, 2001.

P. Ram, D. Lee, W. B. March, and Alexander G. Gray.
Linear-time algorithms for pairwise statistical prob-
lems. In Advances in Neural Information Process-
ing Systems 22: 23rd Annual Conference on Neural
Information Processing Systems 2009, Vancouver,
British Columbia, Canada, pages 1527–1535, 2009.

Y. Saad. Numerical Methods for Large Eigenvalue
Problems. Manchester University Press, Manch-
ester, UK, 1992.

B. Thiesson and J. Kim. Fast variational mode-
seeking. In Proceedings of the Fifteenth Inter-
national Conference on Artificial Intelligence and
Statistics 2012, JMLR 22: W&CP 22. Journal of
Machine Learning Research, 2012.

I. W. Tsang and J. T. Kwok. Large-scale sparsified
manifold regularization. In NIPS, pages 1401–1408.
MIT Press, 2006.

U. von Luxburg. A tutorial on spectral clustering.
Statistics and Computing, 17(4):395–416, 2007.

K. Yu, S. Yu, and V. Tresp. Blockwise supervised
inference on large graphs. In Proc. of the 22nd ICML
Workshop on Learning, 2005.

D. Zhou, O. Bousquet, T. Navin Lal, Jason Weston,
and Bernhard Schölkopf. Learning with local and
global consistency. In NIPS. MIT Press, 2003.

X. Zhu. Semi-supervised learning with graphs. PhD
thesis, Pittsburgh, PA, USA, 2005.

X. Zhu and J. D. Lafferty. Harmonic mixtures: com-
bining mixture models and graph-based methods
for inductive and scalable semi-supervised learning.
In ICML: Proceedings of the Twenty-Second Inter-
national Conference on Machine Learning, pages
1052–1059. ACM, 2005.

	Introduction
	Background
	Dual-tree Based Variational P
	Dual-tree Block Partitioning
	Optimization of Block Partitioning

	Application to Random Walk
	Variational Random Walk
	Learning
	Fast Inference
	Partitioning and Refinement

	Experiments
	The Baselines
	Experimental Setup

	Conclusions

