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Abstract

We introduce a novel framework for comput-
ing optimal randomized security policies in
networked domains which extends previous
approaches in several ways. First, we ex-
tend previous linear programming techniques
for Stackelberg security games to incorporate
benefits and costs of arbitrary security config-
urations on individual assets. Second, we of-
fer a principled model of failure cascades that
allows us to capture both the direct and in-
direct value of assets, and extend this model
to capture uncertainty about the structure
of the interdependency network. Third, we
extend the linear programming formulation
to account for exogenous (random) failures
in addition to targeted attacks. The goal of
our work is two-fold. First, we aim to de-
velop techniques for computing optimal se-
curity strategies in realistic settings involv-
ing interdependent security. To this end,
we evaluate the value of our technical con-
tributions in comparison with previous ap-
proaches, and show that our approach yields
much better defense policies and scales to
realistic graphs. Second, our computational
framework enables us to attain theoretical in-
sights about security on networks. As an ex-
ample, we study how allowing security to be
endogenous impacts the relative resilience of
different network topologies.

∗Sandia National Laboratories is a multi-program lab-
oratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corpora-
tion, for the U.S. Department of Energy’s National Nu-
clear Security Administration under contract DE-AC04-
94AL85000.

1 Introduction

Game theoretic approaches to security have received
much attention in recent years. There have been
numerous attempts to distill various aspects of the
problem into a model that could be solved in closed
form, particularly accounting for interdependencies of
security decisions (e.g., Kunreuther and Heal [2003],
Grossklags et al. [2008]). Numerous others offer tech-
niques based on mathematical programming to solve
actual instances of security problems. One important
such class of problems is network interdiction [Cormi-
can et al., 1998], which models zero-sum encounters
between an interdictor, who attempts to destroy a por-
tion of a network, and a smuggler, whose goal typically
involves some variant of a network flow problem (e.g.,
maximizing flow or computing a shortest path).

Our point of departure is another class of optimization-
based approaches in security settings: Stackelberg se-
curity games [Paruchuri et al., 2008]. These are two-
player games in which a defender aims to protect a
set of targets using a fixed set of limited defense re-
sources, while an attacker aims to assail a target that
maximizes his expected utility. A central assumption
in the literature on Stackelberg security games is that
the defender can commit to a probabilistic defense
(equivalently, the attacker observes the probabilities
with which each target is covered by the defender, but
not the actual defense realization).

Much of the work on Stackelberg security games fo-
cuses on building fast, scalable algorithms, often in
restricted settings [Kiekintveld et al., 2009, Jain et al.,
2010, Shieh et al., 2012]. One important such restric-
tion is to assume that targets exhibit independence:
that is, the defender’s utility only depends on which
target is attacked and the security configuration at
that target. Short of that restriction, one must, in
principle, consider all possible combinations of secu-
rity decisions jointly for all targets, making scalable
computation elusive. Many important settings, how-



ever, exhibit interdependencies between potential tar-
gets of attack. These may be explicit, as in IT and sup-
ply chain network security, or implicit, as in defending
critical infrastructure (where, for example, successful
delivery of transportation services depends on a highly
functional energy sector, and vice versa), or in securing
complex software systems (with failures at some mod-
ules having potential to adversely affect other mod-
ules). While in such settings the assumption of inde-
pendence seems superficially violated, we demonstrate
below that under realistic assumptions about the na-
ture of interdependencies, we can nevertheless leverage
the highly scalable optimization techniques which as-
sume independence.

In all, we offer the following contributions. (1) We
modify and extend the previous linear programming
techniques for Stackelberg security games to allow for
an arbitrary set of security configurations (rather than
merely to cover a target, or not), as well as to account
for both random and targeted failures, and replace
hard constraints on defense resources with costs associ-
ated with specific security configurations (Section 3).
(2) We present and justify a crucial assumption on
the nature of interdependencies that allows us to use
our LP formulations which fundamentally assume in-
dependence between targets (Section 4.1). We then
offer a simple model of interdependencies based on
probabilistic failure cascades satisfying this assump-
tion. Our model makes an explicit distinction between
an intrinsic and indirect value of assets, the latter be-
ing due entirely to interdependencies. This allows an
economically meaningful extension of a well-known in-
dependent cascade approach to modeling the spread of
infectious diseases or ideas (Section 4). (3) We demon-
strate that for trees we can compute expected utilities
for all targets in linear time (Section 4). (4) We extend
our model to capture uncertainty about network struc-
ture, and experimentally study the impact of such un-
certainty (Sections 4.5 and 6.1). (5) We show that our
approach is both scalable to realistic security settings
and offers much better solutions than state-of-the-art
alternatives (Sections 5.2 and 5.2). (6) We experimen-
tally study the properties of optimal defense configu-
rations in real and generated networks (Section 6).

2 Stackelberg Security Games

A Stackelberg security game consists of two players,
the leader (defender) and the follower (attacker), and
a set of possible targets. The leader can decide upon
a randomized policy of defending the targets, possi-
bly with limited defense resources. The follower (at-
tacker) is assumed to observe the randomized policy of
the leader, but not the realized defense actions. Upon
observing the leader’s strategy, the follower chooses a

target so as to maximize its expected utility.

In past work, Stackelberg security game formulations
focused on defense policies that were costless, but re-
source bounded. Specifically, it had been assumed
that the defender has K fixed resources available with
which to cover targets. Additionally, security decisions
amounted to covering a set of targets, or not. While in
numerous settings to which such work has been applied
(e.g., airport security, federal air marshal scheduling)
this formulation is very reasonable, in other settings
one may choose among many security configurations
for each valued asset, and, additionally, security re-
sources are only available at some cost. For example,
in cybersecurity, protecting computing nodes could in-
volve configuring anti-virus and/or firewall settings,
with stronger settings carrying a benefit of better pro-
tection, but at a cost of added inconvenience, lost pro-
ductivity, as well as possible licensing costs. Indeed,
costs on resources may usefully replace resource con-
straints, since such constraints are often not hard, but
rather channel an implicit cost of adding further re-
sources.

While security games as described above naturally en-
tail an attacker, most systems exhibit failures that are
not at all a deliberate act of sabotage, but are due en-
tirely to inadvertent errors. Even though such failures
are generally far more common than attacks, the vast
majority of work in security games posits an attacker,
but ignores such failures entirely; essentially the lone
exception is a paper by Zhuang and Bier [2007] which
offers an analytic treatment of a simple model making
explicit the distinction between attacks and natural
disasters. Our formulation below is, to our knowledge,
the first to explicitly model both attacks and random
failures in the Stackelberg security game literature.

To formalize, suppose that the defender can choose
from a finite set O of security configurations for each
target t ∈ T , with |T | = n. A configuration o ∈ O for
target t ∈ T incurs a cost co,t to the defender. If the
attacker happens to attack t while configuration o is in
place, the expected value to the defender is denoted by
Uo,t, while the attacker’s value is Vo,t. A key assump-
tion in Stackelberg security games is that the targets
are completely independent: that is, player utilities
only depend on the target attacked and its security
configuration [Kiekintveld et al., 2009]. We revisit this
assumption below when we turn to networked (inter-
dependent) settings. We denote by qo,t the probability
that the defender chooses o at target t. Finally, let r
be the prior probability of the defender that a failure
will happen due to a deliberate attack. If no attack is
involved, any target can fail; the defender’s belief that
target t randomly fails (conditional on the event that
no attack is involved) is gt, with

∑
t gt = 1.



3 Computing Optimal Randomized
Security Configurations

Previous formulations of Stackelberg security games
involved a fixed collection of defender resources, and
in most cases a binary decision to be made for each
target: to cover it, or not. To adapt these to our
domains of interest, we first modify the well-known
multiple linear program (henceforth, multiple-LP) for-
mulation that assumes target independence to incor-
porate an arbitrary set of security configurations, to-
gether with their corresponding costs of deployment.
In the multiple-LP formulation, each linear program
solves for an optimal randomized defense strategy
given that the attacker attacks a fixed target t̂, with
the constraint that t̂ is an optimal choice for the at-
tacker. The defender then chooses the best solution
from all feasible LPs as his optimal randomized defense
configuration. The independence assumption becomes
operational here because we treat defense configura-
tions qo,t for each target in isolation, as this assump-
tion obviates the need to randomize over joint defense
schedules for all targets. The LP formulation for a
representative target t̂ is shown in Equations 1a-1d.

max r

(∑
o

Uo,t̂q
t̂
o,t̂

)
+ (1− r)

(∑
t,o

gtUo,tq
t̂
o,t

)
−
∑
t

∑
o

co,tq
t̂
o,t. (1a)

s.t.

∀o,t qt̂o,t ∈ [0, 1] (1b)

∀t
∑
o

qt̂o,t = 1 (1c)

∀t
∑
o

Vo,tq
t̂
o,t ≤

∑
o

Vo,t̂q
t̂
o,t̂

(1d)

The intuition behind the multiple-LP formulation is
that in an optimal defense configuration, the attacker
must (weakly) prefer to attack some target, and, con-
sequently, one of these LPs must correspond to an op-
timal defense policy.

Notice that we can easily incorporate additional linear
constraints. For example, it is often useful to add a
budget constraint of the form:

∀t̂,t
∑
o

co,tq
t̂
o,t ≤ B.

4 Incorporating Network Structure

4.1 A General Model of Interdependencies

Thus far, a key assumption has been that the utility
of the defender and the attacker for each target de-

pends only on the defense configuration for that tar-
get, as well as whether it is attacked or not. In many
domains, such as cybersecurity and supply chain se-
curity, assets are fundamentally interdependent, with
an attack on one target having potential consequences
for others. In this section, we show how to transform
certain important classes of problems with interdepen-
dent assets into a formulation in which targets become
effectively independent, for the purposes of our solu-
tion techniques.

Below we focus on the defender’s utilities; attacker is
treated identically. Let wt be an intrinsic worth of
a target to the defender, that is, how much loss the
defender would suffer if this target were to be com-
promised with no other target affected (i.e., not ac-
counting for indirect effects). In doing so, we assume
that these worths are independent for different targets.
Let s = {o1, . . . , on} be the security configuration on
all nodes. The probability that a given t′ is affected
depends on s and the target t chosen by the attacker.
Let zs,t′(t) be the marginal probability that target t′ is
affected when the attacker attacks target t. Assuming
that the utility function is additive in target-specific
worths and the attacker can only attack a single target,
the defender’s expected utility from choosing s when t
is attacked is

Ut(s) = E

[∑
t′

wt′1(t′ affected | s, t)

]
=
∑
t′

wt′zs,t′(t),

where 1(·) is an indicator function. This expression
makes apparent that in general Ut(s) depends on de-
fense configurations at all targets, making the problem
intractable. We now make the crucial assumption that
enables fast computation of defender policies by recov-
ering inter-target independence.

Assumption 1. For all t and t′, zs,t′(t) = zot,t′(t).

In words, the probability that a target t′ is affected
when t is attacked only depends on the security con-
figuration at the attacked target t. Below, we use o
instead of ot where t is clear from context.

A way to interpret our assumption is that security
against external threats is not very efficacious once an
attack has found a way into the system. Alternatively,
if the utility of nodes is derived from their contribu-
tion to overall connectivity (e.g., in communication
networks, where removing a node can, for example,
increase latency), it is quite natural to assume that
removal of a node impacts global connectivity regard-
less of security policies on other nodes. Our assump-
tion was also operational in other work on interde-
pendent security [Kunreuther and Heal, 2003], where
a justification is through a story about airline bag-
gage screening: baggage that is transferred between



airlines is rarely thoroughly screened, perhaps due to
the expense. Thus, even while an airline may have
very strong screening policies, it is poorly protected
from luggage entering its planes via transfers. Cy-
bersecurity has similar shortcomings: defense is often
focused on external threats, with little attention paid
to threats coming from computers internal to the net-
work. Thus, once a computer on a network is compro-
mised, the attacker may find it much easier to com-
promise others on the same network.

Under the above assumption, the defender utility when
t is attacked under security configuration o is:

Uo,t = zo,t(t)wt +
∑
t′ 6=t

zo,t′(t)wt′ .

By a similar argument and an analogous assumption
for the attacker’s utility, we thereby recover target in-
dependence required by the linear programming for-
mulations above.

4.2 Cascading Failures Model

In general, one may use an arbitrary model to compute
or estimate zo,t′(t). Here, we offer a specific model of
interdependence between targets that is simple, natu-
ral, and applies across a wide variety of settings.

Suppose that dependencies between targets are repre-
sented by a graph (T,E), with T the set of targets
(nodes) as above, and E the set of edges (t, t′), where
an edge from t to t′ (or an undirected edge between
them) means that target t′ depends on target t (and,
thus, a successful attack on t may have impact on
t′). Each target has associated with it a worth, wt

as above, although in this context this worth is in-
curred only if t is affected (e.g., compromised, broken).
The security configuration determines the probability
zo,t(t) that target t is affected if the attacker attacks it
directly and the defense configuration is o. We model
the interdependencies between the nodes as indepen-
dent cascade contagion, which has previously been
used primarily to model diffusion of product adoption
and infectious disease [Kempe et al., 2003, Dodds and
Watts, 2005]; Mounzer et al. [2010] is a rare excep-
tion (a similar model was also proposed by Tsai et al.
[2012], but involves both a defender and an attacker
maximizing impact of information diffusion through
cascades). The contagion proceeds starting at an at-
tacked node t, affecting its network neighbors t′ each
with probability pt,t′ ; the contagion then spreads from
the newly affected nodes t′ to their neighbors, and so
on. The contagion can only occur once along any net-
work edge, and once a node is affected, it stays affected
through the diffusion process. An equivalent way to
model this process is to start with the network (T,E)

and remove each edge (t, t′) with probability (1−pt,t′).
The entire connected component of an attacked node
is then deemed affected.

4.3 Computing Expected Utilities

Given the independent cascade model of interdepen-
dencies between targets, we must compute expected
utilities, Uo,t and Vo,t, of the defender and the attacker
respectively (note that these are expectations only over
the cascades, but not the defender’s mixed strategy).
In general, we can do so by simulating cascades start-
ing at every node t (using breadth-first search), with
expected utility of defender/attacker estimated as a
sample average over K simulated cascades (expecta-
tion in this case is with respect to random realizations
of attack success for specific targets as well as edges
that become a part of the failure contagion). In several
special cases, however, we can either compute these
exactly and efficiently, or speed up utility estimation.
We now address these special cases.

4.3.1 Cascades on Trees

It is intuitive that when the dependency graph is a
tree, expected utilities can be computed efficiently. A
naive algorithm can do it in linear time for each target
t, yielding quadratic time in total (since we must re-
peat the process for all targets). In fact, we can do it
in linear time for all targets, as the following theorem
asserts.

Theorem 1. If (T,E) is an undirected tree we can
compute expected utilities for at targets in O(|T |) time.

The proofs of this and other results can be found in
the online supplement.

4.3.2 Cascades on Undirected Graphs

In general undirected graphs, we can apply a very sim-
ple optimization in the way we sample cascades to
obtain substantial speedups when the graph is dense.
First, observe that rather than determining live edges
as the cascade unfolds, we can instead flip the biased
coin for each edge to determine whether it is live or
not during a particular cascade prior to propagating
the failure. The resulting graph contains a subset of
edges from the original graph. At this point, observe
that each potential target in a given connected compo-
nent will result in the same defender/attacker utility.
We therefore only need to compute the expected loss
once for each connected component. When the size
of the largest connected component is O(|T |), a likely
scenario in dense graphs, this optimization results in
an O(|T |) speedup.



4.4 The Significance of Capturing
Interdependence

An obvious question that may arise upon pondering
the complexities of our framework is whether they are
worthwhile: it may well be that previous approaches
which assume target independence offer satisfactory
approximation. We now show theoretically, and later
experimentally, that our approach improves dramati-
cally as compared to one which assumes independence.

Proposition 1. There exists a family of problem in-
stances for which the independence assumption yields
a solution that is a factor of O(n) worse than optimal.

4.5 Incorporating Uncertainty about the
Network

Applying our framework in real-world networked se-
curity settings requires an accurate understanding of
the interdependencies. Thus far, we assumed that the
actual network over which cascading failures would
spread is perfectly known. A natural question is: what
if our network model is inaccurate?

Formally, we model the uncertainty about the network
as a parameter ε which represents the probability of
incorrectly estimating the relationship between a pair
of targets. Thus, if there is an edge between t and t′,
we now let this edge be present with probability 1− ε.
On the other hand, if t and t′ are not connected in the
graph given to us, we propose that they are, in fact,
connected with probability ε. Thus, when the graph
is large, even a small amount noise will cause us to err
about a substantial number of edges.1

Note that there is a natural way to incorporate this
model of uncertainty into our framework. Let us in-
terpret pt,t′ as the probability of a cascade from t to t′

conditional on an edge from t to t′. Then, if t and t′

are connected, we modify cascade probabilities to be
p̂t,t′ = pt,t′(1 − ε), whereas if they are not connected,
the cascade probability is p̂t,t′ = pt,t′ε.

5 Experiments

The goal of this section is to illustrate the value of our
framework as a computational tool for designing se-
curity in interdependent settings. Specifically, we aim
to demonstrate that our approach clearly improves on
state-of-the-art alternatives, and offers a scalable solu-
tion for realistic security problems. We pursue this aim

1We assume here that both the defender and attacker
share the same uncertainty about the network. An al-
ternative model could consider an attacker that has more
(or exact) information about the network. The resulting
defender problem would become a Bayesian Stackelberg
game.

by randomly constructing dependency graphs using
Erdos-Renyi (ER) and Preferential Attachment (PA)
generative models [Newman, 2010], as well as using a
graph representing a snapshot of Autonomous System
(AS) interconnections generated using Oregon route-
views [of Oregon Route Views Project]; this graph con-
tains 6474 targets and 13233 edges and thus offers a
reasonable test of scalability. In the ER model every
directed link is made with a specified and fixed prob-
ability p; we refer to it as ER(p). The PA model adds
nodes in a fixed sequence, starting from an arbitrary
seed graph with at least two vertices. Each node i is
attached to m others stochastically (unless i ≤ m, in
which case it is connected to all preceding nodes), with
probability of connecting to a node j proportional to
the degree of j, dj .

For the randomly generated networks, all data pre-
sented is averaged over 100 graph samples. Since we
generate graphs that may include undirected cycles, we
obtain expected utilities for all nodes on a given graph
using 10,000 simulated cascades (below we show that
this is more than sufficient). Intrinsic worths wt are
generated uniformly randomly on [0, 1]. Cascade prob-
abilities pt,t′ were set to 0.5 unless otherwise specified.
In the sequel, we restrict the defender to two security
configurations at every target, one with a cost of 0
which stops attacks with probability 0 and one with a
cost of c which prevents attacks with probability 1.

5.1 Sampling Efficiency

Throughout our experiments we use 10,000 samples to
evaluate the expected utilities of players. A natural
question is: are we taking enough samples? To an-
swer this, we systematically varied the number of sam-
ples between 0 (i.e., letting Uo,t = −wt) and 100,000.
Our results offer strong evidence that 10,000 samples
is more than enough: the expected utility (evaluated
using 100,000 samples) of the resulting defense con-
figurations becomes flat already when the number of
samples is 1000.

5.2 Scalability

An important question given the complexity of our
framework is whether it can scale to realistic defense
scenarios. To test this, we ran our framework on the
AS graph consisting of 6474 targets and 13233 edges.
Since this is a large undirected graph containing cy-
cles, a sampling approach was required, but the to-
tal running time (including both sampling and solving
linear programs) amounted to less than 1 hour. Given
the importance of security, and the fact that distri-
butions of security settings are computed once (or at
least infrequently, as long as significant changes to the
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Figure 1: Left: Comparison between our approach (“with graph info”) and one assuming independence (“without
graph info”) using the ER(0.1) generative model. Middle: Comparison to the degree-based heuristic on PA
graphs. Right: Comparison to the degree-based heuristic on the AS graph.

interdependency structure are not very frequent), this
seems a relatively small computational burden.

5.3 Comparison to State-of-the-Art
Alternatives

There are two prime computational alternatives to our
framework. The first is to assume that targets are in-
dependent. While we showed above that in the worst
case this can be quite a poor approximation, we offer
empirical support to the added value of our approach
below. The second is to use a well-known heuristic de-
veloped in the context of vaccination strategies on net-
works. This latter heuristic would in our case defend
nodes in order of their connectivity (degree), until the
defense budget is exhausted. Figure 1 compares our
approach first to the former (left) and then to the lat-
ter (right). In both cases, computing optimal defense
strategies using our framework yields much higher util-
ity to the defender than the alternatives.

Aside from interdependencies, two other important as-
pects of our model are the fact that it allows an ar-
bitrary number of security configurations, instead of
simply allowing the defender to defend, or not, each
target, and its ability to optimize with respect to both
intelligent attackers and inadvertent failures. We now
show that both of these can add substantial value.
Figure 2 (top) shows a comparison between a solu-
tion which only allows two configurations (defend and
do not defend) and two solutions which also allow for
a third configuration, which is less effective than full
defense, but also less costly. We consider two poten-
tial third options, one providing 50% defense at 12.5%
of the cost of full defense (1/2 – 1/8) and one pro-
viding 75% defense at 12.5% cost (3/4 – 1/8). It is
clear from this graph that considering the third con-
figuration adds considerable value. Figure 2 (bottom)
assumes that all (or nearly all) failures arise randomly,
and compares a solution which posits an attacker to
an optimal solution. Again, the value of solving the
problem optimally is clear. This plot actually shows

an interesting pattern, as the expected utility of the
defender is non-monotonic in cost when the solution
is suboptimal. This is because the differences between
the two solutions are most important when costs are
intermediate; with low costs, nearly everything is fully
defended, while high costs imply almost no defense.
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Figure 2: Top: Comparison between assuming only
two configurations, and allowing the defender to con-
sider three alternatives. Bottom: Comparison between
a solution which assumes that failures are only due to
attacks, and an optimal solution, when failures are ac-
tually random. Comparisons use PA graphs.

6 Applications to Interdependent
Security Analysis

In this section we apply our framework to several net-
work security domains. For simplicity, we restrict at-



tention to zero-sum security games, unless otherwise
specified. As above, we consider ER and PA genera-
tive models, although we utilize a generalized version
of PA. In a generalized PA model, connection proba-

bilities are (di)
µ∑

j(dj)
µ , such that when µ = 0 the degree

distribution is relatively homogeneous, just as in ER,
µ = 1 recovers the “standard” PA model, and large
values of µ correspond to highly inhomogeneous de-
gree distributions. Throughout, we use µ = 1 unless
otherwise specified. All parameters are set as in the
experiments section, unless otherwise specified.

In addition to generative models of networks, we ex-
plore two networks derived from real security set-
tings: one with 18 nodes that models dependencies
among critical infrastructure and key resource sectors
(CIKR), as inferred from the DHS and FEMA web-
sites, and the second with 66 nodes that captures pay-
ments between banks in the core of the Fedwire net-
work [Soramaki et al., 2007].

For the CIKR network, each node was assigned a low,
medium, or high worth of 0.2, 0.5, or 1, respectively,
based on perceived importance (for example, the en-
ergy sector was assigned a high worth, while the na-
tional monuments and icons sector a low worth). Each
edge was categorized based on the importance of the
dependency (gleaned from the DHS and FEMA web-
sites) as “highly” or “moderately” significant, with
cascade probabilities of 0.5 or 0.1 respectively. For
the Fedwire network, all nodes were assigned an equal
worth of 0.5, and cascade probabilities were discretely
chosen between 0.05 and 0.5 in 0.05 increments de-
pending on the weight of the corresponding edges
shown in Soramaki et al. [2007].

6.1 The Impact of Uncertainty

Our framework offers a natural way to incorporate un-
certainty about the network into the analysis. An im-
portant question is: how much impact on defender de-
cision does uncertainty about the network have? Fig-
ure 3 quantifies the impact of uncertainty on the qual-
ity of defense if the observed graph is the PA network
with average degree of 2. When cascade probabili-
ties are relatively high (pt,t′ = 0.5 for all edges, top
plot), even if the amount of noise is relatively small
(ε = 0.01), the resulting increase in the number of
possible cascade paths in the network makes the de-
fender much more vulnerable. With smaller cascade
probabilities (pt,t′ = 0.1, bottom plot), however, noise
has relatively little impact. It can thus be vital for
the defender to obtain an accurate portrait of the true
network over which failures may cascade when the in-
terdependencies among the components are strong.
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Figure 3: The impact of noise on PA networks. Top:
when pt,t′ = 0.5; Bottom: when pt,t′ = 0.1.

6.2 The Impact of Marginal Defense Cost

Our next analysis deals with the impact of marginal
defense cost c on defender expected losses, his total
costs, and the sum of these (i.e., negative expected
utility). The results for ER and BA (both with 100
nodes and average degree of 2), as well as CIKR and
Fedwire networks are shown in Figure 4. All the plots
feature a clear pattern: expected loss and (negative)
utility are monotonically increasing, as expected, while
total costs start at zero, initially rise, and ultimately
fall (back to zero in 3 of the 4 cases). It may at first
be surprising that total costs eventually fall even as
marginal costs continue to increase, but this clearly
must be the case: when c is high enough, the defender
will not wish to invest in security at all, and total costs
will be zero. What is much more surprising is the pres-
ence of two peaks in PA and Fedwire networks. Both of
these networks share the property that there is a non-
negligible fraction of nodes with very high connectiv-
ity [Newman, 2010, Soramaki et al., 2007]. When the
initial peak is reached, the network is fully defended,
and as marginal costs rise further, the defender begins
to reduce the defense resources expended on the less
important targets. At a certain point, only the most
connected targets are protected, and since these are so
vital to protect, total costs begin increasing again. Af-
ter the second peak is reached, c is finally large enough
to discourage the defender from fully protecting even
the most important targets, and the subsequent fall of
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Figure 4: Expected loss, cost, and their sum in (a) 100-node ER(0.2), (b) 100-node PA, (c) 18-node critical
infrastructure, and (d) 66-node core of the Fedwire networks as defense cost increases. The results for ER and
PA are averages over 100 stochastic realizations of these networks.

total costs is no longer reversed.

6.3 Resilience to Targeted Attacks: Impact
of Network Structure

One of the important streams in the network science
literature is the question of relative resilience of differ-
ent network topologies to failures, random or targeted.
A central result, replicated in a number of contexts, is
that network topology is a vital factor in determining
resilience [Albert et al., 2000, Newman, 2010]. Of par-
ticular interest to us is the observation that scale-free
networks such as PA exhibit poor tolerance to targeted
attacks as compared to ER [Albert et al., 2000], which
is precisely the context that we consider.

In Figure 5 (top) we show the defender’s utility for
three different network topologies, PA, ER, and Fed-
wire as a function of cost c. Remarkably, there is es-
sentially no difference between PA and ER (and not
much between these and Fedwire) until c is quite high,
at which point they begin to diverge. This seems to
contradict essentially all the previous findings in that
network topology seems to play little role in resilience
in our case! A superficial difference here is that we
consider a cascading failure model, while most of the
previous work on the subject focused on diminished

connectivity due to attacks. We contend that the most
important distinction, however, is that previous work
studying resilience did not account for a simple ob-
servation that most important targets are also most
heavily defended; indeed, there was no notion of en-
dogenous defense at all. In scale-free graphs, there
are well connected nodes whose failure has global con-
sequences. These are the nodes which are most im-
portant, and are heavily defended in optimal decisions
prescribed by our framework. Once the defense deci-
sion becomes endogenous, differences in network topol-
ogy disappear. Naturally, once c is high enough, de-
fense of important targets weakens, and eventually we
recover the standard result: for high c, PA is consid-
erably more vulnerable than ER.

To investigate the impact of network topology on re-
silience further, we consider the generalized PA model
in which we systematically vary the homogeneity of
the degree distribution by way of the parameter µ.
The results are shown in Figure 5 (bottom). In this
graph, we do observe clear variation in resilience as
a function of network topology, but the operational
factor in this variation is homogeneity in the distri-
bution of expected utilities, rather than degrees: in-
creasing homogeneity of the utility distribution lowers
network resilience. This seems precisely the opposite
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of the standard results in network resilience, but the
two are in fact closely related, as we now demonstrate.
Superficially, the trend in the figure seems to follow
the common intuition in the resilience literature: as
the degree distribution becomes more inhomogeneous
(more star-like), it becomes more difficult to defend.
Observe, however, that ER is actually more difficult
to defend than PA with µ = 0. The lone difference of
the latter from ER is the fact that nodes that enter
earlier are more connected and, therefore, the degree
distribution in the PA variant should actually be more
inhomogeneous than ER! The answer is that random
connectivity combined with inhomogeneity of degrees
actually makes the distribution of utilities less homo-
geneous in PA with µ = 0, and, as a result, fewer
nodes on which defense can focus as compared to ER.
On the other hand, as the graph becomes more star-
like, the utilities of all nodes become quite similar; in
the limiting case, all nodes are only two hops apart,
and attacking any one of them yields a loss of many
as a result of cascades.

There is another aspect of network topology that has
an important impact on resilience: network density.
Figure 6 shows a plot of an Erdos-Renyi network with
the probability of an edge varying between 0.0025 to
0.08 (average degree between .25 and 8) and cost c
fixed at 0.04. Clearly, expected utility and loss of the
defender are increasing in density, but it is rather sur-
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prising to observe how sharply they jump once average
degree exceeds 1 (the ER network threshold for a large
connected component); in any case, network density
has an unmistakable impact. The reason is intuitive:
increased density means more paths between targets,
and, consequently, greater likelihood of large cascades
in the event that a target is compromised. Total cost
initially increases in response to increased density, in
part to compensate for the increased vulnerability to
attacks, but eventually falls, since it is too expensive
to protect everything, and anything short of that is
largely ineffective.

7 Conclusion

We presented a framework for computing optimal ran-
domized security policies in network domains, extend-
ing previous linear programming approaches to Stack-
elberg security games in several ways. First, we ex-
tended previous linear programming techniques to in-
corporate benefits and costs of arbitrary security con-
figurations on individual assets. Second, we offered a
principled model of failure cascades that allows us to
capture both the direct and indirect value of assets,
and showed how to extend this model to capture un-
certainty about the structure of the interdependency
network. Third, we allowed the defender to account
for failures due to actual attacks, as well as those that
are a result of exogenous failures. Our results demon-
strate the value of our approach as compared to alter-
natives, and show that it is scalable to realistic security
settings. Furthermore, we used our framework to an-
alyze four models of interdependencies: two based on
random graph generation models, a simple model of in-
terdependence between critical infrastructure and key
resource sectors, and a model of the Fedwire interbank
payment network.
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