
An Efficient Message-Passing Algorithm
for the M-Best MAP Problem

Dhruv Batra
TTI-Chicago

dbatra@ttic.edu

Abstract

Much effort has been directed at algorithms
for obtaining the highest probability configu-
ration in a probabilistic random field model –
known as the maximum a posteriori (MAP)
inference problem. In many situations, one
could benefit from having not just a single
solution, but the top M most probable solu-
tions – known as the M-Best MAP problem.

In this paper, we propose an efficient
message-passing based algorithm for solving
the M-Best MAP problem. Specifically, our
algorithm solves the recently proposed Lin-
ear Programming (LP) formulation of M-
Best MAP [7], while being orders of magni-
tude faster than a generic LP-solver. Our ap-
proach relies on studying a particular partial
Lagrangian relaxation of the M-Best MAP
LP which exposes a natural combinatorial
structure of the problem that we exploit.

1 Introduction
A large number of problems in computer vision, nat-
ural language processing and computational biology
can be formulated as the search for the most probable
state under a discrete probabilistic graphical model –
known the MAP inference problem.

In a number of such applications, one can benefit from
having not just a single best solution, rather a list
of M-best hypotheses. For example, sentences are of-
ten ambiguous and machine translation systems ben-
efit from working with multiple plausible parses of a
sentence. In computational biology, practitioners are
often interested in computing the top M most stable
configurations of a protein structure. Moreover, com-
puting such a set of M-best hypotheses is useful for
assessing the sensitivity of the model w.r.t. variations
in the input and/or the parameters of the model.

In the graphical models literature, this problem is

known as the M-Best MAP problem [7, 18, 28]. Inter-
estingly (and perhaps understandably), algorithms for
the M-Best MAP problem have closely followed the de-
velopment of the algorithms for solving the MAP prob-
lem. Similar to MAP, the first family of algorithms for
M-Best MAP [18,20] were junction-tree based exact al-
gorithms, feasible only for low-treewidth graphs. For
high-treewidth models, where Belief Propagation (BP)
is typically used to perform approximate MAP infer-
ence, Yanover and Weiss [28] showed how the pseudo-
max-marginals produced by BP may be used to com-
pute approximate M-Best MAPs.

However, with the development of Linear Program-
ming (LP) relaxations for MAP, this concurrence be-
tween MAP and M-Best MAP is no longer true. While
message-passing algorithms for solving the MAP LP
were available as soon as the LPs were studied [8,
13, 19, 24, 26], no such algorithm is known for solv-
ing the M-Best MAP LP [7]. This discrepancy is
not merely a theoretical concern – large-scale empiri-
cal comparisons [27] have found that message-passing
algorithms for MAP significantly outperform com-
mercial LP solvers (like CPLEX). More importantly,
message-passing algorithms can be applied to large-
scale problems where solvers like CPLEX simply would
not scale. Thus, if we are to apply M-Best MAP
to real instances appearing in computational biology,
computer vision and NLP, we must develop scalable
distributed message-passing algorithms.

Overview. The principal contribution of this paper
is to develop an efficient message-passing algorithm
for the M-Best MAP problem in discrete undirected
graphical models, specifically Markov Random Fields
(MRFs). Our approach studies a particular partial La-
grangian relaxation of the M-Best MAP LP [7] which
exposes the natural modular structure in the problem.
For graphs with cycles, this Lagrangian relaxation in-
volves an exponentially large set of dual variables, and
we use a dynamic subgradient method (DSM) [4] for
solving this Lagrangian dual. DSMs are a recently for-
malized class of methods that interleave a separation



oracle procedure (that selects a subset of active dual
variables), with the dual update procedure (that takes
a step in the direction of the subgradient).

At a high-level, our algorithm brings MAP and M-Best
MAP to an equal footing vis-a-vis a message-passing
algorithm for solving the corresponding LP-relaxation.
Importantly, our algorithm retains all the guarantees
of the LP formulation of Fromer and Globerson [7],
while being orders of magnitude faster. Similar to the
observations in [27] for MAP, we find that our algo-
rithm enables solving M-Best MAP on large instances
that were unsolvable with generic LP solvers.

Outline. We begin with a brief history of the M-Best
MAP problem in Section 2; present preliminaries and
background in Section 3; revisit the M-Best MAP LP
formulation of Fromer and Globerson [7] in Section 4;
study the Lagrangian dual of this LP and present a
message-passing dual ascent algorithm for tree-MRF
in Section 5 and for general MRFs in Section 6.

2 Previous Work on M-Best MAP

The problem of finding the top M solutions to a general
combinatorial optimization problem (not just inference
in MRFs) has typically been studied in the context of
k-shortest paths [6] in a search graph. Lawler [16]
proposed a general algorithm to compute the top M
solutions for a large family of discrete optimization
problems, and the ideas used in Lawler’s algorithm
form the basis of most algorithms for the M-Best MAP
problem. If the complexity of finding the best solution
is T (n), where n is the number of variables, Lawler’s
algorithm solves n new problems. The best solution
among these n problems is the second best solution to
the original problem. Thus at an O(nM) multiplica-
tive overhead, the top M solutions can be iteratively
found. Hamacher and Queyranne [10] reduced this
overhead to O(M) by assuming access to an algorithm
that can compute the first and the second best solu-
tions.

Dechter and colleagues [5, 17] have recently provided
dynamic-programming algorithms for M-Best MAP,
but these are exponential in treewidth. Yanover
and Weiss [28] proposed an algorithm that requires
access only to max-marginals. Thus, for certain
classes of MRFs that allow efficient exact computation
of max-marginals, e.g . binary pairwise supermodular
MRFs [11], M-Best solutions can be found for arbi-
trary treewidth graphs. Moreover, approximate M-
Best solutions may be found by approximating the
max-marginal computation, e.g . via loopy BP.

More recently, Fromer and Globerson [7] provided a
LP view of the M-Best MAP problem. They proposed
an algorithm (STRIPES) that repeatedly partitions
the space of solutions and solves a 2nd-Best MAP LP
within each partition (with a generic LP-solver). We

revisit [7] in detail in Section 4, and describe a sig-
nificantly more efficient message-passing algorithm for
solving the LP in the remainder of the paper.

3 Preliminaries: MAP-MRF Inference

Notation. For any positive integer n, let [n] be short-
hand for the set {1, 2, . . . , n}. We consider a set of dis-
crete random variables x = {xi | i ∈ [n]}, each taking
value in a finite label set, xi ∈ Xi. For a set A ⊆ [n],
we use xA to denote the tuple {xi | i ∈ A}, and XA to
be the cartesian product of the individual label spaces
×i∈AXi. For ease of notation, we use xij as a short-
hand for x{i,j}. For two vector a, b ∈ Rd, we use a · b
to denote the inner product.

MAP. Let G = (V, E) be a graph defined over these

variables, i.e. V = [n], E ⊆
(V

2

)
, and let θA : XA →

R, (∀A ∈ V ∪ E) be functions defining the energy
at each node and edge for the labeling of variables
in scope. The goal of MAP inference is to find the
labeling x of the variables that minimizes this real-
valued energy function:

min
x∈XV

∑
A∈V∪E

θA(xA) (1a)

= min
x∈XV

∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj). (1b)

The techniques developed in this paper are naturally
applicable to higher-order MRFs as well. However, to
simplify the exposition we restrict ourselves to pairwise
energy functions.

MAP Integer Program. MAP inference is typi-
cally set up as an integer programming problem over
boolean variables. For each node and edge A ∈ V ∪ E ,
let µA = {µA(s) | s ∈ XA, µA(s) ∈ {0, 1}}, be a
vector of indicator variables encoding all possible con-
figurations of xA. If µA(s) is set to 1, this implies that
xA takes label s. Moreover, let θA = {θA(s) | s ∈ XA}
be a vector holding energies for all possible configura-
tions of xA, and µ = {µA | A ∈ V ∪ E} be a vector
holding the entire configuration. Using this notation,
the MAP inference integer program can be written as:

min
µi,µij

∑
i∈V

θi · µi +
∑

(i,j)∈E

θij · µij (2a)

s.t.
∑
s∈Xi

µi(s) = 1 ∀i ∈ V (2b)

∑
s∈Xi

µij(s, t) = µj(t) ∀{i, j} ∈ E (2c)

∑
t∈Xj

µij(s, t) = µi(s) ∀{i, j} ∈ E (2d)

µi(s), µij(s, t) ∈ {0, 1} ∀i ∈ V , ∀{i, j} ∈ E (2e)

Here (2b) enforces that exactly one label is as-
signed to a variable, and (2c),(2d) that assign-
ments are consistent across edges. To be con-
cise, we will use P(G) to denote the set of µ that
satisfy the three constraints (2b),(2c),(2d). Thus,



the above problem (2) can be written concisely as:

min
µ∈P(G), µA(s)∈{0,1}

∑
A∈V∪E

θA · µA.

MAP LP. Problem (2) is known to be NP-hard in
general [21]. A number of techniques [8, 13, 19, 24, 26]
solve a Linear Programming (LP) relaxation of this
problem, which is given by relaxing the boolean con-
straints (2e) to the unit interval, i.e. µi(s), µij(s, t) ≥
0. Thus, the MAP LP minimizes the energy over the
following polytope: L(G) =

{
µA(·) ≥ 0, | µ ∈ P(G)

}
,

also known as the local polytope. The LP relaxation of
MAP is known to be tight for special cases like tree-
graphs and binary submodular energies [25], meaning
that the optimal vertex of the local polytope is an in-
teger µA ∈ {0, 1}, for these special cases.

4 M-Best MAP Linear Program

Let us now revisit the M-Best MAP LP formulation [7].

Let µm denote the mth-best MAP. Thus µ1 is the
MAP, µ2 is the second-best MAP and so on. The
M-Best MAP integer program is given by

µM = argmin
µ∈P(G), µA(s)∈{0,1}

∑
A∈V∪E

θA · µA (3a)

s.t. µ 6= µm ∀m ∈ [M − 1] (3b)

While the MAP integer program suggested a natu-
ral LP relaxation, that is not the case with the M-
Best MAP integer program due to the exclusion con-
straints (3b), which are not linear constraints. Fromer
and Globerson [7] introduced a concise representation
of a polytope called assignment-excluding local poly-
tope L(G, {µm}M−1

1 ) that excludes previous solutions
{µm | m ∈ [M − 1]} with the help of additional linear
inequalities, called the spanning-tree inequalities.

Spanning Tree Inequalities. Let T ⊆ E
be a spanning tree of G, and T (G) be the
set of all such spanning trees in G. Let dTi
be the degree of node i in T . Let us define

IT (µ,µm) ,
∑
i∈V

(1− dTi )µi · µmi +
∑

(i,j)∈T

µij · µmij .

Now, a spanning tree inequality is defined as:
IT (µ,µm) ≤ 0.

Notice that IT (µm,µm) = 1. Moreover, it can be
shown [7] that IT (µ,µm) ≤ 0, ∀µ 6= µm. Thus, the
spanning tree inequality separates the vertex µm from
other vertices in the polytope.

Assignment-Excluding Local Polytope (AELP)
is defined as:

L(G, {µm}M−1
1 ) =

{
µ

∣∣∣∣ µ ∈ L(G), IT (µ,µm) ≤ 0,

∀T ∈ T (G), ∀m ∈ [M − 1]

}
. (4)

Thus, we can see that the AELP excludes each of the
previous solutions {µm | m ∈ [M − 1]} with the help
of spanning tree inequalities.

Recall that the LP relaxation over the local polytope
for a tree-structured MRFs is tight. It can also be
shown [7] that the LP relaxation over AELP for tree
MRFs is tight for m = 2. However, for m ≥ 3 in tree
MRFs and any for any m ≥ 1 in loopy MRFs, the
AELP is not guaranteed to be a tight relaxation.

Efficient Separation Oracle. Note that for tree
MRFs, there is a single spanning tree inequality for
each previous solution since |T (G)| = 1, while for gen-
eral graphs there may be an exponentially large col-
lection of spanning trees, e.g . |T (G)| = nn−2 for com-
plete graphs. However, not all such inequalities need
to be explicitly included. We can use a cutting-plane
algorithm that maintains a working set of spanning
trees T ′ and incrementally adds the most violated in-
equality: T ′ ←− T ′ ∪ argmaxT∈T (G) I

T (µ,µm). For
a given µ, Fromer and Globerson [7] showed that this
separation oracle can be efficiently implemented with
a maximum-weight spanning tree algorithm with the
edge weights given by wij = µij ·µmij−µi ·µmi −µj ·µmj .

Notice that this algorithm requires solving a linear pro-
gram over the AELP in each iteration. For large prob-
lems arising in computer vision and computational bi-
ology, solving this LP with a standard LP-solver even
once may be infeasible. In the next section, we present
our proposed message-passing algorithm for solving
the M-Best MAP LP.

5 M-Best MAP Lagrangian
Relaxation: Tree-MRF

Let us first restrict our attention to tree-structured
MRFs. This is simple enough a scenario to describe
the main elements of our approach; we then discuss
the general case in Section 6. For tree MRFs, there is
a single spanning tree inequality (for each m), and to
simplify notation we will refer to IT (µ,µm) simply as
I(µ,µm). Then M-Best MAP LP can be written as:

min
µ∈L(G)

∑
A∈V∪E

θA · µA (5a)

s.t. I(µ,µm) ≤ 0 ∀m ∈ [M − 1] (5b)

Now instead of solving the above problem in the pri-
mal with an LP-solver as Fromer and Globerson [7]
did, we will study the Lagrangian relaxation of this
LP, formed by dualizing the spanning tree constraints:

f(λ) = min
µ∈L(G)

∑
A∈V∪E

θA · µA +

M−1∑
m=1

λmI(µ,µm), (6)

where λ = {λm | m ∈ [M − 1]} is the set of Lagrange
multipliers, that determine the weight of the penalty
imposed for violating the spanning tree constraints.



Note that this is a partial Lagrangian because we have
only dualized the spanning tree constraints (5b), and
have not dualized the constraints hidden inside the
local polytope L(G).

Key Idea: Exploiting Structure. The partial
Lagrangian immediately exposes a structure in the
problem that the primal formulation was obfuscating,
namely that the spanning tree inequality distributes
according to a tree structure, i.e.

f(λ) = min
µ∈L(G)

{∑
i∈V

(
θi +

M−1∑
m=1

λm(1− di)µmi
)
· µi

+
∑

(i,j)∈E

(
θij +

M−1∑
m=1

λmµmij

)
· µij

}
. (7)

Also recall that for a tree the local polytope L(G)
has integral vertices. Thus the minimization above
can be efficiently performed by running a combina-
torial optimization algorithm (the standard two-pass
max-product BP) on this perturbed MRF, and does
not need to be solved with a generic LP solver. As
we will see next, being able to efficiently evaluate the
Lagrangian is all we need to be able to optimize the
Lagrangian dual.

5.1 Projected Supergradient Ascent on the
Lagrangian Dual

From the theory of Lagrangian duality, we know that
for all values of λ ≥ 0, f(λ) is a lower-bound on the
value of the primal problem (5). The tightest lower-
bound is obtained by solving the Lagrangian dual
problem: maxλ≥0 f(λ). Since f is a non-smooth con-
cave function, this can be achieved by the supergradi-
ent ascent algorithm, analogous to the subgradient de-
scent for minimizing non-smooth convex functions [22].
Since λ is a constrained variable, we follow the pro-
jected supergradient ascent algorithm: iteratively up-
dating the Lagrange multipliers according to the fol-
lowing update rule: λ(t+1) ←−

[
λ(t) + αt∇f(λ(t))

]
+

,

where ∇f(λ(t)) is the supergradient of f at λ(t), αt
is the step-size and [·]+ is the projection operator
that projects a vector onto the positive orthant. If
the sequence of multipliers {αt} satisfies αt ≥ 0,
limt→∞ αt = 0,

∑∞
t=0 αt = ∞, then projected su-

pergradient ascent converges to the optimum of the
Lagrangian dual [22].

To find the supergradient of f(λ), consider the follow-
ing lemma (proved in [14]):

Lemma 1 If g(λ) is a point-wise minimum of linear
functions: i.e. g(λ) = minµ aµ · λ + bµ, then one
supergradient of g is given by ∇g(λ) = aµ̂(λ), where
µ̂(λ) ∈ argminµ aµ · λ+ bµ.

Notice that f is indeed a point-wise minimum of linear
functions. Mapping this lemma to (5), we can see that

the supergradient of f for our formulation is given by:

∇f(λ) =
[
I(µ̂(λ),µ1), . . . , I(µ̂(λ),µM−1)

]T
(8)

where µ̂(λ) is an optimal primal solution of (5) for
the current setting of λ. Thus the computation of the
supergradient can be done with the same dynamic pro-
gramming algorithm as for evaluating the Lagrangian.

This supergradient (and the update procedure) has an
intuitive interpretation. Recall that the Lagrangian re-
laxation minimizes a linear combination of the energy
and the value of the spanning tree inequality, with the
weighting given by λ. If µ̂(λ(t)) violates one of the
spanning tree constraints, i.e. is not different from a
previous solution µm, then the supergradient w.r.t.

λ
(t)
m will be positive and the cost for violating the con-

straint will increase after the update, thus encouraging
the next solution µ̂(λ(t+1)) to satisfy the spanning tree
constraints. Conversely, if the constraints are (strictly)
satisfied, the supergradient is negative indicating that

λ
(t)
m may be over-penalizing for violations and may be

reduced to allow lower energy solutions.

Tightness of the Lagrangian Relaxation. The
primal problem (5) is an LP, and strong duality holds.
Thus, the projected supergradient algorithm described
above exactly solves the M-Best MAP LP of Fromer
and Globerson [7]. The total complexity of the al-
gorithm is O(knL2), where k is the number of dual
ascent iterations, n is the number of nodes and L is
the largest label space, i.e. L = maxi |Xi|.

6 M-Best MAP Lagrangian
Relaxation: General MRFs

In this section, we build on the basic ideas from the
previous section to develop an algorithm for general
graphs, which may contain exponentially many span-
ning trees. Recall that the M-Best MAP LP for general
graphs is given by:

min
µ∈L(G)

∑
A∈V∪E

θA · µA (9a)

s.t. IT (µ,µm) ≤ 0, ∀T ∈ T (G),∀m ∈ [M − 1] (9b)

where T (G) is the set of all spanning trees in G. As
before, the Lagrangian formed by dualizing the span-
ning tree constraints is given by:

f(λ) = min
µ∈L(G)

∑
A∈V∪E

θA · µA +

M−1∑
m=1

∑
T∈T (G)

λmT I
T (µ,µm)

(10)

There are two main concerns that prevent us from
directly solving this Lagrangian relaxation as before.
First, the set of Lagrange multipliers λ = {λmT | m ∈
[M−1], T ∈ T (G)} is exponentially large. And second,
the graph is no longer a tree, so the supergradient
can no longer be computed by max-product BP. We
address both these concerns in the next subsections.
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Figure 1: Overview of a Dynamic Supergradient
Method. Figure adapted from [4].

6.1 Optimizing over Exponentially Many
Dual Variables with a Dynamic
Supergradient Method

In order to optimize over the exponentially large set
of dual variables, we follow a dynamic supergradient
method (DSM) (see [4] for an overview). Intuitively,
DSMs can be thought of as the dual-procedure to the
cutting-plane algorithm.

A DSM maintains an index set of active dual variables
(J = ∪mJm, where Jm ⊂ {1, . . . , |T (G)|}), and all
inactive dual variables are fixed to zero, i.e. λmj =
0, ∀j /∈ Jm. As visualized in Fig. 1, DSMs consist of
three kinds of operations:

1. Primal Block: Given the current dual vari-
able λ(t), the primal block evaluates the La-
grangian (10) to find a new primal point µ̂(λ(t)).

2. Constraint Management Block: Given the
current primal point µ̂(λ(t)), the constraint man-
agement block augments the index set of active
dual variables to get the new index set J (t). Op-
tionally, this block may also choose to drop some
dual variables from the index set. This block is
described in detail below.

3. Dual Block: Given the current index J (t), the
dual block constructs the dual update direction
(the supergradient) and stepsize to produce a new

dual variable λ(t+1) with λ
(t+1)
mj = 0, ∀j /∈ Jm(t).

The primal and dual blocks will be discussed in the
next subsection, where we describe how the supergra-
dient may be efficiently computed for general graphs.

We now describe the constraint management block in
detail. To develop an intuition for this step, recall that
the complementary slackness condition [2] tells us that
given a pair of optimal primal dual variables (µ∗ and
λ∗): IT (µ∗,µm) < 0 =⇒ λ∗mT = 0. Thus, intuitively

the active set J (t) must focus on the dual variables
corresponding to the violated inequalities. We use a
maximum violated oracle that adds to the active set

Jm(t), the index of the dual variable corresponding to
the most violated inequality, i.e.

Jm(t+1) ←− Jm(t) ∪ index(T̂ ) (11)

where,
T̂ = argmax

T∈T (G)

∑
(i,j)∈T

wij , [Max-Wt Span-Tree] (12a)

wij = µ̂ij(λ
(t)) · µmij

− µ̂i(λ
(t)) · µmi − µ̂j(λ

(t)) · µmj . (12b)

We note that this process is the dualized version of
the cutting-plane method of Fromer and Globerson [7],
where instead of adding the most violated spanning
tree inequality to the LP, we include the index of its
dual variable to the working set.

It can be shown that a dynamic supergradient method
with such a maximum-violation-oracle constraint man-
agement block is guaranteed to converge to the op-
timum of the Lagrangian relaxation with the same
choice of stepsize rules as standard supergradient
methods. A rigorous proof can be found here [4].
DSMs actually allow for dual variables to be removed
from the active set as well, under certain conditions.
However, to keep the exposition simple and to match
our implementation, we do not discuss that here, and
refer the reader to [4].

The theory allows for several iterations of primal and
dual blocks to be performed for each constraint man-
agement step. We found this to be crucial in practice.

6.2 Computing the Supergradient for
General Graphs

Now let us address the problem of computing the su-
pergradient, and implementing the primal and dual
blocks. Given the current index set of active dual vari-
ables J = ∪mJm, the supergradient w.r.t. the active
dual variables λJ is given by:

∇λmjf(λ) = Ij(µ̂(λ),µm) ∀j ∈ Jm (13)

where µ̂(λ) is an optimal primal solution of (10) for
the current setting of λ. For the case of tree-MRFs
we could compute the optimal solution via dynamic
programming. For general MRFs, the supergradient
computation involves solving:

f(λ) = min
µ∈L(G)

{∑
i∈V

(
θi +

M−1∑
m=1

∑
j∈Jm

λmj(1− d
Tj

i )µmi

)
· µi

+
∑

(i,j)∈E

(
θij +

M−1∑
m=1

∑
j∈Jm

λmjµ
m
ij

)
· µij

}
, (14)

where G is now a graph with loops. Evaluating
the above Lagrangian involves solving a MAP in-
ference LP (with modified potentials) and thus any
message-passing algorithm for MAP (MPLP [8], Dual-
Decomposition [13], or Max-Sum Diffusion [26]) may



be used to solve this problem. However, unlike the
two-pass max-product BP used for tree-MRFs, these
message-passing algorithms typically require many
hundreds of iterations to converge. Running these it-
erations for each step of supergradient ascent can (and
in practice does) become prohibitively slow.

The key to speeding up this process is to realize that
f(λ) is a partial Lagrangian, and if evaluating it is
difficult, then this suggests that some more constraints
should be dualized till the partial Lagrangian becomes
tractable. This is precisely what we do, using ideas
from the dual-decomposition literature [9, 13].

Expanding the Partial Lagrangian. In order to
expand the partial Lagrangian, we will first try to iden-
tify tractable (tree-structured) subcomponents. The
spanning-tree inequalities are already tree structured.
G is not, but we can convert it into a collection of
tree-structured factors.

Let TC(G) = {T1, . . . , Tp} be a spanning-tree cover of
G, i.e. a collection of spanning trees such that each
edge of G appears in at least one tree in TC(G). Our
approach doesn’t really need the trees to be spanning,
but we describe the following with a spanning-tree
cover to keep the notation simple. With a slight abuse
of notation, we use TC(i, j) to denote the subset of
trees that contain edge (i, j) ∈ E . Moreover, we de-
compose the original energy function θ into a collec-
tion of energy functions {θT | T ∈ TC(G)}, one for
each tree in the tree cover, such that:∑
T∈TC(G)

θTi = θi ∀i ∈ V &
∑

T∈TC(i,j)

θTij = θij ∀(i, j) ∈ E

(15a)

=⇒
∑

T∈TC(G)

θT · µ = θ · µ (15b)

This can be easily satisfied by distributing the node
and edge energies “evenly”, i.e. θTi = 1

|T (G)|θi, θ
T
i,j =

1
|T (i,j)|θij . Thus, these energies specify a tree decom-

position [24] of θ.

Let us now assign to each tree in TC(G), its own copy
of the primal variables µT , ∀T ∈ TC(G)}. Also assign
to each spanning tree inequality in the active set Jm,
its own copy of the primal variables µmj , ∀j ∈ Jm.
Finally, we use θmji , λmj(1 − di)µmi to denote the
node energy of the spanning tree factor j ∈ Jm, and
θmji = λmjµ

m
ij to denote the edge energy.

With these new variables, we can now write the exist-
ing partial Lagrangian as:

f(λ) = min
µ∈L(G),µ̃

{ ∑
T∈TC(G)

θT · µT +

M−1∑
m=1

∑
j∈Jm

θmj · µmj
}

(16a)

s.t. µτ
i = µ̃i ∀τ ∈ TC(G) ∪ J, ∀i ∈ V (16b)

This formulation of the partial Lagrangian uses a
global variable µ̃ to force all tree-structured subprob-
lems to agree on the labellings at the nodes, and thus

is equivalent to the earlier formulation (14). However,
we can now expand this partial Lagrangian by further
dualizing these constraints (16b):

f(λ, δ) = min
µτ∈L(τ),µ̃

{ ∑
T∈TC(G)

θT · µT +

M−1∑
m=1

∑
j∈Jm

θmj · µmj

+
∑

τ∈TC(G)∪J

∑
i∈V

δτi ·
(
µτ
i − µ̃i

)}
(17)

where δ = {δτi | ∀τ ∈ TC(G) ∪ J, ∀i ∈ V} is the
set of Lagrangian multipliers for the dualized equality
constraints, and L(τ) is now the local polytope of each
of the tree-structured subproblems.

Notice that this expanded partial Lagrangian com-
pletely decouples into independent minimizations over
tree-structured subproblems:

f(λ, δ) =
∑

τ∈TC(G)∪J

min
µτ∈L(τ)

{∑
i∈V

(
θτ
i + δτi

)
· µτ

i

+
∑

(i,j)∈E

θτ
ij · µτ

ij

}

−min
µ̃

( ∑
τ∈TC(G)∪J

∑
i∈V

δτi

)
· µ̃i (18)

We can see that the unconstrained minimization over
µ̃ forces a constraint on the Lagrangian variables,
i.e.

∑
τ∈TC(G)∪J

∑
i∈V δτi = 0; otherwise the La-

grangian will not have finite value. We denote by
∆ , {δ |

∑
τ∈TC(G)∪J

∑
i∈V δτi = 0}, the set of all

feasible Lagrangian multipliers δ.

Note that the expanded partial Lagrangian can be ef-
ficiently evaluated by running two-pass max-product
BP on each of the tree-structured subproblems. The
number of such tree-structured subproblems is equal
to |TC(G)|+|J |, i.e. the size of the spanning-tree cover
(upper bounded by n, and typically a small constant)
and the number of active spanning tree inequalities.

Optimizing the Expanded Partial Lagrangian.
The dual problem for the expanded partial Lagrangian
is given by maxλ≥0,δ∈∆ f(λ, δ). In the previous sec-
tion, we described how the dual of the partial La-
grangian f(λ) can be optimized with a dynamic super-
gradient method. Optimizing the dual of the expanded
Lagrangian is very similar to the described procedure,
with the minor modification that the dual variable δ
always stays in the active set J .

The supergradient w.r.t. δ is given by:

∇δτif(λ, δ) = µ̂τ
i (λ, δ) ∀τ ∈ TC(G) ∪ J ∀i ∈ V, (19)

where µ̂τ
i (λ, δ) is an optimal primal solution of the

tree suproblem τ for the current setting of λ and δ.

The projection step onto ∆ is fairly simple – it in-
volves satisfying the zero-sum constraint, which can



be enforced by subtracting the mean of the dual vari-
ables. Overall, the dual update w.r.t. δ is given by
δ(t+1) =

[
δ(t) + αt∇δf(λ(t), δ(t))

]
0
, where αt is the

stepsize and [·]0 is the zero-projection operator i.e.

[δ(t)]0 = {δ(t)
τi − s | ∀τ ∈ TC(G) ∪ J, ∀i ∈ V}, where

s = 1
|δ|
∑

τ′∈TC(G)∪J
∑
j∈V δ

(t)
τ′j .

The entire algorithm is summarized in Algorithm 1.
We call our algorithm STEELARS for Spanning TrEe
inEquality LAgrangian Relaxation Scheme.

Algorithm 1 STEELARS

1: (µ∗, {λ∗, δ∗}) = STEELARS(G, θ, {µm})
2: Input: G = (V, E), graph instance,
3: θ = {θA | A ∈ V ∪ E} energy vector
4: {µm | m ∈ [M − 1]}, M − 1 previous solutions

5: Output: µ∗A ∈ [0, 1]XA , optimum solution vector
to M-Best MAP LP

6: {λ∗, δ∗}, optimum dual variables
7: Algorithm:
8: Construct a tree-decomposition of G: TC(G), {θT |

T ∈ TC(G)}
9: λ(0) ←− 0; δ(0) ←− 0; µ̂←− 0

10: Jm(0) ←− ∅, ∀m ∈ [M − 1]
11: t←− 0
12: while Not Converged do
13: {Constraint Management Block}
14: for m = 1, . . . ,M − 1 do
15: wij = µ̂ij · µmij − µ̂i · µmi − µ̂j · µmj
16: T̂ = argmaxT∈T (G)

∑
(i,j)∈T wij {Max-weight

Spanning Tree.}
17: Jm(t+1) ←− Jm(t) ∪ index(T̂ )
18: end for
19: J(t) ←− ∪m∈[M−1]J

m(t)

20: {Multiple Iteration of Primal & Dual Blocks}
21: for t′ = 1, . . . , 20 do

22: θmji ←− λ
(t)
mj(1 − di)µ

m
i

θmjij ←− λ
(t)
mjµ

m
ij ∀m ∈ [M − 1], ∀j ∈ Jm

23: {Primal Block}
24: for τ ∈ TC(G) ∪ J do

25: θτ
i ←− θτ

i + δ
(t)
τi ; θτ

ij ←− θτ
ij

26: µ̂τ(λ(t), δ(t)) = argminµτ∈L(τ) θτ · µτ {Two-

pass max-product BP.}
27: end for
28: {Dual Block}
29: ∇λmjf(λ(t), δ(t))←− Ij(µ̂mj(λ(t), δ(t)),µm)

30: ∇δτif(λ(t), δ(t))←− µ̂τ
i (λ

(t), δ(t))

31: λ(t+1) ←−
[
λ(t) + αt∇λf(λ(t), δ(t))

]
+

32: δ(t+1) ←−
[
δ(t) + αt∇δf(λ(t), δ(t))

]
0

33: t←− t+ 1
34: end for
35: µ̂←− Best Feasible Primal So Far.
36: µ̂∗ ←− Running Average of µ̂τ

37: end while

Tightness of STEELARS. At first glance, it may
seem like the expanded partial Lagrangian (18) solves
a weaker relaxation than our original partial La-

grangian (10). However, similar to our argument in
the tree-MRF case, problem (9) is an LP. Thus, strong
duality holds and all partial Lagrangians achieve the
same optimum. This implies that even for non-tree
MRFs, STEELARS exactly solves the M-Best MAP
LP of Fromer and Globerson [7] and does not introduce
any new approximation gap to the integer program.
Moreover, this guarantee this does not depend on the
choice of the spanning-tree cover TC(G); in fact, any
tree cover (even non-spanning) may be used.

Finally, note that we described the expanded partial
Lagrangian in terms of tree-structured subproblems.
However, any efficient subproblem may be used, e.g .
submodular subproblems solved with graph-cuts [12].

7 Experiments

Setup. We tested our algorithm in three scenarios:

1. Tree MRFs with M = 2. This is the simplest
case, where the M-Best MAP LP is guaranteed to
be tight. Moreover, there is a single spanning tree
inequality and the constraint management block
plays no role.

2. 2-label Submodular MRFs with M = 5. For such
problems the MAP LP is guaranteed to be tight,
but not the M-Best MAP LP. Moreover, a tree
decomposition is not required because the 2-label
submodular factor may be efficiently minimized
via graph-cuts [12].

3. General 4-label loopy MRFs with M = 5. This is
the most general case described in Section 6.

Baselines. We compared our algorithm with the
STRIPES algorithm of Fromer and Globerson [7], the
Lawler-Nilsson algorithm [16,18], and the BMMF algo-
rithm of Yanover and Weiss [28]. Recall that STRIPES
does not directly solve the M-Best MAP LP, but
rather solves a sequence of 2nd-Best MAP LPs en-
capsulated in the Lawler-Nilsson [16, 18] partitioning
scheme. This is a tradeoff between efficiency and accu-
racy – it would be more efficient to directly solve the
M-Best MAP LP, but the LP is fractional and thus
the partitioning scheme performs better. Note that
STEELARS could also be encapsulated in the Lawler-
Nilsson [16, 18] partitioning scheme in a straightfor-
ward manner. However, we wish to study the per-
formance of the Lagrangian relaxation for the M-Best
MAP LP directly, and leave this partitioning scheme
extension for future work.

Implementation details. The implementations for
STRIPES and Lawler-Nilsson were provided by the
authors of [7], while BMMF is provided by the au-
thors of [28]. For STRIPES, the LPs in each iteration
were solved using the GNU LPK library. STEELARS
is implemented in MATLAB, but max-product BP is



written in C++ for efficiency. All experiments are
performed on a 64-bit 8-Core Intel i7 machine with
12GB RAM and the timing reported is cputime. Fol-
lowing [15], we chose the stepsize at iteration t to be
αt = 1

ηt+1 , where ηt is the number of times the ob-

jective value f(λ(t), δ(t)) has decreased from one iter-
ation to the next. This rule has the same convergence
guarantees as the standard αt = 1

t decaying rule, but
empirically performs much better.

Integer Primal Extraction. STEELARS is a dual-
ascent algorithm and thus always maintains a feasible
dual solution, but not necessarily an (integer) primal
feasible solution, which is what we are interested in.
However, since the primal block is repeatedly called for
computing the supergradient, we simply keep track of
the best (integer) primal feasible solution produced so
far, and output that at the end of the algorithm.

Evaluation. We compare different algorithms on two
metrics – run-time and accuracy of solutions returned.
For tree-MRFs with M = 2 all methods are guaran-
teed to return exact solutions, and thus we can simply
compare the run-times. For general MRFs, we follow
the protocol of [7] and measure relative accuracy of
different methods. Specifically, we pool all solutions
returned by all methods, note the top M solutions in
this pool, and then for each method report the fraction
of these solutions that it contributed.

Our results will demonstrate the effectiveness of
STEELARS primarily in terms of efficiency. We will
show that since STEELARS is a message-passing al-
gorithm it is significantly faster than a generic LP
solver (GLPK), sometimes by orders of magnitude even
though it is guaranteed to converge to the same solu-
tion. STEELARS naturally scales to large instances
that were previously unsolvable using LP solvers.

Tree MRFs with M = 2. We generated synthetic
problems by sampling random spanning trees on n
nodes. Each variable could take 4 labels. Node and
edge potentials were sampled from standard Gaus-
sians. For M = 2 the M-Best MAP LP is guaranteed
to be tight, and thus both STRIPES and STEELARS
produces precisely the same answers. Fig. 2a shows
the time taken by both algorithms as a function of the
size of the tree n, averaged over 5 samplings of the
parameters. Note that the x-axis is in log-scale. As n
increase, STRIPES very quickly becomes intractable,
with GPLK ultimately running out of memory. How-
ever, STEELARS shows a much better behaviour in
runtime. Fig. 2 also shows the value of the dual and
best feasible integer primal produced by STEELARS
as a function of the number of iterations. Recall that
for STEELARS each iteration corresponds to running
max-product BP on a single tree. Fig. 2d shows that
generally the number of such iterations is pretty low
∼ 12. Note that since this is a tree MRF, BMMF

would only require 2 call to BP to compute max-
marginals under its partitioning scheme (assuming it
was carefully implemented to recognize a tree-graph
and not run asynchronous BP). Thus STEELARS is
not too much slower than the optimal thing to do for
a tree. Of course, BMMF would also require multiple
iterations of synchronous BP on loopy graphs, which
is what we checked next.

2-label Submodular MRFs. For this scenario, we
constructed

√
n×
√
n grids. Each variable could take

2 labels. We again sampled node and edge energies
from Gaussians, but ensured that edge energies were
submodular. This allows for the use of graph-cuts [12]
for optimizing the submodular factor. Fig. 3 shows
the value of the dual and best feasible integer primal
as a function of the number of iterations. The sharp
falls in the dual correspond to the constraint manage-
ment block calling the separation oracle to increment
the working set. Each iteration now involves one call
to graph-cuts and |J (t)| calls to two-pass max-product
BP. Notice that the number of iterations are much
larger than for the tree MRF (∼150 as opposed to
12). However, max-flow algorithms in general and the
implementation of [12] in particular, are highly effi-
cient. Fig. 3a shows the run-time of all algorithms
as a function of n. We can see that STEELARS is
by far the fastest, with other algorithms becoming in-
tractable very quickly. Unfortunately, as Fig. 3d shows
it is also the least accurate, validating the choice of
Fromer and Globerson [7] to not solve the LP directly,
and use a partitioning scheme instead. We plan to
follow up on this direction.

Interestingly, Fig. 3a seems to suggest that BMMF
performs worse than STRIPES, even though BMMF
simply involves M calls to loopy BP. We believe this
an artifact caused by the fact that the BMMF im-
plementation of [28] is written in MATLAB, and not
particularly optimized. Moreover, in this specific ex-
periment, it could be made faster by computing max-
marginals via the approach of [11] instead of loopy
BP. At a high-level, the key difference between BMMF
and STEELARS is analogous to the difference between
loopy BP and MPLP – both are message-passing al-
gorithms, but only one solves the LP relaxation and
provides improving lower-bounds.

General MRFs. For this scenario, we constructed√
n×
√
n grid graphs as well, but each variable could

take 4-labels and edge energies were not restricted to
be “attractive”. We used a standard two-tree decom-
position of the grid graph. Thus, each iteration of
supergradient ascent involved 2 + |J (t)| calls to max-
product BP. We observed trends similar to the sub-
modular MRFs case, both in terms of number of iter-
ations required for STEELARS to converge, and in
the relative standing w.r.t. the baselines. This case is
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Figure 2: Tree MRF with M = 2.
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Figure 3: 2-label Submodular MRFs with M = 5.

specially interesting because for small values of |J (t)|,
the work done by STEELARS (i.e. ∼150 iteration of
two-pass BP) for solving M-Best MAP is comparable
to running TRW [13,24] for MAP. Moreover, we could
run STEELARS on a 300×500 image labelling prob-
lem, but similar to the observation of [27], could not
even solve the MAP LP with GLPK.

8 Conclusions

In conclusion, we presented the first message-passing
algorithm for solving the LP relaxation of the M-Best
MAP problem in discrete undirected graphical mod-
els. Our approach used a particular Lagrangian relax-
ation to construct a partial Lagrangian that allowed
the use of combinatorial optimization algorithms. To
handle the exponentially large set of constraints, we
used a dynamic supergradient scheme that is essen-
tially a dual procedure to the cutting-plane algorithm.
Our message-passing algorithm retains all the guar-
antees of the LP formulation of Fromer and Glober-
son [7], while being orders of magnitude faster.

Extracting Diverse M-Best Solutions. In a num-
ber of applications, especially computer vision, the M-
Best MAP solutions are essentially minor perturba-
tions of each other. In concurrent work [1], we have
also presented a solution to the Diverse M-Best MAP
problem, where given a measure of ‘distance’ between
two solutions, we block all solutions within some k-
distance-ball of the previous solutions.

We hope that both these algorithms will be useful for
practitioners where the problem size prohibits the use
of generic LP-solvers.

Future Work. There are a number of interesting di-
rections in front of us. In the short-term, we are inter-
ested in encapsulating STEELARS inside the Lawler-
Nilsson partitioning scheme, similar to STRIPES to
further increase the accuracy of the method. Since
the M-Best MAP LP is so often fractional, another
direction is to tighten the LP, e.g . using techniques
proposed by Sontag et al . [23]. It would also be
interesting to compare LP-relaxation based methods
like STRIPES and STEELARS with heurisitic-search
methods [3].
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