
Probability and Asset Updating using Bayesian Networks for
Combinatorial Prediction Markets

Wei Sun
Center of Excellence

in C4I
George Mason University

Fairfax, VA 22030

Robin Hanson
Department of Economics
George Mason University

Fairfax, VA 22030

Kathryn B. Laskey
Department of Systems

Engineering and
Operations Research

George Mason University
Fairfax, VA 22030

Charles Twardy
Center of Excellence

in C4I
George Mason University

Fairfax, VA 22030

Abstract

A market-maker-based prediction market lets
forecasters aggregate information by editing
a consensus probability distribution either di-
rectly or by trading securities that pay off
contingent on an event of interest. Combi-
natorial prediction markets allow trading on
any event that can be specified as a com-
bination of a base set of events. However,
explicitly representing the full joint distri-
bution is infeasible for markets with more
than a few base events. A factored repre-
sentation such as a Bayesian network (BN)
can achieve tractable computation for prob-
lems with many related variables. Standard
BN inference algorithms, such as the junction
tree algorithm, can be used to update a repre-
sentation of the entire joint distribution given
a change to any local conditional probability.
However, in order to let traders reuse assets
from prior trades while never allowing assets
to become negative, a BN based prediction
market also needs to update a representation
of each user’s assets and find the conditional
state in which a user has minimum assets.
Users also find it useful to see their expected
assets given an edit outcome. We show how
to generalize the junction tree algorithm to
perform all these computations.

1 INTRODUCTION

Prediction is a fundamental task for AI systems. There
is strong theoretical and empirical support for the su-
periority of ensemble forecasts over individual fore-
casts (Solomonoff, 1978). While weighted forecasts
are theoretically optimal, it has been surprisingly dif-
ficult to beat a simple unweighted average. Predic-
tion markets have emerged as a simple and robust

way to give high-performing forecasters more influence
on the aggregated forecast. Not only do prediction
markets typically out-perform both individual human
forecasters and näıve unweighted averages (c.f., Chen
and Pennock 2010), they show promise as an infor-
mation combination method for machine aggregation
as well. Barbu and Lay (2011) show that combining
machine learners with prediction markets often out-
performs top ensemble predictors like Random Forest
on UCI datasets. A key advantage is that “the mar-
ket mechanism allows the aggregation of specialized
classifiers that participate only on specific instances.”
That is, learners can opt to bid only on cases they
understand. So while most prediction markets use
only human traders, they need not. Indeed, smart
traders use algorithms, and Nagar and Malone (2011)
provide strong evidence that human-machine combi-
nations outperform either: machines do well when the
rules hold, while humans recognize “broken leg” situ-
ations where they don’t.

We focus on market-scoring-rule systems which create
prediction markets from the sequential application of
proper scoring rules, sidestepping impossibility theo-
rems that apply to simultaneous aggregation of fore-
casts (Hanson, 2003; Chen and Pennock, 2010). In-
dependent of whether traders are human and/or ma-
chine, we address the question of how to make the mar-
ket itself more expressive by allowing combinatorial
trades. While traditional prediction markets ignore
dependencies among events, combinatorial prediction
markets explicitly consider and exploit dependencies
among base events. As Chen and Pennock (2010) ar-
gue:

Why do we need or want combinatorial-
outcome markets? Simply put, they allow
for the collection of more information. Com-
binatorial outcomes allow traders to assess
the correlations among base objects, not just
their independent likelihoods, for example
the correlation between Democrats winning

in Ohio and Pennsylvania.

We prove some new results regarding combinatorial
prediction markets and report on an implementation
using Bayesian networks.

1.1 PREDICTION MARKETS

Prediction markets make probabilistic forecasts by al-
lowing participants to trade contingent assets. Prices
in such a market can be interpreted as probabilities: if
an asset paying $1 contingent on event E is currently
selling for $0.75, then the current market probability of
E is 75%. Prediction markets are an increasingly pop-
ular way to aggregate information and judgments from
groups (Tziralis and Tatsiopoulos, 2007). Traders self-
select to speak on the topics they think they know best.
Those with more knowledge achieve greater influence
by acquiring more assets, and market prices inform
everyone of trader information.

In a market-maker-based prediction market, an auto-
mated trader stands ready to buy or sell assets on
any relevant event. The prices it offers can be seen
as a current trader consensus on the probabilities of
those events, and trades can be seen as edits of con-
sensus probabilities. In a logarithmic market scoring
rule based (LMSR-based) prediction market, the mar-
ket maker varies its price exponentially with the quan-
tity of assets it sells. Tiny trades are fair bets at the
consensus probabilities (Hanson, 2003). Larger trades
change the consensus probabilities; we call such trades
“edits.” Users make edits in an attempt to maximize
assets, thereby forming a consensus distribution that
aggregates information from all market participants.

1.2 COMBINATORIAL PREDICTION
MARKETS

In a combinatorial prediction market, one can trade on
any event that can be specified as a combination (e.g.
‘and’ or ‘or’) of a base set of events. A market-maker-
based combinatorial prediction market, therefore, de-
clares a complete consistent probability distribution
over a combinatorial space of events, and lets partici-
pants edit any part of that distribution. In a combi-
natorial LMSR-based market, users can make condi-
tional bets that satisfy intuitive independence proper-
ties. For example, letting “¬” denote “not”, a trader
who increases the value of p(A|B) gains if B and A oc-
cur and loses if B and ¬A occur. Such an edit changes
neither p(B) nor p(A|¬B) and the trader neither gains
nor loses if ¬B occurs (Hanson, 2007).

With a large set of base events, the number of event
combinations becomes astronomical, making it in-
tractable in general to compute market prices and

trades. In particular, it is in general NP-hard to main-
tain correct LMSR prices across an exponentially large
outcome space (Chen et al., 2008a).

One way to achieve tractability is to limit the com-
plexity of the consensus probability distribution by
using a factored representation of the joint distribu-
tion. Examples include Bayesian networks (BNs) and
Markov networks, which admit standard algorithms to
efficiently compute conditional marginals and perform
evidential updating (e.g. Pearl 1988; Jensen 1996;
Shachter et al., 1990). Graphical models are widely
used in many applications, often achieving tractable
inference in networks with thousands of variables.

Bayesian networks have been used to represent joint
distributions in prediction markets. Chen et al.
(2008b) used a BN to represent prices in a tournament,
and Pennock and Xia (2011) used a BN to represent
probabilities in a LMSR-based combinatorial predic-
tion market.

Pennock and Xia (2011) proved that probabilities can
be updated in polynomial time for edits which do not
violate the conditional independence assumptions of a
decomposable BN of fixed treewidth. However, they
do not show how to accomplish two other tasks that
are important in practical prediction markets. They
do not show how to let traders reuse assets purchased
in previous trades to pay for new trades. They also do
not show how to calculate a trader’s expected assets
to see if the trader is already ‘long’ or ‘short’ on an
issue before making an edit.

1.3 REUSING ASSETS

In the LMSR framework of Pennock and Xia (2011),
each edit takes the form of a participant paying cash
to a market maker to obtain an event contingent as-
set, which pays cash if a certain event happens. A
trader who has run out of cash is not permitted to
make any more trades. Yet the assets one has ob-
tained from prior trades are often sufficient to guar-
antee many more trades. For example, suppose a user
buys an asset “Pays $10 if A,” and then later buys an
asset “Pays $10 if ¬A.” Because one of these assets
is guaranteed to pay off, the two assets are together
worth $10 in cash, and could be used to support fu-
ture purchases. However, in a näıve implementation,
this $10 is unnecessarily tied up until the truth-value of
A is resolved. While we might imagine that a system
could easily notice the guaranteed payoff and trade
those assets in for cash, it would be difficult to notice
more complex combinations of trades worth a guaran-
teed amount of cash.

In a market that allows conditional trades, a consen-
sus probability p(A|B) = x corresponds to a market

price of $x for a trade that pays $1 if events B and
A both occur, pays nothing if B and ¬A both occur,
and is called off (returning the purchase price to the
user) if ¬B occurs. Although Pennock and Xia (2011)
do not use conditional securities, conditional probabil-
ities are established by trading securities that depend
on joint states. A consensus probability p(A|B) = x
corresponds to a market price of $x to purchase two
separate securities, one paying $1 if B and A both
occur and the other paying $x if ¬B occurs.

Now, suppose a user wants to trade on event A given
N mutually exclusive conditions Bi, where the cur-
rent market probabilities are p(A|Bi) = xi, i = 1 . . . N .
Without asset reuse, such a user would have to pur-
chase N separate pairs of assets, where the ith pair
costs $xi and pays $1 if A and Bi occur, 0 if ¬A and
Bi occur, and xi if ¬Bi occurs. The total purchase
price of

∑
xi would be tied up until one of the Bi

occurred, although the collection of assets is guaran-
teed to pay off at least

∑
$xi−max{$xi}. If N is large

and the probabilities are non-negligible, a considerable
sum could be unnecessarily tied up.

1.4 OUR CONTRIBUTIONS

In order to be able to reuse assets, we first need to
represent the user’s assets in a form that allows ef-
ficient computation to find the minimum asset state
after the user’s edits. Further, a factored representa-
tion of assets will provide significant savings in space
and improve efficiency of asset management. In this
paper, we show how to exploit the junction tree to ef-
ficiently maintain a representation of a trader’s state-
dependent assets, i.e., for each state the final cash this
trader would hold if this state were revealed in the end
to be the actual state. We also show how to use these
data structures to efficiently find the largest amount by
which the user could raise or lower the probability of
an event of interest, before the change might result in
the trader holding negative assets in some state. Keep-
ing edits within these limits ensures that traders can
reuse assets while never ‘going broke.’ Asset reuse en-
ables more efficient information aggregation (i.e., users
can make more trades before running out of assets) for
a given amount of assets.

A trader about to make an edit also usually finds it
useful to know whether she is ‘long’ or ‘short’ on the
issue she is about to trade. For example, a user edit-
ing the value of p(A|B) might like to know whether
she should currently expect to gain more if B and A
happens, or if B and ¬A happens. Learning that she
already stands to gain more if A and B happens should
make a risk-averse trader more reluctant to raise the
value of p(A|B), thereby acquiring more such assets.
In this paper we show how to efficiently maintain a

representation of each trader’s expected assets, where
the expectation is with respect to the market consen-
sus probabilities. We also show how to efficiently cal-
culate the conditional expectations relevant for being
‘long’ or ‘short’ on a given edit.

The key word here is “efficiently”. Existing combina-
torial implementations follow the näıve joint-state enu-
meration described by Hanson (2007), and are there-
fore limited to at most about 20 related binary vari-
ables. Pennock and Xia (2011) proved that one can use
Bayesian networks for combinatorial prediction mar-
kets. However, they treat an inverse system where
assets are easy to calculate and prices are the bot-
tleneck. Further, they did not have an implementa-
tion of their method. We use a single Bayesian (or
Markov) network for representing the market proba-
bility distributions, stored as clique potentials in the
associated junction tree. Further, we prove that assets
can be represented using the same factorization as the
joint distribution. Thus, our method maintains a par-
allel junction tree data structure for each user’s assets.
We describe algorithms for updating these asset junc-
tion trees when users make edits. Asset factorization
is an important advance in space and computational
efficiency. We have developed a complete MATLAB
implementation and a partial Java implementation of
our algorithms. To our knowledge, ours is the first
published implementation of BN-based combinatorial
prediction markets.

Although arbitrary graphical probability models are
of course intractable, in this paper we show how to
adapt the junction tree algorithm to perform the de-
sired computations in models whose treewidth is not
too large. It follows trivially that for a fixed treewidth,
complexity is polynomial in the number of variables
and linear in the number of simultaneous edits. This is
a major improvement over existing näıve implementa-
tions, which are equivalent to a fully-connected graph
and therefore exponential in the number of variables.
We describe numerical experiments that demonstrate
the anticipated exponential savings in space and time
for given bounds on treewidth.

Organization of this paper: The next section states our
definitions and notation. Section 3 briefly describes
relevant work on Bayesian networks and the junction
tree algorithm. Section 4.3 presents our probability
and asset updating algorithm. In Section 5, we first
walk through the algorithm using a simple 3-node BN
model. We then examine the scalability of our algo-
rithm in a simulation study. Sections 6 and 7 provide
discussion and conclusion.

2 DEFINITIONS AND NOTATION

Capital letters such as A,Bi, X denote random vari-
ables. Bold capital letters (e.g., A,Bi,X) denote vec-
tors of random variables. Corresponding lowercase let-
ters (e.g., a, bi, x,a,bi,x) denote particular instantia-
tions of the random variables. Unless stated other-
wise, symbols p and φ denote probability distributions
and likelihoods respectively. B represents a BN, T the
corresponding clique tree, and C,S the set of cliques
and set of separators, respectively. The conditional
probability distribution of X given Y is denoted by
p(X|Y). For a Bayesian network on random variables
X = 〈X1, X2,, Xn〉, we use Pa(Xi) to denote the
parents of Xi in the directed acyclic graph correspond-
ing to the BN. Thus, the conditional probability dis-
tribution (CPD) of the random variable Xi is denoted
by p(Xi|Pa(Xi)). We denote negation with “¬”, so
(X = ¬x) ≡ (X 6= x).

Each user u has an asset value Sx associated with each
joint outcome x. When necessary to index assets by
user, we add a superscript, Su

x . The expected assets S̄
for user u is the user’s net worth:

S̄u =
∑
x∈Ω

p(x)Su
x (1)

where Ω is the Cartesian product of the state spaces
of all random variables. We denote the cardinality of
the joint state space by L = |Ω|.

3 PRELIMINARIES

If we represent the prediction market’s probability dis-
tribution as a Bayesian network, then edits in the pre-
diction market correspond to soft evidence on vari-
ables in the Bayesian network (see Section 3.1 below),
and probability updating can be done using standard
algorithms. Allowable edits are determined by the
user’s assets, and in particular that state which has
the fewest assets for the edit being considered. We
show below that the same junction tree can be used to
represent a factorization of both probabilities and as-
sets. The minimum asset state can be found by using
min-propagation in the asset junction tree. That can
be done is a consequence of a theorem by Dawid (1992)
showing that min-propagation works for any function
of the probabilities in a junction tree. We use this fact
in Section 4.3.

A Bayesian network B factors the joint distribution
for the random vector X into a product of local distri-
butions:

p(x) =
∏

1≤k≤n

p(Xk = xk|XPa(Xk) = xPa(Xk))

This factorization in turn can be compiled into an
undirected tree structure called a junction tree. The
junction tree is composed of cliques and separators,
such that p is the product of all clique marginal dis-
tributions divided by the product of all separator
marginal distributions:

p(x) =

∏
c∈C pc(xc)∏
s∈S ps(xs)

. (2)

Here, xc and xs denote the states of the variables in
clique c and separator s, respectively, and pc and ps are
the marginal distributions for the clique and separator
variables, respectively. The junction tree algorithm
(Lauritzen and Spiegelhalter, 1988) uses this transfor-
mation to perform exact inference on the BN. We note
that although we focus on BNs, our algorithms apply
equally well to any representation that can be com-
piled into a junction tree.

3.1 SOFT EVIDENCE & BELIEF
UPDATING

General BN inference computes the posterior distri-
bution given observations, also known as hard ev-
idence. In prediction markets, we need to update
market distributions given user edits that revise some
non-extreme p to another non-extreme p′ on variables.
That is, evidence from user edits is in general uncer-
tain. The literature considers two kinds of uncertain
evidence. Soft evidence specifies a new probability dis-
tribution of the variable regardless of its previous dis-
tribution (Koski and Noble, 2009; Langevin and Val-
torta, 2008; Valtorta et al., 2002), whereas virtual ev-
idence, also known as likelihood evidence, represents
the relative likelihood of the evidence given the true
state. These likelihood values do not necessarily sum
to 1 over all states. Virtual evidence is often imple-
mented as observations on a hidden “dummy” node as
the child node of the node on which virtual evidence
is specified. In our case, we implement user edits as
soft evidence. We use φ(X) to denote soft evidence on
variable X. Usually, soft evidence on a single variable
can be implemented as virtual evidence (Pearl, 1990),
allowing standard junction tree inference algorithms
to apply.

In our prediction market, a user edits the probability
that the target variable T is in one of its states t, for
example, changing p(T = t) = a into p(T = t) = b.
We then assign 1− b to T ’s other states in proportion
to their previous probabilities, and represent this edit

as soft evidence on T . Similarly, if the user would like
to edit p(T = t|A = a) conditional on the values of
other variables A = a, we represent this conditional
edit as conditional soft evidence. An unconditional
edit corresponds to an empty assumption set A = ∅.

3.2 MIN-CALIBRATION OF JUNCTION
TREE

In the standard junction tree algorithm for discrete
BNs, marginalization is done by summing out vari-
ables. When we replace summation with maximization
in the propagation algorithm, a max-calibrated junc-
tion tree with max potentials for all cliques will be
returned. It is then straightforward to find the con-
figurations over all states with maximum joint proba-
bility based on these max-potentials. Similarly, min-
calibration of the junction tree can be performed by
replacing summation with minimization, and the min-
imum probability configuration can be found accord-
ingly. Further, Dawid (1992) proved that min/max-
calibrations are valid for functions on the potentials.
We will use this fact to find the boundary conditions
for a user’s assets, thus allowing asset reuse while pre-
venting the possibility of assets going negative.

4 PROBABILITY AND ASSET
UPDATING ALGORITHM

Once again, any edit in the prediction market is imple-
mented by asserting soft evidence in the corresponding
BN. We use the junction tree inference algorithm to
update the consensus joint probability distribution af-
ter each edit. Then we use LMSR as the market maker
to update the user’s assets accordingly. We assume a
market trading on purely discrete variables and so the
representing BN is a purely discrete network. After
updating, each clique in the junction tree maintains
the correct joint distribution of variables in the clique.

A given user has assets Sx associated with every joint
state x of the domain variables. LMSR dictates that
assets change in proportion to the log of the ratio of
probabilities:

∆Sx = b ln
p′(x)

p(x)
,

where p′(x) is the new probability for the joint state x
arising from the user’s edit, p(x) is the previous proba-
bility, and b is a constant defining the unit of currency.
Allowed changes must respect the rule that the mini-
mum across all states of the user’s assets must not be
allowed to drop below zero, i.e., minx Sx ≥ 0. After an
edit to the consensus distribution, the asset data struc-
ture changes for the user making the edit; the asset
data structures for all other users remain unchanged.

4.1 ASSET FACTORIZATION

It is convenient to define a transformation q(x) of the
assets Sx, such that

Sx = b ln(q(x)). (3)

We then have
q′(x)

q(x)
=
p′(x)

p(x)
, (4)

where q(x)′ is the updated asset for joint state x, corre-
sponding to the probability change p′(x). The deriva-
tion is:

S′x = Sx + ∆Sx

= Sx + b ln
p′(x)

p(x)

= b ln(q(x)) + b ln
p′(x)

p(x)

= b ln(q′(x))

⇒ b ln(q′(x)) = b ln(q(x)) + b ln
p′(x)

p(x)

⇒ ln(q′(x))− ln q(x) = ln
p′(x)

p(x)
.

Therefore, the identity ln a − ln b = ln a/b establishes
Equation (4).

To interpret b, note that if the user changes the prob-
ability at state x from p(x) to p′(x) = 1 and x turns
out to be true, the user gains ∆Sx = −b ln p(x). The
maximum possible gain is therefore −b ln p(x∗), where
x∗ is the minimum probability state. If all states start
out equally likely, i.e., p(x) = 1/L for all x, then the
maximum gain to users, and the maximum loss to the
market maker, is b lnL, where L is the total number of
states. Therefore to bound losses to be no more than
M , we usually initialize all market states to be equally
likely at the start of trading and set b = M/ lnL.

Because q starts out independent of the state and
changes in proportion to changes in p, we can decom-
pose q in a similar manner to the decomposition of p,
shown in Equation (2). Specifically,

q(x) =

∏
c∈C qc(xc)∏
s∈S qs(xs)

, (5)

where qc and qs are local asset components defined on
the clique and separator variables, respectively. No-
tice the similarity to (2). This factored representation
for assets is preserved long as edits are confined to
variables in the same clique, i.e., trades are structure
preserving (Pennock and Xia, 2011). This allows us to
do all calculations locally in every clique and separa-
tor, because Equation (4) is valid for the joint space of

each clique and separator. Namely, we can establish
the same junction tree structure for the assets q and
make local updates when edits occur. When there is a
probability edit, we propagate the soft evidence in the
junction tree to obtain the correct probability update
for every clique and separator. For structure preserv-
ing trades, assets can be updated simply by choosing
a clique c containing the variables being traded and
multiplying qc(xc) by the probability ratio:

q′c(xc) = qc(xc)
p′c(xc)

pc(xc)
. (6)

Combining this with Equation (5) gives the same re-
sult as Equation (4). However, we usually do not need
to compute global assets q for each possible joint state.
For space and computational efficiency, a representa-
tion of the user’s assets is stored locally in cliques of
the asset junction tree. This asset junction tree is used
to compute the minimum asset value and its associated
state, as well as the expected value user’s expected as-
sets.

To ensure that the user’s assets remain non-negative
in all states, we must place limits on the edits a user
is allowed to make. Equivalently, no edit may allow
the transformed assets q as defined in Equation (3)
to become less than 1. We must find the limits on
edits beyond which the probability change will result
in negative assets in some state. Let us assume that
the user is editing p(T = t|A = a), denoted as pt,
to p#. Let mt denote her current minimum q given
(A = a, T = t). Let m¬t denote her current minimum
q given (A = a, T 6= t). If (A = a, T = t) occur after
the edit, we have to ensure that the updated minimum
q# remains greater than 1. That is:

q# = mt
p#

pt
≥ 1.

Then

p# ≥ pt

mt
.

Similarly, if (A = a, T 6= t) occurs after the edit, the
updated minimum assets qu must remain greater than
1. That is:

qu = m¬t
1− p#

1− pt
≥ 1.

It follows that

p# ≤ 1− 1− pt

m¬t
.

Summarizing the above results, the allowable edit
range for p(T = t|A = a) is:

[
p(T = t|A = a)

mt
, 1− 1− p(T = t|A = a)

m¬t

]
. (7)

Note that the minimum assets can be found by min-
calibration over the asset junction tree, as mentioned
in Section (3.2).

For every user, we maintain a separate asset junction
tree in which the affected clique is updated only after
this particular user makes an edit. Edits made by a
given user will have no effect other users’ assets. But
because every edit changes the market probability, we
update market distribution after each edit accordingly
(where the updates are stored as clique potentials of
the junction tree).

4.2 EXPECTED VALUE / SCORE

A user typically wants to know the expected value of
her assets given the current market consensus prices.
If she is contemplating an edit to event A, she would
want to know what her expected assets will be if A
happens and if ¬A happens. These expectations can
be calculated efficiently given the factorization repre-
sented in the junction tree. The expected score is ob-
tained as follows (recall that c indexes cliques and s
indexes separators).

S̄ =
∑
c

∑
xc

Sc(xc)pc(xc)−
∑
s

∑
xs

Ss(xs)ps(xs), (8)

where

Sc(xc) = b ln(qc(xc)), (9)

and

Ss(xs) = b ln(qs(xs)). (10)

This result is derived as follows. First, we substitute
(5) into (3) and then substitute (9) and (10) into the
result to obtain the following expression for Sx:

Sx =

[∑
c

Sc(xc)−
∑
s

Ss(xs)

]
. (11)

Next, we substitute (11) into (1), suppressing the su-
perscript u, to obtain:

S̄ =
∑
x

p(x)

[∑
c

Sc(xc)−
∑
s

Ss(xs)

]
=

∑
c

∑
x

Sc(xc)p(x)−
∑
s

∑
x

Ss(xs)p(x).

Letting x¬c and x¬s denote the states of the variables
not in clique c and separator s, respectively, we obtain:

S̄ =
∑
c

∑
xc

Sc(xc)
∑
x¬c

p(x)−
∑
s

∑
xs

Ss(xs)
∑
x¬s

p(x)

=
∑
c

∑
xc

Sc(xc)pc(xc)−
∑
s

∑
xs

Ss(xs)ps(xs),

which establishes (8). Further, let

S̄c =
∑
xc

Sc(xc)pc(xc),

and

S̄s =
∑
xs

Ss(xs)ps(xs).

Then for brevity, we can write

S̄ =
∑
c

S̄c −
∑
s

S̄s.

Clearly, the values S̄c and S̄s represent local expected
scores for cliques and separators, respectively. This
local score decomposition demonstrates once again the
beauty of factorization.

4.3 PROBABILITY AND ASSET
UPDATING ALGORITHM

To summarize our procedure for updating probabili-
ties and assets, please see Algorithm 1. The algorithm
maintains a consensus probability distribution and an
asset structure for each user. The probability distri-
bution and the asset structures factor according to the
same junction tree. After each edit, the assets of the
user making the edit and the consensus distribution
are updated.

Algorithm 1 Update probability and user assets for
a BN representing a combinatorial prediction market

Require: a BN model B over a set of domain variables
X that represents the combinatorial prediction market
joint distribution, the clique tree T corresponding to B,
consisting of cliques C and separators S.

Require: The current market probability distribution p
represented by a probability junction tree.

Require: The current assets q for user u represented by
an assets junction tree.
for each conditional edit p′ on the target variable T = t
with assumptions A = a by user u: do

- Tell the user the expected scores S̄(T = t,A = a)
and S̄(T 6= t,A = a) indicating the user’s long/short
status.
- Calculate the edit limits for p(T = t|A = a) using
Equation (7).
- Allow user to trade p′(T = t|A = a) within the edit
limits. And apply p′(T = t|A = a) as soft evidence to
the junction tree.
- Update probability distributions of cliques and sepa-
rators to be p′c, p

′
s, c ∈ C, s ∈ S by calling the junction

tree inference algorithm.
- Find the clique c containing target variable T and
assumed variables A, and update the assets clique cor-
responding to c using Equation (6).

end for
return User’s expected assets after the edit; user’s min-
q value and its associated min-q states.

A D P(D) 0.5 0.5

d1 d2

A
B

D ()

X
C E F

P(F|D)

d1 0.3

f1 f2

0.7

W d2 0.1 0.9P(E|D)

d1 0.9

e1 e2

0.1

d2 0.4 0.6

6

Figure 1: BN-DEF : An Example network With Three
Binary Nodes D,E, and F .

5 NUMERICAL EVALUATION

5.1 TEST CASES FOR BN-DEF

We developed a complete MATLAB implementation
for our algorithm using BNT (Murphy, 2001) and cur-
rently we are developing a Java implementation in
UnBBayes (Matsumoto et al., 2011). Our implemen-
tation requires the target variable and all assumed
(conditioning) variables to belong to the same clique.
Cross-clique conditioning is possible, but requires ap-
proximations (see Section 6).

In this section, we illustrate how the algorithm works
using the simple 3-node BN model BN-DEF, shown
in Figure 1. The CPDs for nodes in BN-DEF are
shown in the picture next to the corresponding nodes.
This network has only two cliques {D,E} and {D,F}.
We work through the algorithm, showing intermediate
results.

We begin by initializing q to be 100 for every cell in
the asset tables. The scale parameter b is specified as
10/ ln(100), making the initial asset score 10 for every
state for all users. We imagine two users, Joe and
Amy, making successive edits.

Joe’s first edit - Suppose Joe thinks the current mar-
ket probability of E = e1 (0.65) is not reasonable,
and wants to increase it. Since this will be his first
trade, his initial uniform q makes his current position
neutral because both min-q values given E = e1 and
E 6= e1 are equal to 100. Using Equation (7), we cal-
culate his edit limits on E = e1 to be [0.0065, 0.9965].
Based on his private information, Joe chooses 0.8 as
the new p(E = e1). The market distribution is then
updated such that marginal probabilities of D,E, F
are now [0.58, 0.42], [0.8, 0.2], and [0.22, 0.78] respec-
tively. Joe’s expected assets are S̄ = 10.12, and his
min-q is 57.14 at two min-states - {d2, e2, f1}, and
{d2, e2, f2}.

Amy’s first edit - Now Amy is interested in chang-
ing p(D = d1|F = f2), which due to Joe’s edit is
currently 0.52. Again, since this will be Amy’s first
trade, she has neutral positions. Using Equation (7),
we find her edit limits on D = d1 given F = f2 to
be [0.0052, 0.9952]. Suppose Amy wants to move the
probability to 0.7. Now, the market distribution is up-
dated such that the marginal probabilities of D,E, F
are now [0.72, 0.28], [0.85, 0.15], and [0.22, 0.78] respec-
tively. Note that F is unaffected – it was assumed.
Amy’s expected assets are S̄ = 10.11, and her min-q is
62.54 at two min-states - {d2, e1, f2}, and {d2, e2, f2}.
Note that Amy’s edit does not affect any other users’
asset data.

Joe’s second edit - Let us now consider an ex-
treme edit example. Joe comes back and wants to
see what will happen if he makes a big move on
p(E = e1|D = d2) (currently equal to 0.59). First
of all, Joe finds that he has a long position for this
trade since his S̄(E = e1, D = d2) = 10.45, and
S̄(E 6= e1, D = d2) = 8.79. Second, his edit lim-
its returned by the algorithm are [0.0048, 0.9928]. If
he decides to move p(E = e1|D = d2) to 0.99, then
the marginal probabilities of D,E, F can be updated
to [0.72, 0.28], [0.96, 0.04] and [0.22, 0.78], respectively.
Joe’s expected assets after this trade are S̄ = 10.67,
and his min-q is 1.39 at two min-states - {d2, e2, f1},
and {d2, e2, f2}. Note that in this case, Joe’s min-q is
very close to the threshold.

5.2 SCALABILITY STUDY

To investigate scalability, we first tested our algo-
rithms on randomly generated networks of varying
sizes. Our random networks were generated using BN-
Generator 0.3 (Ide et al., 2004). We varied the number
of variables from 30 to 960 and the treewidth bound
from 5 to 20. For each combination of number of vari-
ables and the treewidth, three random BNs were gen-
erated. All random variables were binary. For each
randomly generated network, we calculated the sys-
tem lock time, defined as the CPU time required to
update the probability distribution after an edit is con-
firmed by the user. While the system is locked, new
edits have to be rejected or queued; thus lock time is
a key performance metric. We ran this test on our
Java implementation. Although not fully complete,
the Java implementation performs probability updat-
ing, the part of the calculation required to determine
the system lock time.

Figure 2 shows the results of our scalability study. As
is well known, the complexity of the junction tree al-
gorithm – and therefore the maximum lock time – is
polynomial in the treewidth. We can see from the fig-
ure that the system can easily handle binary networks

Figure 2: Edit Lock Time versus Network Size

of treewidth 10, but performance begins to degrade
noticeably with treewidth 20. The algorithm is not
very sensitive to increases in the number of variables
when the treewidth is held constant.

We also investigated another key performance parame-
ter, the potential rejection rate under different market
environments, modeled by frequency of edits. As noted
above, edits attempted while the system is locked may
have to be rejected. For this study, we used Alarm
(Beinlich et al., 1989), a 37-node BN with treewidth
of 4 often used as a benchmark for graphical model
algorithms. We chose Alarm because its size and
treewidth are at the upper end of the range we expect
for our live combinatorial prediction market. The ob-
jective of this test is to investigate how our approach
performs with frequent edits by multiple users.

We simulated a market with 100 participants, and ex-
pected edits of 2/minute, 8/minute, and 30/minute,
assuming a Poisson distribution for edit arrivals. For
comparison, on Super Tuesday, InTrade had 18,629
trades from 780 unique users, for an average of 13
trades per minute. Prediction market trades are quite
lumpy in both questions and time; we think our fig-
ures span a plausible range. The system lock time for
Alarm is 0.3 seconds in our MATLAB implementa-
tion. We did not implement enhancements such as lazy
propagation (Madsen and Jensen, 1998) that would
give further edit-dependent reductions in lock time.
1000 edits were simulated by randomly chosen users
from 100 market participants, given randomly chosen
assumed variables and betting on randomly chosen tar-
get variable from randomly chosen cliques among the
27 cliques of Alarm’s junction tree. If the randomly
chosen clique had more than 3 variables, we then ran-
domly chose two variables with their randomly chosen

states to be assumed values on which the edit was con-
ditioned. Inter-arrival times between edits were mod-
eled by exponentially distributed variables with means
of 2, 7.5 and 30 seconds respectively, representing mar-
ket intensities of 30, 8 and 2 edits per minute, corre-
spondingly. Table 1 presents the average number of
rejects and the rejection rates for our experiments.

Table 1: Alarm: Simulation Results for 1000 Edits

Market Average Average
Intensity rejects rejection rate

2 edits/minute 11.3 1.2%
8 edits/minute 39.2 4%
30 edits/minute 142.6 14.3%

In this network, the system could sustain an arrival
rate of 8 edits/minute (11,520/day) with less than a
5% rejection rate. By queuing edits and rejecting only
those whose terms have become worse for the user, this
can be at least halved. A compiled language would be
much faster for all the non-matrix operations, and with
a good choice of library, not much slower at matrix
operations.

6 NON STRUCTURE-PRESERVING
EDITS

When we have conditional edits such that the target
variable and the assumed variables are not in the same
clique, then the edits are not structure preserving. In
that case, if we keep our sparser structure, then the
minimum KL-distance approximation to the true pos-
terior distribution will be the one that has the same
marginal distributions for all the cliques (Darwiche,
2009).

7 CONCLUSION AND FUTURE
WORK

In this paper, we describe a method to update both
the probabilities and assets in a combinatorial pre-
diction market. The approach uses a junction tree
compiled from the associated Bayesian network to rep-
resent the consensus probability distribution, and a
structurally identical junction tree to represent each
participant’s assets. Allowable edits are calculated us-
ing min-propagation in the assets junction tree, and an
allowable edit is chosen. The probability distribution
is updated by applying soft evidence to the (shared)
probability junction tree, and propagating. Assets are
updated by simple multiplication in a single clique,
without requiring a separate propagation. We devel-
oped a complete implementation of our algorithm and

demonstrated its scalability by performing computa-
tional experiments on randomly generated BNs with
varying sizes from 30 to 960 variables, and treewidth
of 5 to 20. Further, we conducted a simulation study
to illustrate the robustness of our method under vary-
ing market environments. Test results show that the
system performs well for networks with treewidth of
up to 10, and can sustain a simulated market with ex-
pected arrival rate of 8 edits/minute with less than 5%
rejection rate.

Future work will measure the computational savings
(or increase in network size) compared to a more
straightforward combinatorial prediction market algo-
rithm. We also plan use this technique in an online
forecasting system, and to examine the tradeoff be-
tween a minimum-KL approximation (which may con-
fuse users) and a less accurate but simpler set of as-
sumptions.

Acknowledgements

The authors gratefully acknowledge support from
the Intelligence Advanced Research Projects Activity
(IARPA) via Department of Interior National Busi-
ness Center contract number D11PC20062. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Disclaimer: The
views and conclusions contained herein are those of
the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements,
either expressed or implied, of IARPA, DoI/NBC, or
the U.S. Government.

We also gratefully acknowledge the hard work of grad-
uate student Shou Matsumoto for coding the Java im-
plementation.

References

Barbu, A. and Lay, N. (2011). An introduction
to artificial prediction markets for classification.
arXiv:1102.1465.

Beinlich, I., Suermondt, G., Chavez, R., and Cooper,
G. (1989). The alarm monitoring system: A case
study with two probabilistic inference techniques for
belief networks. In Proceeding of 2nd European Con-
ference on AI and Medicine.

Chen, Y., Fortnow, L., Lambert, N., Pennock, D. M.,
and Wortman, J. (2008a). Complexity of combina-
torial market makers. In Proceedings of the 9th ACM
Conference on Electronic Commerce (EC), pages
190–199.

Chen, Y., Goel, S., and Pennock, D. M. (2008b). Pric-
ing combinatorial markets for tournaments. In Pro-

ceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC-2008), pages 305–314.

Chen, Y. and Pennock, D. M. (2010). Designing mar-
kets for prediction. AI Magazine, 31(4):42–52.

Darwiche, A. (2009). Modeling and Reasoning with
Bayesian Networks. Cambridge University Press.

Dawid, A. P. (1992). Applications of a general prop-
agation algorithm for probabilistic expert systems.
Statistics and Computing, 2:25–36.

Hanson, R. (2003). Combinatorial information market
design. Information Systems Frontiers, 5(1):107–
119.

Hanson, R. (2007). Logarithmic market scoring rules
for modular combinatorial information aggregation.
Journal of Prediction Markets, 1(1):3–15.

Ide, J. S., Cozman, F., and Ramos, F. (2004). Gen-
erating random Bayesian networks with constraints
on induced width. In Proceedings of the 16th Eu-
ropean Conference on Artificial Intelligence (ECAI-
04), pages 323–327, Amsterdam. IOS Press.

Jensen, F. (1996). An Introduction to Bayesian Net-
works. Springer-Verlag, New York.

Koski, T. and Noble, J. (2009). Bayesian Networks:
An Introduction. Wiley, 1st edition.

Langevin, S. and Valtorta, M. (2008). Performance
evaluation of algorithms for soft evidential update
in Bayesian networks: First results. In Proceedings
of the Second International Conference on Scalable
Uncertainty Management (SUM-08), pages 294–
297.

Lauritzen, S. and Spiegelhalter, D. (1988). Local com-
putations with probabilities on graphical structures
and their applications to expert systems. In Pro-
ceedings of the Royal Statistical Society, Series B.,
volume 50, pages 157–224.

Madsen, A. L. and Jensen, F. V. (1998). Lazy prop-
agation in junction trees. In In Proc. 14th Conf.
on Uncertainty in Artificial Intelligence, pages 362–
369. Morgan Kaufmann Publishers.

Matsumoto, S., Carvalho, R. N., Ladeira, M.,
da Costa, P. C. G., Santos, L. L., Silva, D., Onishi,
M., Machado, E., and Cai, K. (2011). UnBBayes:
a java framework for probabilistic models in AI. In
Java in Academia and Research. iConcept Press.

Murphy, K. P. (2001). The Bayes net toolbox for mat-
lab. Computing Science and Statistics, 33:2001.

Nagar, Y. and Malone, T. (2011). Making business
predictions by combining human and machine in-
telligence for making predictions. In Proceedings
of the Thirty Second International Conference on
Information Systems (ICIS 2011), Shanghai. ICIS.
Expanded from NIPS 2010.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kauffman, San Mateo.

Pearl, J. (1990). Jeffrey’s rule, passage of experience,
and neo-Bayesianism. In Knowledge Representation
and Defeasible Reasoning, pages 245–265. Kluwer
Academic Publishers.

Pennock, D. and Xia, L. (2011). Price updating in
combinatorial prediction markets with Bayesian net-
works. In Proceedings of the Twenty-Seventh Con-
ference Annual Conference on Uncertainty in Artifi-
cial Intelligence (UAI-11), pages 581–588, Corvallis,
Oregon. AUAI Press.

Shachter, R. D., D’Ambrosio, B., and Del Favero,
B. A. (1990). Symbolic probabilistic inference in
belief networks. In Proceedings of the eighth Na-
tional conference on Artificial intelligence - Volume
1, AAAI’90, page 126131. AAAI Press.

Solomonoff, R. J. (1978). Complexity-based induc-
tion systems: Comparisons and convergence theo-
rems. IEEE Transactions on Information Theory,
IT-24:422–432.

Tziralis, G. and Tatsiopoulos, I. (2007). Prediction
markets: An extended literature review. Journal of
Prediction Markets, 1(1):75–91.

Valtorta, M., Kim, Y.-G., and Vomlel, J. (2002). Soft
evidential update for probabilistic multiagent sys-
tems. International Journal of Approximate Rea-
soning, 29(1):71–106.

