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Abstract

A tree-based dictionary learning model is
developed for joint analysis of imagery and
associated text. The dictionary learning
may be applied directly to the imagery from
patches, or to general feature vectors extract-
ed from patches or superpixels (using any ex-
isting method for image feature extraction).
Each image is associated with a path through
the tree (from root to a leaf), and each of
the multiple patches in a given image is as-
sociated with one node in that path. Nodes
near the tree root are shared between multi-
ple paths, representing image characteristic-
s that are common among different types of
images. Moving toward the leaves, nodes be-
come specialized, representing details in im-
age classes. If available, words (text) are also
jointly modeled, with a path-dependent prob-
ability over words. The tree structure is in-
ferred via a nested Dirichlet process, and a
retrospective stick-breaking sampler is used
to infer the tree depth and width.

1 Introduction

Statistical topic models, such as latent Dirichlet allo-
cation (LDA) (Blei et al., 2003b), were originally de-
veloped for text analysis, but they have been recently
transitioned successfully for the analysis of imagery. In
most such topic models, each image is associated with
a distribution over topics, and each topic is charac-
terized by a distribution over observed features in the
image. In this setting researchers typically represent
an image as a bag of visual words (Fei-Fei & Perona,
2005; Li & Fei-Fei, 2007). These methods have been
applied to perform unsupervised clustering, classifica-
tion and annotation of images, using image features

as well as auxiliary data such as image annotation-
s (Barnard et al., 2003; Blei & Jordan, 2003; Blei &
MaAuliffe, 2007; Wang et al., 2009; Li et al., 2009).

In such work feature extraction is performed as a
pre-processing step, and local image descriptors, e.g.,
scale-invariant feature transform (SIFT) (Lowe, 1999),
and other types of features (Arbelaez & Cohen, 2008),
are commonly used to extract features from local
patches (Fei-Fei & Perona, 2005; Li & Fei-Fei, 2007;
Bart et al., 2008; Sivic et al., 2008; Wang et al., 2009),
segments (Li et al., 2009; Yang et al., 2010), or super-
pixels (Du et al., 2009). Different images are related to
one another by their corresponding distributions over
topics.

There are several limitations with most of this previ-
ous work. First, vector quantization (VQ) is typically
applied to the image features (Fei-Fei & Perona, 2005),
and the codes play the role of “words” in traditional
topic modeling. There is a loss of information in this
quantization step, and one must tune the number of
codes (the proper codebook may change with different
types of images, and as new imagery are observed).
Secondly, feature design is typically performed sepa-
rately from the subsequent image topic modeling. Fi-
nally, most of the image-based topic modeling is per-
formed at a single scale or level (Wang et al., 2009;
Li et al., 2009; Du et al., 2009), thereby not account-
ing for the hierarchical characteristics of most natural
imagery.

In recent work, there have been papers that have ad-
dressed particular aspects of the above limitations,
but none that has addressed all. For example, in
Li et al. (2011) the authors employed a dictionary-
learning framework, eliminating the need to perform
VQ. This dictionary learning could be applied to tra-
ditional features pre-computed from the image, or it
could be applied directly to patches of raw imagery,
thereby ameliorating the requirement of separating the
feature-design and topic-modeling steps. However, Li
et al. (2011) did not consider the hierarchical charac-



ter of imagery. Recently Li et al. (2010) employed a
nested Chinese restaurant process (nCRP) to infer a
hierarchical tree representation for a corpus of images
and (if available) accompanying text; however, in that
work the VQ step was still employed, and therefore
a precomputation of features was as well. Further,
in Li et al. (2010), while the tree width was inferred,
the depth was set. Finally, the nCRP construction in
Li et al. (2010) has the disadvantage of only updat-
ing parent-child-transition parameters from one node
of the tree at a time, in a sampler, yielding poor mix-
ing relative to a stick-breaking Dirichlet process (DP)
implementation (Ishwaran & James, 2001). Related
but distinct dictionary learning with the nCRP was
considered in Zhang et al. (2011).

Motivated by these recent contributions, and the lim-
itations of most existing topic models of imagery and
text, this paper makes the following contributions:

• A nested DP (nDP) model is developed to learn a
hierarchical tree structure for a corpus of imagery
and text, with a stick-breaking construction em-
ployed; we infer both the tree depth and width,
using a retrospective stick-breaking construction
(Papaspiliopoulos & Roberts, 2008).

• A beta-Bernoulli dictionary learning framework
(Zhou et al., 2011b) is adapted to such a hier-
archical model, removing the VQ step, and al-
lowing one to perform topic modeling directly on
image patches, thereby integrating feature design
and topic modeling. However, if desired, the dic-
tionary learning may also be applied to features
pre-computed from the image, using any existing
method for feature design, and again removing the
limitations of VQ.

2 Modeling Image Patches

We wish to build a hierarchical model to arrange M
images and their associated annotations (when avail-
able); the vocabulary of such annotations is assumed
to be of dimension Nv. The vector xmi represents the
pixels or features associated with the ith patch in im-
age m, and ym = (ym1, . . . , ymNv )T represents a vec-
tor of word counts associated with that image, when
available (ymn represents the number of times word
n ∈ {1, . . . , Nv} is present in the annotation).

The mth image is divided into Nm patches (or super-
pixels (Li et al., 2010)), and the data for the ith patch
is denoted xmi ∈ RP with i = 1, . . . , Nm. The vector
xmi may represent raw pixel values, or a feature vector
extracted from the pixels (using any available method
of image feature extraction, e.g., SIFT (Lowe, 1999)).

Each xmi is represented as a sparse linear combination
of learned dictionary atoms. Further, each patch is
assumed associated with a “topic”; the probability of
which dictionary atoms are employed for a given patch
is dictated by the topic it is associated with.

Specifically, each patch is represented as xmi =
D(zmi � smi) + emi, where � represents the element-
wise/Hadamard product, D = [d1, · · · ,dK ] ∈ RP×K ,
K is the truncation level on the possible number of
dictionary atoms, zmi = [zmi1, · · · , zmiK ]T , smi =
[smi1, · · · , smiK ]T , zmik ∈ {0, 1} indicates whether
the kth atom is active within patch i in image m,
smik ∈ R+, and emi is the residual. Note that zmi
represents the specific sparseness pattern of dictionary
usage for xmi. The hierarchical form of the model is

xmi ∼ N (D(zmi � smi), γ−1e IP )

dk ∼ N (0,
1

P
IP )

smi ∼ N+(0, γ−1s IK)

zmi ∼
K∏
k=1

Bernoulli(πhmik) (1)

where gamma priors are placed on both γe and γs.
Positive weights smi (truncated normal, N+(·)) are
imposed, which we have found to yield improved re-
sults.

The indicator variable hmi defines the topic associated
with xmi. The K-dimensional vector πh defines the
probability that each of the K columns of D is em-
ployed to represent topic h, where the kth component
of πh is πhk. These probability vectors are drawn

πh ∼ G0, G0 =

K∏
k=1

Beta(a0/K, b0(K − 1)/K) (2)

where πhk represents the probability of using dk for ob-
ject type h, and the introduction of G0 is for discus-
sions below. This representation for πh correspond-
s to an approximation to the beta-Bernoulli process
(Thibaux & Jordan, 2007; Paisley & Carin, 2009; Zhou
et al., 2011a,b), which also yields an approximation to
the Indian buffet process (IBP) (Griffiths & Ghahra-
mani, 2005; Teh et al., 2007).

3 Tree Structure via nDP

The nested Dirichlet process (nDP) tree construction
developed below is an alternative means of constitut-
ing the same type of tree manifested by the nested
Chinese restaurant process (Blei et al., 2003a; Li et al.,
2010). We emphasize the nDP construction because of
the stick-breaking implementation we employ, which



allows block updates, and therefore often manifest-
s better mixing than the nCRP-type implementation
(Ishwaran & James, 2001). Related work was consid-
ered in Wang & Blei (2009), but VB inference was em-
ployed and the tree size was therefore not inferred (a
fixed truncation was imposed). The retrospective sam-
pler developed below allows inference of both the tree
depth and width (Papaspiliopoulos & Roberts, 2008).

Consider a draw from a DP, G ∼ DP(γ,G0), where
γ > 0 is an “innovation” parameter, with G0 de-
fined in (2). Then the DP draw (Ishwaran & James,
2001) may be expressed as G =

∑∞
n=1 λnδφn , where

λn = νn
∏
l<n(1 − νl), νl ∼ Beta(1, γ), and φn ∼ G0;

each φn corresponds to a topic, as in (2). Letting
λ = (λ1, λ2, . . . )

T , we denote the draw of λ as λ ∼
Stick(γ).

3.1 Tree width

Using notation from Adams et al. (2010), let ε repre-
sent a path through the tree, characterized by a se-
quence of parent-child nodes, and let |ε| be the length
of this path (total number of layers traversed). In ad-
dition to representing a path through the tree, ε identi-
fies a node at layer |ε|, i.e., the node at the end of path
ε. For node ε, let εεi, i = 1, 2, . . . , denote the children
of ε, at level |ε|+ 1. To constitute a distribution over
the children nodes, we draw Gε ∼ DP(γ,G0), yielding

Gε =
∑∞
i=1 λεεiδφεεi

, where λεεi = νεεi
∏i−1
j=1(1−νεεj ),

νεεj ∼ Beta(1, γ), and φεεi ∼ G0, with G0 defined
in (2); λε = (λεε1 , λεε2 , . . . )

T is denoted as drawn
λε ∼ Stick(γ). The probability measure Gε consti-
tutes in principle an infinite set of children nodes, with
λεεi defining the probability of transiting from node ε
to child εi; φεεi constitutes the topic-dependent prob-
ability of dictionary usage at that child node.

The process continues in principle to an infinite num-
ber of levels, with each child node spawning an infinite
set of subsequent children nodes, manifesting a tree of
infinite depth and width. However, note that a draw
λε will typically only have a relatively small number of
components with appreciable amplitude. This means
that while Gε constitutes in principle an infinite num-
ber of children nodes, only a small fraction will be
visited with appreciable probability.

Let cm = (c1m, c
2
m, . . . )

T represent the path associ-
ated with image m, where clm corresponds to the
node selected at level l. For conciseness we write
cm ∼ nCRP(γ) (Blei et al., 2003a), emphasizing that
the underlying transition probabilities λε, controlling
the probabilistic path through the tree, are a function
of parameter γ.

3.2 Tree depth

We also draw an associated probability vector θm ∼
Stick(α). Patch xmi is associated with level lmi in path
cm, where lmi ∼

∑∞
l=1 θmlδl. Since θm typically only

has a small number of components with appreciable
amplitude, the tree depth is also constrained.

3.3 Modeling words

In Section 2 we developed topic (node) dependent
probabilities of atom usage; we now extend this to
words (annotations), when available. A distribution
over words may be associated with each topic (tree n-
ode) h. For topic h we may draw (Blei et al., 2003b)

ψh ∼ Dir(
η

Nv
, . . . ,

η

Nv
) (3)

where ψh is the distribution over words for topic h.

Recall that each image/annotation is associated with a
path cm through a tree, and θm controls the probabil-
ity of employing each node (topic) on that path. Let
θmh represent the probability that node h is utilized,
with h ∈ cm. Then the “collapsed” probability of word
usage on this path, marginalizing out the probability
of node selection, may be expressed as

ψcm =
∑
h∈cm

θmhψh (4)

A probability over words ψcm is therefore associat-
ed with each path cm. One may argue that the θm
used to control node usage for image patches should
be different from that used to represent words; this
is irrelevant in the final model, as a path-dependent
ψcm is drawn directly from a Dirichlet distribution
(discussed below), and therefore (4) is only illustra-
tive/motivating.

3.4 Retrospective sampling

The above discussion indicated that while the width
and depth of the tree is infinite in principle, a fi-
nite tree is manifested given finite data, which mo-
tivates adaptive inference of the tree size. In a ret-
rospective implementation of a stick-breaking process,
we constitute a truncated stick-breaking process, de-
noted w ∼ StickL(γ), with wn = Vn

∏
l<n(1 − Vl),

Vn ∼ Beta(1, γ) for n < L, and VL = 1; here there is an
L-stick truncation, yielding w = (w1, . . . , wL)T , with
wL representing the probability of selecting a stick oth-
er than sticks 1 through L− 1.

In a retrospective sampler (Papaspiliopoulos &
Roberts, 2008), each of the aforementioned sticks is
truncated as above. When drawing children nodes and
levels, if the last stick (the Lth above) is selected, this



implies that a new child/level must be added, since the
first L − 1 sticks are not enough to capture how the
data are clustered. If stick L is selected, then a new
node/level is constituted (a new child is added), by
drawing a new VL ∼ Beta(1, γ), and then VL+1 = 1,
thereby now constituting an (L+ 1)-dimensional stick
representation; the associated node-dependent statis-
tics are constituted as discussed in Section 2 (drawing
new probabilities over dictionary elements). The mod-
el therefore infers “in retrospect” that the L-level trun-
cation was too small, and expands adaptively. The
model also has the ability to shrink the number of
sticks used at any component of the model, if less than
the associated truncated level is needed to define the
number of children/levels are actually utilized.

3.5 Generative Process

The generative process for the model is summarized as
follows:

1. Draw dictionary D ∼
∏K
k=1N (0, 1

P IP )

2. Draw γ, α, γe and γs from respective gamma dis-
tributions

3. For each image m ∈ {1, 2, ...,M}

(a) Draw cm ∼ nCRP(γ)

(b) For each newly utilized node ε in the tree,
draw dictionary usage probabilities πε ∼∏K
k=1 Beta(a0/K, b0(K − 1)/K)

(c) Draw θm ∼ Stick(α)

(d) For the ith patch or feature vector

i. Draw level index lmi ∼
∞∑
l=1

θmlδl, which along

with cmi defines node hmi

ii. Draw zmi ∼
∏K
k=1 Bernoulli(πhmik), and

smi ∼ N+(0, γ−1s IK)

iii. Draw xmi ∼ N (D(zmi � smi), γ−1e IP )

4. For each unique tree path p, draw ψp ∼
Dir( β

NV
, . . . , β

NV
)

5. If annotations are available for image m, ym ∼
Mult(|ym|,ψcm), where |ym| is the total number
of words in ym

In Step 3(b), new nodes (topics) are added “in retro-
spect”, as discussed in the previous subsection (nodes
may also be pruned with this sampler). After com-
pleting Step 3, the tree size is constituted, which al-
lows Step 4, imposition of a distribution over words
for each path.

Algorithm 1 Retrospective Sampling for lmi
Input: Lm, z, l, a0, b0
Output: lmi, Lm
for m = 1 to M and i = 1 to Nm do

Sample µm|ε|, πε from the conditional posterior
for |ε| ≤ Lm, and from the prior for |ε| > Lm;

θm|ε| = µm|ε|
∏|ε|−1
s=1 (1− µms)

Sample Umi ∼ Uniform[0, 1]

if
∑j−1
s=1 q(lmi = s) < Umi ≤

∑j
s=1 q(lmi = s)

then
Set lmi = j with probability κmi(j), otherwise,
leave lmi unchanged

else
Lm = Lm + 1, set lmi = Lm with probability
κmi(Lm), otherwise, leave lmi unchanged

end if
end for

4 Model Inference

A contribution of this paper concerns use of retrospec-
tive sampling to infer the tree width and depth. To
save space for an extensive set of experimental results,
we here only discuss updates associated with inferring
the tree depth. A complete set of update equations are
provided in Supplementary Material, where one may
also find a summary of all notation.

To sample lmi from the conditional posterior, we first
need to specify the likelihood that {ε ∈ cm}:

p(zmi|πε, cm) =

K∏
k=1

πzmikεk (1− πεk)1−zmik

and the prior distribution, which is specified by a stick-
breaking draw θm for each image m. Although lmi can
be sampled from a closed form posterior for a fixed
Lm, here to learn Lm adaptively we instead use an
Metropolis-Hastings step, where the proposal distri-
bution is defined as

q(lmi = j) ∝
{
θmjp(zmi|πj , cm), j ≤ Lm
θmjMmi(Lm), j > Lm

where Mmi(Lm) = max
1≤|ε|≤Lm

{p(zmi|πε, cm)}. Note

that the sampled value of lmi is allowed to be larger
than the truncation level Lm, consequently Lm and the
depth of the tree is learned adaptively. The acceptance
probability κmi(j) for lmi = j is

1, j ≤ Lm & L′m = Lm

min{1, c̃mi(Lm)Mmi(L
′
m)

c̃mi(L′
m)p(zmi|πhmi ,cm)}, j ≤ Lm & L′m < Lm

min{1, c̃mi(Lm)p(zmi|πj ,cm)
c̃mi(L′

m)Mmi(Lm) }, j > Lm

where the normalizing constant is defined as
c̃mi(Lm) =

∑Lm
|ε|=1 θm|ε|p(zmi|πε, cm)+Mmi(Lm)(1−



∑Lm
|ε|=1 θm|ε|). The retrospective sampling procedure

for lmi is summarized in Algorithm 1.

5 Experiments

We test the proposed model with five datasets: (i) a
simulated, illustrative example that examines the a-
bility to learn the tree structure; (ii) a subset of the
MNIST digits data, (iii) face data (Tenenbaum et al.,
2000); (iv) the Microsoft (MSRC) image database; and
(v) the LabelMe data. In the case of (iv) and (v), the
images are supplemented by annotations. For (ii)-(v),
we process patches from each image. For the MNIST
and face data, we randomly select 50 partially overlap-
ping patches in each image, with 15× 15 and 40× 40
patch sizes, respectively (placement of patches was not
tuned, selected uniformly at random, with partial over-
lap). For the MSRC and LabelMe data, we collect all
32×32×3 non-overlapping patches from the color im-
ages (we also consider overlapping patches in this case,
but it was found unnecessary). Recall that xmi ∈ RP ,
with P the number of pixels in each patch (P = 225
for MNIST, P = 1600 for the face data, and P = 3072
for MSRC and LabelMe data).

We have examined different methods for initializing
the dictionary, including random draws from the pri-
or and various fixed redundant bases, such as the
over-complete DCT. Alternatively, we may use exist-
ing dictionary-learning methods (independent of the
topic model); for this purpose, we use the covariate-
dependent hierarchical beta process (with the covari-
ates linked to the relative locations between patches)
to learn an initial set of dictionary atoms (Zhou et al.,
2011b). Additionally, in examples (ii)-(v), we initialize
the tree with 4 levels. In this initialization, four nodes
are present beneath the root node, and each subse-
quent node has two children, down four levels; nested
K-means clustering is used to initialize the data among
the clusters (nodes) at the respective levels.

In all experiments, the hyperparameters were set a0 =
b0 = 1, c0 = d0 = e0 = f0 = 10−6, α = 1 and γ = 1,
and the truncation level (upper bound) on the number
of dictionary elements was K = 400; many related
settings of these parameters yield similar results, and
no tuning was performed.

5.1 Inferring the tree: simulated data

We first illustrate that the proposed model is able to
infer both the depth and width of the tree, using syn-
thesized data for which the tree that generates the
data is known; the data are like (but distinct from)
that considered in Figure 2 of Blei et al. (2003a). In
this simple example we wish to isolate the component

Figure 1: Example with synthesized images. Left: Exam-
ple images. Middle: The ground truth for the underlying
model. Right: The inferred model from the maximum-
likelihood collection sample.

of the model that infers the tree, so there is no dic-
tionary learning. The data consists of a 25-element
alphabet, arranged as 5×5 blocks on a grid; each top-
ic is characterized by the probability of using each of
the 25 elements (there is a probability πhk for using
element k ∈ {1, . . . , 25}, for each topic/node h). For
each topic h the “truth” (middle in Figure 1) has prob-
abilities 0 (blue), 0.1 (cyan blue), and 0.5 (red). The
generative process for image m corresponds to first
drawing a path cm through the tree, and then 1000
times a node on this patch is drawn from θm, and
finally each of the 25 alphabet members are drawn
Bernoulli, with the associated topic-dependent proba-
bilities (this is the proposed model, without dictionary
learning). The final data (“image”) consists of a coun-
t of the number of times each of the 25 elements was
used, across the 1000 draws (example data at left in
Figure 1). A total of 100 5×5 “images” were drawn in
this manner to constitute the data. The right part of
Figure 1 corresponds to the recovered tree, based upon
the maximum-likelihood collection sample. Of course,
the order of the branches and children is arbitrary; the
inferred tree in Figure 1 (right) was arranged a pos-
teriori to align with the “truth” (middle), to clarify
presentation.

In this example the tree was initialized with 3 paths,
each with three 3 layers (note in truth there are four
paths, with variable number of layers). We also ini-
tialized the tree with 4 and 5 paths, under the same
experimental setting, and similar recovery is achieved.
If we initialized with less than 3 paths or more than 5,
the recovered tree was still reasonable (close), but not
as good. However, the inference of the topic-dependent
usage probabilities πh was very robust to numerous d-
ifferent settings. These results are based on 2000 sam-
ples, 1000 discarded as burn-in.

5.2 Model fit

For the MNIST handwritten digit database, we ran-
domly choose 100 images per digit (digits 0 through



9), and therefore M = 1000 images are considered in
total; the images are of size 28× 28. The face dataset
(Tenenbaum et al., 2000) contains M = 698 faces, each
of size 64 × 64. Concerning the inferred trees, for the
MNIST data, the maximum-likelihood collection sam-
ple had 168 paths and each path was typically 5 layers
deep; for the face data 80 paths were inferred, and each
was typically 5 layers. To quantitatively compare the
ability of the hierarchical dictionary construction to fit
the data, we consider reconstruction error for the da-
ta, comparing with the single-layer (“flat”) model in
Li et al. (2011); results are summarized in Table 1, cor-
responding to ‖xmi−D(zmi�smi)‖22, averaged across
all images m and patches i. In addition to results for
MNIST and faces data, we show results for the MSRC
and LabelMe data sets (analyzed in this case without
annotations).

We also performed experiments to investigate how ini-
tialization affects the performance. In Table 1, instead
of initializing the dictionary via the hierarchical beta
process (hBP), they are initialized at random. While
there is a slight degradation in performance with ran-
dom initialization, it is not marked, and the results are
still better than those produced by Li et al. (2011).
Similar improvements in hBP initialization were ob-
served for the classification task discussed below; hBP
helps, but random initialization is still good.

Table 1: Reconstruction error comparison (mean
square error multiplied by 103, and ± one standard
deviation) on MNIST, Face, MSRC and LabelMe
datasets. ‘nDP+hBP’ and ‘nDP+random’ correspond
to the proposed model with the dictionary initialized
by hBP and randomly, respectively, while the “flat”
(single layer) model corresponds to Li et al. (2011).

MNIST Face MSRC LabelMe

flat model 11.10 ± 0.32 8.18 ± 0.17 10.27 ± 0.54 12.16 ± 0.30

nDP+hBP 10.42 ± 0.21 7.64 ± 0.12 8.64 ± 0.36 10.21 ± 0.27

nDP+random 10.85 ± 0.35 7.91 ± 0.20 9.25 ± 0.41 11.53 ± 0.50

The proposed model fits the data better than the “flat”
model in Li et al. (2011); the gains are more evident
when considering real and sophisticated imagery (the
MSRC and LabelMe data). It is important to note
that the proposed model is effectively no more compli-
cated than the model in Li et al. (2011). Specifically,
in Li et al. (2011) and in the proposed model, each
image is put in a cluster, where in Li et al. (2011)
a single-layer Dirichlet process was used to perform
clustering, where here paths through the tree define
clusters. In Li et al. (2011) and here each cluster/path
is characterized by a distribution over topics, and in
both models each topic is characterized by probabili-
ties of atom usage (and each model has a truncation
level on the dictionary of the same size). The differ-

ence is that in Li et al. (2011) the probabilities of topic
usage for each cluster are drawn independently, where
here the tree structure, and shared nodes between dif-
ferent paths, manifest statistical dependencies between
the probability of topic usage in different paths with
shared nodes.

In these examples a total of 250 Gibbs samples were
run, with 150 discarded as burn-in. The results of the
model correspond to averaging across the collection
samples. In all examples useful results were found with
a relatively small number of Gibbs samples.

5.3 Organizing MSRC data

We use the same settings of images and annotation-
s from the MSRC data1 as considered in Du et al.
(2009), to allow a direct comparison. We choose 320
images from 10 categories of images with manual an-
notations available. The categories are “tree”, “build-
ing”, “cow”, “face”, “car”, ”sheep”, “flower”, “sign”,
“book” and “chair”. The numbers of images are 45
and 35 in the “cow” and “sheep” classes, respectively,
and 30 in all the other classes. Each image has size
213 × 320 or 320 × 213. For annotations, we remove
all words that occur less than 8 times (approximately
1% of words), and obtain 15 unique annotation-words,
thus Nv = 15.

The full tree structure inferred is shown in Figure 2,
with its maximum depth inferred to be 6 (maximum-
likelihood collection sample depicted, from 100 collec-
tion samples). On the second level, it is clearly ob-
served that images are clustered in several main sub-
genres, e.g., one with images containing grass, one
with flowers, and another with urban construction, in-
cluding cars and buildings, etc. For each path, we
depict up to the 8 most-probable images assigned to it
(fewer when less than 8 were assigned).

To further demonstrate the form of the model, two
pairs of example images are shown in Figure 3. The
pairs of images were assigned to two distinct paths,
that shared nodes near the root (meaning the model
infers shared types of patches between the images, as-
signed to these shared nodes). For each node, three ex-
ample patches that are assigned to it are selected, from
each of the two images. For the pair of example images
from the “sheep” and “cow” classes, patches of grass
and legs are shared on the top nodes, while distinct
patches manifesting color and texture are separately
assigned to nodes at bottom levels. The two images
from the “building” class show the diversity of this cat-
egory. It is anticipated that the “building” category
will be diverse, with common patches shared at nodes
near the root, and specialized patches near the leaves

1http://research.microsoft.com/en-us/projects/
objectclassrecognition/



Figure 2: The full tree structure inferred from MSRC
data. For each path, up to 8 images assigned to it are
shown.

Figure 3: Two pairs of example images, and the paths
they were assigned to. Between the images is shown the
splitting paths. At top are the example images, and for
each image we depict three example patches assigned to a
respective node.

(for different types of buildings/structures). These
typical examples illustrate that ubiquitous patches are
shared at nodes near the root, with nodes toward the
leaves describing details associated with specialized
classes of images. It is this hierarchical structure that
is missed by the model in Li et al. (2011), and that also
apparently manifests the better model fit, as summa-
rized in Table 1.

Another product of the model is a distribution over
words for each path in the tree (not shown, for brevi-
ty). We illustrate this component of the model for the
LabelMe data, considered next.

5.4 Organizing LabelMe data

The LabelMe data2 contain 8 image classes: “coast”,
“forest”, “highway”, “inside city”, “mountain”, “open
country”, “street” and “tall building”. We use the
same settings of images and annotations as Wang et al.
(2009): we randomly select 100 images for each class,
thus the total number of images is 800. Each image
is resized to be 256× 256 pixels. For the annotations,
we remove terms that occur less than 10 times, and
obtain a vocabulary of 99 unique words, thus Nv =
99. There are 5 terms per annotation in the LabelMe
data on average. Figure 6 visualizes 7 sub-trees of the
inferred tree structure; there are 7 nodes inferred on
the second level, and each node represents one sub-
tree. Class “street” and class “insidecity” share the
same root node, labeled 5 in Figure 6.

Based on the learned posterior word distribution ψp
for the pth image class, we can further infer which
words are most probable for each path. Figure 4 shows
the ψp for 8 example paths (maximum-likelihood sam-
ple, from 100 collection samples), with the five largest-
probability words displayed; the capital letters associ-
ated with each histogram in Figure 4 have associated
paths through the tree as indicated in Figure 6. A
good connection is manifested between the words and
paths (examine the images and words associated with

2http://www.cs.princeton.edu/~chongw/
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Figure 4: Inferred distributions over words for LabelMe
data, as a function of inferred image category. The letters
correspond to paths in Figure 6.

each path).

We evaluate the proposed model on the image-
classification task, similar to as considered in Li et al.
(2010). A set of 800 randomly selected images are held
out as testing images from the 8 classes, each class with
100 testing images. Each image is represented by the
estimated distribution over all the nodes in the entire
hierarchy. Only nodes that are associated to the image
have nonzero values in the distribution. We calculate
the χ2-distances between the node distribution of the
testing images and those of the training images. The
KNN algorithm (K is set to be 50) is then applied to
obtain the class label.

Figure 5(a) shows the confusion matrix of classifica-
tion, with an average classification accuracy of 78.3%,
compared with 76% in Li et al. (2011). In all of the
above examples the dictionary learning was applied
directly to the observed pixel values within a given
patch, with no a priori feature extraction. Alterna-
tively, the patch-dependent data xmi may correspond
to features extracted using any image feature extrac-
tion algorithm. To illustrate this, we now let xmi cor-
respond to SIFT features (Lowe, 1999) on the same
patches; in this experiment the dictionary learning re-
places the VQ step in models like Wang et al. (2009).
In Figure 5(b) we show the confusion matrix of the
model based on SIFT features, with an average accu-
racy of 76.9%, slightly better than the results reported
in Wang et al. (2009) (but here there is no need to tune
the number of VQ codes). This also demonstrates that
performing dictionary learning directly on the patch-
es, rather than via a state-of-the-art feature extraction
method, yields highly competitive results.

We now compare the proposed hierarchical model with
the hierarchical model in Li et al. (2010), in which of-
fline SIFT feature extraction and VQ are employed.
Based on related work in Wang et al. (2009), we used
a codebook of size 240, and achieved an average clas-
sification accuracy of 77.4%, compared with 79.6% re-
ported above for our algorithm. Note, however, that
we found the model in Li et al. (2010) to be very sen-
sitive to the codebook size, with serious degradation
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Figure 5: For the 800 testing images from LabelMe data,
(a): Confusion Matrix on original patches with the average
accuracy of 78.3%. (b): Confusion Matrix on SIFT features
with the average accuracy of 76.9%.

in performance manifested with 150 or 400 codes, for
example. To further test the proposed model, we con-
sidered the same classification experiment on MSRC
data, which is characterized by 10 classes. Five im-
ages per class were randomly chosen as testing data,
and the remaining images are treated as training data
to learn a hierarchical structure. An average accura-
cy of 64% is obtained with the proposed model, com-
pared with 60% using that in Li et al. (2010), where
the codebook size is set to be 200. These experiments
indicate that the proposed model typically does better
than that in Li et al. (2010) for the classification task,
even when we optimize the latter with respect to the
number of codes.

The experiments above have been performed in 64-
bit Matlab on a machine with 2.27 GHz CPU and
4 Gbyte RAM. One MCMC sample of the proposed
model takes approximately 4, 2, 8 and 10 minutes re-
spectively for the MNIST, Face, MSRC and LabelMe
experiments (in which we simultaneously analyzed re-
spectively 1000, 698, 320, and 800 total images). Note
that while these model learning times are relatively ex-
pensive, model testing (after the tree and dictionary
are learned) is very fast, this employed for the afore-
mentioned classification task. To scale the model up
to larger numbers of training images, we may perform
variational Bayesian inference rather than sampling,
and employ online-learning methods (Hoffman et al.,
2010; Carvalho et al., 2010).

6 Conclusions
The nested Dirichlet process has been integrated with
dictionary learning to constitute a new hierarchical
topic model for imagery. The dictionary learning may
be employed on the original image pixels, or on fea-
tures from any image feature extractor. If words are
available, they may be utilized as well, with word-
dependent usage probabilities inferred for each path
through the tree. The model infers both the tree depth
and width. Encouraging qualitative and quantitative
results have been demonstrated for analysis of many of
the traditional datasets in this field, with comparisons
provided to other related published methods.
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