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Abstract

Large-scale multiple testing tasks often ex-
hibit dependence, and leveraging the depen-
dence between individual tests is still one
challenging and important problem in statis-
tics. With recent advances in graphical mod-
els, it is feasible to use them to perform mul-
tiple testing under dependence. We propose
a multiple testing procedure which is based
on a Markov-random-field-coupled mixture
model. The ground truth of hypotheses is
represented by a latent binary Markov ran-
dom field, and the observed test statistics ap-
pear as the coupled mixture variables. The
parameters in our model can be automati-
cally learned by a novel EM algorithm. We
use an MCMC algorithm to infer the poste-
rior probability that each hypothesis is null
(termed local index of significance), and the
false discovery rate can be controlled accord-
ingly. Simulations show that the numeri-
cal performance of multiple testing can be
improved substantially by using our proce-
dure. We apply the procedure to a real-world
genome-wide association study on breast can-
cer, and we identify several SNPs with strong
association evidence.

1 Introduction

Observations from large-scale multiple testing prob-
lems often exhibit dependence. For instance, in
genome-wide association studies, researchers collect
hundreds of thousands of highly correlated genetic
markers (single-nucleotide polymorphisms, or SNPs)
with the purpose of identifying the subset of mark-
ers associated with a heritable disease or trait. In
functional magnetic resonance imaging studies of the
brain, thousands of spatially correlated voxels are col-

lected while subjects are performing certain tasks,
with the purpose of detecting the relevant voxels. The
most popular family of large-scale multiple testing
procedures is the false discovery rate analysis, such
as the p-value thresholding procedures (Benjamini &
Hochberg, 1995, 2000; Genovese & Wasserman, 2004),
the local false discovery rate procedure (Efron et al.,
2001), and the positive false discovery rate procedure
(Storey, 2002, 2003). However, all these classical mul-
tiple testing procedures ignore the correlation struc-
ture among the individual factors, and the question
is whether we can reduce the false non-discovery rate
by leveraging the dependence, while still controlling the
false discovery rate in multiple testing.

Graphical models provide an elegant way of represent-
ing dependence. With recent advances in graphical
models, especially more efficient algorithms for infer-
ence and parameter learning, it is feasible to use these
models to leverage the dependence between individ-
ual tests in multiple testing problems. One influen-
tial paper (Sun & Cai, 2009) in the statistics com-
munity uses a hidden Markov model to represent the
dependence structure, and has shown its optimality
under certain conditions and its strong empirical per-
formance. It is the first graphical model (and the only
one so far) used in multiple testing problems. How-
ever, their procedure can only deal with a sequential
dependence structure, and the dependence parameters
are homogenous. In this paper, we propose a multi-
ple testing procedure based on a Markov-random-field-
coupled mixture model which allows arbitrary depen-
dence structures and heterogeneous dependence param-
eters. This extension requires more sophisticated al-
gorithms for parameter learning and inference. For
parameter learning, we design an EM algorithm with
MCMC in the E-step and persistent contrastive di-
vergence algorithm (Tieleman, 2008) in the M-step.
We use the MCMC algorithm to infer the posterior
probability that each hypothesis is null (termed local
index of significance or LIS). Finally, the false discov-
ery rate can be controlled by thresholding the LIS.



Section 2 introduces related work and our procedure.
Sections 3 and 4 evaluate our procedure on a vari-
ety of simulations, and the empirical results show that
the numerical performance can be improved substan-
tially by using our procedure. In Section 5, we apply
the procedure to a real-world genome-wide association
study (GWAS) on breast cancer, and we identify sev-
eral SNPs with strong association evidence. We finally
conclude in Section 6.

2 Method

2.1 Terminology and Previous Work

Table 1: Classification of tested hypotheses

Not rejected Rejected Total
Null N00 N10 m0

Non-null N01 N11 m1

Total S R m

Suppose that we carry out m tests whose results can
be categorized as in Table 1. False discovery rate
(FDR), defined as E(N10/R|R > 0)P (R > 0), de-
picts the expected proportion of incorrectly rejected
null hypotheses (Benjamini & Hochberg, 1995). False
non-discovery rate (FNR), defined as E(N01/S|S >
0)P (S > 0), depicts the expected proportion of false
non-rejections in those tests whose null hypotheses are
not rejected (Genovese & Wasserman, 2002). An FDR
procedure is valid if it controls FDR at a nominal level,
and optimal if it has the smallest FNR among all the
valid FDR procedures (Sun & Cai, 2009). The effects
of correlation on multiple testing have been discussed,
under different assumptions, with a focus on the va-
lidity issue (Benjamini & Yekutieli, 2001; Finner &
Roters, 2002; Owen, 2005; Sarkar, 2006; Efron, 2007;
Farcomeni, 2007; Romano et al., 2008; Wu, 2008; Blan-
chard & Roquain, 2009). The efficiency issue has also
been investigated (Yekutieli & Benjamini, 1999; Gen-
ovese et al., 2006; Benjamini & Heller, 2007; Zhang
et al., 2011), indicating FNR could be decreased by
considering dependence in multiple testing. Several
approaches have been proposed, such as dependence
kernels (Leek & Storey, 2008), factor models (Friguet
et al., 2009) and principal factor approximation (Fan
et al., 2012). Sun & Cai (2009) explicitly use a hidden
Markov model (HMM) to represent the dependence
structure and analyze the optimality under the com-
pound decision framework (Sun & Cai, 2007). How-
ever, their procedure can only deal with sequential de-
pendence, and it uses only a single dependence param-
eter throughout. In this paper, we replace HMM with
a Markov-random-field-coupled mixture model, which
allows richer and more flexible dependence structures.
The Markov-random-field-coupled mixture models are
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Figure 1: The MRF-coupled mixture model for three
dependent hypotheses Hi, Hj and Hk with observed
test statistics (xi, xj and xk) and latent ground truth
(θi,θj and θk). The dependence is captured by poten-
tial functions parameterized by φij ,φjk and φik, and
coupled mixtures are parameterized by ψ.

related to the hidden Markov random field models used
in many image segmentation problems (Zhang et al.,
2001; Celeux et al., 2003; Chatzis & Varvarigou, 2008).

2.2 Our Multiple Testing Procedure

Let x = (x1, ..., xm) be a vector of test statistics from
a set of hypotheses (H1, ...,Hm). The ground truth
of these hypotheses is denoted by a latent Bernoulli
vector θ = (θ1, ..., θm) ∈ {0, 1}m, with θi = 0 denoting
that the hypothesis Hi is null and θi = 1 denoting that
the hypothesis Hi is non-null. The dependence among
these hypotheses is represented as a binary Markov
random field (MRF) on θ. The structure of the MRF
can be described by an undirected graph G(V, E) with
the node set V and the edge set E . The dependence
between Hi and Hj is denoted by an edge connect-
ing nodei and nodej in E , and the strength of depen-
dence is parameterized by the potential function on
the edge. Suppose that the probability density func-
tion of the test statistic xi given θi = 0 is f0, and the
density of xi given θi = 1 is f1. Then, x is an MRF-
coupled mixture. The mixture model is parameterized
by a parameter set ϑ = (φ,ψ), where φ parameterizes
the binary MRF and ψ parameterizes f0 and f1. For
example, if f0 is standard normal N (0, 1) and f1 is
noncentered normal N (µ, 1), then ψ only contains pa-
rameter µ. Figure 1 shows the MRF-coupled mixture
model for three dependent hypotheses Hi, Hj and Hk.

In our MRF-coupled mixture model, x is observable,
and θ is hidden. With the parameter set ϑ = (φ,ψ),
the joint probability density over x and θ is

P (x,θ|φ,ψ) = P (θ;φ)
∏m

i=1
P (xi|θi;ψ). (1)



Define the marginal probability that Hi is null given
all the observed statistics x under the parameters in
ϑ, Pϑ(θi = 0|x), to be the local index of significance
(LIS) for Hi (Sun & Cai, 2009). If we can accurately
calculate the posterior marginal probabilities of θ (or
LIS), then we can use a step-up procedure to control
FDR at the nominal level α as follows (Sun & Cai,
2009). We first sort LIS from the smallest value to the
largest value. Suppose LIS(1), LIS(2), ..., and LIS(m)

are the ordered LIS, and the corresponding hypotheses
are H(1), H(2),..., and H(m). Let

k = max

{
i :

1

i

∑i

j=1
LIS(j) ≤ α

}
. (2)

Then we reject H(i) for i = 1, ..., k.

Therefore, the key inferential problem that we need
to solve is that of computing the posterior marginal
distribution of the hidden variables θi given the test
statistics x, namely Pϑ(θi = 0|x), for i = 1, ...,m.
It is a typical inference problem if the parameters in
ϑ are known. Section 2.3 provides possible inference
algorithms for calculating Pϑ(θi = 0|x) for given ϑ.
However, ϑ is usually unknown in real-world applica-
tions, and we need to estimate it. Section 2.4 provides
a novel EM algorithm for parameter learning in our
MRF-coupled mixture model.

2.3 Posterior Inference

Now we are interested in calculating Pϑ(θi = 0|x) for a
given parameter set ϑ. One popular family of inference
algorithms is the sum-product family (Kschischang et
al., 2001), also known as belief propagation (Yedidia
et al., 2000). For loop-free graphs, belief propagation
algorithms provide exact inference results with a com-
putational cost linear in the number of variables. In
our MRF-coupled mixture model, the structure of the
latent MRF is described by a graph G(V, E). When
G is chain structured, the instantiation of belief prop-
agation is the forward-backward algorithm (Baum et
al., 1970). When G is tree structured, the instanti-
ation of belief propagation is the upward-downward
algorithm (Crouse et al., 1998). For graphical mod-
els with cycles, loopy belief propagation (Murphy et
al., 1999; Weiss, 2000) and the tree-reweighted algo-
rithm (Wainwright et al., 2003a) can be used for ap-
proximate inference. Other inference algorithms for
graphical models include junction trees (Lauritzen &
Spiegelhalter, 1988), sampling methods (Gelfand &
Smith, 1990), and variational methods (Jordan et al.,
1999). Recent papers (Schraudolph & Kamenetsky,
2009; Schraudolph, 2010) discuss exact inference al-
gorithms on binary Markov random fields which al-
low loops. In our simulations, we use belief propaga-

tion when the graph G has no loops. When G has
loops (e.g. in the simulations on genetic data and
the real-world application), we use a Markov chain
Monte Carlo (MCMC) algorithm to perform inference
for Pϑ(θi = 0|x).

2.4 Parameters and Parameter Learning

In our procedure, the dependence among these hy-
potheses is represented by a graphical model on the
latent vector θ parameterized by φ, and observed test
statistics x are represented by the coupled mixture pa-
rameterized by ψ. In Sun and Cai’s work on HMMs,
φ is the transition parameter and ψ is the emission
parameter. One implicit assumption in their work is
that the transition parameter and the emission param-
eter stay the same for i(i = 1, ...,m). Our extension
to MRFs also allows us to untie these parameters. In
the second set of basic simulations in Section 3, we
make φ and ψ heterogeneous and investigate how this
affects the numerical performance. In the simulations
on genetic data in Section 4 and the real-world GWAS
application in Section 5, we have different parameters
for SNP pairs with different levels of correlation.

In our model, learning (φ,ψ) is difficult for two rea-
sons. First, learning parameters is difficult by nature
in undirected graphical models due to the global nor-
malization constant (Wainwright et al., 2003b; Welling
& Sutton, 2005). State-of-the-art MRF parameter
learning methods include MCMC-MLE (Geyer, 1991),
contrastive divergence (Hinton, 2002) and variational
methods (Ganapathi et al., 2008). Several new sam-
pling methods with higher efficiency have been re-
cently proposed, such as persistent contrastive diver-
gence (Tieleman, 2008), fast-weight contrastive di-
vergence (Tieleman & Hinton, 2009), tempered tran-
sitions (Salakhutdinov, 2009), and particle-filtered
MCMC-MLE (Asuncion et al., 2010). In our proce-
dure, we use the persistent contrastive divergence algo-
rithm to estimate parameters φ. Another difficulty is
that θ is latent and we only have one observed training
sample x. We use an EM algorithm to solve this prob-
lem. In the E-step, we run our MCMC algorithm in
Section 2.3 to infer the latent θ based on the currently
estimated parameters ϑ = (φ,ψ). In the M-step, we
run the persistent contrastive divergence (PCD) algo-
rithm (Tieleman, 2008) to estimate φ from the cur-
rently inferred θ. Note that PCD is also an iterative
algorithm, and we run it until it converges in each
M-step. In the M-step, we also do a maximum likeli-
hood estimation of ψ from the currently inferred θ and
observed x. We run the EM algorithm until both φ
and ψ converge. Although this EM algorithm involves
intensive computation in both E-step and M-step, it
converges very quickly in our experiments.



3 Basic Simulations

In the basic simulations, we investigate the numerical
performance of our multiple testing approach on dif-
ferent fabricated dependence structures where we can
control the ground truth parameters. We first simulate
θ from P (θ;φ) and then simulate x from P (x|θ;ψ)
under a variety of settings of ϑ = (φ,ψ). Because
we have the ground truth parameters, we have two
versions of our multiple testing approach, namely the
oracle procedure (OR) and the data-driven procedure
(LIS). The oracle procedure knows the true parame-
ters ϑ in the graphical models, whereas the data-driven
procedure does not and has to estimate ϑ. The base-
line procedures include the BH procedure (Benjamini
& Hochberg, 1995) and the adaptive p-value proce-
dure (AP) (Benjamini & Hochberg, 2000; Genovese &
Wasserman, 2004) which are compared by Sun & Cai
(2009). We include another baseline procedure, the
local false discovery rate procedure (localFDR) (Efron
et al., 2001). The adaptive p-value procedure requires
a consistent estimate of the proportion of the true null
hypotheses. The localFDR procedure requires a con-
sistent estimate of the proportion of the true null hy-
potheses and the knowledge of the distribution of the
test statistics under the null and under the alternative.
In our simulations, we endow AP and localFDR with
the ground truth values of these in order to let these
baseline procedures achieve their best performance.

In the simulations, we assume that the observed xi
under the null hypothesis (namely θi = 0) is standard-
normally distributed and that xi under the alter-
native hypothesis (namely θi = 1) is normally dis-
tributed with mean µ and standard deviation 1.0.
We choose the setup and parameters to be consistent
with the work of Sun & Cai (2009) when possible.
In total, we consider three MRF models, namely a
chain-structured MRF, tree-structured MRF and grid-
structured MRF. For chain-MRF, we choose the num-
ber of hypotheses m = 3, 000. For tree-MRF, we
choose perfect binary trees of height 12 which yields a
total number of 8, 191 hypotheses. For grid-MRF, we
choose the number of rows and the number of columns
to be 100 which yields a total number of 10, 000 hy-
potheses. In all the experiments, we choose the num-
ber of replications N = 500 which is also the same as
the work of Sun & Cai (2009). In total, we have three
sets of simulations with different goals as follows.

Basic simulation 1: We stay consistent with Sun
& Cai (2009) in the simulations except that we use
the three MRF models. In all three structures, (θi)

m
1

is generated from the MRFs whose potentials on the

edges are

(
φ 1− φ

1− φ φ

)
. Therefore, φ only contains

parameter φ, and ψ only includes parameter µ.

Basic simulation 2: One assumption in basic sim-
ulation 1 is that the parameters φ and µ are ho-
mogeneous in the sense that they stay the same for
i(i = 1, ...,m). This assumption is carried down
from the work of Sun & Cai (2009). However in
many real-world applications, the transition param-
eters can be different across the multiple hypotheses.
Similarly, the test statistics for the non-null hypothe-
ses, although normally distributed and standardized,
could have different µ values. Therefore, we investi-
gate the situation where the parameters can vary in
different hypotheses. The simulations are carried out
for all three different dependence structures aforemen-
tioned. In the first set of simulations, instead of fixing
φ, we choose φ’s uniformly distributed on the interval
(0.8−∆(φ)/2, 0.8+∆(φ)/2). In the second set of sim-
ulations, instead of fixing µ, we choose µ’s uniformly
distributed on the interval (2.0−∆(µ)/2, 2.0+∆(µ)/2).
The oracle procedure knows the true parameters. The
data-driven procedure does not know the parameters,
and assumes the parameters are homogeneous.

Basic simulation 3: Another implicit assumption in
basic simulation 1 is that each individual test in the
multiple testing problem is exact. Many widely used
hypothesis tests, such as Pearson’s χ2 test and the like-
lihood ratio test, are asymptotic in the sense that we
only know the limiting distribution of the test statis-
tics for large samples. As an example, we simulate the
two-proportion z-test in this section and show how the
sample size affects the performance of the procedures
when the individual test is asymptotic. Suppose that
we have n samples (half of them are positive samples
and half of them are negative samples). For each sam-
ple, we have m Bernoulli distributed attributes. A
fraction of the attributes are relevant. If the attribute
A is relevant, then the probability of “heads” in the
positive samples (p+A) is different from that in the neg-
ative samples (p−A). p+A and p−A are the same if A is non-
relevant. For each individual test, the null hypothesis
is that the attribute is not relevant, and the alternative
hypothesis is otherwise. The two-proportion z-test can
be used to test whether p+A−p

−
A is zero, which yields an

asymptotic N (0, 1) under the null and N (µ, 1) under
the alternative (µ is nonzero). In the simulations, we
fix µ, but vary the sample size n, and apply the afore-
mentioned tree-MRF structure (m = 8, 191). The or-
acle procedure and localFDR only know the limiting
distribution of the test statistics and assume the test
statistics exactly follow the limiting distributions even
when the sample size is small.

Figure 2 shows the numerical results in basic simula-
tion 1. Figures (1a)-(1f) are for the chain structure.
Figures (2a)-(2f) are for tree structure. Figures (3a)-
(3f) are for the grid structure. In Figures (1a)-(1c),



 

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
05

0.
07

0.
09

FD
R


(1a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
15

0.
25

0.
35

FN
R


(1b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

60
0

80
0

10
00

AT
P


(1c)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
04

0.
06

0.
08

0.
10

FD
R


(1d)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

FN
R


(1e)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
50

0
10

00
15

00
AT

P


(1f)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
05

0.
07

0.
09

FD
R


(2a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
15

0.
25

0.
35

FN
R


(2b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

15
00

25
00

35
00

AT
P


(2c)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
04

0.
06

0.
08

0.
10

FD
R


(2d)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

FN
R


(2e)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
10

00
30

00
AT

P


(2f)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
05

0.
07

0.
09

FD
R


(3a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

FN
R


(3b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

20
00

30
00

40
00

50
00

AT
P


(3c)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
06

0.
10

0.
14

FD
R


(3d)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

FN
R


(3e)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
20

00
40

00
AT

P


(3f)

Figure 2: Comparison of BH(©), AP(4), localFDR(×), OR (+), and LIS (�) in basic simulation 1: (1) chain-
MRF, (2) tree-MRF, (3) grid-MRF; (a) FDR vs φ, (b) FNR vs φ, (c) ATP vs φ, (d) FDR vs µ, (e) FNR vs µ,
(f) ATP vs µ.

(2a)-(2c) and (3a)-(3c), we set µ = 2 and plot FDR,
FNR and the average number of true positives (ATP)
when we vary φ between 0.2 and 0.8. In Figures (1d)-
(1f), (2d)-(2f) and (3d)-(3f), we set φ = 0.8 and plot
FDR, FNR and ATP when we vary µ between 1.0
and 4.0. The nominal FDR level is set to be 0.10.
From Figure 2, we can observe comparable numerical
results between the chain structure and tree structure.
The FDR levels of all five procedures are controlled
at 0.10 and BH is conservative. From the plots for
FNR and ATP, we can observe that the data-driven
procedure performs almost the same as the oracle pro-
cedure, and they dominate the p-value thresholding
procedures BH and AP. The oracle procedure and the
data-driven procedure also dominate localFDR except
when φ = 0.5, when they perform comparably. This
is to be expected because the dependence structure is
no longer informative when φ is 0.5. In this situation
when the hypotheses are independent, our procedure
reduces to the localFDR procedure. As φ departs from
0.5 and approaches either 0 or 1.0, the difference be-
tween OR/LIS and the baselines gets larger. When
the individual hypotheses are easy to test (large µ val-
ues), the differences between them are not substantial.
When we turn to the grid structure, the numerical per-
formance is similar to that in the chain structure and
the tree structure except for two observations. First,
the data-driven procedure does not appear to control
the FDR at 0.1 when µ is small (e.g. µ = 1.0), al-
though the oracle procedure does, which indicates the
parameter estimation in the EM algorithm is difficult
when µ is small. In other words, with a limited number

of hypotheses, it is difficult to estimate the pairwise po-
tential parameters if the test statistics of the non-nulls
do not look much different from the test statistics of
the nulls. The second observation is that the slopes of
the FNR curve and ATP curve for the grid structure
are different from those in the chain and tree struc-
tures. The reason is that the connectivity in the grid
structure is higher than that in the chain and tree.
Therefore we can observe that even when the individ-
ual hypotheses are difficult to test (small µ values),
the FNR is still low because each individual hypothe-
sis has more neighbors in the grid than in the chain or
tree, and the neighbors are informative.

Figure 3 shows the numerical performance in basic
simulation 2. Figures (1a)-(1f), (2a)-(2f), and (3a)-
(3f) correspond to the chain structure, the tree struc-
ture and the grid structure respectively. In Figures
(1a)-(1c), (2a)-(2c), and (3a-3c), we set µ = 2 and
vary ∆(φ) between 0 and 0.4. In Figures (1d)-(1f),
(2d)-(2f), and (3d)-(3f), we set φ = 0.8 and vary ∆(µ)
between 0 and 4.0. Again, the nominal FDR level is
set to be 0.10. From Figure 3, we observe that all five
procedures control FDR at the nominal level and BH is
conservative when the transition parameter φ is het-
erogeneous. However, the data-driven procedure be-
comes more and more conservative as we increase the
variance of φ in the grid-structure. Nevertheless, the
data-driven procedure does not lose much efficiency
compared with the oracle procedure based on FNR
and ATP. Both the data-driven procedure and the or-
acle procedure dominate the three baselines. When
the µ parameter is heterogeneous, all five procedures
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Figure 3: Comparison of BH(©), AP(4), localFDR(×), OR (+), and LIS (�) in basic simulation 2: (1) chain-
MRF, (2) tree-MRF, (3) grid-MRF; (a) FDR vs ∆(φ), (b) FNR vs ∆(φ), (c) ATP vs ∆(φ), (d) FDR vs ∆(µ),
(e) FNR vs ∆(µ), (f) ATP vs ∆(µ).

are still valid, but the data-driven procedure becomes
more and more conservative as we increase the vari-
ance of µ. The data-driven procedure can be more con-
servative than the BH procedure when ∆(µ) is large
enough. The conservativeness appears most severe
in the grid-structure. However when we look at the
FNR and ATP, the data-driven procedure still dom-
inates BH, AP and localFDR substantially in all the
situations, although the data-driven procedure loses a
certain amount of efficiency compared with the oracle
procedure when the variance of µ gets large.
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Figure 4: Comparing BH(©), AP(4), localFDR(×),
OR(+), and LIS(�) in basic simulation 3: (a)FDR vs
n, (b)FNR vs n, (c)ATP vs n.

Figure 4 shows the results from basic simulation 3.
The oracle procedure and localFDR are liberal when
the sample size is small. This is because when the sam-
ple size is small, there exists a discrepancy between the
true distribution of the test statistic and the limiting
distribution. Quite surprisingly, the data-driven pro-
cedure stays valid. The reason is that the data-driven
procedure can estimate the parameters from data. The
data-driven procedure and the oracle procedure still
have comparable performance and enjoy a much lower

level of FNR compared with the baselines. For all the
basic simulations, we set the nominal FDR level to be
0.10. We have also replicated the basic simulations
by setting the nominal level to be 0.05, and similar
conclusions can be made.

4 Simulations on Genetic Data

Unlike the fabricated dependence structures in the ba-
sic simulations in Section 3, the dependence structure
in the simulations on genetic data in this section is
real. We simulate the linkage disequilibrium structure
of a segment on human chromosome 22, and treat a
test of whether a SNP is associated as one individual
test. We follow the simulation settings in the work of
Wu et al. (2010). We use HAPGEN2 (Su et al., 2011)
and the CEU sample of HapMap (The International
HapMap Consortium, 2003) (Release 22) to generate
SNP genotype data at each of the 2, 420 loci between
bp 14431347 and bp 17999745 on Chromosome 22. A
total of 685 out of 2, 420 SNPs can be genotyped with
the Affymetrix 6.0 array. These are the typed SNPs
that we use for our simulations. Within the overall
2, 420 SNPs, we randomly select 10 SNPs to be the
causal SNPs. All the SNPs on the Affymetrix 6.0 ar-
ray whose r2 values, according to HapMap, with any
of the causal SNPs are above t are set to be the as-
sociated SNPs. In the simulations, we report results
for three different t values, namely 0.8, 0.5 and 0.25.
We also simulate three different genetic models (ad-
ditive model, dominant model, and recessive model)
with different levels of relative risk (1.2 and 1.3). In



total, we simulate 250 cases and 250 controls. The
experiment is replicated for 100 times and the aver-
age result is provided. With the simulated data, we
apply our multiple testing procedure (LIS) and three
baseline procedures: the BH procedure, the adaptive
p-value procedure (AP), and the local false discovery
rate procedure (localFDR). Because the dependence
structure is real and the ground truth parameters are
unknown to us, we do not have the oracle procedure
in the simulations on genetic data.

With the simulated genetic data, we use two com-
monly used tests in genetic association studies, namely
two-proportion z-test and Cochran-Armitage’s trend
test (CATT) (Cochran, 1954; Armitage, 1955; Slager
& Schaid, 2001; Freidlin et al., 2002) as the individual
tests for the association of each SNP. CATT also yields
an asymptotic N (0, 1) under the null and N (µ, 1) un-
der the alternative (µ is nonzero). Therefore, we pa-
rameterize ψ = (µ1, σ

2
1) where µ1 and σ2

1 are the mean
and variance of the test statistics under alternative.
The graph structure is built as follows. Each SNP
becomes a node in the graph. For each SNP, we con-
nect it with the SNP with the highest r2 value with it.
There are in total 490 edges in the graph. We further
categorize the edges into a high correlation edge set
Eh (r2 above 0.8), medium correlation edge set Em (r2

between 0.5 and 0.8) and low correlation edge set El
(r2 between 0.25 and 0.5). We have three different pa-
rameters (φh, φm, and φl) for the three sets of edges.
Then the density of θ in formula (1) takes the form

P (θ;φ) ∝ exp{
∑

(i,j)∈Eh

φhI(θi = θj)+

∑
(i,j)∈Em

φmI(θi = θj) +
∑

(i,j)∈El

φlI(θi = θj)},
(3)

where I(θi = θj) is an indicator variable that indicates
whether θi and θj take the same value. In the MCMC
algorithm, we run the Markov chain for 20, 000 iter-
ations with a burn-in of 100 iterations. In the PCD
algorithm, we generate 100 particles. In each iteration
of PCD learning, the particles move forward for 5 iter-
ations (the n parameter in PCD-n). The learning rate
in PCD gradually decreases as suggested by Tieleman
(2008). The EM algorithm converges after about 10 to
20 iterations, which usually take less than 10 minutes
on a 3.00GHz CPU.

Figure 5 shows the performance of the procedures in
the additive models with the homozygous relative risk
set to 1.2 and 1.3. The test statistics are from a two-
proportion z-test. We have also replicated the sim-
ulations on Cochran-Armitage’s trend test, and the
results are almost the same. In Figure 5, table (1)
summarizes the empirical FDR and the total number

of true positives (#TP) of our LIS procedure, BH, AP
and localFDR (lfdr), in the additive models with dif-
ferent (homozygous) relative risk levels, when we vary
t and when we vary the nominal FDR level α. We
regard a SNP having r2 above t with any causal SNP
as an associated SNP, and we regard a rejection of
the null hypothesis for an associated SNP as a true
positive. Our LIS procedure and localFDR are valid
while being conservative. BH and AP appear liberal
in some of the configurations. In any of the circum-
stances, our LIS procedure can identify more associ-
ated SNPs than the baselines. We can find a clue to
why our procedure LIS is being conservative from the
results in Figure 3. In basic simulation 2, we observe
that when the parameters µ and φ are heterogeneous
and we carry out the data-driven procedure under the
homogeneous parameter assumption, the data-driven
procedure is conservative. The discrepancy between
the nominal FDR level and the empirical FDR level
increases as the parameters move further away from
homogeneity. Although we assign three different pa-
rameters φh, φm, and φl to Eh, Em and El respectively,
the edges within the same set (e.g. El) may still be
heterogeneous. The fact that the LIS procedure re-
captures more true positives than the baselines while
remaining more conservative in many configurations
indicates that the local indices of significance provide
a ranking more efficient than the ranking provided by
the p-values from the individual tests. Therefore, we
further plot the ROC curves and precision-recall (PR)
curves when we rank SNPs by LIS and by the p-values
from the two-proportion z-test. The ROC curve and
PR curve are vertically averaged from 100 replications.
Subfigures (2a)-(2f) are for the additive model with ho-
mozygous relative risk level set to be 1.2. Subfigures
(3a)-(3f) are for the additive model with homozygous
relative risk level set to be 1.3. It is observed that the
curves from LIS dominate those from the p-values from
individual tests in most places, which further suggests
that LIS provides a more efficient ranking of the SNPs
than the individual tests.

Figure 6 shows the performance of the procedures in
the dominant model and the recessive model with the
homozygous relative risk set to be 1.2. The test statis-
tics are from a two-proportion z-test. In Figure 6, ta-
ble (1) summarizes the empirical FDR and the total
number of true positives (#TP) of our LIS procedure,
BH, AP and localFDR (lfdr) in the dominant model
and the recessive model when we vary t and when we
vary the nominal FDR level α. Our LIS procedure and
localFDR are valid while being conservative in all con-
figurations, and they appear more conservative in the
recessive model than in the dominant model. On the
other hand, BH and AP appear liberal in the recessive
model. Our LIS procedure still confers an advantage
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rr = 1.2 
α = 0.05 

FDR: 0.018 0.059 0.059 0.010  0.018 0.059 0.059 0.010  0.018 0.058 0.058 0.009 
#TP: 12 11 11 1  12 11 11 1  20 18 19 7 

α = 0.10 
FDR: 0.077 0.089 0.089 0.010  0.077 0.089 0.089 0.010  0.076 0.079 0.079 0.009 
#TP: 13 11 11 1  13 11 11 1  21 20 20 8 

rr = 1.3 
α = 0.05 

FDR: 0.047 0.044 0.054 0.015  0.047 0.044 0.064 0.005  0.046 0.044 0.064 0.014 
#TP: 16 4 4 1  16 4 4 1  22 10 10 6 

α = 0.10 
FDR: 0.067 0.104 0.104 0.015  0.067 0.104 0.104 0.005  0.066 0.103 0.103 0.014 
#TP: 18 15 15 1  18 15 15 1  27 21 21 6 

(1) 
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Figure 5: Comparison of BH, AP, localFDR and LIS in the additive models when we vary relative risk rr, t and
the nominal FDR level α. Table (1) summarizes results. Subfigures (2a)-(2f) shows ROC and PR curves of LIS
(solid red lines) and individual p-values (dashed green lines) with rr = 1.2. Subfigures (3a)-(3f) shows ROC and
PR curves of LIS (solid red lines) and individual p-values (dashed green lines) with rr = 1.3.

over the baselines in the dominant model. The LIS
procedure also recaptures almost the same number of
true positives as BH and AP while maintaining a much
lower FDR in the recessive model. Again, we further
plot the ROC curves and precision-recall curves when
we rank SNPs by LIS and by the p-values from in-
dividual tests. Subfigures (2a)-(2f) are for the domi-
nant model. Subfigures (3a)-(3f) are for the recessive
model. It is also observed that the curves from LIS
dominate those from the p-values from individual tests
in most places, which also suggests that LIS provides
a more efficient ranking.

5 Real-world Application

Our primary GWAS dataset on breast cancer is
from NCI’s Cancer Genetics Markers of Susceptibil-
ity (CGEMS) (Hunter et al., 2007). 528, 173 SNPs for
1, 145 cases and 1, 142 controls are genotyped on the
Illumina HumanHap500 array. Our secondary GWAS
dataset comes from Marshfield Clinic. The Personal-
ized Medicine Research Project (McCarty et al., 2005),
sponsored by Marshfield Clinic, was used as the sam-
pling frame to identify 162 breast cancer cases and
162 controls. The project was reviewed and approved

by the Marshfield Clinic IRB. Subjects were selected
using clinical data from the Marshfield Clinic Cancer
Registry and Data Warehouse. Cases were defined as
women having a confirmed diagnosis of breast can-
cer. Both the cases and controls had to have at least
one mammogram within 12 months prior to having a
biopsy. The subjects also had DNA samples that were
genotyped using the Illumina HumanHap660 array, as
part of the eMERGE (electronic MEdical Records and
Genomics) network by McCarty et al. (2011).

We apply our multiple testing procedure on the
CGEMS data. The settings of the procedure are the
same as in the simulations on genetic data in Section
4. The individual test is two-proportion z-test. Our
procedure reports 32 SNPs with LIS value of 0.0 (an
estimated probability 1.0 of being associated). We fur-
ther calculate the per-allele odds-ratio of these SNPs
on the Marshfield data, and 14 of them have an odds-
ratio around 1.2 or above. The details about the 14
SNPs are given in supplementary material. There are
two clusters among them. First, rs3870371, rs7830137
and rs920455 (on chromosome 8) locate near each
other and near the gene hyaluronan synthase 2 (HAS2)
which has been shown to be associated with invasive
breast cancer by many studies (Udabage et al., 2005;
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Dominant 
α = 0.05 

FDR: 0.026 0.040 0.040 0.010  0.026 0.040 0.040 0.010  0.025 0.039 0.039 0.009 
#TP: 14 4 4 2  14 4 4 2  21 10 10 7 

α = 0.10 
FDR: 0.051 0.079 0.089 0.010  0.048 0.079 0.109 0.010  0.044 0.079 0.109 0.009 
#TP: 20 12 12 3  22 12 12 3  33 19 29 18 

Recessive 
α = 0.05 

FDR: 0.009 0.079 0.079 0.009  0.009 0.079 0.079 0.009  0.009 0.079 0.079 0.009 
#TP: 11 11 11 11  11 11 11 11  18 17 18 17 

α = 0.10 
FDR: 0.018 0.104 0.104 0.009  0.018 0.104 0.114 0.009  0.017 0.104 0.114 0.009 
#TP: 11 12 12 11  11 12 12 11  22 21 21 17 

(1) 
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Figure 6: Comparison of BH, AP, localFDR and LIS in the dominant model and the recessive model with
different t values and different nominal FDR α values. Table (1) summarizes results. Subfigures (2a)-(2f) shows
ROC and PR curves of LIS (solid red lines) and individual p-values (dashed green lines) in the dominant model.
Subfigures (3a)-(3f) shows ROC and PR curves of LIS and individual p-values in the recessive model.

Li et al., 2007; Bernert et al., 2011). The other clus-
ter includes rs11200014, rs2981579, rs1219648, and
rs2420946 on chromosome 10. They are exactly the
4 SNPs reported by Hunter et al. (2007). Their as-
sociated gene FGFR2 is also well known to be asso-
ciated with breast cancer. SNP rs4866929 on chro-
mosome 5 is also very likely to be associated because
it is highly correlated (r2=0.957) with SNP rs981782
(not included in our data) which was identified from
a much larger dataset (4, 398 cases and 4, 316 controls
and a follow-up confirmation stage on 21, 860 cases and
22, 578 controls) by Easton et al. (2007).

6 Conclusion

In this paper, we use an MRF-coupled mixture model
to leverage the dependence in multiple testing prob-
lems, and show the improved numerical performance
on a variety of simulations and its applicability in a
real-world GWAS problem. A theoretical question of
interest is whether this graphical model based pro-
cedure is optimal in the sense that it has the small-
est FNR among all the valid procedures. The opti-
mality of the oracle procedure can be proved under
the compound decision framework (Sun & Cai, 2007,

2009), as long as an exact inference algorithm exists
or an approximate inference algorithm can be guaran-
teed to converge to the correct marginal probabilities.
The asymptotic optimality of the data-driven proce-
dure (the FNR yielded by the data-driven procedure
approaches the FNR yielded by the oracle procedure
as the number of tests m → ∞) requires consistent
estimates of the unknown parameters in the graphi-
cal models. Parameter learning in undirected models
is more complicated than in directed models due to
the normalization constant. To the best of our knowl-
edge, asymptotic properties of parameter learning for
hidden MRFs and MRF-coupled mixture models have
not been investigated. Therefore, we cannot prove the
asymptotic optimality of the data-driven procedure so
far, although we can observe its close-to-oracle perfor-
mance in the basic simulations.
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