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Abstract

We present a novel approach to detecting and
utilizing symmetries in probabilistic graph-
ical models with two main contributions.
First, we present a scalable approach to
computing generating sets of permutation
groups representing the symmetries of graph-
ical models. Second, we introduce orbital
Markov chains, a novel family of Markov
chains leveraging model symmetries to re-
duce mixing times. We establish an insightful
connection between model symmetries and
rapid mixing of orbital Markov chains. Thus,
we present the first lifted MCMC algorithm
for probabilistic graphical models. Both ana-
lytical and empirical results demonstrate the
effectiveness and efficiency of the approach.

1 Introduction

Numerous algorithms exploit model symmetries with
the goal of reducing the complexity of the computa-
tional problems at hand. Examples are procedures
for detecting symmetries of first-order theories [7] and
propositional formulas [2] in order to avoid the exhaus-
tive exploration of a partially symmetric search space.
More recently, symmetry detection approaches have
been applied to answer set programming [11] and (in-
teger) linear programming [26, 27, 34, 30]. A consider-
able amount of attention to approaches utilizing model
symmetries has been given by work on “lifted proba-
bilistic inference [36, 9].” Lifted inference is mainly mo-
tivated by the large graphical models resulting from
statistical relational formalism such as Markov logic
networks [38]. The unifying theme of lifted probabilis-
tic inference is that inference on the level of instanti-
ated formulas is avoided and instead lifted to the first-
order level. Notable approaches are lifted belief propa-
gation [41, 22], bisimulation-based approximate infer-

ence algorithms [40], first-order knowledge compilation
techniques [44, 16], and lifted importance sampling ap-
proaches [17]. With the exception of some results for
restricted model classes [41, 44, 21], there is a some-
what superficial understanding of the underlying prin-
ciples of graphical model symmetries and the proba-
bilistic inference algorithms utilizing such symmetries.
Moreover, since most of the existing approaches are de-
signed for relational models, the applicability to other
types of probabilistic graphical models is limited.

The presented work contributes to a deeper under-
standing of the interaction between model symmetries
and the complexity of inference by establishing a link
between the degree of symmetry in graphical mod-
els and polynomial approximability. We describe the
construction of colored graphs whose automorphism
groups are equivalent to those of the graphical models
under consideration. We then introduce the main con-
tribution, orbital Markov chains, the first general class
of Markov chains for lifted inference. Orbital Markov
chains combine the compact representation of symme-
tries with generating sets of permutation groups with
highly efficient product replacement algorithms. The
link between model symmetries and polynomial mixing
times of orbital Markov chains is established via a path
coupling argument that is constructed so as to make
the coupled chains coalesce whenever their respective
states are located in the same equivalence class of the
state space. The coupling argument applied to orbital
Markov chains opens up novel possibilities of analyt-
ically investigating classes of symmetries that lead to
polynomial mixing times.

Complementing the analytical insights, we demon-
strate empirically that orbital Markov chains converge
faster to the true distribution than state of the art
Markov chains on well-motivated and established sam-
pling problems such as the problem of sampling inde-
pendent sets from graphs. We also show that exist-
ing graph automorphism algorithms are applicable to
compute symmetries of very large graphical models.



2 Background and Related Work

We begin by recalling some basic concepts of group
theory and finite Markov chains both of which are cru-
cial for understanding the presented work. In addition,
we give a brief overview of related work utilizing sym-
metries for the design of algorithms for logical and
probabilistic inference.

2.1 Group Theory

A symmetry of a discrete object is a structure-
preserving bijection on its components. For instance,
a symmetry of a graph is a graph automorphism.
Symmetries are often represented with permutation
groups. A group is an abstract algebraic structure
(G, ◦), where G is a set closed under a binary associa-
tive operation ◦ such that there is a identity element
and every element has a unique inverse. Often, we re-
fer to the group G rather than to the structure (G, ◦).
We denote the size of a group G as |G|. A permuta-
tion group acting on a finite set Ω is a finite set of
bijections g : Ω→ Ω that form a group.

Let Ω be a finite set and let G be a permutation group
acting on Ω. If α ∈ Ω and g ∈ G we write αg to de-
note the image of α under g. A cycle (α1 α2 ... αn)
represents the permutation that maps α1 to α2, α2 to
α3,..., and αn to α1. Every permutation can be writ-
ten as a product of disjoint cycles where each element
that does not occur in a cycle is understood as being
mapped to itself. We define a relation ∼ on Ω with
α ∼ β if and only if there is a permutation g ∈ G such
that αg = β. The relation partitions Ω into equiva-
lence classes which we call orbits. We use the notation
αG to denote the orbit {αg | g ∈ G} containing α. Let
f : Ω→ R be a function from Ω into the real numbers
and let G be a permutation group acting on Ω. We
say that G is an automorphism group for (Ω, f) if and
only if for all ω ∈ Ω and all g ∈ G, f(ω) = f(ωg).

2.2 Finite Markov chains

Given a finite set Ω a finite Markov chain defines a ran-
dom walk (X0, X1, ...) on elements of Ω with the prop-
erty that the conditional distribution of Xn+1 given
(X0, X1, ..., Xn) depends only on Xn. For all x, y ∈ Ω
P (x, y) is the chain’s probability to transition from x
to y, and P t(x, y) = P tx(y) the probability of being in
state y after t steps if the chain starts at x. A Markov
chain is irreducible if for all x, y ∈ Ω there exists a t
such that P t(x, y) > 0 and aperiodic if for all x ∈ Ω,
gcd{t ≥ 1 | P t(x, x) > 0} = 1. A chain that is both
irreducible and aperiodic converges to its unique sta-
tionary distribution.

The total variation distance dtv of the Markov chain

from its stationary distribution π at time t with initial
state x is defined by

dtv(P
t
x, π) =

1

2

∑
y∈Ω

|P t(x, y)− π(y)|.

For ε > 0, let τx(ε) denote the least value T such that
dtv(P

t
x, π) ≤ ε for all t ≥ T . The mixing time τ(ε) is

defined by τ(ε) = max{τx(ε) | x ∈ Ω}. We say that
a Markov chain is rapidly mixing if the mixing time is
bounded by a polynomial in n and log(ε−1), where n
is the size of each configuration in Ω.

2.3 Symmetries in Logic and Probability

Algorithms that leverage model symmetries to solve
computationally challenging problems more efficiently
exist in several fields. Most of the work is related to
the computation of symmetry breaking predicates to
improve SAT solver performance [7, 2]. The construc-
tion of our symmetry detection approach is largely
derived from that of symmetry detection in proposi-
tional theories [7, 2]. More recently, similar symme-
try detection approaches have been put to work for
answer set programming [11] and integer linear pro-
gramming [34]. Poole introduced the notion of lifted
probabilistic inference as a variation of variable elim-
ination taking advantage of the symmetries in graph-
ical models resulting from probabilistic relational for-
malisms [36]. Following Poole’s work, several algo-
rithms for lifted probabilistic inference were developed
such as lifted and counting belief propagation [41, 22],
bi-simulation-based approximate inference [40], gen-
eral purpose MCMC algorithm for relational mod-
els [29] and, more recently, first-order knowledge com-
pilation techniques [44, 16]. In contrast to existing
methods, we present an approach that is applicable to
a much larger class of graphical models.

3 Symmetries in Graphical Models

Similar to the method of symmetry detection in propo-
sitional formulas [7, 2, 8] we can, for a large class
of probabilistic graphical models, construct a col-
ored undirected graph whose automorphism group
is equivalent to the permutation group represent-
ing the model’s symmetries. We describe the ap-
proach for sets of partially weighted propositional for-
mulas since Markov logic networks, factor graphs,
and the weighted model counting framework can be
represented using sets of (partially) weighted formu-
las [38, 44, 16]. For the sake of readability, we describe
the colored graph construction for partially weighted
clauses. Using a more involved transformation, how-
ever, we can extend it to sets of partially weighted
formulas. Let S = {(fi, wi)}, 1 ≤ i ≤ n, be a set of



Figure 1: The colored graph resulting from the set of
weighted clauses of Example 3.1.

partially weighted clauses with wi ∈ R if fi is weighted
and wi = ∞ otherwise. We define an automorphism
of S as a permutation mapping (a) unnegated vari-
ables to unnegated variables, (b) negated variables to
negated variables, and (c) clauses to clauses, respec-
tively, such that this permutation maps S to an iden-
tical set of partially weighted clauses. The set of these
permutations forms the automorphism group of S.

The construction of the colored undirected graph
G(S) = (V,E) proceeds as follows. For each variable
a occurring in S we add two nodes va and v¬a model-
ing the unnegated and negated variable, respectively,
to V and the edge {va, v¬a} to E. We assign color
0 (1) to nodes corresponding to negated (unnegated)
variables. This coloring precludes permutations that
map a negated variable to an unnegated one or vice
versa. We introduce a distinct color c∞ for unweighted
clauses and a color cw for each distinct weight w oc-
curring in S. For each clause fi with weight wi = w
we add a node vfi with color cw to V . For each un-
weighted clause fi we add a node vfi with color c∞ to
V . Finally, we add edges between each clause node vfi
and the nodes of the negated and unnegated variables
occurring in fi. Please note that we can incorporate
evidence by introducing two novel and distinct colors
representing true and false variable nodes.

Example 3.1. Let {f1 := (a ∨ ¬c, 0.5), f2 := (b ∨
¬c, 0.5)} be a set of weighted clauses. We introduce 6
variable nodes va, vb, vc, v¬a, v¬b, v¬c where the former
three have color 1 (green) and the latter three color 0
(red). We connect the nodes va and v¬a; vb and v¬b;
and vc and v¬c. We then introduce two new clause
nodes vf1 , vf2 both with color 2 (yellow) since they
have the same weight. We finally connect the variable
nodes with the clause nodes they occur in. Figure 1
depicts the resulting colored graph. A generating set of
Aut(G(S)), the automorphism group of this particular
colored graph, is {(va vb)(v¬a v¬b)(vf1 vf2)}.

The following theorem states the relationship between
the automorphisms of S and the colored graph G(S).

Theorem 3.2. Let S = {(fi, wi)}, 1 ≤ i ≤ n, be a set
of partially weighted clauses and let Aut(G(S)) be the
automorphism group of the colored graph constructed
for S. There is a one-to-one correspondence between
Aut(G(S)) and the automorphism group of S.

Given a set of partially weighted clauses S with vari-
ables X we have, by Theorem 3.2, that if we define a
distribution Pr over random variables X with features
fi and weights wi, 1 ≤ i ≤ n, then Aut(G(S)) is an
automorphism group for ({0, 1}X,Pr). Hence, we can
use the method to find symmetries in a large class of
graphical models. The complexity of computing gen-
erating sets of Aut(G(S)) is in NP and not known to
be in P or NP-complete. For graphs with bounded
degree the problem is in P [25]. There are special-
ized algorithms for finding generating sets of auto-
morphism groups of colored graphs such as Saucy[8]
and Nauty[28] with remarkable performance. We will
show that Saucy computes irredundant sets of gen-
erators of automorphism groups for graphical models
with millions of variables. The size of these generating
sets is bounded by the number of graph vertices.

We briefly position the symmetry detection approach
in the context of existing algorithms and concepts.

3.1 Lifted Message Passing

There are two different lifted message passing algo-
rithms. Lifted First-Order Belief Propagation [41] op-
erates on Markov logic networks whereas Counting Be-
lief Propagation [22] operates on factor graphs. Both
approaches leverage symmetries in the model to par-
tition variables and features into equivalence classes.
Each variable class (supernode/clusternode) contains
those variable nodes that would send and receive the
same messages were (loopy) belief propagation (BP)
run on the original model. Each feature class (super-
feature/clusterfactor) contains factor nodes that would
send and receive the same BP messages.

The colored graph construction provides an alterna-
tive approach to partitioning the variables and fea-
tures of a graphical model. We simply compute
the orbit partition induced by the permutation group
Aut(G(S)) acting on the set of variables and features.
For instance, the orbit partition of Example 3.1 is
{{a, b}, {c}, {f1, f2}}. In general, orbit partitions have
the following properties: For two variables v1, v2 in the
same orbit we have that (a) v1 and v2 have identical
marginal probabilities and (b) the variable nodes cor-
responding to v1 and v2 would send and receive the
same messages were BP run on the original model;
and for two features f1 and f2 in the same orbit we
have that the factor nodes corresponding to f1 and f2

would send and receive the same BP messages.

3.2 Finite Partial Exchangeability

The notion of exchangeability was introduced by de
Finetti [14]. Several theorems concerning finite (par-
tial) exchangeability have been stated [10, 14]. Given



a finite sequence of n binary random variables X, we
say that X is exchangeable with respect to the distri-
bution Pr if, for every x ∈ {0, 1}n and every permu-
tation g acting on {0, 1}n, we have that Pr(X = x) =
Pr(X = xg). This is equivalent to saying that the sym-
metric group Sym(n) is an automorphism group for
({0, 1}n,Pr). Whenever we have finite exchangeability,
there are n+ 1 orbits each containing the variable as-
signments with Hamming weight i, 0 ≤ i ≤ n. Hence,
every exchangeable probability distribution over n bi-
nary random variables is a unique mixture of draws
from the n + 1 orbits. In some cases of partial ex-
changeability, namely when the orbits can be specified
using a statistic, one can use this for a more compact
representation of the distribution as a product of mix-
tures [10]. The symmetries that have to be present for
such a re-parameterization to be feasible, however, are
rare and constitute one end of the symmetry spectrum.

Therefore, a central question is how arbitrary symme-
tries, compactly represented with irredundant genera-
tors of permutation groups, can be utilized for efficient
probabilistic inference algorithms that go beyond (a)
single variable marginal inference via lifted message
passing and (b) the limited applicability of finite par-
tial exchangeability. In order to answer this question,
we turn to the major contribution of the present work.

4 Orbital Markov Chains

Inspired by the previous observations, we introduce or-
bital Markov chains, a novel family of Markov chains.
An orbital Markov chain is always derived from an
existing Markov chain so as to leverage the symme-
tries in the underlying model. In the presence of
symmetries orbital Markov chains are able to perform
wide-ranging transitions reducing the time until con-
vergence. In the absence of symmetries they are equiv-
alent to the original Markov chains. Orbital Markov
chains only require a generating set of a permutation
group G acting on the chain’s state space as additional
input. As we have seen, these sets of generators are
computable with graph automorphism algorithms.

Let Ω be a finite set, let M′ = (X ′0, X
′
1, ...) be a

Markov chain with state space Ω, let π be a station-
ary distribution of M′, and let G be an automor-
phism group for (Ω, π). The orbital Markov chain
M = (X0, X1, ...) for M′ is a Markov chain which
at each integer time t+1 performs the following steps:

1. Let X ′t+1 be the state of the original Markov chain
M′ at time t+ 1;

2. Sample Xt+1, the state of the orbital Markov
chainM at time t+ 1, uniformly at random from
X ′

G
t+1, the orbit of X ′t+1.

The orbital Markov chainM, therefore, runs at every
time step t ≥ 1 the original chainM′ first and samples
the state ofM at time t uniformly at random from the
orbit of the state of the original chain M′ at time t.

First, let us analyze the complexity of the second step
which differs from the original Markov chain. Given a
state Xt and a permutation group G we need to sam-
ple an element from Xt

G, the orbit of Xt, uniformly at
random. By the orbit-stabilizer theorem this is equiv-
alent to sampling an element g ∈ G uniformly at ran-
dom and computing Xt

g. Sampling group elements
nearly uniform at random is a well-researched prob-
lem [6] and computable in polynomial time in the size
of the generating sets with product replacement algo-
rithms [35]. These algorithms are implemented in sev-
eral group algebra systems such as Gap[15] and exhibit
remarkable performance. Once initialized, product re-
placement algorithms can generate pseudo-random el-
ements by performing a small number of group multi-
plications. We could verify that the overhead of step
2 during the sampling process is indeed negligible.

Before we analyze the conditions under which orbital
Markov chains are aperiodic, irreducible, and have the
same stationary distribution as the original chain, we
provide an example of an orbital Markov chain that
is based on the standard Gibbs sampler which is com-
monly used to perform probabilistic inference.

Example 4.1. Let V be a finite set of random vari-
ables with probability distribution π, and let G be
an automorphism group for (×V ∈VV, π). The orbital
Markov chain for the Gibbs sampler is a Markov chain
M = (X0, X1, ...) which, being in state Xt, performs
the following steps at time t+ 1:

1. Select a variable V ∈ V uniformly at random;

2. Sample X ′t+1(V ), the value of V in the config-
uration X ′t+1, according to the conditional π-
distribution of V given that all other variables
take their values according to Xt;

3. Let X ′t+1(W ) = Xt(W ) for all variables W ∈ V \
{V }; and

4. Sample Xt+1 from X ′
G
t+1, the orbit of X ′t+1, uni-

formly at random.

We call this Markov chain the orbital Gibbs sampler.
In the absence of symmetries, that is, if G’s only el-
ement is the identity permutation, the orbital Gibbs
sampler is equivalent to the standard Gibbs sampler.

Let us now state a major result of this paper. It relates
properties of the orbital Markov chain to those of the
Markov chain it is derived from. A detailed proof can
be found in the appendix.
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Figure 2: An undirected graphical model over two
binary variables and one symmetric potential function
with corresponding distribution shown on the right.
There are three orbits each indicated by one of the
rounded rectangles.

Theorem 4.2. Let Ω be a finite set and let M′ be a
Markov chain with state space Ω and transition matrix
P ′. Moreover, let π be a probability distribution on Ω,
let G be an automorphism group for (Ω, π), and let M
be the orbital Markov chain for M′. Then,

(a) if M′ is aperiodic then M is also aperiodic;

(b) if M′ is irreducible then M is also irreducible;

(c) if π is a reversible distribution forM′ and, for all
g ∈ G and all x, y ∈ Ω we have that P ′(x, y) =
P ′(xg, yg), then π is also a reversible and, hence,
a stationary distribution for M.

The condition in statement (c) requiring for all g ∈ G
and all x, y ∈ Ω that P ′(x, y) = P ′(xg, yg) conveys
that the original Markov chain is compatible with the
symmetries captured by the permutation group G.
This rather weak assumption is met by all of the prac-
tical Markov chains we are aware of and, in particular,
Metropolis chains and the standard Gibbs sampler.

Corollary 4.3. Let M′ be the Markov chain of the
Gibbs sampler with reversible distribution π. The or-
bital Gibbs sampler forM′ is aperiodic and has π as a
reversible and, hence, a stationary distribution. More-
over, if M′ is irreducible then the orbital Gibbs sam-
pler is also irreducible and it has π as its unique sta-
tionary distribution.

We will show both analytically and empirically that, in
the presence of symmetries, the orbital Gibbs sampler
converges at least as fast or faster to the true distribu-
tion than state of the art sampling algorithms. First,
however, we want to take a look at an example that
illustrates the advantages of the orbital Gibbs sampler.

Example 4.4. Consider the undirected graphical
model in Figure 2 with two binary random variables
and a symmetric potential function. The probabilities
of the states 01 and 10 are both 0.49. Due to the sym-
metry in the model, the states 10 and 01 are part of
the same orbit. Now, let us assume a standard Gibbs
sampler is in state 10. The probability for it to tran-
sition to one of the states 11 and 00 is only 0.02 and,

by definition of the standard Gibbs sampler, it can-
not transition directly to the state 01. The chain is
“stuck” in the state 10 until it is able to move to 11
or 00. Now, consider the orbital Gibbs sampler. Intu-
itively, while it is “waiting” to move to one of the low
probability states, it samples the two high probability
states horizontally uniformly at random from the orbit
{01, 10}. In this particular case the orbital Gibbs sam-
pler converges faster than the standard Gibbs sampler,
a fact that we will also show analytically.

4.1 Mixing Time of Orbital Markov Chains

We will make our intuition about the faster conver-
gence of the orbital Gibbs sampler more concrete. We
accomplish this by showing that the more symmetry
there is in the model the faster a coupling of the orbital
Markov chain will coalesce and, therefore, the faster
the chain will converge to its stationary distribution.

There are several methods available to prove rapid
mixing of a finite Markov chain. The method we will
use here is that of a coupling. A coupling for a Markov
chainM is a stochastic process (Xt, Yt) on Ω×Ω such
that (Xt) and (Yt) considered marginally are faithful
copies of M. The coupling lemma expresses that the
total variation distance ofM at time t is limited from
above by the probability that the two chains have not
coalesced, that is, have not met at time t (see for in-
stance Aldous [1]). Coupling proofs on the joint space
Ω × Ω are often rather involved and require complex
combinatorial arguments. A possible simplification is
provided by the path coupling method where a cou-
pling is only required to hold on a subset of Ω×Ω (Bub-
ley and Dyer [4]). The following theorem formalizes
this idea.

Theorem 4.5 (Dyer and Greenhill [12]). Let δ be an
integer valued metric defined on Ω×Ω taking values in
{0, ..., D}. Let S ⊆ Ω× Ω such that for all (Xt, Yt) ∈
Ω×Ω there exists a path Xt = Z0, ..., Zr = Yt between
Xt and Yt with (Zl, Zl+1) ∈ S for 0 ≤ l ≤ r and

r−1∑
l=0

δ(Zl, Zl+1) = δ(Xt, Yt).

Define a coupling (X,Y ) → (X ′, Y ′) of the Markov
chainM on all pairs (X,Y ) ∈ S. Suppose there exists
β ≤ 1 with E[δ(X ′, Y ′)] ≤ βδ(X,Y ) for all (X,Y ) ∈
S. If β < 1 then the mixing time τ(ε) of M satisfies

τ(ε) ≤ ln(Dε−1)

1− β
.

If β = 1 and there exists an α > 0 such that
Pr[δ(Xt+1, Yt+1) 6= δ(Xt, Yt)] ≥ α for all t, then

τ(ε) ≤
⌈
eD2

α

⌉ ⌈
ln(ε−1)

⌉
.



We selected the insert/delete Markov chain for inde-
pendent sets of graphs for our analysis. Sampling in-
dependent sets is a classical problem motivated by nu-
merous applications and with a considerable amount
of recent research devoted to it [24, 13, 45, 42, 37]. The
coupling proof for the orbital version of this Markov
chain provides interesting insights into the construc-
tion of such a coupling and the influence of the graph
symmetries on the mixing time. The proof strategy is
in essence applicable to other sampling algorithms.

Let G = (V,E) be a graph. A subset X of V is an
independent set if {v, w} /∈ E for all v, w ∈ X. Let
I(G) be the set of all independent sets in a given graph
G and let λ be a positive real number. The partition
function Z = Z(λ) and the corresponding probability
measure πλ on I(G) are defined by

Z = Z(λ) =
∑

X∈I(G)

λ|X| and πλ(X) =
λ|X|

Z
.

Approximating the partition function and sampling
from I(G) can be accomplished using a rapidly mix-
ing Markov chain with state space I(G) and stationary
distribution πλ. The simplest Markov chain for inde-
pendent sets is the so-called insert/delete chain [13].
If Xt is the state at time t then the state at time t+ 1
is determined by the following procedure:

1. Select a vertex v ∈ V uniformly at random;

2. If v ∈ Xt then letXt+1 = Xt\{v} with probability
1/(1 + λ);

3. If v /∈ Xt and v has no neighbors in Xt then let
Xt+1 = Xt ∪ {v} with probability λ/(1 + λ);

4. Otherwise let Xt+1 = Xt.

Using a path coupling argument one can show that the
insert/delete chain is rapidly mixing for λ ≤ 1/(∆−1)
where ∆ is the maximum degree of the graph [13].
We can turn the insert/delete Markov chain into the
orbital insert/delete Markov chain M(I(G)) simply
by adding the following fifth step:

5. Sample Xt+1 uniformly at random from its orbit.

By Corollary 4.3 the orbital insert/delete chain for in-
dependent sets is aperiodic, irreducible, and has πλ as
its unique stationary distribution. We can now state
the following theorem concerning the mixing time of
this Markov chain. It relates the graph symmetries to
the mixing time of the chain. The proof of the theorem
is based on a path coupling that is constructed so as
to make the two chains coalesce whenever their respec-
tive states are located in the same orbit. A detailed
and instructive proof can be found in the appendix.
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w
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v

v

Figure 3: Two independent sets X ∪{v} and X ∪{w}
of the 4x4 grid located in the same orbit. The first
permutation is the reflection on the sketched diagonal
the second a clockwise 90◦ rotation.

Theorem 4.6. Let G = (V,E) be a graph with maxi-
mum degree ∆, let λ be a positive real number, and let
G be an automorphism group for ({0, 1}V , πλ). More-
over, let (X ∪ {v}) ∈ I(G), let (X ∪ {w}) ∈ I(G), let
{v, w} ∈ E, and let ρ = Pr[(X ∪ {v}) /∈ (X ∪ {w})G].
The orbital insert/delete chain M(I(G)) is rapidly
mixing if either ρ ≤ 0.5 or λ ≤ 1/((2ρ− 1)∆− 1).

The theorem establishes the important link between
the graph automorphisms and the mixing time of the
orbital insert/delete chain. The more symmetries the
graph exhibits the larger the orbits and the sooner the
chains coalesce. Figure 3 depicts the 4x4 grid with two
independent sets X∪{v} and X∪{w} with {v, w} ∈ E
and (X ∪ {v}) ∈ (X ∪ {w})G. Since ρ < 1 for nxn
grids, n ≥ 4, we can prove (a) rapid mixing of the
orbital insert/delete chain for larger λ values and (b)
more rapid mixing for identical λ values.

The next corollary follows from Theorem 4.6 and the
simple fact that X ′ ∈ XG for all X ⊆ V,X ′ ⊆ V with
|X| = |X ′| whenever G is the symmetric group on V .

Corollary 4.7. Let G = (V,E) be a graph, let λ be
a positive real number, and let G be an automorphism
group for ({0, 1}V , πλ). If G is the symmetric group
Sym(V ) then M(I(G)) is rapidly mixing with τ(ε) ≤
|V | ln(|V |ε−1).

By analyzing the coupling proof of Theorem 4.6 and,
in particular, the moves leading to states (X ′, Y ′) with
|X ′| = |Y ′| and the probability that X ′ and Y ′ are
located in the same orbit in these cases, it is possible
to provide more refined bounds. Moreover, to capture
the full power of orbital Markov chains, a coupling
argument should not merely consider pairs of states
with Hamming distance 1. Indeed, the strength of the
orbital chains is that, in the presence of symmetries
in the graph topology, there is a non-zero probability
that states with large Hamming distance (up to |V |)
are located in the same orbit. The method presented
here is also applicable to Markov chains known to mix
rapidly for larger λ values than the insert/delete chain
such as the insert/delete/drag chain [13].



social network model [41]
people 20 50 100 250 500
vertices 1740 10200 40700 251750 1003500
edges 2120 10350 50600 314000 1253000
time [s] 0.04 0.15 0.81 22.5 261.3
features 860 5150 20300 125750 501500
orbs w/o 7 7 7 7 7
orbs w/ 238 1244 6237 30192 78303

kxk grid model
k 20 50 100 250 500

vertices 800 5000 20000 125000 500000
edges 1160 7400 29800 187000 749000
time [s] 0.02 0.03 0.2 0.6 2.5

Table 1: Number of vertices and edges of the colored
graphs, the runtime of Saucy, and the number of
(super-)features of the social network model without
and with 10% evidence.
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Figure 4: From left to right: the 3-grid, the 3-
connected cliques, and the 3-complete graph models.

5 Experiments

Two graphical models were used to evaluate the sym-
metry detection approach. The “Friends & Smok-
ers” Markov logic network where for a random 10%
of all people it is known (a) whether they smoke or
not and (b) who 10 of their friends are [41]. More-
over, we used the kxk grid model, an established and
well-motivated lattice model with numerous applica-
tions [37]. All experiments were conducted on a PC
with an AMD Athlon dual core 5400B 1.0 GHz proces-
sor and 3 GB RAM. Table 1 lists the results for varying
model sizes. Saucy’s runtime scales roughly quadratic
with the number of vertices and it performs better for
the kxk grid models. This might be due to the larger
sets of generators for the permutation groups of the
social network model. Table 1 also lists the number of
features of the ground social network model (features),
the number of feature orbits without (orbs w/o) and
with (orbs w/) 10% evidence.

We proceeded to compare the performance of the or-
bital Markov chains with state-of-the-art algorithms
for sampling independent sets. We used Gap[15], a
system for computational discrete algebra, and the
Orb package[31]1 to implement the sampling algo-

1http://www.gap-system.org/Packages/orb.html
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Figure 5: The results of the three Gibbs samplers for
the 5-grid model (top) and the 6-grid model (bottom).

rithms. The experiments can easily be replicated by
installing Gap and the Orb package and by running
the Gap files available at a dedicated code repository2.
For the evaluation of the sampling algorithms we se-
lected three different graph topologies exhibiting vary-
ing degrees of symmetry:

The k-grid model is the 2-dimensional kxk grid.
An instance of the model for k = 3 is depicted
in Figure 4 (left). Here, the generating set of
the permutation group G computed by Saucy is
{(a c)(d f)(g i), (a i)(b f)(d h)} and |G| = 8. The per-
mutation group G partitions the set {0, 1}9 in 102 or-
bits with each orbit having a cardinality in {1, 2, 4, 8}.

The k-connected cliques model is a graph with k + 1
distinct cliques each of size k − 1 and each con-
nected with one edge to the same vertex. Statisti-
cal relational formalisms such as Markov logic net-
works often lead to similar graph topologies. An in-

2http://code.google.com/p/lifted-mcmc/
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Figure 6: The results of the three Gibbs samplers for
the 5-connected cliques model.

stance for k = 3 is depicted in Figure 4 (center).
Here, the generating set of G computed by Saucy is
{(a g)(b f), (a c)(b d), (a i)(b h)} and |G| = 24. The
permutation group G partitions the set {0, 1}9 in 70
orbits with cardinalities in {1, 4, 6, 12, 24}.

The k-complete graph model is a complete graph with
k2 vertices. Figure 4 (right) depicts an instance for k =
3. Here, the generating set of G computed by Saucy
is {(b c), (b d), (b e), (b f), (b g), (b h), (b i), (a b)} and
|G| = 9! = 362880. The permutation group G parti-
tions the set {0, 1}9 in 10 orbits with each orbit having
a cardinality in {1, 9, 36, 84, 126}.

Saucy needed at most 5 ms to compute the sets of gen-
erators for the permutation groups of the three models
for k = 6. We generated samples of the probability
measure πλ on I(G) for λ = 1 and the three differ-
ent graph topologies by running (a) the insert/delete
chain, (b) the insert/delete/drag chain [13], and (c)
the orbital insert/delete chain. Each chain was started
in the state corresponding to the empty set and no
burn-in period was used. The orbital insert/delete
chain did not require more RAM and needed 50 mi-
croseconds per sample which amounts to an overhead
of about 25% relative to the 40 microseconds of the
insert/delete chain. The 25% overhead remained con-
stant and independent of the size of the graphs. Since
the sampling algorithms create large files with all ac-
cumulated samples, I/O overhead is included in these
times. For each of the three topologies and each of the
three Gibbs samplers, we computed the total variation
distance between the distribution approximated using
all accumulated samples and the true distribution π1.
Figure 5 plots the total variation distance over elapsed
time for the k-grid model for k = 5 and k = 6. The
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Figure 7: The results of the three Gibbs samplers for
the 5-complete graph model.

orbital insert/delete chain (Orbital Gibbs) converges
the fastest. The insert/delete/drag chain (Drag Gibbs)
converges faster than the insert/delete chain (Gibbs)
but since there is a small computational overhead of
the insert/delete/drag chain the difference is less pro-
nounced for k = 6. The same results are observable
for the other graph topologies (see Figures 6 and 7)
where the orbital Markov chain outperforms the oth-
ers. In summary, the larger the cardinalities of the
orbits induced by the symmetries the faster converges
the orbital Gibbs sampler relative to the other chains.

6 Discussion

The mindful reader might have recognized a similarity
to lumping of Markov chains which amounts to parti-
tioning the state space of the chain [5]. Computing the
coarsest lumping quotient of a Markov chain with a bi-
simulation procedure is linear in the number of non-
zero probability transitions of the chain and, hence,
in most cases exponential in the number of random
variables. Since merely counting equivalence classes
in the Pólya theory setting is a #P-complete prob-
lem [18] there are clear computational limitations to
this approach. Orbital Markov chains, on the other
hand, combine the advantages of a compact represen-
tation of symmetries as generating sets of permutation
groups with highly efficient product replacement algo-
rithms and, therefore, provide the advantages of lump-
ing while avoiding the intractable explicit computation
of the partition of the state space.

One can apply orbital Markov chains to other graph-
ical models that exhibit symmetries such as the Ising
model. Since Markov chains in general and Gibbs sam-
plers in particular are components in numerous algo-



rithms (cf. [43, 20, 38, 19, 23, 3]), we expect orbital
Markov chains to improve the algorithms’ performance
when applied to problems that exhibit symmetries.
For instance, sampling algorithms for statistical rela-
tional languages are obvious candidates for improve-
ment. Future work will include the integration of or-
bital Markov chains with algorithms for marginal as
well as maximum a-posteriori inference. We will also
apply the symmetry detection approach to make exist-
ing inference algorithms more efficient by, for instance,
using symmetry breaking constraints in combinatorial
optimization approaches to maximum a-posteriori in-
ference in Markov logic networks (cf. [39, 32, 33]).

While we have shown that permutation groups are
computable with graph automorphism algorithms for
a large class of models it is also possible to assume cer-
tain symmetries in the model in the same way (condi-
tional) independencies are assumed in the design stage
of a probabilistic graphical model. Orbital Markov
chains could easily incorporate these symmetries in
form of permutation groups.
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A Proof of Theorem 4.2

We first prove (a). Since M′ is aperiodic we have, for
each state x ∈ Ω and every time step t ≥ 0, a non-
zero probability for the Markov chainM′ to remain in
state x at time t + 1. At each time t + 1, the orbital
Markov chain transitions uniformly at random to one
of the states in the orbit of the original chain’s state at
time t + 1. Since every state is an element of its own
orbit, we have, for every state x ∈ Ω and every time
step t ≥ 0, a non-zero probability for the Markov chain
M to remain in state x at time t + 1. Hence, M is
aperiodic. The proof of statement (b) is accomplished
in an analogous fashion and omitted.

Let P (x, y) and P ′(x, y) be the probabilities ofM and
M′, respectively, to transition from state x to state
y. Since π is a reversible distribution for M′ we have
that π(x)P ′(x, y) = π(y)P ′(y, x) for all states x, y ∈ Ω.
For every state x ∈ Ω let xG be the orbit of x. Let
Gx := {g ∈ G | xg = x} be the stabilizer subgroup of
x with respect to G. We have that∑

g∈G

P ′(x, yg) =
∑
y′∈yG

|Gy′ |P ′(x, y′)

= |Gy|
∑
y′∈yG

P ′(x, y′)

= (|G|/|yG|)
∑
y′∈yG

P ′(x, y′)

(1)

where the last two equalities follow from the
orbit-stabilizer theorem. We will now prove that
π(x)P (x, y) = π(y)P (y, x) for all states x, y ∈ Ω. By
definition of the orbital Markov chain we have that
π(x)P (x, y) = π(x)(1/|yG|)

∑
y′∈yG P

′(x, y′) and, by

equation (1), π(x)(1/|yG|)
∑
y′∈yG P

′(x, y′)

= π(x)(1/|yG|)(|yG|/|G|)
∑
g∈G

P ′(x, yg)

= π(x)(1/|G|)
∑
g∈G

P ′(x, yg)

= (1/|G|)
∑
g∈G

π(x)P ′(x, yg).

Since P ′ is reversible and π(x) = π(xg) for all
g ∈ G we have (1/|G|)

∑
g∈G π(x)P ′(x, yg) =

(1/|G|)
∑

g∈G π(yg)P ′(yg, x) =
π(y)(1/|G|)

∑
g∈G P

′(yg, x). Now, since P ′(x, y) =
P ′(xg, yg) for all x, y ∈ Ω and all g ∈ G by assump-
tion, we have that π(y)(1/|G|)

∑
g∈G P

′(yg, x) =

π(y)(1/|G|)
∑

g∈G P
′(y, x−g) =

π(y)(1/|G|)
∑

g∈G P
′(y, xg) and, again by equa-

tion (1), π(y)(1/|G|)
∑

g∈G P
′(y, xg)

= π(y)(1/|G|)(|G|/|xG|)
∑
x′∈xG

P ′(y, x′)

= π(y)(1/|xG|)
∑
x′∈xG

P ′(y, x′) = π(y)P (y, x). �

B Proof of Theorem 4.6

Let H : Ω×Ω→ N be the Hamming distance between
any two elements in Ω. We provide a path coupling
argument on the set of pairs having Hamming distance
1. Let X and Y be two independent sets which differ
only at one vertex v with degree d. We assume, with-
out loss of generality, that v ∈ X \Y . Choose a vertex
w uniformly at random. We distinguish five cases:

(i) if w = v then sample one g ∈ G uniformly at
random and let (X ′, Y ′) = (Xg, Xg) with proba-
bility λ/(1+λ), otherwise let (X ′, Y ′) = (Y g, Y g);
Hence, H(X ′, Y ′) = 0 with probability 1.

(ii) if w 6= v and w ∈ X then sample one g ∈ G
uniformly at random and let (X ′, Y ′) = ((X \
{w})g, (Y \{w})g) with probability 1/(1+λ), oth-
erwise let (X ′, Y ′) = (Xg, Y g). In both cases, we
have that H(X ′, Y ′) = 1.

(iii) if w 6= v, w /∈ X and w has no neighbor in X then
sample one g ∈ G uniformly at random and let
(X ′, Y ′) = ((X ∪ {w})g, (Y ∪ {w})g) with proba-
bility λ/(1+λ), otherwise let (X ′, Y ′) = (Xg, Y g);
In both cases, we have that H(X ′, Y ′) = 1.

(iv) if w 6= v, w /∈ X and w has a neighbor in X but
not in Y, then sample one g ∈ G uniformly at ran-
dom. Let G′ := {g′ ∈ G | Xg = (Y ∪ {w})g′}.
If G′ 6= ∅ then sample one g′ ∈ G′ uniformly
at random and let (X ′, Y ′) = (Xg, (Y ∪ {w})g′

)
with probability λ/(1 + λ). In this case we have
H(X ′, Y ′) = 0. If G′ = ∅ then let (X ′, Y ′) =
(Xg, (Y ∪{w})g) with probability λ/(1+λ). Here
we have H(X ′, Y ′) = 2. Otherwise let (X ′, Y ′) =
(Xg, Y g). Here, we have H(X ′, Y ′) = 1.

(v) in all other cases sample one g ∈ G uniformly at
random and let (X ′, Y ′) = (Xg, Y g). Here we
have with probability 1 that H(X ′, Y ′) = 1.

In summary, we have that

E[H(X ′, Y ′)− 1] ≤ − 1

n
+ %(2ρ− 1)

λ

(1 + λ)

where % = Pr[w 6= v, w /∈ X, and w has a neighbor in
X but not in Y ] and ρ = Pr[X /∈ (Y ∪ {w})G | w 6= v,
w /∈ X, and w has a neighbor in X but not in Y ]. If
ρ ≤ 0.5 we have that E[H(X ′, Y ′)−1] ≤ − 1

n otherwise
we have that E[H(X ′, Y ′)− 1] ≤

− 1

n
+
d

n
(2ρ− 1)

λ

(1 + λ)
≤ − 1

n
+

∆

n
(2ρ− 1)

λ

(1 + λ)
.

Hence, M(I(G)) mixes rapidly if either ρ ≤ 0.5 or
λ((2ρ − 1)∆ − 1) < 1. For λ((2ρ − 1)∆ − 1) = 1
one can verify that there exists an α > 0 such that
Pr[H(Xt+1, Yt+1) 6= H(Xt, Yt)] ≥ α for all t. �


