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Abstract

Many latent (factorized) models have been
proposed for recommendation tasks like col-
laborative filtering and for ranking tasks like
document or image retrieval and annotation.
Common to all those methods is that dur-
ing inference the items are scored indepen-
dently by their similarity to the query in the
latent embedding space. The structure of the
ranked list (i.e. considering the set of items
returned as a whole) is not taken into ac-
count. This can be a problem because the
set of top predictions can be either too di-
verse (contain results that contradict each
other) or are not diverse enough. In this pa-
per we introduce a method for learning latent
structured rankings that improves over ex-
isting methods by providing the right blend
of predictions at the top of the ranked list.
Particular emphasis is put on making this
method scalable. Empirical results on large
scale image annotation and music recommen-
dation tasks show improvements over existing
approaches.

1 INTRODUCTION

Traditional latent ranking models score the ith item
di ∈ RD given a query q ∈ RD using the following
scoring function:

f(q, di) = q>Wdi = q>U>V di, (1)

where W = U>V has a low rank parameterization,
and hence q>U> can be thought of as the latent rep-
resentation of the query and V di is equivalently the
latent representation for the item. The latent space
is n-dimensional, where n � D, hence U and V are
n ×D dimensional matrices. This formulation covers
a battery of different algorithms and applications.

For example, in the task of collaborative filtering, one
is required to rank items according to their similarity
to the user, and methods which learn latent represen-
tations of both users and items have proven very ef-
fective. In particular, Singular Value Decomposition
(SVD) (Billsus and Pazzani, 1998; Bell et al., 2009)
and Non-negative Matrix Factorization (NMF) (Lee
and Seung, 2001) are two standard methods that at
inference time use equation (1), although the meth-
ods to learn the actual parameters U and V them-
selves are different. In the task of document retrieval,
on the other hand, one is required to rank text docu-
ments given a text query. The classical method Latent
Semantic Indexing (LSI) (Deerwester et al., 1990) is
an unsupervised approach that learns from documents
only, but still has the form of equation (1) at test time.
More recently, supervised methods have been proposed
that learn the latent representation from (query, doc-
ument) relevance pairs, e.g. the method Polynomial
Semantic Indexing (SSI) (Bai et al., 2009). Finally,
for multiclass classification tasks, particularly when
involving thousands of possible labels, latent models
have also proven to be very useful, e.g. the Wsabie
model achieves state-of-the-art results on large-scale
image (Weston et al., 2011) and music (Weston et al.,
2012) annotation tasks. Moreover, all these models
not only perform well but are also efficient in terms of
computation time and memory usage.

Scoring a single item as in equation (1) is not the end
goal of the tasks described above. Typically for re-
comendation and retrieval tasks we are interested in
ranking the items. This is achieved by, after scoring
each individual item using f(q, di), sorting the scores,
largest first, to produce a ranked list. Further, typi-
cally only the top few results are then presented to the
user, it is thus critical that the method used performs
well for those items. However, one potential flaw in
the models described above is that scoring items indi-
vidually as in eq. (1) does not fully take into account
the joint set of items at the top of the list (even when
optimizing top-of-the-ranked-list type loss functions).



The central hypothesis of this paper is that latent
ranking methods could be improved if one were to take
into account the structure of the ranked list during in-
ference. In particular this would allow the model to
make sure there is the right amount of consistency and
diversity in the predictions.

Let us suppose for a given query that some of the pre-
dictions at the top of the ranked list are accurate and
some are inaccurate. A model that improves the con-
sistency of the predictions might improve overall accu-
racy. A structured ranking model that predicts items
dependent on both the query and other items at the
top of the ranked list can achieve such a goal. To give
a concrete example, in a music recommendation task
you might not want to recommend both “heavy metal”
and “60s folk” in the same top k list. In that case, a
structured model which encodes item-item similarities
as well as query-item similarities could learn this by
representing those two items with very different latent
embedding vectors such that their pairwise item-item
contribution is a large negative value, penalizing both
items appearing in the top k. Note that a structured
ranking model can do this despite the possibility that
both items are a good match to the query, so an un-
structured model would find this difficult to achieve.

Conversely, if improved results are gained from encour-
aging the top ranked items to be a rather diverse set for
a particular query, then a structured model can learn
to predict that instead. For example in the task of doc-
ument retrieval, for ambiguous queries like “jaguar”,
which may refer either to a Panthera or to the car man-
ufacturer, diversity should be encouraged. The goal of
a structured ranker is to learn the optimal tradeoff be-
tween consistency and diversity on a case-by-case (per
query) basis. As latent parameters are being learnt for
each query type this is indeed possible.

In this work we propose a latent modeling algorithm
that attempts to do exactly what we describe above.
Our model learns to predict a ranked list that takes
into account the structure of the top ranked items by
learning query-item and item-item components. Infer-
ence then tries to find the maximally scoring set of doc-
uments. It should be noted that while there has been
strong interest in building structured ranking models
recently (Bakir et al., 2007), to our knowledge this is
the first approach of this type to do so for latent mod-
els. Further, the design of our algorithm is also partic-
ularly tuned to work on large scale datasets which are
the common case for latent models, e.g. in collabora-
tive filtering and large scale annotation and ranking
tasks. We provide empirical results on two such large
scale datasets, on a music recommendation task, and
an image annotation task, that show our structured
method brings accuracy improvements over the same

method without structure as well as other standard
baselines. We also provide some analysis of why we
think this is happening.

The rest of the paper is as follows. Section 2 describes
our method, Latent Structured Ranking (LaSR). Sec-
tion 3 discusses previous work and connects them to
our method. Section 4 describes our empirical results
and finally Section 5 concludes.

2 METHOD

Given a query q ∈ Q our task is to rank a set of doc-
uments or items D. That is, we are interested in out-
putting (and scoring) a permutation d̄ of the set D,
where d̄j is the jth item in the predicted ranked list.
Our ultimate goal will be to design models which take
into account not just individual document scores but
the (learned) relative similarities of documents in dif-
ferent positions as well.

2.1 SCORING PERMUTATIONS BY
SCORING INDIVIDUAL ITEMS

Let us begin by proposing methods for using the stan-
dard latent model of eq. (1) to score permutations.
We need a method for transforming the scores for
single documents into scores for permutations. Such
transformations have been studied in several previous
works, notably (Le and Smola, 2007). They show that
finding maximally scoring permutations from single
documents can be cast as a linear assignment prob-
lem, solvable in polynomial time with the Hungarian
algorithm.

For the vanilla model we propose here, however, we can
use a simple parameterization which allows for infer-
ence by sorting. For any given permutation we assign
a score as follows:

fvanilla(q, d̄) =
|d̄|∑
i=1

wi(q>U>V d̄i), (2)

where for each position i in the permutation, we asso-
ciate a weight wi, where wi can be any weights such
that w1 > w2 > · · · > w|d̄| ≥ 0. For example, one can
just set wi = 1

i . Inference using this model is then
performed by calculating:

Fvanilla(q) = argmaxd̄′ [fvanilla(q, d̄′)].

In this case, computing the best-scoring assignment is
simply a matter of sorting documents by their scores
from eq. (1). To see this note that the score of any
unsorted pair can be increased by sorting, since the
positional weights wi are fixed and decreasing.



2.2 LATENT STRUCTURED RANKING

The fundamental hypothesis of this paper is that in-
cluding knowledge about the structure of the rankings
at inference time will improve the overall set of ranked
items. That is, we want to define a model where the
score of a document d̄i does not only depend on the
query q but also on the other items and their respec-
tive positions as well. What is more, we would prefer
a model that places more weight on the top items in
a permutation (indeed, this is reflected by common
ranking losses like MAP and precision@k).

This leads us to propose the following class of Latent
Structured Ranking (LaSR) models:

flsr(q, d̄) =
|d̄|∑
i=1

wi(q>U>V d̄i)+
|d̄|∑

i,j=1

wiwj(d̄>i S>Sd̄j) .

(3)
In addition to the parameters of eq. (2), we now intro-
duce the additional parameter S. S takes into account
the structure of the predicted ranked list. S>S is a low
rank matrix of item-item similarities where S is a n×D
matrix, just like U and V , and must also be learnt by
the model using training data.

2.3 CHOICE OF THE wi PARAMETERS

The weights w are crucial to the usefulness of the ma-
trix in the second term of eq. (3). If wi = 1 for all i
then the entire second term would always be the same
no matter what choice of ranking d̄ one chooses. If the
position weights wi are decreasing, however, then the
structural term S is particularly meaningful at the top
of the list.

As suggested before in Section 2.1 we could choose
wi = 1

i . In that case the items that are at the top
of the predicted ranked list dominate the overall score
from the second term. In particular, the pairwise item-
item similarities between items in the top-ranked po-
sitions play a role in the overall choice of the entire
ranked list d̄. Our model can hence learn the consis-
tency vs. diversity tradeoff within the top k we are
interested in.

However, if one knows in advance the number of items
one wishes to show to the user (i.e. the top k) then one
could choose directly to only take into account those
predictions:

wi = 1/i, if i ≤ k, and 0 otherwise. (4)

As we will see this also has some computational ad-
vantages due to its sparsity, and will in fact be our
method of choice in the algorithm we propose.

2.4 MODEL INFERENCE

At test time for a given query we need to compute:

Flsr(q) = argmaxd̄′ [flsr(q, d̄′)]. (5)

Just as inference in the vanilla model can be cast as
a linear assignment problem, inference in the LaSR
model can be cast as a quadratic assignment prob-
lem (Lacoste-Julien et al., 2006). This is known to be
NP hard, so we must approximate it. In this section,
we briefly discuss several alternatives.

• Linear programming relaxation: Since we know
we can cast our problem as quadratic assign-
ment, we could consider directly using the linear
programming relaxation suggested by (Lacoste-
Julien et al., 2006). In our experiments, however,
we have tens of thousands of labels. Solving even
this relaxed LP per query is computationally in-
feasible for problems of this size. We note that
Wsabie’s (Weston et al., 2011) sampling-based
technique is an attempt to overcome even linear
time inference for this problem.

• Greedy structured search: we could also consider
a greedy approach to approximately optimizing
eq. (5) as follows: (i) pick the document d̄1 ∈ D
that maximizes:

fgreedy(q, d̄1) = w1(qU>V d̄1) + (w1)2(d̄>1 S>Sd̄1)
(6)

and then fix that document as the top ranked pre-
diction. (ii) Find the second best document de-
pendent on the first, by maximizing (for N = 2):

fgreedy(q, d̄N ) = wN (qU>V d̄N )q

+
N∑

i=1

wiwN (d̄>i S>Sd̄N ).

Finally, (iii) repeat the above, greedily adding one
more document each iteration by considering the
above equation for N = 3, . . . , k up to the number
of desired items to be presented to the user.

This method has complexity O(k2|D|). Its biggest
drawback is that the highest-scoring document is
chosen using the vanilla model. Even if we could
improve our score by choosing a different docu-
ment, taking into account the pairwise scores with
other permutation elements, this algorithm will
not take advantage of it. Another way to look at
this is, precision@1 would be no better than using
the vanilla model of eq. (1).

The greedy procedure also permits beam search
variants. Using a beam of M candidates this gives



a complexity of O(Mk2|D|). This is tractable at
test time, but the problem is that during (online)
learning one would have to run this algorithm per
query, which we believe is still too slow for the
cases we consider here.

• Iterative search: Motivated by the defects in
greedy search and LP relaxation, we propose one
last, iterative method. This method is analo-
gous to inference by iterated conditional modes
in graphical models (Besag, 1986). (i) On iter-
ation t = 0 predict with an unstructured model
(i.e. do not use the second term involving S):

fiter:t=0(q, d̄) =
|d̄|∑
i=1

wi(qU>V d̄i). (7)

As mentioned before, computing the best ranking
d̄ just involves sorting the scores qU>V di and or-
dering the documents, largest first. Utilizing the
sparse choice of wi = 1/i, if i ≤ k, and 0 otherwise
described in Section 2.3 we do not have to sort the
entire set, but are only required to find the top k
which can be done in O(|D| log k) time using a
heap. Let us denote the predicted ranked list as
d̄0 and in general on each iteration t we are going
to make predictions d̄t. (ii) On subsequent itera-
tions, we maximize the following scoring function:

fiter:t>0(q, d̄) =
|d̄|∑
i=1

wi(qU>V d̄i)

+
|d̄|∑

i,j=1

wiwj(d̄>i S>Sd̄t−1
j ). (8)

As d̄t−1 is now fixed on iteration t, the per-
document di scores

(qU>V d̄i) +
|d̄|∑

j=1

wj(d̄>i S>Sd̄t−1
j ) (9)

are now independent of each other. Hence, they
can be calculated individually and, as before, can
be sorted or the top k can be found, dependent
on the choice of w. If we use the sparse w of eq.
(4) (which we recommend) then the per-document
scores are also faster to compute as we only re-
quire:

(qU>V d̄i) +
k∑

j=1

wj(d̄>i S>Sd̄t−1
j ).

Overall this procedure then has complexity
O(Tk|D|) when running for T steps. While this
does not look at first glance to be any faster than
the greedy or beam search methods at testing
time, it has important advantages at training time
as we will see in the next section.

2.5 LEARNING

We are interested in learning a ranking function where
the top k retrieved items are of particular interest as
they will be presented to the user. We wish to optimize
all the parameters of our model jointly for that goal.
As the datasets we intend to target are large scale,
stochastic gradient descent (SGD) training seems a vi-
able option. However, during training we cannot af-
ford to perform full inference during each update step
as otherwise training will be too slow. A standard
loss function that already addresses that issue for the
unstructured case which is often used for retrieval is
the margin ranking criterion (Herbrich et al., 2000;
Joachims, 2002). In particular, it was also used for
learning factorized document retrieval models in Bai
et al. (2009). The loss can be written as:

errAUC =
m∑

i=1

∑
d− 6=di

max(0, 1− f(qi, di) + f(qi, d
−)).

(10)
For each training example i = 1, . . . ,m, the posi-
tive item di is compared to all possible negative items
d− 6= di, and one assigns to each pair a cost if the neg-
ative item is larger or within a “margin” of 1 from the
positive item. These costs are called pairwise viola-
tions. Note that all pairwise violations are considered
equally if they have the same margin violation, inde-
pendent of their position in the list. For this reason
the margin ranking loss might not optimize the top k
very accurately as it cares about the average rank.

For the standard (unstructured) latent model case,
the problem of optimizing the top of the rank list
has also recently been addressed using sampling tech-
niques (Weston et al., 2011) in the so-called WARP
(Weighted Approximately Ranked Pairwise) loss. Let
us first write the predictions of our model for all items
in the database as a vector f̄(q) where the ith element
is f̄i(q) = f(q, di). One then considers a class of rank-
ing error functions:

errWARP =
m∑

i=1

L(rankdi(f̄(qi))) (11)

where rankdi
(f̄(qi)) is the margin-based rank of the

labeled item given in the ith training example:

rankdi(f̄(q)) =
∑
j 6=i

θ(1 + f̄j(q) ≥ f̄i(q)) (12)

where θ is the indicator function, and L(·) transforms
this rank into a loss:

L(r) =
r∑

i=1

αi, with α1 ≥ α2 ≥ · · · ≥ 0. (13)



The main idea here is to weight the pairwise viola-
tions depending on their position in the ranked list.
Different choices of α define different weights (impor-
tance) of the relative position of the positive examples
in the ranked list. In particular it was shown that by
choosing αi = 1/i a smooth weighting over positions is
given, where most weight is given to the top position,
with rapidly decaying weight for lower positions. This
is useful when one wants to optimize precision at k for
a variety of different values of k at once Usunier et al.
(2009). (Note that choosing αi = 1 for all i we have
the same AUC optimization as equation (10)).

We can optimize this function by SGD following the
authors of Weston et al. (2011), that is samples are
drawn at random, and a gradient step is made for each
draw. Due to the cost of computing the exact rank
in (11) it is approximated by sampling. That is, for
a given positive label, one draws negative labels until
a violating pair is found, and then approximates the
rank with

rankd(f̄(q)) ≈
⌊
|D| − 1

N

⌋

where b.c is the floor function, |D| is the number of
items in the database and N is the number of trials
in the sampling step. Intuitively, if we need to sample
more negative items before we find a violator then the
rank of the true item is likely to be small (it is likely
to be at the top of the list, as few negatives are above
it).

This procedure for optimizing the top of the ranked
list is very efficient, but it has a disadvantage with
respect to structured learning: we cannot simply sam-
ple and score items any longer as we need to somehow
score entire permutations. In particular, it is not di-
rectly applicable to several of the structured prediction
approaches like LP, greedy or beam search. That is be-
cause we cannot compute the score of f̄i independently
because they depend on the ranking of all documents,
which then makes the sampling scheme invalid. How-
ever, for (a variant of) the iterative algorithm which
we described in the previous section the WARP (or
AUC) technique can still be used.

The method is as follows. In the first iteration the
model scores in eq. (7) are independent and so we
can train using the WARP (or AUC) loss. We then
have to compute d̄0 (the ranking of items) for each
training example for use in the next iteration. Note
that using the sparse w of eq. (4) this is O(D log k) to
compute, and storage is also only a |D| × k matrix of
top items. After computing d̄0, in the second iteration
we are again left with independent scoring functions
f̄i as long as we make one final modification, instead

Algorithm 1 LaSR training algorithm
Input: Training pairs {(qi, di)}i=1,...,l.
Initialize model parameters Ut, Vt and St (we use
mean 0, standard deviation 1√

d
) for each t.

for t = 0, . . . , T do
repeat

if t = 0 then
f(q, d) = qU>

0 V0d.
else

f(q, d) = qU>
t Vtd +

∑k
j=1 wjd

>S>t Std̄
t−1
j

end if
Pick a random training pair (q, d+).
Compute f(q, d+).
Set N = 0.
repeat

Pick a random document d− ∈ D, d 6= di.
Compute f(q, d−).
N = N + 1.

until f(q+, d+) < f(q+, d−)+1 or N ≥ |D|−1
if f(q+, d+) < f(q+, d−) + 1 then

Make a gradient step to minimize:
L(

⌊
|D|−1

N

⌋
) max(1−f(q+, d+)+f(q+, d−), 0).

Project weights to enforce constraints,
i.e. if ||Uti|| > C then Uti ← (CUti)/||Uti||,

i = 1, . . . , D (and likewise for Vt and St).
end if

until validation error does not improve.
For each training example, compute the top k
ranking documents d̄t

i, i = 1, . . . , k for iteration
t using f(q, d) defined above.

end for

of using eq. (8) we instead use:

fiter:t>0(q, d̄) =
|d̄|∑
i=1

wi(qU>
t Vtd̄i)

+
|d̄|∑

i,j=1

wiwj(d̄>i S>t Std̄
t−1
j ). (14)

on iteration t, where Ut, Vt and St are separate matri-
ces for each iteration. This decouples the learning at
each iteration. Essentially, we are using a cascade-like
architecture of t models trained one after the other.
Note that if a global optimum is reached for each t
then the solution should always be the same or im-
prove over step t − 1, as one could pick the weights
that give exactly the same solution as for step t− 1.

So far, the one thing we have failed to mention is reg-
ularization during learning. One can regularize the
parameters by preferring smaller weights. We con-
strain them using ||Sti|| ≤ C, ||Uti|| ≤ C, ||Vti|| ≤ C,
i = 1, . . . , |D|. During SGD one projects the parame-
ters back on to the constraints at each step, following



the same procedure used in several other works, e.g.
Weston et al. (2011); Bai et al. (2009). We can opti-
mize hyperparameters of the model such as C and the
learning rate for SGD using a validation set.

Overall, our preferred version of Latent Structured
Ranking that combines all these design decisions is
given in Algorithm 1.

3 PRIOR WORK

In the introduction we already mentioned several la-
tent ranking methods: SVD (Billsus and Pazzani,
1998; Bell et al., 2009), NMF (Lee and Seung, 2001),
LSI (Deerwester et al., 1990), PSI (Bai et al., 2009)
and Wsabie (Weston et al., 2011). We should men-
tion that many other methods exist as well, in partic-
ular probabilistic methods like pLSA (Hofmann, 1999)
and LDA (Blei et al., 2003). None of those methods,
whether they are supervised or unsupervised, take into
the structure of the ranked list as we do in this work,
and we will use several of them as baselines in our
experiments.

There has been a great deal of recent work on struc-
tured output learning (Bakir et al., 2007), particularly
for linear or kernel SVMs (which are not latent embed-
ding methods). In methods like Conditional Random
Fields (Lafferty et al., 2001), SVM-struct (Tsochan-
taridis et al., 2004) LaSO (Daumé III and Marcu,
2005) and SEARN (Daumé et al., 2009) one learns
to predict an output which has structure, e.g. for se-
quence labeling, parse tree prediction and so on. Pre-
dicting ranked lists can also be seen in this framework.
In particular LaSO (Daumé III and Marcu, 2005) is
a general approach that considers approximate infer-
ence using methods like greedy approximation or beam
search that we mentioned in Section 2.4. As we said
before, due to the large number of items we are rank-
ing many of those approaches are infeasible. In our
method, scalabality is achieved using a cascade-like
training setup, and in this regard is related to (Weiss
et al., 2010). However, unlike that work, we do not
use it to prune the set of items considered for ranking,
we use it to consider pairwise item similarities.

The problem of scoring entire permutations for rank-
ing is well-known and has been investigated by many
authors (Yue et al., 2007a,b; Le and Smola, 2007; Xia
et al., 2008). These works have primarily focused on
on using knowledge of the structure (in this case the
predicted positions in the ranked list) in order to op-
timize the right metric, e.g. MAP or precision@k.
In that sense, methods like Wsabie which uses the
WARP loss already use structure in the same way. In
our work we also optimize top-of-the-ranked-list met-
rics by using WARP, but in addition we also use the

ranking structure to make predictions dependent on
the query and the other predicted items during infer-
ence by encoding this in the model itself. That is, in
our work we explicitly seek to use (and learn) inter-
document similarity measures.

There has been work on taking into account inter-
document similarities during ranking. The most fa-
mous and prominent idea is pseudo-relevance feed-
back via query expansion (Rocchio, 1971). Pseudo-
relevance works by doing normal retrieval (e.g. us-
ing cosine similarity in a vector space model), to find
an initial set of most relevant documents, and then
assuming that the top k ranked documents are rele-
vant, and performing retrieval again by adjusing the
cosine similarity based on previously retrieved docu-
ments. In a sense, LaSR is also a pseudo-relevance
feedback technique, but where inter-document simi-
larities are learned to minimize ranking loss.

More recently, some authors have investigated incorpo-
rating inter-document similarity during ranking. Qin
et al. (2008) have investigated incorporating a fixed
document-document similarity feature in ranking. In
their work, however, they did not score permutations.
Instead, each document was associated with a rele-
vance score and the authors treated learning as a struc-
tured regression problem. For a situation with implicit
feedback, Raman et al. (2012) investigate an inference
technique similar to our greedy algorithm. Volkovs
and Zemel (2009) also explored listwise ranking us-
ing pairwise document interactions in a probabilistic
setup. To the best of our knowledge, however, none
of these methods investigate a learned inter-document
similarity (i.e. latent parameters for that goal), which
is the most powerful feature of LaSR.

4 EXPERIMENTS

We considered two large scale tasks to test our pro-
posed method. The first is a music recommenda-
tion task with over 170,000 artists (possible queries
or items) and 5 million training pairs. The second is a
task of large scale image annotation with over 15,000
labels and 7 million training examples.

4.1 MUSIC RECOMMENDATION TASK

The first task we conducted experiments on is a large
scale music recommendation task. Given a query
(seed) artist, one has to recommend to the user other
artists that go well together with this artist if one were
listening to both in succession, which is the main step
in playlisting and artist page recommendation on sites
like last.fm, music.google.com and programs such
as iTunes and http://the.echonest.com/.



Table 1: Recommendation Results on the music rec-
ommendation task. We report for recall at 5, 10, 30
and 50 for our method and several baselines.

Method R@5 R@10 R@30 R@50
NMF 3.76% 6.38% 13.3% 17.8%
SVD 4.01% 6.93% 13.9% 18.5%
LaSR (t = 0) 5.60% 9.49% 18.9% 24.8%
LaSR (t = 1) 6.65% 10.73% 20.1% 26.7%
LaSR (t = 2) 6.93% 10.95% 20.3% 26.5%

Table 2: Changing the embedding size on the music
recommendation task. We report R@5 for various di-
mensions n.

Method n = 25 50 100 200
NMF 2.82% 3.76% 3.57% 4.82%
SVD 3.61% 4.01% 4.53% 5.28%
LaSR (t = 0) 5.23% 5.60% 6.24% 6.42%

We used the “Last.fm Dataset - 1K users” dataset
available from http://www.dtic.upf.edu/∼ocelma/
MusicRecommendationDataset/lastfm-1K.html.
This dataset contains (user, timestamp, artist, song)
tuples collected from the Last.fm (www.lastfm.com)
API, representing the listening history (until May
5th, 2009) for 992 users and 176,948 artists. Two
consecutively played artists by the same user are
considered as a (query, item) pair. Hence, both qi and
di are D = 176, 948 sparse vectors with one non-zero
value (a one) indicating which artist they are. One
in every five days (so that the data is disjoint) were
left aside for testing, and the remaining data was
used for training and validation. Overall this gave
5,408,975 training pairs, 500,000 validation pairs (for
hyperparameter tuning) and 1,434,568 test pairs.

We compare our Latent Structured Ranking approach
to the same approach without structure by only per-
forming one iteration of Algorithm 1. We used k = 20
for eq. (4). We also compare to two standard methods
of providing latent recommendations, Singular Value
Decomposition (SVD) and Non-negative Matrix Fac-
torization (NMF). For SVD the Matlab implemen-
tation is used, and for NMF the implementation at
http://www.csie.ntu.edu.tw/∼cjlin/nmf/ is used.

Main Results We report results comparing NMF,
SVD and our method, Latent Structured Ranking
(LaSR) in Table 1. For every test set (query, item)
pair we rank the document set D according to the
query and record the position of the item in the ranked
list. We then measure the recall at 5, 10, 30 and 50.
(Note that because there is only one item in the pair,
precision at k is equal to recall@k divided by k.) We
then average the results over all pairs. For all meth-

ods the latent dimension n = 50. For LaSR, we give
results for iterations t = 0, . . . , 2, where t = 0 does
not use the structure. LaSR with t = 0 already out-
performs SVD and NMF. LaSR optimizes the top of
the ranked list at training time (via the WARP loss),
whereas SVD and NMF do not, which explains why it
can perform better here on top-of-the-list metrics. We
tested LaSR t = 0 using the AUC loss (10) instead of
WARP (11) to check this hypothesis and we obtained
a recall at 5, 10, 30 and 50 of 3.56%, 6.32%, 14.8%
and 20.3% respectively which are slightly worse, than,
but similar to SVD, thus confirming our hypothesis.
For LaSR with t = 1 and t = 2 our method takes into
account the structure of the ranked list at inference
time, t = 1 outperforms iteration t = 0 that does not
use the structure. Further slight gains are obtained
with another iteration (t = 2).

Changing the Embedding Dimension The re-
sults so far were all with latent dimension n = 50. It
could be argued that LaSR with t > 0 has more capac-
ity (more parameters) than competing methods, and
those methods could have more capacity by increasing
their dimension n. We therefore report results for var-
ious embedding sizes (n = 10, 25, 50, 100) in Table 2.
The results show that LaSR (t = 0) consistently out-
performs SVD and NMF for all the dimensions tried,
but even with 200 dimensions, the methods that do not
use structure (SVD, NMF and LaSR t = 0) are still
outperformed by LaSR that does use structure (t > 0)
even with n = 50 dimensions.

Analysis of Predictions We give two example
queries and the top ranked results for LaSR with and
without use of structure ((t = 0) and (t = 1)) in Table
3. The left-hand query is a popular artist “Bob Dy-
lan”. LaSR (t = 0) performs worse than (t = 1) with
“Wilco” in positon 1 - the pair (“Bob Dylan”,“Wilco”)
only appears 10 times in the test set, whereas (“Bob
Dylan”, “The Beatles”) appears 40 times, and LaSR
(t = 1) puts the latter in the top position. In general
t = 1 improves the top ranked items over t = 0, re-
moving or demoting weak choices, and promoting some
better choices. For example, “Sonic Youth” which is
a poor match is demoted out of the top 20. The sec-
ond query is a less popular artist “Plaid” who make
electronic music. Adding structure to LaSR again im-
proves the results in this case by boosting relatively
more popular bands like “Orbital” and “µ − ziq”,
and relatively more related bands like “Four-Tet” and
“Squarepusher”, whilst demoting some lesser known
bands.



Table 3: Music Recommendation results for our method LaSR with (t = 1) and without (t = 0) using the
structure. We show top ranked results for a popular query, “Bob Dylan” (folk rock music) and a less popular
query “Plaid” (electronic music). Total numbers of train and test pairs for given artist pairs are in square
brackets, and totals for all artists shown are given in the last row. Artists where the two methods differ are
labeled with an asterisk. Adding structure improves the results, e.g. unrelated bands like “Sonic Youth” are
demoted in the “Bob Dylan” query, and relatively more popular bands like Orbital and µ−ziq and more related
bands like Four-Tet and Squarepusher are boosted for the “Plaid” query.

LaSR t = 0 (no structure) LaSR t = 1 (structured ranking)
Query: Bob Dylan Query: Bob Dylan
Wilco [53,10] The Beatles [179,40]
The Rolling Stones [40,9] Radiohead [61,16]
The Beatles [179,40] The Rolling Stones [40,9]
R.E.M. [35,12] Johnny Cash [49,11]
Johnny Cash [49,11] The Cure [38,10]
Beck [42,18] David Bowie [48,12]
David Bowie [48,12] Wilco [53,10]
Pixies [31,4] Pink Floyd* [30,8]
Belle And Sebastian [28,4] U2* [40,16]
The Beach Boys* [22,6] The Smiths [25,7]
The Cure [38,10] Sufjan Stevens [23,4]
Arcade Fire* [34,6] R.E.M. [35,12]
Radiohead [61,16] Belle And Sebastian [28,4]
Sonic Youth* [35,9] Beck [42,18]
Bruce Springsteen [41,11] The Shins* [22,13]
The Smiths [25,7] Pixies [31,4]
The Velvet Underground* [29,11] Ramones* [36,8]
Sufjan Stevens [23,4] Bruce Springsteen [44,11]
Tom Waits* [19,13] Death Cab For Cutie* [32,7]
(Train,Test) totals = [835,213] (Train,Test) totals = [856,220]

LaSR t = 0 (no structure) LaSR t = 1 (with structured ranking)
Query: Plaid Query: Plaid
Boards Of Canada [27,5] Boards Of Canada [27,5]
Autechre [13,1] Aphex Twin [9,3]
Aphex Twin [9,3] Autechre [13,1]
Biosphere [6,1] Biosphere [6,1]
Wagon Christ [3,1] Squarepusher [11,2]
Amon Tobin [6,3] Future Sound Of London [5,2]
Arovane [5,1] Four Tet* [6,2]
Future Sound Of London [5,2] Massive Attack* [4,2]
The Orb [3,2] Arovane [5,1]
Squarepusher [11,2] Air [9]
Bola [5,2] The Orb [3,2]
Chris Clark* [4,2] Isan [3,1]
Kettel* [3,0] Amon Tobin [6,3]
Ulrich Schnauss [7,1] Bola [5,2]
Apparat* [3,0] Orbital* [7,1]
Isan [3,1] Murcof [4]
Air [9] Ulrich Schnauss [7,1]
Clark* [0,0] Wagon Christ [3,1]
Murcof [4,0] µ-Ziq* [5,3]
(Train,Test) totals = [126,27] (Train,Test) totals = [138,33]

Table 4: Image Annotation Results comparing Wsabie with LaSR. The top 10 labels of each method is shown,
the correct label (if predicted) is shown in bold. In many cases LaSR can be seen to improve on Wsabie by
demoting bad predictions e.g. war paint, soccer ball, segway, denture, rottweiler, reindeer, tv-antenna, leopard
frog (one example from each of the first 8 images). In the last 3 images neither method predicts the right label
(armrest, night snake and heifer) but LaSR seems slightly better (e.g. more cat, snake and cow predictions).

Input Image Wsabie LaSR

workroom, life
office, war paint,
day nursery,

homeroom, salon,
foundling hospital,

teacher, sewing
room, canteen

workroom, salon,
day nursery,

schoolroom, student,
homeroom,

clothespress, day
school, sewing room,

study

soccer ball, tent,
inflated ball, fly
tent, shelter tent,
camping, pack tent
magpie, field tent,

white admiral
butterfly

shelter tent, tent,
camping, pack tent,
fly tent, mountain
tent, tent flap,

two-man tent, field
tent, pop tent

roller skating,
skateboard,

cross-country skiing,
skating, segway,
hockey stick,

skateboarding,
skating rink, crutch,
roller skate wheel

roller skate wheel,
roller skating,

skateboard, in-line
skate, roller skate,
cross-country skiing,

skateboarding,
unicycle, skate,

skating

partial denture,
round-bottom flask,
flask, panty girdle,

night-light,
patchouly, organza,
organdy, baby, wig

round-bottom flask,
flask, rummer,

tornado lantern,
spotlight, foetus, oil

lamp, sconce,
infrared lamp,

decanter

rubber boot,
rottweiler, pillar,

combat boot, calf,
riding boot, trouser,
watchdog, shepherd

dog, leg

combat boot,
riding boot, rubber
boot, leg covering,

rubber, trouser,
tabis boot, trouser

leg, boot, lawn tool

reaper, reindeer,
cannon, steamroller,

seeder, plow,
tractor, combine,
cannon, caribou

reaper, seeder, gun
carriage, farm

machine, combine,
plow, caribou,

haymaker, tractor,
trench mortar,

Input Image Wsabie LaSR
tv-antenna,

transmission line,
shears, refracting
telescope, scissors,
electrical cable,

chain wrench,
astronomical

telescope, wire, boat
hook,

scissors, shears,
tinsnips, windmill,

garden rake,
tv-antenna, forceps,

safety harness,
medical

instrument,
plyers

leopard frog,
sauceboat, sugar

bowl, cream pitcher,
tureen, spittoon,

pitcher,
earthenware,

rainbow fish, slop
bowl

tureen, glazed
earthenware, slop
bowl, sauceboat,

spittoon, cullender,
earthenware, punch
bowl, sugar bowl,

cream pitcher

redpoll, frogmouth,
screech owl, possum,
grey parrot, finch,
gypsy moth, gray
squirrel, lycaenid
butterfly, cairn

terrier

frogmouth,
soft-coated wheaten

terrier, gray
squirrel, cairn

terrier, gypsy moth,
tabby cat, chinchilla

laniger, egyptian
cat, burmese cat,

abyssinian cat

grass snake, garter
snake, ribbon snake,
common kingsnake,

black rattler,
western ribbon
snake, european

viper, pickerel frog
spiny anteater,

eastern ground snake

garter snake,
european viper, grass

snake, california
whipsnake, common
kingsnake, eastern

ground snake,
northern ribbon

snake, puff adder,
whipsnake, black

rattler

black bear, black
vulture, labiated

bear, greater gibbon,
vulture, american

black bear, cuckoo,
black sheep, buffalo,

yak,

black bear, yak,
bear, american black
bear, stocky horse,

calf, wild boar, bull,
draft horse, black

angus



Table 5: Summary of Test Set Results on Im-
agenet. Recall at 1, 5, 10, Mean Average Precision
and Mean Rank are given.

Algorithm r@1 r@5 r@10 MAP MR
One-vs-Rest 2.83% 8.48% 13.2% 0.065 667
Rank SVM 5.35% 14.1% 19.3% 0.102 804
Wsabie 8.39% 19.6% 26.3% 0.144 626
LaSR (t = 1) 9.45% 22.1% 29.1% 0.161 523

4.2 IMAGE ANNOTATION TASK

ImageNet (Deng et al., 2009) (http://www.
image-net.org/) is a large scale image database
organized according to WordNet (Fellbaum, 1998).
WordNet is a graph of linguistic terms, where each
concept node consists of a word or word phrase,
and the concepts are organized within a hierarchical
structure. ImageNet is a growing image dataset that
attaches quality-controlled human-verified images
to these concepts by collecting images from web
search engines and then employing annotators to
verify whether the images are good matches for those
concepts, and discarding them if they are not. For
many nouns, hundreds or even thousands of images
are labeled. We can use this dataset to test image
annotation algorithms. We split the data into train
and test and try to learn to predict the label (an-
notation) given the image. For our experiments, we
downloaded the “Spring 2010” release which consists
of 9 million images and 15,589 possible concepts (this
is a different set to (Weston et al., 2011) but our
baseline results largely agree). We split the data into
80% for training, 10% for validation and 10% for
testing.

Following (Weston et al., 2011) we employ a feature
representation of the images which is an ensemble of
several representations which is known to perform bet-
ter than any single representation within the set (see
e.g. (Makadia et al., 2008)). We thus combined mul-
tiple feature representations which are the concatena-
tion of various spatial (Grauman and Darrell, 2007)
and multiscale color and texton histograms (Leung
and Malik, 1999) for a total of about 5 × 105 di-
mensions. The descriptors are somewhat sparse, with
about 50,000 non-zero weights per image. Some of the
constituent histograms are normalized and some are
not. We then perform Kernel PCA (Schoelkopf et al.,
1999) on the combined feature representation using
the intersection kernel (Barla et al., 2003) to produce
a 1024 dimensional input vector for training.

We compare our proposed approach to several base-
lines: one-versus-rest large margin classifiers (One-vs-
Rest) of the form fi(x) = w>

i x trained online to per-
form classification over the 15,589 classes, or the same

models trained with a ranking loss instead, which we
refer to as Rank SVM, as it is an online version of
the pairwise multiclass (ranking) loss of (Weston and
Watkins, 1999; Crammer and Singer, 2002). Finally,
we compare to Wsabie a (unstructured) latent rank-
ing method which has yielded state-of-the-art perfor-
mance on this task. For all methods, hyperparameters
are chosen via the validation set.

Results The overall results are given in Table 5.
One-vs-Rest performs relatively poorly (2.83% re-
call@1), perhaps because there are so many classes
(over 15,000) that the classifiers are not well calibrated
to each other (as they are trained independently). The
multiclass ranking loss of Rank SVM performs much
better (5.35% recall@1) but is still outperformed by
Wsabie (8.39% recall@1). Wsabie uses the WARP
loss to optimize the top of the ranked list and its good
performance can be explained by the suitability of this
loss function for measure like recall@k. LaSR with
t = 0 is essentially identical to Wsabie in this case
and so we use that model as our “base learner” for
iteration 0. LaSR (t = 1), that does use structure,
outperforms Wsabie with a recall@1 of 9.45%.

Some example annotations are given in Table 4. LaSR
seems to provide more consistent results than Wsabie
on several queries (with less bad predictions in the top
k) which improves the overall results, whilst maintain-
ing the right level of diversity on others.

5 CONCLUSION

In this paper we introduced a method for learning
a latent variable model that takes into account the
structure of the predicted ranked list of items given
the query. The approach is quite general and can po-
tentially be applied to recommendation, annotation,
classification and information retrieval tasks. These
problems often involve millions of examples or more,
both in terms of the number of training pairs and the
number of items to be ranked. Hence, many other-
wise straight-forward approaches to structured predic-
tion approaches might not be applicable in these cases.
The method we proposed is scalable to these tasks.

Future work could apply latent structured ranking to
more applications, for example in text document re-
trieval. Moreover, it would be interesting to explore
using other algorithms as the “base algorithm” which
we add the structured predictions to. In this work, we
used the approach of (Weston et al., 2011) as our base
algorithm, but it might also be possible to make struc-
tured ranking versions of algorithms like Non-negative
matrix factorization, Latent Semantic Indexing or Sin-
gular Value Decomposition as well.
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