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Abstract

We propose interdependent defense (IDD)
games, a computational game-theoretic
framework to study aspects of the interde-
pendence of risk and security in multi-agent
systems under deliberate external attacks.
Our model builds upon interdependent secu-
rity (IDS) games, a model due to Heal and
Kunreuther that considers the source of the
risk to be the result of a fixed randomized-
strategy. We adapt IDS games to model
the attacker’s deliberate behavior. We de-
fine the attacker’s pure-strategy space and
utility function and derive appropriate cost
functions for the defenders. We provide a
complete characterization of mixed-strategy
Nash equilibria (MSNE), and design a simple
polynomial-time algorithm for computing all
of them, for an important subclass of IDD
games. In addition, we propose a random-
instance generator of (general) IDD games
based on a version of the real-world Internet-
derived Autonomous Systems (AS) graph
(with around 27K nodes and 100K edges),
and present promising empirical results us-
ing a simple learning heuristics to compute
(approximate) MSNE in such games.

1 INTRODUCTION

Attacks carried out by hackers and terrorists over the
last few years have led to increased efforts by both
government and the private sector to create and adopt
mechanisms to prevent future attacks. This effort has
yielded a more focused research attention to models,
computational and otherwise, that facilitate and help
to improve (homeland) security for both physical in-
frastructure and cyberspace. In particular, there has
been quite a bit of recent research activity in the gen-

eral area of game-theoretic models for terrorism set-
tings (see, e.g., Bier and Azaiez [2009] and Cárceles-
Poveda and Tauman [2011]).

Interdependent security (IDS) games are one of the
earliest models resulting from a game-theoretic ap-
proach to model security in non-cooperative environ-
ments composed of free-will self-interested individual
decision-makers. Originally introduced and studied by
economists Kunreuther and Heal [2003], IDS games
model general abstract security problems in which an
individual within a population considers whether to
voluntarily invest in some protection mechanisms or
security against a risk they may face, knowing that
the cost-effectiveness of the decision depends on the in-
vestment decisions of others in the population because
of transfer risks (i.e., the “bad event” may be trans-
ferable from a compromised individual to another).

In their work, Kunreuther and Heal [2003] provided
several examples based on their economics, finance
and risk management expertise. (We refer the reader
to their paper for more detailed descriptions.) As a
canonical example of the real-world relevance of IDS
settings and the applicability of IDS games, Heal and
Kunreuther [2005] used this model to describe prob-
lems such as airline baggage security. In their set-
ting, individual airlines may choose to invest in addi-
tional complementary equipment to screen passengers’
bags and check for hazards such as bombs that could
cause damage to their passengers, planes, buildings,
or even reputations. However, mainly due to the large
amount of traffic volume, it is impractical for an airline
to go beyond applying security checks to bags incom-
ing from passengers and include checks to baggage or
cargo transferred from other airlines. On the other
hand, if an airline invests in security, they can still ex-
perience a bad event if the bag was transferred from
an airline that does not screen incoming bags, render-
ing their investment useless. 1 Thus, we can see how

1Note that even if full screening were performed, the
Christmas Day 2009 episode in Detroit [O’Connor and



the cost-effectiveness of an investment can be highly
dependent on others’ investment decisions. Another
recent application of the IDS model is on container
shipping transportation [Gkonis and Psaraftis, 2010].
They use the IDS model to study the effect of invest-
ment decision on container screening of ports have on
their neighboring ports.

In this work, we build on the literature in IDS games.
In particular, we adapt the model to situations in
which the abstract “bad event” results from the de-
liberate action of an attacker. The “internal agents”
(e.g., airlines and computer network users), whom we
also often refer to as “defenders” or “sites,” have the
voluntary choice to individually invest in security to
defend themselves against a direct or indirect offensive
attack, modulo, of course, the cost-effectiveness to do
so. A side benefit of explicitly modeling the attacker,
as we do in our model, is that the probability of an
attack results directly from the equilibrium analysis.
Building IDS games can be hard because it requires a
priori knowledge of the likelihood of an attack. At-
tacks of this kind are considered rare events and thus
notoriously difficult to statistically estimate in general.
Related Work. Johnson et al. [2010] and Fultz
and Grossklags [2009] independently developed non-
cooperative game models similar to ours. Johnson
et al. [2010] extend IDS games by modeling uncer-
tainty about the source of the risk (i.e., the attacker)
using a Bayesian game over risk parameters. Fultz and
Grossklags [2009] propose and study a non-graphical
game-theoretic model for the interactions between at-
tackers and nodes in a network. In their model, each
node in the network can decide on whether to con-
tribute (by investment) to the overall safety of the
network and/or to individual safety. The attackers
can attack any number of nodes, but with each at-
tack there is an increased probability that the attacker
might get caught and suffer penalties or fines. Hence,
while their game has IDS characteristics, it is tech-
nically not within the standard IDS game framework
introduced by Heal and Kunreuther.

Most of the previous related work explore the realm
of information security and are application/network
specific (see Roy et al. [2010] for a survey on game
theory application to network security). Past litera-
ture has largely focused on two-person (an attacker
and a defender) games where the nodes in the net-
work are regarded as a single entity (or a central de-
fender). For example, Lye and Wing [2002] look at
the interactions between an attacker and the (system)
administrator using a two-player stochastic game. Re-
cent work uses a Stackelberg game model in which the

Schmitt, 2009] serves as a reminder that transfer risk still
exists.

defender (or leader) commits to a mixed strategy to
allocate resources to defend a set of nodes in the net-
work, and the follower (or attacker) optimally allocates
resources to attack a set of ”targets” in the network
given the leader’s commitment [Jain et al., 2011, Kiek-
intveld et al., 2009, Korzhyk et al., 2010, 2011a,b].

Other recent work strive to understand the motiva-
tion of the attackers. For example, Liu [2003] focus
on understanding the attacker’s intent, objectives, and
strategies and derive a (two-player) game-theoretical
model based on these, while Cremonini and Nizovtsev
[2006] use cost-benefit analysis (of attackers) to ad-
dress the issue of the optimal amount of security (of
the nodes in the network).
Our Contribution. We adapt the standard non-
cooperative framework of IDS games to settings in
which the source of the risk is the result of a deliber-
ate, strategic decision by an external attacker. In par-
ticular, we design and propose interdependent defense
(IDD) games, a new class of games that, in contrast
to standard IDS games, model the attacker explicitly,
while maintaining a core component of IDS systems:
the potential transferability of the risk resulting from
an attack. We note that the explicit modeling of risk
transfer is an aspect of our model that has not been
a focus of previous game-theoretic attacker-defender
models of security discussed earlier.

We formally define and study IDD games in depth in
Section 3. We present several results that fully char-
acterize their NE. 2 We also provide a polynomial-time
algorithm to compute all MSNE for the important
subclass of IDD games in which there is only one at-
tack, the defender nodes are fully transfer-vulnerable
(i.e., investing in security does nothing to reduce their
external/transfer risk) and transfers are one-hop. 3

We note that considering a single attacker is a typical
assumption in security settings (see previous work dis-
cussed earlier). It is also reasonable: We can view
many attackers as a single attacker. Allowing at
most one attack prevents immediate representational
and computational intractability problems because the
number of the attacker’s (pure) strategies grows expo-
nentially with the number of attacks. Finally, because
the attacker has no fixed target, it is ineffective for
the attacker to consider or go beyond plans of attacks
involving multiple (> 2) transfers: such plans are com-
plex, time consuming and costly.

Our computational results are significant and surpris-
ing because computing all NE in general IDS games is

2Due to space limitation, we omit proofs of our main
technical results and instead refer the reader to the sup-
plementary document for details [Chan et al., 2012].

3We note that the original IDS games were also fully
transfer-vulnerable and assume one-hop transfers.



hard (i.e., the Nash-extension problem in general IDS
games is NP-complete [Kearns and Ortiz, 2003]). 4 We
do not know of any other non-trivial game for which
there exists a polynomial-time algorithm to compute
all NE except ours and the algorithm for uniform-
transfer IDS games of Kearns and Ortiz [2003].

In Section 4, we provide experimental results from
applying learning-in-games heuristics to compute ap-
proximate NE to both fixed and randomly-generated
instances of IDD games, with at most one simulta-
neous attack and one-hop transfers, on a very large
Internet AS graph (≈ 27K nodes and ≈ 100K edges).

2 IDS GAMES

Each player i in an IDS game has a choice to invest
(ai = 1) or not invest (ai = 0). For each player i,
Ci and Li are the cost of investment and loss induce
by the bad event, respectively. We define the ratio
of the two parameters, the player’s “cost-to-loss” ra-
tio, as ρi ≡ Ci/Li. Bad events can occur through
both direct and indirect means. Direct risk, or inter-
nal risk, pi is the probability that player i will ex-
perience a bad event because of direct contamination.
The standard IDS model assumes that investing will
completely protect the player from direct contamina-
tion; hence, internal risk is only possible when ai = 0.
Indirect risk qji is the probability that player j is di-
rectly “contaminated,” does not experience the bad
event but transfers it to player i who ends up expe-
riencing the bad event. There is an implicit global
constraint on these parameters, by the axioms of prob-
ability: pi +

∑n
j=1 qij ≤ 1 for all i.

We now formally define a (directed) graphical games
[Kearns, 2007, Kearns et al., 2001] version of IDS
games, as first introduced by Kearns and Ortiz [2003].
Denote by [n] ≡ {1, . . . , n} the set of n players. Note
that the parameters qij ’s induce a directed graph
G = ([n], E) such that E ≡ {(i, j)|qij > 0}. Let
Pa(i) ≡ {j | qji > 0} be the set of players that are par-
ents of player i inG (i.e., the set of players that player i
is exposed to via transfers), and by PF(i) ≡ Pa(i)∪{i}
the parent family of player i, which includes i. Denote
by ki ≡ |PF(i)| the size of the parent family of player i.
Similarly, let Ch(i) ≡ {j | qij > 0} be the set of play-
ers that are children of player i (i.e., the set of players
to whom player i can present a risk via transfer) and

4To put our computational contributions in context,
note that deciding whether a game has a PSNE is in general
NP-complete (see, e.g., Gilboa and Zemel [1989], Gottlob
et al. [2005]), and computing an MSNE is PPAD-complete,
even in two-player games (see, e.g., Chen et al. [2009] and
Daskalakis et al. [2009]). Also, computing all MSNE is
rarely achieved and counting-related problems are often
#P-complete (see, e.g., [Conitzer and Sandholm, 2008]).

CF(i) ≡ Ch(i) ∪ {i} the (children) family of player i,
which includes i. The probability that player i is safe
from player j, as a function of player j’s decision, is

eij(aj) ≡ aj + (1− aj)(1− qji) = (1− qji)1−aj ,

because if j invests, then it is impossible for j to trans-
fer the bad event, while if j does not invest, then j
either experiences the bad event or transfers it to an-
other player, but never both.

Denote by a ≡ (a1, . . . , an) ∈ {0, 1}n the joint action
of all n players. Also denote by a−i the joint-action of
all players except i and for any subset I ⊂ [n] of play-
ers, denote by aI the sub-component of the joint action
corresponding to those players in I only. We define i’s
overall safety from all other players as si(aPa(i)) ≡∏
j∈Pa(i) eij(aj) and equivalently his overall risk from

some other players is ri(aPa(i)) ≡ 1− si(aPa(i)). Note
that each players’ external safety (and risk) is a direct
function of its parents only, not all other players. From
these definitions, we obtain player i’s overall cost, the
cost of joint action a ∈ {0, 1}n, corresponding to the
(binary) investment decision of all players, is

Mi(ai,aPa(i)) ≡ai[Ci + ri(aPa(i))Li]+
(1− ai)[pi + (1− pi)ri(aPa(i))]Li .

3 IDD GAMES

In the standard IDS game model, investment in secu-
rity does not reduce transfer risks. However, in some
IDS settings (e.g., vaccination and cyber-security), it is
reasonable to expect that security investments would
include mechanisms to reduce transfer risks. This mo-
tivates our first modification to the traditional IDS
games: allowing the investment in protection to not
only makes us safe from direct attack but also partially
reduce (or even eliminate) the transfer risk. We incor-
porate this factor by introducing a new real-valued pa-
rameter αi ∈ [0, 1] representing the probability that a
transfer of a potentially bad event will go unblocked by
i’s security, assuming i has invested. Thus, we redefine
player i’s overall cost as 5

Mi(ai,aPa(i)) ≡ai[Ci + αiri(aPa(i))Li]+
(1− ai)[pi + (1− pi)ri(aPa(i))]Li .

Next, we introduce an additional player, the attacker,
who deliberately initiates bad events. (So that now
bad events are no longer “chance occurrences” with-
out any strategic deliberation.) The attacker has a
target decision for each player - a choice of attack
(bi = 1) or not attack (bi = 0) player i. Hence,

5A similar extension was also proposed independently
by Heal and Kunreuther [2007].



the attacker’s pure strategy is denoted by the vector
b ∈ {0, 1}n. The game parameter pi implicitly “en-
codes” bi because bi = 0 implies pi = 0. Thus, we
redefine pi ≡ pi(bi) ≡ bip̂i so that player i has in-
trinsic risk p̂i, and only has internal risk if targeted
(i.e, bi = 1). The new parameter p̂i represents the
(conditional) probability that an attack is successful
at player i given that player i was directly targeted
and did not invest in protection. The game parameter
qij “encodes” bi = 1, because a prerequisite is that i is
targeted before it can transfer the bad event to j. We
redefine qij ≡ qij(bi) ≡ biq̂ij so that q̂ij is the intrinsic
transfer probability from player i to player j, inde-
pendent of bi. The new parameter q̂ij represents the
(conditional) probability that an attack is successful
at player j given that it originated at player i, did not
occur at i but was transferred undetected to j. Note
that just as it was the case with traditional IDS games,
there is an implicit constraint on the risk-related pa-
rameters: p̂i +

∑
j∈Ch(i) q̂ij ≤ 1, for all i. Because

the pi’s and qij ’s depend on the attacker’s action b, so
does the safety and risk functions. In particular, we
now have

eij(aj , bj) ≡ aj + (1−aj)(1− bj q̂ji) = (1− q̂ji)bj(1−aj),

si(aPa(i),bPa(i)) ≡
∏
j∈Pa(i) eij(aj , bj) ≡ 1 −

ri(aPa(i),bPa(i)). Hence, for each player i, the cost
function becomes

Mi(ai,aPa(i), bi,bPa(i)) ≡ ai[Ci + αiri(aPa(i),bPa(i))Li]
+(1− ai)[bip̂i + (1− bip̂i)ri(aPa(i),bPa(i))]Li.

We assume the attacker wants to cause as much dam-
age as possible. One possible utility/payoff function
U quantifying the objective of the attacker is

U(a,b) ≡
∑n
i=1Mi(aPF(i),bPF(i))− aiCi − biC0

i .

which adds the expected players costs (for targeted
and transferred bad events) over all players, minus C0

i ,
the attacker’s own “cost” to target player i.

3.1 MIXED STRATEGIES IN IDD GAMES

For all player i, denote by xi the mixed strategy of
player i: the probability that player i invests. Sim-
ilarly, y denotes the joint probability mass function
(PMF) corresponding to the attacker’s mixed strategy
so that for all b ∈ {0, 1}n, y(b) is the probability that
the attacker executes joint-attack vector b.

Denote the marginal PMF over a subset I ⊂ [n] of the
internal players by yI such that for all bI , yI(bI) ≡∑

b−I
y(bI ,b−I) is the (marginal) probability that the

attacker chooses a joint-attack vector in which the sub-
component decisions corresponding to players in I are
as in bI . Denote simply by yi ≡ y{i}(1) the marginal

probability that the attacker chooses an attack vector
in which player i is directly targeted. Slightly abusing
notation, we redefine the function eij (i.e., how safe
i is from j), si and ri (i.e., the overall transfer safety
and risk, respectively) as eij(xj , bj) ≡ xj+(1−xj)(1−
bj q̂ji), si(xPa(i),bPa(i)) ≡

∏
j∈Pa(i) eij(xj , bj),

si(xPa(i), yPa(i)) ≡
∑

bPa(i)

yPa(i)(bPa(i))si(xPa(i),bPa(i)) ,

and ri(xPa(i), yPa(i)) ≡ 1− si(xPa(i), yPa(i)).

In general, the expected cost of protection to site i,
with respect to a joint mixed-strategy (x, y), can be
expressed as

Mi(xi,xPa(i), yPF(i)) ≡ xi[Ci + αiri(xPa(i), yPa(i))Li]+
(1− xi)[p̂ifi(xPa(i), yPF(i)) + ri(xPa(i), yPa(i))]Li ,

where fi(xPa(i), yPF(i)) ≡∑
bPF(i)

yPF(i)(bPF(i)) bisi(xPa(i),bPa(i)) .

The expected payoff of the attacker is

U(x, y) ≡
∑n
i=1Mi(xPF(i), yPF(i))− xiCi − yiC0

i .

Let ∆̂i ≡ ρi/p̂i ≡ Ci

Li bpi
and ŝi(xPa(i), yPF(i)) ≡

fi(xPa(i), yPF(i)) + 1−αibpi
ri(xPa(i), yPa(i)). The best-

response correspondence of defender i is then

BRi(xPa(i), yPF(i)) ≡


{1}, if ŝi(xPa(i), yPF(i)) > ∆̂i,
{0}, if ŝi(xPa(i), yPF(i)) < ∆̂i,
[0, 1], if ŝi(xPa(i), yPF(i)) = ∆̂i.

The best-response correspondence for the attacker is
simply BR0(x) ≡ arg maxy U(x, y).

Definition 1 A joint mixed-strategy (x∗, y∗) is a
mixed-strategy Nash equilibrium (MSNE) of an IDD
game if (1) for all i ∈ [n], x∗i ∈ BRi(x∗Pa(i), y

∗
PF(i))

and (2) y∗ ∈ BR0(x∗). If (x∗, y∗) corresponds to a
(deterministic) joint action then we call the MSNE a
pure-strategy Nash equilibrium (PSNE).

3.2 MODEL ASSUMPTIONS

Note that the attacker has in principle an exponential
number of pure strategies! This affords the attacker
unrealistic amount of power. Hence, we need restric-
tion on the attacker’s power. The simplest way is to
allow at most a single simultaneous attack. We can
weaken this assumption to allow the attacker at most
K simultaneous attacks. Even then, the number of
pure strategies will grow exponentially in the number
of potential attacks, which still renders the attacker’s
pure-strategy space unrealistic, especially on a very
large network with twenty-thousand nodes. Worst-
case, we need to consider up to 2n number of pure
strategies for K attacks as K goes to n.



Assumption 1 The set of pure strategies of the at-
tacker is B = {b ∈ {0, 1}n |

∑n
i=1 bi ≤ 1} .

The following assumptions are on the game parame-
ters. The next assumption states that every site’s in-
vestment cost is positive and (strictly) smaller than the
conditional expected direct loss if the site were to be
attacked directly (bi = 1); that is, if a site knows that
an attack is directed against it, the site will prefer to
invest in security, unless the external risk is too high.
This assumption is reasonable because otherwise the
player will never invest regardless of what other players
do (i.e., not investing would be a dominant strategy).

Assumption 2 For all sites i ∈ [n], 0 < Ci < p̂iLi.

The next assumption states that, for all sites i, the
attacker’s cost to attack i is positive and (strictly)
smaller than the expected loss (i.e., gains from the
perspective of the attacker) achieved if an attack initi-
ated at site i is successful, either directly at i or at one
of its children (after transfer); that is, if an attacker
knows that an attack is rewarding (or able to obtain a
positive utility), it will prefer to attack some nodes in
the network. This assumption is reasonable; otherwise
the attacker will never attack regardless of what other
players do (i.e., not attacking would be a dominant
strategy, leading to an easy problem to solve).

Assumption 3 For all sites i ∈ [n], 0 < C0
i < p̂iLi +∑

j∈Ch(i) q̂ijαjLj.

PSNE of IDD Games. It turns out that under
these three assumptions, there is no PSNE in IDD
games. This is typical of attacker-defender settings.
The following proposition eliminates PSNE as a uni-
versal solution concept for natural IDD games in which
at most one attack is possible. The main significance of
this result is that it allows us to concentrate our efforts
on the much harder problem of computing MSNE.

Proposition 1 No IDD game in which Assump-
tions 1, 2 and 3 hold has a PSNE.

3.3 MSNE OF IDD GAMES

We first consider the IDD games under the assumption
that no protection from transfer risk, which is used in
the original IDS games. Note that, throughout this
subsection, we will be using the assumptions we made
earlier (in additional to the following assumption).

Assumption 4 For all internal players i ∈ N , the
probability that player i’s investment in security does
not protect the player from transfers, αi, is 1.

Definition 2 We say an IDD game is transfer-
vulnerable if Assumption 4 holds. We say an IDD

game is a single simultaneous attack game if Assump-
tion 1 holds (i.e., at most one attack is possible).

Assumption 1, in the context of mixed strategies,
implies the probability of no attack y0 ≡ 1 −∑n
i yi. Assumptions 1 and 4 greatly simplify the best-

response condition of the internal players because now
ŝi(xPa(i), yPF(i)) = yi. Let L0

i (xi) ≡ (1 − xi)(p̂iLi +∑
j∈Ch(i) q̂ijLj). It will also be convenient to denote

by L
0

i ≡ L0
i (0) = p̂iLi+

∑
j∈Ch(i) q̂ijLj , so that we can

express L0
i (xi) = (1− xi)L

0

i , to highlight that L0
i is a

linear function of xi. Similarly, it will also be conve-
nient to let M0

i (xi) ≡ L0
i (xi)− C0

i , and denote M
0

i ≡
M0
i (0) = L

0

i−C0
i . Let η0

i ≡ C0
i /L

0

i . The best-response
condition of the attacker also simplifies under the same
assumptions because now U(x, y) =

∑n
i=1 yiM

0
i (xi).

Assumption 3 is reasonable in our new context be-
cause, under Assumption 4, if there were a player i
with η0

i > 1, the attacker would never attack i, and as
a result player i would never invest. In that case, we
can safely remove j from the game, without any loss
of generality.

We now characterize the space of MSNE in IDD games,
which will immediately lead to a polynomial-time al-
gorithm for computing all MSNE.
Characterization. The characterization starts by
partitioning the space of games into three, based on
whether

∑n
i=1 ∆̂i is (1) <, (2) =, or (3) > than 1.

The rationale behind this is that now the players are
indifferent between investing or not investing when
yi = ∆̂i, by the best-response correspondence the at-
tacker’s mixed strategy is restricted. The following
result fully characterizes the set of MSNE in single
simultaneous attack transfer-vulnerable IDD games.

Proposition 2 The joint mixed-strategy (x∗, y∗) is
an MSNE of a single simultaneous attack transfer-
vulnerable IDD game in which

1.
∑n
i=1 ∆̂i < 1 if and only if (1) 1 > y∗0 = 1 −∑n
i=1 ∆̂i > 0, and (2) for all i, y∗i = ∆̂i > 0 and

0 < x∗i = 1− η0
i < 1.

2.
∑n
i=1 ∆̂i = 1 if and only if (1) y∗0 = 0, and (2)

for all i, y∗i = ∆̂i > 0 and x∗i = 1 − v+C0
i

L
0
i

with

0 ≤ v ≤ mini∈[n]M
0

i .

3.
∑n
i=1 ∆̂i > 1 if and only if (1) y∗0 = 0, and

(2) there exists a non-singleton, non-empty sub-
set I ⊂ [n], such that mini∈IM

0

i ≥ maxk/∈IM
0

k

if I 6= [n], and the following holds: (a) for all
k /∈ I, x∗k = 0 and y∗k = 0, (b) for all i ∈
J ≡ arg min

i∈I
M

0

i , x
∗
i = 0 and 0 ≤ y∗i ≤ ∆̂i,



and in addition,
∑
i∈J y

∗
i = 1 −

∑
t∈I−J ∆̂i; and

(c) for all i ∈ I − J , y∗i = ∆̂i and 0 < x∗i =

1− mint∈I M
0
t+C0

i

L
0
i

< 1.

As proof sketch, we briefly state that the proposition
follows from the restrictions imposed by the model
parameters and their implication to indifference and
monotonicity conditions. We also mention that the
third case in the proposition implies that if the M

0

l ’s
form a complete order, then the last condition stated
in that case allows us to search for a MSNE by explor-
ing only n− 2 sets, vs. 2n−2 if done naively. 6

We now discuss properties of the characterization.
Security investment characteristics of MSNE.
At equilibrium x∗, if x∗i > 0, the probability of not
investing is proportional to C0

i and inversely propor-
tional to p̂iL +

∑
j∈Ch(i) q̂ijLj . It is kind of reassur-

ing the at equilibrium, which is the (almost-surely)
unique stable outcome of the system, the probability
of investing increases with the potential loss a player’s
non-investment decision could cause to the system.
Hence, behavior in a stable system implicitly “forces”
all players to indirectly account for or take care of
their own children. This may sound a bit paradoxical
at first given that we are working within “noncooper-
ative” setting and each player’s cost function is only
dependent on the investment decision of the player’s
parents. Interestingly, the existence of the attacker in
the system is inducing an (almost-surely) unique sta-
ble outcome in which an implicit form of “cooperation”
occurs. A defenders’s best response is independent of
their parents, the source of transfer risk, if investment
in security does nothing to protect that player from
transfers (i.e., αi = 1). This makes sense because the
player cannot control the transfer risk.
Relation to network structure. How does the
network structure and the equilibrium relate? As seen
above, the values of the equilibrium strategy of each
player depend on information from the attacker, the
player and the player’s children. From the discussion
in the last paragraph, a player’s probability of invest-
ing at the equilibrium increases with the expected loss
sustained from a “bad event” occurring as a result of
a transfer from a player to the player’s children.

Let us explore this last point further by considering
the case of uniform-transfer probabilities (also studied
by Kunreuther and Heal [2003] and Kearns and Ortiz
[2003]). In that case, transfer probabilities are only a
function of the source, not the destination: q̂ij ≡ δ̂i.

6In fact, it turns out a complete order is not actually
necessary because we can safely move all defenders with the

same value of M
0
i in a group as a whole inside or outside

the set I referred to in that case of the proposition.

The expression for the equilibrium probabilities of
those players who have a positive probability of in-
vesting would simplify to x∗i = 1− v+C0

ibpiLi+δi
P

j∈Ch(i) Lj
,

for some constant v. The last expression suggests that∑
j∈Ch(i) Lj differentiates the probability of investing

between players. That would suggests the larger the
number of children the larger the probability of invest-
ing. A scenario that seems to further lead us to that
conclusion is when we make further assumptions (ho-
mogeneous system: first studied in the original IDS
paper): Li ≡ L, p̂i ≡ p̂, δi ≡ δ, and C0

i ≡ C0 7 for all
players. Then, we would get x∗i = 1 − v+C0

L(bp+δ|Ch(i)|) .

So the probability of not investing is inversely propor-
tional to the number of children the player has.
On the attacker’s equilibrium strategy. The
support of the attacker, I∗ ≡ {i | y∗i > 0}, at equi-
librium has the following properties: (1) players for
which the attacker’s cost-to-expected-loss is higher are
“selected” first in the algorithm; (2) if the size of that
set is t, and there is a lower bound on ∆̂i > ∆̂, and∑n
i=1 ∆̂i > 1, then t < 1/∆̂ is an upper-bound on the

number of players that could potentially be attacked;
(3) if we have a game with homogeneous parameters,
then the probability of an attack will be uniform over
that set I∗; and (4) all but one of the players in that
set I∗ invest in security with some non-zero probability
(almost surely).

3.4 COMPUTING MSNE EFFICIENTLY

We now describe an algorithm to compute all MSNE
in single simultaneous attack transfer-vulnerable IDD
games that falls off the Proposition 2. We begin
by noting that the equilibrium in the case of IDD
games with

∑n
i=1 ∆̂i ≤ 1, corresponding to cases 1

and 2 of the proposition, has essentially an analytic
closed-form. Hence, we concentrate on the remain-
ing and most realistic case in large-population games
of
∑n
i=1 ∆̂i > 1. We start by sorting the indices of

the internal players in descending order based on the
M

0

i ’s. Let Val(l) and Idx(l) be the lth value and
index in the resulting sorted list, respectively. Find
t such that 1 − ∆̂Idx(t) ≤

∑t−1
l=1 ∆̂Idx(l) < 1. Let

k = arg max{l ≥ t | Val(l) = Val(t)} (i.e., con-
tinue down the sorted list of values until a change
occurs). For i = 1, . . . , t − 1, let l = Idx(i) and set
x∗l = 1− Val(t)+C0

l

L
0
l

and y∗l = ∆̂l. For i = k + 1, . . . , n,

let l = Idx(i) and set x∗l = 0 and y∗l = 0. For
i = t, . . . , k, let l = Idx(i) and set x∗l = 0. Finally, rep-
resent the simplex defined by the following constraints:
for i = t, . . . , k, let l = Idx(i) and 0 ≤ y∗l ≤ ∆̂l;

7Note that this does not mean that the expected loss
caused by a player that does not invest but is attacked,
L (bp+ δ|Ch(i)|), is the same for all players.



∑k
i=t y

∗
Idx(i) = 1 −

∑t−1
i=1 ∆̂Idx(i). The running time of

the algorithm is O(n log n) (because of sorting). As
mentioned earlier, the theorem is significant because
we do not know of any other non-trivial class of games
that have algorithms to compute all Nash equilibria
in polynomial time, except ours and the uniform IDS
games [Kearns and Ortiz, 2003].

Theorem 1 There exists a polynomial-time algorithm
to compute all MSNE of a single simultaneous attack
transfer-vulnerable IDD game.

Note that the case in which
∑n
i=1 ∆̂i = 1 has (Borel)

measure zero and is quite brittle (i.e., adding or re-
moving a player breaks the equality). For the case
in which

∑n
i=1 ∆̂i > 1, if the value of the M

0

i ’s are
distinct, 8 then there is a unique MSNE!

4 EXPERIMENTS

In the previous section, we established the theoret-
ical characteristics and computational tractability of
single simultaneous attack IDD games with the high-
est transfer vulnerability parameter: αi = 1. In
this section, partly motivated by security problems
in cyberspace, we concentrate instead on empirically
evaluating the other extreme of transfer vulnerability:
games with low αi values (i.e., near 0), so that invest-
ing in security considerably reduces the transfer risk.

Our main objectives for the experiments presented
here are (1) to demonstrate that a simple heuristic,
best-response-gradient dynamics (BRGD), is practi-
cally effective in computing an (approximate) MSNE
in a very large class of IDD games with realistic
Internet-scale network graphs in a reasonable amount
of time for cases in which the transfer vulnerabilities
αi’s are low; and (2) to explore the general struc-
tural and computational characteristics of (approxi-
mate) MSNE in such IDD games, including their de-
pendence on the underlying network structure of the
game (and approximation quality).

BRGD is a well-known technique from the work on
learning in games [Fudenberg and Levine, 1999, Singh
et al., 2000, Kearns and Ortiz, 2003, Heal and Kun-
reuther, 2005, Kearns, 2005]. Here, we use BRGD
as a tool to compute an ε-approximate MSNE, which
is a joint mixed strategy with the property that the
gain in utility (or reduction in cost) of any individ-
ual from unilaterally deviating from their prescribed
mixed-strategy is no larger than ε; a 0-approximate
MSNE is an exact MSNE.

8Distinct M
0
i ’s for the set of defenders at which the sum

goes over one is sufficient to guarantee unique MSNE.

Table 1: Internet Games’ Model Parameters
Model Fixed: U = 0.5

Parameters Random: U ∼ Uniform([0,1])
αi U/20
Li 108 + (109) ∗ U
Ci 105 + (106) ∗ Ubpi 0.9 ∗ epiepi+

P
k∈Ch(i) eqikbqij 0.9 ∗ eqijepi+

P
k∈Ch(i) eqik

zi 0.2 + U/5epi 0.8 + U/10eqij zi
|Ch(j)|+|Pa(j)|P

k∈Ch(i) |Ch(k)|+|Pa(k)|

C0
i 106

We obtained the latest version (March 2010 at the
time) of the real structure and topology of the Au-
tonomous Systems (AS) in the Internet from DIMES
(netdimes.org) [Shavitt and Shir, 2005]. The AS-level
network has 27, 106 nodes (683 isolated) and 100, 402
directed edges; the graph length (diameter) is 6, 253,
the density (number of edges divided by number of
possible edges) is 1.9920 × 10−5, and the average (in
and out) degree is 3.70, with ≈ 76.93% and 2.59% of
the nodes having zero indegree and outdegree, respec-
tively. All the IDD games in the experiments presented
in this section have this network structure.

For simplicity, we call Internet games the class of IDD
games with the AS-level network graph and low αi val-
ues. We considered various settings for model param-
eters of Internet games: a single instance with specific
fixed values; and several instances generated at ran-
dom (see Table 1 for details). The attacker’s cost-
to-attack parameter for each node i is always held
constant: C0

i = 106. For each run of each experi-
ment, we ran BRGD with randomly-generated initial
conditions (i.e., random initializations of the players’
mixed strategies): xi ∼ Uniform([0, 1]), i.i.d. for all i,
and y is a probability distribution generated uniformly
at random, and independent of x, from the set of all
probability mass functions over n + 1 events. 9 The
initialization of the transfer-probability parameters of
a node essentially gives higher transfer probability to
children with high (total) degree (because they are po-
tentially ”more popular”). The initialization also en-
forces p̂i+

∑
j∈Ch(i) q̂ij = 0.9. Other initializations are

possible but we did not explore then here.

4.1 COMPUTING ε-MSNE USING BRGD

Given the lack of theoretical guarantees on the conver-
gence rate of BRGD, we began our empirical study by
evaluating the convergence and computation/running-
time behavior of BRGD on Internet games. We ran

9Recall the probability of no attack y0 = 1−
Pn

i=1 yi.



Figure 1: Convergence Rate of Learning Dynamics:
The plots above present the number of iterations of BRGD
as a function of ε under the two experimental conditions:
Internet games with fixed (top) and randomly-generated
parameters (bottom). Applying MSE regression to the
top and bottom graphs, we obtain a functional expres-
sion for the number of iterations NF (ε) = 0.00003ε−2.547 (
R2 = 0.90415) and NR(ε) = 0.0291ε−1.589 (R2 = 0.9395),
respectively (i.e., low-degree polynomials of 1/ε).

ten simulations for each ε value and recorded the num-
ber of iterations until convergence (up to 2, 000 iter-
ations). Figure 1 presents the number of iterations
taken by BRGD to compute an ε-MSNE as a function
of ε. All simulations in this experiment converged (ex-
cept for ε = 0.001: 2 and all of the runs for single
and randomly-generated instances, respectively, did
not). Each iteration took roughly 1-2 sec. (wall
clock). Hence, we can use BRGD to consistently com-
pute an ε-MSNE of a 27K-players Internet game in a
few seconds!

4.2 CHARACTERISTICS OF THE ε-MSNE

We now concentrate on the empirical study of the
structural characteristics of the ε-MSNE found by
BRGD. We experimented on both the single and
randomly-generated Internet game instances. We dis-
cuss the typical behavior of the attacker and the sites
in an ε-MSNE, and the typical relationship between
ε-MSNE and network structure.

4.2.1 A Single Internet Game

We first studied the characteristics of the ε-MSNE of
a single Internet game instance. The only source of
randomness in these experiments comes from BRGD’s
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Fixed Internet Game: Attacker’s Equilibrium Strategy

Strategy A
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Figure 2: Attacker’s Equilibrium Strategy on an In-
ternet Game Instance (Fixed): The graph shows the
values of y∗i > 0 for each node i, sorted in decreasing order
(in log-log scale), for attacker’s Strategy A (blue/denser-
dots line) and Strategy B (red/sparser-dots line) at an
MSNE of the single instance of the Internet game.

initial conditions (i.e., the initialization of the mixed
strategies x and y). BRGD consistently found exact
MSNE (i.e., ε = 0) in all runs.
Players’ equilibrium behavior. In fact, we con-
sistently found that the attacker always displays only
two types of “extreme” equilibrium behavior, corre-
sponding to the two kinds of MSNE BRGD found for
the single Internet game: place positive probability
of a direct attack to either almost all nodes (Strat-
egy A) or a small subset (Strategy B). Figure 2 shows
a plot of the typical probability of direct attack for
those two equilibrium strategies for the attacker when
BRGD stops. In both strategies, a relatively small
number of nodes (about 1K out of 27K) have a rea-
sonably high (and near uniform) probability of direct
attack. In Strategy A, however, every node has a pos-
itive probability of being the target of a direct attack,
albeit relatively very low for most; this is contrast to
Strategy B where most nodes are fully immune from a
direct attack. Interestingly, none of the nodes invest
in either MSNE: x∗i = 0 for all nodes i. Thus, in this
particular Internet game instance, all site nodes are
willing to risk an attack!
Relation to network structure. We found that
the nodes with (relatively) high probability of direct
attack are at the “fringe” of the graph (i.e., have low or
no degree). In Strategy A, fringe nodes (with mostly
0 or 1 outdegree) have relatively higher probability of
direct attack than nodes with higher outdegree. Sim-
ilarly, in Strategy B, the small subset of nodes that
are potential target of a direct attack have relatively
low outdegree (mostly 0, and 0.0067 on average; this
is in contrast to the average outdegree of 3.9639 for
the nodes immune from direct attack). In short, we
consistently found that the nodes with low outdegree



Figure 3: Attacker’s and Site’s ε-MSNE Strate-
gies for Randomly-Generated Internet Games: The
graphs show the empirical distributions of the probability
of attack (top) and histograms of the probability of invest-
ment (bottom), for different ε-value conditions encoded in
the right-hand side of the plots (i.e., from 0.001 to 0.009).
In both graphs, the distributions and histograms found for
each ε value considered are drawn in the same correspond-
ing graph superimposed. The top graph plots the distribu-
tion of yi where the nodes are ordered decreasingly based
on the yi value. The bottom bar graph shows histograms
of the probability of investing in defense/security measures
based on the following sequence of 10 ranges partitioning
the unit interval: ([0, 0.1], (0.1, 0.2], ..., (0.9, 1]).

are more likely to get attacked directly in the single
Internet game instance.

4.2.2 Randomly-Generated Internet Games

We now present results from experiments on
randomly-generated instances of the Internet game, a
single instance for each ε ∈ {0.001, 0.002, . . . , 0.009}.
For simplicity, we present the result of a single BRGD
run on each instance. 10

Behavior of the players. Figure 3 shows plots
of the attacker’s probability of direct attack and his-
tograms of the nodes’s probability of investment in a
typical run of BRDG on each Internet game instance

10While the results presented here are for a single in-
stance of the Internet game for each ε, the results are typ-
ical of multiple instances. Our observations are robust to
the experimental randomness in both the Internet game
parameters and the initialization of BRGD. For the sake
of simplicity of presentation, we discuss results based on
a single instance of the Internet game, and in some cases
based on a single BRGD run. Note that, for each ε value we
considered, the Internet game parameters remain constant
within different BRGD runs. BRGD always converged
within 2, 000 iterations (except 6 runs for ε = 0.001).

Figure 4: Attacker’s ε-MSNE Strategy vs. Node
Degree: Average indegree (top) and outdegree (bottom)
of nodes potentially attacked in terms of the ε-MSNE.

randomly-generated for each ε value. The plots sug-
gest that approximate MSNE found by BRGD is quite
sensitive to the ε value: as ε decreases, the attacker
tends to “spread the risk” by selecting a larger set of
nodes as potential targets for a direct attack, thus low-
ering the probability of a direct attack on any individ-
ual node; the nodes, on the other hand, tend to deviate
from (almost) fully investing and (almost) not invest-
ing to a more uniform mixed strategy (i.e., investing
or not investing with roughly equal probability). A
possible reason for this is that as more nodes become
potential targets of a direct attack, more nodes with
initial mixed strategies close to the “extreme” (i.e.,
very high or very low probabilities of investing) will
move closer to a more uniform (and thus less “pre-
dictable”) investment distribution.

Relation to network structure. Figure 4
presents some experimental results on the relationship
between network structure and the attacker’s equilib-
rium behavior. The graphs show, for each ε value, the
average indegree and outdegree, across the ten BRGD
runs, of those nodes that are potential targets of a
direct attack at an ε-MSNE. In general, both the av-
erage indegree and outdegree of the nodes that are
potential targets of a direct attack tend to increase as
ε decreases. One possible reason for this finding could
be the fact that the values of αi generated for each
player are relatively low (i.e., uniformly distributed
over

[
0, 1

40

]
); yet, interestingly, such behavior and pat-

tern, is exact opposite of the theory for the case αi = 1.
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