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Abstract

Stochastic Shortest Path (SSP) MDPs is a prob-
lem class widely studied in AI, especially in
probabilistic planning. They describe a wide
range of scenarios but make the restrictive as-
sumption that the goal is reachable from any
state, i.e., that dead-end states do not ex-
ist.Because of this, SSPs are unable to model var-
ious scenarios that may have catastrophic events
(e.g., an airplane possibly crashing if it flies into a
storm). Even though MDP algorithms have been
used for solving problems with dead ends, a prin-
cipled theory of SSP extensions that would allow
dead ends, including theoretically sound algo-
rithms for solving such MDPs, has been lacking.
In this paper, we propose three new MDP classes
that admit dead ends under increasingly weaker
assumptions. We present Value Iteration-based
as well as the more efficient heuristic search al-
gorithms for optimally solving each class, and
explore theoretical relationships between these
classes. We also conduct a preliminary empir-
ical study comparing the performance of our al-
gorithms on different MDP classes, especially on
scenarios with unavoidable dead ends.

1 Introduction

Stochastic Shortest Path (SSP) MDPs [Bertsekas, 1995] is
a class of probabilistic planning problems thoroughly stud-
ied in AI. They describe a wide range of scenarios where
the objective of the agent is to reach a goal state in the least
costly way in expectation from any non-goal state using ac-
tions with probabilistic outcomes.

While SSPs are a popular model, they have a serious limi-
tation. They assume that a given MDP has at least one com-
plete proper policy, a policy that reaches the goal from any
state with 100% probability. Basic algorithms for solving
SSP MDPs, such as Value Iteration (VI) [Bellman, 1957],
fail to converge if this assumption does not hold. In the

meantime, this requirement effectively disallows the exis-
tence of dead ends, states from which reaching the goal
is impossible, and of catastrophic events that lead to these
states. Such catastrophic failures are a possiblity to be
reckoned with in many real-world planning problems, be
it sending a rover on Mars or navigating a robot in a build-
ing with staircases. Thus, insisting on the absence of dead
ends significantly limits the applicability of SSPs. More-
over, verifying that a given MDP has no dead ends can be
nontrivial, further complicating the use of this model.

Researchers have realized that allowing dead ends in
goal-oriented MDPs would break some existing methods
for solving them [Little and Thiebaux, 2007]. They have
also suggested algorithms that are aware of the possi-
ble presence of dead-end states [Kolobov et al., 2010]
and try to avoid them when computing a policy
[Keyder and Geffner, 2008, Bonet and Geffner, 2005].
However, these attempts have lacked a theoretical analysis
of how to incorporate dead ends into SSPs in a principled
way, and of what the optimization criteria in the presence
of dead ends should be. This paper bridges the gap by
introducing three new MDP classes with progressively
weaker assumptions about the existence of dead ends,
analyzing their properties, and presenting optimal VI-like
and the more efficient heuristic search algorithms for them.

The first class we present, SSPADE, is a small extension
of SSP that has well-defined easily-computable optimal so-
lutions if dead ends are present but are avoidable provided
that the process starts at a known initial state s0.

The second and third classes introduced in this paper admit
that dead ends may exist and the probability of running into
them from the initial state may be positive no matter how
hard the agent tries. If the chance of a catastrophic event
under any policy is nonzero, a key question is: should we
prefer policies that minimize the expected cost of getting to
the goal even at the expense of an increased risk of failure,
or those that reduce the risk of failure above all else?

The former criterion characterizes scenarios where entering
a dead end, while highly undesirable, has a finite “price”.
For instance, suppose the agent buys an expensive ticket
for a concert of a favorite band in another city, but remem-



bers about it only on the day of the event. Getting to the
concert venue requires a flight, either by hiring a business
jet or by a regular airline with a layover. The first option is
very expensive but almost guarantees making the concert
on time. The second is much cheaper but, since the con-
cert is so soon, missing the connection, a somewhat proba-
ble outcome, means missing the concert. Nonetheless, the
cost of missing the concert is only the price of the ticket,
so a rational agent would choose to travel with a regular
airline. Accordingly, one of the MDP classes we propose,
fSSPUDE, assumes that the agent can put a price (penalty)
on ending up in a dead end state and wants to compute a
policy with the least expected cost (including the possible
penalty). While seemingly straightforward, this intuition is
tricky to operationalize because of several subtleties. We
overcome these subtleties and show how fSSPUDE can be
solved with easy modifications to existing SSP algorithms.

In the third MDP class we introduce, iSSPUDE, not only
are dead ends unavoidable, but the cost of hitting one is
assumed to be infinitely large. Consider, for example, the
task of planning an ascent to the top of Mount Everest for a
group of human alpinists. Such an ascent is fraught with in-
herent lethal risks, and to any human, the price of their own
life can be taken as infinite. Note the conceptual difficulty
with this setting: since every policy reaches an infinite-
cost state, the expected cost of any policy is also infinite.
This makes SSP’s cost-minimization criterion uninforma-
tive. Instead, for an undertaking as above, a natural pri-
mary objective is to maximize the probability of getting to
the goal (i.e., to minimize the chance of getting into a lethal
accident, a dead-end state). However, of all policies maxi-
mizing this chance, we would prefer the least costly one (in
expectation). This is exactly the multiobjective criterion we
propose for this class of MDPs. Solving iSSPUDE is much
more involved than handling the previous two classes, and
we introduce two novel algorithms for it.

Intuitively, the objectives of fSSPUDE and iSSPUDE
MDPs are related — as fSSPUDE’s dead-end penalty gets
bigger, the optimal policies of the two classes coincide.
We provide a theoretical and an empirical analysis of this
insight, showing that solving fSSPUDE yields an optimal
policy for iSSPUDE if the dead-end penalty is high enough.

Thus, the paper makes four contributions: (1) three new
goal-oriented MDP models that admit the existence of
dead-end states; (2) optimal VI and heuristic search al-
gorithms for solving them; (3) theoretical results describ-
ing equivalences among problems in these classes; and (4)
an empirical evaluation tentatively answering the question:
which class should be used when modeling a given scenario
involving unavoidable dead ends?

2 Background and Preliminaries

SSP MDPs. In this paper, we extend an MDP class
known as the Stochastic Shortest Path (SSP) problems
with an optional initial state, defined as tuples of the form
〈S,A, T , C,G, s0〉, where S is a finite set of states, A is a

finite set of actions, T is a transition function S×A×S →
[0, 1] that gives the probability of moving from si to sj by
executing a, C is a map S × A → R that specifies action
costs, G is a set of (absorbing) goal states, and s0 is an
optional start state. For each g ∈ G, T (g, a, g) = 1 and
C(g, a) = 0 for all a ∈ A, which forces the agent to stay in
g forever while accumulating no reward.

An SSP must also satisfy two conditions: (1) It must have
at least one complete proper policy, a rule prescribing an
action for every state with which an agent can reach a goal
state from any state with probability 1. (2) Every improper
policy must incur the cost of∞ from all states from which
it cannot reach the goal with probability 1.

When the initial state is unknown, solving an SSP MDP
means finding a policy whose execution from any state al-
lows an agent to reach a goal state while incurring the least
expected cost. We call such a policy complete optimal, and
denote any complete policy as π. When the initial state is
given, we are interested in computing an optimal (partial)
policy rooted at s0, i.e., one that reaches the goal in the
least costly way from s0 and is defined for every state it
can reach from s0 (though not necessarily for other states).

To make the notion of policy cost more concrete, we define
a cost function as a mapping J : S → R ∪ {∞} and let
random variables St and At denote, respectively, the state
of the process after t time steps and the action selected in
that state. Then, the cost function Jπ of policy π is

Jπ(s) = Eπs

[ ∞∑
t=0

C(St, At)

]
(1)

In other words, the cost of a policy π at a state s is the ex-
pectation of the total cost the policy incurs if the execution
of π is started in s. In turn, every cost function J has a
policy πJ that is J-greedy, i.e., that satisfies

πJ(s) = argmin
a∈A

[
C(s, a) +

∑
s′∈S
T (s, a, s′)J(s′)

]
(2)

Optimally solving an SSP MDP means finding a policy that
minimizes Jπ . Such policies are denoted π∗, and their cost
function J∗ = Jπ

∗
, called the optimal cost function, is

defined as J∗ = minπ J
π . J∗ also satisfies the following

condition, the Bellman equation, for all s ∈ S:

J(s) = min
a∈A

[
C(s, a) +

∑
s′∈S
T (s, a, s′)J(s′)

]
(3)

Value Iteration for SSP MDPs. The Bellman equation
suggests a dynamic programing method of solving SSPs,
known as Value Iteration (VISSP ) [Bellman, 1957]. VISSP
starts by initializing state costs with an arbitrary heuristic
cost function Ĵ . Afterwards, it executes several sweeps of
the state space and updates every state during every sweep
by using the Bellman equation (3) as an assignment opera-
tor, the Bellman backup operator. Denoting the cost func-



tion after the i-th sweep as Ji, it can be shown that the
sequence {Ji}∞i=1 converges to J∗. A complete optimal
policy π∗ can be derived from J∗ via Equation 2 .

Heuristic Search for SSP MDPs. Because it stores and
updates the cost function for the entire S, VISSP can be
slow and memory-inefficient even on relatively small SSPs.
However, if the initial state s0 is given we are interested in
computing π∗s0 , an optimal policy from s0 only, which typ-
ically does not visit (and hence does not need to be defined
for) all states. This can be done with a family of algo-
rithms based on VI called heuristic search. Like VI, these
algorithms need to be initialized with a heuristic Ĵ . How-
ever, if Ĵ is admissible, i.e., satisfies Ĵ(s) ≤ J∗(s) for
all states, then heuristic search algorithms can often com-
pute J∗ for the states relevant to reaching the goal from
s0 without updating or even memoizing costs for many
of the other states. At an abstract level, the operation of
any heuristic search algorithm is represented by the FIND-
AND-REVISE framework [Bonet and Geffner, 2003a]. As
formalized by FIND-AND-REVISE, any heuristic search
algorithm starts with an admissible Ĵ and explicitly or
implicitly maintains the graph of a policy greedy w.r.t.
the current J , updating the costs of states only in this
graph via Bellman backups. Since the initial Ĵ makes
many states look “bad” a-priori, they never end up in
the greedy graph and hence never have to be stored or
updated. This makes heuristic search algorithms, e.g.,
LRTDP [Bonet and Geffner, 2003b], work more efficiently
than VI and still produce an optimal π∗s0 .

GSSP and MAXPROB MDPs. Unfortunately, many in-
teresting probabilistic planning scenarios fall outside of
the SSP MDP class. One example is MAXPROB MDPs
[Kolobov et al., 2011], goal-oriented problems where the
objective is to maximize the probability of getting to the
goal, not minimize the cost. To discuss MAXPROB, we
need the following definition:

Definition For an MDP with a set of goal states G ⊂ S,
the goal-probability function of a policy π, denoted Pπ ,
gives the probability of reaching the goal from any state s.
Mathematically, letting Sπs

t be a random variable denoting
a state the MDP may end up if policy π is executed starting
in state s for t time steps,

Pπ(s) =

∞∑
t=1

P [Sπs
t = g ∈ G, Sπs

t′ = s /∈ G ∀ 1 ≤ t′ < t] (4)

Each term in the above summation denotes the probability
that, if π is executed starting at s, the MDP ends up in a
goal state at step t and not earlier. Once the system enters
a goal state, it stays in that goal state forever, so the sum of
all such terms is the probability of the system ever entering
a goal state under π.

To introduce MDPs with dead ends, we will only need the
following informal definition of MAXPROB MDPs. A
MAXPROB MDP is a problem that can be derived from

any goal-oriented MDP (e.g., an SSP) by disregarding the
cost function C and maximizing the probability of reach-
ing the goal instead of the expected cost. More specif-
ically, solving a MAXPROB means finding the optimal
goal-probability function from the above definition, one
that satisfies P ∗(s) = argmaxπ P

π(s) for all states. Al-
ternatively, 1 − P ∗(s) can be interpreted as the smallest
probability of running into a dead end from s for any policy.
Thus, solving a MAXPROB derived from a goal-oriented
MDP by discarding action costs can be viewed as a way to
identify dead ends:

Definition For a goal-oriented MDP, a dead-end state (or
dead end, for short) is a state s for which P ∗(s) = 0.

MAXPROBs, SSPs themselves, and many other MDPs
belong to the broader class of Generalized SSP MDPs
(GSSPs) [Kolobov et al., 2011]. GSSPs are defined as tu-
ples 〈S,A, T , C,G, s0〉 of the same form as SSPs, but relax
both of the additional conditions in the SSP definition. In
particular, they do not require the existence of a complete
proper policy as SSPs do. To state the main results of this
paper, we will not need the specifics of GSSP’s technical
definition, and will only refer to the GSSP properties and
algorithms described below.

Value Iteration for GSSP MDPs. In the case of SSPs,
VISSP yields a complete optimal policy for these MDPs
independently of the initializing heuristic Ĵ . For a GSSP
MDP, such a policy need not exist, so there is no analog of
VISSP that works for all problems in this class. However,
for MAXPROB, a subclass of GSSP particularly important
to us in this paper, such an algorithm, called VIMP , can
be designed. Like VISSP , VIMP can be initialized with
an arbitrary heuristic function, but instead of the Bellman
backup operator it uses its generalized version that we call
Bellman backup with Escaping Traps (BET) in this paper.
BET works by updating the initial heuristic function with
Bellman backup, until it arrives at a fixed-point function
P×. For SSPs, Bellman backup has only one fixed point,
the optimal P ∗, so if we were working with SSPs, we
would stop here. However, for GSSPs (and MAXPROB
in particular) this is not the case — P ∗ is only one of Bell-
man backup’s fixed points, and the current fixed point P×
may not be equal to P ∗. Crucially, to check whether P×
is optimal, BET applies the trap elimination operator to it,
which involves constructing the transition graph that uses
actions of all policies greedy w.r.t. P×. If P× 6= P ∗,
trap elimination generates a new, non-fixed-point P×

′
, on

which BET again acts with Bellman backup, and so on.
The fact that VIMP and FRET, the heuristic search frame-
work for GSSPs considered below, sometimes need to build
a greedy transition graph w.r.t. a cost function is important
for analyzing the performance of algorithms introduced in
this paper (Section 8).

VIMP ’s main property, whose proof is a straight-
forward extension of the results in the GSSP paper
[Kolobov et al., 2011], is similar to VISSP ’s:



Theorem 1. On MAXPROB MDPs, VIMP converges to the
optimal goal-probability function P ∗ independently of the
initializing heuristic function Ĵ .

Heuristic Search for GSSP MDPs. Although a complete
optimal policy does not necessarily exist for a GSSP, one
rooted at s0 always does and can be found by any heuristic
search algorithm conforming to an FIND-AND-REVISE
analogue for GSSPs, FRET [Kolobov et al., 2011]. Like
FIND-AND-REVISE on SSPs, FRET guarantees conver-
gence to π∗s0 if the initializing heuristic is admissible.

3 MDPs with Avoidable Dead Ends

All definitions of the SSP class in the litera-
ture [Bertsekas, 1995, Bonet and Geffner, 2003a,
Kolobov et al., 2011] require that the goal be reach-
able with 100%-probability from every state in the state
space, even when initial state s0 is known and the objective
is to find an optimal policy rooted only at that state. We
first extend SSPs to the easiest case — when dead ends
exist but can be avoided entirely from s0.

Definition A Stochastic Shortest Path MDP with Avoid-
able Dead Ends (SSPADE) is a tuple 〈S,A, T , C,G, s0〉
where S,A, T , C,G, and s0 are as in the SSP MDP defi-
nition, under the following conditions:

• The initial state s0 is known.
• There exists at least one proper policy rooted at s0.
• Every improper policy has Jπ(s0) =∞.

Solving a SSPADE MDP means finding a policy π∗s0 rooted
at s0 that satisfies π∗(s0) = argminπ J

π(s0).

SSPADE has only two notable differences from SSP — the
former assumes the initial state to be known, and only re-
quires the existence of a partial proper policy. However,
even such small departures from the SSP definition prevent
some SSP algorithms from working on SSPADE, as we are
about to see.

Value Iteration: Even though dead ends may be avoided
from s0 with an optimal policy, they are still present in the
state space. Thus, VISSP , which operates on the entire
state space, does not converge on SSPADEs, since the op-
timal costs for dead ends are infinite. One might think that
we may be able to adapt VISSP to SSPADE by restrict-
ing computation to the subset of states reachable from s0.
However, even this is not true, because SSPADE require-
ments do not preclude dead ends reachable from s0. Over-
all, for VISSP to work on SSPADEs, we need to detect
divergence of state cost sequences – an unsolved problem,
to our knowledge.

Heuristic Search: Although VI does not terminate for
SSPADE, heuristic search algorithms do. This is because:
Theorem 2. SSPADE ⊂ GSSP .

Proof sketch. SSPADE directly satisfies all requirements of
the GSSP definition [Kolobov et al., 2011].

In fact, we can also show that heuristic search for SS-
PADE only needs the regular Bellman backup operator
(instead of the BET operator). That is, the FIND-AND-
REVISE framework applies to SSPADE without modifi-
cation. In particular, FIND-AND-REVISE starts with ad-
missible state costs, i.e., underestimates of their optimal
costs. As FIND-AND-REVISE updates them, costs of
dead ends grow without bound, while costs of other states
converge to finite values. Thus, dead ends become unattrac-
tive and drop out of the greedy policy graph rooted at s0,
leaving FIND-AND-REVISE with an optimal, proper pol-
icy.

At the same time, some of the specific heuristic search
algorithms for SSP that implement the FIND-AND-
REVISE template may fail to terminate on SSPADE. For
instance, LAO∗ and LRTDP may try to update values of
dead ends until convergence, which can never be reached.
However, each of them can be easily amended to halt on
SSPADE problems with an optimal solution. Thus, the
existing heuristic search techniques carry over to SSPADE
with little adaptation.

4 MDPs with Unavoidable Dead Ends

In this section, our objective is threefold: (1) to motivate
the semantics of SSP extensions that admit unavoidable
dead ends; (2) to state intuitive policy evaluation criteria
and thereby induce the notion of optimal policy for models
in which the agent pays finite and infinite penalty for visit-
ing dead ends; (3) to formally define MDP class SSPUDE
with subclasses fSSPUDE and iSSPUDE that model such
finite- and infinite-penalty scenarios.

As a motivation, consider an improper SSP MDP, one that
conforms to the SSP definition except for the requirement
of proper policy existence, and hence has unavoidable dead
ends. In such an MDP, the objective of finding a policy that
minimizes the expected cost of reaching the goal becomes
ill-defined. It implicitly assumes that for at least one pol-
icy, the cost incurred by all of the policy’s trajectories is
finite; however, this cost is finite only for proper policies,
all of whose trajectories terminate at the goal. Thus, all
policies in an improper SSP may have an infinite expected
cost, making the cost criterion unhelpful for selecting the
“best” policy.

We suggest two ways of amending the optimization crite-
rion to account for unavoidable dead ends. The first is to
assign a finite positive penalty D for visiting a dead end.
The semantics of an improper SSP altered this way would
be that the agent paysD when encountering a dead end, and
the process stops. However, this straightforward modifica-
tion to the MDP cannot be directly operationalized, since
the set of dead-ends is not known a-priori and needs to be
inferred while planning. Moreover, this definition also has
a caveat – it may cause non-dead-end states that lie on po-
tential paths to a dead end to have higher costs than dead
ends themselves. For instance, imagine a state s whose
only action leads with probability (1 − ε) to a dead end,



with probability ε > 0 to the goal, and costs ε(D + 1). A
simple calculation shows that J∗(s) = D + ε > D, even
though reaching the goal from s is possible. Moreover, no-
tice that this semantic paradox cannot be resolved just by
increasing the penalty D, because the cost of s will always
exceed the dead-end penalty by ε.

Therefore, we change the semantics of the finite-penalty
model as follows. Whenever the agent reaches any state
with the expected cost of reaching the goal equaling D or
greater, the agent simply pays the penalty D and “gives
up”, i.e., the process stops. Intuitively, this setting de-
scribes scenarios where the agent can put a price on how
desirable reaching the goal is. For instance, in the example
from the introduction involving a concert in another city,
paying the penalty corresponds to deciding not to go to the
concert, i.e., foregoing the pleasure the agent would have
derived from attending the performance.

The benefit of putting a “cap” on any state’s cost as de-
scribed above is that the cost of a state under any policy
becomes finite, formally defined as

JFπ(s) = min
π

{
D,E

[
∞∑
t=0

C(Sπs
t , Aπs

t )

]}
(5)

It can be shown that for an improper SSP, there exists an
optimal policy π∗ 1, one that satisfies

π∗(s) = argmin
π

JFπ(s) ∀ s ∈ S (6)

As we show shortly, we can find such a policy using
the expected-cost analysis similar to that for ordinary
SSP MDPs. The intuitions just described motivate the
fSSPUDE MDP class, defined at the end of this section.

The second way of dealing with dead ends we consider in
this paper is to view them as truly irrecoverable situations
and assign D = ∞ for visiting them. As a motivation, re-
call the example of planning a climb to the top of Mount
Everest. Since dead ends here cannot be avoided with cer-
tainty and the penalty of visiting them is ∞, comparing
policies based on the expected cost of reaching the goal
breaks down — they all have an infinite expected cost. In-
stead, we would like to find a policy that maximizes the
probability of reaching the goal and whose expected cost
over the trajectories that reach the goal is the smallest.

To describe this policy evaluation criterion more precisely,
let Sπs+

t be a random variable denoting a distribution over
states s′ for which Pπ(s′) > 0 and in which the MDP may
end up if policy π is executed starting from state s for t
steps. That is, Sπs+

t differs from the variable Sπs
t used pre-

viously by considering only states from which π can reach
the goal. Using the Sπs+

t variables, we can mathematically
evaluate π with two ordered criteria by defining the cost of

1We implicitly assume that one of the optimal policies is deter-
ministic Markovian — a detail we can actually prove but choose
to gloss over in this paper for clarity.

a state as an ordered pair

JIπ(s) = (Pπ(s), [Jπ|Pπ](s)) (7)

where [Jπ|Pπ](s) = E

[
∞∑
t=0

C(Sπs+
t ,Aπs

t )

]
(8)

Specifically, we write π(s) ≺ π′(s), meaning π′ is prefer-
able to π at s, whenever JIπ(s) ≺ JIπ

′
(s), i.e., when either

Pπ(s) < Pπ
′
(s), or Pπ(s) = Pπ

′
(s) and [Jπ|Pπ](s) >

[Jπ
′ |Pπ′ ](s). Notice that the second criterion is used

conditionally, only if two policies are equal in terms of
the probability of reaching the goal, since maximizing
this probability is the foremost priority. Note also that
if Pπ(s) = Pπ

′
(s) = 0, then both [Jπ|Pπ](s) and

[Jπ
′ |Pπ′ ](s) are ill-defined. However, since that means

that neither π nor π′ can reach the goal from s, we define
[Jπ|Pπ](s) = [Jπ

′ |Pπ′ ](s) = 0 for such cases, and hence
JIπ(s) = JIπ

′
(s).

As in the finite-penalty case, we can demonstrate that there
exists a policy π∗ that is at least as large as all others at all
states under the ≺-ordering above, and hence optimal, i.e.

π∗(s) = argmax
≺π

JIπ(s) ∀ s ∈ S (9)

We are now ready to capture the above intuitions in a
definition of the SSPUDE MDP class and its subclasses
fSSPUDE and iSSPUDE:

Definition An SSP with Unavoidable Dead Ends
(SSPUDE) MDP is a tuple 〈S,A, T , C,G, D, s0〉, where
S,A, T , C,G, and s0 are as in the SSP MDP definition,
D ∈ R+ ∪ {∞} is a penalty incurred if a dead-end state is
visited. In a SSPUDE MDP, every improper policy must
incur an infinite expected cost as defined by Eq. 1 at all
states from which it can’t reach the goal with probability 1.

If D < ∞, the MDP is called an fSSPUDE MDP, and
its optimal solution is a policy π∗ satisfying π∗(s) =
minπ JFπ(s) for all s ∈ S.

If D = ∞, the MDP is called an iSSPUDE MDP, and
its optimal solution is a policy π∗ satisfying π∗(s) =
max≺π JIπ(s) for all s ∈ S.

Our iSSPUDE class is related to multi-objective MDPs,
which model problems with several competing objectives,
e.g., total time, monetary cost, etc. [Chatterjee et al., 2006,
Wakuta, 1995]. Their solutions are Pareto-sets of all non-
dominated policies. Unfortunately, such solutions are im-
practical due to high computational requirements. More-
over, maximizing the probability of goal achievement con-
verts the problem into a GSSP and hence cannot be easily
included in those models. A related criterion has also been
studied in robotics [Koenig and Liu, 2002].

5 The Case of a Finite Penalty

Equation 5 tells us that for an fSSPUDE instance, the cost
of any policy at any state is finite. Intuitively, this implies



that fSSPUDE should be no harder to solve than SSP. This
intuition is confirmed by this following result:
Theorem 3. fSSPUDE = SSP.

Proof sketch. To show that every fSSPUDE MDP
MfSSPUDE can be converted to an SSP MDP, we aug-
ment the action set A of fSSPUDE with a special action
a′ that causes a transition to a goal state with probability
1 and that costs D. This MDP is an SSP, since reaching
the goal with certainty is possible from every state. At the
same time, the optimization criteria of fSSPUDE and SSP
clearly yield the same set of optimal policies for it.

To demonstrate that every SSP MDP MSSP is also an
fSSPUDE MDP, for every MSSP we can construct an
equivalent fSSPUDE MDP by setting D = J∗(s). The
set of optimal policies of both MDPs will be the same.
(Note, however, that the conversion procedure is imprac-
tical, since it assumes that we know J∗(s) before solving
the MDP.)

The above conversion from fSSPUDE to SSP immediately
suggests solving fSSPUDE with modified versions of stan-
dard SSP algorithms, as we describe next.

Value Iteration: Theorem 3 implies that JF∗, the opti-
mal cost function of an fSSPUDE MDP, must satisfy the
following modified Bellman equation:

J(s) = min

{
D,min

a∈A

[
C(s, a) +

∑
s′∈S

T (s, a, s′)J(s′)

]}
(10)

Moreover, it tells us that π∗ of an fSSPUDE must be greedy
w.r.t. JF∗. Thus, an fSSPUDE can be solved with arbitrarily
initialized VISSP that uses Equation 10 for updates.

Heuristic Search: By the same logic as above, all FIND-
AND-REVISE algorithms and their guarantees apply to
fSSPUDE MDPs if they use Equation 10 in lieu of Bell-
man backup. Thus, all heuristic search algorithms for SSP
work for fSSPUDE.

We note that, although this theoretical result is new,
some existing MDP solvers use Equation 10 implicitly
to cope with goal-oriented MDPs that have unavoid-
able dead ends. One example is the miniGPT package
[Bonet and Geffner, 2005]; it allows the user to specify a
value D and then uses it to implement Equation 10 in sev-
eral algorithms including VISSP and LRTDP.

6 The Case of an Infinite Penalty

In contrast to fSSPUDE MDPs, no existing algorithm can
solve iSSPUDE problems either implicitly or explicitly, so
all algorithms for tackling these MDPs that we present in
this section are completely novel.

6.1 Value Iteration for iSSPUDE MDPs
As for the finite-penalty case, we begin by deriving a Value
Iteration-like algorithm for solving iSSPUDE. Finding a
policy satisfying Eq. 9 may seem hard, since we are effec-
tively dealing with a multicriterion optimization problem.

Note, however, the optimization criteria are, to a certain
degree, independent — we can first find the set of policies
whose probability of reaching the goal from s0 is optimal,
and then select from them the policy minimizing the ex-
pected cost of goal trajectories. This amounts to finding the
optimal goal-probability function P ∗ first, then computing
the optimal cost function [J∗|P ∗] conditional on P ∗, and
finally deriving an optimal policy from [J∗|P ∗]. We con-
sider these subproblems in order.

FindingP ∗. The task of finding, for every state, the highest
probability with which the goal can be reached by any pol-
icy in a given goal-oriented MDP has been studied before
— it is the MAXPROB problem mentioned in the Back-
ground section. Solving a goal-oriented MDP according to
the MAXPROB criterion means finding P ∗ that satisfies

P ∗(s) = 1 ∀s ∈ G (11)

P ∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′)P ∗(s′) ∀s /∈ G

As already discussed, this P ∗ can be found by the VIMP

algorithm with an arbitrary initializing heuristic.

Finding [J∗|P ∗]. We could derive optimality equations
for calculating [J∗|P ∗] from first principles and then de-
velop an algorithm for solving them. However, instead we
present a more intuitive approach. Essentially, given P ∗,
we will build a modification MP∗ of the original MDP
whose solution is exactly the cost function [J∗|P ∗]. MP∗

will have no dead ends, have only actions greedy w.r.t. P ∗,
and have a transition function favoring transitions to states
with higher probabilities of successfully reaching the goal.
Crucially, MP∗ will turn out to be an SSP MDP, so we will
be able to find [J∗|P ∗] with SSPs’ familiar machinery.

To constructMP∗ , observe that an optimal policy π∗ for an
iSSPUDE MDP, one whose cost function is [J∗|P ∗], must
necessarily use only actions greedy w.r.t. P ∗, i.e., those
maximizing the right-hand side of Eq. 11. For each state
s, denote the set of such actions as AP∗s . We focus on non-
dead ends, because for dead ends [J∗|P ∗](s) = 0, and they
will not be part of MP∗ . By Eq. 11, for each such s, each
a∗ ∈ AP∗s satisfies P ∗(s) =

∑
s′∈S T (s, a

∗, s′)P ∗(s′).
Note that this equality expresses the following relationship
between event probabilities:

P

(
Goal was reached

from s via optimal policy

)

=
∑
s′∈S

P

(
a∗ caused

s→ s′ transition
∧ Goal was reached

from s via optimal policy

)
,

or, in a slightly rewritten form,

∑
s′∈S

P

(
a∗ caused

s→ s′ transition

∣∣∣∣∣ Goal was reached
from s via optimal policy

)
= 1,



where P

(
a∗ caused

s→ s′ transition

∣∣∣∣∣ Goal was reached
from s via optimal policy

)
=

T (s,a∗,s′)P∗(s′)
P∗(s) .

These equations essentially say that if a∗ was executed in s
and, as a result of following an optimal policy π∗ the goal
was reached, then with probability T (s,a∗,s1)P

∗(s1)
P∗(s) action

a∗ must have caused a transition from s to s1, with prob-
ability T (s,a∗,s2)P

∗(s2)
P∗(s) it must have caused a transition to

s2, and so on. This means that if we want to find the vec-
tor [J∗|P ∗] of expected costs of goal-reaching trajectories
under π∗, then it is enough to find the optimal cost func-
tion of MDP MP∗ = 〈SP∗ ,AP∗ , T P∗ , CP∗ ,GP∗ , sP∗0 〉,
where GP∗ and sP

∗

0 (if known) are the same as G and s0
for the iSSPUDE M that we are trying to solve; SP∗ is the
same as S forM but does not include dead ends, i.e., states
s for which P ∗(s) = 0; AP∗ = ∪s∈SAP

∗

s , i.e., the set
of actions consists of all P ∗-greedy actions in each state;
for each a∗ ∈ AP∗s , T P∗(s, a∗, s′) = T (s,a∗,s′)P∗(s′)

P∗(s) , as

above, and a∗ is “applicable” only in s; and CP∗(s, a) is
the same as C forM , except it is defined only for a ∈ AP∗ .

As it turns out, we already know how to solve MDPs such
as MP∗ :
Theorem 4. For an iSSPUDE MDP M with P ∗(s0) > 0,
MDP MP∗ constructed from M as above is an SSP MDP.

Proof sketch. Indeed, MP∗ is “almost” like the original
iSSPUDE MDP, but has at least one proper policy because,
by construction, it has no dead ends.

Now, as we know [Bertsekas, 1995], J∗ for the
SSP MP∗ satisfies J∗(s) = mina∈AP∗ CP

∗
(s, a) +∑

s′∈S T P
∗
(s, a, s′)J∗(s′). Therefore, by plugging in

T (s,a,s′)P∗(s′)
P∗(s) in place of T P∗(s, a, s′) and [J∗|P ∗] in

place of J∗, we can state the following theorem for the
original iSSPUDE MDP M :
Theorem 5. For an iSSPUDE MDP with the optimal goal-
probability function P ∗, the optimal cost function [J∗|P ∗]
characterizing the minimum expected cost of trajectories
that reach the goal satisfies

[J
∗|P∗](s) = 0 ∀s s.t. P∗(s) = 0 (12)

[J
∗|P∗](s) = min

a∈AP∗

C(s, a) + ∑
s′∈S

T (s, a, s′)P∗(s′)

P∗(s)
[J
∗|P∗](s′)


Putting It All Together. Our construction not only let us
derive the optimality equation for [J∗|P ∗], but also im-
plies that [J∗|P ∗] can be found via VI, as in the case of
SSP MDPs [Bertsekas, 1995], over P ∗-optimal actions and
non-dead-end states. Moreover, since the optimal policy
for an SSP MDP is greedy w.r.t. the optimal cost function
and solving an iSSPUDE MDP ultimately reduces to solv-
ing an SSP, the following important result holds:
Theorem 6. For every iSSPUDE MDP, there exists a
Markovian deterministic policy π∗ that can be derived from

P ∗ and [J∗|P ∗] for non-dead-end states using

π
∗
(s) = arg min

a∈AP∗

C(s, a) + ∑
s′∈S

T (s, a, s′)P∗(s′)

P∗(s)
[J
∗|P∗](s′)


(13)

Combining optimality equations 11 and 12 for P ∗ and
[J∗|P ∗] respectively with Equation 13, we present a VI-
based algorithm for solving iSSPUDE MDPs, called IVI
(Infinite-penalty Value Iteration) in Algorithm 1.

Input: iSSPUDE MDP M
Output: Optimal policy π∗ for non-dead-end states of M

1. Find P ∗ using arbitrarily initialized VIMP .

2. Find [J∗|P ∗] using arbitrarily initialized VISSP over MP∗

with update equations 12

Return π∗ derived from P ∗ and [J∗|P ∗] via Equation 13
Algorithm 1: IVI

6.2 Heuristic Search for iSSPUDE MDPs

Input: iSSPUDE MDP M
Output: Optimal policy π∗s0 for non-dead-end states of M
rooted at s0

1. Find P ∗s0 using FRET initialized with an admissible
heuristic P̂ ≥ P ∗

2. Find [J∗|P ∗]s0 using FIND-AND-REVISE over MP∗

with optimality equations 12, initialized with an admissible
heuristic Ĵ ≤ [J∗|P ∗].

Return π∗s0 derived from P ∗s0 and [J∗|P ∗]s0 via Equation 13

Algorithm 2: SHS

As we established, solving an iSSPUDE MDP with VI is
a two-stage process, whose first stage solves a MAXPROB
MDP and whose second stage solves an SSP MDP. In the
Background section we mentioned that both of these kinds
of MDPs can be solved with heuristic search; MAXPROB
— with the FRET framework, and SSP — with the FIND-
AND-REVISE framework. This allows us to construct
a heuristic search schema called SHS (Staged Heuristic
Search) for iSSPUDE MDPs, presented in Algorithm 2.

There are two major differences between Algorithms 1 and
2. The first one is that SHS produces functions P ∗s0 and
[J∗|P ∗]s0 that are guaranteed to be optimal only over the
states visited by some optimal policy π∗s0 starting from the
initial state s0. Accordingly, the SHS-produced policy π∗s0
specifies actions only for these states and does not prescribe
any for other states. Second, SHS requires two admissible
heuristics to find an optimal (partial) policy, one (P̂ ) be-
ing an upper bound on P ∗ and the other (Ĵ) being a lower
bound on [J∗|P ∗].



7 Equivalences of Optimization Criteria

The presented algorithms for MDPs with unavoidable dead
ends are significantly more complicated than those for
MDPs with unavoidable ones. Nonetheless, intuition tells
us that for a given tuple 〈S,A, T , C,G, D, s0〉, solving it
under the infinite-penalty criterion (i.e., as an iSSPUDE)
should yield the same policy as solving it under the finite-
penalty criterion (i.e., as an fSSPUDE) if in the latter case
the penaltyD is very large. This can be stated as a theorem:

Theorem 7. For iSSPUDE and fSSPUDE MDPs over the
same domain, there exists the smallest finite penaltyDthres

s.t. for all D > Dthres the set of optimal policies of
fSSPUDE (with penalty D) is identical to the set of opti-
mal policies of iSSPUDE.

Proof sketch. Although the full proof is technical, its main
observation is simple — as D increases, it becomes such
a large deterrent against hitting a dead end that any pol-
icy with a probability of reaching the goal lower than the
optimal P ∗ starts having a higher expected cost of reach-
ing the goal than policies optimal according to iSSPUDE’s
criterion.

As a corollary, if we choose D > Dthres, we can be sure
that at any given state s, all optimal (JF∗-greedy) policies
of the resulting fSSPUDE will have the same probability of
reaching the goal, and this probability is P ∗(s) according
to the infinite-penalty optimization criterion (and therefore
will also have the same conditional expected cost [J∗|P ∗])

This prompts a question: what can we say about the proba-
bility of reaching the goal of JF∗-greedy policies if we pick
D ≤ Dthres? Unfortunately, in this case different greedy
policies may not only be suboptimal in terms of this prob-
ability, but even for a fixed D each may have a different,
arbitrarily low chance of reaching the goal. For example,
consider an MDP with three states, s0 (the initial state), d
(a dead end), and g (a goal). Action ad leads from s0 to d
with probability 0.5 and to g with probability 0.5 and costs
1 unit. Action ag leads from s0 to g also with probability 1,
and costs 3 units. Finally, suppose we solve this MDP as an
fSSPUDE with D = 4. It is easy to see that both policies,
π(s0) = ad and π(s0) = ag , have the same expected cost,
3. However, the former reaches the goal with probability
0.5, while the latter always reaches it. The ultimate reason
for this discrepancy is that the policy evaluation criterion of
fSSPUDE is oblivious to policy’s probability of reaching
the goal, and optimizes for this parameter only indirectly,
via policy’s expected cost.

To summarize, we have two ways of finding an optimal
policy in the infinite-penalty case, either by directly solving
the corresponding iSSPUDE instance, or by choosing a suf-
ficiently large D and solving the finite-penalty fSSPUDE
MDP. We do not know of a principled way to chooseD, but
it is typically easy to guess by inspecting the MDP. Thus,
although the latter method gives no a-priori guarantees, it
often yields a correct answer in practice.

8 Experimental Results

The objective of our experiments was to find out the most
practically efficient way of finding the optimal policy in
the presence of unavoidable dead ends and infinite penalty
for visiting them, by solving an iSSPUDE MDP or an
fSSPUDE MDP with a largeD. To make a fair comparison
between these methods, we employ very similar algorithms
to handle them. For both classes, the most efficient optimal
solution methods are heuristic search techniques, so in our
experiments we assume knowledge of the initial state and
use only algorithms of this type.

To solve an fSSPUDE, we use the implementation of
the LRTDP algorithm, an instance of the FIND-AND-
REVISE heuristic search framework for SSPs, avail-
able in the miniGPT package [Bonet and Geffner, 2005].
As a source of admissible heuristic state costs/goal-
probability values, we choose the maximum of atom-min-
forward heuristic [Haslum and Geffner, 2000] and Sixth-
Sense [Kolobov et al., 2011]. The sole purpose of the latter
is to soundly identify many of the dead ends and assign the
value of D to them. (Identifying a state as a dead end may
be nontrivial if the state has actions leading to other states.)

Since solving iSSPUDE involves tackling two MDPs,
a MAXPROB and an SSP, to instantiate the SHS
schema (Algorithm 2) we use two heuristic search algo-
rithms. For the MAXPROB component, we use a spe-
cially adapted version [Kolobov et al., 2011] of miniGPT’s
LRTDP, equipped with SixthSense (note that the atom-min-
forward heuristic is cost-based and does not apply to MAX-
PROB MDPs). For the SSP component, we use miniGTP’s
LRTDP, as for fSSPUDE, with atom-min-forward; Sixth-
Sense is unnecessary because SSP has no dead ends.

Our benchmarks were problems 1 through 6 of the
Exploding Blocks World domain from IPPC-2008
[Bryce and Buffet, 2008] and problems 1 through 15 of the
Drive domain from IPPC-06 [Buffet and Aberdeen, 2006].
Most problems in both domains have unavoidable dead
ends. To set the D penalty for the fSSPUDE model, we
examined each problem and tried to come up with an
intuitive, easily justifiable value for it. For all problems,
D = 500 yielded a policy that was optimal under both the
finite-penalty and infinite-penalty criterion.

Solving the fSSPUDE with D = 500 and iSSPUDE ver-
sions of each problem with the above implementations
yielded the same qualitative outcome on all benchmarks.
In terms of speed, solving fSSPUDE was at least an order
of magnitude faster than solving iSSPUDE. The difference
in used memory was occasionally smaller, but only because
both algorithms visited nearly the entire state space reach-
able from s0 on some problems. Moreover, in terms of
memory as well as speed the difference between solving
fSSPUDE and iSSPUDE was the largest (that is, solving
iSSPUDE was comparatively the least efficient) when the
given MDP had P ∗s0(s) = 1, i.e. the MDP had no dead
ends at all or had only avoidable ones.



Although seemingly surprising, these performance patterns
have a fundamental reason. Recall that FRET algorithms,
used for solving the MAXPROB part of an iSSPUDE, use
the BET operator. BET, for every encountered fixed point
P× of the Bellman backup operator needs to traverse the
transition graph involving all actions greedy w.r.t. P×,
starting from s0. Also, FRET needs to be initialized with
an admissible heuristic, in our experiments – SixthSense,
which assigns the value of 0 to states it believes to be dead
ends and 1 to the rest.

Now, consider how FRET operates on a MAXPROB cor-
responding to an iSSPUDE instance that does not have any
dead ends, i.e. on the kind of iSSPUDE MDPs that, as our
experiments show, is most problematic. For such a MAX-
PROB, there exists only one admissible heuristic function,
P̂ (s) = 1 for all s, because P ∗(s) = 1 for all s and an
admissible P̂ needs to satisfy P̂ (s) ≥ P ∗(s) everywhere.
Thus, the heuristic FRET starts with is actually the opti-
mal goal-probability function, and as a consequence, is a
fixed point of the Bellman backup operator. Therefore, to
conclude that P̂ is optimal, FRET needs to build its greedy
transition graph. Observe, however, that since P̂ is 1 every-
where, this transition graph includes every state reachable
from s0, and uses every action in the MDP! Building and
traversing it is very expensive.

The same performance bottleneck, although to a lesser
extent, can also be observed on iSSPUDE instances that
do have unavoidable dead ends. Building large transition
graphs significantly slows down FRET (and hence, SHS)
even when P ∗ is far from being 1 everywhere.

The above reasoning may explain why solving iSSPUDE is
slow, but by itself does not explain why solving fSSPUDE
is fast in comparison. For instance, we might expect
the performance of FIND-AND-REVISE algorithms on
fSSPUDE to suffer in the following situations. Suppose
state s is a dead end not avoidable from s0 by any policy.
This means that J∗(s) = D under the finite-penalty opti-
mization criterion, and that s is reachable from s0 by any
optimal policy. Thus, FIND-AND-REVISE will halt no
earlier than the cost of s under the current cost function
reaches D. Moreover, suppose that the heuristic Ĵ initial-
izes the cost of s to 0 — this is one of the possible ad-
missible costs for s. Finally, assume that all actions in s
lead back to s with probability 1 and cost 1 unit. In such a
situation, an FIND-AND-REVISE algorithm will need to
update the cost of s D times before convergence. Clearly,
this will make the performance of FIND-AND-REVISE
very bad if the chosen value of D is very large. This raises
the question: was solving fSSPUDE in the above experi-
ments so much more efficient than solving iSSPUDE due
to our choice of (a rather small) value for D?

To dispel these concerns, we solved fSSPUDE instances of
the aforementioned benchmarks withD = 5·108 instead of
500. On all of the 21 problems, the increase in speed com-
pared to the case of fSSPUDE with D = 500 was no more
than a factor of 1.5. The reason for such a small discrep-

ancy is the fact that, at least on our benchmarks, FIND-
AND-REVISE almost never runs into the pathological case
described above thanks to the atom-min-forward and Sixth-
Sense heuristics. They identify the majority of dead ends
encountered by LRTDP and immediately set their costs to
D. Thus, instead of spending many updates on such states,
LRTDP gets their optimal costs in just one step. To test
this explanation, we disabled these heuristics and assigned
the cost of 0 to all states at initialization. As predicted, the
solution time of the fSSPUDE instances skyrocketed by or-
ders of magnitude.

The presented results appear to imply an unsatisfying fact
— on iSSPUDE MDPs that are SSPs, the presented al-
gorithms for solving iSSPUDE are not nearly as efficient
as algorithmic schema for SSPs, such as FIND-AND-
REVISE. The caveat, however, is that the price SSP al-
gorithms pay for efficiency is assuming the existence of
proper solutions. iSSPUDE algorithms, on the other hand,
implicitly prove the existence of such a solution, and are
therefore theoretically more robust.

9 Conclusion

A significant limitation of SSP MDPs is their inability to
model dead-end states, consequences of catastrophic action
outcomes that make reaching the goal impossible. While
attempts to incorporate dead ends into SSP have been made
before, a principled theory of goal-oriented MDPs with
dead-end states has been lacking.

In this paper, we present new general MDP classes that
subsume SSP and make increasingly weaker assumptions
about the presence of dead ends. SSPADE assumes that
dead ends are present but an agent can avoid them if it acts
optimally from the initial state. fSSPUDE admits unavoid-
able dead ends but expects that an agent can put a finite
price on running into a dead end. iSSPUDE MDPs model
scenarios in which entering a dead end carries an infinite
penalty and is to be avoided at all costs.

For these MDP classes, we present VI-based and heuris-
tic search algorithms. We also study the conditions under
which they have equivalent solutions. Our empirical results
show that, in practice, solving fSSPUDE is much more ef-
ficient and yields the same optimal policies as iSSPUDE.

In the future, we hope to answer the question: are iS-
SPUDE MDPs fundamentally harder than fSSPUDE, or
can we invent more efficient heuristic search algorithms for
them? Besides, as we found out after submitting this arti-
cle, a more general class of MDPs than iSSPUDE, called
S3P, has been proposed in the literature but not completely
solved [Teichteil-Königsbuch, 2012]. Deriving algorithms
for it will be our next research objective.
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