
Inferring Strategies from Limited Reconnaissance
in Real-time Strategy Games

Jesse Hostetler and Ethan Dereszynski and Tom Dietterich and Alan Fern
{hostetje, dereszet, tgd, afern}@eecs.orst.edu

Department of Electrical Engineering and Computer Science
Oregon State University

Corvallis, OR 97331

Abstract

In typical real-time strategy (RTS) games,
enemy units are visible only when they are
within sight range of a friendly unit. Knowl-
edge of an opponent’s disposition is limited to
what can be observed through scouting. In-
formation is costly, since units dedicated to
scouting are unavailable for other purposes,
and the enemy will resist scouting attempts.
It is important to infer as much as possi-
ble about the opponent’s current and future
strategy from the available observations. We
present a dynamic Bayes net model of strate-
gies in the RTS game Starcraft that com-
bines a generative model of how strategies
relate to observable quantities with a prin-
cipled framework for incorporating evidence
gained via scouting. We demonstrate the
model’s ability to infer unobserved aspects of
the game from realistic observations.

1 INTRODUCTION

Real-time strategy (RTS) games, which are video game
simulations of both the economic and military aspects
of warfare, present a rich variety of reasoning chal-
lenges. Players must manage resources, plan at multi-
ple time scales, coordinate heterogeneous armies com-
posed of as many as 100 individual units, and respond
to the actions of adversaries, all with incomplete in-
formation about the game state and under real-time
constraints. We are particularly interested in the prob-
lem of decision-making with incomplete information.
Specifically, how can an agent predict the intentions of
its opponent from a limited number of observations?

This work addresses the problem of unit count infer-
ence during the early stages of the game. In the open-
ing minutes, players make choices about what kinds
of units to build and what technologies to pursue.

These choices dictate the overall “feel” of the game:
aggressive versus defensive, economy versus technol-
ogy, etc. The players’ plans are reflected in their open-
ing build orders. Because resources are limited in the
early game, players must commit to a particular path
through the technology tree, culminating in a certain
composition of the initial army. The primary concern
early in the game is to choose an opening strategy that
will gain an advantage against the opponent’s opening.

This task is complicated by the limited information
available to the players. Enemy units are visible only
if a friendly unit is nearby. A player’s knowledge of her
opponent’s strategy is thus limited to what has been
observed through reconnaissance. It is impractical to
observe all important actions of the enemy, because at-
tempting to do so would divert many units from other
tasks, and the enemy will attempt to destroy the scouts
before they learn anything useful. Instead, players
must gain whatever information they can with reason-
able effort, and then evaluate their limited knowledge
to infer the likely disposition of the enemy. An effec-
tive model of opening strategy must be able to make
useful inferences from realistic evidence.

We present a dynamic Bayesian network model of
opening strategy and apply it to the RTS game Star-
craft. We combine a latent variable model of the true
game state with an observation model that describes
how the latent state generates the observed state. The
true state, which we call the battle space, can be de-
scribed by the true counts of each type of unit con-
trolled by the enemy. The evolving counts of the var-
ious unit types are represented as Markov processes
that are conditionally independent given the history
of a hidden strategy process. The strategy determines
which units are produced in a given time step, and the
produced units accumulate to form the true counts.
The observation model then determines the likelihood
of observations given the true state and a measure of
observation “effort.” Although the hidden state space
is potentially very large due to the number and car-



dinality of the “count” variables, the structure of the
model admits an efficient particle filtering algorithm
for inference, taking advantage of the conditional in-
dependence of the unit counts.

1.1 REAL-TIME STRATEGY GAMES

We now briefly describe the mechanics of a typical RTS
game. RTS games are simulations of total warfare.
Players claim bases, which contain resources, by build-
ing city centers. They then use workers to harvest
the resources, which they spend to construct buildings
and mobile units. We will use the generic term units
to refer both to buildings and to mobile units. Pro-
duction buildings produce mobile units, including both
workers and military units. In contrast, constructing
tech buildings enables access to more powerful fighting
units, and to further tech buildings. The game ends
when one player controls no buildings, though players
will typically resign a lost position much earlier.

Most RTS games contain a mechanism called the “fog
of war”. A metaphor for the limited intelligence avail-
able to military commanders, the fog of war makes en-
emy units invisible unless they are within visual range
of a friendly unit. Players who lack accurate infor-
mation about their opponents’ activities are at risk
of being surprised by attacks for which they are not
prepared. Skilled players thus make scouting a high
priority, and they are adept at inferring their oppo-
nents’ intentions on the basis of that scouting. It is
this inference process that we seek to model.

1.2 RELATED WORK

A complete description of a player’s opening would
specify how many units of each type existed at any
moment. To our knowledge, no one has yet attempted
to create a model of openings at this level of granu-
larity. Existing work simplifies the task by adopting
less-detailed descriptions of opening strategies.

A common simplification is to assume a small num-
ber of opening categories, such as “rush attack” or
“strong economy.” Weber and Mateas (2009) created
a set of labels for Starcraft openings based on player-
community vocabulary, and tried a variety of super-
vised classifiers for predicting the labels. Schadd et al.
(2007) designed a two-level hierarchy of labels for the
free RTS game Spring.

An alternative to categorical strategies is to model the
dynamics of the game state itself. One can then rep-
resent an opening strategy as a path through the state
space. Ponsen et al. (2007) used a finite state ma-
chine (FSM) model of building construction in War-
gus. States represent which buildings have been built,

and transitions are triggered by the construction of
novel building types. Hsieh and Sun (2008) took a sim-
ilar approach in Starcraft but used a stochastic FSM,
with transition probabilities learned from gameplay
data. Dereszynski et al. (2011) used a hidden Markov
model (HMM). Transitions between hidden states oc-
cur at fixed time intervals, and the observations are
Bernoulli random variables specifying the probability
of building units of each type in the current state.

Except for Schadd et al. (2007), the work discussed
so far assumes that the agent has access to infor-
mation, such as the times at which particular units
were constructed, that would be difficult to observe
during actual gameplay. Another exception is Syn-
naeve and Bessière (2011), who used a directed graph-
ical model to describe a joint distribution over strat-
egy categories, game states, and observations in Star-
craft. Their game states are Boolean vectors indi-
cating whether each type of unit has been built, and
game states are conditionally independent given strat-
egy categories. Observations are incorporated by as-
signing 0 posterior probability to states that are in-
consistent with observations.

The idea of an observation model (also known as a
detection model) has been applied in many settings.
Observation models are needed when we do not ob-
serve the true state of a system, but rather the results
of some process parameterized by the latent true state.
For example, in ecological modeling, we are often in-
terested in the true number of individuals of a certain
species present in the environment, but have access
only to counts provided by field observers, who may
not detect the species even if it is present (MacKen-
zie et al., 2002). The observation model describes how
the hidden state determines the observed state, possi-
bly as a function of covariates such as observer effort.
One can then find the MAP estimate of the hidden
state, accounting for the evidence. Our model is quite
similar in spirit to the “occupancy-detection” models
discussed by Hutchinson et al. (2011).

1.3 OUR CONTRIBUTIONS

This work improves upon existing models of RTS game
opening strategy in several ways. First, we model the
game state at the level of individual unit counts over
time, enabling inference at the level of detail neces-
sary for making gameplay decisions. Second, because
individual unit counts are directly observable during
gameplay, our model does not require evidence that
is impossible to acquire in order to make inferences.
Third, because our observation model includes pre-
dictors of scouting success, we can extract maximum
value from limited observations, particularly from fail-
ure to observe a unit despite significant effort.



1tS 

1

i

tP

1

i

tU 

1

i

tO 

1tE 

tS

i

tP

i

tU

i

tO

tE

i

tK 1

i

tK

if if

Ni ,...,1

Figure 1: Two-slice representation of the reconnaissance
model. We use plate notation to show that separate
P, K, U, f , and O variables exist for each unit type i (but
note that the variables are not exchangeable). There is a
direct link from U i

t−1 to U i
t for each unit type. Shaded

rectangles denote variables that we can directly observe.

2 THE MODEL

The overall model (Figure 1) is a discrete-time dy-
namic Bayes net (Dean and Kanazawa, 1988), com-
bining two distinct components, the state model and
the observation model, which we describe separately.

2.1 STATE MODEL

The state model describes the process that generates
the true state of the battle space. Each game corre-
sponds to a path through a discrete state space be-
ginning at a designated start state. Let St denote the
state at time t. Time is discretized into 30-second in-
tervals, and the player makes a state transition once
every 30 seconds. We will say “epoch k” or “time
t = k” to denote the time step begun by the kth tran-
sition. When the player visits state s, he or she decides
how many units of each type to produce. Let P i

t be
the number of units of type i produced at time t. We
model the decision to produce k units of type i as oc-
curring in two steps. First, a decision is made about
whether to produce any units of type i at all. Then, if
the first decision is to produce one or more units, a de-
cision is made about how many units to produce. This
is modeled by the zero-inflated Poisson distribution

P (P i
t = k|St = s) =

{
1− νi

s k = 0
νi

s · Pois(k − 1;λi
s) k > 0

Here, νi
s is the probability of producing one or more

units of type i in state s, and hence, 1 − νi
s is the

probability of producing zero units. The number of
units produced (beyond the first) is then determined
by the Poisson rate parameter λi

s.

We model production as a two-step decision to make
it easier to capture the decision not to produce any
units of a particular type. This is important for mod-
eling the production of tech buildings. In most cases,
only one tech building of a given type is needed—
it just serves as a prerequisite for producing higher-
tech units. Decisions to produce tech buildings reflect
strategic choices, so it is important to capture these
0/1 decisions. The alternative of just using a Poisson
distribution does not handle this well, because there is
no way to control the probability of producing 0 units
without also changing the shape of the distribution.
Similarly, modeling the unit production as Bernoulli
random variables is not appropriate, because there do
exist cases where two such buildings will be produced.

Let Pt = (P i
t )

N
i=1 denote the vector of unit production

for all N unit types at time t. In our model, the P i
t

variables are independent conditioned on the current
state St. Of course, there are important constraints
among production rates of multiple unit types, since
producing units of one type consumes resources that
cannot be spent to produce other types. In principle,
these constraints can be incorporated by using a suf-
ficiently large number of states. However, that may
conflict with the goal of capturing the player’s overall
strategy via the sequence of state transitions. Thus,
the number of states must be selected appropriately to
balance these objectives.

When scouting, we cannot directly observe the produc-
tion of units; rather, a scout only observes (a subset
of) the units that exist at a given time. To connect
the individual unit production decisions to the scout-
ing observations, we need to model the total number
of units U i

t of type i that exist at time t. This is
equal to the number of units produced by time t mi-
nus the number that have died. Each U i

t takes val-
ues in {0, 1, . . . , Umax}, where Umax is the maximum
number of units that can exist. Because the produc-
tion variable P i

t has infinite support, the assignment
U i

t = Umax represents the situation where there are
Umax or more units of type i.

Unit deaths can occur in two ways. Most deaths in-
volve our units killing their units, and these deaths,
Kt = (Ki

t)
N
i=1, are observed. Each unit of type i

also has a small probability `i of suffering an unob-
served loss in each time step. For example, a building
that was scouted while under construction may subse-
quently be canceled. Starting from initial unit counts
ci, the total count of unit type i at time t is defined
recursively as

U i
0 = ci

U i
t ∼ Binomial(U i

t−1 −Ki
t−1, 1− `i) + P i

t

When calculating U i
t in the case where U i

t−1 = Umax,



we do not know the exact value represented by U i
t−1,

so we assume that it is exactly Umax. Very rarely, this
will lead us to underestimate U i

t , but we set Umax to
be large enough to avoid this problem in most cases.

Let Ut = (U i
t )

N
i=1 be the vector collecting the numbers

of units of each type that exist at time t. We refer to
Ut as the “battle space” at time t.

2.2 OBSERVATION MODEL

The observation model specifies the likelihood of an
observation given a particular assignment to Ut. We
define an observation as the number of units of each
type that we saw during a time interval, Ot = (Oi

t)
N
i=1.

We assume that we can distinguish between individual
enemy units within an epoch, but not between epochs.
That is, if we make two observations of a unit of a cer-
tain type during the same epoch, we know whether we
have seen the same unit twice, or two different units.
We can therefore model these observations as sampling
without replacement from Ut within an epoch. For
observations in different epochs, we assume that we
cannot tell whether a unit observed in one epoch is
the same as a unit observed in a previous epoch.

If we observe an enemy unit, we know that the unit
exists. If, on the other hand, we do not observe a
unit, there are two possible explanations. Either the
unit does not exist, or it does exist but we did not look
hard enough for it. Hence our observation model needs
to incorporate some measure of scouting “effort”. If
we put little effort into scouting, failure to observe a
unit does not tell us much about whether it exists. If
we scout extensively and still do not see the unit, it
probably does not exist.

We can exploit domain knowledge to come up with a
measure of effort. In Starcraft, players construct most
of their buildings in either their main base or their
natural expansion. The main base is the area of the
map where the player’s starting units appear at the
beginning of the game, while the natural expansion is
the location where it is most “natural” to construct a
second base. Because buildings must be defended, it
is tactically advantageous to keep them close together.
In the early game, the main base and the natural ex-
pansion are thus the most important areas to scout,
since that is where the buildings will be located. A
natural measure of scouting effort, then, is the pro-
portion of these two areas that have been seen. We
denote this proportion for slice t as Et.

We must now decide how our scouting effort influences
the number of units we observe. Our initial approach
was to treat each observable unit as an independent
Bernoulli trial, with probability of success Et. An ob-
servation would then be a vector of Binomial random

variables, Oi
t ∼ Binomial(U i

t , Et).

The Binomial model assumes that the locations of
units are distributed uniformly and independently in
space. However, this assumption is wrong. Units tend
to cluster together. For example, the primary task of
“worker” units is to gather resources, which they do
by traveling back and forth between the city center
and the resource. Thus, almost all worker units will
be found in the area between the city center and the
resources. If we see one worker, it is probably because
we have seen part of this area, and we would expect
to have seen most of the other workers, too. There is
thus more variance in the observations than the Bino-
mial model would predict; the data are overdispersed
with respect to the Binomial distribution.

We account for overdispersion by placing a Beta prior
on the success probability parameter of the Binomial,
forming a Beta-Binomial model (Haseman and Kup-
per, 1979):

Oi
t ∼ BetaBinomial(U i

t , µ
i
t, ρ

i)

=
(

U i
t

Oi
t

)
B(Oi

t + αi
t, U

i
t −Oi

t + βi
t)

B(αi
t, β

i
t)

where B(x, y) is the beta function, and

αi
t = µi

t

1− ρi

ρi
, βi

t = (1− µi
t)

1− ρi

ρi
.

We adopt the (µ, ρ) parameterization of the Beta dis-
tribution, where µ ∈ [0, 1] is the mean of the Beta and
ρ ∈ [0, 1] is the dispersion parameter, which can be
thought of as the correlation between individual suc-
cesses. The Beta distribution is a conjugate prior of
the Binomial. When ρ → 0, the Beta-Binomial ap-
proaches the Binomial, while as ρ increases, the den-
sity spreads out and eventually becomes bimodal. The
bi-modality captures the “clumpiness” of the units:
depending on whether the part of the area of inter-
est we saw contains the units, the success probability
is either high or low, but probably not in the middle.

For each unit type i, we learn a mapping f i(Et) from
the observation effort to the mean and dispersion of a
Beta-Binomial distribution:

logit(µ̂i
t) = ai

0 + ai
1Et

logit(ρ̂i) = bi.

This is then plugged into the Beta-Binomial to com-
pute the likelihood of observing Oi

t given that U i
t units

exist. We learn a different mapping for each unit type,
to allow for differences in dispersion and ease of observ-
ability between unit types. The regression coefficients
are assumed constant in time, but µ̂i

t varies in time
due to its dependence on Et.



2.3 TRAINING

All model variables except S are observed during train-
ing. Because all other variables are conditionally inde-
pendent of S given P and P is observed, we can factor
the full model into a latent variable model composed
of S and P, and a fully observed model containing the
rest of the parameters. We can learn the parameters of
S and P separately from the rest, simplifying training.

The production process is a hidden Markov model
(HMM) (Rabiner, 1990), where St is the latent
state and P 1

t , ..., PN
t are the emissions. The pa-

rameters of the HMM are the initial state prob-
abilities P (S0) = Multinomial(η1, ..., ηM ), the
state transition probabilities P (St|St−1 = s) =
Multinomial(πs

1, ..., π
s
M ), and the inflated Poisson pa-

rameters P (P i
t = k > 0|St = s) = νi

s · Pois(k −
1;λi

s). We denote the parameter set of the HMM
Φ = (η1, ..., ηM , π1

1 , ..., πM
M , λ1

1, ..., λ
N
M , ν1

1 , ..., νN
M ).

At training time, we observe Pt. We can then estimate
Φ in the usual way using the Expectation Maximiza-
tion (EM) algorithm. We initialized the EM algorithm
as follows: the η and π parameters are set to 1/M ,
values of ν are drawn from a Uniform(0, 1), and λ pa-
rameters are drawn from a Uniform(0, 10).

The “unobserved loss” probabilities `i are estimated
as the number of unobserved losses of units of type
i divided by the number of unit-epochs (analogous to
human-years) during which a unit of that type existed.
For unit types that were present in at least 100 unit-
epochs, `i was estimated using additive smoothing as
ˆ̀i = di+1

Di+2 where di is the number of unobserved losses
of unit type i and Di is the number of unit-epochs for
type i. The smoothing ensures that all unit types have
non-zero `i even if there were no unobserved losses in
the training data. For types that were not present in at
least 100 unit-epochs, the median estimate was used.

The functions f i giving the parameters of the distri-
butions of Oi

t are learned via logistic regression with
a maximum likelihood objective using the R package
aod (Lesnoff et al., 2010). We fit a µ̂i parameter for
unit type i only if a unit of that type was observed
on at least 100 occasions in the dataset. We fit a ρ̂i

parameter only if the unit type met the condition for
µ̂i and there were at least two of the unit type present
(but not necessarily observed) on at least 100 occa-
sions. The reason for the condition on ρ̂ is that if it
is rare for more than one instance of the unit to exist,
then there is little dispersion in the data, and the esti-
mate of ρ̂i will be near 0. In this case, ρ̂i would merely
be modeling the tendency not to build more than one
unit, which is properly the job of Pt. For types that
did not have enough data for µ̂ or ρ̂, the median of the
estimated regression coefficients are used.

2.4 INFERENCE

We denote the subset of latent variables for a slice t as
Xt =

{
St, P

1
t , . . . , PN

t , U1
t , . . . , UN

t

}
, and the observed

variables as Yt =
{
Et,K

1
t , . . . ,KN

t , O1
t , . . . , ON

t

}
. We

use the lowercase yt and xt to denote instantiations
of these variables (i.e, yt refers to the evidence at
time t). Because each U i

t is conditioned on St, and
St and U i

t are Markovian, an exact filtering pass
would require representing the forward message αt =
P (St, U

1
t , ..., UN

t ). This is intractable for even a mod-
est number of types, since the size of the joint dis-
tribution is MUN

max. However, a key observation is
that, given the history of the strategy state, S0:t =
(S0, . . . , St), the model up to time t decomposes into
N independent HMMs, each tracking the count of a
single type. We leverage this structure by employing a
Rao-Blackwellized particle filter (RBPF) for approxi-
mate inference (Doucet et al., 2000; Murphy, 2000).

In our application of RBPF, we draw particles of
S0:t, and compute P (U i

t |s0:t) analytically via standard
HMM filtering. Following an importance sampling
framework, particles are generated at each time step
from a proposal distribution Q(St). We use the state
transition model for our proposal, Q(St) = P (St|st−1).
While this choice ignores recent evidence at time t, it
is computationally efficient to sample, and there are
often periods of no evidence, anyway.

At t = 0 we draw R particles from the initial state
prior s1

0, . . . , s
R
0 ∼ P (S0). Each particle has an im-

portance weight wr
t = φ(sr

t )/Q(sr
t ), where φ(sr

t ) is
the probability of the particle’s value sr

t given by
the full model (up to normalization). At t = 0,
wr

0 = (P (y0|sr)P (sr)) /Q(sr). For t > 0, each par-
ticle generates its next value of the state si

t ∼ Q(St) =
P (St|si

t−1). We then update its weight using the ratio:

wr′

t =
P (Yt = yt|y0:t−1, s

r
0:t)P (St = sr

t |St−1 = sr
t−1)

P (St = sr
t |St−1 = sr

t−1)
.

The new weight for particle r is then wr
t = wr

t−1w
r′

t .

Because our proposal distribution is identical to
P (St|St−1) (canceling out the denominator), we are
only interested in the likelihood term of the numera-
tor, P (Yt = yt|y0:t−1, s

r
0:t), which factors as

N∏
i=1

[
P (U i

t |U i
t−1, P

i
t ,K

i
t−1)P (U i,r

t−1)

· P (P i
t |St = sr

t )P (Oi
t|U i

t , E
i
t)

]
.

P (U i,r
t−1) is a forward-pass message that captures the

posterior marginal distribution over the counts of unit
type i at time t − 1. After we weight a sample, we



compute P (U i,r
t |sr

0:t, yt) to update its belief about the
unit count and to pass to slice t + 1. Each particle
computes N such messages, one for each unit type.

Particle filters often include a resampling step in which
a new set of particles is sampled in proportion to the
weights of the current set and given uniform weights.
We do not include a resampling step because we expect
that there will often be periods of no observations,
particularly in the opening several epochs. Resampling
would reduce the diversity of the particle population,
with the result that if observations later come in that
suggest a priori unlikely strategies, there may be no
particles left that can represent them well.

3 EXPERIMENTS

We evaluated our model on its ability to infer the cor-
rect hidden unit counts, given the observations avail-
able to players during real games. We used two differ-
ent metrics. For unit types that are usually present in
numbers greater than 1, such as army units, we mea-
sured the model’s ability to infer the correct number of
units. For unit types that are either not built or built
once, such as tech buildings, we measured accuracy in
determining whether or not the unit is present. We
also specifically tested the model’s ability to infer the
absence of units, a task that requires the observation
model and the state model to work together.

Our experiments were conducted using gameplay
data1 from the RTS game Starcraft. We collected re-
plays of 509 Protoss versus Terran games from the
archives of the “Gosu Gamers” website.2 Starcraft
features three playable “races,” Protoss, Terran, and
Zerg, each with different units and abilities. We fo-
cused on a single match-up in this work. In our exper-
iments, we take the perspective of the Terran player,
and try to predict what the Protoss player is doing.

Data about unit counts and observations was extracted
from the replays using the BWAPI library (BWAPI,
2012). We used the BWTA terrain analysis library
(Perkins, 2010) to divide the maps into regions, and
manually identified the regions corresponding to the
Protoss player’s main base and natural expansion.

The dataset was divided into 5 folds for cross-
validation. To select M (number of strategy states)
in the production model, we compared the average
likelihood P (P|Φ) on the held-out data for M =
20, 25, 30, 35, and 40. The likelihoods for M = 25, 30,
and 35 were statistically identical, and we selected
M = 30 based on examination of the learned param-
eters and our knowledge of Starcraft. After selecting

1Our dataset is available at http://web.engr.
oregonstate.edu/∼tgd/rts/scouting/

2http://www.gosugamers.net/starcraft/replays/

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

P
ro

p
o

rt
io

n
 w

it
h

 n
o

n
-z

er
o

 e
ff

o
rt

 

A
v

er
ag

e 
sc

o
u

ti
n

g
 e

ff
o

rt
 

Epoch 

Typical scouting behavior 

Games with non-

zero effort 

Average effort 

Figure 2: Average scouting effort, and proportion of games
with non-zero effort, by epoch.

M , we estimated the observation model parameters for
each of the 5 folds using their respective training sets.

3.1 BASELINE METHOD

We implemented a simple baseline consisting of two
sets of averages: the average number of units of each
type at the end of each epoch for 1) all games, and 2)
only games in which the unit was present in at least
one epoch. At time t, if no units of type i have been
scouted so far, the baseline predicts the average for
type i at time t across all games. If at least one unit of
type i has been scouted, the baseline predicts the aver-
age across games in which that unit type was present.
The baseline should perform fairly well in the opening,
since many openings are similar and thus unit counts
often have low variance.

3.2 TYPICAL SCOUTING BEHAVIOR

Since our model uses observations obtained through
scouting as its evidence, it is important to know what
typical scouting behavior looks like. There is a pro-
nounced peak in scouting effort from t = 5 to t = 8,
after which effort falls back to a steady “background”
level (Figure 2). The first significant scouting appears
to begin at t = 4. Based on this pattern of scouting,
we should expect our model to perform best during
the peak scouting period, t = 5, 6, 7, 8.

3.3 MODEL ANALYSIS

The (logistic-transformed) regression coefficients of the
observation model reveal varying levels of dispersion
for different types of units. Typical values of ρ̂i for
mobile units were around 0.3, suggesting that mobile
units often travel in groups. Values for buildings var-
ied more widely. For Gateways (which produce mili-
tary units), ρ̂i was equal to 0.71, indicating that Gate-
ways are very likely to be close to one another. At the
other extreme, the value of ρ̂i for the Nexus (the “city
center” where resources are deposited by workers) was
10−8, since Nexi are never built near one another. The
regression coefficients of the scouting effort were al-



0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

R
el

at
iv

e 
ex

p
ec

te
d

 a
b

so
lu

te
 e

rr
o

r 

Epoch 

Probes 

[Baseline] Filtering 

[Model] No observations 

[Model] Filtering 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
Epoch 

Gateways 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
Epoch 

Dragoons 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
Epoch 

Zealots 

Figure 3: Relative expected absolute error for filtering
predictions of common unit types, versus baseline. The
error bars are 95% confidence intervals.

most all near 1.0, indicating that our scouting effort
measure is a good predictor of scouting success. The
two effort coefficients that were substantially less than
1 corresponded to units with the Cloak ability, which
can only be seen by particular kinds of units. For
one of these units, the Observer, the model learned
that greater scouting effort decreases the probability
of detection. This seems incorrect; we believe it occurs
because in addition to being hard to detect, Observers
usually are not fielded until after the period of peak
scouting, so effort is negatively correlated with Ob-
server presence.

3.4 INFERRING UNIT QUANTITIES

For common units that are built in large numbers, we
would like to be able to infer the true counts. In Star-
craft, the most common units in the early game are the
Probe (the Protoss worker), the Dragoon and Zealot
(basic military units), and the Gateway (a building
that produces Dragoons and Zealots). Figure 3 com-
pares our model’s performance to that of the baseline
for the filtering task over these four unit types. The
dotted lines show the baseline method, the solid lines
show our model’s accuracy at filtering, and the dashed
lines show our model’s accuracy with no observations.
The error measure is relative expected absolute error.
That is, for a true count ui

t and the model’s marginal
distribution U i

t , the error is given by

εi
t = E[|U i

t − ui
t|]/(ui

t + 1).

We outperform the baseline from the onset of scout-
ing for both Dragoons and Zealots. For Probes, we do
worse for most of the opening, although both models
have low error. We can attribute the good perfor-
mance of the baseline to the low variance in Probe

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

E
x
p
ec

te
d
 0

/1
 e

rr
o
r 

Epoch 

Robotics Support Bay 

[Baseline] Filtering 

[Model] No observations 

[Model] Filtering 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
Epoch 

Citadel of Adun 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
Epoch 

Observatory 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
Epoch 

Robotics Facility 

Figure 4: Expected 0/1 error for filtering predictions of

tech buildings, versus baseline. The error bars are 95%
confidence intervals. Error bars have been omitted for the
model with no observations, for clarity.

counts. Players almost always build Probes as quickly
as possible in order to increase resource income, up
to a “saturation” point that depends on the number
of bases the player has secured. The large increase in
the baseline’s error at the end of the opening suggests
that this is a point where some players have reached
saturation while others have not. Our model does not
experience a notable increase in error because it can
represent multi-modal distributions. For Gateways,
the baseline is notably better from t = 10 to t = 12.
This is explained by the typical timing of Gateway
construction. The first dip at t = 4 is a time when
nearly everyone has built their first Gateway. Players
will then build a second “batch” of Gateways, with the
exact timing and number depending on their strategy.
The second dip in baseline error around t = 11 is the
end of the second period of Gateway production. Our
model has trouble capturing this structure because it
is stationary.

The shapes of the error curves for our model in the
case of no observations are very similar to the base-
line, although the baseline generally has better accu-
racy. Our model tracks the average-case behavior, but
over-predicts production due to the Markov assump-
tion on strategy states. For example, our model will
give some probability of transitioning to a Dragoon-
producing state earlier than a Dragoon could possibly
have been produced.

3.5 INFERRING TECH BUILDINGS

While counts are important for units that are produced
in numbers, for tech buildings we are primarily con-
cerned with whether or not they exist. Thus, we com-
pared our model to an appropriately modified baseline



0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

E
x

p
ec

te
d

 0
-1

 e
rr

o
r 

Evidence horizon 

Absent tech buildings 

[Model] Robotics Facility 

[Model] Observatory 

0 

1 

2 

3 

4 

5 

6 

7 

8 

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

E
x

p
ec

te
d

 a
b

so
lu

te
 e

rr
o

r 

Evidence horizon 

Absent mobile units 

[Model] Dragoons 

[Model] Zealots 

Figure 5: Error in predictions for t = 13 given evidence
up to various horizons, on games where the target unit is
not present. Error bars are 95% confidence intervals.

using expected 0/1 error for four tech buildings.

There are two qualitatively different shapes in the
baseline error curves (Figure 4). For the Robotics
Facility and the Observatory, baseline error peaked
and then decreased, while for the Citadel of Adun
(“Citadel”) and Robotics Support Bay (“Support
Bay”), it continued to increase for the entire opening.
Our model with no observations tracks the baseline
error closely, until the baseline error begins to drop.

We again seem to outperform the baseline from the on-
set of scouting, though the baseline sometimes makes
a comeback at the end of the opening. As with the
Gateway results in Section 3.4, the drop in error for the
Robotics Facility at the end of the opening is explained
by typical strategy. The great majority of openings in-
volve building a single Robotics Facility before epoch
13. In constrast to the Gateway results, our model
was able to capture this temporal structure for the
Robotics Facility, perhaps because a Robotics Facility
is built only once, whereas multiple Gateways are built
over a period of time. On the other hand, a Support
Bay will only be built in some openings, and will be
skipped entirely in others. We would expect error to
stabilize after the time period during which the Sup-
port Bay would be constructed passes, and we do see
some evidence of this for our model with observations.
It is also worth noting that the probability of scouting
a Robotics Facility given that it exists is 0.37, while
the probability of scouting a Support Bay is only 0.18.

3.6 INFERRING ABSENCE OF UNITS

Because we model the probability of observation suc-
cess as a function of effort put into observing, we can
make maximum use of negative observations to infer
that units are not present. In Figure 5, we show our
model’s error for predictions of the final epoch, given
evidence up to varying horizons, in games where the
target unit was not present. For example, at hori-
zon 6, the model is making predictions for t = 13
given evidence through t = 6. The true count is equal
to 0, so all of the error comes from over-predicting.
We see that as more negative observations arrive, the

0.0

0.2

0.4

0.6

0.8

1.0

6 7 8 9 10 11 12 13

B
el

ie
f t

ha
t 

un
it

 e
xi

st
s

Epoch

Predictions given evidence through time 6

Observatory

Support Bay

Reaver

Shuttle

0

0.2

0.4

0.6

0.8

1

10 11 12 13

B
el

ie
f t

ha
t 

un
it

 e
xi

st
s

Epoch

Predictions given evidence through time 10

Figure 6: Belief that a unit of each of four different types
will exist in future epochs in our Reaver drop case study
game, given evidence up to t = 6 and t = 10. The Shuttle
and Support Bay were actually built at t = 9, and the
Reaver was built at t = 11. No Observatory was built.
Error bars are 95% confidence intervals over 30 runs.

model revises its predictions downwards. The obser-
vation model uses the negative observations to infer
that there are currently no units, and the rates of pro-
duction given by the state model limit the number of
units that could be built in the remaining time. The
effect is strongest for units that are normally easy to
scout. For example, Dragoons are present in all but
11 games, and they are easy to observe because they
will be trying to attack the scout. Similarly, Robotics
Facilities are both more common and more frequently
scouted than Observatories. The baseline (not shown)
would have a large, flat error on this task.

3.7 CASE STUDY

To demonstrate how our model would be applied in
a game-playing agent, we examined a single game in
detail. In this game, the Protoss player follows the
Reaver drop strategy, which involves using a transport
aircraft to carry a powerful unit called a Reaver be-
hind enemy lines to attack the workers. This attack
is potentially devastating, but easy to stop unless we
are caught by surprise. We must note that one of the
reasons that we chose this particular game is that the
Terran player’s scouting was particularly effective, giv-
ing our model a chance to make interesting inferences.

The key units in this strategy are the Robotics Support
Bay, which is the tech building required for the Reaver;
the Shuttle, which is the aircraft that transports the
Reaver; and of course the Reaver itself. We can also
contrast the Reaver drop opening to the “standard”
opening, which involves building an Observatory.

This game features two distinct periods of scouting.



The Terran player scouts the Protoss at t = 6, leaves
for a while, then returns to scout again at t = 10.
Figure 6 shows, for each of the key units, the model’s
belief that at least one such unit will exist at each
future time step, given evidence up to t = 6 and t = 10.

We first examine our model’s predictions with evidence
up to t = 6. The Terran player has just scouted the
Robotics Facility, but the Support Bay and Reaver
have not been built yet. Belief that an Observatory
or a Support Bay exists begins to increase at t = 8.
The Observatory is the “standard” continuation, so it
receives more belief. Belief that a Shuttle exists in-
creases in step with belief in the Support Bay because
the Support Bay is strongly associated with the Reaver
drop strategy, which always features a Shuttle. Belief
that a Reaver exists increases more slowly than belief
in the Support Bay because a Support Bay must be
completed before a Reaver can be built. In the game,
the Support Bay and Shuttle were actually built at
t = 9, and the Reaver was built at t = 11.

We now examine how the model’s predictions change
when more evidence arrives. At t = 10, the Terran
player scouts the Support Bay. This should unam-
biguously signal that a Reaver is going to be built,
since there is no other reason to build a Support Bay.
As expected, belief that a Reaver is coming increases
considerably compared to the prediction with evidence
through time 6. Belief that a Shuttle exists has also
increased.

4 DISCUSSION

Our model generally performed well in comparison to
the baseline for both count predictions and 0/1 predic-
tions. The fact that our model is stationary while the
baseline is non-stationary appears to account for most
of the cases where the baseline was equal to or bet-
ter than our model. Whereas the baseline can exploit
the fact that certain patterns of production events are
associated with particular time periods, in our model
the Markov property of the hidden state erases infor-
mation about how much time has elapsed. In the early
game, our model begins predicting production events
too early because it models the first several epochs,
which all look the same, with a single state that has
a high self-transition probability. Later in the game,
uncertainty about the time means it has trouble cap-
turing time-dependent “pauses” in production. On the
other hand, our model can in principle be extended to
full-length games, while our baseline method is too
coarse to be useful much beyond the opening.

Another weakness of our model is that it incorporates
no explicit prior knowledge about configurations of
unit counts. For example, there will almost never be

two Observatories, but our model can only account for
this by designing the state transition matrix to visit
the Observatory-producing state only once. Accuracy
could be improved by making production of a unit at
time t (P i

t ) dependent on the count of that unit at time
t−1 (U i

t−1), with a corresponding increase in the com-
plexity of the latent variable portion of the model. The
situation worsens if we want to incorporate prerequi-
site relationships, as these cause the counting processes
for different unit types to become coupled, destroying
the conditional independences that we leveraged for
efficient inference.

5 FUTURE WORK

A significant future challenge is to devise a model that
can perform well in a full-length game. The space of
possible strategies expands greatly as the game runs
longer and the actions of the opponent begin to in-
fluence one’s own decisions. Naively extending the
current model by adding states is likely to prove in-
tractable. One possibility is to try to exploit hier-
archical structure in strategies to reduce the strategy
space. We suspect that strategic decisions take place
on multiple time scales—broad objectives at the top
level, and smaller steps necessary to achieve them at
the bottom. A model of a full game will need to in-
corporate a model of resource flow in order to reason
effectively about production rates. It will also need
to account for changes in the opponent’s strategy in
response to our actions.

We are also interested in applying opponent models
to optimize scouting policies. As we saw in Figure 2,
human players have converged on at least one time
period in which the tradeoff between probability of
scouting success and expected information gain is at an
optimum. An agent could use our model to determine
when important information is likely to be available.
Modeling the probability that a scouting action will
succeed in acquiring information, assuming that the
information is there, is a challenging problem in itself.

Acknowledgements

This work was made possible by the efforts of Mark
Udarbe and Thao-Trang Hoang in assembling and la-
beling our dataset.

This work was partly funded by ARO grant W911NF-
08-1-0242. The views and conclusions contained in
this document are those of the authors and do not
necessarily represent the official policies of ARO or the
United States Government. Jesse Hostetler is partly
supported by a scholarship from the ARCS foundation
of Portland, OR.



References

BWAPI (2012). bwapi: An api for interacting with
Starcraft: Broodwar (1.16.1). [Online] https://
code.google.com/p/bwapi/.

Dean, T. and Kanazawa, K. (1988). Probabilistic tem-
poral reasoning. In Proceedings of the Seventh Na-
tional Conference on Artificial Intelligence, pages
524–529, Cambridge, Massachusetts. MIT Press.

Dereszynski, E., Hostetler, J., Fern, A., Dietterich,
T., Hoang, T., and Udarbe, M. (2011). Learning
probabilistic behavior models in real-time strategy
games. In Seventh Artificial Intelligence and Inter-
active Digital Entertainment Conference.

Doucet, A., de Freitas, N., Murphy, K., and Russell,
S. (2000). Rao-blackwellised particle filtering for
dynamic bayesian networks. In Proceedings of the
Sixteenth Conference Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-00), pages 176–
183, San Francisco, CA. Morgan Kaufmann.

Haseman, J. and Kupper, L. (1979). Analysis of di-
chotomous response data from certain toxicological
experiments. Biometrics, pages 281–293.

Hsieh, J. and Sun, C. (2008). Building a player strat-
egy model by analyzing replays of real-time strategy
games. In IEEE International Joint Conference on
Neural Networks (IJCNN), 2008., pages 3106–3111.
IEEE.

Hutchinson, R., Liu, L., and Dietterich, T. (2011). In-
corporating boosted regression trees into ecological
latent variable models. In Twenty-Fifth AAAI Con-
ference on Artificial Intelligence.

Lesnoff, M., Lancelot, and R. (2010). aod: Analysis of
Overdispersed Data. R package version 1.2.

MacKenzie, D., Nichols, J., Lachman, G., Droege, S.,
Andrew Royle, J., and Langtimm, C. (2002). Esti-
mating site occupancy rates when detection proba-
bilities are less than one. Ecology, 83(8):2248–2255.

Murphy, K. (2000). Bayesian map learning in dy-
namic environments. In In Neural Info. Proc. Sys-
tems (NIPS), pages 1015–1021. MIT Press.

Perkins, L. (2010). Terrain analysis in real-time strat-
egy games: An integrated approach to choke point
detection and region decomposition. In Sixth Arti-
ficial Intelligence and Interactive Digital Entertain-
ment Conference.

Ponsen, M., Spronck, P., Muñoz-Avila, H., and Aha,
D. (2007). Knowledge acquisition for adaptive game
AI. Science of Computer Programming, 67(1):59–75.

Rabiner, L. R. (1990). A tutorial on hidden markov
models and selected applications in speech recogni-
tion. In Readings in speech recognition, pages 267–

296. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA.

Schadd, F., Bakkes, S., and Spronck, P. (2007). Op-
ponent modeling in real-time strategy games. In 8th
International Conference on Intelligent Games and
Simulation (GAME-ON) 2007, pages 61–68.

Synnaeve, G. and Bessière, P. (2011). A Bayesian
model for opening prediction in RTS games with ap-
plication to Starcraft. In IEEE Conference on Com-
putational Intelligence and Games (CIG), 2011,
pages 281–288. IEEE.

Weber, B. and Mateas, M. (2009). A data mining ap-
proach to strategy prediction. In IEEE Symposium
on Computational Intelligence and Games (CIG),
2009, pages 140–147. IEEE.


